FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Lansbury, GB Stern, D Aird, J Alexander, DM Fuentes, C Harrison, FA Treister, E Bauer, FE Tomsick, JA Balokovic, M Del Moro, A Gandhi, P Ajello, M Annuar, A Ballantyne, DR Boggs, SE Brandt, WN Brightman, M Chen, CTJ Christensen, FE Civano, F Comastri, A Craig, WW Forster, K Grefenstette, BW Hailey, CJ Hickox, RC Jiang, B Jun, HD Koss, M Marchesi, S Melo, AD Mullaney, JR Noirot, G Schulze, S Walton, DJ Zappacosta, L Zhang, WW AF Lansbury, G. B. Stern, D. Aird, J. Alexander, D. M. Fuentes, C. Harrison, F. A. Treister, E. Bauer, F. E. Tomsick, J. A. Balokovic, M. Del Moro, A. Gandhi, P. Ajello, M. Annuar, A. Ballantyne, D. R. Boggs, S. E. Brandt, W. N. Brightman, M. Chen, C. -T. J. Christensen, F. E. Civano, F. Comastri, A. Craig, W. W. Forster, K. Grefenstette, B. W. Hailey, C. J. Hickox, R. C. Jiang, B. Jun, H. D. Koss, M. Marchesi, S. Melo, A. D. Mullaney, J. R. Noirot, G. Schulze, S. Walton, D. J. Zappacosta, L. Zhang, W. W. TI The NuSTAR Serendipitous Survey: The 40-month Catalog and the Properties of the Distant High-energy X-Ray Source Population SO ASTROPHYSICAL JOURNAL LA English DT Article DE catalogs; galaxies: active; galaxies: nuclei; quasars: general; surveys; Xrays: general Supporting material: figure sets; machine-readable tables ID ACTIVE GALACTIC NUCLEI; DEEP FIELD-SOUTH; MEDIUM-SENSITIVITY SURVEY; SEYFERT 1 GALAXIES; POINT-SOURCE CATALOGS; DIGITAL SKY SURVEY; AREA SURVEY HELLAS; SWIFT-BAT SURVEY; SPECTRAL PROPERTIES; OPTICAL-IDENTIFICATION AB We present the first full catalog and science results for the Nuclear Spectroscopic Telescope Array (NuSTAR) serendipitous survey. The catalog incorporates data taken during the first 40 months of NuSTAR operation, which provide approximate to 20 Ms of effective exposure time over 331 fields, with an areal coverage of 13 deg2, and 497 sources detected in total over the 324 keV energy range. There are 276 sources with spectroscopic redshifts and classifications, largely resulting from our extensive campaign of ground-based spectroscopic follow-up. We characterize the overall sample in terms of the X-ray, optical, and infrared source properties. The sample is primarily composed of active galactic nuclei (AGNs), detected over a large range in redshift from z = 0.002 to 3.4 (median of < Z > = 0.56), but also includes 16 spectroscopically confirmed Galactic sources. There is a large range in X-ray flux, from log(L10-40 (keV)/erg s(-1) cm(-2)) approximate to-14 to -11, and in rest-frame 1040 keV luminosity, from log(L10-40 (keV)/erg s(-1)) approximate to 39 to 46, with a median of 44.1. Approximately 79% of the NuSTAR sources have lower-energy (<10 keV) X-ray counterparts from XMM-Newton, Chandra, and Swift XRT. The mid-infrared (MIR) analysis, using WISE all-sky survey data, shows that MIR AGN color selections miss a large fraction of the NuSTAR-selected AGN population, from (similar to)15% at the highest luminosities (L-X >10(44) erg s(-1)) to approximate to 80% at the lowest luminosities (L-X <10(43) erg s(-1)). Our optical spectroscopic analysis finds that the observed fraction of optically obscured AGNs (i.e., the type 2 fraction) is F-TYPE (2) =53(-15)(+14)% , for a well-defined subset of the 824 keV selected sample. This is higher, albeit at a low significance level, than the type 2 fraction measured for redshift- and luminosity-matched AGNs selected by <10 keV X-ray missions. C1 [Lansbury, G. B.; Aird, J.; Alexander, D. M.; Del Moro, A.; Gandhi, P.; Annuar, A.] Univ Durham, Ctr Extragalact Astron, Dept Phys, South Rd, Durham DH1 3LE, England. [Lansbury, G. B.; Aird, J.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Stern, D.; Jun, H. D.; Noirot, G.; Walton, D. J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 169-221, Pasadena, CA 91109 USA. [Fuentes, C.; Treister, E.; Melo, A. D.] Univ Concepcion, Dept Astronom, Casilla 160-C, Concepcion, Chile. [Harrison, F. A.; Balokovic, M.; Brightman, M.; Forster, K.; Grefenstette, B. W.; Jiang, B.; Walton, D. J.] CALTECH, Cahill Ctr Astrophys, 1216 East Calif Blvd, Pasadena, CA 91125 USA. [Treister, E.; Bauer, F. E.; Schulze, S.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, 306, Santiago 22, Chile. [Bauer, F. E.; Schulze, S.] Millennium Inst Astrophys, Vicu Mackenna 4860, Santiago 7820436, Chile. [Bauer, F. E.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Tomsick, J. A.; Boggs, S. E.] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. [Del Moro, A.] Max Planck Inst Extraterr Phys MPE, Postfach 1312, D-85741 Garching, Germany. [Gandhi, P.] Univ Southampton, Sch Phys & Astron, Highfield, Southampton SO17 1BJ, Hants, England. [Ajello, M.; Marchesi, S.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Ballantyne, D. R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Brandt, W. N.; Chen, C. -T. J.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Christensen, F. E.; Craig, W. W.] Tech Univ Denmark, DTU Space Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark. [Civano, F.] Yale Univ, Yale Ctr Astron & Astrophys, Dept Phys, New Haven, CT 06520 USA. [Civano, F.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Comastri, A.] INAF Osservatorio Astronomico Bologna, Via Ranzani 1, I-40127 Bologna, Italy. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, 550 W 120th St, Columbia, NY 10027 USA. [Hickox, R. C.] Dartmouth Coll, Dept Phys & Astron, 6127 Wilder Lab, Hanover, NH 03755 USA. [Koss, M.] Swiss Fed Inst Technol, Inst Astron, Dept Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Mullaney, J. R.] Univ Sheffield, Dept Phys & Astron, Hounsfield Rd, Sheffield S3 7RH, S Yorkshire, England. [Noirot, G.] Univ Paris Diderot Paris VII, Univ Paris Sorbonne Cite PSC, F-75205 Paris 13, France. [Zappacosta, L.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Zhang, W. W.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lansbury, GB (reprint author), Univ Durham, Ctr Extragalact Astron, Dept Phys, South Rd, Durham DH1 3LE, England. EM gbl23@ast.cam.ac.uk FU Science and Technology Facilities Council (STFC) [ST/K501979/1, ST/I001573/1, ST/J003697/2]; Herchel Smith Postdoctoral Fellowship of the University of Cambridge; ERC Advanced Grant FEEDBACK at the University of Cambridge [340442]; Institute of Advanced Study, Durham University; Leverhulme Trust; CONICYT-Chile [1120061, 1160999, 3140534]; Anillo [ACT1101]; Center of Excellence in Astrophysics and Associated Technologies [PFB 06]; NASA Earth and Space Science Fellowship Program [NNX14AQ07H]; NASA [NNG08FD60C]; National Aeronautics and Space Administration FX The authors first thank the anonymous referee for the constructive comments. We acknowledge financial support from the Science and Technology Facilities Council (STFC) grants ST/K501979/1 (G.B.L.), ST/I001573/1 (D.M.A.), and ST/J003697/2 (P.G.); a Herchel Smith Postdoctoral Fellowship of the University of Cambridge (G.B.L.); the ERC Advanced Grant FEEDBACK 340442 at the University of Cambridge (J.A.); a COFUND Junior Research Fellowship from the Institute of Advanced Study, Durham University (J.A.); the Leverhulme Trust (D.M.A.); CONICYT-Chile grants FONDECYT 1120061 and 1160999 (E.T.), 3140534 (S.S.), and Anillo ACT1101 (E.T. and F.E.B.); the Center of Excellence in Astrophysics and Associated Technologies (PFB 06; E.T. and F. E.B.); and the NASA Earth and Space Science Fellowship Program, grant NNX14AQ07H (M.B.). We extend gratitude to Felipe Ardila, Roberto Assef, Eduardo Banados, Stanislav George Djorgovski, Andrew Drake, Jack Gabel, Audrey Galametz, Daniel Gawerc, David Girou, Marianne Heida, Nikita Kamraj, Peter Kosec, Thomas Kruhler, Ashish Mahabal, Alessandro Rettura, and Aaron Stemo for their support during the ground-based follow-up observations. We thank John Lucey for unearthing the J1410 spectrum, and Sophie Reed, David Rosario, Mara Salvato, and Martin Ward for the informative discussions. Additional thanks to Eden Stern for lending a hand during the 2015 August Keck run. This work was supported under NASA Contract No. NNG08FD60C and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). NR 135 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2017 VL 836 IS 1 AR 99 DI 10.3847/1538-4357/836/1/99 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EP3TL UT WOS:000397304500051 ER PT J AU Lunnan, R Kasliwal, MM Cao, Y Hangard, L Yaron, O Parrent, JT McCully, C Gal-Yam, A Mulchaey, JS Ben-Ami, S Filippenko, AV Fremling, C Fruchter, AS Howell, DA Koda, J Kupfer, T Kulkarni, SR Laher, R Masci, F Nugent, PE Ofek, EO Yagi, M Yan, L AF Lunnan, R. Kasliwal, M. M. Cao, Y. Hangard, L. Yaron, O. Parrent, J. T. McCully, C. Gal-Yam, A. Mulchaey, J. S. Ben-Ami, S. Filippenko, A. V. Fremling, C. Fruchter, A. S. Howell, D. A. Koda, J. Kupfer, T. Kulkarni, S. R. Laher, R. Masci, F. Nugent, P. E. Ofek, E. O. Yagi, M. Yan, Lin TI Two New Calcium-rich Gap Transients in Group and Cluster Environments SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: general; supernovae: individual (PTF11kmb, PTF12bho, PTF10hcw, SN 2005E) ID GAMMA-RAY BURSTS; SPACE-TELESCOPE OBSERVATIONS; ULTRA-DIFFUSE GALAXIES; HOST GALAXIES; IA SUPERNOVA; WHITE-DWARFS; LUMINOSITY FUNCTION; GLOBULAR-CLUSTERS; LOW-RESOLUTION; STAR-FORMATION AB We present the Palomar Transient Factory discoveries and the photometric and spectroscopic observations of PTF11kmb and PTF12bho. We show that both transients have properties consistent with the class of calcium-rich gap transients, specifically lower peak luminosities and rapid evolution compared to ordinary supernovae, and a nebular spectrum dominated by [Ca II] emission. A striking feature of both transients is their host environments: PTF12bho is an intracluster transient in the Coma Cluster, while PTF11kmb is located in a loose galaxy group, at a physical offset similar to 150 kpc from the most likely host galaxy. Deep Subaru imaging of PTF12bho rules out an underlying host system to a limit of M-R > -8.0 mag, while Hubble Space Telescope imaging of PTF11kmb reveals a marginal counterpart that, if real, could be either a background galaxy or a globular cluster. We show that the offset distribution of Ca-rich gap transients is significantly more extreme than that seen for SNe Ia or even short-hard gamma-ray bursts (sGRBs). Thus, if the offsets are caused by a kick, they require higher kick velocities and/or longer merger times than sGRBs. We also show that almost all Ca-rich transients found to date are in group and cluster environments with elliptical host galaxies, indicating a very old progenitor population; the remote locations could partially be explained by these environments having the largest fraction of stars in the intragroup/intracluster light following galaxy-galaxy interactions. C1 [Lunnan, R.; Kasliwal, M. M.; Kupfer, T.; Kulkarni, S. R.] CALTECH, Dept Astron, 1200 East Calif Blvd, Pasadena, CA 91125 USA. [Cao, Y.] Univ Washington, ESci Inst & Astron Dept, Seattle, WA 98195 USA. [Hangard, L.; Fremling, C.] Stockholm Univ, Dept Phys, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Yaron, O.; Gal-Yam, A.; Ofek, E. O.] Weizmann Inst Sci, Helen Kimmel Ctr Planetary Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Parrent, J. T.; Ben-Ami, S.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [McCully, C.; Howell, D. A.] Las Cumbres Observ Global Telescope Network, 6740 Cortona Dr,Suite 102, Goleta, CA 93117 USA. [McCully, C.; Howell, D. A.] Univ Calif, Dept Phys, Broida Hall,Mail Code 9530, Santa Barbara, CA 93106 USA. [Mulchaey, J. S.] Observ Carnegie Inst Sci, Pasadena, CA 91101 USA. [Filippenko, A. V.; Nugent, P. E.] Univ Calif, Dept Astron, Berkeley, CA 94720 USA. [Fruchter, A. S.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Koda, J.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Laher, R.] CALTECH, Spitzer Sci Ctr, MS 314-6, Pasadena, CA 91125 USA. [Masci, F.; Yan, Lin] CALTECH, Infrared Proc & Anal Ctr, MS 100-22, Pasadena, CA 91125 USA. [Nugent, P. E.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 50B 4206, Berkeley, CA 94720 USA. [Yagi, M.] Natl Astron Observ Japan, Opt & Infrared Astron Div, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Yan, Lin] CALTECH, Caltech Opt Observatories, 1200 East Calif Blvd, Pasadena, CA 91125 USA. RP Lunnan, R (reprint author), CALTECH, Dept Astron, 1200 East Calif Blvd, Pasadena, CA 91125 USA. EM rlunnan@astro.caltech.edu OI Parrent, Jerod/0000-0002-5103-7706; McCully, Curtis/0000-0001-5807-7893; Gal-Yam, Avishay/0000-0002-3653-5598 FU Gordon and Betty Moore Foundation [GBMF5076]; NASA [GO-13864, NAS 5-26555]; Space Telescope Science Institute; GROWTH project - National Science Foundation [1545949]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; EU/FP7 via ERC [307260]; Quantum Universe I-Core program, Israeli Committee; ISF; Minerva; ISF grants; WIS-UK "making connections"; Kimmel award; YeS award; Christopher R. Redlich Fund; TABASGO Foundation; NSF [AST-1211916, AST-313484]; W.M. Keck Foundation FX R.L. thanks Andrew Wetzler, Wen-fai Fong, Mark Sullivan, Dan Milisavljevic, Giorgos Leloudas, Jesper Sollerman, and Ryan Chornock for useful discussions and acknowledges helpful interactions with Lars Bildsten, Eliot Quataert, and Dan Kasen at a PTF Theory Network retreat funded by the Gordon and Betty Moore Foundation through Grant GBMF5076. We thank J. Silverman, B. Dilday, J. Bloom, B. Sesar, D. Levitan, P. Groot, D. Perley, A. Horesh, K. Mooley, and D. Xu for assisting with the observations presented in this paper. The Intermediate Palomar Transient Factory project is a scientific collaboration among the California Institute of Technology, Los Alamos National Laboratory, the University of Wisconsin-Milwaukee, the Oskar Klein Center, the Weizmann Institute of Science, the TANGO Program of the University System of Taiwan, and the Kavli Institute for the Physics and Mathematics of the Universe. Support for HST Program GO-13864 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the AURA, Inc., under NASA contract NAS 5-26555. We thank F. Yuan, M. Sullivan, D. Perley, R. M. Quimby, and S. B. Cenko for their contributions to the HST proposal. This work was supported by the GROWTH project funded by the National Science Foundation under Grant 1545949. The National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, provided staff, computational resources, and data storage for this project. A.G.-Y. is supported by the EU/FP7 via ERC grant No. 307260, the Quantum Universe I-Core program by the Israeli Committee for planning and funding, and the ISF, Minerva and ISF grants, WIS-UK "making connections," and Kimmel and YeS awards. A.V.F. is grateful for financial support from the Christopher R. Redlich Fund, the TABASGO Foundation, and NSF grant AST-1211916. D.A.H. and C.M. are supported by NSF grant AST-313484. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 83 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2017 VL 836 IS 1 AR 60 DI 10.3847/1538-4357/836/1/60 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EP3TL UT WOS:000397304500012 ER PT J AU Russell, HR McDonald, M McNamara, BR Fabian, AC Nulsen, PEJ Bayliss, MB Benson, BA Brodwin, M Carlstrom, JE Edge, AC Hlavacek-Larrondo, J Marrone, DP Reichardt, CL Vieira, JD AF Russell, H. R. McDonald, M. McNamara, B. R. Fabian, A. C. Nulsen, P. E. J. Bayliss, M. B. Benson, B. A. Brodwin, M. Carlstrom, J. E. Edge, A. C. Hlavacek-Larrondo, J. Marrone, D. P. Reichardt, C. L. Vieira, J. D. TI Alma Observations of Massive Molecular Gas Filaments Encasing Radio Bubbles in the Phoenix Cluster SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: clusters: individual (Phoenix); radio lines: galaxies ID ACTIVE GALACTIC NUCLEI; COOLING FLOW CLUSTERS; X-RAY CAVITIES; HEATING HOT ATMOSPHERES; SUPERMASSIVE BLACK-HOLE; FLUX-LIMITED SAMPLE; H-ALPHA FILAMENTS; SPT-SZ SURVEY; PERSEUS CLUSTER; GALAXY CLUSTERS AB We report new ALMA observations of the CO(3-2) line emission from the 2.1 +/- 0.3*10(10)M(circle dot). molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fueling a vigorous starburst at a rate of 500-800M(circle dot)yr(-1) and powerful black hole activity in the forms of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each 10-20 kpc long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities induced in low-entropy gas lifted in the updraft of the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the cold gas, which is essential to explain the self-regulation of feedback. The very feedback mechanism that heats hot atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to sustain feedback in massive galaxies. C1 [Russell, H. R.; Fabian, A. C.] Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [McDonald, M.; Bayliss, M. B.] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [McNamara, B. R.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [McNamara, B. R.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Nulsen, P. E. J.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Nulsen, P. E. J.] Univ Western Australia, ICRAR, 35 Stirling Highway, Crawley, WA 6009, Australia. [Bayliss, M. B.] Colby Coll, Dept Phys & Astron, 5100 Mayflower Hill Dr, Waterville, ME 04901 USA. [Benson, B. A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Benson, B. A.; Carlstrom, J. E.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Brodwin, M.] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Edge, A. C.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Hlavacek-Larrondo, J.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Marrone, D. P.] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [Reichardt, C. L.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Vieira, J. D.] Univ Illinois, Dept Astron, 1002 West Green St, Urbana, IL 61801 USA. [Vieira, J. D.] Univ Illinois, Dept Phys, 1002 West Green St, Urbana, IL 61801 USA. RP Russell, HR (reprint author), Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. EM hrr27@ast.cam.ac.uk OI Nulsen, Paul/0000-0003-0297-4493 FU ERC [340442]; Natural Sciences and Engineering Council of Canada; Canadian Space Agency Space Science Enhancement Program; NASA [NAS8-03060, HST-GO-13456, GO4-15122A]; Fermi Research Alliance, LLC [De-AC02-07CH11359]; STFC [ST/L00075X/1]; Canada Research Chairs program; Fonds de recherche Nature et technologies; Australian Research Council's Discovery [DP150103208]; United States Department of Energy FX H.R.R. and A.C.F. acknowledge support from ERC Advanced Grant Feedback 340442. M.M. acknowledges support by NASA through contracts HST-GO-13456 (Hubble) and GO4-15122A (Chandra). B.R.M. acknowledges support from the Natural Sciences and Engineering Council of Canada and the Canadian Space Agency Space Science Enhancement Program. P.E.J.N. acknowledges support from NASA contract NAS8-03060. B.B. is supported by the Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. A.C.E. acknowledges support from STFC grant ST/L00075X/1. J.H.L. acknowledges support from the Natural Sciences and Engineering Council of Canada, the Canada Research Chairs program and the Fonds de recherche Nature et technologies. C.R. acknowledges support from the Australian Research Council's Discovery Projects funding scheme (DP150103208). We thank the reviewer for constructive comments, and H.R.R. thanks Adrian Vantyghem for helpful discussions. This paper makes use of the following ALMA data: ADS/JAO. ALMA 2013.1.01302.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The scientific results reported in this article are based on data obtained from the Chandra Data Archive. NR 77 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2017 VL 836 IS 1 AR 130 DI 10.3847/1538-4357/836/1/130 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EP3TL UT WOS:000397304500082 ER PT J AU Yang, LP He, JS Tu, CY Li, ST Zhang, L Marsch, E Wang, LH Wang, X Feng, XS AF Yang, Liping He, Jiansen Tu, Chuanyi Li, Shengtai Zhang, Lei Marsch, Eckart Wang, Linghua Wang, Xin Feng, Xueshang TI Multiscale Pressure-Balanced Structures in Three-dimensional Magnetohydrodynamic Turbulence SO ASTROPHYSICAL JOURNAL LA English DT Article DE solar wind; turbulence; waves ID UNSPLIT GODUNOV METHOD; SOLAR-WIND; BOUNDARY-LAYERS; MAGNETIC-FIELD; ROTATIONAL DISCONTINUITIES; CONSTRAINED TRANSPORT; STRUCTURES DRIVEN; MHD TURBULENCE; MODE WAVES; IDEAL MHD AB Observations of solar wind turbulence indicate the existence of multiscale pressure-balanced structures (PBSs) in the solar wind. In this work, we conduct a numerical simulation to investigate multiscale PBSs and in particular their formation in compressive magnetohydrodynamic turbulence. By the use of the higher-order Godunov code Athena, a driven compressible turbulence with an imposed uniform guide field is simulated. The simulation results show that both the magnetic pressure and the thermal pressure exhibit a turbulent spectrum with a Kolmogorovlike power law, and that in many regions of the simulation domain they are anticorrelated. The computed wavelet cross-coherence spectra of the magnetic pressure and the thermal pressure, as well as their space series, indicate the existence of multiscale PBSs, with the small PBSs being embedded in the large ones. These multiscale PBSs are likely to be related to the highly oblique-propagating slow-mode waves, as the traced multiscale PBS is found to be traveling in a certain direction at a speed consistent with that predicted theoretically for a slow-mode wave propagating in the same direction. C1 [Yang, Liping; Zhang, Lei; Feng, Xueshang] Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, SIGMA Weather Grp, Beijing 100190, Peoples R China. [Yang, Liping; He, Jiansen; Tu, Chuanyi; Wang, Linghua] Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China. [Li, Shengtai] Los Alamos Natl Lab, Div Theoret, MS B284, Los Alamos, NM 87545 USA. [Marsch, Eckart] Univ Kiel, Inst Expt & Appl Phys, D-24118 Kiel, Germany. [Wang, Xin] Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China. RP He, JS (reprint author), Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China. EM jshept@gmail.com OI Wang, Linghua/0000-0001-7309-4325; He, Jiansen/0000-0001-8179-417X FU NSFC [41304133, 41231069, 41574168, 41204105, 41274132, 41474147, 41421003]; Specialized Research Fund for State Key Laboratories FX This work is supported by NSFC grants under contracts 41304133, 41231069, 41574168, 41204105, 41274132, 41474147, 41574168, and 41421003, and the Specialized Research Fund for State Key Laboratories. The work was carried out at the National Supercomputer Center in Tianjin, China, and the calculations were performed on TianHe-1(A). NR 37 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2017 VL 836 IS 1 AR 69 DI 10.3847/1538-4357/836/1/69 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EP3TL UT WOS:000397304500021 ER PT J AU Zackrisson, E Binggeli, C Finlator, K Gnedin, NY Paardekooper, JP Shimizu, I Inoue, AK Jensen, H Micheva, G Khochfar, S Dalla Vecchia, C AF Zackrisson, Erik Binggeli, Christian Finlator, Kristian Gnedin, Nickolay Y. Paardekooper, Jan-Pieter Shimizu, Ikkoh Inoue, Akio K. Jensen, Hannes Micheva, Genoveva Khochfar, Sadegh Dalla Vecchia, Claudio TI The Spectral Evolution of the First Galaxies. III. Simulated James Webb Space Telescope Spectra of Reionization-epoch Galaxies with Lyman-continuum Leakage SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark ages, reionization, first stars; galaxies: high-redshift; techniques: spectroscopic ID HIGH-REDSHIFT GALAXIES; STAR-FORMING GALAXIES; INITIAL MASS FUNCTION; BILLION YEARS PROJECT; ESCAPE FRACTION; IONIZING PHOTONS; COSMOLOGICAL SIMULATIONS; STARBURST GALAXIES; STELLAR POPULATIONS; COSMIC REIONIZATION AB Using four different suites of cosmological simulations, we generate synthetic spectra for galaxies with different Lyman-continuum escape fractions (f(esc)) at redshifts z approximate to 7-9, in the rest-frame wavelength range relevant for the James Webb Space Telescope (JWST) NIRSpec instrument. By investigating the effects of realistic star formation histories and metallicity distributions on the EW(H beta)-beta diagram (previously proposed as a tool for identifying galaxies with very high f(esc)), we find that neither of these effects are likely to jeopardize the identification of galaxies with extreme Lyman-continuum leakage. Based on our models, we expect that essentially all z approximate to 7-9 galaxies that exhibit rest-frame EW(Hb). 30 angstrom to have f(esc) > 0.5. Incorrect assumptions concerning the ionizing fluxes of stellar populations or the dust properties of z > 6 galaxies can in principle bias the selection, but substantial model deficiencies of this type should at the same time be evident from offsets in the observed distribution of z > 6 galaxies in the EW(H beta)-beta diagram compared to the simulated distribution. Such offsets would thereby allow JWST/NIRSpec measurements of these observables to serve as input for further model refinement. C1 [Zackrisson, Erik; Binggeli, Christian; Jensen, Hannes] Uppsala Univ, Dept Phys & Astron, Box 515, SE-75120 Uppsala, Sweden. [Finlator, Kristian] New Mexico State Univ, MSC 4500, Las Cruces, NM 88003 USA. [Gnedin, Nickolay Y.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Gnedin, Nickolay Y.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Gnedin, Nickolay Y.] Univ Chicago, Kavli Inst Cosmol Phys & Enrico Fermi Inst, Chicago, IL 60637 USA. [Paardekooper, Jan-Pieter] Heidelberg Univ, Zentrum Astronomie, Inst Theoret Astrophys, Albert Ueberle Str 2, D-69120 Heidelberg, Germany. [Shimizu, Ikkoh] Osaka Univ, Dept Earth & Space Sci, 1-1 Machikaneyama, Toyonaka, Osaka 565, Japan. [Inoue, Akio K.] Osaka Sangyo Univ, Coll Gen Educ, 3-1-1,Nakagaito, Daito 5748530, Japan. [Micheva, Genoveva] Univ Michigan, Dept Astron, 311 West Hall,1085 S. Univ Ave, Ann Arbor, MI 48109 USA. [Khochfar, Sadegh] Univ Edinburgh, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Dalla Vecchia, Claudio] Inst Astrofis Canarias, C Via Lactea S-N, E-38205 Tenerife, Spain. [Dalla Vecchia, Claudio] Univ La Laguna, Dept Astrofis, Av Astrofis Francisco Sanchez S-N, E-38206 San Cristobal la Laguna, Spain. RP Zackrisson, E (reprint author), Uppsala Univ, Dept Phys & Astron, Box 515, SE-75120 Uppsala, Sweden. EM erik.zackrisson@physics.uu.se OI Dalla Vecchia, Claudio/0000-0002-2620-7056 FU Swedish Research Council [2011- 5349]; European Research Council under the European Communitys (FP7) [339177] FX E.Z. acknowledges funding from the Swedish Research Council (project 2011-5349). J. P. P. acknowledges support from the European Research Council under the European Communitys Seventh Framework Programme (FP7/2007-2013) via the ERC Advanced Grant "STARLIGHT: Formation of the First Stars" (project number 339177). NR 83 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2017 VL 836 IS 1 AR 78 DI 10.3847/1538-4357/836/1/78 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EP3TL UT WOS:000397304500030 ER PT J AU Campa, J Estrada, J Flaugher, B AF Campa, Julia Estrada, Juan Flaugher, Brenna TI Measuring the Scatter of the Mass-Richness Relation in Galaxy Clusters in Photometric Imaging Surveys by Means of Their Correlation Function SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: clusters: general; large-scale structure of universe ID DARK-MATTER HALOES; DIGITAL SKY SURVEY; LARGE-SCALE STRUCTURE; PEAK-BACKGROUND SPLIT; COSMOLOGICAL CONSTRAINTS; SELF-CALIBRATION; POWER SPECTRUM; ENERGY SURVEY; CATALOG; MODEL AB Knowledge of the scatter in the mass-observable relation is a key ingredient for a cosmological analysis based on galaxy clusters in a photometric survey. In this paper we aim to quantify the capability of the correlation function of galaxy clusters to constrain the intrinsic scatter sigma 1(nM). We demonstrate how the linear bias measured in the correlation function of clusters can be used to determine the value of this parameter. The new method is tested in simulations of a 5000 deg(2) optical survey up to z similar to 1, similar to the ongoing Dark Energy Survey ( DES). Our results show that our method works better at lower scatter values. We can measure the intrinsic scatter slnM = 0.1 with a standard deviation of s(sigma 1(nM)) similar to 0.03 using this technique. However, the expected intrinsic scatter of the DES RedMaPPer cluster catalog sigma 1(nM) similar to 0.2 cannot be recovered with this method at suitable accuracy and precision because the area coverage is insufficient. For future photometric surveys with a larger area such as LSST and Euclid, the statistical errors will be reduced. Therefore, we forecast higher precision to measure the intrinsic scatter including the value mentioned before. We conclude that this method can be used as an internal consistency check method on their simplifying assumptions and complementary to cross- calibration techniques in multiwavelength cluster observations. C1 [Campa, Julia; Estrada, Juan; Flaugher, Brenna] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Campa, Julia] Ctr Invest Energet Medioambientales & Tecnol, Av Complutense 40, Madrid 28040, Spain. [Campa, Julia] Univ Autonoma Barcelona, Bellaterra 08193, Spain. RP Campa, J (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.; Campa, J (reprint author), Ctr Invest Energet Medioambientales & Tecnol, Av Complutense 40, Madrid 28040, Spain.; Campa, J (reprint author), Univ Autonoma Barcelona, Bellaterra 08193, Spain. EM campa@fnal.gov FU Astroparticle Physics Division at Centro de Investigaciones Medioambientales y Energeticas (CIEMAT) FX We greatly appreciate the support received from the collaborative work J. C. undertook with Martin Makler, Mariana Penna, and Marc Manera, as we worked together on the theoretical predictions of the halo mass function and bias. We are grateful to Jim Annis, Tom Diehl, Marcelle Soares, Brian Nord, Liz Buckley-Geer, David Finley, and Josh Frieman for useful discussions and communications. Thanks again to David Finley for laboriously correcting the grammar and language mistakes and making suggestions as to what should be explained more. J. C. thanks all participants of the Experimental Astrophysics Group meetings at the Fermilab Center for Particle Astrophysics. Thanks to Eduardo Rozo, Eli Rykoff, Joe Mohr, Cristopher Miller, Risa Wechsler, Kathy Romer and all the participants of the DES cluster working group. Thanks to Michael Busha and Risa Wechsler for providing us with the DESv1.02 halo mock catalog light cone survey based on HVS simulations. J.C. gratefully acknowledges the funding sources that made this work possible. Much of this work was supported by the Astroparticle Physics Division at Centro de Investigaciones Medioambientales y Energeticas (CIEMAT). This work was partially completed at Fermilab. J. C. thanks Fermilab for the invitations to work at Fermilab Center for Particle Astrophysics (FCPA). NR 80 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2017 VL 836 IS 1 AR 9 DI 10.3847/1538-4357/836/1/9 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EP3RF UT WOS:000397298700008 ER PT J AU Luo, WT Yang, XH Zhang, J Tweed, D Fu, LP Mo, HJ van den Bosch, FC Shu, CG Li, R Li, N Liu, XK Pan, CZ Wang, YR Radovich, M AF Luo, Wentao Yang, Xiaohu Zhang, Jun Tweed, Dylan Fu, Liping Mo, H. J. van den Bosch, Frank C. Shu, Chenggang Li, Ran Li, Nan Liu, Xiangkun Pan, Chuzhong Wang, Yiran Radovich, Mario TI Galaxy-Galaxy Weak-lensing Measurements from SDSS. I. Image Processing and Lensing Signals SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; gravitational lensing: weak; techniques: image processing ID DIGITAL SKY SURVEY; TELESCOPE ADVANCED CAMERA; STAR-FORMATION HISTORIES; STRIPE 82 SURVEY; DARK-MATTER; SHAPE MEASUREMENT; SYSTEMATIC-ERRORS; MASS CORRELATION; COSMIC SHEAR; STELLAR MASS AB We present our image processing pipeline that corrects the systematics introduced by the point-spread function (PSF). Using this pipeline, we processed Sloan Digital Sky Survey (SDSS) DR7 imaging data in r band and generated a galaxy catalog containing the shape information. Based on our shape measurements of the galaxy images from SDSS DR7, we extract the galaxy-galaxy (GG) lensing signals around foreground spectroscopic galaxies binned in different luminosities and stellar masses. We estimated the systematics, e. g., selection bias, PSF reconstruction bias, PSF dilution bias, shear responsivity bias, and noise rectification bias, which in total is between -9.1% and 20.8% at 2 sigma levels. The overall GG lensing signals we measured are in good agreement with Mandelbaum et al. The reduced chi(2) between the two measurements in different luminosity bins are from 0.43 to 0.83. Larger reduced chi(2) from 0.60 to 1.87 are seen for different stellar mass bins, which is mainly caused by the different stellar mass estimator. The results in this paper with higher signal-to-noise ratio are due to the larger survey area than SDSS DR4, confirming that more luminous/massive galaxies bear stronger GG lensing signals. We divide the foreground galaxies into red/blue and star-forming/quenched subsamples and measure their GG lensing signals. We find that, at a specific stellar mass/luminosity, the red/quenched galaxies have stronger GG lensing signals than their counterparts, especially at large radii. These GG lensing signals can be used to probe the galaxy-halo mass relations and their environmental dependences in the halo occupation or conditional luminosity function framework. C1 [Luo, Wentao] Shanghai Astron Observ, Key Lab Res Galaxies & Cosmol, Nandan Rd 80, Shanghai 200030, Shanghai, Peoples R China. [Luo, Wentao] Shanghai Jiao Tong Univ, Ctr Astron & Astrophys, Shanghai 200240, Peoples R China. [Luo, Wentao; Yang, Xiaohu; Zhang, Jun; Tweed, Dylan] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Yang, Xiaohu] Shanghai Jiao Tong Univ, IFSA Collaborat Innovat Ctr, Shanghai 200240, Peoples R China. [Fu, Liping; Shu, Chenggang] Shanghai Normal Univ, Shanghai Key Lab Astrophys, 100 Guilin Rd, Shanghai 200234, Peoples R China. [Mo, H. J.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Mo, H. J.] Tsinghua Univ, Dept Phys, Beijing 10084, Peoples R China. [Mo, H. J.] Tsinghua Univ, Ctr Astrophys, Beijing 10084, Peoples R China. [van den Bosch, Frank C.] Yale Univ, Dept Astron, POB 208101, New Haven, CT 06520 USA. [Li, Ran] Chinese Acad Sci, Key Lab Computat Astrophys, Partner Grp, Max Planck Inst Astrophys,Natl Astron Observ, Beijing 100012, Peoples R China. [Li, Nan] Univ Chicago, Dept Astron & Astrophys, 5640 South Ellis Ave, Chicago, IL 60637 USA. [Li, Nan] Argonne Natl Lab, 9700 South Cass Ave B109, Lemont, IL 60439 USA. [Li, Nan] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Liu, Xiangkun; Pan, Chuzhong] Peking Univ, Dept Astron, Beijing 100871, Peoples R China. [Wang, Yiran] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Radovich, Mario] INAF, Osservatorio Astronom Napoli, Via Moiariello 16, I-80131 Naples, Italy. [Radovich, Mario] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. RP Luo, WT (reprint author), Shanghai Astron Observ, Key Lab Res Galaxies & Cosmol, Nandan Rd 80, Shanghai 200030, Shanghai, Peoples R China.; Luo, WT (reprint author), Shanghai Jiao Tong Univ, Ctr Astron & Astrophys, Shanghai 200240, Peoples R China.; Luo, WT (reprint author), Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. EM walt@shao.ac.cn; xyang@sjtu.edu.cn FU 973 Program [2015CB857002]; NSFC [11128306, 11121062, 11233005, 11503064, 11333001, 11673018, 11303033]; Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences [XDB09000000]; Office of Science and Technology, Shanghai Municipal Government [11DZ2260700]; Chinese Scholarship Council [201504910477]; Shanghai Natural Science Foundation [15ZR1446700]; STCSM grant [13JC1404400, 16R1424800]; SHNU grant [DYL201603]; Klaus Tschira Foundation; U.S. National Science Foundation [AST 1516962]; Youth Innovation Promotion Association of CAS; High Performance Computing Resource in the Core Facility for Advanced Research Computing at Shanghai Astronomical Observatory FX We thank the anonymous referee for helpful comments that greatly improved the presentation of this paper. W.L. thanks Rachel Mandelbaum from Carnegie Mellon University for very useful guidance and discussions at various stages of this project and for providing the data points presented in this paper. W.L. also thanks Dandan Xu from Heidelberg University for useful discussions. This work was supported by the following programs: the 973 Program (no. 2015CB857002), NSFC (nos. 11128306, 11121062, 11233005, 11503064), the Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences, grant no. XDB09000000, and a key laboratory grant from the Office of Science and Technology, Shanghai Municipal Government (no. 11DZ2260700), as well as the Chinese Scholarship Council (no. 201504910477) and Shanghai Natural Science Foundation, grant no. 15ZR1446700. L.F. acknowledges the support from NSFC grant nos. 11333001 and 11673018, STCSM grant nos. 13JC1404400 and 16R1424800, and SHNU grant no. DYL201603. F.C.v.d.B. is supported by the Klaus Tschira Foundation and by the U.S. National Science Foundation through grant AST 1516962. L.R. acknowledges the NSFC (grant no. 11303033) and the support from the Youth Innovation Promotion Association of CAS.; This work was also supported by the High Performance Computing Resource in the Core Facility for Advanced Research Computing at Shanghai Astronomical Observatory. NR 91 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2017 VL 836 IS 1 AR 38 DI 10.3847/1538-4357/836/1/38 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EN0ZT UT WOS:000395740700011 ER PT J AU Zhang, XH Chen, ZL Schwarz, B Sigel, F Ehrenberg, H An, K Zhang, ZF Zhang, QG Li, YT Li, J AF Zhang, Xianhui Chen, Zhenlian Schwarz, Bjoern Sigel, Florian Ehrenberg, Helmut An, Ke Zhang, Zhifeng Zhang, Qinggang Li, Yantu Li, Jun TI Kinetic characteristics up to 4.8 V of layered LiNi1/3Co1/3Mn1/3O2 cathode materials for high voltage lithium-ion batteries SO ELECTROCHIMICA ACTA LA English DT Article DE LiNi1/3Co1/3Mn1/3O2; Structure reversibility; Electrochemical kinetics; Redox couples; Lithium-ion battery ID SITU POWDER DIFFRACTION; O POSITIVE ELECTRODES; X-RAY-DIFFRACTION; LINI1/3MN1/3CO1/3O2 CATHODES; ELECTROCHEMICAL PROPERTIES; HIGH-POWER; INTERCALATION; TRANSITION; LICO1/3NI1/3MN1/3O2; LICOO2 AB Understanding the structure properties in deep delithiated states and electrochemical kinetics in the high potential window of LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials is essential to advance their performance in rechargeable lithium-ion batteries for 5 V chemistry. Here we report a layered single-phase NCM showing great structural reversibility and without H3 phase formation when charged up to 4.8 V at least for 5 cycles. However, the poor cluster scale conductivity results in inactive material in thick electrode during cycling, approximately 10% (w/w), may corresponding to the reduced capacity respective to thin electrode. The Co3+/Co4+ redox peaks are found clear and stable for cycles, lying between 4.5 similar to 5.0 V. That is tightly correlated to the fast Li-ion kinetic, i.e., the electrochemical behaviour of the NCM material is not limited by Li+ diffusion but behaving like in a thin layer. That is very different from previously reports on charge transfer mechanisms of cathode materials for lithium-ion batteries. (C) 2017 Elsevier Ltd. All rights reserved. C1 [Zhang, Xianhui; Chen, Zhenlian; Zhang, Zhifeng; Li, Jun] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China. [Zhang, Xianhui; Zhang, Zhifeng] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Schwarz, Bjoern; Sigel, Florian; Ehrenberg, Helmut] Karlsruhe Inst Technol, IAM, D-76344 Eggenstein Leopoldshafen, Germany. [Ehrenberg, Helmut] Tech Univ Darmstadt, Alarich Weiss Str 2, D-64287 Darmstadt, Germany. [An, Ke] Oak Ridge Natl Lab, Chem & Engn Mat Div, Spallat Neutron Sources, Oak Ridge, TN 37831 USA. [Zhang, Qinggang; Li, Yantu] Guangdong Keprime Enerstore Ltd, Guangzhou 510530, Guangdong, Peoples R China. RP Chen, ZL; Li, J (reprint author), Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China. EM chenzhl@nimte.ac.cn; lijun@nimte.ac.cn FU National Young scholar Natural Science Foundation of China [21303235]; National Research program of China [2013AA050901]; Public projects of Zhejiang Province [2015C31122]; Zhejiang Natural Science Foundation [LY16B030007]; Ningbo Natural Science Foundation [2015A610240]; Zhejiang Province Key Science and Technology Innovation Team [2013PT16]; program for Ningbo Municipal Science and Technology Innovative Research Team [2016B10005]; DFG [SFB 595] FX The authors acknowledge programs supported by the National Young scholar Natural Science Foundation of China (21303235), the National Research program of China (2013AA050901), Public projects of Zhejiang Province (2015C31122), Zhejiang Natural Science Foundation (LY16B030007), Ningbo Natural Science Foundation (2015A610240), Zhejiang Province Key Science and Technology Innovation Team (2013PT16), and the program for Ningbo Municipal Science and Technology Innovative Research Team (Grant No. 2016B10005). This work has further benefitted from the DFG Collaborative Research Center SFB 595, project T3. We acknowledge the synchrotron facility DESY in Hamburg, Germany, for provision of beam-time at the PETRA III P02.1 beamline, and the resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. We thank the friendly discussion with Dr. Cheng Dong at the Institute of Physics, CAS. NR 45 TC 0 Z9 0 U1 10 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD FEB 10 PY 2017 VL 227 BP 152 EP 161 DI 10.1016/j.electacta.2017.01.014 PG 10 WC Electrochemistry SC Electrochemistry GA EL1RV UT WOS:000394399600018 ER PT J AU Jin, WC Xu, H Arson, C Busetti, S AF Jin, Wencheng Xu, Hao Arson, Chloe Busetti, Seth TI Computational model coupling mode II discrete fracture propagation with continuum damage zone evolution SO INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS LA English DT Article DE fracture mechanics; continuum damage mechanics; finite element method; cohesive zone model; energy dissipation; upscaling ID EFFECTIVE ELASTIC-MODULI; EMBEDDED CRACK MODEL; COHESIVE-ZONE; ANISOTROPIC DAMAGE; BRITTLE MATERIALS; FAILURE; CONCRETE; SOLIDS; SIMULATION; GROWTH AB We propose a numerical method that couples a cohesive zone model (CZM) and a finite element-based continuum damage mechanics (CDM) model. The CZM represents a mode II macro-fracture, and CDM finite elements (FE) represent the damage zone of the CZM. The coupled CZM/CDM model can capture the flow of energy that takes place between the bulk material that forms the matrix and the macroscopic fracture surfaces. The CDM model, which does not account for micro-crack interaction, is calibrated against triaxial compression tests performed on Bakken shale, so as to reproduce the stress/strain curve before the failure peak. Based on a comparison with Kachanov's micro-mechanical model, we confirm that the critical microcrack density value equal to 0.3 reflects the point at which crack interaction cannot be neglected. The CZM is assigned a pure mode II cohesive law that accounts for the dependence of the shear strength and energy release rate on confining pressure. The cohesive shear strength of the CZM is calibrated by calculating the shear stress necessary to reach a CDM damage of 0.3 during a direct shear test. We find that the shear cohesive strength of the CZM depends linearly on the confining pressure. Triaxial compression tests are simulated, in which the shale sample is modeled as an FE CDM continuum that contains a predefined thin cohesive zone representing the idealized shear fracture plane. The shear energy release rate of the CZM is fitted in order to match to the post-peak stress/strain curves obtained during experimental tests performed on Bakken shale. We find that the energy release rate depends linearly on the shear cohesive strength. We then use the calibrated shale rheology to simulate the propagation of a meter-scale mode II fracture. Under low confining pressure, the macroscopic crack (CZM) and its damaged zone (CDM) propagate simultaneously (i.e., during the same loading increments). Under high confining pressure, the fracture propagates in slip-friction, that is, the debonding of the cohesive zone alternates with the propagation of continuum damage. The computational method is applicable to a range of geological injection problems including hydraulic fracturing and fluid storage and should be further enhanced by the addition of mode I and mixed mode (I+ II+ III) propagation. Copyright (C) 2016 John Wiley & Sons, Ltd. C1 [Jin, Wencheng; Arson, Chloe] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Xu, Hao] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Busetti, Seth] Conoco Phillips, Houston, TX USA. RP Arson, C (reprint author), Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. EM chloe_arson@yahoo.fr FU ConocoPhillips, Houston, TX FX Funding to complete this research work was received from ConocoPhillips, Houston, TX. NR 61 TC 0 Z9 0 U1 2 U2 2 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0363-9061 EI 1096-9853 J9 INT J NUMER ANAL MET JI Int. J. Numer. Anal. Methods Geomech. PD FEB 10 PY 2017 VL 41 IS 2 BP 223 EP 250 DI 10.1002/nag.2553 PG 28 WC Engineering, Geological; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA EO7PN UT WOS:000396882700004 ER PT J AU Han, T Kling, F Su, SF Wu, YC AF Han, Tao Kling, Felix Su, Shufang Wu, Yongcheng TI Unblinding the dark matter blind spots SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Supersymmetry Phenomenology ID E(+)E(-) COLLISIONS; GENERIC MODEL; PROGRAM; SEARCH; MSSM; NEUTRALINO AB The dark matter (DM) blind spots in the Minimal Supersymmetric Standard Model (MSSM) refer to the parameter regions where the couplings of the DM particles to the Z-boson or the Higgs boson are almost zero, leading to vanishingly small signals for the DM direct detections. In this paper, we carry out comprehensive analyses for the DM searches under the blind-spot scenarios in MSSM. Guided by the requirement of acceptable DM relic abundance, we explore the complementary coverage for the theory parameters at the LHC, the projection for the future underground DM direct searches, and the indirect searches from the relic DM annihilation into photons and neutrinos. We find that (i) the spin-independent (SI) blind spots may be rescued by the spin-dependent (SD) direct detection in the future underground experiments, and possibly by the indirect DM detections from IceCube and SuperK neutrino experiments; (H) the detection of gamma rays from Fermi-LAT may not reach the desirable sensitivity for searching for the DM blind spot regions; (Hi) the SUSY searches at the LHC will substantially extend the discovery region for the blind-spot parameters. The dark matter blind spots thus may be unblinded with the collective efforts in future DM searches. C1 [Han, Tao; Wu, Yongcheng] Univ Pittsburgh, PITT PACC, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Han, Tao; Wu, Yongcheng] Tsinghua Univ, Dept Phys, Beijing 100086, Peoples R China. [Han, Tao] Collaborat Innovat Ctr Quantum Matter, Beijing 100086, Peoples R China. [Kling, Felix; Su, Shufang] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Kling, Felix] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Kling, Felix] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RP Han, T (reprint author), Univ Pittsburgh, PITT PACC, Dept Phys & Astron, Pittsburgh, PA 15260 USA.; Han, T (reprint author), Tsinghua Univ, Dept Phys, Beijing 100086, Peoples R China.; Han, T (reprint author), Collaborat Innovat Ctr Quantum Matter, Beijing 100086, Peoples R China. EM than@pitt.edu; fkling@uci.edu; shufang@email.arizona.edu; wuyongcheng12@mails.tsinghua.edu.cn FU Department of Energy [DE-FG02-95ER40896, DE-FG02-13ER41976/de-sc0009913]; PITT PACC; NSF [PHY-1620638, PHYS-1066293]; Fermilab Graduate Student Research Program in Theoretical Physics; Fermi Research Alliance, LLC [DE-ACO207CH11359]; United States Department of Energy; National Science Foundation of China (NSFC) [11428511]; Chinese Scholarship Council FX We would like to thank Xerxes Tata for discussions. The work of TH is supported in part by the Department of Energy under Grant No. DE-FG02-95ER40896, and in part by PITT PACC. The work of FK is supported by NSF under Grant PHY-1620638. FK also acknowledges support from the Fermilab Graduate Student Research Program in Theoretical Physics operated by Fermi Research Alliance, LLC under Contract No. DE-ACO207CH11359 with the United States Department of Energy. The work of SS is supported by the Department of Energy under Grant DE-FG02-13ER41976/de-sc0009913, and partly by the National Science Foundation of China (NSFC) under Grant No. 11428511. The work of YW is supported by Chinese Scholarship Council. We would also like to thank the Aspen Center for Physics for hospitality, where part of the work was completed. The Aspen Center for Physics is supported by the NSF under Grant No. PHYS-1066293. NR 82 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB 10 PY 2017 IS 2 AR 057 DI 10.1007/JHEP02(2017)057 PG 31 WC Physics, Particles & Fields SC Physics GA EP8TE UT WOS:000397646900003 ER PT J AU Aaboud, M Aad, G Abbott, B Abdallah, J Abdinov, O Abeloos, B Aben, R AbouZeid, OS Abraham, NL Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Aring;kesson, TPA Akimov, AV Alberghi, GL Albert, I Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Ali, B Aliev, M Alimonti, G Alison, J Alkire, SP Allbrooke, BMM Allen, BW Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Alstaty, M Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antel, C Antonelli, M Antonov, A Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Armitage, LJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Artz, S Asai, S Asbah, N Ashkenazi, A Aring;sman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bachacou, H Bachasa, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisits, MS Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska-Blenessy, Z Baroncelli, A Barone, G Barr, AJ Navarro, LB Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bedognetti, M Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, AS Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Belyaev, NL Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Benitez, J Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Beringer, J Berlendis, S Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertram, IA Bertsche, C Bertsche, D Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bielski, R Biesuz, NV Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Blunier, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Boerner, D Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bokan, P Bold, T Boldyrev, AAS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Bortfeldt, J Bortoletto, D Bortolotto, V Bos, K Boscherini, D Bosman, M Sola, JDB Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Boutle, SK Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Broughton, JH de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruni, LS Brunt, BH Bruschi, M Bruscino, N Bryant, P Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Budagov, IA Buehrer, F Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burka, K Burke, S Burmeister, I Burr, JTP Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Lopez, SC Calvet, D Calvet, S Calvet, TP Toro, C Camarda, S Camarri, P Cameron, D Armadans, RC Camincher, C Campana, S Campanelli, M Camplani, A Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Carbone, RM Cardarelli, R Cardillo, E Carli, I Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Casper, DW Castaneda-Miranda, E Castelijn, R Castelli, A Gimenez, VC Castro, NF Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavallaro, E Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Alberich, LC Cerio, BC Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chan, SK Chan, YL Chang, P Champman, JD Charlton, DG Chatterjee, A Chau, CC Barajas, CAC Che, S Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, HJ Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chitan, A Chizhov, MV Choi, K Chomont, AR Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocca, C Ciocio, A Cirotto, F Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, BL Clark, MR Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Colasurdo, L Cole, B Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cormier, KJR Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cottin, G Cowan, G Cox, BE Cranmer, K Crawley, SJ Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuth, J Cuthbert, C Czirr, H Czodrowski, P D'amen, G D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dado, T Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Dann, NS Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, M Davison, P Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Maria, A De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJJ Debbe, R Debenedetti, C Dedovich, DV Dehghanian, N Deigaard, I Del Gaudio, M Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Denysiuk, D Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Clemente, WK Di Donato, C Di Girolamo, A Di Girolamo, B Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, JR Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, JJ Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Du, Y Duarte-Campderros, JJ Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duffield, EM Duflot, L Duguid, L Duhrssen, M Dumancic, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edwards, NC Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellajosyula, V Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Ennis, JS Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, F Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farina, C Farina, EM Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fawcett, WJ Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Fertere, D Ferretti, C Parodi, AF Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Forcolin, GT Formica, A Forti, A Foster, AG Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D Fressard-Batraneanu, SM Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, LG Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Bravo, AG Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Gecse, Z Gee, CNP Geich-Gimbel, C Geisen, M Geisler, MP Gemme, C Genest, MH Geng, C Gentile, S Gentsos, C George, S Gerbaudo, D Gershon, A Ghasemi, S GhazIane, H Ghneimat, M Giacobbe, B Giagu, S Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuli, F Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, G Gonella, L Gongadze, A de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goudet, CR Goujdami, D Goussiou, AG Govender, N Gozani, E Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gravila, PM Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Grevtsov, K Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Groh, S Grohs, JP Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guan, W Guenther, J Guescini, K Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, R Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Hadef, A Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanke, R Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, K Harkusha, S Harrington, RD Harrison, PF Hartjes, K Hartmann, NM Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, JJ Heinrich, L Heinz, C Hejba, J Helary, L Hellman, S Helsens, C Henderson, J Henderson, RCW Heng, Y Henkelmann, S Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohn, D Holmes, TR Homann, M Hong, TM Hooberman, BH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howarth, J Hrabovsky, M Hristoval, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Huang, Y Hubacek, Z Hubaut, K Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Huo, P Huseynov, N Huston, J Huth, J Lacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Idea, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Ishijima, N Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ito, F Ponce, JMI Iuppa, R Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, A Jackson, P Jain, V Jakobi, KB Jakobs, K Jakobsen, S Jakoubek, T Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanneau, F Jeanty, L Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, H Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, S Jones, TJ Jongrnanns, J Jorge, PM Jovicevic, J Ju, X Rozas, AJ Kohler, MK Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kaluza, A Kama, S Katnenshchikov, A Kanaya, N Kaneti, S Kanjir, L Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawade, K Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khader, M Khalil-zada, F Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Kowalewska, AB Kowalewski, R Kowalski, TZ Kozakai, C Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, A Kruse, MC Kruska, M Kubota, T Kucuk, H Kuday, S Kuechler, JT Kuehn, S Kugel, A Kuger, F Kuhl, A Kuh, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lammers, S Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Lazzaroni, M Le, B Le Dortz, O Le Guirriec, E Le Quilleuc, EP LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Lerner, G Leroy, C Lesage, AAJ Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, D Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, Q Li, S Li, X Li, Y Liang, Z Liberti, AB Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limosani, A Lin, SC Lin, TH Lindquist, BE Lionti, AE Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, H Liu, J Liu, JB Liu, KLL Liu, L Liu, M Liu, M Liu, YL Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, EM Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Longo, L Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Solis, AL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, H Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Luzi, PM Lynn, D Lysak, R Lytken, E Lyubushkin, V Ma, H Ma, LL Ma, Y Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Maneira, J de Andrade, LM Ramos, JM Mann, A Manousos, A Mansoulie, B Mansour, JD Mantifel, R Mantoani, M Manzoni, S Mapelli, L Marceca, G March, L Marchiori, G Marcisovsky, M Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshal, Z Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinezs, M Outschoorn, VIM Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, R Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mc Fadden, NC Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McClymont, LI McDonald, EF Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Melrose, B Melini, D Garcia, BRM Melo, M Meloni, F Mengarelli, A Menke, S Meoni, E Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Zu Theenhausen, HM Miano, F Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, JJ Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Molander, S Moles-Valls, R Monden, R Mondragon, MC Monig, K Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, S Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Sanchez, FJM Quijada, JAM Murry, WJ Musheghyan, H Muskinja, M Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nagai, K Nagai, R Nagano, K Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naryshkin, I Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Manh, TN Nickerson, RB Nicolaidou, R Nielsen, J Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Norjoharuddeen, N Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Nurse, E Nuti, F O'grady, F O'Neil, DC O'Rourke, AA O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okawa, H Okumura, Y Okuyama, T Olariu, A Seabra, LFO Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oreglia, MJ Oren, Y Orestano, D Orlando, N Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Rodriguez, LP Aranda, CP Pagacova, M Griso, SP Paige, F Pais, P Pajchel, K Palacino, G Palazzo, S Palestini, S Palka, M Pallin, D Palma, A Panagiotopoulou, ES Pandini, CE Vazquez, JGP Pani, R Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, AJ Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pascuzzi, VR Pasqualucci, E Passaggio, S Pastore, F Pasztor, G Pataraia, S Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Penc, O Peng, C Peng, H Penwell, J Peralva, BS Perego, MM Perepelitsa, DV Codina, EP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrov, M Petrucci, F Pettersson, NE Peyaud, A Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pilcher, JE Pilkington, AD Pin, AWJ Pinamonti, M Pinfold, TJL Pingel, A Pires, S Pirumov, H Pitt, M Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Astigarraga, MEP Pralavorio, P Pranko, A Prell, S Price, D Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Przybycien, M Puddu, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Raine, JA Rajagopalan, S Rammensee, M Rangel-Smith, C Ratti, MG Rauscher, F Rave, S Ravenscroft, T Ravinovich, I Raymond, M Read, AL Readioff, NP Reale, M Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Rembser, C Ren, H Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rimoldi, M Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Rizzi, C Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodina, Y Perez, AR Rodriguez, DR Roe, S Rogan, CS Rohne, O Rohrig, R Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosenthal, O Rosien, NA Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryu, S Ryzhov, A Rzehorz, GF Saavedra, AF Sabato, G Sacerdoti, S Sadrozinski, HFW Sadykov, R Tehrani, RS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, J Martinez, VS Pineda, AS Sandaker, H Sandbach, RL Sander, HG Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, R Sawyer, C Sawyer, L Saxon, I Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schachtner, BM Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schier, S Schillo, C Schioppa, M Schlenker, S Schmidt-Sommerfeld, KR Schmieden, K Schmitt, C Schmitt, S Schmitz, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schott, M Schovancova, J Schramm, S Schreyer, M Schuh, N Schulte, A Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwarz, TA Schwegler, P Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciolla, G Scuri, F Scutti, F Searcy, J Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shaikh, NW Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Sicho, P Sickles, AM Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Simon, M Sinervo, R Sinev, NB Sioli, M Siragusa, G Sivoklokov, SY Sjolin, J Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Slovak, R Smakhtin, V Smart, BH Smestad, L Smiesko, J Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snyder, S Sobie, R Socher, E Soffer, A Soh, DA Sokhrannyi, G Sanchez, CAS Solar, M Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Son, H Song, HY Sood, A Sopczak, A Sopko, V Sorin, V Sosa, D Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M St Denis, RD Stabile, A Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, GH Stark, J Staroba, P Starovoitov, R Starz, S Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Suchek, S Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeshita, T Takubo, Y Talby, M Talyshev, AA Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Araya, ST Tapprogge, S Tarem, S Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, AC Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, J Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Tong, B Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Trofymov, A Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tseng, JCL Tsiareshka, PV Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsui, KM Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turgeman, D Turra, R Turvey, AJ Tuts, PM Tyndel, M Ucchielli, G Ueda, I Ughetto, M Ukegawa, E Unal, G Undrus, A Une, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Santurio, EV Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Vallecorsa, S Ferrer, JAV Van Den Wollenberg, W Van der Deijl, PC van der Geer, R van der Graaf, H van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vasquez, JG Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Veneziano, S Ventura, A Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigani, L Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vittori, C Vivarelli, I Vlachos, S Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wallangen, V Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, W Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, MD Werner, P Wessels, M Wetter, J Whalen, K Whallon, NL Wharton, AM White, A White, MJ White, R Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilk, F Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wingerter-Seez, I Winklmeier, F Winston, OJ Winter, BT Wittgen, M Wittkowski, J Wolter, MW Wolters, H Worm, SD Wosiek, BK Wotschack, I Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yang, Z Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zakharchuk, N Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, JC Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, R Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zwalinski, L AF Aaboud, M. Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Abeloos, B. Aben, R. AbouZeid, O. S. Abraham, N. L. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, I. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Ali, B. Aliev, M. Alimonti, G. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allen, B. W. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Alstaty, M. Gonzalez, B. Alvarez Piqueras, D. Alvarez Alviggi, M. G. Amadio, B. T. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antel, C. Antonelli, M. Antonov, A. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J. -F. Argyropoulos, S. Arik, M. Armbruster, A. J. Armitage, L. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Artz, S. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bachacou, H. Bachasa, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisits, M. -S Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska-Blenessy, Z. Baroncelli, A. Barone, G. Barr, A. J. Navarro, L. Barranco Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bedognetti, M. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, A. S. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Belyaev, N. L. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Benitez, J. Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Beringer, J. Berlendis, S. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertram, I. A. Bertsche, C. Bertsche, D. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bielski, R. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Blunier, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Boerner, D. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bokan, P. Bold, T. Boldyrev, A. . A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Bortfeldt, J. Bortoletto, D. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Sola, J. D. Bossio Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Broughton, J. H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruni, L. S. Brunt, B. H. Bruschi, M. Bruscino, N. Bryant, P. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Budagov, I. A. Buehrer, F. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burka, K. Burke, S. Burmeister, I. Burr, J. T. P. Busato, E. Buscher, D. Buscher, V. Bussey, P. Butler, J. M. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Urban, S. Cabrera Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Lopez, S. Calvente Calvet, D. Calvet, S. Calvet, T. P. Toro, Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Camincher, C. Campana, S. Campanelli, M. Camplani, A. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Carbone, R. M. Cardarelli, R. Cardillo, E. Carli, I. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Casper, D. W. Castaneda-Miranda, E. Castelijn, R. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavallaro, E. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Alberich, L. Cerda Cerio, B. C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, S. K. Chan, Y. L. Chang, P. Champman, J. D. Charlton, D. G. Chatterjee, A. Chau, C. C. Barajas, C. A. Chavez Che, S. Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, H. J. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chitan, A. Chizhov, M. V. Choi, K. Chomont, A. R. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocca, C. Ciocio, A. Cirotto, F. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, B. L. Clark, M. R. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Colasurdo, L. Cole, B. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cormier, K. J. R. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Crawley, S. J. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Cuthbert, C. Czirr, H. Czodrowski, P. D'amen, G. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dado, T. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Dann, N. S. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, M. Davison, P. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Maria, A. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Dehghanian, N. Deigaard, I. Del Gaudio, M. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Denysiuk, D. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Clemente, W. K. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. R. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Du, Y. Duarte-Campderros, J. J. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duffield, E. M. Duflot, L. Duguid, L. Duhrssen, M. Dumancic, M. Dunford, M. Yildiz, H. Duran Duren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edwards, N. C. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellajosyula, V. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Ennis, J. S. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, F. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farina, C. Farina, E. M. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fawcett, W. J. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Martinez, P. Fernandez Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Fertere, D. Ferretti, C. Parodi, A. Ferretto Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Forcolin, G. T. Formica, A. Forti, A. Foster, A. G. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. Fressard-Batraneanu, S. M. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, L. G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Bravo, A. Gascon Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisen, M. Geisler, M. P. Gemme, C. Genest, M. H. Geng, C. Gentile, S. Gentsos, C. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. GhazIane, H. Ghneimat, M. Giacobbe, B. Giagu, S. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuli, F. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, G. Gonella, L. Gongadze, A. de la Hoz, S. Gonzalez Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gossling, C. Gostkin, M. I. Goudet, C. R. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstrom, P. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gravila, P. M. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Grevtsov, K. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Groh, S. Grohs, J. P. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guan, W. Guenther, J. Guescini, K. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, R. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Hadef, A. Haefner, P. Hagebock, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanke, R. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, K. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, K. Hartmann, N. M. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, J. J. Heinrich, L. Heinz, C. Hejba, J. Helary, L. Hellman, S. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Henkelmann, S. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Jimenez, Y. Hernandez Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. Hooberman, B. H. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J. -Y. Hou, S. Hoummada, A. Howarth, J. Hrabovsky, M. Hristoval, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Huang, Y. Hubacek, Z. Hubaut, K. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huo, P. Huseynov, N. Huston, J. Huth, J. Lacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Idea, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Ishijima, N. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ito, F. Ponce, J. M. Iturbe Iuppa, R. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, A. Jackson, P. Jain, V. Jakobi, K. B. Jakobs, K. Jakobsen, S. Jakoubek, T. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanneau, F. Jeanty, L. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, H. Jiang, Y. Jiggins, S. Pena, J. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, S. Jones, T. J. Jongrnanns, J. Jorge, P. M. Jovicevic, J. Ju, X. Rozas, A. Juste Kohler, M. K. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kaluza, A. Kama, S. Katnenshchikov, A. Kanaya, N. Kaneti, S. Kanjir, L. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawade, K. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khader, M. Khalil-zada, F. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Kopke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Kowalewska, A. B. Kowalewski, R. Kowalski, T. Z. Kozakai, C. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Kruger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruska, M. Kubota, T. Kucuk, H. Kuday, S. Kuechler, J. T. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuh, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. Navarro, J. L. La Rosa La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lammers, S. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Lazzaroni, M. Le, B. Le Dortz, O. Le Guirriec, E. Le Quilleuc, E. P. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Lerner, G. Leroy, C. Lesage, A. A. J. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, D. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, Q. Li, S. Li, X. Li, Y. Liang, Z. Liberti, A. B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limosani, A. Lin, S. C. Lin, T. H. Lindquist, B. E. Lionti, A. E. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. L. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. M. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Longo, L. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Solis, A. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Losel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, H. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Luzi, P. M. Lynn, D. Lysak, R. Lytken, E. Lyubushkin, V. Ma, H. Ma, L. L. Ma, Y. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Miguens, J. Machado Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Maneira, J. de Andrade Filho, L. Manhaes Ramos, J. Manjarres Mann, A. Manousos, A. Mansoulie, B. Mansour, J. D. Mantifel, R. Mantoani, M. Manzoni, S. Mapelli, L. Marceca, G. March, L. Marchiori, G. Marcisovsky, M. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshal, Z. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinezs, M. Outschoorn, V. I. Martinez Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, R. Mastroberardino, A. Masubuchi, T. Mattig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mc Fadden, N. C. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McClymont, L. I. McDonald, E. F. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Melrose, B. Melini, D. Garcia, B. R. Mellado Melo, M. Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J. -P. Meyer, J. Zu Theenhausen, H. Meyer Miano, F. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Molander, S. Moles-Valls, R. Monden, R. Mondragon, M. C. Monig, K. Monk, J. Monnier, E. Montalbano, A. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, S. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Sanchez, F. J. Munoz Quijada, J. A. Murillo Murry, W. J. Musheghyan, H. Muskinja, M. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nagai, K. Nagai, R. Nagano, K. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naryshkin, I. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Manh, T. Nguyen Nickerson, R. B. Nicolaidou, R. Nielsen, J. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Norjoharuddeen, N. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Nurse, E. Nuti, F. O'grady, F. O'Neil, D. C. O'Rourke, A. A. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Seabra, L. F. Oleiro Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Rodriguez, L. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paige, F. Pais, P. Pajchel, K. Palacino, G. Palazzo, S. Palestini, S. Palka, M. Pallin, D. Palma, A. Panagiotopoulou, E. St. Pandini, C. E. Vazquez, J. G. Panduro Pani, R. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, A. J. Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pascuzzi, V. R. Pasqualucci, E. Passaggio, S. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Penc, O. Peng, C. Peng, H. Penwell, J. Peralva, B. S. Perego, M. M. Perepelitsa, D. V. Codina, E. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrov, M. Petrucci, F. Pettersson, N. E. Peyaud, A. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pinamonti, M. Pinfold, T. J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Astigarraga, M. E. Pozo Pralavorio, P. Pranko, A. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Przybycien, M. Puddu, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Raine, J. A. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Ratti, M. G. Rauscher, F. Rave, S. Ravenscroft, T. Ravinovich, I. Raymond, M. Read, A. L. Readioff, N. P. Reale, M. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Rembser, C. Ren, H. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rimoldi, M. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Rizzi, C. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodina, Y. Perez, A. Rodriguez Rodriguez, D. Rodriguez Roe, S. Rogan, C. S. Rohne, O. Rohrig, R. Romaniouk, A. Romano, M. Saez, S. M. Romano Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosenthal, O. Rosien, N. -A. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rudolph, M. S. Ruhr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryu, S. Ryzhov, A. Rzehorz, G. F. Saavedra, A. F. Sabato, G. Sacerdoti, S. Sadrozinski, H. F-W. Sadykov, R. Tehrani, R. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Loyola, J. E. Salazar Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, J. Martinez, V. Sanchez Pineda, A. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, R. Sawyer, C. Sawyer, L. Saxon, I-. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schachtner, B. M. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schafer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schier, S. Schillo, C. Schioppa, M. Schlenker, S. Schmidt-Sommerfeld, K. R. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schott, M. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schulte, A. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shaikh, N. W. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sickles, A. M. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simon, M. Sinervo, R. Sinev, N. B. Sioli, M. Siragusa, G. Sivoklokov, S. Yu. Sjolin, J. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Slovak, R. Smakhtin, V. Smart, B. H. Smestad, L. Smiesko, J. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snyder, S. Sobie, R. Socher, E. Soffer, A. Soh, D. A. Sokhrannyi, G. Sanchez, C. A. Solans Solar, M. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Son, H. Song, H. Y. Sood, A. Sopczak, A. Sopko, V. Sorin, V. Sosa, D. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. St Denis, R. D. Stabile, A. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, G. H. Stark, J. Staroba, P. Starovoitov, R. Starz, S. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Strohmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Suchek, S. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Araya, S. Tapia Tapprogge, S. Tarem, S. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, A. C. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tong, B. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Trofymov, A. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tseng, J. C-L. Tsiareshka, P. V. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsui, K. M. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turgeman, D. Turra, R. Turvey, A. J. Tuts, P. M. Tyndel, M. Ucchielli, G. Ueda, I. Ughetto, M. Ukegawa, E. Unal, G. Undrus, A. Une, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Santurio, E. Valdes Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Vallecorsa, S. Ferrer, J. A. Valls Van Den Wollenberg, W. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasquez, J. G. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloce, L. M. Veloso, F. Veneziano, S. Ventura, A. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigani, L. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vittori, C. Vivarelli, I. Vlachos, S. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wallangen, V. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, W. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, M. D. Werner, P. Wessels, M. Wetter, J. Whalen, K. Whallon, N. L. Wharton, A. M. White, A. White, M. J. White, R. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilk, F. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winston, O. J. Winter, B. T. Wittgen, M. Wittkowski, J. Wolter, M. W. Wolters, H. Worm, S. D. Wosiek, B. K. Wotschack, I. . Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yang, Z. Yao, W-M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zakharchuk, N. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, J. C. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zwalinski, L. CA ATLAS Collaboration TI Search for dark matter in association with a Higgs boson decaying to b-quarks in pp collisions at root s=13 TeV with the ATLAS detector SO PHYSICS LETTERS B LA English DT Article ID HADRON-COLLISIONS; LHC; CONSTRAINTS; MODELS AB A search for dark matter pair production in association with a Higgs boson decaying to a pair of bottom quarks is presented, using 3.2 fb(-1) of pp collisions at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the LHC. The decay of the Higgs boson is reconstructed as a high-momentum b (b) over bar system with either a pair of small-radius jets, or a single large-radius jet with substructure. The observed data are found to be consistent with the expected backgrounds. Results are interpreted using a simplified model with a gauge boson mediating the interaction between dark matter and the Standard Model as well as a two-Higgs-doublet model containing an additional Z' boson which decays to a Standard Model Higgs boson and a new pseudoscalar Higgs boson, the latter decaying into a pair of dark matter particles. (C) 2016 The Author(s). Published by Elsevier B.V. C1 [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Czodrowski, P.; Dassoulas, J.; Dehghanian, N.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, T. J. L.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska-Blenessy, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, R.; Mountricha, E.; Sauvage, G.; Sauvan, E.; Simard, O.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; LeCompte, T.; Love, J.; Malon, D.; Metcalfe, J.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ryu, S.; Stanek, R. W.; van Gemmeren, P.; Wang, R.; Webster, J. S.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Jones, S.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Mountricha, E.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E. St.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Andeen, T.; Ilchenko, Y.; Narayan, R.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Abdinov, O.; Khalil-zada, F.; Reichert, J.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavallaro, E.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Perez, S. Fernandez; Fischer, C.; Fracchia, S.; Gerbaudo, D.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Paz, I. Lopez; Martinezs, M.; Mir, L. M.; Berlingen, J. Montejo; Mountricha, E.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rizzi, C.; Perez, A. Rodriguez; Sorin, V.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Barcelona Inst Sci & Technol, Inst Fis Altes Energies IFAE, Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bokan, P.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin Dit; Smestad, L.; Stugu, B.; Yang, Z.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Gramling, J.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshal, Z.; Berlingen, J. Montejo; Mountricha, E.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Gramling, J.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshal, Z.; Berlingen, J. Montejo; Mountricha, E.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristoval, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Mergelmeyer, S.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allport, P. P.; Bella, L. Aperio; Baca, M. J.; Bracinik, J.; Broughton, J. H.; Casadei, D.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Foster, A. G.; Gonella, L.; Gramling, J.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Berlingen, J. Montejo; Mountricha, E.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Istanbul Bilgi Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Beddall, A. J.] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Gramling, J.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Berlingen, J. Montejo; Mountricha, E.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Biondi, S.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Mountricha, E.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J. R.; Gaycken, G.; Geich-Gimbel, Ch.; Ghneimat, M.; Grefe, C.; Haefner, P.; Hagebock, S.; Hansen, M. C.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Kruger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Mijovic, L.; Moles-Valls, R.; Mountricha, E.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Seema, P.; Stillings, J. A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.; Zhang, R.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruska, M.; Long, B. A.; Mountricha, E.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Dhaliwal, S.; Goblirsch-Kolb, M.; Loew, K. M.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes; Peralva, B. S.] Fed Univ Juiz de Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil. Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Navarro, J. L. La Rosa; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Elmsheuser, J.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Gramling, J.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lee, C. A.; Liu, H.; Lynn, D.; Ma, H.; Maeno, T.; Berlingen, J. Montejo; Mortensen, S. S.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Tricoli, A.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Berlingen, J. Montejo; Mountricha, E.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. [Gravila, P. M.] West Univ Timisoara, Timisoara, Romania. [Sola, J. D. Bossio; Marceca, G.; Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Brunt, B. H.; Carter, J. R.; Champman, J. D.; Cottin, G.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Lester, C. G.; Berlingen, J. Montejo; Mountricha, E.; Mueller, T.; Parker, M. A.; Potter, C. J.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Gillberg, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Ruiz-Martinez, A.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON, Canada. [Aleksa, M.; Gonzalez, B. Alvarez; Amoroso, S.; Anders, G.; Anghinolfi, F.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Barisits, M. -S; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Bortfeldt, J.; Boveia, A.; Boyd, J.; Burckhart, H.; Camarda, S.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Colombo, T.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Di Nardo, R.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Faltova, J.; Farthouat, P.; Fassnacht, P.; Feng, E. J.; Francis, D.; Fressard-Batraneanu, S. M.; Froidevaux, D.; Gadatsch, S.; Goossens, L.; Gorini, B.; Gramling, J.; Gray, H. M.; Gumpert, C.; Hawkings, R. J.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jakobsen, S.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Malyukov, S.; Mandelli, B.; Manousos, A.; Mapelli, L.; Marzin, A.; Berlingen, J. Montejo; Morgenstern, S.; Mornacchi, G.; Mortensen, S. S.; Mountricha, E.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Astigarraga, M. E. Pozo; Rammensee, M.; Raymond, M.; Rembser, C.; Rieger, J.; Ritsch, E.; Roe, S.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Sforza, F.; Sanchez, C. A. Solans; Spigo, G.; Starz, S.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Boeriu, O. E. Vickey; Voss, R.; Vuillermet, R.; Walder, J.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winston, O. J.; Wotschack, I. .; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Bryant, P.; Toro, Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Gardner, R. W.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Mountricha, E.; Okumura, Y.; Oreglia, M. J.; Pilcher, J. E.; Saxon, I-.; Shochet, M. J.; Stark, G. H.; Swiatlowski, M.; Vukotic, I.; Wu, M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Blunier, S.; Diaz, M. A.; Ochoa-Ricoux, J. P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Mountricha, E.; Pezoa, R.; Prokoshin, F.; Loyola, J. E. Salazar; Araya, S. Tapia; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; da Costa, J. Barreiro Guimaraes; Cheng, H. J.; Fang, Y.; Jin, S.; Li, Q.; Liang, Z.; Merino, J. Llorente; Lou, X.; Mansour, J. D.; Mountricha, E.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Chen, S.; Wang, C.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J. J.; Gris, Ph.; Madar, R.; Mountricha, E.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J. J.; Gris, Ph.; Madar, R.; Mountricha, E.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Univ Blaise Pascal, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J. J.; Gris, Ph.; Madar, R.; Mountricha, E.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] CNRS IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Angerami, A.; Brooijmans, G.; Carbone, R. M.; Clark, M. R.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Berlingen, J. Montejo; Mountricha, E.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Lab Nazl Frascati, Arcavacata Di Rende, Italy. [Cairo, V. M.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Gach, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Burka, K.; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Kowalewska, A. B.; Malecki, Pa.; Mountricha, E.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Gupta, R.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Melrose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Glazov, A.; Gramling, J.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuh, T.; Lobodzinska, E. M.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Monig, K.; Berlingen, J. Montejo; Mountricha, E.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Hamburg, Germany. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Glazov, A.; Gramling, J.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuh, T.; Lobodzinska, E. M.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Monig, K.; Berlingen, J. Montejo; Mountricha, E.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Zeuthen, Germany. [Burmeister, I.; Cinca, D.; Dette, K.; Erdmann, J.; Esch, H.; Gossling, C.; Homann, M.; Jentzsch, J.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Lehrstuhl Expt Phys 4, Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Siegert, F.; Socher, E.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Mountricha, E.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; Mountricha, E.; Pino, S. A. Olivares; Proissl, M.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buscher, D.; Cardillo, E.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Glatzer, J.; Gonella, G.; Herten, G.; Hirose, M.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Luedtke, C.; Mountricha, E.; Nagel, M.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruhr, F.; Rurikova, Z.; Sammel, D.; Schillo, C.; Schnoor, U.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tsiskaridze, V.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Albert Ludwigs Univ, Fak Math & Phys, Freiburg, Germany. [Ancu, L. S.; De Mendizabal, J. Bilbao; Calace, N.; Chatterjee, A.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Fertere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, K.; Lacobucci, G.; Katre, A.; Khoo, T. J.; Lionti, A. E.; March, L.; Mermod, P.; Miucci, A.; Nackenhorst, O.; Paolozzi, L.; Ristic, B.; Schramm, S.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Miglioranzi, S.; Berlingen, J. Montejo; Morettini, P.; Mountricha, E.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Duren, M.; Heinz, C.; Kreutzfeldt, K.; Stenzel, H.] Justus Liebig Univ Giessen, Phys Inst 2, Giessen, Germany. [Bates, R. L.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Crawley, S. J.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; Gul, U.; Knue, A.; Mountricha, E.; Mullen, P.; O'Shea, V.; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Blumenschein, U.; Brandt, G.; De Maria, A.; Drechsler, E.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Quadt, A.; Rieger, J.; Rosien, N. -A.; Rzehorz, G. F.; Shabalina, E.; Stolte, P.; Veatch, J.; Weingarten, J.; Zinonos, Z.] Georg August Univ, Phys Inst 2, Gottingen, Germany. [Albrand, S.; Berlendis, S.; Camincher, C.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Gradin, P. O. J.; Hostachy, J. -Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Petit, E.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, Grenoble, France. [Chan, S. K.; Clark, B. L.; Franklin, M.; Giromini, P.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Morii, M.; Mountricha, E.; Rogan, C. S.; Skottowe, H. P.; Sun, S.; Tolley, E.; Tong, B.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Gao, J.; Geng, C.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, M.; Liu, Y. L.; Liu, Y.; Mountricha, E.; Peng, H.; Song, H. Y.; Wang, W.; Zhang, G.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Andrei, V.; Antel, C.; Baas, A. E.; Brandt, O.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Gramling, J.; Hanke, R.; Jongrnanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Zu Theenhausen, H. Meyer; Berlingen, J. Montejo; Mortensen, S. S.; Mountricha, E.; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, R.; Suchek, S.; Wessels, M.] Ruprecht Karts Univ Heidelberg, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; de Lima, D. E. Ferreira; Giulini, M.; Kolb, M.; Lisovyi, M.; Radescu, V.; Schaetzel, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Phys Inst, Heidelberg, Germany. [Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsui, K. M.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.; Orlando, N.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Clear Water Bay, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Kopeliansky, R.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Mountricha, E.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Guenther, J.; Iwanski, W.; Jansky, R.; Kneringer, E.; Lukas, W.; Milic, A.; Usanova, A.; Vigne, R.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Abdallah, J.; Argyropoulos, S.; Benitez, J.; Mallik, U.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Jiang, H.; Krumnack, N.; Mountricha, E.; Pluth, D.; Prell, S.; Werner, M. D.; Yu, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gongadze, A.; Gostkin, M. I.; Gramling, J.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Lyubushkin, V.; Minashvili, I. A.; Mineev, M.; Berlingen, J. Montejo; Mountricha, E.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kondo, T.; Kono, T.; Makida, Y.; Mountricha, E.; Nagai, R.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kishimoto, T.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan. [Ishino, M.; Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka, Japan. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Bertram, I. A.; Borissov, G.; Bouhova-Thacker, E. V.; Cheatham, S.; Dearnaley, W. J. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Mountricha, E.; Muenstermann, D.; Parker, A. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Aliev, M.; Bachasa, K.; Chiodini, G.; Gorini, E.; Longo, L.; Mountricha, E.; Primavera, M.; Reale, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Aliev, M.; Bachasa, K.; Gorini, E.; Longo, L.; Mountricha, E.; Reale, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, A.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Mountricha, E.; Readioff, N. P.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Armitage, L. J.; Bevan, A. J.; Bona, M.; Cerrito, L.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lewis, D.; Lloyd, S. L.; Berlingen, J. Montejo; Morris, J. D.; Mountricha, E.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bell, A. S.; Butterworth, J. M.; Campanelli, M.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gramling, J.; Gregersen, K.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Leney, K. J. C.; Martyniuk, A. C.; McClymont, L. I.; Mcfayden, J. A.; Berlingen, J. Montejo; Mountricha, E.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Mountricha, E.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Mountricha, E.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Mountricha, E.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fys Inst, Lund, Sweden. [Barreiro, F.; Lopez, S. Calvente; De la Torre, H.; Del Peso, J.; Glasman, C.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Artz, S.; Becker, M.; Bertella, C.; Blum, W.; Buscher, V.; Caputo, R.; Caudron, J.; Cuth, J.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Geisen, M.; Groh, S.; Heck, T.; Jakobi, K. B.; Kaluza, A.; Karnevskiy, M.; Kleinknecht, K.; Kopke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Pleskot, V.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schafer, U.; Schmitt, C.; Schmitz, S.; Schott, M.; Schuh, N.; Schulte, A.; Simioni, E.; Simon, M.; Tapprogge, S.; Urrejola, P.; Webb, S.; Yildirim, E.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Barnes, S. L.; Bielski, R.; Cox, B. E.; Da Via, C.; Dann, N. S.; Forcolin, G. T.; Forti, A.; Ponce, J. M. Iturbe; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Mountricha, E.; Sanchez, F. J. Munoz; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Raine, J. A.; Schweiger, H.; Shaw, S. M.; Tomlinson, L.; Watts, S.; Wilk, F.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Hadef, A.; Hallewell, G. D.; Hubaut, K.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Mountricha, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Hadef, A.; Hallewell, G. D.; Hubaut, K.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.] CNRS IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pettersson, N. E.; Picazio, A.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Goldfarb, S.; Jennens, D.; Kubota, T.; Le, B.; McDonald, E. F.; Milesi, M.; Nuti, F.; Rados, P.; Scutti, F.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Taylor, P. T. E.; Ungaro, F. C.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Guan, L.; Levin, D.; Liu, H.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Martin, B.; Mondragon, M. C.; Mountricha, E.; Plucinski, P.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Camplani, A.; Carminati, L.; Cavalli, D.; Citterio, M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaroni, M.; Mandelli, L.; Manzoni, S.; Mazza, S. M.; Meroni, C.; Monzani, S.; Mountricha, E.; Perini, L.; Ragusa, F.; Ratti, M. G.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Alimonti, G.; Andreazza, A.; Camplani, A.; Carminati, L.; Cavalli, D.; Citterio, M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaroni, M.; Mandelli, L.; Manzoni, S.; Mazza, S. M.; Meroni, C.; Monzani, S.; Mountricha, E.; Perini, L.; Ragusa, F.; Ratti, M. G.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Arguin, J. -F.; Azuelos, G.; Dallaire, F.; Ducu, O. A.; Gagnon, L. G.; Gauthier, L.; Leroy, C.; Mochizuki, K.; Manh, T. Nguyen; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Belyaev, N. L.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Bender, M.; Biebel, O.; Bock, C.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Gramling, J.; Hartmann, N. M.; Heinrich, J. J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Losel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J. J.; Berlingen, J. Montejo; Mountricha, E.; Mueller, R. S. P.; Rauscher, F.; Ruschke, A.; Schachtner, B. M.; Schaile, D.; Unverdorben, C.; Valderanis, C.; Walker, R.; Wittkowski, J.] Ludwig Maximilians Univ Munchen, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; La Rosa, A.; Macchiolo, A.; Maier, A. A.; McCarthy, T. G.; Menke, S.; Berlingen, J. Montejo; Mountricha, E.; Mueller, F.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Rohrig, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schmidt-Sommerfeld, K. R.; Schwegler, Ph.; Spettel, F.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Kawade, K.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi, Japan. [Horii, Y.; Kawade, K.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Pineda, A. Sanchez; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Merola, L.; Perrella, S.; Rossi, E.; Pineda, A. Sanchez] Univ Napoli, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Mc Fadden, N. C.; Seidel, S. C.; Taylor, A. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Konig, A. C.; Nektarijevic, S.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, K.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, K.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Berlingen, J. Montejo; Mountricha, E.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Andari, N.; Brost, E.; Burghgrave, B.; Chakraborty, D.; Klimek, P.; Saha, P.] Univ Illinois, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Becot, C.; Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Beacham, J. B.; Che, S.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama, Japan. [Abbott, B.; Alhroob, M.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Cantero, J.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Abreu, R.; Allen, B. W.; Brau, J. E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Radloff, P.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR USA. [Abeloos, B.; Ayoub, M. K.; Bassalat, A.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Goudet, C. R.; Grivaz, J. -F.; Hariri, K.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Maiani, C.; Makovec, N.; Morange, N.; Mountricha, E.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.] Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, LAL, Orsay, France. [Endo, M.; Ishijima, N.; Nomachi, M.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, M. K.; Cameron, D.; Catmore, J. R.; Feigl, S.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Serfon, C.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Artoni, G.; Barr, A. J.; Becker, K.; Beresford, L.; Bortoletto, D.; Burr, J. T. P.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Fawcett, W. J.; Frost, J. A.; Gallas, E. J.; Giuli, F.; Gupta, S.; Gwenlan, C.; Hays, C. P.; Henderson, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Berlingen, J. Montejo; Mountricha, E.; Nagai, K.; Nickerson, R. B.; Norjoharuddeen, N.; Petrov, M.; Pickering, M. A.; Tseng, J. C-L.; Viehhauser, G. H. A.; Vigani, L.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Dondero, P.; Farina, E. M.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Dondero, P.; Farina, E. M.; Fraternali, M.; Introzzi, G.; Livan, M.; Mountricha, E.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, Pavia, Italy. [Balunas, W. K.; Brendlinger, K.; Di Clemente, W. K.; Fletcher, R. R. M.; Haney, B.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Mistry, K. P.; Mountricha, E.; Reichert, J.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Levchenko, M.; Maleev, V. P.; Mountricha, E.; Naryshkin, I.; Ryabov, Y. F.; Schegelsky, V. A.; Seliverstov, D. M.; Solovyev, V.] Natl Res Ctr, Kurchatov Inst, BP Konstantinov Petersburg Nucl Phys Inst, St Petersburg, Russia. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Mountricha, E.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Farina, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Gramling, J.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Berlingen, J. Montejo; Mountricha, E.; Seabra, L. F. Oleiro; Onofre, A.; Palma, A.; Pedro, R.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] LIP, Lab Instrumentactio & Fis Expt Particulas, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Caparica, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejba, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Ali, B.; Augsten, K.; Caforio, D.; Gallus, P.; Hubacek, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Sopczak, A.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Berta, P.; Carli, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Kosek, T.; Leitner, R.; Reznicek, P.; Scheirich, D.; Slovak, R.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Katnenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Ryzhov, A.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] NRC KI, State Res Ctr, Inst High Energy Phys Protvino, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McMahon, S. J.; Middleton, R. P.; Murry, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.; Worm, S. D.] Rutherford Appleton Lab, Particle Phys Dept, Didcot, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; De Pedis, D.; De Salvo, A.; Di Donato, C.; Falciano, S.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Messina, A.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, R. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; Di Donato, C.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Vanadia, M.; Verducci, M.; Zanello, L.] Sapienza Univ Roma, Dipartimento Fis, Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, A. B.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Ceradini, F.; Di Micco, B.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [GhazIane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Denysiuk, D.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Jeanneau, F.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, J. F.; Le Quilleuc, E. P.; Lesage, A. A. J.; Mansoulie, B.; Meyer, J. -P.; Nicolaidou, R.; Ouraou, A.; Rodriguez, L. Pacheco; Perego, M. M.; Peyaud, A.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay Commissariat Energie Atom & Energies A, Inst Rech Lois Fondamentales Univers, DSM IRFU, Gif Sur Yvette, France. [AbouZeid, O. S.; Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Hance, M.; Kuhl, A.; Law, A. T.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schier, S.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Alpigiani, C.; Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Johnson, W. J.; Lubatti, H. J.; Marx, M.; Meehan, S.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.; Whallon, N. L.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Du, Y.; Feng, C.; Ma, L. L.; Ma, Y.; Wang, C.; Zaidan, R.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Bret, M. Cano; Guo, J.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai, Peoples R China. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Campoverde, A.; Czirr, H.; Fleck, I.; Gaur, B.; Ghasemi, S.; Ibragimov, I.; Li, Y.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada. [Armbruster, A. J.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Su, D.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Dado, T.; Melo, M.; Plazak, L.; Smiesko, J.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice, Slovakia. [Castaneda-Miranda, E.; Hamilton, A.; Yacoob, S.] Univ Cape Town, Dept Phys, Cape Town, South Africa. [Connell, S. H.; Govender, N.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hsu, C.; Kar, D.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, R.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, R.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Abraham, N. L.; Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Lerner, G.; Miano, F.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.; Winston, O. J.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW, Australia. [Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Gozani, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Duarte-Campderros, J. J.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel. [Gentsos, C.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo, Japan. [Vaniachine, A.] Tomsk State Univ, Tomsk, Russia. [Batista, S. J.; Chau, C. C.; Cormier, K. J. R.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Keoshkerian, H.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Pascuzzi, V. R.; Polifka, R.; Rudolph, M. S.; Savard, R.; Sinervo, R.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Hod, N.; Jovicevic, J.; Codina, E. Perez; Schneider, B.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC, Canada. [Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON, Canada. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, E.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, E.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Sliwa, K.; Son, H.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Casper, D. W.; Corso-Radu, A.; Frate, M.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Une, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Boldyrev, A. . A. S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Boldyrev, A. . A. S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, Udine, Italy. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Maddocks, H. J.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Atkinson, M.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Hooberman, B. H.; Khader, M.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Outschoorn, V. I. Martinez; Neubauer, M. S.; Rybar, M.; Shang, R.; Sickles, A. M.; Vichou, I.; Zeng, J. C.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; King, S. B.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, I.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; McPherson, R. A.; Pearce, J.; Seuster, R.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Ennis, J. S.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murry, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Balek, P.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Dumancic, M.; Gross, E.; Kohler, M. K.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Ravinovich, I.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.; Turgeman, D.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Banerjee, Sw.; Guan, W.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Kruse, A.; Ming, Y.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Strohmer, R.; Trefzger, T.; Weber, S. W.; Zibell, A.] Julius Maximilians Univ, Fak Phys & Astron, Wurzburg, Germany. [Bannoura, A. A. E.; Boerner, D.; Braun, H. M.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Flick, T.; Gabizon, O.; Gilles, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kersten, S.; Kuechler, J. T.; Mattig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Vogel, M.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fak Math & Nat Wissensch, Fachgrp Phys, Wuppertal, Germany. [Baker, O. K.; Noccioli, E. Benhar; Cummings, J.; Demers, S.; Idea, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Hernandez, D. Paredes; Thomsen, L. A.; Tipton, P.; Vasquez, J. G.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan, Armenia. [Rahal, G.] Ctr Calcul, Villeurbanne, France. [Rahal, G.] IN2P3, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk, Russia. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, R.; Vetterli, M. C.] TRIUMF, Vancouver, BC, Canada. [Banerjee, Sw.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Bassalat, A.] An Najah Natl Univ, Dept Phys, Nablus, Palestine. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, Fribourg, Switzerland. [Casado, M. P.] Univ Autonoma Barcelona, Dept Fis, Barcelona, Spain. [Castro, N. F.] Univ Porto, Dept Fis & Astron, Fac Ciencias, Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys IPP, Ottawa, ON, Canada. [Ducu, O. A.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Geng, C.; Guo, Y.; Li, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Govender, N.] Ctr High Performance Comp, CSIR Campus, Cape Town, South Africa. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Rozas, A. Juste; Martinezs, M.] ICREA, Barcelona, Spain. [Hanagaki, K.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Taipei, Taiwan. [Igonkina, O.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jenni, P.] CERN, Geneva, Switzerland. [Khubua, J.] Georgian Tech Univ GTU, Tbilisi, Rep of Georgia. [Kono, T.; Nagai, R.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Lin, S. C.] Acad Sinica, Acad Sinica Grid Comp, Inst Phys, Taipei, Taiwan. [Liu, B.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Moss, J.] Calif State Univ Sacramento, Dept Phys, Sacramento, CA 95819 USA. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pasztor, G.] Eotvos Lorand Univ, Budapest, Hungary. [Piacquadio, G.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Piacquadio, G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Rodina, Y.] Barcelona Inst Sci & Technol, Inst Fis Altes Energies IFAE, Barcelona, Spain. [Shi, L.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Shiyakova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy INRNE, Sofia, Bulgaria. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Song, H. Y.; Zhang, G.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vest, A.] Flensburg Univ Appl Sci, Flensburg, Germany. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur, Malaysia. [Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France. [Zhang, R.] CNRS IN2P3, Marseille, France. PKU CHEP, Beijing, Peoples R China. RP Aaboud, M (reprint author), Univ Mohammed 5, Fac Sci, Rabat, Morocco. RI Gladilin, Leonid/B-5226-2011; Prokoshin, Fedor/E-2795-2012; OI Gladilin, Leonid/0000-0001-9422-8636; Prokoshin, Fedor/0000-0001-6389-5399; Belyaev, Nikita/0000-0002-1131-7121 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT,Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS Slovenia; MIZS Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC Sweden; Wallenberg Foundation, Sweden; SERI Switzerland; SNSF Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; FP7, European Union; Horizon, European Union; Marie Sklodowska-Curie Actions, European Union; Investissement d'Avenir Labex, France; Investissement d'Avenir Idex, France; ANR, France; Region Auvergne, European Union; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos programme - EU-ESF; Thales programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT,Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. NR 93 TC 0 Z9 0 U1 10 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 10 PY 2017 VL 765 BP 11 EP 31 DI 10.1016/j.physletb.2016.11.035 PG 21 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EK0PB UT WOS:000393627800003 ER PT J AU Aaboud, M Aad, G Abbott, B Abdallah, J Abdinov, O Abeloos, B Aben, R AbouZeid, OS Abraham, NL Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Aring;kesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Ali, B Aliev, M Alimonti, G Alison, J Alkire, SP Allbrooke, BMM Allen, BW Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Alstaty, M Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antel, C Antonelli, M Antonov, A Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Armitage, LJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Artz, S Asai, S Asbah, N Ashkenazi, A Aring;sman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisits, MS Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska-Blenessy, Z Baroncelli, A Barone, G Barr, AJ Navarro, LB Barreiro, F da Costa, JVBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bedognetti, M Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, AS Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Belyaev, NL Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Benitez, J Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Beringer, J Berlendis, S Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertram, IA Bertsche, C Bertsche, D Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethani, A Bethke, S Bevan, AJ Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bielski, R Biesuz, NV Biglietti, M De Mendizabal, JB Billoud, TRV Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Bisanz, T Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Blunier, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Boerner, D Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bokan, P Bold, T Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Bortfeldt, J Bortoletto, D Bortolotto, V Bos, K Boscherini, D Bosman, M Sola, JDB Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Boutle, SK Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Broughton, JH de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruni, LS Brunt, BH Bruschi, M Bruscino, N Bryant, P Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Budagov, IA Buehrer, F Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burka, K Burke, S Burmeister, I Burr, JTP Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Callea, G Caloba, LP Lopez, SC Calvet, D Calvet, S Calvet, TP Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Camincher, C Campana, S Campanelli, M Camplani, A Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantria, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Carbone, RM Cardarelli, R Cardillo, F Carli, I Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Casper, DW Castaneda-Miranda, E Castelijn, R Castelli, A Gimenez, VC Castro, NF Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavallaro, E Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Alberich, LC Cerio, BC Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chan, SK Chan, YL Chang, P Chapman, JD Charlton, DG Chatterjee, A Chau, CC Barajas, CAC Che, S Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, HJ Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chitan, A Chizhov, MV Choi, K Chomont, AR Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, A Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocca, C Ciocio, A Cirotto, F Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, BL Clark, MR Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Colasurdo, L Cole, B Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cormier, KJR Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cottin, G Cowan, G Cox, BE Cranmer, K Crawley, SJ Cree, G Crepe-Renaudin, S Crescioli, E Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cueto, A Donszelmann, TC Cummings, J Curatolo, M Cuth, J Czirr, H Czodrowski, P D'amen, G D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dado, T Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Dann, NS Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, M Davison, P Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Maria, A De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Dehghanian, N Deigaard, I Del Gaudio, M Del Peso, J Del Prete, T Delgove, D Deliot, E Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Denysiuk, D Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Clemente, WK Di Donato, C Di Girolamo, A Di Girolamo, B Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Dieh, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Du, Y Duarte-Campderros, J Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudder, AC Duffield, EM Duflot, L Duhrssen, M Dumancic, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edwards, NC Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellajosyula, V Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Ennis, JS Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, F Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farina, C Farina, EM Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fawcett, WJ Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Forcolin, GT Formica, A Forti, A Foster, AG Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D Fressard-Batraneanu, SM Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fusayasu, T Foster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, LG Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Bravo, AG Gasnikova, K Gatti, C Gaudiello, A Gaudio, G Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Gecse, Z Gee, CNP Geich-Gimbel, C Geisen, M Geisler, MP Gemme, C Genest, MH Geng, C Gentile, S Gentsos, C George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Ghneimat, M Giacobbe, B Giagu, S Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuli, F Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, G Gonella, L Gongadze, A de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goudet, CR Goujdami, D Goussiou, AG Govender, N Gozani, E Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gravila, PM Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Grevtsov, K Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Groh, S Grohs, JP Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guan, W Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, R Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Hadef, A Hagebock, S Hajduk, Z Hakobyan, H Haieem, M Haley, J Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hartmann, NM Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hayakawa, D Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, J Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, JJ Heinrichin, L Heinz, C Hejbal, J Helary, L Hellman, S Helsens, C Henderson, J Henderson, RCW Heng, Y Henkelmann, S Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohn, D Holmes, TR Homann, M Hong, TM Hooberman, BH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Hu, S Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Huo, P Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Ishijima, N Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ito, F Ponce, JMI Iuppa, R Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, P Jacobs, RM Jain, V Jakobi, KB Jacobs, K Jakobsen, S Jakoubek, T Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Javurkova, M Jeanneau, F Jeanty, L Jeng, GY Jennens, D Jenni, P Jeske, C Jezeque, S Ji, H Jia, J Jiang, H Jiang, YY Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, S Jones, TJ Jongmanns, J Jorge, PM Jovicevic, J Ju, X Rozas, AJ Kohler, MK Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kaji, T Kajomovitz, E Kalderon, CW Kaluza, A Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kanjir, L Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawade, K Kawagoe, K Kawamoto, T Kawamura, G Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khader, M Khalil-zada, F Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kilby, CR Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kohler, NM Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Kowalewska, AB Kowalewski, R Kowalski, TZ Kozakai, C Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kravchenko, A Kretz, M Kretzschmar, VJ Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuechler, JT Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, TJ Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lammers, S Lampl, W Lancon, E Landgraf, U Landon, MPJ Lanfermann, MC Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Lazzaroni, M Le, B Le Dortz, O Le Guirriec, E Le Quilleuc, EP LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, B Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Lerner, G Leroy, C Lesage, AAJ Lester, CG Levchenko, M Leveque, JJ Levin, D Levinson, LJ Levy, M Lewis, D Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, Q Li, S Li, X Li, Y Liang, Z Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limosani, A Lin, SC Lin, TH Lindquist, BE Lionti, AE Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, YL Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, EM Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Longo, L Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Solis, AL Lorenz, V Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, H Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Luzi, PM Lynn, D Lysak, R Lytken, E Lyubushkin, V Ma, H Ma, LL Ma, Y Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Maneira, J Filho, LMDA Ramos, JM Mann, A Manousos, A Mansoulie, B Mansour, JD Mantifel, R Mantoani, M Manzoni, S Mapelli, L Marceca, G March, L Marchiori, G Marcisovsky, M Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Outschoorn, VIM Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mc Fadden, NC Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McClymont, LI McDonald, EF Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineckni, C Meirose, B Meiini, D Garcia, BRM Melo, M Meloni, F Mengarelli, A Menke, S Meoni, E Mergelmeyer, S Mermod, P Merola, L Meloni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Zu Theenhausen, HM Miano, F Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Molander, S Moles-Valls, R Monden, R Mondragon, MC Monig, K Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, S Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Sanchez, FJM Quijada, JAM Murray, WJ Musheghyan, H Mugkinja, M Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nagai, K Nagai, R Nagano, K Nagasaka, Y Nagata, K Nage, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naryshkin, I Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Manh, TN Nickerson, RB Nicolaidou, R Nielsen, J Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Norjoharuddeen, N Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Nurse, E Nuti, K O'grady, F O'Neil, DC O'Rourke, AA O'Shea, V Oakham, FG Oberlackl, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okawa, H Okumura, Y Okuyama, T Olariu, A Seabra, LFO Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oreglia, MJ Oren, Y Orestano, D Orlando, N Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Rodriguez, LP Aranda, CP Griso, SP Paige, F Pais, P Pajchel, K Palacino, G Palazzo, S Palestini, S Palka, M Pallin, D St Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, AJ Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pascuzzi, VR Pasqualucci, E Passaggio, S Pastore, F Pasztor, G Pataraia, S Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Penc, O Peng, C Peng, H Penwell, J Peralva, BS Perego, MM Perepelitsa, DV Codina, EP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrov, M Petrucci, F Pettersson, NE Peyaud, A Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pilcher, JE Pilkington, AD Pin, AWJ Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Astigarraga, MEP Pralavorio, P Pranko, A Prell, S Price, D Price, LE Primaveraa, M Prince, S Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Przybycien, M Puddu, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Raine, JA Rajagopalan, S Rammensee, M Rangel-Smith, C Ratti, MG Rauscher, F Rave, S Ravenscroft, T Ravinovich, I Raymond, M Read, AL Readioff, NP Reale, M Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Rembser, C Ren, H Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rimoldi, M Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Rizzi, C Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodina, Y Perez, AR Rodriguez, DR Roe, S Rogan, CS Rohne, O Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosenthal, O Rosien, NA Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, JT Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryu, S Ryzhov, A Rzehorz, GF Saavedra, AF Sabato, G Sacerdoti, S Sadrozinski, HFW Sadykov, R Tehrani, ES Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, E Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, J Martinez, VS Pineda, AS Sandaker, H Sandbach, RL Sander, HG Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Savic, N Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schachtner, BM Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schier, S Schillo, C Schioppa, M Schlenker, S Schmidt-Sommerfeld, KR Schmieden, K Schmitt, C Schmitt, S Schmitz, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schott, M Schovancova, J Schramm, S Schreyer, M Schuh, N Schulte, A Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwarz, TA Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciolla, G Scuri, E Scutti, E Searcy, J Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shaikh, NW Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Sicho, P Sickles, AM Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silverstein, SB Simak, V Simic, L Simion, S Simioni, E Simmons, B Simon, D Simon, M Sinervo, P Sinev, NB Sioli, M Siragusa, G Sivoklokov, SY Sjolin, J Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Slovak, R Smakhtin, V Smart, BH Smestad, L Smiesko, J Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Sanchez, CAS Solar, M Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Son, H Song, HY Sood, A Sopczak, A Sopko, V Sorin, V Sosa, D Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, E Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M St Denis, RD Stabile, A Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, GH Stark, J Stark, SH Staroba, P Starovoitov, P Starz, S Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Suchek, S Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeshita, T Takubo, Y Talby, M Talyshev, AA Tan, KG Tanaka, J Tanaka, M Tanaka, R Tanaka, S Tannenwald, BB Araya, ST Tapprogge, S Tarem, S Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, AC Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Tong, B Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Trofymov, A Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tseng, JCL Tsiareshka, PV Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadz, EG Tsui, KM Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tu, Y Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turgeman, D Turra, R Turvey, AJ Tuts, PM Tyndel, M Ucchielli, G Ueda, I Ughetto, M Ukegawa, E Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Santurio, EV Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Ferrer, JAV Van Den Wollenberg, W Van der Deijl, PC van der Graaf, H van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vasquez, JG Vazeille, F Schroeder, TV Veatch, J Veeraraghavan, V Veloce, LM Veloso, F Veneziano, S Ventura, A Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigani, L Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vittori, C Vivarelli, I Vlachos, S Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wallangen, V Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, W Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, MD Werner, P Wessels, M Wetter, J Whalen, K Whallon, NL Wharton, AM White, A White, MJ White, R Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilk, F Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wingerter-Seez, I Winklmeier, F Winston, OJ Winter, BT Wittgen, M Wittkowski, J Wolf, TMH Wolter, MW Wolters, H Worm, SD Wosiek, BK Wotschack, T Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yang, Z Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zakharchuk, N Zalieckas, J Zaman, A Zambito, S Zariello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, TJC Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, R Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zwalinski, L AF Aaboud, M. Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Abeloos, B. Aben, R. AbouZeid, O. S. Abraham, N. L. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Ali, B. Aliev, M. Alimonti, G. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allen, B. W. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Alstaty, M. Gonzalez, B. Alvarez Piqueras, D. Alvarez Alviggi, M. G. Amadio, B. T. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antel, C. Antonelli, M. Antonov, A. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Armitage, L. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Artz, S. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisits, M-S Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska-Blenessy, Z. Baroncelli, A. Barone, G. Barr, A. J. Navarro, L. Barranco Barreiro, F. da Costa, J. V. Barreiro Guimardes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bedognetti, M. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, A. S. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Belyaev, N. L. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Benitez, J. Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Beringer, J. Berlendis, S. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertram, I. A. Bertsche, C. Bertsche, D. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethani, A. Bethke, S. Bevan, A. J. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bielski, R. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Billoud, T. R. V. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Bisanz, T. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Blunier, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Boerner, D. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bokan, P. Bold, T. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Bortfeldt, J. Bortoletto, D. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Sola, J. D. Bossio Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Broughton, J. H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruni, L. S. Brunt, B. H. Bruschi, M. Bruscino, N. Bryant, P. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Budagov, I. A. Buehrer, F. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burka, K. Burke, S. Burmeister, I. Burr, J. T. P. Busato, E. Buscher, D. Buscher, V. Bussey, P. Butler, J. M. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Urban, S. Cabrera Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Callea, G. Caloba, L. P. Lopez, S. Calvente Calvet, D. Calvet, S. Calvet, T. P. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Camincher, C. Campana, S. Campanelli, M. Camplani, A. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantria, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, I. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Casper, D. W. Castaneda-Miranda, E. Castelijn, R. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavallaro, E. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Alberich, L. Cerda Cerio, B. C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, S. K. Chan, Y. L. Chang, P. Chapman, J. D. Charlton, D. G. Chatterjee, A. Chau, C. C. Barajas, C. A. Chavez Che, S. Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, H. J. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chitan, A. Chizhov, M. V. Choi, K. Chomont, A. R. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, Aj. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocca, C. Ciocio, A. Cirotto, F. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, B. L. Clark, M. R. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Colasurdo, L. Cole, B. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cormier, K. J. R. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Crawley, S. J. Cree, G. Crepe-Renaudin, S. Crescioli, E. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cueto, A. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Czirr, H. Czodrowski, P. D'amen, G. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dado, T. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Dann, N. S. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, M. Davison, P. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Maria, A. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Dehghanian, N. Deigaard, I. Del Gaudio, M. Del Peso, J. Del Prete, T. Delgove, D. Deliot, E. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Denysiuk, D. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Clemente, W. K. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Dieh, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Du, Y. Duarte-Campderros, J. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudder, A. Chr. Duffield, E. M. Duflot, L. Duhrssen, M. Dumancic, M. Dunford, M. Yildiz, H. Duran Duren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edwards, N. C. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellajosyula, V. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Ennis, J. S. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, F. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farina, C. Farina, E. M. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fawcett, W. J. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Martinez, P. Fernandez Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Forcolin, G. T. Formica, A. Forti, A. Foster, A. G. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. Fressard-Batraneanu, S. M. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fusayasu, T. Foster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, L. G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Bravo, A. Gascon Gasnikova, K. Gatti, C. Gaudiello, A. Gaudio, G. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisen, M. Geisler, M. P. Gemme, C. Genest, M. H. Geng, C. Gentile, S. Gentsos, C. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Ghneimat, M. Giacobbe, B. Giagu, S. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuli, F. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, G. Gonella, L. Gongadze, A. de la Hoz, S. Gonzalez Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gossling, C. Gostkin, M. I. Goudet, C. R. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstrom, P. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gravila, P. M. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Grevtsov, K. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Groh, S. Grohs, J. P. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guan, W. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, R. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Hadef, A. Hagebock, S. Hajduk, Z. Hakobyan, H. Haieem, M. Haley, J. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hartmann, N. M. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayakawa, D. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, J. J. Heinrichin, L. Heinz, C. Hejbal, J. Helary, L. Hellman, S. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Henkelmann, S. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Jimenez, Y. Hernandez Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. Hooberman, B. H. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Hu, S. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huo, P. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Ishijima, N. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ito, F. Ponce, J. M. Iturbe Iuppa, R. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, P. Jacobs, R. M. Jain, V. Jakobi, K. B. Jacobs, K. Jakobsen, S. Jakoubek, T. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Javurkova, M. Jeanneau, F. Jeanty, L. Jeng, G. -Y. Jennens, D. Jenni, P. Jeske, C. Jezeque, S. Ji, H. Jia, J. Jiang, H. Jiang, Y. Y. Jiggins, S. Pena, J. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, S. Jones, T. J. Jongmanns, J. Jorge, P. M. Jovicevic, J. Ju, X. Rozas, A. Juste Kohler, M. K. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kaji, T. Kajomovitz, E. Kalderon, C. W. Kaluza, A. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kanjir, L. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawade, K. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khader, M. Khalil-zada, F. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kilby, C. R. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kohler, N. M. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Kopke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Kowalewska, A. B. Kowalewski, R. Kowalski, T. Z. Kozakai, C. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kravchenko, A. Kretz, M. Kretzschmar, V. J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Kruger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuechler, J. T. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, T. J. Kwan, T. Kyriazopoulos, D. La Rosa, A. Navarro, J. L. La Rosa La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lammers, S. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lanfermann, M. C. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Lazzaroni, M. Le, B. Le Dortz, O. Le Guirriec, E. Le Quilleuc, E. P. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, B. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Lerner, G. Leroy, C. Lesage, A. A. J. Lester, C. G. Levchenko, M. Leveque, J. J. Levin, D. Levinson, L. J. Levy, M. Lewis, D. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, Q. Li, S. Li, X. Li, Y. Liang, Z. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limosani, A. Lin, S. C. Lin, T. H. Lindquist, B. E. Lionti, A. E. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. L. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. M. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Longo, L. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Solis, A. Lopez Lorenz, V. Martinez, N. Lorenzo Losada, M. Losel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, H. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Luzi, P. M. Lynn, D. Lysak, R. Lytken, E. Lyubushkin, V. Ma, H. Ma, L. L. Ma, Y. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Miguens, J. Machado Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Maneira, J. de Andrade Filho, L. Manhaes Ramos, J. Manjarres Mann, A. Manousos, A. Mansoulie, B. Mansour, J. D. Mantifel, R. Mantoani, M. Manzoni, S. Mapelli, L. Marceca, G. March, L. Marchiori, G. Marcisovsky, M. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Outschoorn, V. I. Martinez Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mattig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mc Fadden, N. C. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McClymont, L. I. McDonald, E. F. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineckni, C. Meirose, B. Meiini, D. Garcia, B. R. Mellado Melo, M. Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mergelmeyer, S. Mermod, P. Merola, L. Meloni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J. P. Meyer, J. Zu Theenhausen, H. Meyer Miano, F. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Molander, S. Moles-Valls, R. Monden, R. Mondragon, M. C. Monig, K. Monk, J. Monnier, E. Montalbano, A. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, S. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Sanchez, F. J. Munoz Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Mugkinja, M. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nagai, K. Nagai, R. Nagano, K. Nagasaka, Y. Nagata, K. Nage, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naryshkin, I. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Manh, T. Nguyen Nickerson, R. B. Nicolaidou, R. Nielsen, J. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Norjoharuddeen, N. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Nurse, E. Nuti, K. O'grady, F. O'Neil, D. C. O'Rourke, A. A. O'Shea, V. Oakham, F. G. Oberlackl, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Seabra, L. F. Oleiro Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Rodriguez, L. Pacheco Aranda, C. Padilla Griso, S. Pagan Paige, F. Pais, P. Pajchel, K. Palacino, G. Palazzo, S. Palestini, S. Palka, M. Pallin, D. St Panagiotopoulou, E. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, A. J. Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pascuzzi, V. R. Pasqualucci, E. Passaggio, S. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Penc, O. Peng, C. Peng, H. Penwell, J. Peralva, B. S. Perego, M. M. Perepelitsa, D. V. Codina, E. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrov, M. Petrucci, F. Pettersson, N. E. Peyaud, A. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Astigarraga, M. E. Pozo Pralavorio, P. Pranko, A. Prell, S. Price, D. Price, L. E. Primaveraa, M. Prince, S. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Przybycien, M. Puddu, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Raine, J. A. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Ratti, M. G. Rauscher, F. Rave, S. Ravenscroft, T. Ravinovich, I. Raymond, M. Read, A. L. Readioff, N. P. Reale, M. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Rembser, C. Ren, H. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rimoldi, M. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Rizzi, C. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodina, Y. Perez, A. Rodriguez Rodriguez, D. Rodriguez Roe, S. Rogan, C. S. Rohne, O. Romaniouk, A. Romano, M. Saez, S. M. Romano Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosenthal, O. Rosien, N. -A. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. T. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rudolph, M. S. Ruhr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryu, S. Ryzhov, A. Rzehorz, G. F. Saavedra, A. F. Sabato, G. Sacerdoti, S. Sadrozinski, H. F-W. Sadykov, R. Tehrani, E. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Loyola, J. E. Salazar Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, E. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, J. Martinez, V. Sanchez Pineda, A. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Savic, N. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schachtner, B. M. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schafer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schier, S. Schillo, C. Schioppa, M. Schlenker, S. Schmidt-Sommerfeld, K. R. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schott, M. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schulte, A. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwarz, T. A. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciolla, G. Scuri, E. Scutti, E. Searcy, J. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shaikh, N. W. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sickles, A. M. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simon, M. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sivoklokov, S. Yu. Sjolin, J. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Slovak, R. Smakhtin, V. Smart, B. H. Smestad, L. Smiesko, J. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Sanchez, C. A. Solans Solar, M. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Son, H. Song, H. Y. Sood, A. Sopczak, A. Sopko, V. Sorin, V. Sosa, D. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, E. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. St Denis, R. D. Stabile, A. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, G. H. Stark, J. Stark, S. H. Staroba, P. Starovoitov, P. Starz, S. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Strohmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Suchek, S. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tan, K. G. Tanaka, J. Tanaka, M. Tanaka, R. Tanaka, S. Tannenwald, B. B. Araya, S. Tapia Tapprogge, S. Tarem, S. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, A. C. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tong, B. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Trofymov, A. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tseng, J. C-L. Tsiareshka, P. V. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadz, E. G. Tsui, K. M. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tu, Y. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turgeman, D. Turra, R. Turvey, A. J. Tuts, P. M. Tyndel, M. Ucchielli, G. Ueda, I. Ughetto, M. Ukegawa, E. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Santurio, E. Valdes Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Ferrer, J. A. Valls Van Den Wollenberg, W. Van der Deijl, P. C. van der Graaf, H. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasquez, J. G. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veeraraghavan, V. Veloce, L. M. Veloso, F. Veneziano, S. Ventura, A. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigani, L. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vittori, C. Vivarelli, I. Vlachos, S. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wallangen, V. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, W. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, M. D. Werner, P. Wessels, M. Wetter, J. Whalen, K. Whallon, N. L. Wharton, A. M. White, A. White, M. J. White, R. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilk, F. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winston, O. J. Winter, B. T. Wittgen, M. Wittkowski, J. Wolf, T. M. H. Wolter, M. W. Wolters, H. Worm, S. D. Wosiek, B. K. Wotschack, T. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yang, Z. Yao, W-M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zakharchuk, N. Zalieckas, J. Zaman, A. Zambito, S. Zariello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, T. J. C. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zwalinski, L. CA ATLAS Collaboration TI Search for new resonances decaying to a W or Z boson and a Higgs boson in the l(+)l(-)b(b)over-bar, l nu b(b)over-bar, and nu(nu)over-barb(b)over-bar channels with pp collisions at root s=13 TeV with the ATLAS detector SO PHYSICS LETTERS B LA English DT Article ID MODEL; LHC AB A search is presented for new resonances decaying to a W or Z boson and a Higgs boson in the l(+)l(-)b (b) over bar, l nu b (b) over bar, and nu(nu) over barb (b) over bar channels in pp collisions at root s = 13 TeV with the ATLAS detector at the Large Hadron Collider using a total integrated luminosity of 3.2 fb(-1). The search is conducted by looking for a localized excess in the WH/ZH invariant or transverse mass distribution. No significant excess is observed, and the results are interpreted in terms of constraints on a simplified model based on a phenomenological Lagrangian of heavy vector triplets. (C) 2016 The Author(s). Published by Elsevier B.V. C1 [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.; Romano, M.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Czodrowski, P.; Dassoulas, J.; Dehghanian, N.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska-Blenessy, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezeque, S.; Koletsou, I.; Lafaye, R.; Leveque, J. J.; Mastrandrea, P.; Berlingen, J. Montejo; Sauvage, G.; Sauvan, E.; Smart, B. H.; Stewart, G. A.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska-Blenessy, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezeque, S.; Koletsou, I.; Lafaye, R.; Leveque, J. J.; Mastrandrea, P.; Berlingen, J. Montejo; Sauvage, G.; Sauvan, E.; Smart, B. H.; Stewart, G. A.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mt Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; LeCompte, T.; Love, J.; Malon, D.; Metcalfe, J.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ryu, S.; Stanek, R. W.; van Gemmeren, P.; Wang, R.; Webster, J. S.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Jones, S.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Berlingen, J. Montejo; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veeraraghavan, V.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Berlingen, J. Montejo; Ozturk, N.; Schovancova, J.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Gkialas, I.; Ioannou, P.; Kourkoumelis, C.; Berlingen, J. Montejo; Papageorgiou, K.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Berlingen, J. Montejo; Ntekas, K.; St Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Andeen, T.; Ilchenko, Y.; Narayan, R.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavallaro, E.; Cavalli-Sforza, M.; Farooque, T.; Perez, S. Fernandez; Fischer, C.; Fracchia, S.; Gerbaudo, D.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rizzi, C.; Perez, A. Rodriguez; Sorin, V.; Terzo, S.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Barcelona Inst Sci & Technol, Inst Fis Altes Energies IFAE, Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bokan, P.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin Dit; Berlingen, J. Montejo; Smestad, L.; Stugu, B.; Yang, Z.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Berlingen, J. Montejo; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Berlingen, J. Montejo; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Mergelmeyer, S.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Miucci, A.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Miucci, A.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allport, P. P.; Andari, N.; Bella, L. Aperio; Baca, M. J.; Bracinik, J.; Broughton, J. H.; Casadei, D.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Foster, A. G.; Gonella, L.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Berlingen, J. Montejo; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept ofPhys, Istanbul, Turkey. [Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Istanbul Bilgi Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Banerjee, Sw.] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Berlingen, J. Montejo; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Biondi, S.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Berlingen, J. Montejo; Piccinini, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Caudron, J.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Ghneimat, M.; Grefe, C.; Hagebock, S.; Hansen, M. C.; Hohn, D.; Huegging, F.; Jacobs, R. M.; Janssen, J.; Kostyukhin, V. V.; Kroseberg, J.; Kruger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Moles-Valls, R.; Berlingen, J. Montejo; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Seema, P.; Stillings, J. A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.; Zhang, R.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Dhaliwal, S.; Goblirsch-Kolb, M.; Loew, K. M.; Berlingen, J. Montejo; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes; Peralva, B. S.] Fed Univ Juiz de Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Navarro, J. L. La Rosa; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Elmsheuser, J.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lee, C. A.; Liu, H.; Lynn, D.; Ma, H.; Maeno, T.; Berlingen, J. Montejo; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Tricoli, A.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Berlingen, J. Montejo; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. [Gravila, P. M.] West Univ Timisoara, Timisoara, Romania. [Sola, J. D. Bossio; Marceca, G.; Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Brunt, B. H.; Carter, J. R.; Chapman, J. D.; Cottin, G.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Lester, C. G.; Mueller, T.; Parker, M. A.; Potter, C. J.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Gillberg, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Berlingen, J. Montejo; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Ruiz-Martinez, A.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON, Canada. [Aleksa, M.; Gonzalez, B. Alvarez; Amoroso, S.; Anders, G.; Anghinolfi, F.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backhaus, M.; Barak, L.; Barisits, M-S; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bingul, A.; Bogaerts, J. A.; Bortfeldt, J.; Boveia, A.; Boyd, J.; Burckhart, H.; Camarda, S.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Colombo, T.; Conti, G.; Cortes-Gonzalez, A.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Di Nardo, R.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Faltova, J.; Farthouat, P.; Fassnacht, P.; Feng, E. J.; Francis, D.; Fressard-Batraneanu, S. M.; Froidevaux, D.; Gadatsch, S.; Goossens, L.; Gorini, B.; Gray, H. M.; Gumpert, C.; Hawkings, R. J.; Helary, L.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jakobsen, S.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Malyukov, S.; Mandelli, B.; Manousos, A.; Mapelli, L.; Marzin, A.; Berlingen, J. Montejo; Morgenstern, S.; Mornacchi, G.; Nairz, A. M.; Nessi, M.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Astigarraga, M. E. Pozo; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Sforza, F.; Sanchez, C. A. Solans; Spigo, G.; Starz, S.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, T.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Bryant, P.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Gardner, R. W.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Berlingen, J. Montejo; Oreglia, M. J.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Stark, G. H.; Swiatlowski, M.; Vukotic, I.; Wu, M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Blunier, S.; Diaz, M. A.; Ochoa-Ricoux, J. P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; Loyola, J. E. Salazar; Araya, S. Tapia; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; da Costa, J. V. Barreiro Guimardes; Cheng, H. J.; Fang, Y.; Jin, S.; Li, Q.; Liang, Z.; Merino, J. Llorente; Lou, X.; Mansour, J. D.; Berlingen, J. Montejo; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Chen, S.; Wang, C.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Berlingen, J. Montejo; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Univ Blaise Pascal, Univ Clermont Auvergne, Lab Phys Corpusculaire, CNRS IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Angerami, A.; Brooijmans, G.; Carbone, R. M.; Clark, M. R.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Berlingen, J. Montejo; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Loevschall-Jensen, A. E.; Monk, J.; Berlingen, J. Montejo; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Stark, S. H.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Callea, G.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Berlingen, J. Montejo; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Lab Nazl Frascati, Arcavacata Di Rende, Italy. [Cairo, V. M.; Callea, G.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Berlingen, J. Montejo; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Gach, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Burka, K.; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Kowalewska, A. B.; Malecki, Pa.; Berlingen, J. Montejo; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Gupta, R.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX USA. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Gasnikova, K.; Glazov, A.; Gregor, I. M.; Haieem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E. M.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Monig, K.; Berlingen, J. Montejo; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Hamburg, Germany. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Gasnikova, K.; Glazov, A.; Gregor, I. M.; Haieem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E. M.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Monig, K.; Berlingen, J. Montejo; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Zeuthen, Germany. [Burmeister, I.; Cinca, D.; Dette, K.; Erdmann, J.; Esch, H.; Gossling, C.; Homann, M.; Klingenberg, R.] Tech Univ Dortmund, Lehrstuhl Expt Phys 4, Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Berlingen, J. Montejo; Novgorodova, O.; Siegert, F.; Socher, F.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kem & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Berlingen, J. Montejo; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mijovic, L.; Mills, C.; Berlingen, J. Montejo; Pino, S. A. Olivares; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Berlingen, J. Montejo; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buscher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Glatzer, J.; Gonella, G.; Herten, G.; Hirose, M.; Jacobs, K.; Javurek, T.; Javurkova, M.; Jenni, P.; Kiss, F.; Koneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Luedtke, C.; Berlingen, J. Montejo; Nage, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruhr, F.; Rurikova, Z.; Sammel, D.; Schillo, C.; Schnoor, U.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tsiskaridze, V.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Albert Ludwigs Univ, Fak Math & Phys, Freiburg, Germany. [Ancu, L. S.; De Mendizabal, J. Bilbao; Calace, N.; Chatterjee, A.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Khoo, T. J.; Lanfermann, M. C.; Lionti, A. E.; March, L.; Mermod, P.; Berlingen, J. Montejo; Nackenhorst, O.; Paolozzi, L.; Ristic, B.; Schramm, S.; Sfyrla, A.; Wu, X.] Univ Geneva, Dept Phys Nucl & Corpusculaire, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Miglioranzi, S.; Berlingen, J. Montejo; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Miglioranzi, S.; Berlingen, J. Montejo; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Tskhadadz, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Duren, M.; Heinz, C.; Kreutzfeldt, K.; Stenzel, H.] Justus Liebig Univ Giessen, Phys Inst 2, Giessen, Germany. [Bates, R. L.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Crawley, S. J.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; Gul, U.; Berlingen, J. Montejo; Mullen, P.; O'Shea, V.; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Bisanz, T.; Blumenschein, U.; Brandt, G.; De Maria, A.; Drechsler, E.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Berlingen, J. Montejo; Llacer, M. Moreno; Musheghyan, H.; Quadt, A.; Rieger, J.; Rosien, N. -A.; Rzehorz, G. F.; Shabalina, E.; Stolte, P.; Veatch, J.; Weingarten, J.; Zinonos, Z.] Georg August Univ, Phys Inst 2, Gottingen, Germany. [Albrand, S.; Berlendis, S.; Bethani, A.; Camincher, C.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Gradin, P. O. J.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Berlingen, J. Montejo; Petit, E.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, Grenoble, France. [Chan, S. K.; Clark, B. L.; Franklin, M.; Giromini, P.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Berlingen, J. Montejo; Morii, M.; Rogan, C. S.; Skottowe, H. P.; Sun, S.; Tolley, E.; Tong, B.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Gao, J.; Geng, C.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y. Y.; Li, B.; Liu, J. B.; Liu, M.; Liu, Y. L.; Liu, Y.; Peng, H.; Song, H. Y.; Wang, W.; Zhang, G.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Andrei, V.; Antel, C.; Baas, A. E.; Brandt, O.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Zu Theenhausen, H. Meyer; Berlingen, J. Montejo; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Suchek, S.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; de Lima, D. E. Ferreira; Giulini, M.; Kolb, M.; Lisovyi, M.; Schaetzel, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Phys Inst, Heidelberg, Germany. [Anders, C. F.; de Lima, D. E. Ferreira; Giulini, M.; Kolb, M.; Lisovyi, M.; Schaetzel, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsui, K. M.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.; Orlando, N.; Tu, Y.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Clear Water Bay, Kowloon, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Inst Adv Study, Clear Water Bay, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Evans, H.; Gagnon, P.; Kopeliansky, R.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Berlingen, J. Montejo; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Guenther, J.; Iwanski, W.; Jansky, R.; Kneringer, E.; Lukas, W.; Milic, A.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Abdallah, J.; Argyropoulos, S.; Benitez, J.; Mallik, U.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Jiang, H.; Krumnack, N.; Pluth, D.; Prell, S.; Werner, M. D.; Yu, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gongadze, A.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Lyubushkin, V.; Minashvili, I. A.; Mineev, M.; Berlingen, J. Montejo; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Soloshenko, A.; Turchikhin, S.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kondo, T.; Kono, T.; Makida, Y.; Berlingen, J. Montejo; Nagai, R.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan. [Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka, Japan. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Berlingen, J. Montejo; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Bertram, I. A.; Borissov, G.; Bouhova-Thacker, E. V.; Cheatham, S.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Berlingen, J. Montejo; Muenstermann, D.; Parker, A. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Aliev, M.; Bachas, K.; Chiodini, G.; Gorini, E.; Longo, L.; Berlingen, J. Montejo; Primaveraa, M.; Reale, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Aliev, M.; Bachas, K.; Gorini, E.; Longo, L.; Reale, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, V. J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Mugkinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Jozef Stefan Inst, Dept Expt Particle Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Mugkinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Dept Phys, Ljubljana, Slovenia. [Armitage, L. J.; Bevan, A. J.; Bona, M.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lewis, D.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Kilby, C. R.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, E.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bell, A. S.; Butterworth, J. M.; Campanelli, M.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Grout, Z. J.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Leney, K. J. C.; Martyniuk, A. C.; McClymont, L. I.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, E.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, E.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, E.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fys Inst, Lund, Sweden. [Barreiro, F.; Lopez, S. Calvente; Cueto, A.; De la Torre, H.; Del Peso, J.; Glasman, C.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Artz, S.; Becker, M.; Bertella, C.; Blum, W.; Buscher, V.; Caputo, R.; Cuth, J.; Dudder, A. Chr.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Geisen, M.; Groh, S.; Heck, T.; Jakobi, K. B.; Kaluza, A.; Karnevskiy, M.; Kleinknecht, K.; Kopke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Pleskot, V.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schafer, U.; Schmitt, C.; Schmitz, S.; Schott, M.; Schuh, N.; Schulte, A.; Simioni, E.; Simon, M.; Tapprogge, S.; Urrejola, P.; Webb, S.; Yildirim, E.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Barnes, S. L.; Bielski, R.; Cox, B. E.; Da Via, C.; Dann, N. S.; Forcolin, G. T.; Forti, A.; Ponce, J. M. Iturbe; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Sanchez, F. J. Munoz; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Raine, J. A.; Schweiger, H.; Shaw, S. M.; Tomlinson, L.; Watts, S.; Wilk, F.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Berlingen, J. Montejo; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Berlingen, J. Montejo; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pettersson, N. E.; Picazio, A.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA USA. [Belanger-Champagne, C.; Chuinard, Aj.; Corriveau, F.; Keyes, R. A.; Lefebvre, B.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Goldfarb, S.; Jennens, D.; Kubota, T.; Le, B.; McDonald, E. F.; Milesi, M.; Nuti, K.; Rados, P.; Scutti, E.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Taylor, P. T. E.; Ungaro, F. C.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Dieh, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Guan, L.; Levin, D.; Liu, H.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Martin, B.; Mondragon, M. C.; Plucinski, P.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Camplani, A.; Carminati, L.; Cavalli, D.; Citterio, M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaroni, M.; Mandelli, L.; Manzoni, S.; Mazza, S. M.; Meloni, C.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Camplani, A.; Carminati, L.; Fanti, M.; Lazzaroni, M.; Manzoni, S.; Mazza, S. M.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.] Byelorussian State Univ, Res Inst Nucl Problems, Minsk, Byelarus. [Arguin, J-F.; Azuelos, G.; Billoud, T. R. V.; Dallaire, F.; Ducu, O. A.; Gagnon, L. G.; Gauthier, L.; Leroy, C.; Mochizuki, K.; Manh, T. Nguyen; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Berlingen, J. Montejo; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Belyaev, N. L.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Bender, M.; Biebel, O.; Bock, C.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Hartmann, N. M.; Heinrich, J. J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, V.; Losel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineckni, C.; Mitrevski, J.; Mueller, R. S. P.; Rauscher, F.; Ruschke, A.; Schachtner, B. M.; Schaile, D.; Unverdorben, C.; Valderanis, C.; Walker, R.; Wittkowski, J.] Ludwig Maximilians Univ Munchen, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Knue, A.; Kohler, N. M.; Kortner, O.; Kortner, S.; Kroha, H.; La Rosa, A.; Macchiolo, A.; Maier, A. A.; McCarthy, T. G.; Menke, S.; Berlingen, J. Montejo; Mueller, F.; Nisius, R.; Nowak, S.; Oberlackl, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Savic, N.; Schacht, P.; Schmidt-Sommerfeld, K. R.; Spettel, F.; Stonjek, S.; von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Kawade, K.; Nakahama, Y.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi, Japan. [Horii, Y.; Kawade, K.; Nakahama, Y.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Pineda, A. Sanchez; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Merola, L.; Perrella, S.; Rossi, E.; Pineda, A. Sanchez] Univ Napoli, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Mc Fadden, N. C.; Seidel, S. C.; Taylor, A. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Konig, A. C.; Nektarijevic, S.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van der Deijl, P. C.; van der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.; Wolf, T. M. H.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van der Deijl, P. C.; van der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.; Wolf, T. M. H.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Brost, E.; Burghgrave, B.; Chakraborty, D.; Klimek, P.; Saha, P.] Univ Illinois, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Berlingen, J. Montejo; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Becot, C.; Bernius, C.; Cranmer, K.; Haas, A.; Heinrichin, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Mincer, A. I.; Berlingen, J. Montejo; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Beacham, J. B.; Che, S.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Berlingen, J. Montejo; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama, Japan. [Abbott, B.; Alhroob, M.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Cantero, J.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, T. J.; Nozka, L.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Abreu, R.; Allen, B. W.; Aloisio, A.; Brau, J. E.; Dattagupta, A.; Hopkins, W. H.; Majewski, S.; Berlingen, J. Montejo; Potter, C. T.; Radloff, P.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abeloos, B.; Ayoub, M. K.; Bassalat, A.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Goudet, C. R.; Grivaz, J. -F.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Maiani, C.; Makovec, N.; Berlingen, J. Montejo; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.] Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, LAL, Orsay, France. [Ishijima, N.; Nomachi, M.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, M. K.; Cameron, D.; Catmore, J. R.; Feigl, S.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Serfon, C.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Artoni, G.; Barr, A. J.; Becker, K.; Beresford, L.; Bortoletto, D.; Burr, J. T. P.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Fawcett, W. J.; Frost, J. A.; Gallas, E. J.; Giuli, F.; Gupta, S.; Gwenlan, C.; Hays, C. P.; Henderson, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Nagai, K.; Nickerson, R. B.; Norjoharuddeen, N.; Petrov, M.; Pickering, M. A.; Radescu, V.; Tseng, J. C-L.; Viehhauser, G. H. A.; Vigani, L.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Dondero, P.; Farina, E. M.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Kourkoumeli-Charalampidi, A.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Dondero, P.; Farina, E. M.; Fraternali, M.; Introzzi, G.; Kourkoumeli-Charalampidi, A.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, Pavia, Italy. [Balunas, W. K.; Brendlinger, K.; Di Clemente, W. K.; Fletcher, R. R. M.; Haney, B.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Mistry, K. P.; Berlingen, J. Montejo; Reichert, J.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Berlingen, J. Montejo; Naryshkin, I.; Ryabov, Y. F.; Schegelsky, V. A.; Seliverstov, D. M.; Solovyev, V.] Natl Res Ctr, BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, St Petersburg, Russia. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Berlingen, J. Montejo; Roda, C.; Scuri, E.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, E.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Farina, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Araque, J. P.; Cantria, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Seabra, L. F. Oleiro; Onofre, A.; Pedro, R.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Pedro, R.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Caparica, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Ali, B.; Augsten, K.; Caforio, D.; Gallus, P.; Hubacek, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Sopczak, A.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Berta, P.; Carli, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Kosek, T.; Leitner, R.; Reznicek, P.; Scheirich, D.; Slovak, R.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Ryzhov, A.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] NRC ICI, State Res Ctr Inst High Energy Phys Protvino, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, J.; Kirk, J.; Martin-Haugh, S.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.; Worm, S. D.] Rutherford Appleton Lab, Particle Phys Dept, Didcot, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; De Pedis, D.; De Salvo, A.; Di Donato, C.; Falciano, S.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Messina, A.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, E. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zariello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; Di Donato, C.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Vanadia, M.; Verducci, M.; Zariello, L.] Sapienza Univ Roma, Dipartimento Fis, Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cerrito, L.; Di Ciaccio, A.; Liberti, B.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cerrito, L.; Di Ciaccio, A.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Ceradini, F.; Di Micco, B.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA Marrakech, Marrakech, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Tayalati, Y.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Balli, F.; Bauer, F.; Deliot, E.; Denysiuk, D.; Etienvre, A. I.; Formica, A.; Guyot, C.; Jeanneau, F.; Lancon, E.; Le Quilleuc, E. P.; Lesage, A. A. J.; Mansoulie, B.; Ouraou, A.; Peyaud, A.; Royon, C. R.] CM Saclay Commissariat Energie Atom & Energies Al, Inst Rech Lois Fondamentales Univers, DSM IRFU, Gif Sur Yvette, France. [AbouZeid, O. S.; Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Hance, M.; Kuhl, A.; Law, A. T.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schier, S.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Alpigiani, C.; Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Johnson, W. J.; Lubatti, H. J.; Marx, M.; Meehan, S.; Rompotis, N.; Rosten, R.; Rothberg, J. T.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.; Whallon, N. L.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Du, Y.; Feng, C.; Ma, L. L.; Ma, Y.; Wang, C.; Zaidan, R.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Bret, M. Cano; Guo, J.; Hu, S.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Key Lab Particle Phys Astrophys & Cosmol, Shanghai Key Lab Particle Phys & Cosmol,Minist Ed, Shanghai, Peoples R China. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Campoverde, A.; Czirr, H.; Fleck, I.; Ghasemi, S.; Ibragimov, I.; Li, Y.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada. [Armbruster, A. J.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Su, D.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Dado, T.; Melo, M.; Plazak, L.; Smiesko, J.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice, Slovakia. [Castaneda-Miranda, E.; Hamilton, A.; Yacoob, S.] Univ Cape Town, Dept Phys, Cape Town, South Africa. [Connell, S. H.; Govender, N.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hsu, C.; Kar, D.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, Stockholm, Sweden. [Backes, M.; Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Backes, M.; Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Abraham, N. L.; Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Lerner, G.; Miano, F.; Salvatore, E.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.; Winston, O. J.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW, Australia. [Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Gozani, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Duarte-Campderros, J.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel. [Gentsos, C.; Gkaitatzis, S.; Iliadis, D.; Kimura, N.; Kordas, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Asai, S.; Chen, S.; Enari, Y.; Hanawa, K.; Ishino, M.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kishimoto, T.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Okumura, Y.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Asai, S.; Chen, S.; Enari, Y.; Hanawa, K.; Ishino, M.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kishimoto, T.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Okumura, Y.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo, Japan. [Hayakawa, D.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Tanaka, M.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo, Japan. [Vaniachine, A.] Tomsk State Univ, Tomsk, Russia. [Batista, S. J.; Chau, C. C.; Cormier, K. J. R.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Keoshkerian, H.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Pascuzzi, V. R.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Iuppa, R.] INFN TIFPA, Trento, Italy. [Iuppa, R.] Univ Trent, Trento, Italy. [Canepa, A.; Chekulaev, S. V.; Hod, N.; Jovicevic, J.; Codina, E. Perez; Schneider, B.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC, Canada. [Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON, Canada. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, E.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, E.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Sliwa, K.; Son, H.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Casper, D. W.; Corso-Radu, A.; Frate, M.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Boldyrev, A. S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Boldyrev, A. S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, Udine, Italy. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Maddocks, H. J.; Ohman, H.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Atkinson, M.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Hooberman, B. H.; Khader, M.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Outschoorn, V. I. Martinez; Neubauer, M. S.; Rybar, M.; Shang, R.; Sickles, A. M.; Vichou, I.; Zeng, T. J. C.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Foster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Meiini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Foster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Meiini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Foster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Meiini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Foster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Meiini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Foster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Meiini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; King, S. B.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; McPherson, R. A.; Pearce, J.; Seuster, R.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Ennis, J. S.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry, W Midlands, England. [Iizawa, T.; Kaji, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Balek, P.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Dumancic, M.; Gross, E.; Kohler, M. K.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Ravinovich, I.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.; Turgeman, D.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Banerjee, Sw.; Guan, W.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Kruse, A.; Ming, Y.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Strohmer, R.; Trefzger, T.; Weber, S. W.; Zibell, A.] Julius Maximilians Univ, Fak Phys & Astron, Wurzburg, Germany. [Bannoura, A. A. E.; Boerner, D.; Braun, H. M.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Flick, T.; Gabizon, O.; Gilles, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kersten, S.; Kuechler, J. T.; Mattig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Vogel, M.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fak Math & Nat Wissensch, Fachgrp Phys, Wuppertal, Germany. [Baker, O. K.; Noccioli, E. Benhar; Cummings, J.; Demers, S.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Hernandez, D. Paredes; Thomsen, L. A.; Tipton, P.; Vasquez, J. G.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk, Russia. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC, Canada. [Banerjee, Sw.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Bassalat, A.] An Najah Natl Univ, Dept Phys, Nablus, Palestine. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, Fribourg, Switzerland. [Casado, M. P.] Univ Autonoma Barcelona, Dept Fis, Barcelona, Spain. [Castro, N. F.] Univ Porto, Dept Fis & Astron, Fac Ciencias, Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk, Russia. [Chen, X.] Collaborat Innovat Ctr Quantum Matter CICQM, Beijing, Peoples R China. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys IPP, Ottawa, ON, Canada. [Ducu, O. A.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Geng, C.; Guo, Y.; Li, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Govender, N.] Ctr High Performance Comp, CSIR Campus, Cape Town, South Africa. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Barcelona, Spain. [Hanagaki, K.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Taipei, Taiwan. [Igonkina, O.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jenni, P.] CERN, Geneva, Switzerland. [Khubua, J.] Georgian Tech Univ GTU, Tbilisi, Rep of Georgia. [Kono, T.; Nagai, R.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Lin, S. C.] Acad Sinica, Acad Sinica Grid Comp, Inst Phys, Taipei, Taiwan. [Liu, B.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Meiini, D.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Meiini, D.] Univ Granada, CAFPE, Granada, Spain. [Moss, J.] Calif State Univ Sacramento, Dept Phys, Sacramento, CA 95819 USA. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Dept Phys Nucl & Corpusculaire, Geneva, Switzerland. [Pasztor, G.] Eotvos Lorand Univ, Budapest, Hungary. [Piacquadio, G.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Piacquadio, G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Rodina, Y.] Barcelona Inst Sci & Technol, Inst Fis Altes Energies IFAE, Barcelona, Spain. [Shi, L.] Sun Yat Sen Univ, Sch Phys, Guangzhou, Guangdong, Peoples R China. [Shiyakova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy INRNE, Sofia, Bulgaria. [Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Song, H. Y.; Zhang, G.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vest, A.] Flensburg Univ Appl Sci, Flensburg, Germany. [Wang, C.; Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France. [Wang, C.; Zhang, R.] CNRS IN2P3, Marseille, France. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur, Malaysia. [Zhao, Y.] Univ Paris Saclay, Univ Paris Sud, LAL, CNRS IN2P3, Orsay, France. PKU CHEP, Beijing, Peoples R China. RP Aaboud, M (reprint author), Univ Mohamed Premier, Fac Sci, Oujda, Morocco.; Aaboud, M (reprint author), LPTPM, Oujda, Morocco. RI Gladilin, Leonid/B-5226-2011; Prokoshin, Fedor/E-2795-2012 OI Gladilin, Leonid/0000-0001-9422-8636; Prokoshin, Fedor/0000-0001-6389-5399 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS Slovenia; MIZS Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Knut and Alice Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, Taiwan; TREK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; FP7, European Union; Horizon, European Union; Marie Sklodowska-Curie Actions, European Union; Investissement d'Avenir Labex, France; Investissement d'Avenir Idex, France; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos programme - EU-ESF; Thales programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Knut and Alice Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TREK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. NR 66 TC 1 Z9 1 U1 9 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 10 PY 2017 VL 765 BP 32 EP 52 DI 10.1016/j.physletb.2016.11.045 PG 21 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EK0PB UT WOS:000393627800004 ER PT J AU Aaboud, M Aad, G Abbott, B Abdallah, J Abdinov, O Abeloos, B Aben, R AbouZeid, OS Abraham, NL Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adachi, S Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Aring;kesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Ali, B Aliev, M Alimonti, G Alison, J Alkire, SP Allbrooke, BMM Allen, BW Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Alshehri, AA Alstaty, M Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antel, C Antonelli, M Antonov, A Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Armitage, LJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Artz, S Asai, S Asbah, N Ashkenazi, A Aring;sman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Sanas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisits, MS Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska-Blenessy, Z Baroncelli, A Barone, G Barr, AJ Navarro, LB Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bedognetti, M Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, AS Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Belyaev, NL Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Benitez, J Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Beringer, J Berlendis, S Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertram, IA Bertsche, C Bertsche, D Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethani, A Bethke, S Bevan, AJ Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bielski, R Biesuz, NV Biglietti, M De Mendizabal, JB Billoud, TRV Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Bisanz, T Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blue, A Blum, W Blumenschein, U Blunier, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Boerner, D Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bokan, P Bold, T Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Bortfeldt, J Bortoletto, D Bortolotto, V Bos, K Boscherini, D Bosman, M Sola, JDB Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Boutle, SK Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Broughton, JH de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruni, LS Brunt, B Bruschi, M Bruscino, N Bryant, P Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Budagov, IA Buehrer, F Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burka, K Burke, S Burmeister, I Burr, JTP Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Callea, G Caloba, LP Lopez, SC Calvet, D Calvet, S Calvet, TP Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Camincher, C Campana, S Campanelli, M Camplani, A Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Carbone, RM Cardarelli, R Cardillo, F Carli, I Carli, T Carlino, G Carminati, L Carney, RMD Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Casper, DW Castaneda-Miranda, E Castelijn, R Castelli, A Gimenez, VC Castro, NF Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavallaro, E Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Alberich, LC Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chan, SK Chan, YL Chang, P Chapman, JD Charlton, DG Chatterjee, A Chau, CC Barajas, CAC Che, S Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, HJ Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chitan, A Chizhov, MV Choi, K Chomont, AR Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocca, C Ciocio, A Cirotto, F Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, BL Clark, MR Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Colasurdo, L Cole, B Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cormier, KJR Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cottin, G Cowan, G Cox, BE Cranmer, K Crawley, SJ Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cueto, A Donszelmann, TC Cummings, J Curatolo, M Cuth, J Czirr, H Czodrowski, P D'amen, G D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dado, T Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Dann, NS Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, M Davison, P Dawe, E Dawson, I De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Maria, A De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Dehghanian, N Deigaard, I Del Gaudio, M Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Denysiuk, D Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Clemente, WK Di Donato, C Di Girolamo, A Di Girolamo, B Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Cornell, SD Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dolejsi, J Dolezal, Z Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Du, Y Duarte-Campderros, J Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudder, AC Duffield, EM Duflot, L Duhrssen, M Dumancic, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edwards, NC Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellajosyula, V Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Ennis, JS Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Ezzi, M Fabbri, F Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farina, C Farina, EM Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fawcett, WJ Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, RRM Flick, T Castillo, LRF Flowerdew, MJ Forcolin, GT Formica, A Forti, A Foster, AG Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D Fressard-Batraneanu, SM Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, LG Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Ganguly, S Gao, J Gao, Y Gao, YS Walls, FMG Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Bravo, AG Gasnikova, K Gatti, C Gaudiello, A Gaudio, G Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Gecse, Z Gee, CNP Geich-Gimbel, C Geisen, M Geisler, MP Gellerstedt, K Gemme, C Genest, MH Geng, C Gentile, S Gentsos, C George, S Gerbaudo, D Gershon, A Ghasemi, S Ghneimat, M Giacobbe, B Giagu, S Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuli, F Giuliani, C Giulini, N Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, G Gonella, L Gongadze, A de la Hoz, SG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goudet, CR Goujdami, D Goussiou, AG Govender, N Gozani, E Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gravila, PM Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Grevtsov, K Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Groh, S Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guan, W Guenther, J Guescini, F Guest, D Gueta, O Gui, B Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, R Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Hadef, A Hagebock, S Hagihara, M Hajduk, Z Hakobyan, H Haleem, M Haley, J Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Harnnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hartmann, NM Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hayakawa, D Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, JJ Heinrich, L Heinz, C Hejbal, J Helary, L Hellman, S Helsens, C Henderson, J Henderson, RCW Heng, Y Henkelmann, S Correia, AMH Henrot-Versille, S Herbert, GH Herde, H Herget, V Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohn, D Holmes, TR Homann, M Honda, T Hong, TM Hooberman, BH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howarth, J Hoya, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, Q Hu, S Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Huo, P Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, C Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Ishijima, N Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ito, F Ponce, JMI Iuppa, R Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, P Jain, V Jakobi, KB Jakobs, K Jakobsen, S Jakoubek, T Jamin, DOS Jana, DK Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanneau, F Jeanty, L Jeng, GY Jennens, D Jenni, P Jeske, C Jezequel, S Ji, H Jia, J Jiang, H Jiang, Y Jiang, Z Jiggins, SJ Pena, JJ Jin, S Jinaru, A Jinnouchi, O Jivan, H Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, S Jones, TJ Jongmanns, J Jorge, PM Jovicevic, J Ju, X Rozas, AJ Kohler, MK Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kaji, T Kajomovitz, E Kalderon, CW Kaluza, A Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kanjir, L Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawade, K Kawagoe, K Kawamoto, T Kawamura, G Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khader, M Khalil-zada, F Khanov, A Kharlamov, AG Kharlamova, T Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kilby, CR Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koehler, NM Koffas, T Koffeman, E Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotwal, A Koulouris, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Kowalewska, AB Kowalewski, R Kowalski, TZ Kozakai, C Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kravchenko, A Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuechler, JT Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLLR La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lammers, S Lampl, W Lancon, E Landgraf, U Landon, MPJ Lanfermann, MC Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Lazzaroni, M Le, B Le Dortz, O Le Guirriec, E Le Quilleuc, EP LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, B Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Lerner, G Leroy, C Lesage, AAJ Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, D Leyko, AM Leyton, M Li, B Li, C Li, H Li, HL Li, L Li, L Li, Q Li, S Li, X Li, Y Liang, Z Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limosani, A Lin, SC Lin, TH Lindquist, BE Lionti, AE Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, YL Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, EM Loch, P Loebinger, FK Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Longo, L Looper, KA Lopez, JA Mateos, DL Paredes, BL Paz, IL Solis, AL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, H Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Luzi, PM Lynn, D Lysak, R Lytken, E Lyubushkin, V Ma, H Ma, LL Ma, Y Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Malone, C Maltezos, S Malyukov, S Mamuzic, J Mancini, G Mandelli, L Mandic, I Maneira, J de Andrade, LM Ramos, JM Mann, A Manousos, A Mansoulie, B Mansour, JD Mantifel, R Mantoani, M Manzoni, S Mapelli, L Marceca, G March, L Marchiori, G Marcisovsky, M Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Outschoorn, VIM Martin-Haugh, S Martoiu, VS Martyniuk, AC Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Maznas, I Mazza, SM Mc Fadden, NC Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McClymont, LI McDonald, EF Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melini, D Garcia, BRM Melo, M Meloni, R Meng, X Mengarelli, A Menke, S Meoni, E Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Theenhausen, HMZ Miano, F Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Minegishi, Y Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Mlynarikova, M Moa, T Mochizuki, K Mohapatra, S Molander, S Moles-Valls, R Monden, R Mondragon, MC Monig, K Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, S Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Sanchez, FJM Quijada, JAM Murray, WJ Musheghyan, H Muskinja, M Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nagai, K Nagai, R Nagano, K Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Garcia, RFN Narayan, R Villar, DIN Naryshkin, I Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Manh, TN Nickerson, RB Nicolaidou, R Nielsen, J Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Norjoharuddeen, N Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Nurse, E Nuti, F O'grady, F O'Neil, DC O'Rourke, AA O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okawa, H Okumura, Y Okuyama, T Olariu, A Seabra, LFO Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oreglia, MJ Oren, Y Orestano, D Orlando, N Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Rodriguez, LP Aranda, CP Pagacova, M Griso, SP Paganini, M Paige, F Pais, P Pajchel, K Palacino, G Palazzo, S Palestini, S Palka, M Pallin, D St Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, AJ Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pascuzzi, VR Pasqualucci, E Passaggio, S Pastore, F Pasztor, G Pataraia, S Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Penc, O Peng, C Peng, H Penwell, J Peralva, BS Perego, MM Perepelitsa, DV Codina, EP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrov, M Petrucci, F Pettersson, NE Peyaud, A Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pilcher, JE Pilkington, AD Pin, AWJ Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Astigarraga, MEP Pralavorio, P Pranko, A Prell, S Price, D Price, LE Primavera, M Prince, S Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Przybycien, M Puddu, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Raine, JA Rajagopalan, S Rammensee, M Rangel-Smith, C Ratti, MG Rauch, DM Rauscher, F Rave, S Ravenscroft, T Ravinovich, I Raymond, M Read, AL Readioff, NP Reale, M Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reed, RG Reeves, K Rehnisch, L Reichert, J Reiss, A Rembser, C Ren, H Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rimoldi, M Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Rizzi, C Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodina, Y Perez, AR Rodriguez, DR Roe, S Rogan, CS Rohne, O Roloff, J Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosien, NA Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Rozanov, A Rozen, Y Ruan, X Rubbo, F Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryu, S Ryzhov, A Rzehorz, GF Saavedra, AF Sabato, G Sacerdoti, S Sadrozinski, HFW Sadykov, R Tehrani, FS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, J Martinez, VS Pineda, AS Sandaker, H Sandbach, RL Sandhoff, M Sandoval, C Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sato, K Sauvan, E Savage, G Savard, P Savic, N Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schachtner, BM Schaefer, D Schaefer, L Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schier, S Schillo, C Schioppa, M Schlenker, S Schmidt-Sommerfeld, KR Schmieden, K Schmitt, C Schmitt, S Schmitz, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schott, M Schouwenberg, JFP Schovancova, J Schramm, S Schreyer, M Schuh, N Schulte, A Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwarz, TA Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciolla, G Scuri, F Scutti, F Searcy, J Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shaikh, NW Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shirabe, S Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shope, DR Shrestha, S Shulga, E Shupe, MA Sicho, P Sickles, AM Sidebo, PE Haddad, ES Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silverstein, SB Simak, V Simic, L Simion, S Simioni, E Simmons, B Simon, D Simon, M Sinervo, P Sinev, NB Sioli, M Siragusa, G Sivoklokov, SY Sjolin, J Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Slovak, R Smakhtin, V Smart, BH Smestad, L Smiesko, J Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snyder, IM Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Sanchez, CAS Solar, M Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Son, H Song, HY Sood, A Sopczak, A Sopko, V Sorin, V Sosa, D Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spannowsky, M Spano, F Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M St Denis, RD Stabile, A Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, GH Stark, J Staroba, P Starovoitov, P Starz, S Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Suchek, S Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeshita, T Takubo, Y Talby, M Talyshev, AA Tan, KG Tanaka, J Tanaka, M Tanaka, R Tanaka, S Tanioka, R Tannenwald, BB Araya, ST Tapprogge, S Tarem, S Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, AC Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PM Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, PD Thompson, AS Thomsen, LA Thomson, E Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Tong, B Tornambe, P Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Trofymov, A Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tseng, JCL Tsiareshka, PV Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsui, KM Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tu, Y Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turgeman, D Turra, R Tuts, PM Tyndel, M Ucchielli, G Ueda, I Ughetto, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usui, J Vacavant, L Vacek, V Vachon, B Valderanis, C Santurio, EV Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC van der Graaf, H van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vasquez, JG Vasquez, GA Vazeille, F Schroeder, TV Veatch, J Veeraraghavan, V Veloce, LM Veloso, F Veneziano, S Ventura, A Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigani, L Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vittori, C Vivarelli, I Vlachos, S Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wallangen, V Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, W Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Weber, SA Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, MD Werner, P Wessels, M Wetter, J Whalen, K Whallon, NL Wharton, AM White, A White, MJ White, R Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilk, F Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wingerter-Seez, I Winklmeier, F Winston, OJ Winter, BT Wittgen, M Wittkowski, J Wolf, TMH Wolter, MW Wolters, H Worm, SD Wosiek, BK Wotschack, T Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yang, Z Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zakharchuk, N Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, JC Zeng, Q Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, M Zhang, R Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zwalinski, L AF Aaboud, M. Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Abeloos, B. Aben, R. AbouZeid, O. S. Abraham, N. L. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adachi, S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Ali, B. Aliev, M. Alimonti, G. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allen, B. W. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Alshehri, A. A. Alstaty, M. Gonzalez, B. Alvarez Piqueras, D. Alvarez Alviggi, M. G. Amadio, B. T. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antel, C. Antonelli, M. Antonov, A. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Armitage, L-J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Artz, S. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Sanas, E. Banerjee, Sw. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisits, M. S. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska-Blenessy, Z. Baroncelli, A. Barone, G. Barr, A. J. Navarro, L. Barranco Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bedognetti, M. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, A. S. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Belyaev, N. L. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Benitez, J. Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Beringer, J. Berlendis, S. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertram, I. A. Bertsche, C. Bertsche, D. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethani, A. Bethke, S. Bevan, A. J. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bielski, R. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Billoud, T. R. V. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Bisanz, T. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blue, A. Blum, W. Blumenschein, U. Blunier, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Boerner, D. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bokan, P. Bold, T. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Bortfeldt, J. Bortoletto, D. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Sola, J. D. Bossio Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Broughton, J. H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruni, L. S. Brunt, Bh Bruschi, M. Bruscino, N. Bryant, P. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Budagov, I. A. Buehrer, F. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burka, K. Burke, S. Burmeister, I. Burr, J. T. P. Busato, E. Buscher, D. Buscher, V. Bussey, P. Butler, J. M. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Urban, S. Cabrera Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Callea, G. Caloba, L. P. Lopez, S. Calvente Calvet, D. Calvet, S. Calvet, T. P. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Camincher, C. Campana, S. Campanelli, M. Camplani, A. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, I. Carli, T. Carlino, G. Carminati, L. Carney, R. M. D. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Casper, D. W. Castaneda-Miranda, E. Castelijn, R. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavallaro, E. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Alberich, L. Cerda Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, S. K. Chan, Y. L. Chang, P. Chapman, J. D. Charlton, D. G. Chatterjee, A. Chau, C. C. Barajas, C. A. Chavez Che, S. Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, H. J. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chitan, A. Chizhov, M. V. Choi, K. Chomont, A. R. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocca, C. Ciocio, A. Cirotto, F. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, B. L. Clark, M. R. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Colasurdo, L. Cole, B. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cormier, K. J. R. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Crawley, S. J. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cueto, A. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Czirr, H. Czodrowski, P. D'amen, G. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dado, T. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Dann, N. S. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, M. Davison, P. Dawe, E. Dawson, I. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Maria, A. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Dehghanian, N. Deigaard, I. Del Gaudio, M. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Denysiuk, D. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Clemente, W. K. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Cornell, S. Diez Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dolejsi, J. Dolezal, Z. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Du, Y. Duarte-Campderros, J. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudder, A. Chr. Duffield, E. M. Duflot, L. Duhrssen, M. Dumancic, M. Dunford, M. Yildiz, H. Duran Duren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edwards, N. C. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellajosyula, V. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Ennis, J. S. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Ezzi, M. Fabbri, F. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farina, C. Farina, E. M. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fawcett, W. J. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Martinez, P. Fernandez Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, R. R. M. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Forcolin, G. T. Formica, A. Forti, A. Foster, A. G. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. Fressard-Batraneanu, S. M. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, L. G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Ganguly, S. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Bravo, A. Gascon Gasnikova, K. Gatti, C. Gaudiello, A. Gaudio, G. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisen, M. Geisler, M. P. Gellerstedt, K. Gemme, C. Genest, M. H. Geng, C. Gentile, S. Gentsos, C. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghneimat, M. Giacobbe, B. Giagu, S. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuli, F. Giuliani, C. Giulini, Ni. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, G. Gonella, L. Gongadze, A. de la Hoz, S. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gossling, C. Gostkin, M. I. Goudet, C. R. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstrom, P. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gravila, P. M. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Grevtsov, K. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Groh, S. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guan, W. Guenther, J. Guescini, F. Guest, D. Gueta, O. Gui, B. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, R. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Hadef, A. Hagebock, S. Hagihara, M. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Harnnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hartmann, N. M. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayakawa, D. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, J. J. Heinrich, L. Heinz, C. Hejbal, J. Helary, L. Hellman, S. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Henkelmann, S. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Herde, H. Herget, V. Jimenez, Y. Hernandez Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohn, D. Holmes, T. R. Homann, M. Honda, T. Hong, T. M. Hooberman, B. H. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howarth, J. Hoya, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, Q. Hu, S. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huo, P. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, C. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Ishijima, N. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ito, F. Ponce, J. M. Iturbe Iuppa, R. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, P. Jain, V. Jakobi, K. B. Jakobs, K. Jakobsen, S. Jakoubek, T. Jamin, D. O. S. Jana, D. K. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanneau, F. Jeanty, L. Jeng, G. -Y. Jennens, D. Jenni, P. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, H. Jiang, Y. Jiang, Z. Jiggins, S. J. Pena, J. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Jivan, H. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, S. Jones, T. J. Jongmanns, J. Jorge, P. M. Jovicevic, J. Ju, X. Rozas, A. Juste Kohler, M. K. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kaji, T. Kajomovitz, E. Kalderon, C. W. Kaluza, A. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kanjir, L. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawade, K. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khader, M. Khalil-zada, F. Khanov, A. Kharlamov, A. G. Kharlamova, T. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kilby, C. R. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koehler, N. M. Koffas, T. Koffeman, E. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Kopke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotwal, A. Koulouris, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Kowalewska, A. B. Kowalewski, R. Kowalski, T. Z. Kozakai, C. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kravchenko, A. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Kruger, H. Krumnack, N. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuechler, J. T. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. Navarro, J. L. La Rosa La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lammers, S. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lanfermann, M. C. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Lazzaroni, M. Le, B. Le Dortz, O. Le Guirriec, E. Le Quilleuc, E. P. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, B. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Lerner, G. Leroy, C. Lesage, A. A. J. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, D. Leyko, A. M. Leyton, M. Li, B. Li, C. Li, H. Li, H. L. Li, L. Li, L. Li, Q. Li, S. Li, X. Li, Y. Liang, Z. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limosani, A. Lin, S. C. Lin, T. H. Lindquist, B. E. Lionti, A. E. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. L. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. M. Loch, P. Loebinger, F. K. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Longo, L. Looper, K. A. Lopez, J. A. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Solis, A. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Losel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, H. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Luzi, P. M. Lynn, D. Lysak, R. Lytken, E. Lyubushkin, V. Ma, H. Ma, L. L. Ma, Y. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Miguens, J. Machado Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Malone, C. Maltezos, S. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, L. Mandic, I. Maneira, J. de Andrade Filho, L. Manhaes Ramos, J. Manjarres Mann, A. Manousos, A. Mansoulie, B. Mansour, J. D. Mantifel, R. Mantoani, M. Manzoni, S. Mapelli, L. Marceca, G. March, L. Marchiori, G. Marcisovsky, M. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Outschoorn, V. I. Martinez Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mattig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Maznas, I. Mazza, S. M. Mc Fadden, N. C. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McClymont, L. I. McDonald, E. F. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melini, D. Garcia, B. R. Mellado Melo, M. Meloni, R. Meng, X. Mengarelli, A. Menke, S. Meoni, E. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Theenhausen, H. Meyer Zu Miano, F. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Minegishi, Y. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Mlynarikova, M. Moa, T. Mochizuki, K. Mohapatra, S. Molander, S. Moles-Valls, R. Monden, R. Mondragon, M. C. Monig, K. Monk, J. Monnier, E. Montalbano, A. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, S. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Sanchez, F. J. Munoz Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Muskinja, M. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nagai, K. Nagai, R. Nagano, K. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naryshkin, I. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Manh, T. Nguyen Nickerson, R. B. Nicolaidou, R. Nielsen, J. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Norjoharuddeen, N. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Nurse, E. Nuti, F. O'grady, F. O'Neil, D. C. O'Rourke, A. A. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Seabra, L. F. Oleiro Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Rodriguez, L. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganini, M. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palazzo, S. Palestini, S. Palka, M. Pallin, D. St Panagiotopoulou, E. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, A. J. Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pascuzzi, V. R. Pasqualucci, E. Passaggio, S. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Penc, O. Peng, C. Peng, H. Penwell, J. Peralva, B. S. Perego, M. M. Perepelitsa, D. V. Codina, E. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrov, M. Petrucci, F. Pettersson, N. E. Peyaud, A. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Astigarraga, M. E. Pozo Pralavorio, P. Pranko, A. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Przybycien, M. Puddu, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Raine, J. A. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Ratti, M. G. Rauch, D. M. Rauscher, F. Rave, S. Ravenscroft, T. Ravinovich, I. Raymond, M. Read, A. L. Readioff, N. P. Reale, M. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reed, R. G. Reeves, K. Rehnisch, L. Reichert, J. Reiss, A. Rembser, C. Ren, H. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rimoldi, M. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Rizzi, C. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodina, Y. Perez, A. Rodriguez Rodriguez, D. Rodriguez Roe, S. Rogan, C. S. Rohne, O. Roloff, J. Romaniouk, A. Romano, M. Saez, S. M. Romano Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosien, N. -A. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rudolph, M. S. Ruhr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryu, S. Ryzhov, A. Rzehorz, G. F. Saavedra, A. F. Sabato, G. Sacerdoti, S. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Loyola, J. E. Salazar Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, J. Martinez, V. Sanchez Pineda, A. Sanchez Sandaker, H. Sandbach, R. L. Sandhoff, M. Sandoval, C. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sato, K. Sauvan, E. Savage, G. Savard, P. Savic, N. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schachtner, B. M. Schaefer, D. Schaefer, L. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schafer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schier, S. Schillo, C. Schioppa, M. Schlenker, S. Schmidt-Sommerfeld, K. R. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schott, M. Schouwenberg, J. F. P. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schulte, A. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwarz, T. A. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shaikh, N. W. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shirabe, S. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shope, D. R. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sickles, A. M. Sidebo, P. E. Haddad, E. Sideras Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simon, M. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sivoklokov, S. Yu. Sjolin, J. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Slovak, R. Smakhtin, V. Smart, B. H. Smestad, L. Smiesko, J. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snyder, I. M. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Sanchez, C. A. Solans Solar, M. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Son, H. Song, H. Y. Sood, A. Sopczak, A. Sopko, V. Sorin, V. Sosa, D. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spannowsky, M. Spano, F. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. St Denis, R. D. Stabile, A. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, G. H. Stark, J. Staroba, P. Starovoitov, P. Starz, S. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Strohmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Suchek, S. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tan, K. G. Tanaka, J. Tanaka, M. Tanaka, R. Tanaka, S. Tanioka, R. Tannenwald, B. B. Araya, S. Tapia Tapprogge, S. Tarem, S. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, A. C. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. M. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tong, B. Tornambe, P. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Trofymov, A. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tseng, J. C-L. Tsiareshka, P. V. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsui, K. M. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tu, Y. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turgeman, D. Turra, R. Tuts, P. M. Tyndel, M. Ucchielli, G. Ueda, I. Ughetto, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usui, J. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Santurio, E. Valdes Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Ferrer, J. A. Valls Van den Wollenberg, W. Van der Deijl, P. C. van der Graaf, H. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasquez, J. G. Vasquez, G. A. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veeraraghavan, V. Veloce, L. M. Veloso, F. Veneziano, S. Ventura, A. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigani, L. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vittori, C. Vivarelli, I. Vlachos, S. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wallangen, V. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, W. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Weber, S. A. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, M. D. Werner, P. Wessels, M. Wetter, J. Whalen, K. Whallon, N. L. Wharton, A. M. White, A. White, M. J. White, R. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilk, F. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winston, O. J. Winter, B. T. Wittgen, M. Wittkowski, J. Wolf, T. M. H. Wolter, M. W. Wolters, H. Worm, S. D. Wosiek, B. K. Wotschack, T. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yang, Z. Yao, W-M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zakharchuk, N. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, J. C. Zeng, Q. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, M. Zhang, R. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zwalinski, L. CA ATLAS Collaboration TI Measurement of W boson angular distributions in events with high transverse momentum jets at root s=8 TeV using the ATLAS detector SO PHYSICS LETTERS B LA English DT Article AB The W boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton-proton collisions at a centre-of-mass energy root s = 8 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb(-1). The focus is on the contributions to W + jets processes from real W emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data in terms of the absolute cross-section and the angular distributions of the muon from the leptonic W decay. (C) 2016 The Author. Published by Elsevier B.V. C1 [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Czodrowski, P.; Dassoulas, J.; Dehghanian, N.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvan, E.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvan, E.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mt Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; LeCompte, T.; Love, J.; Malon, D.; Metcalfe, J.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ryu, S.; Stanek, R. W.; van Gemmeren, P.; Wang, R.; Webster, J. S.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Jones, S.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veeraraghavan, V.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Abdallah, J.; Brandt, A.; Bullock, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Koulouris, A.; Leontsinis, S.; Maltezos, S.; St Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Andeen, T.; Ilchenko, Y.; Narayan, R.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavallaro, E.; Cavalli-Sforza, M.; Farooque, T.; Perez, S. Fernandez; Fischer, C.; Fracchia, S.; Gerbaudo, D.; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rizzi, C.; Perez, A. Rodriguez; Sorin, V.; Terzo, S.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Barcelona Inst Sci & Technol, IFAE, Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bokan, P.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin Dit; Smestad, L.; Stugu, B.; Yang, Z.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Mergelmeyer, S.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, R.; Miucci, A.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, R.; Miucci, A.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allport, P. P.; Andari, N.; Bella, L. Aperio; Baca, M. J.; Bracinik, J.; Broughton, J. H.; Casadei, D.; Charlton, D. G.; Daniells, A. C.; Foster, A. G.; Gonella, L.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Istanbul Bilgi Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Beddall, A. J.] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] INFN, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Biondi, S.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Caudron, J.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Ghneimat, M.; Grefe, C.; Hagebock, S.; Hansen, M. C.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kroseberg, J.; Kruger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Seema, P.; Stillings, J. A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.; Zhang, R.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Dhaliwal, S.; Goblirsch-Kolb, M.; Herde, H.; Loew, K. M.; Sciolla, G.; Venturini, A.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes; Peralva, B. S.] Univ Fed Juiz de Fora, Elect Circuits Dept, Juiz de Fora, Brazil. [do Vale, M. A. B.] Univ Fed Sao Joao del Rei, Sao Joao del Rei, Brazil. [Donadelli, M.; Navarro, J. L. La Rosa; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Elmsheuser, J.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, C.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lee, C. A.; Liu, H.; Lynn, D.; Ma, H.; Maeno, T.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Stucci, S. A.; Takai, H.; Tricoli, A.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. [Gravila, P. M.] West Univ Timisoara, Timisoara, Romania. [Sola, J. D. Bossio; Marceca, G.; Otero y Garzon, G.; Piegaia, R.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Brunt, Bh; Carter, J. R.; Chapman, J. D.; Cottin, G.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Kvita, J.; Lester, C. G.; Malone, C.; Mueller, T.; Parker, M. A.; Potter, C. J.; Robinson, D.; Rosten, J. H. N.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Gillberg, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Ruiz-Martinez, A.; Vincter, M. G.; Weber, S. A.] Carleton Univ, Dept Phys, Ottawa, ON, Canada. [Aleksa, M.; Gonzalez, B. Alvarez; Amoroso, S.; Anders, G.; Anghinolfi, F.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backhaus, M.; Barak, L.; Barisits, M. S.; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Bortfeldt, J.; Boveia, A.; Boyd, J.; Burckhart, H.; Camarda, S.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chisholm, A. S.; Chromek-Burckhart, D.; Conti, G.; Cortes-Gonzalez, A.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Di Nardo, R.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Faltova, J.; Farthouat, P.; Fassnacht, P.; Feng, E. J.; Francis, D.; Fressard-Batraneanu, S. M.; Froidevaux, D.; Gadatsch, S.; Goossens, L.; Gorini, B.; Gray, H. M.; Gumpert, C.; Hawkings, R. J.; Helary, L.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jakobsen, S.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Malyukov, S.; Manousos, A.; Mapelli, L.; Marzin, A.; Berlingen, J. Montejo; Morgenstern, S.; Mornacchi, G.; Nairz, A. M.; Nessi, M.; Nordberg, M.; Palestini, S.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Astigarraga, M. E. Pozo; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Sforza, F.; Sanchez, C. A. Solans; Spigo, G.; Starz, S.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Unal, G.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, T.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Bryant, P.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Gardner, R. W.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Oreglia, M. J.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Stark, G. H.; Swiatlowski, M.; Vukotic, I.; Wu, M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Blunier, S.; Diaz, M. A.; Ochoa-Ricoux, J. P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Lopez, J. A.; Pezoa, R.; Prokoshin, F.; Loyola, J. E. Salazar; Araya, S. Tapia; Vasquez, G. A.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; da Costa, J. Barreiro Guimaraes; Cheng, H. J.; Fang, Y.; Jin, S.; Kvita, J.; Li, Q.; Liang, Z.; Merino, J. Llorente; Lou, X.; Mansour, J. D.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Chen, S.; Wang, C.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Ganguly, S.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Ganguly, S.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Univ Blaise Pascal, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Ganguly, S.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Angerami, A.; Brooijmans, G.; Carbone, R. M.; Clark, M. R.; Cole, B.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Callea, G.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Grp Collegato Cosenza, Frascati, Italy. [Cairo, V. M.; Callea, G.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Gach, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Sanas, E.; de Renstrom, P. A. Bruckman; Burka, K.; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Kowalewska, A. B.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Gupta, R.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] Southern Methodist Univ, Dept Phys, Dallas, TX USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Cornell, S. Diez; Dutta, B.; Dyndal, M.; Eckardt, C.; Ferrando, J.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Gasnikova, K.; Glazov, A.; Gregor, I. M.; Haleem, M.; Harnnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E. M.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Monig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Queitsch-Maitland, M.; Rauch, D. M.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Hamburg, Germany. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Cornell, S. Diez; Dutta, B.; Dyndal, M.; Eckardt, C.; Ferrando, J.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Gasnikova, K.; Glazov, A.; Gregor, I. M.; Haleem, M.; Harnnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E. M.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Monig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Queitsch-Maitland, M.; Rauch, D. M.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Zeuthen, Germany. [Burmeister, I.; Cinca, D.; Dette, K.; Erdmann, J.; Esch, H.; Gossling, C.; Homann, M.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Lehrstuhl Expt Phys 4, Dortmund, Germany. [Duschinger, D.; Friedrich, F.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Siegert, F.; Socher, F.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mijovic, L.; Mills, C.; Pino, S. A. Olivares; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] INFN, Lab Nazl Frascati, Frascati, Italy. [Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buscher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Glatzer, J.; Gonella, G.; Herten, G.; Hirose, M.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koneke, K.; Kopp, A. K.; Kuehn, S.; Kvita, J.; Landgraf, U.; Luedtke, C.; Nagel, M.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruhr, F.; Rurikova, Z.; Sammel, D.; Schillo, C.; Schnoor, U.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tornambe, P.; Tsiskaridze, V.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Albert Ludwigs Univ, Fak Math & Phys, Freiburg, Germany. [Ancu, L. S.; De Mendizabal, J. Bilbao; Calace, N.; Chatterjee, A.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Khoo, T. J.; Lanfermann, M. C.; Lionti, A. E.; March, L.; Mermod, P.; Nackenhorst, O.; Paolozzi, L.; Ristic, B.; Schramm, S.; Sfyrla, A.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Miglioranzi, S.; Morettini, P.; Oide, H.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Miglioranzi, S.; Oide, H.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Duren, M.; Heinz, C.; Kreutzfeldt, K.; Stenzel, H.] Justus Liebig Univ Giessen, Inst Phys 2, Giessen, Germany. [Alshehri, A. A.; Bates, R. L.; Blue, A.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Crawley, S. J.; D'Auria, S.; Doyle, A. T.; Gul, U.; Knue, A.; Mullen, P.; O'Shea, V.; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bindi, M.; Bisanz, T.; Blumenschein, U.; Brandt, G.; De Maria, A.; Drechsler, E.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Quadt, A.; Rieger, J.; Rosien, N. -A.; Rzehorz, G. F.; Shabalina, E.; Stolte, P.; Veatch, J.; Weingarten, J.; Zinonos, Z.] Georg August Univ, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Berlendis, S.; Bethani, A.; Camincher, C.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Gradin, P. O. J.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Petit, E.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [Chan, S. K.; Clark, B. L.; Franklin, M.; Giromini, P.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Morii, M.; Rogan, C. S.; Roloff, J.; Skottowe, H. P.; Sun, S.; Tolley, E.; Tong, B.; Tuna, A. N.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Barnovska-Blenessy, Z.; Gao, J.; Geng, C.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Li, C.; Liu, J. B.; Liu, M.; Liu, Y. L.; Liu, Y.; Peng, H.; Song, H. Y.; Wang, W.; Zhang, G.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Andrei, V.; Antel, C.; Baas, A. E.; Brandt, O.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Theenhausen, H. Meyer Zu; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Suchek, S.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; de Lima, D. E. Ferreira; Giulini, Ni.; Kolb, M.; Lisovyi, M.; Schaetzel, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsui, K. M.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.; Orlando, N.; Salvucci, A.; Tu, Y.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Inst Adv Study, Kowloon, Hong Kong, Peoples R China. [Calfayan, P.; Choi, K.; Evans, H.; Gagnon, P.; Kopeliansky, R.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Guenther, J.; Iwanski, W.; Jansky, R.; Kneringer, E.; Lukas, W.; Milic, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Argyropoulos, S.; Benitez, J.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Jiang, H.; Krumnack, N.; Pluth, D.; Prell, S.; Werner, M. D.; Yu, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gongadze, A.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kruchonak, U.; Kukhtin, V.; Kvita, J.; Ladygin, E.; Lyubushkin, V.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Soloshenko, A.; Turchikhin, S.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Research JINR, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Honda, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kondo, T.; Kono, T.; Makida, Y.; Nagai, R.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Usui, J.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Tanioka, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan. [Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Shirabe, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka, Japan. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Hoya, J.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Hoya, J.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Bertram, I. A.; Borissov, G.; Bouhova-Thacker, E. V.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Muenstermann, D.; Parker, A. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Aliev, M.; Bachas, K.; Chiodini, G.; Gorini, E.; Longo, L.; Primavera, M.; Reale, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Aliev, M.; Bachas, K.; Gorini, E.; Longo, L.; Reale, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool, Merseyside, England. [Cindro, V.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Armitage, L-J.; Bevan, A. J.; Bona, M.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lewis, D.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Giannelli, M. Faucci; Gadomski, S.; George, S.; Gibson, S. M.; Kempster, J. J.; Kilby, C. R.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bell, A. S.; Butterworth, J. M.; Campanelli, M.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Grout, Z. J.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jiggins, S. J.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Leney, K. J. C.; Martyniuk, A. C.; McClymont, L. I.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fys Inst, Lund, Sweden. [Barreiro, F.; Lopez, S. Calvente; Cueto, A.; Del Peso, J.; Glasman, C.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Artz, S.; Becker, M.; Bertella, C.; Blum, W.; Buscher, V.; Cuth, J.; Dudder, A. Chr.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Geisen, M.; Groh, S.; Heck, T.; Jakobi, K. B.; Kaluza, A.; Karnevskiy, M.; Kleinknecht, K.; Kopke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Pleskot, V.; Rave, S.; Reiss, A.; Schaeffer, J.; Schafer, U.; Schmitt, C.; Schmitz, S.; Schott, M.; Schuh, N.; Schulte, A.; Simioni, E.; Simon, M.; Tapprogge, S.; Urrejola, P.; Webb, S.; Yildirim, E.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Barnes, S. L.; Bielski, R.; Cox, B. E.; Da Via, C.; Dann, N. S.; Forcolin, G. T.; Forti, A.; Ponce, J. M. Iturbe; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Sanchez, F. J. Munoz; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Raine, J. A.; Schweiger, H.; Shaw, S. M.; Tomlinson, L.; Watts, S.; Wilk, F.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Moyse, E. J. W.; Pais, P.; Pettersson, N. E.; Picazio, A.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Lefebvre, B.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Goldfarb, S.; Jennens, D.; Kubota, T.; Le, B.; McDonald, E. F.; Milesi, M.; Nuti, F.; Rados, P.; Scutti, F.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Taylor, P. T. E.; Ungaro, F. C.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Guan, L.; Levin, D.; Liu, H.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Meng, X.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Arabidze, G.; Brock, R.; Chegwidden, A.; De la Torre, H.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Kvita, J.; Martin, B.; Mondragon, M. C.; Plucinski, P.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Camplani, A.; Carminati, L.; Cavalli, D.; Citterio, M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaroni, M.; Mandelli, L.; Manzoni, S.; Mazza, S. M.; Meroni, C.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] INFN, Sez Milano, Milan, Italy. [Andreazza, A.; Camplani, A.; Carminati, L.; Fanti, M.; Lazzaroni, M.; Manzoni, S.; Mazza, S. M.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Shojaii, S.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Andreazza, A.; Camplani, A.; Carminati, L.; Fanti, M.; Lazzaroni, M.; Manzoni, S.; Mazza, S. M.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Shojaii, S.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Arguin, J-F.; Azuelos, G.; Billoud, T. R. V.; Dallaire, F.; Ducu, O. A.; Gagnon, L. G.; Gauthier, L.; Leroy, C.; Mochizuki, K.; Manh, T. Nguyen; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Belyaev, N. L.; Bulekov, O.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Bender, M.; Biebel, O.; Bock, C.; Chow, B. K. B.; Duckeck, G.; Hartmann, N. M.; Heinrich, J. J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Losel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Rauscher, F.; Ruschke, A.; Schachtner, B. M.; Schaile, D.; Unverdorben, C.; Valderanis, C.; Walker, R.; Wittkowski, J.] Ludwig Maximilians Univ Munchen, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Koehler, N. M.; Kortner, O.; Kortner, S.; Kroha, H.; La Rosa, A.; Macchiolo, A.; Maier, A. A.; McCarthy, T. G.; Menke, S.; Mueller, F.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Savic, N.; Schacht, P.; Schmidt-Sommerfeld, K. R.; Spettel, F.; Stonjek, S.; von der Schmitt, H.; Wildauer, A.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Kawade, K.; Nakahama, Y.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi, Japan. [Horii, Y.; Kawade, K.; Nakahama, Y.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Pineda, A. Sanchez; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Di Donato, C.; Merola, L.; Perrella, S.; Rossi, E.; Pineda, A. Sanchez] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Mc Fadden, N. C.; Seidel, S. C.; Taylor, A. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Konig, A. C.; Nektarijevic, S.; Schouwenberg, J. F. P.; Strubig, A.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Graaf, H.; van Vulpen, I.; van Woerden, M. C.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.; Wolf, T. M. H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Graaf, H.; van Vulpen, I.; van Woerden, M. C.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.; Wolf, T. M. H.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Brost, E.; Burghgrave, B.; Chakraborty, D.; Klimek, P.; Saha, P.] Northern Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Kharlamova, T.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] RAS, SB, Budker Inst Nucl Phys, Novosibirsk, Russia. [Becot, C.; Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Beacham, J. B.; Che, S.; Gan, K. K.; Gui, B.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama, Japan. [Abbott, B.; Alhroob, M.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Severini, H.; Shope, D. R.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Cantero, J.; Haley, J.; Jamin, D. O. S.; Khanov, A.; Rizatdinova, F.; Sidorov, D.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Abreu, R.; Allen, B. W.; Brau, J. E.; Dattagupta, A.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Radloff, P.; Sinev, N. B.; Snyder, I. M.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abeloos, B.; Ayoub, M. K.; Bassalat, A.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Goudet, C. R.; Grivaz, J. -F.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Maiani, C.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.] Univ Paris Saclay, Univ Paris Sud, LAL, CNRS,IN2P3, Orsay, France. [Ishijima, N.; Nomachi, M.; Rousseau, D.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, M. K.; Cameron, D.; Catmore, J. R.; Feigl, S.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Serfon, C.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Artoni, G.; Backes, M.; Barr, A. J.; Becker, K.; Beresford, L.; Bortoletto, D.; Burr, J. T. P.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Fawcett, W. J.; Frost, J. A.; Gallas, E. J.; Giuli, F.; Gupta, S.; Gwenlan, C.; Hays, C. P.; Henderson, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Nagai, K.; Nickerson, R. B.; Norjoharuddeen, N.; Petrov, M.; Pickering, M. A.; Radescu, V.; Tseng, J. C-L.; Viehhauser, G. H. A.; Vigani, L.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Dondero, P.; Farina, E. M.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Kourkoumeli-Charalampidi, A.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Dondero, P.; Farina, E. M.; Fraternali, M.; Introzzi, G.; Kourkoumeli-Charalampidi, A.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, Pavia, Italy. [Balunas, W. K.; Brendlinger, K.; Di Clemente, W. K.; Fletcher, R. R. M.; Haney, B.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Mistry, K. P.; Reichert, J.; Schaefer, L.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Naryshkin, I.; Ryabov, Y. F.; Schegelsky, V. A.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Farina, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Araque, J. P.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Maio, A.; Maneira, J.; Seabra, L. F. Oleiro; Onofre, A.; Pedro, R.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Pedro, R.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Caparica, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Ali, B.; Augsten, K.; Caforio, D.; Gallus, P.; Hubacek, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Sopczak, A.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Berta, P.; Carli, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Kosek, T.; Leitner, R.; Mlynarikova, M.; Reznicek, P.; Scheirich, D.; Slovak, R.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Ryzhov, A.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] NRC KI, State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.; Worm, S. D.] Rutherford Appleton Lab, Particle Phys Dept, Didcot, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; De Pedis, D.; De Salvo, A.; Falciano, S.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Messina, A.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Vanadia, M.; Verducci, M.; Zanello, L.] Sapienza Univ Roma, Dipartimento Fis, Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cerrito, L.; Di Ciaccio, A.; Liberti, B.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cerrito, L.; Di Ciaccio, A.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Ceradini, F.; Di Micco, B.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Res Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA, Fac Sci Semlalia, Marrakech, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Ezzi, M.; Fassi, F.; Haddad, N.; Idrissi, Z.; Tayalati, Y.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Denysiuk, D.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Jeanneau, F.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Kvita, J.; Lancon, E.; Laporte, J. F.; Le Quilleuc, E. P.; Lesage, A. A. J.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Rodriguez, L. Pacheco; Perego, M. M.; Peyaud, A.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay, DSM IRFU, Gif Sur Yvette, France. [AbouZeid, O. S.; Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Hance, M.; Kuhl, A.; Law, A. T.; Litke, A. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schier, S.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Alpigiani, C.; Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Johnson, W. J.; Lubatti, H. J.; Meehan, S.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.; Whallon, N. L.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Du, Y.; Feng, C.; Ma, L. L.; Ma, Y.; Wang, C.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Bret, M. Cano; Guo, J.; Hu, S.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai 200030, Peoples R China. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Campoverde, A.; Czirr, H.; Fleck, I.; Ghasemi, S.; Ibragimov, I.; Li, Y.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada. [Armbruster, A. J.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Jiang, Z.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Su, D.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Dado, T.; Melo, M.; Plazak, L.; Smiesko, J.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice, Slovakia. [Castaneda-Miranda, E.; Hamilton, A.; Yacoob, S.] Univ Cape Town, Dept Phys, Cape Town, South Africa. Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Jimenez, Y. Hernandez; Hsu, C.; Jivan, H.; Kar, D.; Garcia, B. R. Mellado; Reed, R. G.; Ruan, X.; Haddad, E. Sideras] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Carney, R. M. D.; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Carney, R. M. D.; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Oskar Klein Ctr, Stockholm, Sweden. [Kastanas, A.; Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Abraham, N. L.; Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Lerner, G.; Miano, F.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.; Winston, O. J.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW, Australia. [Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. M.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Gabizon, O.; Gozani, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Duarte-Campderros, J.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel. [Gentsos, C.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Maznas, I.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Adachi, S.; Asai, S.; Chen, S.; Enari, Y.; Hanawa, K.; Ishino, M.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kishimoto, T.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Minegishi, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Okumura, Y.; Saito, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Adachi, S.; Asai, S.; Chen, S.; Enari, Y.; Hanawa, K.; Ishino, M.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kishimoto, T.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Minegishi, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Okumura, Y.; Saito, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo, Japan. [Hayakawa, D.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Tanaka, M.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo, Japan. [Vaniachine, A.] Tomsk State Univ, Tomsk, Russia. [Batista, S. J.; Chau, C. C.; Cormier, K. J. R.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Keoshkerian, H.; Krieger, P.; Kvita, J.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Pascuzzi, V. R.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Iuppa, R.] Ist Nazl Fis Nucl, TIFPA, Trento, Italy. [Iuppa, R.] Univ Trento, Trento, Italy. [Canepa, A.; Chekulaev, S. V.; Hod, N.; Jovicevic, J.; Codina, E. Perez; Schneider, B.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC, Canada. [Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON, Canada. [Hagihara, M.; Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Hagihara, M.; Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Sliwa, K.; Son, H.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Casper, D. W.; Colombo, T.; Frate, M.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Ntekas, K.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Boldyrev, A. S.; Cheatham, S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] INFN, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Boldyrev, A. S.; Cheatham, S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, Udine, Italy. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Maddocks, H. J.; Ohman, H.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Atkinson, M.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Hooberman, B. H.; Khader, M.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Outschoorn, V. I. Martinez; Neubauer, M. S.; Rybar, M.; Shang, R.; Sickles, A. M.; Vichou, I.; Zeng, J. C.; Zhang, M.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, IMB, CNM, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; McPherson, R. A.; Pearce, J.; Seuster, R.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Ennis, J. S.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry, W Midlands, England. [Iizawa, T.; Kaji, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Balek, P.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Dumancic, M.; Gross, E.; Kohler, M. K.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Ravinovich, I.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.; Turgeman, D.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Banerjee, Sw.; Guan, W.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Ming, Y.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zhou, C.; Zobernig, G.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Herget, V.; Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Strohmer, R.; Trefzger, T.; Weber, S. W.; Zibell, A.] Julius Maximilians Univ, Fak Phys & Astron, Wurzburg, Germany. [Bannoura, A. A. E.; Boerner, D.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Flick, T.; Gilles, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kersten, S.; Kuechler, J. T.; Kvita, J.; Mattig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Vogel, M.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachgrp Phys, Fak Math & Nat Wissensch, Wuppertal, Germany. [Baker, O. K.; Noccioli, E. Benhar; Cummings, J.; Demers, S.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Paganini, M.; Hernandez, D. Paredes; Thomsen, L. A.; Tipton, P.; Vasquez, J. G.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk, Russia. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC, Canada. [Banerjee, Sw.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Bassalat, A.] An Najah Natl Univ, Dept Phys, Nablus, Palestine. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, Fribourg, Switzerland. [Casado, M. P.] Univ Autonoma Barcelona, Dept Fis, Barcelona, Spain. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] IPP, Toronto, ON, Canada. [Ducu, O. A.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Geng, C.; Guo, Y.; Li, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Govender, N.] Rosebank, Ctr High Performance Comp, CSIR Campus, Cape Town, South Africa. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Barcelona, Spain. [Hanagaki, K.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu, Taiwan. [Igonkina, O.] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Nikhef, Nijmegen, Netherlands. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jenni, P.] CERN, Geneva, Switzerland. [Khubua, J.] GTU, Tbilisi, Rep of Georgia. [Kono, T.; Nagai, R.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Lin, S. C.] Acad Sinica, Acad Sinica Grid Comp, Inst Phys, Taipei, Taiwan. [Liu, B.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Moss, J.] Calif State Univ Sacramento, Dept Phys, Sacramento, CA 95819 USA. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pasztor, G.] Eotvos Lorand Univ, Budapest, Hungary. [Piacquadio, G.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Piacquadio, G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Pinamonti, M.] SISSA, Trieste, Italy. [Purohit, M.] Univ South Carolina, Dept Phys & Astron, Columbia, SC USA. [Rodina, Y.] Barcelona Inst Sci & Technol, IFAE, Barcelona, Spain. [Shi, L.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Shiyakova, M.] Bulgarian Acad Sci, INRNE, Sofia, Bulgaria. [Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Song, H. Y.; Zhang, G.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Spannowsky, M.] Univ Durham, IPPP, Durham, England. [Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vest, A.] Flensburg Univ Appl Sci, Flensburg, Germany. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur, Malaysia. [Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France. [Zhang, R.] CNRS, IN2P3, Marseille, France. PKU CHEP, Beijing, Peoples R China. RP Aaboud, M (reprint author), Univ Mohamed Premier, Fac Sci, Oujda, Morocco.; Aaboud, M (reprint author), LPTPM, Oujda, Morocco. RI Gladilin, Leonid/B-5226-2011; Prokoshin, Fedor/E-2795-2012 OI Gladilin, Leonid/0000-0001-9422-8636; Prokoshin, Fedor/0000-0001-6389-5399 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, China; UGC, China; Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC ICI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Knut and Alice Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Cantons of Bern, Switzerland; Cantons of Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States; NSF, United States; BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; FP7, European Union; Horizon, European Union; Marie Sklodowska-Curie Actions, European Union; Investissement d'Avenir Labex, France; Investissement d'Avenir Idex, France; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos programm - EU-ESF; Thales programm - EU-ESF; Aristeia programm - EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; Generalitat Valenciana, Spain; Generalitat de Catalunya; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, UGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC ICI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Knut and Alice Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. NR 61 TC 0 Z9 0 U1 9 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 10 PY 2017 VL 765 BP 132 EP 153 DI 10.1016/j.physletb.2016.12.005 PG 22 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EK0PB UT WOS:000393627800017 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Asilar, E Bergauer, T Brandstetter, J Brondolin, E Dragicevic, M Ero, J Flechl, M Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Konig, A Kratschmer, I Liko, D Matsushita, T Mikulec, I Rabady, D Rad, N Rahbaran, B Rohringer, H Schieck, J Strauss, J Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S De Wolf, EA Janssen, X Lauwers, J De Klundert, MV Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Abu Zeid, S Blekman, F D'Hondt, J Daci, N De Bruyn, I Deroover, K Heracleous, N Lowette, S Moortgat, S Moreels, L Olbrechts, A Python, Q Tavernier, S Van Doninck, W Van Mulders, P Van Parijs, I Brun, H Caillol, C Clerbaux, B De Lentdecker, G Delannoy, H Fasanella, G Favart, L Goldouzian, R Grebenyuk, A Karapostoli, G Lenzi, T Leonard, A Luetic, J Maerschalk, T Marinov, A Randle-Conde, A Seva, T Velde, CV Vanlaer, P Yonamine, R Zenoni, F Zhang, F Cimmino, A Cornelis, T Dobur, D Fagot, A Garcia, G Gul, M Poyraz, D Salva, S Schofbeck, R Sharma, A Tytgat, M Van Driessche, W Yazgan, E Zaganidis, N Bakhshiansohi, H Beluffi, C Bondu, O Brochet, S Bruno, G Caudron, A De Visscher, S Delaere, C Delcourt, M Francois, B Giammanco, A Jafari, A Jez, P Komm, M Lemaitre, V Magitteri, A Mertens, A Musich, M Nuttens, C Piotrzkowski, K Quertenmont, L Selvaggi, M Marono, MV Wertz, S Beliy, N Alda, WL Alves, FL Alves, GA Brito, L Hensel, C Moraes, A Pol, ME Teles, PR Chagas, EBD Carvalho, W Chinellato, J Custodio, A Da Costa, EM Da Silveira, GG Damiao, DD Martins, CD De Souza, SF Guativa, LMH Malbouisson, H Figueiredo, DM Herrera, CM Mundim, L Nogima, H Da Silva, WLP Santoro, A Sznajder, A Manganote, EJ Pereira, AV Ahuja, S Bernardes, CA Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Moon, CS Novaes, SF Padula, SS Abad, DR Vargas, JCR Aleksandrov, A Hadjiiska, R Iaydjiev, P Rodozov, M Stoykova, S Sultanov, G Vutova, M Dimitrov, A Glushkov, I Litov, L Pavlov, B Petkov, P Fang, W Ahmad, M Bian, JG Chen, GM Chen, HS Chen, M Chen, Y Cheng, T Jiang, CH Leggat, D Liu, Z Romeo, F Shaheen, SM Spiezia, A Tao, J Wang, C Wang, Z Zhang, H Zhao, J Ban, Y Chen, G Li, Q Liu, S Mao, Y Qian, SJ Wang, D Xu, Z Avila, C Cabrera, A Sierra, LFC Florez, C Gomez, JP Hernaandez, CF Alvarez, JDR Sanabria, JC Godinovic, N Lelas, D Puljak, I Cipriano, PMR Sculac, T Antunovic, Z Kovac, M Brigljevic, V Ferencek, D Kadija, K Micanovic, S Sudic, L Susa, T Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, E Razis, PA Rykaczewski, H Finger, M Finger, M Jarrin, EC Abdelalim, AA El-Khateeb, E Salama, E Calpas, B Kadastik, M Murumaa, M Perrini, L Raidal, M Tiko, A Veelken, C Eerola, P Pekkanen, J Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Ghosh, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Kucher, I Locci, E Machet, M Malcles, J Rander, J Rosowsky, A Titov, M Zghiche, A Abdulsalam, A Antropov, I Baffioni, S Beaudette, F Busson, P Cadamuro, L Chapon, E Charlot, C Davignon, O de Cassagnac, RG Jo, M Lisniak, S Mine, P Nguyen, M Ochando, C Ortona, G Paganini, P Pigard, P Regnard, S Salerno, R Sirois, Y Strebler, T Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Buttignol, M Chabert, EC Chanon, N Collard, C Conte, E Coubez, X Fontaine, JC Gele, D Goerlach, U Le Bihan, AC Skovpen, K Van Hove, P Gadrat, S Beauceron, S Bernet, C Boudoul, G Bouvier, E Montoya, CAC Chierici, R Contardo, D Courbon, B Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Grenier, G Ille, B Lagarde, F Laktineh, IB Lethuillier, M Mirabito, L Pequegnot, AL Perries, S Popov, A Sabes, D Sordini, V Donckt, MV Verdier, P Viret, S Toriashvili, T Tsamalaidze, Z Autermann, C Beranek, S Feld, L Heister, A Kiesel, MK Klein, K Lipinski, M Ostapchuk, A Preuten, M Raupach, F Schael, S Schomakers, C Schulte, JF Schulz, J Verlage, T Weber, H Zhukov, V Albert, A Brodski, M Dietz-Laursonn, E Duchardt, D Endres, M Erdmann, M Erdweg, S Esch, T Fischer, R Guth, A Hamer, M Hebbeker, T Heidemann, C Hoepfner, K Knutzen, S Merschmeyer, M Meyer, A Millet, P Mukherjee, S Olschewski, M Padeken, K Pook, T Radziej, M Reithler, H Rieger, M Scheuch, E Sonnenschein, L Teyssier, D Thuer, S Cherepanov, V Flugge, G Ahmad, WH Hoehle, F Kargoll, B Kress, T Kunsken, A Lingemann, J Muller, T Nehrkorn, A Nowack, A Nugent, IM Pistone, C Pooth, O Stahl, A Martin, MA Asawatangtrakuldee, C Beernaert, K Behnke, O Behrens, U Bin Anuar, AA Borras, K Campbell, A Connor, P Contreras-Campana, C Costanza, F Pardos, CD Dolinska, G Eckerlin, G Eckstein, D Eren, E Gallo, E Garcia, JG Geiser, A Gizhko, A Luyando, JMG Gunnellini, P Harb, A Hauk, J Hempe, M Jung, H Kalogeropoulos, A Karacheban, O Kasemann, M Keaveney, J Kleinwort, C Korol, I Krucker, D Lange, W Lelek, A Leonard, J Lipka, K Lobanov, A Lohmann, W Mankel, R Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Ntomari, E Pitzl, D Raspereza, A Roland, B Sahin, MO Saxena, P Schoerner-Sadenius, T Seitz, C Spannagel, S Stefaniuk, N Van Onsem, GP Walsh, R Wissing, C Blobel, V Vignali, MC Draeger, AR Dreyer, T Garutti, E Gonzalez, D Haller, J Hoffmann, M Junkes, A Klanner, R Kogler, R Kovalchuk, N Lapsien, T Lenz, T Marchesini, I Marconi, D Meyer, M Niedziela, M Nowatschin, D Pantaleo, F Peiffer, T Perieanu, A Poehlsen, J Sander, C Scharf, C Schleper, P Schmidt, A Schumann, S Schwandt, J Stadie, H Steinbruck, G Stober, FM Stover, M Tholen, H Troendle, D Usai, E Vanelderen, L Vanhoefer, A Vormwald, B Barth, C Baus, C Berger, J Butz, E Chwalek, T Colombo, F De Boer, W Dierlamm, A Fink, S Friese, R Giffels, M Gilbert, A Goldenzweig, P Haitz, D Hartmann, F Heindl, SM Husemann, U Katkov, I Pardo, PL Maier, B Mildner, H Mozer, MU Muller, T Plagge, M Quast, G Rabbertz, K Rocker, S Roscher, F Schroder, M Shvetsov, I Sieber, G Simonis, HJ Ulrich, R Wagner-Kuhr, J Wayand, S Weber, M Weiler, T Williamson, S Wohrmann, C Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Topsis-Giotis, I Kesisoglou, S Panagiotou, A Saoulidou, N Tziaferi, E Evangelou, I Flouris, G Foudas, C Kokkas, P Loukas, N Manthos, N Papadopoulos, I Paradas, E Filipovic, N Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Makovec, A Molnar, J Szillasi, Z Bartok, M Raics, P Trocsanyi, ZL Ujvari, B Bahinipati, S Choudhury, S Mal, P Mandal, K Nayak, A Sahoo, DK Sahoo, N Swain, SK Bansal, S Beri, SB Bhatnagar, V Chawla, R Bhawandeep, U Kalsi, AK Kaur, A Kaur, M Kumar, R Mehta, A Mittal, M Singh, JB Walia, G Kumar, A Bhardwaj, A Choudhary, BC Garg, RB Keshri, S Malhotra, S Naimuddin, M Nishu, N Ranjan, K Sharma, R Sharma, V Bhattacharya, R Bhattacharya, S Chatterjee, K Dey, S Dutt, S Dutta, S Ghosh, S Majumdar, N Modak, A Mondal, K Mukhopadhyay, S Nandan, S Purohit, A Roy, A Roy, D Chowdhury, SR Sarkar, S Sharan, M Thakur, S Behera, PK Behera, PK Chudasama, R Dutta, D Kumar, VJV Mohanty, AK Netrakanti, PK Pant, LM Shukla, P Topkar, A Aziz, T Dugad, S Kole, G Mahakud, B Mitra, S Mohanty, GB Parida, B Sur, N Sutar, B Banerjee, S Bhowmik, S Dewanjee, RK Ganguly, S Guchait, M Jain, S Kumar, S Maity, M Majumder, G Mazumdar, K Sarkar, T Wickramage, N Chauhan, S Dube, S Hegde, V Kapoor, A Kothekar, K Rane, A Sharma, S Behnamian, H Chenarani, S Tadavani, EE Etesami, SM Fahim, A Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Calabria, C Caputo, C Colaleo, A Colaleo, A Creanza, D Cristella, L De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Miniello, G My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Ranieri, A Selvaggi, G Siivestris, L Venditti, R Verwilligen, P Abbiendi, G Battilana, C Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Chhibra, SS Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Rossi, AM Rovelli, T Siroli, GP Tosi, N Albergo, S Chiorboli, M Costa, S Di Mattia, A Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Viliani, L Benussi, L Bianco, S Fabbri, E Piccolo, D Primavera, E Calvelli, V Ferro, E Lo Vetere, M Monge, MR Robutti, E Tosi, S Brianza, L Dinardo, ME Fiorendi, S Gennai, S Ghezzi, A Govoni, P Malberti, M Malvezzi, S Manzoni, RA Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Pigazzini, S Ragazzi, S de Fatis, TT Buontempo, S Cavallo, N De Nardo, G Di Guida, S Esposito, M Fabozzi, F Iorio, AOM Lanza, G Lista, L Meola, S Paolucci, P Sciacca, C Thyssen, F Azzi, P Bacchetta, N Benato, L Bisello, D Boletti, A Carlin, R De Oliveira, ACA Checchia, P Dall'Osso, M Manzano, PD Dorigo, T Dosselli, U Gasparini, F Gasparini, U Gozzelino, A Lacaprara, S Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Zanetti, M Zotto, P Zucchetta, A Zumerle, G Braghieri, A Magnani, A Montagna, P Ratti, SP Re, V Riccardi, C Salvini, P Vai, I Vitulo, P Solestizi, LA Bilei, GM Ciangottini, D Fano, L Lariccia, P Leonardi, R Mantovani, G Menichelli, M Saha, A Santocchia, A Androsov, K Azzurri, P Bagliesi, G Bemardini, J Boccali, T Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fedi, G Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Savoy-Navarro, A Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Cipriani, M D'imperio, G Del Re, D Diemoz, M Gelli, S Longo, E Margaroli, F Meridiani, P Organtini, G Paramatti, R Preiato, F Rahatlou, S Rovelli, C Santanastasio, F Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bartosik, N Bellan, R Biino, C Cartiglia, N Cenna, F Costa, M Covarelli, R Degano, A Demaria, N Finco, L Kiani, B Mariotti, C Maselli, S Migliore, E Monaco, V Monteil, E Obertino, MM Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Ravera, F Romero, A Ruspa, M Sacchi, R Shchelina, K Sola, V Solano, A Staiano, A Traczyk, P Belforte, S Casarsa, M Cossutti, F Della Ricca, G La Licata, C Schizzi, A Zanetti, A Kim, DH Kim, GN Kim, MS Lee, S Lee, SW Oh, YD Sekmen, S Son, DC Yang, YC Lee, A Kim, H Cifuentes, JAB Kim, TJ Cho, S Choi, S Go, Y Gyun, D Ha, S Hong, B Jo, Y Kim, Y Lee, B Lee, K Lee, KS Lee, S Lim, J Park, SK Roh, Y Almond, J Kim, J Lee, H Oh, SB Radburn-Smith, BC Seo, SH Yang, UK Yoo, HD Yu, GB Choi, M Kim, H Kim, JH Lee, JSH Park, IC Ryu, G Ryu, MS Choi, Y Goh, J Hwang, C Lee, J Yu, I Dudenas, V Juodagalvis, A Vaitkus, J Ahmed, I Ibrahim, ZA Komaragiri, JR Ali, MABM Idris, FM Abdullah, WATW Yusli, MN Zolkapli, Z -Valdez, HC De la Cruz-Burelo, E la Cruz, IHD Hernandez-Almada, A Lopez-Fernandez, R Villalba, RM Guisao, JM Sanchez-Hernandez, A Moreno, SC Barrera, CO Valencia, FV Carpinteyro, S Pedraza, I Ibarguen, HAS Estrada, CU Pineda, AM Krofcheck, D Butler, PH Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khan, WA Shah, MA Shoaib, M Waqas, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Bunkowski, K Byszuk, A Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Walczak, M Bargassa, P Silva, CBDE Di Francesco, A Faccioli, P Parracho, PGF Gallinaro, M Hollar, J Leonardo, N Iglesias, LL Nemallapudi, MV Antunes, JR Seixas, J Toldaiev, O Vadruccio, D Varela, J Vischia, P Afanasiev, S Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Laney, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Shulha, S Skatchkov, N Smirnov, V Voytishin, N Zarubin, A Chtchipounov, L Golovtsov, V Ivanov, Y Kim, V Kuznetsova, E Murzin, V Oreshkin, V Sulimov, V Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Karneyeu, A Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Pozdnyakov, I Safronov, G Spiridonov, A Toms, M Vlasov, E Zhokin, A Bylinkin, A Chadeeva, M Chistov, R Rusinov, V Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Rusakov, SV Terkulov, A Baskakov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Miagkov, I Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Blinov, V Skovpen, Y Azhgirey, I Bayshev, I Bitioukov, S Elumakhov, D Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Cirkovic, P Devetak, D Dordevic, M Milosevic, J Rekovic, V Maestre, JA Luna, MB Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Penis, AD Del Valle, AE Bedoya, C Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS de Troconiz, JF Missiroli, M Moran, D Cuevas, J Menendez, JF Caballero, I Fernandez, JRG Cortezon, EP Cruz, S Andres, IS Garcia, JMV Cabrillo, IJ Calderon, A De Saa, JRC Curras, E Fernandez, M Garcia-Ferrero, J Gomez, G Virto, AL Marco, J Rivero, CM Matorras, F Gomez, JP Rodrigo, T Ruiz-Jimeno, A Scodellaro, L Trevisani, N Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Bloch, P Bocci, A Bonato, A Botta, C Camporesi, T Castello, R Cepeda, M Cerminara, G D'Alfonso, M d'Enterria, D Dabrowski, A Daponte, V David, A De Gruttola, M De Roeck, A Di Marco, E Dobson, M Dorney, B du Pree, T Duggan, D Dunser, M Dupont, N Elliott-Peisert, A Fartoukh, S Franzoni, G Fulcher, J Funk, W Gigi, D Gill, K Girone, M Glege, F Gulhan, D Gundacker, S Guthoff, M Hammer, J Harris, P Hegeman, J Innocente, V Janot, P Kieseler, J Kirschenmann, H Knunz, V Kornmayer, A Kortelainen, MJ Kousouris, K Krammer, M Lange, C Lecoq, P Lourenco, C Lucchini, MT Malgeri, L Mannelli, M Martelli, A Meijers, F Merlin, JA Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Neugebauer, H Orfanelli, S Orsini, L Pape, L Perez, E Peruzzi, M Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Racz, A Reis, T Rolandi, G Rovere, M Ruan, M Sakulin, H Sauvan, JB Schafer, C Schwick, C Seidel, M Sharma, A Silva, P Sphicas, P Steggemann, J Stoye, M Takahashi, Y Tosi, M Treille, D Triossi, A Tsirou, A Veckalns, V Veres, GI Wardle, N Zagozdzinska, A Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Rohe, T Bachmair, F Bani, L Bianchini, L Casal, B Dissertori, G Dittmar, M Donega, M Grab, C Heidegger, C Hits, D Hoss, J Kasieczka, G Lecomte, P Lustermann, W Mangano, B Marionneau, M del Arbol, PMR Masciovecchio, M Meinhard, MT Meister, D Micheli, F Musella, P Nessi-Tedaldi, F Pandolfi, F Pata, J Pauss, F Perrin, G Perrozzi, L Quittnat, M Rossini, M Schonenberger, M Starodumov, A Tavolaro, VR Theofilatos, K Wallny, R Aarrestad, TK Amsler, C Caminada, L Canelli, MF De Cosa, A Galloni, C Hinzmann, A Hreus, T Kilminster, B Ngadiuba, J Pinna, D Rauco, G Robmann, P Salerno, D Yang, Y Candelise, V Doan, TH Jain, S Khurana, R Konyushikhin, M Kuo, CM Lin, W Lu, YJ Pozdnyakov, A Yu, SS Kumar, A Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Fiori, F Hou, WS Hsiung, Y Liu, YF Lu, RS Moya, MM Paganis, E Psallidas, A Tsai, JF Tzeng, YM Asavapibhop, B Singh, G Srimanobhas, N Suwonjandee, N Cerci, S Damarseckin, S Demiroglu, ZS Dozen, C Dumanoglu, I Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Kara, O Topaksu, AK Kiminsu, U Oglakci, M Onengut, G Ozdemir, K Cerci, DS Tali, B Turkcapar, S Zorbakir, IS Zorbilmez, C Bilin, B Bilmis, S Isildak, B Karapinar, G Yalvac, M Zeyrek, M Gulmez, E Kaya, M Kaya, O Yetkin, EA Yetkin, T Cakir, A Cankocak, K Sen, S Grynyov, B Levchuk, L Sorokin, P Aggleton, R Ball, F Beck, L Brooke, JJ Burns, D Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Newbold, DM Paramesvaran, S Poll, A Sakuma, T El Nasr-Storey, SS Smith, D Smith, VJ Barducci, D Belyaev, A Brew, C Brown, RM Calligaris, L Cieri, D Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Williams, T Baber, M Bainbridge, R Buchmuller, O Bundock, A Burton, D Casasso, S Citron, M Colling, D Corpe, L Dauncey, P Davies, G De Wit, A Della Negra, M Di Maria, R Dunne, P Elwood, A Futyan, D Haddad, Y Hall, G Iles, G James, T Lane, R Laner, C Lucas, R Lyons, L Magnan, AM Malik, S Mastrolorenzo, L Nash, J Nikitenko, A Pela, J Penning, B Pesaresi, M Raymond, DM Richards, A Rose, A Seez, C Summers, S Tapper, A Uchida, K Acosta, MV Virdee, T Wright, J Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Reid, ID Symonds, P Teodorescu, L Turner, M Borzou, A Call, K Dittmann, J Hatakeyama, K Liu, H Pastika, N Charaf, O Cooper, SI Henderson, C Rumerio, P West, C Arcaro, D Avetisyan, A Bose, T Gastler, D Rankin, D Richardson, C Rohlf, J Sulak, L Zou, D Benelli, G Berry, E Cutts, D Garabedian, A Hakala, J Heintz, U Hogan, JM Jesus, O Laird, E Landsberg, G Mao, Z Narain, M Piperov, S Sagir, S Spencer, E Syarif, R Breedon, R Breto, G Burns, D Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Flores, C Funk, G Gardner, M Ko, W Lander, R Mclean, C Mulhearn, M Pellett, D Pilot, J Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Florent, A Hauser, J Ignatenko, M Saltzberg, D Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Jandir, P Kennedy, E Lacroix, F Long, OR Negrete, MO Paneva, MI Shrinivas, A Si, W Wei, H Wimpenny, S Yates, BR Branson, JG Cerati, GB Cittolin, S Derdzinski, M Gerosa, R Holzner, A Klein, D Krutelyov, V Letts, J Macneill, I Olivito, D Padhi, S Pieri, M Sani, M Sharma, V Simon, S Tadel, M Vartak, A Wasserbaech, S Welke, C Wood, J Wurthwein, F Yagil, A Della Porta, GZ Bhandari, R Bradmiller-Feld, J Campagnari, C Dishaw, A Dutta, V Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Gran, J Heller, R Incandela, J Mccoll, N Mullin, SD Ovcharova, A Richman, J Stuart, D Suarez, I Yoo, J Anderson, D Apresyan, A Bendavid, J Bornheim, A Bunn, J Chen, Y Duarte, J Lawhorn, JM Mott, A Newman, HB Pena, C Spiropulu, M Vlimant, JR Xie, S Zhu, RY Andrews, MB Azzolini, V Ferguson, T Paulini, M Russ, J Sun, M Vogel, H Vorobiev, I Cumalat, JP Ford, WT Jensen, F Johnson, A Krohn, M Mulholland, T Stenson, K Wagner, SR Alexander, J Chaves, J Chu, J Dittmer, S Mcdermott, K Mirman, N Kaufman, GN Patterson, JR Rinkevicius, A Ryd, A Skinnari, L Soffi, L Tan, SM Tao, Z Thom, J Tucker, J Wittich, P Zientek, M Winn, D Abdullin, S Albrow, M Apollinari, G Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Cremonesi, M Elvira, VD Fisk, I Freeman, J Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hare, D Harris, RM Hasegawa, S Hirschauer, J Hu, Z Jayatilaka, B Jindariani, S Johnson, M Joshi, U Klima, B Kreis, B Lammel, S Linacre, J Lincoln, D Lipton, R Liu, T De Sa, RL Lykken, J Maeshima, K Magini, N Marraffino, JM Maruyama, S Mason, D McBride, P Merkel, P Mrenna, S Nahn, S Newman-Holmes, C O'Dell, V Pedro, K Prokofyev, O Rakness, G Ristori, L Sexton-Kennedy, E Soha, A Spalding, WJ Spiegel, L Stoynev, S Strobbe, N Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vernieri, C Verzocchi, M Vidal, R Wang, M Weber, HA Whitbeck, A Acosta, D Avery, P Bortignon, P Bourilkov, D Brinkerhoff, A Carnes, A Carver, M Curry, D Das, S Field, RD Furic, IK Konigsberg, J Korytov, A Ma, P Matchev, K Mei, H Milenovic, P Mitselmakher, G Rank, D Shchutska, L Sperka, D Thomas, L Wang, J Wang, S Yelton, J Linn, S Markowitz, P Martinez, G Rodriguez, JL Ackert, A Adams, JR Adams, T Askew, A Bein, S Diamond, B Hagopian, S Hagopian, V Johnson, KF Khatiwada, A Prosper, H Santra, A Weinberg, M Baarmand, MM Bhopatkar, V Colafranceschi, S Hohlmann, M Noonan, D Roy, T Yumiceva, F Adams, MR Apanasevich, L Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Kurt, P O'Brien, C Gonzalez, IDS Turner, P Varelas, N Wang, H Wu, Z Zakaria, M Zhang, J Bilki, B Clarida, W Dilsiz, K Durgut, S Gandrajula, RP Haytmyradov, M Khristenko, V Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Snyder, C Tiras, E Wetzel, J Yi, K Anderson, I Blumenfeld, B Cocoros, A Eminizer, N Fehling, D Feng, L Gritsan, AV Maksimovic, P Osherson, M Roskes, J Sarica, U Swartz, M Xiao, M Xin, Y You, C Al-Bataineh, A Baringer, P Bean, A Boren, S Bowen, J Bruner, C Castle, J Forthomme, L Kenny, RP Kropivnitskaya, A Majumder, D Mcbrayer, W Murray, M Sanders, S Stringer, R Takaki, JDT Wang, Q Ivanov, A Kaadze, K Khalil, S Maravin, Y Mohammadi, A Saini, LK Skhirtladze, N Toda, S Rebassoo, F Wright, D Anelli, C Baden, A Baron, O Belloni, A Calvert, B Eno, SC Ferraioli, C Gomez, JA Hadley, NJ Jabeen, S Kellogg, RG Kolberg, T Kunkle, J Lu, Y Mignerey, AC Ricci-Tam, F Shin, YH Skuja, A Tonjes, MB Tonwar, SC Abercrombie, D Allen, B Apyan, A Barbieri, R Baty, A Bi, R Bierwagen, K Brandt, S Busza, W Cali, IA Demiragli, Z Di Matteo, L Ceballos, GG Goncharov, M Hsu, D Iiyama, Y Innocenti, GM Klute, M Kovalskyi, D Krajczar, K Lai, YS Lee, YJ Levin, A Luckey, PD Marini, AC Mcginn, C Mironov, C Narayanan, S Niu, X Paus, C Roland, C Roland, G Salfeld-Nebgen, J Stephans, GSF Sumorok, K Tatar, K Varma, M Velicanu, D Veverka, J Wang, J Wang, TW Wyslouch, B Yang, M Zhukova, V Benvenuti, AC Chatterjee, RM Evans, A Finkel, A Gude, A Hansen, P Kalafut, S Kao, SC Kubota, Y Lesko, Z Mans, J Nourbakhsh, S Ruckstuhl, N Rusack, R Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bartek, R Bloom, K Claes, DR Dominguez, A Fangmeier, C Suarez, RG Kamalieddin, R Kravchenko, I Rodrigues, AM Meier, F Monroy, J Siado, JE Snow, GR Stieger, B Alyari, M Dolen, J George, J Godshalk, A Harrington, C Iashvili, I Kaisen, J Kharchilava, A Kumar, A Parker, A Rappoccio, S Roozbahani, B Alverson, G Barberis, E Baumgartel, D Hortiangtham, A Massironi, A Morse, DM Nash, D Orimoto, T De Lima, RT Trocino, D Wang, RJ Wood, D Bhattacharya, S Hahn, KA Kubik, A Kumar, A Low, JF Mucia, N Odell, N Pollack, B Schmitt, MH Sung, K Trovato, M Velasco, M Dev, N Hildreth, M Anampa, KH Jessop, C Karmgard, DJ Kellams, N Lannon, K Marinelli, N Meng, F Mueller, C Musienko, Y Planer, M Reinsvold, A Ruchti, R Smith, G Taroni, S Wayne, M Wolf, M Woodard, A Alimena, J Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Francis, B Hart, A Hill, C Hughes, R Ji, W Liu, B Luo, W Puigh, D Winer, BL Wulsin, HW Cooperstein, S Driga, O Elmer, P Hardenbrook, J Hebda, P Lange, D Luo, J Marlow, D Medvedeva, T Mei, K Mooney, M Olsen, J Palmer, C Piroue, P Stickland, D Tully, C Zuranski, A Malik, S Barker, A Barnes, VE Folgueras, S Gutay, L Jha, MK Jones, M Jung, AW Jung, K Miller, DH Neumeister, N Shi, X Sun, J Svyatkovskiy, A Wang, F Xie, W Xu, L Parashar, N Stupak, J Adair, A Akgun, B Chen, Z Ecklund, KM Geurts, FJM Guilbaud, M Li, W Michlin, B Northup, M Padley, BP Redjimi, R Roberts, J Rorie, J Tu, Z Zabel, J Betchart, B Bodek, A de Barbaro, P Demina, R Duh, YT Ferbel, T Galanti, M Garcia-Bellido, A Han, J Hindrichs, O Khukhunaishvili, A Lo, KH Tan, P Verzetti, M Agapitos, A Chou, JP Contreras-Campana, E Gershtein, Y Espinosa, TAG Halkiadakis, E Heindl, M Hidas, D Hughes, E Kaplan, S Elayavalli, RK Kyriacou, S Lath, A Nash, K Saka, H Salur, S Schnetzer, S Sheffield, D Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Foerster, M Heideman, J Riley, G Rose, K Spanier, S Thapa, K Bouhali, O Celik, A Dalchenko, M De Mattia, M Delgado, A Dildick, S Eusebi, R Gilmore, J Huang, T Juska, E Kamon, T Mueller, R Pakhotin, Y Patel, R Perloff, A Pernie, L Rathjens, D Rose, A Safonov, A Tatarinov, A Ulmer, KA Akchurin, N Cowden, C Damgov, J De Guio, F Dragoiu, C Dudero, PR Faulkner, J Kunori, S Lamichhane, K Lee, SW Libeiro, T Peltola, T Undleeb, S Volobouev, I Wang, Z Delannoy, AG Greene, S Gurrola, A Janjam, R Johns, W Maguire, C Melo, A Ni, H Sheldon, P Tuo, S Velkovska, J Xu, Q Arenton, MW Barria, P Cox, B Goodell, J Hirosky, R Ledovskoy, A Li, H Neu, C Sinthuprasith, T Sun, X Wang, Y Wolfe, E Xia, F Clarke, C Harr, R Karchin, PE Lamichhane, P Sturdy, J Belknap, DA Dasu, S Dodd, L Duric, S Gomber, B Grothe, M Herndon, M Herve, A Klabbers, P Lanaro, A Levine, A Long, K Loveless, R Ojalvo, I Perry, T Polese, G Ruggles, T Savin, A Smith, N Smith, WH Taylor, D Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Asilar, E. Bergauer, T. Brandstetter, J. Brondolin, E. Dragicevic, M. Eroe, J. Flechl, M. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Koenig, A. Kraetschmer, I. Liko, D. Matsushita, T. Mikulec, I. Rabady, D. Rad, N. Rahbaran, B. Rohringer, H. Schieck, J. Strauss, J. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. De Wolf, E. A. Janssen, X. Lauwers, J. De Klundert, M. Van Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Abu Zeid, S. Blekman, F. D'Hondt, J. Daci, N. De Bruyn, I. Deroover, K. Heracleous, N. Lowette, S. Moortgat, S. Moreels, L. Olbrechts, A. Python, Q. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Parijs, I. Brun, H. Caillol, C. Clerbaux, B. De Lentdecker, G. Delannoy, H. Fasanella, G. Favart, L. Goldouzian, R. Grebenyuk, A. Karapostoli, G. Lenzi, T. Leonard, A. Luetic, J. Maerschalk, T. Marinov, A. Randle-conde, A. Seva, T. Velde, C. Vander Vanlaer, P. Yonamine, R. Zenoni, F. Zhang, F. Cimmino, A. Cornelis, T. Dobur, D. Fagot, A. Garcia, G. Gul, M. Poyraz, D. Salva, S. Schofbeck, R. Sharma, A. Tytgat, M. Van Driessche, W. Yazgan, E. Zaganidis, N. Bakhshiansohi, H. Beluffi, C. Bondu, O. Brochet, S. Bruno, G. Caudron, A. De Visscher, S. Delaere, C. Delcourt, M. Francois, B. Giammanco, A. Jafari, A. Jez, P. Komm, M. Lemaitre, V. Magitteri, A. Mertens, A. Musich, M. Nuttens, C. Piotrzkowski, K. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Wertz, S. Beliy, N. Alda Junior, W. L. Alves, F. L. Alves, G. A. Brito, L. Hensel, C. Moraes, A. Pol, M. E. Rebell Teles, P. Belchior Batista Das Chagas, E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. Da Silveira, G. G. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Huertas Guativa, L. M. Malbouisson, H. Matos Figueiredo, D. Mora Herrera, C. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Ahuja, S. Bernardes, C. A. Dogra, S. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Moon, C. S. Novaes, S. F. Padula, Sandra S. Romero Abad, D. Ruiz Vargas, J. C. Aleksandrov, A. Hadjiiska, R. Iaydjiev, P. Rodozov, M. Stoykova, S. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Litov, L. Pavlov, B. Petkov, P. Fang, W. Ahmad, M. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Chen, Y. Cheng, T. Jiang, C. H. Leggat, D. Liu, Z. Romeo, F. Shaheen, S. M. Spiezia, A. Tao, J. Wang, C. Wang, Z. Zhang, H. Zhao, J. Ban, Y. Chen, G. Li, Q. Liu, S. Mao, Y. Qian, S. J. Wang, D. Xu, Z. Avila, C. Cabrera, A. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gonzalez Hernandez, C. F. Ruiz Alvarez, J. D. Sanabria, J. C. Godinovic, N. Lelas, D. Puljak, I. Cipriano, P. M. Ribeiro Sculac, T. Antunovic, Z. Kovac, M. Brigljevic, V. Ferencek, D. Kadija, K. Micanovic, S. Sudic, L. Susa, T. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, E. Razis, P. A. Rykaczewski, H. Finger, M. Finger, M., Jr. Jarrin, E. Carrera Abdelalim, A. A. El-khateeb, E. Salama, E. Calpas, B. Kadastik, M. Murumaa, M. Perrini, L. Raidal, M. Tiko, A. Veelken, C. Eerola, P. Pekkanen, J. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Ghosh, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Kucher, I. Locci, E. Machet, M. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Zghiche, A. Abdulsalam, A. Antropov, I. Baffioni, S. Beaudette, F. Busson, P. Cadamuro, L. Chapon, E. Charlot, C. Davignon, O. de Cassagnac, R. Granier Jo, M. Lisniak, S. Mine, P. Nguyen, M. Ochando, C. Ortona, G. Paganini, P. Pigard, P. Regnard, S. Salerno, R. Sirois, Y. Strebler, T. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Buttignol, M. Chabert, E. C. Chanon, N. Collard, C. Conte, E. Coubez, X. Fontaine, J. -C. Gele, D. Goerlach, U. Le Bihan, A. -C. Skovpen, K. Van Hove, P. Gadrat, S. Beauceron, S. Bernet, C. Boudoul, G. Bouvier, E. Montoya, C. A. Carrillo Chierici, R. Contardo, D. Courbon, B. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Grenier, G. Ille, B. Lagarde, F. Laktineh, I. B. Lethuillier, M. Mirabito, L. Pequegnot, A. L. Perries, S. Popov, A. Sabes, D. Sordini, V. Donckt, M. Vander Verdier, P. Viret, S. Toriashvili, T. Tsamalaidze, Z. Autermann, C. Beranek, S. Feld, L. Heister, A. Kiesel, M. K. Klein, K. Lipinski, M. Ostapchuk, A. Preuten, M. Raupach, F. Schael, S. Schomakers, C. Schulte, J. F. Schulz, J. Verlage, T. Weber, H. Zhukov, V. Albert, A. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Endres, M. Erdmann, M. Erdweg, S. Esch, T. Fischer, R. Gueth, A. Hamer, M. Hebbeker, T. Heidemann, C. Hoepfner, K. Knutzen, S. Merschmeyer, M. Meyer, A. Millet, P. Mukherjee, S. Olschewski, M. Padeken, K. Pook, T. Radziej, M. Reithler, H. Rieger, M. Scheuch, E. Sonnenschein, L. Teyssier, D. Thueer, S. Cherepanov, V. Fluegge, G. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuensken, A. Lingemann, J. Mueller, T. Nehrkorn, A. Nowack, A. Nugent, I. M. Pistone, C. Pooth, O. Stahl, A. Martin, M. Aldaya Asawatangtrakuldee, C. Beernaert, K. Behnke, O. Behrens, U. Bin Anuar, A. A. Borras, K. Campbell, A. Connor, P. Contreras-Campana, C. Costanza, F. Pardos, C. Diez Dolinska, G. Eckerlin, G. Eckstein, D. Eren, E. Gallo, E. Garcia, J. Garay Geiser, A. Gizhko, A. Luyando, J. M. Grados Gunnellini, P. Harb, A. Hauk, J. Hempe, M. Jung, H. Kalogeropoulos, A. Karacheban, O. Kasemann, M. Keaveney, J. Kleinwort, C. Korol, I. Kruecker, D. Lange, W. Lelek, A. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Mankel, R. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Ntomari, E. Pitzl, D. Raspereza, A. Roland, B. Sahin, M. Oe Saxena, P. Schoerner-Sadenius, T. Seitz, C. Spannagel, S. Stefaniuk, N. Van Onsem, G. P. Walsh, R. Wissing, C. Blobel, V. Vignali, M. Centis Draeger, A. R. Dreyer, T. Garutti, E. Gonzalez, D. Haller, J. Hoffmann, M. Junkes, A. Klanner, R. Kogler, R. Kovalchuk, N. Lapsien, T. Lenz, T. Marchesini, I. Marconi, D. Meyer, M. Niedziela, M. Nowatschin, D. Pantaleo, F. Peiffer, T. Perieanu, A. Poehlsen, J. Sander, C. Scharf, C. Schleper, P. Schmidt, A. Schumann, S. Schwandt, J. Stadie, H. Steinbrueck, G. Stober, F. M. Stoever, M. Tholen, H. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Vormwald, B. Barth, C. Baus, C. Berger, J. Butz, E. Chwalek, T. Colombo, F. De Boer, W. Dierlamm, A. Fink, S. Friese, R. Giffels, M. Gilbert, A. Goldenzweig, P. Haitz, D. Hartmann, F. Heindl, S. M. Husemann, U. Katkov, I. Pardo, P. Lobelle Maier, B. Mildner, H. Mozer, M. U. Mueller, Th. Plagge, M. Quast, G. Rabbertz, K. Roecker, S. Roscher, F. Schroeder, M. Shvetsov, I. Sieber, G. Simonis, H. J. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weber, M. Weiler, T. Williamson, S. Woehrmann, C. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Topsis-Giotis, I. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Tziaferi, E. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Loukas, N. Manthos, N. Papadopoulos, I. Paradas, E. Filipovic, N. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Makovec, A. Molnar, J. Szillasi, Z. Bartok, M. Raics, P. Trocsanyi, Z. L. Ujvari, B. Bahinipati, S. Choudhury, S. Mal, P. Mandal, K. Nayak, A. Sahoo, D. K. Sahoo, N. Swain, S. K. Bansal, S. Beri, S. B. Bhatnagar, V. Chawla, R. Bhawandeep, U. Kalsi, A. K. Kaur, A. Kaur, M. Kumar, R. Mehta, A. Mittal, M. Singh, J. B. Walia, G. Kumar, Ashok Bhardwaj, A. Choudhary, B. C. Garg, R. B. Keshri, S. Malhotra, S. Naimuddin, M. Nishu, N. Ranjan, K. Sharma, R. Sharma, V. Bhattacharya, R. Bhattacharya, S. Chatterjee, K. Dey, S. Dutt, S. Dutta, S. Ghosh, S. Majumdar, N. Modak, A. Mondal, K. Mukhopadhyay, S. Nandan, S. Purohit, A. Roy, A. Roy, D. Chowdhury, S. Roy Sarkar, S. Sharan, M. Thakur, S. Behera, P. K. Behera, P. K. Chudasama, R. Dutta, D. Kumar, V. Jha V. Mohanty, A. K. Netrakanti, P. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Dugad, S. Kole, G. Mahakud, B. Mitra, S. Mohanty, G. B. Parida, B. Sur, N. Sutar, B. Banerjee, S. Bhowmik, S. Dewanjee, R. K. Ganguly, S. Guchait, M. Jain, Sa. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Sarkar, T. Wickramage, N. Chauhan, S. Dube, S. Hegde, V. Kapoor, A. Kothekar, K. Rane, A. Sharma, S. Behnamian, H. Chenarani, S. Tadavani, E. Eskandari Etesami, S. M. Fahim, A. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Calabria, C. Caputo, C. Colaleo, A. Colaleo, A. Creanza, D. Cristella, L. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Miniello, G. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Ranieri, A. Selvaggi, G. Siivestris, L. Venditti, R. Verwilligen, P. Abbiendi, G. Battilana, C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Chhibra, S. S. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Albergo, S. Chiorboli, M. Costa, S. Di Mattia, A. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Viliani, L. Benussi, L. Bianco, S. Fabbri, E. Piccolo, D. Primavera, E. Calvelli, V. Ferro, E. Lo Vetere, M. Monge, M. R. Robutti, E. Tosi, S. Brianza, L. Dinardo, M. E. Fiorendi, S. Gennai, S. Ghezzi, A. Govoni, P. Malberti, M. Malvezzi, S. Manzoni, R. A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Pigazzini, S. Ragazzi, S. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. De Nardo, G. Di Guida, S. Esposito, M. Fabozzi, F. Iorio, A. O. M. Lanza, G. Lista, L. Meola, S. Paolucci, P. Sciacca, C. Thyssen, F. Azzi, P. Bacchetta, N. Benato, L. Bisello, D. Boletti, A. Carlin, R. De Oliveira, A. Carvalho Antunes Checchia, P. Dall'Osso, M. Manzano, P. De Castro Dorigo, T. Dosselli, U. Gasparini, F. Gasparini, U. Gozzelino, A. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Zanetti, M. Zotto, P. Zucchetta, A. Zumerle, G. Braghieri, A. Magnani, A. Montagna, P. Ratti, S. P. Re, V. Riccardi, C. Salvini, P. Vai, I. Vitulo, P. Solestizi, L. Alunni Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Leonardi, R. Mantovani, G. Menichelli, M. Saha, A. Santocchia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bemardini, J. Boccali, T. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fedi, G. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Savoy-Navarro, A. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Cipriani, M. D'imperio, G. Del Re, D. Diemoz, M. Gelli, S. Longo, E. Margaroli, F. Meridiani, P. Organtini, G. Paramatti, R. Preiato, F. Rahatlou, S. Rovelli, C. Santanastasio, F. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bartosik, N. Bellan, R. Biino, C. Cartiglia, N. Cenna, F. Costa, M. Covarelli, R. Degano, A. Demaria, N. Finco, L. Kiani, B. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Monteil, E. Obertino, M. M. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Ravera, F. Romero, A. Ruspa, M. Sacchi, R. Shchelina, K. Sola, V. Solano, A. Staiano, A. Traczyk, P. Belforte, S. Casarsa, M. Cossutti, F. Della Ricca, G. La Licata, C. Schizzi, A. Zanetti, A. Kim, D. H. Kim, G. N. Kim, M. S. Lee, S. Lee, S. W. Oh, Y. D. Sekmen, S. Son, D. C. Yang, Y. C. Lee, A. Kim, H. Cifuentes, J. A. Brochero Kim, T. J. Cho, S. Choi, S. Go, Y. Gyun, D. Ha, S. Hong, B. Jo, Y. Kim, Y. Lee, B. Lee, K. Lee, K. S. Lee, S. Lim, J. Park, S. K. Roh, Y. Almond, J. Kim, J. Lee, H. Oh, S. B. Radburn-Smith, B. C. Seo, S. H. Yang, U. K. Yoo, H. D. Yu, G. B. Choi, M. Kim, H. Kim, J. H. Lee, J. S. H. Park, I. C. Ryu, G. Ryu, M. S. Choi, Y. Goh, J. Hwang, C. Lee, J. Yu, I. Dudenas, V. Juodagalvis, A. Vaitkus, J. Ahmed, I. Ibrahim, Z. A. Komaragiri, J. R. Ali, M. A. B. Md Idris, F. Mohamad Abdullah, W. A. T. Wan. Yusli, M. N. Zolkapli, Z. Castilla-Valdez, H. De la Cruz-Burelo, E. Heredia-De La Cruz, I. Hernandez-Almada, A. Lopez-Fernandez, R. Villalba, R. Magana Guisao, J. Mejia Sanchez-Hernandez, A. Moreno, S. Carrillo Barrera, C. Oropeza Valencia, F. Vazquez Carpinteyro, S. Pedraza, I. Ibarguen, H. A. Salazar Estrada, C. Uribe Pineda, A. Morelos Krofcheck, D. Butler, P. H. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khan, W. A. Shah, M. A. Shoaib, M. Waqas, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Bunkowski, K. Byszuk, A. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Walczak, M. Bargassa, P. Beira Da Cruz E Silva, C. Di Francesco, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Hollar, J. Leonardo, N. Lloret Iglesias, L. Nemallapudi, M. V. Rodrigues Antunes, J. Seixas, J. Toldaiev, O. Vadruccio, D. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Laney, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Shulha, S. Skatchkov, N. Smirnov, V. Voytishin, N. Zarubin, A. Chtchipounov, L. Golovtsov, V. Ivanov, Y. Kim, V. Kuznetsova, E. Murzin, V. Oreshkin, V. Sulimov, V. Vorobyev, A. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Karneyeu, A. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Pozdnyakov, I. Safronov, G. Spiridonov, A. Toms, M. Vlasov, E. Zhokin, A. Bylinkin, A. Chadeeva, M. Chistov, R. Rusinov, V. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Rusakov, S. V. Terkulov, A. Baskakov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Miagkov, I. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Blinov, V. Skovpen, Y. Azhgirey, I. Bayshev, I. Bitioukov, S. Elumakhov, D. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Cirkovic, P. Devetak, D. Dordevic, M. Milosevic, J. Rekovic, V. Alcaraz Maestre, J. Barrio Luna, M. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Penis, A. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. de Troconiz, J. F. Missiroli, M. Moran, D. Cuevas, J. Fernandez Menendez, J. Gonzalez Caballero, I. Gonzalez Fernandez, J. R. Palencia Cortezon, E. Sanchez Cruz, S. Suarez Andres, I. Vizan Garcia, J. M. Cabrillo, I. J. Calderon, A. Castineiras De Saa, J. R. Curras, E. Fernandez, M. Garcia-Ferrero, J. Gomez, G. Lopez Virto, A. Marco, J. Martinez Rivero, C. Matorras, F. Piedra Gomez, J. Rodrigo, T. Ruiz-Jimeno, A. Scodellaro, L. Trevisani, N. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Bloch, P. Bocci, A. Bonato, A. Botta, C. Camporesi, T. Castello, R. Cepeda, M. Cerminara, G. D'Alfonso, M. d'Enterria, D. Dabrowski, A. Daponte, V. David, A. De Gruttola, M. De Roeck, A. Di Marco, E. Dobson, M. Dorney, B. du Pree, T. Duggan, D. Dunser, M. Dupont, N. Elliott-Peisert, A. Fartoukh, S. Franzoni, G. Fulcher, J. Funk, W. Gigi, D. Gill, K. Girone, M. Glege, F. Gulhan, D. Gundacker, S. Guthoff, M. Hammer, J. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kieseler, J. Kirschenmann, H. Knunz, V. Kornmayer, A. Kortelainen, M. J. Kousouris, K. Krammer, M. Lange, C. Lecoq, P. Lourenco, C. Lucchini, M. T. Malgeri, L. Mannelli, M. Martelli, A. Meijers, F. Merlin, J. A. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Neugebauer, H. Orfanelli, S. Orsini, L. Pape, L. Perez, E. Peruzzi, M. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Racz, A. Reis, T. Rolandi, G. Rovere, M. Ruan, M. Sakulin, H. Sauvan, J. B. Schafer, C. Schwick, C. Seidel, M. Sharma, A. Silva, P. Sphicas, P. Steggemann, J. Stoye, M. Takahashi, Y. Tosi, M. Treille, D. Triossi, A. Tsirou, A. Veckalns, V. Veres, G. I. Wardle, N. Zagozdzinska, A. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Rohe, T. Bachmair, F. Bani, L. Bianchini, L. Casal, B. Dissertori, G. Dittmar, M. Donega, M. Grab, C. Heidegger, C. Hits, D. Hoss, J. Kasieczka, G. Lecomte, P. Lustermann, W. Mangano, B. Marionneau, M. del Arbol, P. Martinez Ruiz Masciovecchio, M. Meinhard, M. T. Meister, D. Micheli, F. Musella, P. Nessi-Tedaldi, F. Pandolfi, F. Pata, J. Pauss, F. Perrin, G. Perrozzi, L. Quittnat, M. Rossini, M. Schonenberger, M. Starodumov, A. Tavolaro, V. R. Theofilatos, K. Wallny, R. Aarrestad, T. K. Amsler, C. Caminada, L. Canelli, M. F. De Cosa, A. Galloni, C. Hinzmann, A. Hreus, T. Kilminster, B. Ngadiuba, J. Pinna, D. Rauco, G. Robmann, P. Salerno, D. Yang, Y. Candelise, V. Doan, T. H. Jain, Sh. Khurana, R. Konyushikhin, M. Kuo, C. M. Lin, W. Lu, Y. J. Pozdnyakov, A. Yu, S. S. Kumar, Arun Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Fiori, F. Hou, W. -S. Hsiung, Y. Liu, Y. F. Lu, R. -S. Moya, M. Minano Paganis, E. Psallidas, A. Tsai, J. F. Tzeng, Y. M. Asavapibhop, B. Singh, G. Srimanobhas, N. Suwonjandee, N. Cerci, S. Damarseckin, S. Demiroglu, Z. S. Dozen, C. Dumanoglu, I. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Kara, O. Topaksu, A. Kayis Kiminsu, U. Oglakci, M. Onengut, G. Ozdemir, K. Cerci, D. Sunar Tali, B. Turkcapar, S. Zorbakir, I. S. Zorbilmez, C. Bilin, B. Bilmis, S. Isildak, B. Karapinar, G. Yalvac, M. Zeyrek, M. Gulmez, E. Kaya, M. Kaya, O. Yetkin, E. A. Yetkin, T. Cakir, A. Cankocak, K. Sen, S. Grynyov, B. Levchuk, L. Sorokin, P. Aggleton, R. Ball, F. Beck, L. Brooke, J. J. Burns, D. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Newbold, D. M. Paramesvaran, S. Poll, A. Sakuma, T. El Nasr-Storey, S. Seif Smith, D. Smith, V. J. Barducci, D. Belyaev, A. Brew, C. Brown, R. M. Calligaris, L. Cieri, D. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Williams, T. Baber, M. Bainbridge, R. Buchmuller, O. Bundock, A. Burton, D. Casasso, S. Citron, M. Colling, D. Corpe, L. Dauncey, P. Davies, G. De Wit, A. Della Negra, M. Di Maria, R. Dunne, P. Elwood, A. Futyan, D. Haddad, Y. Hall, G. Iles, G. James, T. Lane, R. Laner, C. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Mastrolorenzo, L. Nash, J. Nikitenko, A. Pela, J. Penning, B. Pesaresi, M. Raymond, D. M. Richards, A. Rose, A. Seez, C. Summers, S. Tapper, A. Uchida, K. Acosta, M. Vazquez Virdee, T. Wright, J. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Borzou, A. Call, K. Dittmann, J. Hatakeyama, K. Liu, H. Pastika, N. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. West, C. Arcaro, D. Avetisyan, A. Bose, T. Gastler, D. Rankin, D. Richardson, C. Rohlf, J. Sulak, L. Zou, D. Benelli, G. Berry, E. Cutts, D. Garabedian, A. Hakala, J. Heintz, U. Hogan, J. M. Jesus, O. Laird, E. Landsberg, G. Mao, Z. Narain, M. Piperov, S. Sagir, S. Spencer, E. Syarif, R. Breedon, R. Breto, G. Burns, D. Sanchez, M. Calderon De la Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Flores, C. Funk, G. Gardner, M. Ko, W. Lander, R. Mclean, C. Mulhearn, M. Pellett, D. Pilot, J. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Florent, A. Hauser, J. Ignatenko, M. Saltzberg, D. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Negrete, M. Olmedo Paneva, M. I. Shrinivas, A. Si, W. Wei, H. Wimpenny, S. Yates, B. R. Branson, J. G. Cerati, G. B. Cittolin, S. Derdzinski, M. Gerosa, R. Holzner, A. Klein, D. Krutelyov, V. Letts, J. Macneill, I. Olivito, D. Padhi, S. Pieri, M. Sani, M. Sharma, V. Simon, S. Tadel, M. Vartak, A. Wasserbaech, S. Welke, C. Wood, J. Wurthwein, F. Yagil, A. Della Porta, G. Zevi Bhandari, R. Bradmiller-Feld, J. Campagnari, C. Dishaw, A. Dutta, V. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Gran, J. Heller, R. Incandela, J. Mccoll, N. Mullin, S. D. Ovcharova, A. Richman, J. Stuart, D. Suarez, I. Yoo, J. Anderson, D. Apresyan, A. Bendavid, J. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Lawhorn, J. M. Mott, A. Newman, H. B. Pena, C. Spiropulu, M. Vlimant, J. R. Xie, S. Zhu, R. Y. Andrews, M. B. Azzolini, V. Ferguson, T. Paulini, M. Russ, J. Sun, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Jensen, F. Johnson, A. Krohn, M. Mulholland, T. Stenson, K. Wagner, S. R. Alexander, J. Chaves, J. Chu, J. Dittmer, S. Mcdermott, K. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Rinkevicius, A. Ryd, A. Skinnari, L. Soffi, L. Tan, S. M. Tao, Z. Thom, J. Tucker, J. Wittich, P. Zientek, M. Winn, D. Abdullin, S. Albrow, M. Apollinari, G. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Cremonesi, M. Elvira, V. D. Fisk, I. Freeman, J. Gottschalk, E. Gray, L. Green, D. Grunendahl, S. Gutsche, O. Hare, D. Harris, R. M. Hasegawa, S. Hirschauer, J. Hu, Z. Jayatilaka, B. Jindariani, S. Johnson, M. Joshi, U. Klima, B. Kreis, B. Lammel, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. De Sa, R. Lopes Lykken, J. Maeshima, K. Magini, N. Marraffino, J. M. Maruyama, S. Mason, D. McBride, P. Merkel, P. Mrenna, S. Nahn, S. Newman-Holmes, C. O'Dell, V. Pedro, K. Prokofyev, O. Rakness, G. Ristori, L. Sexton-Kennedy, E. Soha, A. Spalding, W. J. Spiegel, L. Stoynev, S. Strobbe, N. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vernieri, C. Verzocchi, M. Vidal, R. Wang, M. Weber, H. A. Whitbeck, A. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Brinkerhoff, A. Carnes, A. Carver, M. Curry, D. Das, S. Field, R. D. Furic, I. K. Konigsberg, J. Korytov, A. Ma, P. Matchev, K. Mei, H. Milenovic, P. Mitselmakher, G. Rank, D. Shchutska, L. Sperka, D. Thomas, L. Wang, J. Wang, S. Yelton, J. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Ackert, A. Adams, J. R. Adams, T. Askew, A. Bein, S. Diamond, B. Hagopian, S. Hagopian, V. Johnson, K. F. Khatiwada, A. Prosper, H. Santra, A. Weinberg, M. Baarmand, M. M. Bhopatkar, V. Colafranceschi, S. Hohlmann, M. Noonan, D. Roy, T. Yumiceva, F. Adams, M. R. Apanasevich, L. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Kurt, P. O'Brien, C. Gonzalez, I. D. Sandoval Turner, P. Varelas, N. Wang, H. Wu, Z. Zakaria, M. Zhang, J. Bilki, B. Clarida, W. Dilsiz, K. Durgut, S. Gandrajula, R. P. Haytmyradov, M. Khristenko, V. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Snyder, C. Tiras, E. Wetzel, J. Yi, K. Anderson, I. Blumenfeld, B. Cocoros, A. Eminizer, N. Fehling, D. Feng, L. Gritsan, A. V. Maksimovic, P. Osherson, M. Roskes, J. Sarica, U. Swartz, M. Xiao, M. Xin, Y. You, C. Al-bataineh, A. Baringer, P. Bean, A. Boren, S. Bowen, J. Bruner, C. Castle, J. Forthomme, L. Kenny, R. P., III Kropivnitskaya, A. Majumder, D. Mcbrayer, W. Murray, M. Sanders, S. Stringer, R. Takaki, J. D. Tapia Wang, Q. Ivanov, A. Kaadze, K. Khalil, S. Maravin, Y. Mohammadi, A. Saini, L. K. Skhirtladze, N. Toda, S. Rebassoo, F. Wright, D. Anelli, C. Baden, A. Baron, O. Belloni, A. Calvert, B. Eno, S. C. Ferraioli, C. Gomez, J. A. Hadley, N. J. Jabeen, S. Kellogg, R. G. Kolberg, T. Kunkle, J. Lu, Y. Mignerey, A. C. Ricci-Tam, F. Shin, Y. H. Skuja, A. Tonjes, M. B. Tonwar, S. C. Abercrombie, D. Allen, B. Apyan, A. Barbieri, R. Baty, A. Bi, R. Bierwagen, K. Brandt, S. Busza, W. Cali, I. A. Demiragli, Z. Di Matteo, L. Ceballos, G. Gomez Goncharov, M. Hsu, D. Iiyama, Y. Innocenti, G. M. Klute, M. Kovalskyi, D. Krajczar, K. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Marini, A. C. Mcginn, C. Mironov, C. Narayanan, S. Niu, X. Paus, C. Roland, C. Roland, G. Salfeld-Nebgen, J. Stephans, G. S. F. Sumorok, K. Tatar, K. Varma, M. Velicanu, D. Veverka, J. Wang, J. Wang, T. W. Wyslouch, B. Yang, M. Zhukova, V. Benvenuti, A. C. Chatterjee, R. M. Evans, A. Finkel, A. Gude, A. Hansen, P. Kalafut, S. Kao, S. C. Kubota, Y. Lesko, Z. Mans, J. Nourbakhsh, S. Ruckstuhl, N. Rusack, R. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bartek, R. Bloom, K. Claes, D. R. Dominguez, A. Fangmeier, C. Suarez, R. Gonzalez Kamalieddin, R. Kravchenko, I. Rodrigues, A. Malta Meier, F. Monroy, J. Siado, J. E. Snow, G. R. Stieger, B. Alyari, M. Dolen, J. George, J. Godshalk, A. Harrington, C. Iashvili, I. Kaisen, J. Kharchilava, A. Kumar, A. Parker, A. Rappoccio, S. Roozbahani, B. Alverson, G. Barberis, E. Baumgartel, D. Hortiangtham, A. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. De Lima, R. Teixeira Trocino, D. Wang, R. J. Wood, D. Bhattacharya, S. Hahn, K. A. Kubik, A. Kumar, A. Low, J. F. Mucia, N. Odell, N. Pollack, B. Schmitt, M. H. Sung, K. Trovato, M. Velasco, M. Dev, N. Hildreth, M. Anampa, K. Hurtado Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Marinelli, N. Meng, F. Mueller, C. Musienko, Y. Planer, M. Reinsvold, A. Ruchti, R. Smith, G. Taroni, S. Wayne, M. Wolf, M. Woodard, A. Alimena, J. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Francis, B. Hart, A. Hill, C. Hughes, R. Ji, W. Liu, B. Luo, W. Puigh, D. Winer, B. L. Wulsin, H. W. Cooperstein, S. Driga, O. Elmer, P. Hardenbrook, J. Hebda, P. Lange, D. Luo, J. Marlow, D. Medvedeva, T. Mei, K. Mooney, M. Olsen, J. Palmer, C. Piroue, P. Stickland, D. Tully, C. Zuranski, A. Malik, S. Barker, A. Barnes, V. E. Folgueras, S. Gutay, L. Jha, M. K. Jones, M. Jung, A. W. Jung, K. Miller, D. H. Neumeister, N. Shi, X. Sun, J. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Parashar, N. Stupak, J. Adair, A. Akgun, B. Chen, Z. Ecklund, K. M. Geurts, F. J. M. Guilbaud, M. Li, W. Michlin, B. Northup, M. Padley, B. P. Redjimi, R. Roberts, J. Rorie, J. Tu, Z. Zabel, J. Betchart, B. Bodek, A. de Barbaro, P. Demina, R. Duh, Y. T. Ferbel, T. Galanti, M. Garcia-Bellido, A. Han, J. Hindrichs, O. Khukhunaishvili, A. Lo, K. H. Tan, P. Verzetti, M. Agapitos, A. Chou, J. P. Contreras-Campana, E. Gershtein, Y. Espinosa, T. A. Gomez Halkiadakis, E. Heindl, M. Hidas, D. Hughes, E. Kaplan, S. Elayavalli, R. Kunnawalkam Kyriacou, S. Lath, A. Nash, K. Saka, H. Salur, S. Schnetzer, S. Sheffield, D. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Foerster, M. Heideman, J. Riley, G. Rose, K. Spanier, S. Thapa, K. Bouhali, O. Celik, A. Dalchenko, M. De Mattia, M. Delgado, A. Dildick, S. Eusebi, R. Gilmore, J. Huang, T. Juska, E. Kamon, T. Mueller, R. Pakhotin, Y. Patel, R. Perloff, A. Pernie, L. Rathjens, D. Rose, A. Safonov, A. Tatarinov, A. Ulmer, K. A. Akchurin, N. Cowden, C. Damgov, J. De Guio, F. Dragoiu, C. Dudero, P. R. Faulkner, J. Kunori, S. Lamichhane, K. Lee, S. W. Libeiro, T. Peltola, T. Undleeb, S. Volobouev, I. Wang, Z. Delannoy, A. G. Greene, S. Gurrola, A. Janjam, R. Johns, W. Maguire, C. Melo, A. Ni, H. Sheldon, P. Tuo, S. Velkovska, J. Xu, Q. Arenton, M. W. Barria, P. Cox, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Neu, C. Sinthuprasith, T. Sun, X. Wang, Y. Wolfe, E. Xia, F. Clarke, C. Harr, R. Karchin, P. E. Lamichhane, P. Sturdy, J. Belknap, D. A. Dasu, S. Dodd, L. Duric, S. Gomber, B. Grothe, M. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Levine, A. Long, K. Loveless, R. Ojalvo, I. Perry, T. Polese, G. Ruggles, T. Savin, A. Smith, N. Smith, W. H. Taylor, D. Woods, N. CA CMS Collaboration TI Evidence for collectivity in pp collisions at the LHC SO PHYSICS LETTERS B LA English DT Article DE CMS; Physics; Heavy ion; Ridge; Correlation; pp ID TRANSVERSE-MOMENTUM DEPENDENCE; PROTON-PROTON; FLOW; PSEUDORAPIDITY; MULTIPLICITY; TEV AB Measurements of two- and multi-particle angular correlations in pp collisions at root s = 5, 7, and 13TeV are presented as a function of charged-particle multiplicity. The data, corresponding to integrated luminosities of 1.0 pb(-1) (5 TeV), 6.2 pb(-1) (7 TeV), and 0.7 pb(-1) (13 TeV), were collected using the CMS detector at the LHC. The second-order (v(2)) and third-order (v(3)) azimuthal anisotropy harmonics of unidentified charged particles, as well as v(2) of K-S(0) and Lambda/(Lambda) over bar particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass ordering is observed for the v(2) values of charged hadrons (mostly pions), K-S(0), and Lambda/(Lambda) over bar, with lighter particle species exhibiting a stronger azimuthal anisotropy signal below pT approximate to GeV/c. For 13 TeV data, the v(2) signals are also extracted from four- and six-particle correlations for the first time in pp collisions, with comparable magnitude to those from two-particle correlations. These observations are similar to those seen in pPb and PbPb collisions, and support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions. (C) 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan, Armenia. [Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Eroe, J.; Flechl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Koenig, A.; Kraetschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; De Klundert, M. Van; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.] Vrije Univ Brussel, Brussels, Belgium. [Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Leonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Velde, C. Vander; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Fang, W.] Univ Libre Bruxelles, Brussels, Belgium. [Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Poyraz, D.; Salva, S.; Schofbeck, R.; Sharma, A.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.] Univ Ghent, Ghent, Belgium. [Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Wertz, S.] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.] Univ Mons, Mons, Belgium. [Alda Junior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebell Teles, P.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. [Ahuja, S.; Dogra, S.; Fernandez Perez Tomei, T. R.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Ruiz Vargas, J. C.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.; Romero Abad, D.; Ruiz Vargas, J. C.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, Sofia, Bulgaria. [Fang, W.] Beihang Univ, Beijing, Peoples R China. [Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Baron, O.] Inst High Energy Phys, Beijing, Peoples R China. [Zhang, F.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing, Peoples R China. [Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gonzalez Hernandez, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Puljak, I.; Cipriano, P. M. Ribeiro; Sculac, T.] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Ferencek, D.; Kadija, K.; Micanovic, S.; Sudic, L.; Susa, T.] Inst Rudjer Boskovic, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, E.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Jarrin, E. Carrera] Univ San Francisco Quito, Quito, Ecuador. [Abdelalim, A. A.; El-khateeb, E.; Salama, E.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.] NICPB, Tallinn, Estonia. [Eerola, P.; Pekkanen, J.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.] CEA Saclay, DSM IRFU, Gif Sur Yvette, France. [Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; de Cassagnac, R. Granier; Jo, M.; Lisniak, S.; Mine, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, Palaiseau, France. [Beluffi, C.; Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Le Bihan, A. -C.; Van Hove, P.; Skovpen, Y.] Univ Strasbourg, Univ Haute Alsace Mulhouse, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Gadrat, S.] Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, CNRS, IN2P3, Villeurbanne, France. [Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Montoya, C. A. Carrillo; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.] Univ Claude Bernard Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, Villeurbanne, France. [Toriashvili, T.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Toriashvili, T.; Tsamalaidze, Z.] Tbilisi State Univ, Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulte, J. F.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Gueth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, E.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Borras, K.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Fluegge, G.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuensken, A.; Lingemann, J.; Mueller, T.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 1, Aachen, Germany. [Chen, Y.; Martin, M. Aldaya; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eren, E.; Gallo, E.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Luyando, J. M. Grados; Gunnellini, P.; Harb, A.; Hauk, J.; Hempe, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Kruecker, D.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Roland, B.; Sahin, M. Oe; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Gallo, E.; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrueck, G.; Stober, F. M.; Stoever, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Pardo, P. Lobelle; Maier, B.; Mildner, H.; Mozer, M. U.; Mueller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Roecker, S.; Roscher, F.; Schroeder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Woehrmann, C.; Wolf, R.] Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys, Aghia Paraskevi, Greece. [Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, Ioannina, Greece. [Filipovic, N.; Vesztergombi, G.; Bartok, M.] Eotvos Lorand Univ, MTA ELTE Lendulet CMS Particle & Nucl Phys Grp, Budapest, Hungary. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Bartok, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.] Panjab Univ, Chandigarh, India. [Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.] Univ Delhi, Delhi, India. [Ghosh, S.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.; Thakur, S.] Saha Inst Nucl Phys, Kolkata, India. [Behera, P. K.] Indian Inst Technol, Madras, Tamil Nadu, India. [Chudasama, R.; Dutta, D.; Kumar, V. Jha V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay, Maharashtra, India. [Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.] Tata Inst Fundamental Res A, Bombay, Maharashtra, India. [Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.] Tata Inst Fundamental Res B, Bombay, Maharashtra, India. [Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.] Indian Inst Sci Educ & Res, Pune, Maharashtra, India. [Behnamian, H.; Chenarani, S.; Tadavani, E. Eskandari; Etesami, S. M.; Fahim, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin, Ireland. [Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Siivestris, L.; Venditti, R.; Verwilligen, P.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Abbrescia, M.; Calabria, C.; Caputo, C.; Cristella, L.; De Palma, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.] Univ Bologna, Bologna, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.] Ist Nazl Fis Nucl, Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Viliani, L.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Ferri, F.; Calvelli, V.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Calvelli, V.; Lo Vetere, M.; Monge, M. R.; Tosi, S.] Univ Genoa, Genoa, Italy. [Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, Milan, Italy. [Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Manzoni, R. A.; Marzocchi, B.; Paganoni, M.; Pigazzini, S.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [De Nardo, G.; Esposito, M.; Iorio, A. O. M.; Sciacca, C.; Thyssen, F.] Univ Napoli Federico 11, Naples, Italy. [Cavallo, N.; De Nardo, G.; Fabozzi, F.; Thyssen, F.] Univ Basilicata, Potenza, Italy. [De Nardo, G.; Di Guida, S.; Meola, S.; Thyssen, F.] Univ G Marconi, Rome, Italy. [Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; De Oliveira, A. Carvalho Antunes; Checchia, P.; Dall'Osso, M.; Manzano, P. De Castro; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; De Oliveira, A. Carvalho Antunes; Dall'Osso, M.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Zanetti, M.] Univ Trento, Trento, Italy. [Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Magnani, A.; Montagna, P.; Ratti, S. P.; Riccardi, C.; Vai, I.; Vitulo, P.] Univ Pavia, Pavia, Italy. [Solestizi, L. Alunni; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.] Ist Nazl Fis Nucl, Sez Perugia, Perugia, Italy. [Solestizi, L. Alunni; Ciangottini, D.; Fano, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Santocchia, A.] Univ Perugia, Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bemardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Fedi, G.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Donato, S.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Cipriani, M.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Di Marco, E.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Cipriani, M.; D'imperio, G.; Del Re, D.; Gelli, S.; Longo, E.; Margaroli, F.; Organtini, G.; Preiato, F.; Rahatlou, S.; Santanastasio, F.; Di Marco, E.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Baron, O.; Driga, O.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Finco, L.; Kiani, B.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Sacchi, R.; Shchelina, K.; Solano, A.; Traczyk, P.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; La Licata, C.; Schizzi, A.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Della Ricca, G.; La Licata, C.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Kamon, T.] Kyungpook Natl Univ, Daegu, South Korea. [Lee, A.] Chonbuk Natl Univ, Jeonju, South Korea. [Kim, H.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Cifuentes, J. A. Brochero; Kim, T. J.] Hanyang Univ, Seoul, South Korea. [Lee, S.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lim, J.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. H.; Yang, U. K.; Yoo, H. D.; Yu, G. B.] Seoul Natl Univ, Seoul, South Korea. [Kim, H.; Choi, M.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Dudenas, V.; Juodagalvis, A.; Vaitkus, J.] Vilnius Univ, Vilnius, Lithuania. [Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Idris, F. Mohamad; Abdullah, W. A. T. Wan.; Yusli, M. N.; Zolkapli, Z.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Villalba, R. Magana; Guisao, J. Mejia; Sanchez-Hernandez, A.] IPN, Ctr Invest & Estudios Avanzados, Mexico City, DF, Mexico. [Moreno, S. Carrillo; Barrera, C. Oropeza; Valencia, F. Vazquez] Univ Iberoamer, Mexico City, DF, Mexico. [Carpinteyro, S.; Pedraza, I.; Ibarguen, H. A. Salazar; Estrada, C. Uribe] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Pineda, A. Morelos] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland, New Zealand. [Butler, P. H.] Univ Canterbury, Christchurch, New Zealand. [Ahmad, M.; Ahmad, A.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Shah, M. A.; Shoaib, M.; Waqas, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Baron, O.; Driga, O.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bargassa, P.; Beira Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Finger, M.; Finger, M., Jr.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Laney, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Matveev, V.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Kirakosyan, M.; Musienko, Y.] Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow, Russia. [Bylinkin, A.] MIPT, Moscow, Zhukovsky, Russia. [Matveev, V.; Bylinkin, A.; Chadeeva, M.; Chistov, R.; Rusinov, V.; Azarkin, M.; Dremin, I.; Leonidov, A.] Natl Res Nucl Univ, Moscow Engn Phys Inst MEPhI, Moscow, Russia. [Chadeeva, M.; Chistov, R.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Terkulov, A.] PN Lebedev Phys Inst, Moscow, Russia. [Popov, A.; Zhukov, V.; Katkov, I.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Blinov, V.; Skovpen, Y.] Novosibirsk State Univ, Novosibirsk, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Radziej, M.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Belgrade, Fac Phys, Belgrade, Serbia. [Abdulsalam, A.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Penis, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] CIEMAT, Madrid, Spain. [de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; Gonzalez Fernandez, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suarez Andres, I.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Lopez-Fernandez, R.; Cabrillo, I. J.; Calderon, A.; Castineiras De Saa, J. R.; Curras, E.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, Santander, Spain. [Sharma, A.; Nehrkorn, A.; Stahl, A.; Pantaleo, F.; Hartmann, F.; Mohanty, A. K.; Tosi, N.; Viliani, L.; Primavera, E.; Brianza, L.; Manzoni, R. A.; Di Guida, S.; Meola, S.; Paolucci, P.; Azzi, P.; Pazzini, J.; Azzurri, P.; D'imperio, G.; Del Re, D.; Arcidiacono, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dunser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knunz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenco, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schafer, C.; Schwick, C.; Seidel, M.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Zagozdzinska, A.; Zeuner, W. D.; Bachmair, F.; Bani, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donega, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schonenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Virdee, T.] CERN, European Org Nucl Res, Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Hosseinabadi, F. Rezaei; Bachmair, F.; Bani, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donega, M.; Grab, C.; Heidegger, C.; Hits, D.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schonenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.] ETH, Inst Particle Phys, Zurich, Switzerland. [Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan. [Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W. -S.; Hsiung, Y.; Liu, Y. F.; Lu, R. -S.; Moya, M. Minano; Paganis, E.; Psallidas, A.; Tsai, J. F.; Tzeng, Y. M.] Natl Taiwan Univ, Taipei, Taiwan. [Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kara, O.; Topaksu, A. Kayis; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Cerci, D. Sunar; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.] Middle East Tech Univ, Dept Phys, Ankara, Turkey. [Gulmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.] Bogazici Univ, Istanbul, Turkey. [Cakir, A.; Cankocak, K.; Sen, S.] Istanbul Tech Univ, Istanbul, Turkey. [Grynyov, B.] Natl Acad Sci Ukraine, Inst Scintillat Mat, Kharkov, Ukraine. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; El Nasr-Storey, S. Seif; Smith, D.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Belyaev, A.; Newbold, D. M.; Barducci, D.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Lucas, R.] Rutherford Appleton Lab, Didcot, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Mastrolorenzo, L.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Acosta, M. Vazquez; Virdee, T.; Wright, J.; Zenz, S. C.; Nash, D.] Imperial Coll, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge, Middx, England. [Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.] Univ Alabama, Tuscaloosa, AL USA. [Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.] Boston Univ, Boston, MA 02215 USA. [Mao, Y.; Abdulsalam, A.; Benelli, G.; Berry, E.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Laird, E.; Landsberg, G.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Ackert, A.] Brown Univ, Providence, RI 02912 USA. [Abdulsalam, A.; Chauhan, S.; Burns, D.; Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Negrete, M. Olmedo; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Wurthwein, F.; Yagil, A.; Della Porta, G. Zevi] Univ Calif San Diego, La Jolla, CA 92093 USA. [Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Ovcharova, A.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Chen, Y.; Dubinin, M.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Andrews, M. B.; Azzolini, V.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Tan, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdulsalam, A.; Banerjee, S.; Abdullin, S.; Albrow, M.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grunendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; De Sa, R. Lopes; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Abdulsalam, A.; Kuznetsova, E.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.] Univ Florida, Gainesville, FL USA. [Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Gonzalez, I. D. Sandoval; Turner, P.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.] Univ Illinois, Chicago, IL USA. [Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.] Johns Hopkins Univ, Baltimore, MD USA. [Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Bruner, C.; Castle, J.; Forthomme, L.; Kenny, R. P., III; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Takaki, J. D. Tapia; Wang, Q.] Univ Kansas, Lawrence, KS 66045 USA. [Ivanov, A.; Kaadze, K.; Khalil, S.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.] Kansas State Univ, Manhattan, KS 66506 USA. [Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Wang, J.; Abercrombie, D.; Allen, B.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Ceballos, G. Gomez; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, University, MS 38677 USA. [Avdeeva, E.; Bartek, R.; Bloom, K.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Suarez, R. Gonzalez; Kamalieddin, R.; Kravchenko, I.; Rodrigues, A. Malta; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.] Univ Nebraska, Lincoln, NE USA. [Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.] SUNY Buffalo, Buffalo, NY USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; De Lima, R. Teixeira; Trocino, D.; Wang, R. J.; Wood, D.] Northeastern Univ, Boston, MA 02115 USA. [Bhattacharya, S.; Kumar, A.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.] Northwestern Univ, Evanston, IL USA. [Abdulsalam, A.; Dev, N.; Hildreth, M.; Anampa, K. Hurtado; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Alimena, J.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Mooney, M.; Olsen, J.; Palmer, C.; Piroue, P.; Stickland, D.; Tully, C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Malik, S.] Univ Puerto Rico, Mayaguez, PR USA. [Savoy-Navarro, A.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Shi, X.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. T.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Verzetti, M.] Univ Rochester, Rochester, NY 14627 USA. [Agapitos, A.; Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Espinosa, T. A. Gomez; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Elayavalli, R. Kunnawalkam; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.] Univ Tennessee, Knoxville, TN USA. [Rose, A.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Pernie, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA. [Wang, Z.; Lee, S. W.; Akchurin, N.; Cowden, C.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA. [Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.] Univ Wisconsin, Madison, WI USA. [Fruehwirth, R.; Jeitler, M.; Schieck, J.; Wulz, C. -E.; Krammer, M.] Vienna Univ Technol, Vienna, Austria. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, Brazil. [Da Silveira, G. G.] Univ Fed Pelotas, Pelotas, Brazil. [Abdelalim, A. A.] Helwan Univ, Cairo, Egypt. [Abdelalim, A. A.] Zewail City Sci & Technol, Zewail, Egypt. [El-khateeb, E.; Salama, E.] Ain Shams Univ, Cairo, Egypt. [Salama, E.] British Univ Egypt, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Hempe, M.; Karacheban, O.; Lohmann, W.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Choudhury, S.] Indian Inst Sci Educ & Res, Bhopal, India. [Nayak, A.] Inst Phys, Bhubaneswar, Orissa, India. [Bhowmik, S.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Chenarani, S.; Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Univ Tehran, Dept Engn Sci, Tehran, Iran. [Mehdiabadi, S. Paktinat] Yazd Univ, Yazd, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.] Univ Siena, Siena, Italy. [Ali, M. A. B. Md] Int Islamic Univ Malaysia, Kuala Lumpur, Malaysia. [Idris, F. Mohamad] MOSTI, Malaysian Nucl Agcy, Kajang, Malaysia. [Heredia-De La Cruz, I.] Consejo Nacl Ciencia & Technol, Mexico City, DF, Mexico. [Byszuk, A.] Warsaw Univ Technol, Inst Elect Syst, Warsaw, Poland. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Blinov, V.; Skovpen, Y.] Budker Inst Nucl Phys, Novosibirsk, Russia. [Rolandi, G.] Scuola Normale, Pisa, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Veckalns, V.] Riga Tech Univ, Riga, Latvia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Ahmad, A.; Kangal, E. E.] Mersin Univ, Mersin, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Ozdemir, K.] Piri Reis Univ, Istanbul, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Yetkin, E. A.] Istanbul Bilgi Univ, Istanbul, Turkey. [Yetkin, T.] Yildiz Tech Univ, Istanbul, Turkey. [Sen, S.] Hacettepe Univ, Ankara, Turkey. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Acosta, M. Vazquez] Inst Astrofis Canarias, San Cristobal la Laguna, Spain. [Wasserbaech, S.] Utah Valley Univ, Orem, UT 84058 USA. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Bilki, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Bouhali, O.] Texas A&M Univ Qatar, Doha, Qatar. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan, Armenia. RI Della Ricca, Giuseppe/B-6826-2013; Lokhtin, Igor/D-7004-2012; OI Della Ricca, Giuseppe/0000-0003-2831-6982; Luukka, Panja/0000-0003-2340-4641; Geisler-Knunz, Valentin/0000-0002-7235-4786; Jacob, Jeson/0000-0001-6895-5493 FU BMWFW (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MOST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); ERDF (Estonia); MoER (Estonia); ERC IUT (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NIH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP (Republic of Korea); NRF (Republic of Korea); LAS (Lithuania); MOE (Malaysia); UM (Malaysia); BUAP (Mexico); CINVESTAV (Mexico); CONACYT (Mexico); LNS (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Dubna); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MESTD (Serbia); SEIDI (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter (Thailand); IPST (Thailand); STAR (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); SFFR (Ukraine); STFC (United Kingdom); DOE (USA); NSF (USA); Marie-Curie program (European Union); European Research Council (European Union); EPLANET (European Union); Leventis Foundation; Alfred P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Council of Science and Industrial Research, India; HOMING PLUS program of the Foundation for Polish Science; European Union, Regional Development Fund; Mobility Plus program of the Ministry of Science and Higher Education; OPUS program of the National Science Center (Poland) [2014/13/B/ST2/02543, Sonata-bis DEC-2012/07/E/ST2/01406]; Thalis program - EU-ESF; Aristeia program - EU-ESF; Greek NSRF; National Priorities Research Program by Qatar National Research Fund; Programa Clarin-COFUND del Principado de Asturias; Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); Welch Foundation [C-1845] FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).; Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the OPUS program contract 2014/13/B/ST2/02543 and contract Sonata-bis DEC-2012/07/E/ST2/01406 of the National Science Center (Poland); the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarin-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845. NR 62 TC 4 Z9 4 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 10 PY 2017 VL 765 BP 193 EP 220 DI 10.1016/j.physletb.2016.12.009 PG 28 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EK0PB UT WOS:000393627800025 ER PT J AU Berkowitz, E Kurth, T Nicholson, A Joo, B Rinaldi, E Strother, M Vranas, PM Walker-Loud, A AF Berkowitz, Evan Kurth, Thorsten Nicholson, Amy Joo, Balint Rinaldi, Enrico Strother, Mark Vranas, Pavlos M. Walker-Loud, Andre TI Two-nucleon higher partial-wave scattering from lattice QCD SO PHYSICS LETTERS B LA English DT Article ID FINITE-VOLUME; NUCLEAR-FORCES; STATES; SYSTEMS; MATRIX AB We present a determination of nucleon-nucleon scattering phase shifts for l >= 0. The S, P, D and F phase shifts for both the spin-triplet and spin-singlet channels are computed with lattice Quantum ChromoDynamics. For t > 0, this is the first lattice QCD calculation using the Luscher finite-volume formalism. This required the design and implementation of novel lattice methods involving displaced sources and momentum-space cubic sinks. To demonstrate the utility of our approach, the calculations were performed in the SU(3)-flavor limit where the light quark masses have been tuned to the physical strange quark mass, corresponding to m(pi)=m(K)approximate to 800 MeV. In this work, we have assumed that only the lowest partial waves contribute to each channel, ignoring the unphysical partial wave mixing that arises within the finite-volume formalism. This assumption is only valid for sufficiently low energies; we present evidence that it holds for our study using two different channels. Two spatial volumes of V approximate to (3.5 fm)(3) and V approximate to (4.6 fm)(3) were used. The finite-volume spectrum is extracted from the exponential falloff of the correlation functions. Said spectrum is mapped onto the infinite volume phase shifts using the generalization of the Luscher formalism for two-nucleon systems. Published by Elsevier B.V. C1 [Berkowitz, Evan; Rinaldi, Enrico; Vranas, Pavlos M.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. [Kurth, Thorsten; Walker-Loud, Andre] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Kurth, Thorsten; Nicholson, Amy; Strother, Mark] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Joo, Balint; Walker-Loud, Andre] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. [Walker-Loud, Andre] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. RP Walker-Loud, A (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA.; Nicholson, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; Walker-Loud, A (reprint author), Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA.; Walker-Loud, A (reprint author), Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. EM awalker-loud@lbl.gov OI Rinaldi, Enrico/0000-0003-4134-809X FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; LLNL [LDRD 13-ERD-023]; Office of Nuclear Physics in the US Department of Energy [DE-AC02-05CH11231, KB0301052, DE-SC00046548]; U.S. Department of Energy [DE-AC05-06OR23177, DE-AC52-07NA27344]; U.S. DOE Early Career Award [DE-SC0012180] FX We would like to thank Raul Briceno for extensive consultations regarding the finite volume formalism, as well as Dean Lee for discussions regarding the comparison between finite-volume bound state energies and unitarity. We would like to acknowledge W. Detmold, R. Edwards, D. Richards and K. Orginos for use of the JLab/W&M configurations used in this work. These calculations were performed with software built upon the Chroma software suite [76] and the optimized lattice QCD GPU library QUDA [77,78]. We also utilized the highly efficient HDF5 I/O Library [79] with an interface to HDF5 in the USQCD Software Stack added with Sci-DAC 3 support [80]. We thank the Lawrence Livermore National Laboratory (LLNL) Multiprogrammatic and Institutional Computing program for the Grand Challenge allocation. Our calculations were performed on the LLNL BG/Q supercomputer, Aztec cluster and Surface GPU cluster and on Edison at NERSC, the National Energy Research Scientific Computing Center (a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231). We thank LLNL for funding from LDRD 13-ERD-023. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was supported in part by the Office of Nuclear Physics in the US Department of Energy under grants KB0301052 (SciDAC), DE-SC00046548 (Berkeley), and DE-AC02-05CH11231. The work of AWL was supported in part by the U.S. Department of Energy under contract DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, manages and operates the Jefferson Lab, and by the U.S. DOE Early Career Award under contract DE-SC0012180. NR 79 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 10 PY 2017 VL 765 BP 285 EP 292 DI 10.1016/j.physletb.2016.12.024 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EK0PB UT WOS:000393627800038 ER PT J AU Li, M Li, L Mukherjee, R Wang, K Liu, Q Zou, Q Xu, H Tisdale, J Gai, Z Ivanov, IN Mandrus, D Hu, B AF Li, Mingxing Li, Ling Mukherjee, Rupam Wang, Kai Liu, Qing Zou, Qiang Xu, Hengxing Tisdale, Jeremy Gai, Zheng Ivanov, Ilia N. Mandrus, David Hu, Bin TI Magnetodielectric Response from Spin-Orbital Interaction Occurring at Interface of Ferromagnetic Co and Organometal Halide Perovskite Layers via Rashba Effect SO ADVANCED MATERIALS LA English DT Article ID LIGHT-EMITTING-DIODES; CHARGE-TRANSFER STATES; ORGANIC SEMICONDUCTING MATERIALS; HYBRID SOLAR-CELLS; HIGH-PERFORMANCE; QUANTUM-WELLS; POLARIZATION; INJECTION; EMISSION; DEVICES AB The spin on a ferromagnetic Co surface can interact with the asymmetric orbital on an organometal halide perovskite surface, leading to an anisotropic magnetodielectric effect. This study presents an opportunity to integrate ferromagnetic and semiconducting properties through the Rasbha effect for achieving spin-dependent electronic functionalities based on thin-film design. C1 [Li, Mingxing; Li, Ling; Mukherjee, Rupam; Liu, Qing; Xu, Hengxing; Tisdale, Jeremy; Mandrus, David; Hu, Bin] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Wang, Kai] Beijing Jiaotong Univ, Coll Sci, Beijing 100044, Peoples R China. [Zou, Qiang; Gai, Zheng; Ivanov, Ilia N.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Hu, B (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM bhu@utk.edu FU Air Force Office of Scientific Research [AFOSR: FA 9550-15-1-0064]; National Science Foundation [CBET-1438181]; Asthe ian Office of Aerospace Reseacrh and Development [AOARD: FA2386-15-1-4104]; Division of Scientific User Facilities, US Department of Energy [CNMS2012-106, CNMS2012-107, CNMS-2012-108]; National Significant Program of China [2014CB643506, 2013CB922104]; National Science Foundation of China [61475051] FX This research was supported by the Air Force Office of Scientific Research (AFOSR: FA 9550-15-1-0064), the National Science Foundation (CBET-1438181), and Asthe ian Office of Aerospace Reseacrh and Development (AOARD: FA2386-15-1-4104). This research was partially conducted at the Center for Nanophase Materials Sciences based on user projects (CNMS2012-106, CNMS2012-107, and CNMS-2012-108), which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, US Department of Energy. The authors also acknowledge the project support from the National Significant Program of China (2014CB643506 and 2013CB922104) and the National Science Foundation of China (61475051). NR 54 TC 0 Z9 0 U1 11 U2 11 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD FEB 10 PY 2017 VL 29 IS 6 AR UNSP 1603667 DI 10.1002/adma.201603667 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EN6WB UT WOS:000396143000008 ER PT J AU Wang, LP Leconte, Y Feng, ZX Wei, C Zhao, Y Ma, Q Xu, WQ Bourrioux, S Azais, P Srinivasan, M Xu, ZJ AF Wang, Luyuan Paul Leconte, Yann Feng, Zhenxing Wei, Chao Zhao, Yi Ma, Qing Xu, Wenqian Bourrioux, Samantha Azais, Philippe Srinivasan, Madhavi Xu, Zhichuan J. TI Novel Preparation of N-Doped SnO2 Nanoparticles via Laser-Assisted Pyrolysis: Demonstration of Exceptional Lithium Storage Properties SO ADVANCED MATERIALS LA English DT Article ID LI-ION BATTERIES; ELECTROCHEMICAL ENERGY-STORAGE; X-RAY-ABSORPTION; OPTICAL-PROPERTIES; ANODE MATERIALS; ELECTRONIC-STRUCTURE; RAMAN-SPECTROSCOPY; SITU TEM; CAPACITY; OXIDE AB Laser pyrolyzed SnO2 nanoparticles with an option of nitrogen (N) doping are prepared using a cost-effective method. The electrochemical performance of N-doped samples is tested for the first time in Li-ion batteries where the sample with 3% of N-dopant exhibits optimum performance with a capacity of 522 mAh g(active material)(-1) that can be obtained at 10 A g(-1) (6.7C). C1 [Wang, Luyuan Paul; Wei, Chao; Zhao, Yi; Srinivasan, Madhavi; Xu, Zhichuan J.] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore. [Wang, Luyuan Paul; Bourrioux, Samantha; Srinivasan, Madhavi; Xu, Zhichuan J.] Nanyang Technol Univ, Energy Res Inst NTU ERI N, Interdisciplinary Grad Sch, Singapore 639798, Singapore. [Wang, Luyuan Paul; Leconte, Yann; Bourrioux, Samantha] CEA, IRAMIS, UMR NIMBE 3685, F-91191 Gif Sur Yvette, France. [Feng, Zhenxing] Oregon State Univ, Sch Chem Biol & Environm Engn, Corvallis, OR 97331 USA. [Ma, Qing] Adv Photon Source, DND CAT, Northwestern Synchrotron Res Ctr, 9700 S Cass Ave, Argonne, IL 60439 USA. [Xu, Wenqian] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Azais, Philippe] CEA, LITEN, F-38054 Grenoble, France. RP Srinivasan, M; Xu, ZJ (reprint author), Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore.; Srinivasan, M; Xu, ZJ (reprint author), Nanyang Technol Univ, Energy Res Inst NTU ERI N, Interdisciplinary Grad Sch, Singapore 639798, Singapore. EM madhavi@ntu.edu.sg; xuzc@ntu.edu.sg FU MOE of Singapore [RG13/13, MOE2015-T2-1-020]; Singapore National Research Foundation; CEA cross-cutting program on advanced materials; E. I. duPont de Nemours Co.; Northwestern University; Dow Chemical Company; DOE [DE-AC02-06CH11357] FX This work was supported by the MOE Tier 1 (RG13/13) and Tier 2 (MOE2015-T2-1-020) Grants of Singapore and by the Singapore National Research Foundation under its Campus for Research Excellence And Technological Enterprise (CREATE) program. The authors thank the Facility for Analysis, Characterisation, Testing and Simulation (FACTS) in Nanyang Technological University for materials characterization. Part of this work was funded by CEA cross-cutting program on advanced materials. The authors wish to thank A. Habert and J. Leroy (CEA-NIMBE) for SEM and XPS measurements, respectively, and S. Coste-Leconte (CEA-INSTN) for XRD measurements. The authors are also grateful to M. Sougrati, L. Stievano, and L. Monconduit (Institut Charles Gerhardt de Montpellier) for fruitful discussions. DND-CAT was supported through E. I. duPont de Nemours & Co., Northwestern University, and The Dow Chemical Company. The use of Advanced Photon Source of Argonne National Laboratory was supported by DOE under Contract No. DE-AC02-06CH11357. NR 71 TC 0 Z9 0 U1 9 U2 9 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD FEB 10 PY 2017 VL 29 IS 6 AR UNSP 1603286 DI 10.1002/adma.201603286 PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EN6WB UT WOS:000396143000005 ER PT J AU Snow, MS Finck, MR Carney, KP Morrison, SS AF Snow, Mathew S. Finck, Martha R. Carney, Kevin P. Morrison, Samuel S. TI Extraction chromatographic separations of tantalum and tungsten from hafnium and complex matrix constituents SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE Tantalum; Tungsten; Hafnium; TEVA; TRU ID SOLVENT-EXTRACTION; MASS-SPECTROMETRY; ANION-EXCHANGER; HF; NB; TA; DIFFERENTIATION; ADSORPTION; ISOTOPES; NIOBIUM AB Tantalum (Ta), hafnium (Hf), and tungsten (W) analyses from complex matrices require high purification of these analytes from each other and major/trace matrix constituents, however, current state-of-the-art Ta/Hf/W separations rely on traditional anion exchange approaches that show relatively similar distribution coefficient (1(d) values for each element. This work reports an assessment of three commercially available extraction chromatographic resins (TEVA, TRU, and UTEVA) for Ta/Hf/W separations. Batch contact studies show differences in Ta/Hf and Ta/W Kd values of up to 106 and 104 (respectively), representing an improvement of a factor of 100 and 300 in Ta/Hf and Ta/W Kd values (respectively) over AG1 x 4 resin. Variations in the Kd values as a function of HC1 concentration for TRU resin show that this resin is well suited for Ta/Hf/W separations, with Ta/Hf, Ta/W, and W/Hf Kd value improvements of 10, 200, and 30 (respectively) over AG1 x 4 resin. Analyses of digested soil samples (NIST 2710a) using TRU resin and tandem TEVA-TRU columns demonstrate the ability to achieve extremely high purification (>99%) of Ta and W from each other and Hf, as well as enabling very high purification of Ta and W from the major and trace elemental constituents present in soils using a single chromatographic step. (C) 2017 Elsevier B.V. All rights reserved. C1 [Snow, Mathew S.; Finck, Martha R.; Carney, Kevin P.] Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. [Morrison, Samuel S.] Pacific Northwest Natl Lab, POB 999,MSIN J4-80,902 Battelle Blvd, Richland, WA 99352 USA. RP Snow, MS (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM mathew.snow@inl.gov FU DTRA [IAA HDTRA1618618] FX This material is based upon work supported in part by DTRA under IAA HDTRA1618618. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe on privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. Views and opinions of the authors expressed herein do not necessarily reflect those of the U.S. Government or any agency thereof. NR 16 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 EI 1873-3778 J9 J CHROMATOGR A JI J. Chromatogr. A PD FEB 10 PY 2017 VL 1484 BP 1 EP 6 DI 10.1016/j.chroma.2017.01.019 PG 6 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA EK4ZE UT WOS:000393935900001 PM 28087056 ER PT J AU Zhu, M Shanavas, KV Wang, Y Zou, T Sun, WF Tian, W Garlea, VO Podlesnyak, A Matsuda, M Stone, MB Keavney, D Mao, ZQ Singh, DJ Ke, X AF Zhu, M. Shanavas, K. V. Wang, Y. Zou, T. Sun, W. F. Tian, W. Garlea, V. O. Podlesnyak, A. Matsuda, M. Stone, M. B. Keavney, D. Mao, Z. Q. Singh, D. J. Ke, X. TI Non-Fermi surface nesting driven commensurate magnetic ordering in Fe-doped Sr2RuO4 SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; LAYERED PEROVSKITE; SPIN-FLUCTUATION; TRIPLET; ANTIFERROMAGNETISM; FERROMAGNETISM; CHALCOGENIDES; PHYSICS AB Sr2RuO4, an unconventional superconductor, is known to possess an incommensurate spin-density wave instability driven by Fermi surface nesting. Here we report a static spin-density wave ordering with a commensurate propagation vector q(c) = (0.25 0.25 0) in Fe-doped Sr2RuO4, despite the magnetic fluctuations persisting at the incommensurate wave vectors q(ic) = (0.30.3L) as in the parent compound. The latter feature is corroborated by the first-principles calculations, which show that Fe substitution barely changes the nesting vector of the Fermi surface. These results suggest that in addition to the known incommensurate magnetic instability, Sr2RuO4 is also in proximity to a commensurate magnetic tendency that can be stabilized via Fe doping. C1 [Zhu, M.; Wang, Y.; Ke, X.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Shanavas, K. V.; Singh, D. J.] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. [Wang, Y.; Sun, W. F.; Mao, Z. Q.] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA. [Tian, W.; Garlea, V. O.; Podlesnyak, A.; Matsuda, M.; Stone, M. B.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Keavney, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Ke, X (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. EM ke@pa.msu.edu RI Matsuda, Masaaki/A-6902-2016 OI Matsuda, Masaaki/0000-0003-2209-9526 FU National Science Foundation [DMR-1608752]; Michigan State University; U.S. Department of Energy (DOE) under EPSCOR Grant [DE-SC0012432]; Louisiana Board of Regents; Scientific User Facilities Division, Office of Basic Energy Sciences, DOE; DOE Office of Science [DE-AC02-06CH11357] FX Work at Michigan State University was supported by the National Science Foundation under Award No. DMR-1608752 and the start-up funds from Michigan State University. Work at Tulane University was supported by the U.S. Department of Energy (DOE) under EPSCOR Grant No. DE-SC0012432 with additional support from the Louisiana Board of Regents (support for crystal growth). Work at ORNL's SNS and HFIR was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, DOE. This research used resources of the Advanced Photon Source, a U.S. Department of Energy Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 46 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 10 PY 2017 VL 95 IS 5 AR 054413 DI 10.1103/PhysRevB.95.054413 PG 6 WC Physics, Condensed Matter SC Physics GA EK2ER UT WOS:000393741100003 ER PT J AU Zou, T Lee, CC Tian, W Cao, HB Zhu, M Qian, B dela Cruz, CR Ku, W Mao, ZQ Ke, X AF Zou, T. Lee, C. C. Tian, W. Cao, H. B. Zhu, M. Qian, B. dela Cruz, C. R. Ku, W. Mao, Z. Q. Ke, X. TI G-type magnetic order in ferropnictide CuxFe1-yAs induced by hole doping on As sites SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; NEUTRON-SCATTERING; IRON; LAO1-XFXFEAS; EXCHANGE AB Strong antiferromagnetic (AFM) correlation has long been postulated to be closely related to the occurrence of unconventional high-temperature superconductivity observed in the cuprates, heavy fermions, and organic superconductors. The recently discovered Fe-based superconductors add another interesting member to the list. However, insufficient attention has been paid to the versatile nature of the magnetic correlation in these materials: some showing stripe (C-type) order, others double stripe (E-type) or block AFM order instead, implying potentially richer structures of the superconducting order. Here we report the observation of yet another AFM correlation in the family: a G-type AFM order as seen in the high-T-c cuprates, in CuxFe1-yAs compounds isostructural to the LiFeAs superconductor. This study not only sheds light on the underlying mechanism of the rich magnetic correlations in the Fe-based superconductors, but also suggests the possibility of realizing a distinct pairing symmetry upon chemical doping or applying pressure. C1 [Zou, T.; Zhu, M.; Ke, X.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Lee, C. C.] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. [Tian, W.; Cao, H. B.; dela Cruz, C. R.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Qian, B.; Mao, Z. Q.] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA. [Qian, B.] Changshu Inst Technol, Adv Funct Mat Lab, Changshu 215500, Peoples R China. [Qian, B.] Changshu Inst Technol, Dept Phys, Changshu 215500, Peoples R China. [Ku, W.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China. RP Ku, W (reprint author), Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China. EM weiku@mailaps.org; ke@pa.msu.edu FU start-up funds at Michigan State University; U.S. Department of Energy under EPSCoR Grant [DE-SC0012432]; Louisiana Board of Regents; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; National Natural Science Foundation of China [11374043, 11174043, 51371004, 11447601]; Natural Science Foundation of Jiangsu Educational Department [13KJA430001]; six-talent peak of Jiangsu Province [2011XCL-022, 2012-XCL-036]; Ministry of Science and Technology [2016YFA0300500, 2016YFA0300501] FX X.K. acknowledges support from the start-up funds at Michigan State University. The work at Tulane (i.e., Cux Fe1- y As single crystal growth and characterization) is supported by the U.S. Department of Energy under EPSCoR Grant No. DE-SC0012432 with additional support from the Louisiana Board of Regents. Research conducted at ORNL's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. B.Q. is supported by National Natural Science Foundation of China (Grants No. 11374043, No. 11174043, and No. 51371004), Natural Science Foundation of Jiangsu Educational Department (Grant No. 13KJA430001), and six-talent peak of Jiangsu Province (Grants No. 2011XCL-022 and No. 2012-XCL-036). W.K. acknowledges support from National Natural Science Foundation of China (Grant No. 11447601) and Ministry of Science and Technology (Grants No. 2016YFA0300500 and No. 2016YFA0300501). NR 41 TC 0 Z9 0 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 10 PY 2017 VL 95 IS 5 AR 054414 DI 10.1103/PhysRevB.95.054414 PG 5 WC Physics, Condensed Matter SC Physics GA EK2ER UT WOS:000393741100004 ER PT J AU Marcellina, E Hamilton, AR Winkler, R Culcer, D AF Marcellina, E. Hamilton, A. R. Winkler, R. Culcer, Dimitrie TI Spin-orbit interactions in inversion-asymmetric two-dimensional hole systems: A variational analysis SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM POINT CONTACTS; EFFECTIVE MASSES; GAAS; MOBILITY; HETEROJUNCTIONS; SEMICONDUCTORS; SUBBANDS; LAYERS; DOT; SPINTRONICS AB We present an in-depth study of the spin-orbit (SO) interactions occurring in inversion-asymmetric two-dimensional hole gases at semiconductor heterointerfaces. We focus on common semiconductors such as GaAs, InAs, InSb, Ge, and Si. We develop a semianalytical variational method to quantify SO interactions, accounting for both structure inversion asymmetry (SIA) and bulk inversion asymmetry (BIA). Under certain circumstances, using the Schrieffer-Wolff (SW) transformation, the dispersion of the ground state heavy hole subbands can be written as E(k) = Ak(2) - Bk-4 +/- Ck(3) where A, B, and C are material-and structure-dependent coefficients. We provide a simple method of calculating the parameters A, B, and C, yet demonstrate that the simple SW approximation leading to a SIA (Rashba) spin splitting proportional to k(3) frequently breaks down. We determine the parameter regimes at which this happens for the materials above and discuss a convenient semianalytical method to obtain the correct spin splitting, effective masses, Fermi level, and subband occupancy, together with their dependence on the charge density, and dopant type, for both inversion and accumulation layers. Our results are in good agreement with fully numerical calculations as well as with experimental findings. They suggest that a naive application of the simple cubic Rashba model is of limited use in either common heterostructures or quantum dots. Finally, we find that for the single heterojunctions studied here the magnitudes of BIA terms are always much smaller than those of SIA terms. C1 [Marcellina, E.; Hamilton, A. R.; Culcer, Dimitrie] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia. [Winkler, R.] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Winkler, R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Marcellina, E (reprint author), Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia. FU NSF [DMR-1310199]; DOE BES [DE-AC02-06CH11357]; Australian Research Council FX This work has been supported by the Australian Research Council through the Discovery Project Scheme. R.W. was supported by the NSF under Grant No. DMR-1310199. Work at Argonne was supported by DOE BES under Contract No. DE-AC02-06CH11357. We thank Ulrich Zuelicke, Daisy Wang, Oleg Sushkov, Tommy Li, and Dima Miserev for insightful comments and discussions. We are also indebted to Scott Liles and Ashwin Srinivasan for providing their experimental data for comparison. NR 69 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 10 PY 2017 VL 95 IS 7 AR 075305 DI 10.1103/PhysRevB.95.075305 PG 14 WC Physics, Condensed Matter SC Physics GA EK2FH UT WOS:000393742700002 ER PT J AU Zhu, M Shanavas, KV Wang, Y Zou, T Sun, WF Tian, W Garlea, VO Podlesnyak, A Matsuda, M Stone, MB Keavney, D Mao, ZQ Singh, DJ Ke, X AF Zhu, M. Shanavas, K. V. Wang, Y. Zou, T. Sun, W. F. Tian, W. Garlea, V. O. Podlesnyak, A. Matsuda, M. Stone, M. B. Keavney, D. Mao, Z. Q. Singh, D. J. Ke, X. TI Non-Fermi surface nesting driven commensurate magnetic ordering in Fe-doped Sr(2)RuO4 SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; LAYERED PEROVSKITE; SPIN-FLUCTUATION; SR2RUO4; TRIPLET; ANTIFERROMAGNETISM; FERROMAGNETISM; CHALCOGENIDES; PHYSICS AB Sr2RuO4, an unconventional superconductor, is known to possess an incommensurate spin-density wave instability driven by Fermi surface nesting. Here we report a static spin-density wave ordering with a commensurate propagation vector q(c) = ( 0.25 0.25 0) in Fe-doped Sr2RuO4, despite the magnetic fluctuations persisting at the incommensurate wave vectors q(ic) = ( 0.30.3L) as in the parent compound. The latter feature is corroborated by the first-principles calculations, which showthat Fe substitution barely changes the nesting vector of the Fermi surface. These results suggest that in addition to the known incommensurate magnetic instability, Sr2RuO4 is also in proximity to a commensurate magnetic tendency that can be stabilized via Fe doping. C1 [Zhu, M.; Zou, T.; Ke, X.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Shanavas, K. V.; Singh, D. J.] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. [Wang, Y.; Sun, W. F.; Mao, Z. Q.] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA. [Tian, W.; Garlea, V. O.; Podlesnyak, A.; Matsuda, M.; Stone, M. B.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Keavney, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Ke, X (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. EM ke@pa.msu.edu RI Stone, Matthew/G-3275-2011 OI Stone, Matthew/0000-0001-7884-9715 FU National Science Foundation [DMR-1608752]; Michigan State University; U.S. Department of Energy (DOE) under EPSCOR Grant [DE-SC0012432]; Louisiana Board of Regents; Scientific User Facilities Division, Office of Basic Energy Sciences, DOE; DOE Office of Science [DE-AC02-06CH11357] FX Work at Michigan State University was supported by the National Science Foundation under Award No. DMR-1608752 and the start-up funds from Michigan State University. Work at Tulane University was supported by the U.S. Department of Energy (DOE) under EPSCOR Grant No. DE-SC0012432 with additional support from the Louisiana Board of Regents (support for crystal growth). Work at ORNL's SNS and HFIR was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, DOE. This research used resources of the Advanced Photon Source, a U.S. Department of Energy Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 46 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 10 PY 2017 VL 95 IS 6 AR 054413 DI 10.1103/PhysRevB.95.054413 PG 6 WC Physics, Condensed Matter SC Physics GA EK2EW UT WOS:000393741600003 ER PT J AU Zou, T Lee, CC Tian, W Cao, HB Zhu, M Qian, B dela Cruz, CR Ku, W Mao, ZQ Ke, X AF Zou, T. Lee, C. C. Tian, W. Cao, H. B. Zhu, M. Qian, B. dela Cruz, C. R. Ku, W. Mao, Z. Q. Ke, X. TI G-type magnetic order in ferropnictide CuxFe1-yAs induced by hole doping on As sites SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; NEUTRON-SCATTERING; IRON; LAO1-XFXFEAS; EXCHANGE AB Strong antiferromagnetic (AFM) correlation has long been postulated to be closely related to the occurrence of unconventional high-temperature superconductivity observed in the cuprates, heavy fermions, and organic superconductors. The recently discovered Fe-based superconductors add another interesting member to the list. However, insufficient attention has been paid to the versatile nature of the magnetic correlation in these materials: some showing stripe (C-type) order, others double stripe (E-type) or block AFM order instead, implying potentially richer structures of the superconducting order. Here we report the observation of yet another AFM correlation in the family: a G-type AFM order as seen in the high-T-c cuprates, in Cu (x) Fe1-y As compounds isostructural to the LiFeAs superconductor. This study not only sheds light on the underlying mechanism of the rich magnetic correlations in the Fe-based superconductors, but also suggests the possibility of realizing a distinct pairing symmetry upon chemical doping or applying pressure. C1 [Zou, T.; Zhu, M.; Ke, X.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Lee, C. C.] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. [Tian, W.; Cao, H. B.; dela Cruz, C. R.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Qian, B.; Mao, Z. Q.] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA. [Qian, B.] Changshu Inst Technol, Adv Funct Mat Lab, Changshu 215500, Peoples R China. [Qian, B.; Ku, W.] Changshu Inst Technol, Dept Phys, Changshu 215500, Peoples R China. [Ku, W.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China. RP Ku, W (reprint author), Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China. EM weiku@mailaps.org; ke@pa.msu.edu FU Michigan State University; U.S. Department of Energy under EPSCoR Grant [DE-SC0012432]; Louisiana Board of Regents; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; National Natural Science Foundation of China [11374043, 11174043, 51371004, 11447601]; Natural Science Foundation of Jiangsu Educational Department [13KJA430001]; Jiangsu Province [2011XCL-022, 2012-XCL-036]; Ministry of Science and Technology [2016YFA0300500, 2016YFA0300501] FX X.K. acknowledges support from the start-up funds at Michigan State University. The work at Tulane (i.e., CuxFe1-y As single crystal growth and characterization) is supported by the U.S. Department of Energy under EPSCoR Grant No. DE-SC0012432 with additional support from the Louisiana Board of Regents. Research conducted at ORNL's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. B.Q. is supported by National Natural Science Foundation of China (Grants No. 11374043, No. 11174043, and No. 51371004), Natural Science Foundation of Jiangsu Educational Department (Grant No. 13KJA430001), and six-talent peak of Jiangsu Province (Grants No. 2011XCL-022 and No. 2012-XCL-036). W.K. acknowledges support from National Natural Science Foundation of China (Grant No. 11447601) and Ministry of Science and Technology (Grants No. 2016YFA0300500 and No. 2016YFA0300501). NR 41 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 10 PY 2017 VL 95 IS 6 AR 054414 DI 10.1103/PhysRevB.95.054414 PG 5 WC Physics, Condensed Matter SC Physics GA EK2EW UT WOS:000393741600004 ER PT J AU Mueller, AH Wu, B Xiao, BW Yuan, F AF Mueller, A. H. Wu, Bin Xiao, Bo-Wen Yuan, Feng TI Medium induced transverse momentum broadening in hard processes SO PHYSICAL REVIEW D LA English DT Article ID RADIATIVE ENERGY-LOSS; QUARK-GLUON PLASMA; ROOT-S(NN)=2.76 TEV; QCD MATTER; SMALL-X; COLLISIONS; RENORMALIZATION; DISTRIBUTIONS; SUPPRESSION; SATURATION AB Using deep inelastic scattering on a large nucleus as an example, we consider the transverse momentum broadening of partons in hard processes in the presence of medium. We find that one can factorize the vacuum radiation contribution and medium related PT broadening effects into the Sudakov factor and medium dependent distributions, respectively. Our derivations can be generalized to other hard processes, such as dijet productions, which can be used as a probe to measure the medium PT broadening effects in heavy ion collisions when Sudakov effects are not overwhelming. C1 [Mueller, A. H.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Wu, Bin] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Wu, Bin] CEA Saclay, Inst Phys Theor, UMR 3681, F-91191 Gif Sur Yvette, France. [Xiao, Bo-Wen] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. [Xiao, Bo-Wen] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Yuan, Feng] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Mueller, AH (reprint author), Columbia Univ, Dept Phys, New York, NY 10027 USA. FU U.S. Department of Energy [DE-AC02-05CH11231, DE-FG02-92ER40699]; NSFC [11575070, 11521064]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-SC0004286] FX This work was supported in part by the U.S. Department of Energy under the Contracts No. DE-AC02-05CH11231 and No. DE-FG02-92ER40699, and by the NSFC under Grant No. 11575070 and No. 11521064. This material is also based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0004286 (BW). B. W. would like to thank Yuri Kovchegov for useful and informative discussions. Three of the authors, A. H. M, B. W. and B. X., would like to thank Dr. Jian-Wei Qiu and the nuclear theory group at BNL for the hospitality and support during their visit when this work was finalized. NR 51 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 10 PY 2017 VL 95 IS 3 AR 034007 DI 10.1103/PhysRevD.95.034007 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EK2GH UT WOS:000393745300001 ER PT J AU Chuang, CH Ray, SC Mazumder, D Sharma, S Ganguly, A Papakonstantinou, P Chiou, JW Tsai, HM Shiu, HW Chen, CH Lin, HJ Guo, JH Pong, WF AF Chuang, Cheng-Hao Ray, Sekhar C. Mazumder, Debarati Sharma, Surbhi Ganguly, Abhijit Papakonstantinou, Pagona Chiou, Jau-Wern Tsai, Huang-Ming Shiu, Hung-Wei Chen, Chia-Hao Lin, Hong-Ji Guo, Jinghua Pong, Way-Faung TI Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study SO SCIENTIFIC REPORTS LA English DT Article ID GRAPHITE OXIDE; DOPED GRAPHENE; THIN-FILMS; PHOTOELECTRON-SPECTROSCOPY; ELECTRONIC-STRUCTURES; RAMAN-SPECTROSCOPY; AMORPHOUS-CARBON; BAND-STRUCTURE; PHOTOLUMINESCENCE; PHOTOEMISSION AB Nitrogen-doped graphene oxides (GO:N-x) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)(2)]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:N-x synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp(2)-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:N-x. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements. C1 [Chuang, Cheng-Hao; Pong, Way-Faung] Tamkang Univ, Dept Phys, New Taipei 251, Taiwan. [Ray, Sekhar C.; Mazumder, Debarati] Univ South Africa, Dept Phys, Florida Sci Campus, ZA-1710 Johannesburg, South Africa. [Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona] Univ Ulster, Sch Engn, Engn Res Inst, Newtownabbey BT37 0QB, North Ireland. [Chiou, Jau-Wern] Natl Univ Kaohsiung, Dept Appl Phys, Kaohsiung 811, Kaohsiung, Taiwan. [Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji] Natl Synchrotron Radiat Res Ctr, Hsinchu 300, Taiwan. [Guo, Jinghua] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Guo, Jinghua] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Sharma, Surbhi] Univ Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England. RP Pong, WF (reprint author), Tamkang Univ, Dept Phys, New Taipei 251, Taiwan.; Ray, SC (reprint author), Univ South Africa, Dept Phys, Florida Sci Campus, ZA-1710 Johannesburg, South Africa. EM Raysc@unisa.ac.za; wfpong@mail.tku.edu.tw FU National Science Council of Taiwan; Ministry of Science and Technology of Taiwan (MoST) [MoST 105-2112-M-032-001-MY3]; National Research Foundation, South Africa [EQP13091742446]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank the National Science Council of Taiwan and Ministry of Science and Technology of Taiwan (MoST) for providing financial support for the research under project No. MoST 105-2112-M-032-001-MY3. The author S.C.R. acknowledges the National Research Foundation, South Africa (Grant No: EQP13091742446) for financial support. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 68 TC 0 Z9 0 U1 9 U2 9 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 10 PY 2017 VL 7 AR 42235 DI 10.1038/srep42235 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EK7IN UT WOS:000394099600001 PM 28186190 ER PT J AU Yang, SH Zhang, YG Cong, J Wang, MM Zhao, MX Lu, H Xie, CY Yang, CY Yuan, T Li, DQ Zhou, JZ Gu, BH Yang, YF AF Yang, Sihang Zhang, Yuguang Cong, Jing Wang, Mengmeng Zhao, Mengxin Lu, Hui Xie, Changyi Yang, Caiyun Yuan, Tong Li, Diqiang Zhou, Jizhong Gu, Baohua Yang, Yunfeng TI Variations of Soil Microbial Community Structures Beneath Broadleaved Forest Trees in Temperate and Subtropical Climate Zones SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE microbial community; GeoChip; high-throughput seuqencing; broadleaved forests; soil biogeochemical process ID BACTERIAL COMMUNITIES; ENZYME-ACTIVITIES; DIVERSITY; CARBON; PLANT; BIODIVERSITY; GEOCHIP; BIOGEOGRAPHY; RESILIENCE; MECHANISMS AB Global warming has shifted climate zones poleward or upward. However, understanding the responses and mechanism of microbial community structure and functions relevant to natural climate zone succession is challenged by the high complexity of microbial communities. Here, we examined soil microbial community in three broadleaved forests located in the Wulu Mountain (WLM, temperate climate), Funiu Mountain (FNM, at the border of temperate and subtropical climate zones), or Shennongjia Mountain (SNJ, subtropical climate). Although plant species richness decreased with latitudes, the microbial taxonomic alpha-diversity increased with latitudes, concomitant with increases in soil total and available nitrogen and phosphorus contents. Phylogenetic NRI (Net Relatedness Index) values increased from -0.718 in temperate zone (WLM) to 1.042 in subtropical zone (SNJ), showing a shift from over dispersion to clustering likely caused by environmental filtering such as low pH and nutrients. Similarly, taxonomy-based association networks of subtropical forest samples were larger and tighter, suggesting clustering. In contrast, functional alpha-diversity was similar among three forests, but functional gene networks of the FNM forest significantly (P < 0.050) differed from the others. A significant correlation (R = 0.616, P < 0.001) between taxonomic and functional beta-diversity was observed only in the FNM forest, suggesting low functional redundancy at the border of climate zones. Using a strategy of space-fortime substitution, we predict that poleward climate range shift will lead to decreased microbial taxonomic alpha-diversities in broadleaved forest. C1 [Yang, Sihang; Zhang, Yuguang; Cong, Jing; Lu, Hui; Li, Diqiang] Chinese Acad Forestry, Inst Forestry Ecol Environm & Protect, Beijing, Peoples R China. [Yang, Sihang; Zhang, Yuguang; Cong, Jing; Lu, Hui; Li, Diqiang] Chinese Acad Forestry, State Forestry Adm, Key Lab Forest Ecol & Environm, Beijing, Peoples R China. [Yang, Sihang; Wang, Mengmeng; Zhao, Mengxin; Xie, Changyi; Zhou, Jizhong; Yang, Yunfeng] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing, Peoples R China. [Cong, Jing] Cent S Univ, Sch Minerals Proc & Bioengn, Changsha, Hunan, Peoples R China. [Cong, Jing] Qingdao Univ, Affiliated Hosp, Dept Oncol, Qingdao, Peoples R China. [Yang, Caiyun; Yuan, Tong; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Yang, Caiyun; Yuan, Tong; Zhou, Jizhong] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA. [Zhou, Jizhong] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. [Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. RP Yang, YF (reprint author), Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing, Peoples R China. EM yangyf@tsinghua.edu.cn FU public welfare project of the national scientific research institution [CAFRIFEEP201101]; National Science Foundation of China [31370145, 31670614, 41471202, 41430856]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDB15010102]; Collaborative Innovation Center for Regional Environmental Quality FX This research was supported by grants to YZ from the public welfare project of the national scientific research institution (CAFRIFEEP201101) and National Science Foundation of China (31370145 and 31670614), to YY from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15010102) and National Science Foundation of China (41471202), and to JZ from the National Science Foundation of China (41430856) and Collaborative Innovation Center for Regional Environmental Quality. NR 50 TC 0 Z9 0 U1 17 U2 17 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD FEB 10 PY 2017 VL 8 AR 200 DI 10.3389/fmicb.2017.00200 PG 10 WC Microbiology SC Microbiology GA EK3OY UT WOS:000393836900001 PM 28239373 ER PT J AU Lin, SX Yang, XY Jia, S Weeks, AM Hornsby, M Lee, PS Nichiporuk, RV Iavarone, AT Wells, JA Toste, FD Chang, CJ AF Lin, Shixian Yang, Xiaoyu Jia, Shang Weeks, Amy M. Hornsby, Michael Lee, Peter S. Nichiporuk, Rita V. Iavarone, Anthony T. Wells, James A. Toste, F. Dean Chang, Christopher J. TI CHEMICAL BIOLOGY Redox-based reagents for chemoselective methionine bioconjugation SO SCIENCE LA English DT Article ID PROTEIN MODIFICATION; CYSTEINE; OXIDATION; DISCOVERY; ELECTROPHILES; CONJUGATION; INHIBITORS; CHEMISTRY; PROTEOMES; PATHWAY AB Cysteine can be specifically functionalized by a myriad of acid-base conjugation strategies for applications ranging from probing protein function to antibody-drug conjugates and proteomics. In contrast, selective ligation to the other sulfur-containing amino acid, methionine, has been precluded by its intrinsically weaker nucleophilicity. Here, we report a strategy for chemoselective methionine bioconjugation through redox reactivity, using oxaziridine-based reagents to achieve highly selective, rapid, and robust methionine labeling under a range of biocompatible reaction conditions. We highlight the broad utility of this conjugation method to enable precise addition of payloads to proteins, synthesis of antibody-drug conjugates, and identification of hyperreactive methionine residues in whole proteomes. C1 [Lin, Shixian; Yang, Xiaoyu; Jia, Shang; Toste, F. Dean; Chang, Christopher J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Chang, Christopher J.] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. [Chang, Christopher J.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Nichiporuk, Rita V.; Iavarone, Anthony T.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Toste, F. Dean; Chang, Christopher J.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA USA. [Weeks, Amy M.; Hornsby, Michael; Lee, Peter S.; Wells, James A.] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA USA. [Wells, James A.] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94143 USA. [Yang, Xiaoyu] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai, Peoples R China. RP Toste, FD; Chang, CJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Chang, CJ (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA.; Chang, CJ (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA.; Toste, FD; Chang, CJ (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA USA. EM fdtoste@berkeley.edu; chrischang@berkeley.edu OI Lin, Shixian/0000-0001-9718-9986 FU U.S. Department of Energy/Lawrence Berkeley National Laboratory [101528-002, DE-AC02-05CH11231]; NIH [1S10OD020062-01, F32CA203152] FX We thank the U.S. Department of Energy/Lawrence Berkeley National Laboratory (101528-002 to C.J.C. and DE-AC02-05CH11231 to F.D.T.) for financial support, as well as NIH (GM79465 to C.J.C.) for pilot protein labeling studies. C.J.C. is an Investigator of the Howard Hughes Medical Institute and a Canadian Institute for Advanced Research Senior Fellow. We also thank NIH for grant 1S10OD020062-01 in financial support of University of California (UC) Berkeley QB3 mass spectrometry facilities. We thank A. Killilea (UC Berkeley Tissue Culture Facility) and M. Salemi and B. Phinney (UC Davis Proteomics Core) for expert technical assistance, as well as S. Pollock for the HEK-293T-GFP cell line, V. Yu for yeast genome editing, and D. Nomura for helpful discussions. A.M.W. is a Merck Fellow of the Helen Hay Whitney Foundation. P.S.L is supported by a postdoctoral fellowship from NIH (F32CA203152). The experimental data sets used in this study are available as supplementary materials. S.L., X.Y., F.D.T., and C.J.C. are listed as inventors on a patent application describing redox-active reagents for methionine conjugation. NR 39 TC 0 Z9 0 U1 20 U2 20 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD FEB 10 PY 2017 VL 355 IS 6325 BP 597 EP + PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EK0SF UT WOS:000393636700041 PM 28183972 ER PT J AU Wang, HP Weiss, BP Bai, XN Downey, BG Wang, J Wang, JJ Suavet, C Fu, RR Zucolotto, ME AF Wang, Huapei Weiss, Benjamin P. Bai, Xue-Ning Downey, Brynna G. Wang, Jun Wang, Jiajun Suavet, Clement Fu, Roger R. Zucolotto, Maria E. TI SOLAR SYSTEM FORMATION Lifetime of the solar nebula constrained by meteorite paleomagnetism SO SCIENCE LA English DT Article ID ANGRITE PARENT BODY; PROTOPLANETARY DISK; CHONDRITES; DIFFERENTIATION; PLANETESIMALS; EVOLUTION; INSTABILITY; CHONDRULES; ACCRETION; MIGRATION AB A key stage in planet formation is the evolution of a gaseous and magnetized solar nebula. However, the lifetime of the nebular magnetic field and nebula are poorly constrained. We present paleomagnetic analyses of volcanic angrites demonstrating that they formed in a near-zero magnetic field (<0.6 microtesla) at 4563.5 +/- 0.1 million years ago, similar to 3.8 million years after solar system formation. This indicates that the solar nebula field, and likely the nebular gas, had dispersed by this time. This sets the time scale for formation of the gas giants and planet migration. Furthermore, it supports formation of chondrules after 4563.5 million years ago by non-nebular processes like planetesimal collisions. The core dynamo on the angrite parent body did not initiate until about 4 to 11 million years after solar system formation. C1 [Wang, Huapei; Weiss, Benjamin P.; Downey, Brynna G.; Suavet, Clement; Fu, Roger R.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA. [Bai, Xue-Ning] Harvard Smithsonian Ctr Astrophys, Inst Theory & Computat, 60 Garden St, Cambridge, MA 02138 USA. [Wang, Jun; Wang, Jiajun] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Zucolotto, Maria E.] Museu Nacl, Rio De Janeiro, Brazil. [Wang, Huapei] China Univ Geosci, 388 Lumo Rd, Wuhan 430074, Hubei, Peoples R China. RP Wang, HP (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA. EM huapei@mit.edu FU NASA [NNX15AH72G]; NASA Solar System Exploration and Research Virtual Institute [NNA14AB01A]; U.S. Rosetta program; U.S. Department of Energy, Office of Basic Energy Science [DE-AC02-98CH10886]; DOE Office of Science [DE-AC02-06CH11357]; DOE [DE-SC0012704] FX We thank D. Kent for assistance with hysteresis and thermomagnetic measurements in the Rutgers Paleomagnetism Laboratory; E. Martin and C. Ross for assistance with hysteresis measurements at MIT; P. Rochette for providing the Galapagos lava samples; J. Crowley, F. Nimmo, E. Lima, and S. Balbus for useful discussions; C. Jones for use of the PaleoMag 3.1 software; and B. Carbone for administrative assistance. We also thank the American Natural History Museum for providing Angra dos Reis and Sahara 99555; the Museu Nacional, Brazil, for providing Angra dos Reis; and the National Institute for Polar Research, Japan, for providing Asuka 881371. The D'Orbigny samples were privately acquired and are curated at MIT. Paleomagnetic analysis data are provided in the supplementary materials. This research was funded by the NASA Emerging Worlds program grant NNX15AH72G, the NASA Solar System Exploration and Research Virtual Institute grant NNA14AB01A, the U.S. Rosetta program, and a generous gift from Thomas F. Peterson Jr. The use of the National Synchrotron Light Source (NSLS) was supported by the U.S. Department of Energy, Office of Basic Energy Science under contract DE-AC02-98CH10886. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract DE-AC02-06CH11357. Use of APS beamline 8BM is partially supported by the National Synchrotron Light Source II, Brookhaven National Laboratory, under DOE contract DE-SC0012704. We also thank five anonymous reviewers for their helpful reviews. NR 40 TC 0 Z9 0 U1 11 U2 11 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD FEB 10 PY 2017 VL 355 IS 6325 BP 623 EP + DI 10.1126/science.aaf5043 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EK0SF UT WOS:000393636700047 PM 28183977 ER PT J AU Wu, YMA Yin, ZW Farmand, M Yu, YS Shapiro, DA Liao, HG Liang, WI Chu, YH Zheng, HM AF Wu, Yimin A. Yin, Zuwei Farmand, Maryam Yu, Young-Sang Shapiro, David A. Liao, Hong-Gang Liang, Wen-I Chu, Ying-Hao Zheng, Haimei TI In-situ Multimodal Imaging and Spectroscopy of Mg Electrodeposition at Electrode-Electrolyte Interfaces SO SCIENTIFIC REPORTS LA English DT Article ID RECHARGEABLE MAGNESIUM BATTERIES; RAY-ABSORPTION SPECTROSCOPY; ION BATTERIES; DEPOSITION; METAL; PERFORMANCE; MORPHOLOGY; CHALLENGE; COMPLEX; STORAGE AB We report the study of Mg cathodic electrochemical deposition on Ti and Au electrode using a multimodal approach by examining the sample area in-situ using liquid cell transmission electron microscopy (TEM), scanning transmission X-ray microscopy (STXM) and X-ray absorption spectroscopy (XAS). Magnesium Aluminum Chloride Complex was synthesized and utilized as electrolyte, where non-reversible features during in situ charging-discharging cycles were observed. During charging, a uniform Mg film was deposited on the electrode, which is consistent with the intrinsic non-dendritic nature of Mg deposition in Mg ion batteries. The Mg thin film was not dissolvable during the following discharge process. We found that such Mg thin film is hexacoordinated Mg compounds by in-situ STXM and XAS. This study provides insights on the non-reversibility issue and failure mechanism of Mg ion batteries. Also, our method provides a novel generic method to understand the in situ battery chemistry without any further sample processing, which can preserve the original nature of battery materials or electrodeposited materials. This multimodal in situ imaging and spectroscopy provides many opportunities to attack complex problems that span orders of magnitude in length and time scale, which can be applied to a broad range of the energy storage systems. C1 [Wu, Yimin A.; Zheng, Haimei] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Wu, Yimin A.; Yin, Zuwei; Liao, Hong-Gang; Liang, Wen-I; Zheng, Haimei] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yin, Zuwei] Xiamen Univ, Coll Energy, Xiamen 361005, Peoples R China. [Farmand, Maryam; Yu, Young-Sang; Shapiro, David A.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Yu, Young-Sang] Univ Illinois, Dept Chem, Chicago, IL 60607 USA. [Liao, Hong-Gang] Xiamen Univ, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China. [Liang, Wen-I; Chu, Ying-Hao] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Wu, Yimin A.] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 South Cass Ave, Argonne, IL 60439 USA. RP Zheng, HM (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.; Zheng, HM (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM hmzheng@lbl.gov OI Wu, Yimin A./0000-0002-3807-8431 FU US. Department of Energy (DOE) [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Science, of the US. Department of Energy [DE-AC02-05CH11231]; SinBeRise program at Berkeley; National Science Council in Taiwan [NSC102-2911-I-009-502]; NorthEast Center for Chemical Energy Storage, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0012583]; DOE Office of Science Early Career Research Program; DOE BSE Materials Sciences and Engineering Division FX The TEM experiments were conducted using MSD TEM facility and Titan microscope at National Center for Electron Microscopy (NCEM) at the Molecular Foundry of Lawrence Berkeley National Laboratory (LBNL), which is supported by the US. Department of Energy (DOE) under contract no. # DE-AC02-05CH11231. The XAS and STXM measurements were carried out using beamline 5.3.2.1 at the Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory. The ALS is supported by the Director, Office of Science, Office of Basic Energy Science, of the US. Department of Energy (contract no. # DE-AC02-05CH11231). The authors acknowledge the support of ALS technical and safety staff. The electrochemical liquid cell was fabricated at the Marvell Nanofabrication Laboratory of the University of California, Berkeley. Y.A.W. was supported by SinBeRise program at Berkeley. W.I.L. was supported by National Science Council in Taiwan under contract no. NSC102-2911-I-009-502. Y.-S.Y. was supported as part of the NorthEast Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0012583. H.Z. thanks the support of DOE Office of Science Early Career Research Program. Zheng thanks DOE BSE Materials Sciences and Engineering Division for funding support. NR 43 TC 0 Z9 0 U1 18 U2 18 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 10 PY 2017 VL 7 AR 42527 DI 10.1038/srep42527 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EK3DS UT WOS:000393806800001 PM 28186175 ER PT J AU Zhang, CF Liu, ZK Chen, ZY Xie, YW He, RH Tang, SJ He, JF Li, W Jia, T Rebec, SN Ma, EY Yan, H Hashimoto, M Lu, DH Mo, SK Hikita, Y Moore, RG Hwang, HY Lee, DH Shen, ZX AF Zhang, Chaofan Liu, Zhongkai Chen, Zhuoyu Xie, Yanwu He, Ruihua Tang, Shujie He, Junfeng Li, Wei Jia, Tao Rebec, Slavko N. Ma, Eric Yue Yan, Hao Hashimoto, Makoto Lu, Donghui Mo, Sung-Kwan Hikita, Yasuyuki Moore, Robert G. Hwang, Harold Y. Lee, Dunghai Shen, Zhixun TI Ubiquitous strong electron-phonon coupling at the interface of FeSe/SrTiO3 SO NATURE COMMUNICATIONS LA English DT Article ID BARE SRTIO3 SURFACE; PHOTOEMISSION-SPECTROSCOPY; PHASE-DIAGRAM; FESE; SUPERCONDUCTIVITY; LIQUID; GAS; LAYER AB The observation of replica bands in single-unit-cell FeSe on SrTiO3 (STO)(001) by angle-resolved photoemission spectroscopy (ARPES) has led to the conjecture that the coupling between FeSe electrons and the STO phonons are responsible for the enhancement of T-c over other FeSe-based superconductors. However the recent observation of a similar superconducting gap in single-unit-cell FeSe/STO(110) raised the question of whether a similar mechanism applies. Here we report the ARPES study of the electronic structure of FeSe/STO(110). Similar to the results in FeSe/STO(001), clear replica bands are observed. We also present a comparative study of STO(001) and STO(110) bare surfaces, and observe similar replica bands separated by approximately the same energy, indicating this coupling is a generic feature of the STO surfaces and interfaces. Our findings suggest that the large superconducting gaps observed in FeSe films grown on different STO surface terminations are likely enhanced by a common mechanism. C1 [Zhang, Chaofan; Chen, Zhuoyu; Xie, Yanwu; Tang, Shujie; He, Junfeng; Li, Wei; Jia, Tao; Rebec, Slavko N.; Ma, Eric Yue; Yan, Hao; Hikita, Yasuyuki; Moore, Robert G.; Hwang, Harold Y.; Shen, Zhixun] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Zhang, Chaofan; Chen, Zhuoyu; Xie, Yanwu; Tang, Shujie; He, Junfeng; Li, Wei; Jia, Tao; Rebec, Slavko N.; Ma, Eric Yue; Yan, Hao; Moore, Robert G.; Hwang, Harold Y.; Shen, Zhixun] Stanford Univ, Geballe Lab Adv Mat, Dept Phys, Stanford, CA 94305 USA. [Zhang, Chaofan; Chen, Zhuoyu; Xie, Yanwu; Tang, Shujie; He, Junfeng; Li, Wei; Jia, Tao; Rebec, Slavko N.; Ma, Eric Yue; Yan, Hao; Moore, Robert G.; Hwang, Harold Y.; Shen, Zhixun] Stanford Univ, Geballe Lab Adv Mat, Dept Appl Phys, Stanford, CA 94305 USA. [Liu, Zhongkai] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 200031, Peoples R China. [He, Ruihua] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Hashimoto, Makoto; Lu, Donghui] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Mo, Sung-Kwan] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Lee, Dunghai] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Shen, ZX (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.; Shen, ZX (reprint author), Stanford Univ, Geballe Lab Adv Mat, Dept Phys, Stanford, CA 94305 USA.; Shen, ZX (reprint author), Stanford Univ, Geballe Lab Adv Mat, Dept Appl Phys, Stanford, CA 94305 USA. EM zxshen@stanford.edu RI Mo, Sung-Kwan/F-3489-2013; Hikita, Yasuyuki/F-5600-2011 OI Mo, Sung-Kwan/0000-0003-0711-8514; Hikita, Yasuyuki/0000-0002-7748-8329 FU US DOE, Office of Basic Energy Science, Division of Materials Science and Engineering [DE-AC02-76SF00515]; Office of Basic Energy Sciences, US DOE [DE-AC02-05CH11231, DE-AC02- 76SF00515]; Knut and Alice Wallenberg Foundation in Sweden; US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231] FX The work at Stanford is supported by the US DOE, Office of Basic Energy Science, Division of Materials Science and Engineering, under award number DE-AC02-76SF00515. ALS and SSRL are supported by the Office of Basic Energy Sciences, US DOE under contract No. DE-AC02-05CH11231 and DE-AC02- 76SF00515, respectively. CFZ's postdoctoral fellowship is supported by Knut and Alice Wallenberg Foundation in Sweden. D.H.L. is supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, grant DE-AC02-05CH11231. NR 32 TC 0 Z9 0 U1 31 U2 31 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB 10 PY 2017 VL 8 AR 14468 DI 10.1038/ncomms14468 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EK2ED UT WOS:000393739700001 PM 28186084 ER PT J AU Safta, C Blaylock, M Templeton, J Domino, S Sargsyan, K Najm, H AF Safta, Cosmin Blaylock, Myra Templeton, Jeremy Domino, Stefan Sargsyan, Khachik Najm, Habib TI Uncertainty quantification in LES of channel flow SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article DE large eddy simulation; Bayesian framework; calibration; model error; polynomial chaos; Rosenblatt transformation ID LARGE-EDDY SIMULATION; DIRECT NUMERICAL-SIMULATION; POLYNOMIAL CHAOS; TURBULENCE MODELS; ERRORS; PROPAGATION AB In this paper, we present a Bayesian framework for estimating joint densities for large eddy simulation (LES) sub-grid scale model parameters based on canonical forced isotropic turbulence direct numerical simulation (DNS) data. The framework accounts for noise in the independent variables, and we present alternative formulations for accounting for discrepancies between model and data. To generate probability densities for flow characteristics, posterior densities for sub-grid scale model parameters are propagated forward through LES of channel flow and compared with DNS data. Synthesis of the calibration and prediction results demonstrates that model parameters have an explicit filter width dependence and are highly correlated. Discrepancies between DNS and calibrated LES results point to additional model form inadequacies that need to be accounted for. Copyright (c) 2016 John Wiley & Sons, Ltd. C1 [Safta, Cosmin; Blaylock, Myra; Templeton, Jeremy; Domino, Stefan; Sargsyan, Khachik; Najm, Habib] Sandia Natl Labs, Livermore, CA 94551 USA. RP Safta, C (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM csafta@sandia.gov FU Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories; US Department of Energy (DOE), Office of Basic Energy Sciences (BES) Division of Chemical Sciences, Geosciences, and Biosciences; Scientific Discovery through the Advanced Computing (SciDAC) program - US DOE, Office of Science, Advanced Scientific Computing Research; US DOE's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was funded by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. HNN acknowledges the support of the US Department of Energy (DOE), Office of Basic Energy Sciences (BES) Division of Chemical Sciences, Geosciences, and Biosciences. KS acknowledges the support of the Scientific Discovery through the Advanced Computing (SciDAC) program funded by US DOE, Office of Science, Advanced Scientific Computing Research. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 60 TC 1 Z9 1 U1 5 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0271-2091 EI 1097-0363 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD FEB 10 PY 2017 VL 83 IS 4 BP 376 EP 401 DI 10.1002/fld.4272 PG 26 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA EI4WY UT WOS:000392495600003 ER PT J AU Balke, N Jesse, S Carmichael, B Okatan, MB Kravchenko, II Kalinin, SV Tselev, A AF Balke, Nina Jesse, Stephen Carmichael, Ben Okatan, M. Baris Kravchenko, Ivan I. Kalinin, Sergei V. Tselev, Alexander TI Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy SO NANOTECHNOLOGY LA English DT Article DE scanning probe microscopy; electric field; electrostatic force; cantilever dynamics ID FERROELECTRIC THIN-FILMS; STRONG ELECTRIC-FIELD; DOMAIN-STRUCTURE; PIEZORESPONSE; SURFACE; SPECTROSCOPY; NANOSCALE; CANTILEVER; RESOLUTION; NANOLITHOGRAPHY AB Atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm(-1) at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids. C1 [Balke, Nina; Jesse, Stephen; Okatan, M. Baris; Kravchenko, Ivan I.; Kalinin, Sergei V.; Tselev, Alexander] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Carmichael, Ben] Southern Res Inst, Birmingham, AL 35211 USA. [Tselev, Alexander] Univ Aveiro, CICECO, P-3810193 Aveiro, Portugal. [Tselev, Alexander] Univ Aveiro, Dept Phys, P-3810193 Aveiro, Portugal. RP Balke, N (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM balken@ornl.gov RI Okatan, M. Baris/E-1913-2016; Kravchenko, Ivan/K-3022-2015; OI Okatan, M. Baris/0000-0002-9421-7846; Kravchenko, Ivan/0000-0003-4999-5822; Tselev, Alexander/0000-0002-0098-6696 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; FCT/MEC [FCT UID/CTM/50011/2013]; FEDER FX Experiments were planned and conducted through personal support provided by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division through the Office of Science Early Career Research Program (NB). The facilities to perform the experiments were provided at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy, which also provided additional personal support (SJ, BC, MBO, IK, SVK, AT). AT also acknowledges CICECO-Aveiro Institute of Materials (Ref. FCT UID/CTM/50011/2013) financed by national funds through the FCT/MEC and, when applicable, co-financed by FEDER under the PT2020 Partnership Agreement. IK provided the HfO2 sample. NR 75 TC 0 Z9 0 U1 15 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD FEB 10 PY 2017 VL 28 IS 6 AR 065704 DI 10.1088/1361-6528/aa5370 PG 11 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA EI1DW UT WOS:000392217400001 PM 28050969 ER PT J AU Bhagia, S Kumar, R Wyman, CE AF Bhagia, Samarthya Kumar, Rajeev Wyman, Charles E. TI Effects of dilute acid and flowthrough pretreatments and BSA supplementation on enzymatic deconstruction of poplar by cellulase and xylanase SO CARBOHYDRATE POLYMERS LA English DT Article DE Flowthrough pretreatment; Bovine serum albumin; Cellulase; Xylanase; Dilute acid; Poplar ID COMPARATIVE SUGAR RECOVERY; CORN STOVER; LEADING TECHNOLOGIES; CELLULOSIC ETHANOL; HYDROLYSIS; LIGNIN; INHIBITION; ENZYMES; SOLIDS; DIGESTIBILITY AB To help understand factors controlling the recalcitrance of lignocellulosic biomass to deconstruction to sugars, poplar was pretreated with liquid hot water (LHW) and extremely dilute acid (EDA) at 140 degrees C and 180 degrees C in batch and flowthrough reactors. The resulting solids were then subjected to enzymatic hydrolysis by eight combinations of cellulase, xylanase, and bovine serum albumin (BSA). Co-addition of xylanase to cellulase resulted in up to 11 percentage points higher overall sugar yield than their sequential addition. In general, supplementation of BSA to enzymes had a larger impact on flowthrough solids with reduced lignin content than batch solids with high lignin content. BSA did not affect xylan yields and while it had low impact on LHW solids, it caused large increases in sugar yields from EDA solids. Flowthrough pretreatment produced less recalcitrant solids than did batch operation, but using very dilute acid reduced recalcitrance even more. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Bhagia, Samarthya; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Dept Chem & Environm Engn, 900 Univ Ave, Riverside, CA 92521 USA. [Bhagia, Samarthya; Kumar, Rajeev; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol, 1084 Columbia Ave, Riverside, CA 92507 USA. [Bhagia, Samarthya; Kumar, Rajeev; Wyman, Charles E.] Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA. RP Wyman, CE (reprint author), 1084 Columbia Ave, Riverside, CA 92507 USA. EM sbhag001@ucr.edu; rkumar@cert.ucr.edu; cewyman@engr.ucr.edu FU Office of Biological and Environmental Research in the Department of Energy (DOE) Office of Science through the BioEnergy Science Center (BESC) at Oak Ridge National Laboratory [DE-PS02-06ER64304] FX This work was supported by the Office of Biological and Environmental Research in the Department of Energy (DOE) Office of Science through the BioEnergy Science Center (BESC) at Oak Ridge National Laboratory (Contract DE-PS02-06ER64304). NR 48 TC 0 Z9 0 U1 19 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0144-8617 EI 1879-1344 J9 CARBOHYD POLYM JI Carbohydr. Polym. PD FEB 10 PY 2017 VL 157 BP 1940 EP 1948 DI 10.1016/j.carbpol.2016.11.085 PG 9 WC Chemistry, Applied; Chemistry, Organic; Polymer Science SC Chemistry; Polymer Science GA EH6PT UT WOS:000391896800216 PM 27987914 ER PT J AU March, AM Assefa, TA Boemer, C Bressler, C Britz, A Diez, M Doumy, G Galler, A Harder, M Khakhulin, D Nemeth, Z Papai, M Schulz, S Southworth, SH Yavas, H Young, L Gawelda, W Vanko, G AF March, Anne Marie Assefa, Tadesse A. Boemer, Christina Bressler, Christian Britz, Alexander Diez, Michael Doumy, Gilles Galler, Andreas Harder, Manuel Khakhulin, Dmitry Nemeth, Zoltan Papai, Matyas Schulz, Sebastian Southworth, Stephen H. Yavas, Hasan Young, Linda Gawelda, Wojciech Vanko, Gyorgy TI Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TRANSITION; COMPLEXES; DENSITY; FLUORESCENCE; ABSORPTION; SPECTRA; LIGAND; STATE AB We probe the dynamics of valence electrons in photoexcited [Fe(terpy)(2)](2+) in solution to gain deeper insight into the Fe ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete Is X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitals directly involved in the light-driven dynamics; a change in the metal ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations and more subtle features at the highest energies reflect changes in the frontier orbital populations. C1 [March, Anne Marie; Doumy, Gilles; Southworth, Stephen H.; Young, Linda] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Assefa, Tadesse A.; Boemer, Christina; Bressler, Christian; Britz, Alexander; Diez, Michael; Galler, Andreas; Khakhulin, Dmitry; Schulz, Sebastian; Gawelda, Wojciech] European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany. [Boemer, Christina; Bressler, Christian; Britz, Alexander; Diez, Michael; Khakhulin, Dmitry; Schulz, Sebastian] Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany. [Bressler, Christian] Tech Univ Denmark, Dept Phys, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark. [Harder, Manuel; Yavas, Hasan] DESY, D-22607 Hamburg, Germany. [Nemeth, Zoltan; Papai, Matyas; Vanko, Gyorgy] Hungarian Acad Sci, Wigner Res Ctr Phys, H-1525 Budapest, Hungary. [Papai, Matyas] Tech Univ Denmark, Dept Chem, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark. [Young, Linda] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Young, Linda] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Gawelda, Wojciech] Jan Kochanowski Univ Humanities & Sci, Inst Phys, PL-25406 Kielce, Poland. RP March, AM (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.; Gawelda, W (reprint author), European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany.; Vanko, G (reprint author), Hungarian Acad Sci, Wigner Res Ctr Phys, H-1525 Budapest, Hungary. EM amarch@anl.gov; wojciech.gawelda@xfel.eu; vanko.gyorgy@wigner.mta.hu FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Chemical Sciences, Geosciences, and Biosciences Division; 'Lendulet' (Momentum) Program of the Hungarian Academy of Sciences [LP2013-59]; European Research Council [ERC-StG-259709]; Hungarian Scientific Research Fund (OTKA) [K29724]; Bolyai Fellowship of the Hungarian Academy of Sciences; People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7) under REA grant [609405]; Hamburg Centre of Ultrafast Imaging (CUI); Deutsche Forschungsgemeinschaft [SFB 925/A4]; European XFEL GmbH; European Cluster of Advanced Laser Light Sources (EUCALL) via the Horizon Research and Innovation Programme [654220]; DOE Office of Science [DE-AC02-06CH11357] FX Work by A.M.M., G.D., S.H.S., and L.Y. was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Chemical Sciences, Geosciences, and Biosciences Division. Z. N., P.M., and G. V. were supported by the 'Lendulet' (Momentum) Program of the Hungarian Academy of Sciences (LP2013-59), the European Research Council via contract ERC-StG-259709 (X-cited!), and the Hungarian Scientific Research Fund (OTKA) under contract K29724. Z.N. acknowledges support from the Bolyai Fellowship of the Hungarian Academy of Sciences. P.M. acknowledges support from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 609405 (COFUNDPostdocDTU). T.A.A., C.B., C. Bressler, AB., M.D., A.G, D.K, S.S., and W.G. acknowledge funding by the Hamburg Centre of Ultrafast Imaging (CUI), the Deutsche Forschungsgemeinschaft via SFB 925/A4, the European XFEL GmbH, and the European Cluster of Advanced Laser Light Sources (EUCALL) via the Horizon 2020 Research and Innovation Programme under grant agreement no. 654220. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. We are grateful to the staff of 7-ID from the APS for help during the experiment. NR 41 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 9 PY 2017 VL 121 IS 5 BP 2620 EP 2626 DI 10.1021/acs.jpcc.6b12940 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EK7BQ UT WOS:000394080900015 ER PT J AU Lambert, TN Vigil, JA White, SE Delker, CJ Davis, DJ Kelly, M Brumbach, MT Rodriguez, MA Swartzentruber, BS AF Lambert, Timothy N. Vigil, Julian A. White, Suzanne E. Delker, Collin J. Davis, Danae J. Kelly, Maria Brumbach, Michael T. Rodriguez, Mark A. Swartzentruber, Brian S. TI Understanding the Effects of Cationic Dopants on alpha-MnO2 Oxygen Reduction Reaction Electrocatalysis SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MANGANESE OXIDE NANOPARTICLES; ALKALINE MEDIA; REACTION ORR; FUEL-CELLS; MNO2 NANOSTRUCTURES; CATALYSTS; PERFORMANCE; BATTERIES; MECHANISM; EFFICIENT AB Nickel-doped alpha-MnO2 nanowires (Ni-alpha-MnO2) were prepared with 3.4% or 4.9% Ni using a,hydrothermal method. A comparison of tile electrocatalytic data for the oxygen reduction reaction (ORR) in alkaline electrolyte, versus that obtained with alpha-MnO2 or Cu-alpha-MnO2 is provided: In general, Ni-a-MnO2 (e.g, Ni-4.9%) had higher n values (n = 3:6), faster kinetics (k = 0.015 cm s-'), and lower charge, transfer resistance (R-CT = 2264 Omega at half-wave) values than MnO2 (n = 3.0, k = 0.006 cm s(-1), R-CT = 6104 Omega at half-wave) or Cu-alpha-MnO2 (Cu-2.9%, n = 3.5, ku 0.015 cm s(-1), R-CT = 3412 Omega at half-wave), and the overall activity for Ni-a-MnO2 trended with, increasing Ni content, Ni-4.9% > Ni-3.4%. As observed for Cu-alpha-MnO2, the increase in ORR activity.correlates with the ainount of Mn" at the-surface of the Ni-alpha-MnO2 nanowire. Examining, the activity for both Ni-alpha-MnO2 and Cu-alpha-MnO2-rxiaterials indicates that the Mn'+ at the surface of the electrocatalysts dictate' s the activity trends within the overall series. Single riannwir, C resistance measurements conducted on 47 nanowire devices (is of a-MnO2, 16 of Cu-alpha-MnO2-2,9%, and 16 of Ni-alpha-MnO2-4.9%) demonstrated that Cu-doping leads to a slightly lower resistance value than. Ni-doping, although both were considerably improved relative to the undoped alpha-MnO2. The data also suggest that the ORR charge transfer resistance value, as deteriniridd by electrochemical impedance spectroscopy, is a better indicator--of the cation-doping effect on QRR. catalysis than the, electrical resistance of the nanowire. C1 [Lambert, Timothy N.; Vigil, Julian A.; White, Suzanne E.; Davis, Danae J.; Kelly, Maria] Sandia Natl Labs, Dept Mat Devices & Energy Technol, POB 5800, Albuquerque, NM 87185 USA. [Delker, Collin J.; Swartzentruber, Brian S.] Sandia Natl Labs, Nanostruct Phys, POB 5800, Albuquerque, NM 87185 USA. [Delker, Collin J.; Swartzentruber, Brian S.] Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. [Brumbach, Michael T.; Rodriguez, Mark A.] Sandia Natl Labs, Mat Characterizat & Performance, POB 5800, Albuquerque, NM 87185 USA. RP Lambert, TN (reprint author), Sandia Natl Labs, Dept Mat Devices & Energy Technol, POB 5800, Albuquerque, NM 87185 USA. EM tnlambe@sandia.gov FU Lockheed Martin Corporation [DE-AC04-94AL85000] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 37 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 9 PY 2017 VL 121 IS 5 BP 2789 EP 2797 DI 10.1021/acs.jpcc.6b11252 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EK7BQ UT WOS:000394080900035 ER PT J AU Artyushkova, K Matanovic, I Halevi, B Atanassov, P AF Artyushkova, Kateryna Matanovic, Ivana Halevi, Barr Atanassov, Plamen TI Oxygen Binding to Active Sites of Fe-N-C ORR Electrocatalysts Observed by Ambient-Pressure XPS SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DENSITY-FUNCTIONAL THEORY; FUEL-CELL APPLICATION; AUGMENTED-WAVE METHOD; REDUCTION REACTION; PHOTOELECTRON-SPECTROSCOPY; CATALYTIC SITES; GRAPHENE; TRANSITION; COMPLEXES; CHEMISTRY AB We report the first in situ ambient pressure X-ray photoelectron spectroscopy (APXPS) study of the binding of oxygenated species to the active sites of iron nitrogen carbon oxygen reduction reaction (ORR) electrocatalysts. To better interpret the results, DFT calculations were used to calculate absorption energies of reactants and intermediates on potential active sites and calculate the core level shifts for those. The observed oxygen binding to nitrogen coordinated to iron centers correlates with the enhanced measured ORR fuel cell activity of these materials with respect to metal-free analogs and sheds light on the ORR mechanism on PGM-free electrocatalysts. C1 [Artyushkova, Kateryna; Matanovic, Ivana; Atanassov, Plamen] Univ New Mexico, Dept Chem & Biol Engn, Ctr Miroengn Mat, Albuquerque, NM 87131 USA. [Matanovic, Ivana] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Halevi, Barr] Pajarito Powder LLC, Albuquerque, NM 87102 USA. RP Artyushkova, K (reprint author), Univ New Mexico, Dept Chem & Biol Engn, Ctr Miroengn Mat, Albuquerque, NM 87131 USA. EM kartyush@unm.edu OI Atanassov, Plamen/0000-0003-2996-472X FU Office of Science of the U.S. Department of Energy [DE-AC52-06NA25396]; Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory FX We thank HZB for the allocation of neutron/synchrotron radiation beamtime (proposal 14201170-ST). The VASP license was provided by the Theoretical division, Los Alamos National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. Computational work was performed using the computational resources of EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. This paper has been designated LA-UR-15-27144. NR 45 TC 0 Z9 0 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 9 PY 2017 VL 121 IS 5 BP 2836 EP 2843 DI 10.1021/acs.jpcc.6b11721 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EK7BQ UT WOS:000394080900040 ER PT J AU Tunuguntla, RH Chen, X Belliveau, A Allen, FI Noy, A AF Tunuguntla, Ramya H. Chen, Xi Belliveau, Allison Allen, Frances I. Noy, Aleksandr TI High-Yield Synthesis and Optical Properties of Carbon Nanotube Porins SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ANGLE NEUTRON-SCATTERING; LIPID-BILAYERS; ASSISTED DISPERSION; RAMAN-SPECTROSCOPY; AQUEOUS-SOLUTIONS; TRANSPORT; WATER; SURFACTANTS; SOLVENTS; PROTON AB Carbon nailottbe porins (CNTPs) are a convenient membrane-based model system for studying nano-fluidic transport that replicates a number of key structural features of' biological membrane hannels. We present a generalized approach for CNTP synthesis using sonochemistry-assisted segmenting of carbon nanotubes. Prolonged tip sonicatiori in the preence of lipid molecules-debundles and fragments long carbon nanotube aggregates into stable and water-soluble individual CNTPs-with lengths in the range 5-20 nm. We discuss the main parameters that deterinine the efficiency and the yield of this process, describe the optimized onditions for high-yield CNTP synthesis, and demonstrate that this methodology eau be adapted for synthesis of CNTPs of different diameters. We also present the optical properties of CNTPs and show that a combination of Raman and UV-vis-NIR spectroscopy can be used to monitor the quality of the CNTP synthesis. Overall, CNTPs.represent a 'versatile nanopore building block for creating higher-order functional biomimetic materials. C1 [Tunuguntla, Ramya H.; Chen, Xi; Belliveau, Allison; Noy, Aleksandr] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Biol & Biotechnol Div, 7000 East Ave, Livermore, CA 94550 USA. [Chen, Xi; Noy, Aleksandr] Univ Calif Merced, Sch Nat Sci, 5200 N Lake Rd, Merced, CA 95343 USA. [Allen, Frances I.] Univ Calif Berkeley, Dept Mat Sci & Engn, 210 Hearst Ave, Berkeley, CA 94720 USA. [Allen, Frances I.] Lawrence Berkeley Natl Lab, Mol Foundry, Natl Ctr Electron Microscopy, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Noy, A (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Biol & Biotechnol Div, 7000 East Ave, Livermore, CA 94550 USA.; Noy, A (reprint author), Univ Calif Merced, Sch Nat Sci, 5200 N Lake Rd, Merced, CA 95343 USA. EM noy1@llnl.gov FU US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; US Department of Energy [DE-AC52-07NA27344]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX We thank Drs. K. Kim and J. Zhang for developing some of the initial CNTP synthesis protocols used in this work. This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Work at LLNL was performed under the auspices of the US Department of Energy under Contract DE-AC52-07NA27344. Work at the Molecular Foundry at LBL was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract DE-AC02-05CH11231. NR 68 TC 0 Z9 0 U1 2 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 9 PY 2017 VL 121 IS 5 BP 3117 EP 3125 DI 10.1021/acs.jpcc.6b11658 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EK7BQ UT WOS:000394080900069 ER PT J AU Oh, K Weber, AZ Ju, H AF Oh, Kyeongmin Weber, Adam Z. Ju, Hyunchul TI Study of bromine species crossover in H-2/Br-2 redox flow batteries SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT 7th International Conference on Hydrogen Production (ICH2P) CY MAY 08-11, 2016 CL Hangzhou, PEOPLES R CHINA SP Zhejiang Univ, State Key Lab Clean Energy Utilizat, Int Assoc Hydrogen Energy, China Assoc Hydrogen Energy, Hangzhou Assoc Energy DE Hydrogen bromine redox flow batteries; Numerical simulation; Three-dimensional; Crossover ID FUEL-CELLS; EXCHANGE MEMBRANES; HYDROGEN ELECTRODE; ENERGY-STORAGE; PERFORMANCE; SIMULATION; NAFION AB A three-dimensional (3-D) model for H-2/Br-2 redox flow batteries (RFBs) is developed by rigorously accounting for the redox reactions of hydrogen and bromine species, and the resulting species and charge transport through various cell components. First, the H-2/Br-2 RFB model is experimentally validated against the discharge and charge voltage curves measured over a wide range of current densities up to 1.4 A cm(-2). In general, the model predictions compare well with the experimental data, and they further reveal key electrochemical and transport phenomena inside the cell. Particular emphasis is placed on analyzing the crossover of bromine species through the membrane at detailed levels where the model calculates electro-osmotic and diffusive fluxes of bromine species across the membrane; the relative magnitudes are compared under various charging and discharging stages. In addition, a parametric study is carried out to examine the effects of two key design variables on cell performance and crossover behavior, i.e., the thicknesses of the membrane and bromine porous media. This full 3-D H-2/Br-2 RFB model can be applied to realistic large-scale cell geometry for grid-scale energy storage applications and directly utilized to determine the optimal design and operating conditions for H-2/Br-2 RFBs. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved. C1 [Oh, Kyeongmin; Ju, Hyunchul] Inha Univ, Dept Mech Engn, 100 Inha Ro, Incheon 22212, South Korea. [Weber, Adam Z.] Lawrence Berkeley Natl Lab, Energy Technol Area, Energy Convers Grp, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Ju, H (reprint author), Inha Univ, Dept Mech Engn, 100 Inha Ro, Incheon 22212, South Korea. EM hcju@inha.ac.kr FU National Research Foundation of Korea (NRF) - Ministry of Education of the Korean government [2015R1D1A1A01058833] FX This study was supported by National Research Foundation of Korea (NRF) grant (no. 2015R1D1A1A01058833), funded by the Ministry of Education of the Korean government. NR 16 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD FEB 9 PY 2017 VL 42 IS 6 SI SI BP 3753 EP 3766 DI 10.1016/j.ijhydene.2016.12.063 PG 14 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA EO8WO UT WOS:000396971400025 ER PT J AU Badziak, M Wagner, CEM AF Badziak, Marcin Wagner, Carlos E. M. TI Enhanced Higgs associated production with a top quark pair in the NMSSM with light singlets SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Beyond Standard Model; Higgs Physics; Supersymmetric Standard Model ID COLOR BREAKING MINIMA; STANDARD MODEL; SUPERSYMMETRIC MODELS; CONSTRAINTS; MSSM; PROGRAM; BOSONS; CHARGE; SUSHI; VACUA AB Precision measurements of the 125GeV Higgs resonance recently discovered at the LHC have determined that its properties are similar to the ones of the Standard Model (SM) Higgs boson. However, the current uncertainties in the determination of the Higgs boson couplings leave room for significant deviations from the SM expectations. In fact, if one assumes no correlation between the top-quark and gluon couplings to the Higgs, the current global fit to the Higgs data lead to central values of the Higgs couplings to the bottom-quark and the top-quark that are about 2 sigma away from the SM predictions. In a previous work, we showed that such a scenario could be realized in the Next to Minimal Supersymmetric extension of the SM (NMSSM), for heavy singlets and light MSSM-like Higgs bosons and scalar top quarks, but for couplings that ruined the perturbative consistency of the theory up to the GUT scale. In this work we show that a perturbative consistent scenario, for somewhat heavier stops, may be obtained in the presence of light singlets. An interesting bonus of this scenario is the possibility of explaining an excess of events observed in CP-even Higgs searches at LEP2. C1 [Badziak, Marcin] Univ Warsaw, Inst Theoret Phys, Fac Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland. [Badziak, Marcin] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Dept Phys, Berkeley, CA 94720 USA. [Badziak, Marcin] Univ Calif Berkeley, Theoret Phys Grp, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Wagner, Carlos E. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Wagner, Carlos E. M.] Argonne Natl Lab, High Energy Phys Div, Argonne, IL 60439 USA. [Wagner, Carlos E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. RP Badziak, M (reprint author), Univ Warsaw, Inst Theoret Phys, Fac Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland.; Badziak, M (reprint author), Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Dept Phys, Berkeley, CA 94720 USA.; Badziak, M (reprint author), Univ Calif Berkeley, Theoret Phys Grp, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM mbadziak@fuw.edu.pl; cwagner@hep.anl.gov FU National Science Centre [DEC-2014/15/B/ST2/02157]; Office of High Energy Physics of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [PHY-1316783]; Polish Ministry of Science and Higher Education [1266/MOB/IV/2015/0]; U.S. Department of Energy [DE-FG02-13ER41958, DE-AC02-06CH11357] FX This work has been partially supported by National Science Centre under research grant DEC-2014/15/B/ST2/02157, by the Office of High Energy Physics of the U.S. Department of Energy under Contract DE-AC02-05CH11231, and by the National Science Foundation under grant PHY-1316783. MB acknowledges support from the Polish Ministry of Science and Higher Education (decision no. 1266/MOB/IV/2015/0). Work at the University of Chicago is supported in part by U.S. Department of Energy grant number DE-FG02-13ER41958. Work at ANL is supported in part by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 84 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB 9 PY 2017 IS 2 AR 050 DI 10.1007/JHEP02(2017)050 PG 21 WC Physics, Particles & Fields SC Physics GA EL6QM UT WOS:000394747100002 ER PT J AU Hernandez-Garcia, C Rego, L San Roman, J Picon, A Plaja, L AF Hernandez-Garcia, Carlos Rego, Laura San Roman, Julio Picon, Antonio Plaja, Luis TI Attosecond twisted beams from high-order harmonic generation driven by optical vortices SO HIGH POWER LASER SCIENCE AND ENGINEERING LA English DT Article DE attosecond science; extreme-ultraviolet vortices; high harmonic generation; orbital angular momentum; twisted beams; vortex beams ID ORBITAL ANGULAR-MOMENTUM; LIGHT; PHYSICS; ULTRAVIOLET; IONIZATION; PULSES; VORTEX; XENON AB Optical vortices are structures of the electromagnetic field with a spiral phase ramp about a point-phase singularity, carrying orbital angular momentum (OAM). Recently, OAM has been imprinted to short-wavelength radiation through high-order harmonic generation (HHG), leading to the emission of attosecond twisted beams in the extreme-ultraviolet (XUV) regime. We explore the details of the mapping of the driving vortex to its harmonic spectrum. In particular, we show that the geometry of the harmonic vortices is convoluted, arising from the superposition of the contribution from the short and long quantum paths responsible of HHG. Finally, we show how to take advantage of transverse phase-matching to select twisted attosecond beams with different spatiotemporal properties. C1 [Hernandez-Garcia, Carlos; Rego, Laura; San Roman, Julio; Picon, Antonio; Plaja, Luis] Univ Salamanca, Grp Invest Aplicac Laser & Foton, Dept Fis Aplicada, E-37008 Salamanca, Spain. [Picon, Antonio] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Hernandez-Garcia, C (reprint author), Plaza Merced S-N, E-37008 Salamanca, Spain. EM carloshergar@usal.es FU Marie Curie International Outgoing Fellowship within the EU Seventh Framework Programme for Research and Technological Development, under REA [328334]; Junta de Castilla y Leon [SA116U13, SA046U16]; MINECO [FIS2013-44174-P, FIS2016-75652-P]; US Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division [DE-AC02-06CH11357]; European Unions [702565] FX C.H.-G. acknowledges support from the Marie Curie International Outgoing Fellowship within the EU Seventh Framework Programme for Research and Technological Development (2007-2013), under REA grant Agreement No. 328334. The authors acknowledge support from Junta de Castilla y Leon (Projects SA116U13, SA046U16) and MINECO (Projects FIS2013-44174-P, FIS2016-75652-P). A.P. acknowledges support from the US Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under the contract no. DE-AC02-06CH11357 and support from the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 702565. NR 52 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND SN 2095-4719 EI 2052-3289 J9 HIGH POWER LASER SCI JI High Power Laser Sci. Eng. PD FEB 9 PY 2017 VL 5 AR UNSP e3 DI 10.1017/hpl.2017.1 PG 8 WC Optics SC Optics GA EL8KA UT WOS:000394867500001 ER PT J AU Ruiz Vargas, J Battilana, C Malberti, M Pigazzini, S Nardo, G Thyssen, F Zanetti, M Fedi, G Giassi, A Grippo, M Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A SavoyNavarro, A Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, P Barone, L Cavallari, F Cipriani, M Re, D Diemoz, M Gelli, S Longo, E Margaroli, F Marzocchi, B Meridiani, P Organtini, G Paramatti, R Preiato, F Rahatlou, S Rovelli, C Santanastasio, F Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bartosik, N Bellan, R Biino, C Cartiglia, N Cenna, F Costa, M Covarelli, R Degano, A Demaria, N Finco, L Kiani, B Mariotti, C Maselli, S Migliore, E Monaco, V Monteil, E Obertino, M Pacher, L Pastrone, N Pelliccioni, M Pinna Angioni, G Ravera, F Romero, A Ruspa, M Sacchi, R Shchelina, K Sola, V Solano, A Staiano, A Traczyk, P Belforte, S Casarsa, M Cossutti, F Della Ricca, G Zanetti, A Kim, D Kim, G Kim, M Lee, S Lee, S Oh, Y Sekmen, S Son, D Yang, Y Lee, A Kim, H Brochero Cifuentes, J Kim, T Cho, S Choi, S Go, Y Gyun, D Ha, S Hong, B Jo, Y Kim, Y Lee, B Lee, K Lee, K Lee, S Lim, J Park, S Roh, Y Almond, J Kim, J Lee, H Oh, S Radburn-Smith, B Seo, S Yang, U Yoo, H Yu, G Choi, M Kim, H Kim, J Lee, J Park, I Ryu, G Ryu, M Choi, Y Goh, J Hwang, C Lee, J Yu, I Dudenas, V Juodagalvis, A Vaitkus, J Ahmed, I Ibrahim, Z Komaragiri, J Ali, M Mohamad Idris, F Wan Abdullah, W Yusli, M Zolkapli, Z Castilla-Valdez, H Cruz-Burelo, E Heredia-De La Cruz, I Hernandez-Almada, A Lopez-Fernandez, R Magaa Villalba, R Mejia Guisao, J Sanchez-Hernandez, A Carrillo Moreno, S Oropeza Barrera, C Vazquez Valencia, F Carpinteyro, S Pedraza, I Salazar Ibarguen, H Uribe Estrada, C Morelos Pineda, A Krofcheck, D Butler, P Ahmad, A Ahmad, M Hassan, Q Hoorani, H Khan, W Saddique, A Shah, M Shoaib, M Waqas, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Grski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Bunkowski, K Byszuk, A Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Walczak, M Bargassa, P Beiro Da Cruz E Silva, C Francesco, A Faccioli, P Ferreira Parracho, P Gallinaro, M Hollar, J Leonardo, N Lloret Iglesias, L Nemallapudi, M Rodrigues Antunes, J Seixas, J Toldaiev, O Vadruccio, D Varela, J Vischia, P Alexakhin, V Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Karjavin, V Kozlov, G Lanev, A Malakhov, A Matveev, V Palichik, V Perelygin, V Savina, M Shmatov, S Shulha, S Skatchkov, N Smirnov, V Zarubin, A Chtchipounov, L Golovtsov, V Ivanov, Y Kim, V Kuznetsova, E Murzin, V Oreshkin, V Sulimov, V Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Karneyeu, A Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Pozdnyakov, I Safronov, G Spiridonov, A Toms, M Vlasov, E Zhokin, A Bylinkin, A Chistov, R Danilov, M Rusinov, V Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Rusakov, S Terkulov, A Baskakov, A Belyaev, A Boos, E Bunichev, V Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Miagkov, I Obraztsov, S Savrin, V Snigirev, A Blinov, V Skovpen, Y Shtol, D Azhgirey, I Bayshev, I Bitioukov, S Elumakhov, D Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Cirkovic, P Devetak, D Dordevic, M Milosevic, J Rekovic, V Alcaraz Maestre, J Barrio Luna, M Calvo, E Cerrada, M Chamizo Llatas, M Colino, N Cruz, B Delgado Peris, A Escalante Del Valle, A Fernandez Bedoya, C Fernandez Ramos, J Flix, J Fouz, M Garcia-Abia, P Gonzalez Lopez, O Goy Lopez, S Hernandez, J Josa, M Navarro De Martino, E P,rez-Calero Yzquierdo, A Puerta Pelayo, J Quintario Olmeda, A Redondo, I Romero, L Soares, M Trocniz, J Missiroli, M Moran, D Cuevas, J Fernandez Menendez, J Gonzalez Caballero, I Gonzalez Fernandez, J Palencia Cortezon, E Sanchez Cruz, S Suarez Andr,s, I Vizan Garcia, J Cabrillo, I Calderon, A Castieiras De Saa, J Curras, E Fernandez, M Garcia-Ferrero, J Gomez, G Lopez Virto, A Marco, J Martinez Rivero, C Matorras, F Piedra Gomez, J Rodrigo, T Ruiz-Jimeno, A Scodellaro, L Trevisani, N Vila, I Vilar Cortabitarte, R Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, A Barney, D Bloch, P Bocci, A Bonato, A Botta, C Camporesi, T Castello, R Cepeda, M Cerminara, G D'Alfonso, M d'Enterria, D Dabrowski, A Daponte, V David, A Gruttola, M Roeck, A Marco, E Dobson, M Dorney, B Pree, T Duggan, D Dunser, M Dupont, N Elliott-Peisert, A Fartoukh, S Franzoni, G Fulcher, J Funk, W Gigi, D Gill, K Girone, M Glege, F Gulhan, D Gundacker, S Guthoff, M Hammer, J Harris, P Hegeman, J Innocente, V Janot, P Kieseler, J Kirschenmann, H Knunz, V Kornmayer, A Kortelainen, M Kousouris, K Krammer, M Lange, C Lecoq, P Louren, C Lucchini, M Malgeri, L Mannelli, M Martelli, A Meijers, F Merlin, J Mersi, S Meschi, E Milenovic, P Moortgat, F Morovic, S Mulders, M Neugebauer, H Orfanelli, S Orsini, L Pape, L Perez, E Peruzzi, M Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Racz, A Reis, T Rolandi, G Rovere, M Ruan, M Sakulin, H Sauvan, J Schafer, C Schwick, C Seidel, M Sharma, A Silva, P Sphicas, P Steggemann, J Stoye, M Takahashi, Y Tosi, M Treille, D Triossi, A Tsirou, A Veckalns, V Veres, G Wardle, N Wohri, H Zagozdzinska, A Zeuner, W Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, H Kotlinski, D Langenegger, U Rohe, T Bachmair, F Bani, L Bianchini, L Casal, B Dissertori, G Dittmar, M Doneg, M Grab, C Heidegger, C Hits, D Hoss, J Kasieczka, G Lecomte, P Lustermann, W Mangano, B Marionneau, M Martinez Ruiz del Arbol, P Masciovecchio, M Meinhard, M Meister, D Micheli, F Musella, P Nessi-Tedaldi, F Pandolfi, F Pata, J Pauss, F Perrin, G Perrozzi, L Quittnat, M Rossini, M Schonenberger, M Starodumov, A Tavolaro, V Theofilatos, K Wallny, R Aarrestad, T Amsler, C Caminada, L Canelli, M Cosa, A Galloni, C Hinzmann, A Hreus, T Kilminster, B Ngadiuba, J Pinna, D Rauco, G Robmann, P Salerno, D Yang, Y Zucchetta, A Candelise, V Doan, T Jain, S Khurana, R Konyushikhin, M Kuo, C Lin, W Lu, Y Pozdnyakov, A Yu, S Kumar, A Chang, P Chang, Y Chang, Y Chao, Y Chen, K Chen, P Dietz, C Fiori, F Hou, W-S Hsiung, Y Liu, Y Lu, R-S Miano Moya, M Paganis, E Psallidas, A Tsai, J Tzeng, Y Asavapibhop, B Singh, G Srimanobhas, N Suwonjandee, N Adiguzel, A Damarseckin, S Demiroglu, Z Dozen, C Eskut, E Girgis, S Gokbulut, G Guler, Y Hos, I Kangal, E Kara, O Kayis Topaksu, A Kiminsu, U Oglakci, M Onengut, G Ozdemir, K Ozturk, S Polatoz, A Tali, B Turkcapar, S Zorbakir, I Zorbilmez, C Bilin, B Bilmis, S Isildak, B Karapinar, G Yalvac, M Zeyrek, M Gulmez, E Kaya, M Kaya, O Yetkin, E Yetkin, T Cakir, A Cankocak, K Sen, S Grynyov, B Levchuk, L Sorokin, P Aggleton, R Ball, F Beck, L Brooke, J Burns, D Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, G Heath, H Jacob, J Kreczko, L Lucas, C Newbold, D Paramesvaran, S Poll, A Sakuma, T Seif El Nasr-storey, S Smith, D Smith, V Bell, K Belyaev, A Brew, C Brown, R Calligaris, L Cieri, D Cockerill, D Coughlan, J Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, C Thea, A Tomalin, I Williams, T Baber, M Bainbridge, R Buchmuller, O Bundock, A Burton, D Casasso, S Citron, M Colling, D Corpe, L Dauncey, P Davies, G Wit, A Della Negra, M Maria, R Dunne, P Elwood, A Futyan, D Haddad, Y Hall, G Iles, G James, T Lane, R Laner, C Lucas, R Lyons, L Magnan, A-M Malik, S Mastrolorenzo, L Nash, J Nikitenko, A Pela, J Penning, B Pesaresi, M Raymond, D Richards, A Rose, A Seez, C Summers, S Tapper, A Uchida, K Vazquez Acosta, M Virdee, T Wright, J Zenz, S Cole, J Hobson, P Khan, A Kyberd, P Leslie, D Reid, I Symonds, P Teodorescu, L Turner, M Borzou, A Call, K Dittmann, J Hatakeyama, K Liu, H Pastika, N Charaf, O Cooper, S Henderson, C Rumerio, P West, C Arcaro, D Avetisyan, A Bose, T Gastler, D Rankin, D Richardson, C Rohlf, J Sulak, L Zou, D Benelli, G Berry, E Cutts, D Garabedian, A Hakala, J Heintz, U Hogan, J Jesus, O Kwok, K Laird, E Landsberg, G Mao, Z Narain, M Piperov, S Sagir, S Spencer, E Syarif, R Breedon, R Breto, G Burns, D Calderon De La Barca Sanchez, M Chauhan, S Chertok, M Conway, J Conway, R Cox, P Erbacher, R Flores, C Funk, G Gardner, M Ko, W Lander, R Mclean, C Mulhearn, M Pellett, D Pilot, J Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Bravo, C Cousins, R Dasgupta, A Everaerts, P Florent, A Hauser, J Ignatenko, M Mccoll, N Saltzberg, D Schnaible, C Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, J Ghiasi Shirazi, S Hanson, G Heilman, J Jandir, P Kennedy, E Lacroix, F Long, O Olmedo Negrete, M Paneva, M Shrinivas, A Si, W Wei, H Wimpenny, S Yates, B Branson, J Cerati, G Cittolin, S Derdzinski, M Gerosa, R Holzner, A Klein, D Krutelyov, V Letts, J Macneill, I Olivito, D Padhi, S Pieri, M Sani, M Sharma, V Simon, S Tadel, M Vartak, A Wasserbaech, S Welke, C Wood, J Wurthwein, F Yagil, A Zevi Della Porta, G Amin, N Bhandari, R Bradmiller-Feld, J Campagnari, C Dishaw, A Dutta, V Flowers, K Franco Sevilla, M Geffert, P George, C Golf, F Gouskos, L Gran, J Heller, R Incandela, J Mullin, S Ovcharova, A Richman, J Stuart, D Suarez, I Yoo, J Anderson, D Apresyan, A Bendavid, J Bornheim, A Bunn, J Chen, Y Duarte, J Lawhorn, J Mott, A Newman, H Pena, C Spiropulu, M Vlimant, J Xie, S Zhu, R Andrews, M Azzolini, V Ferguson, T Paulini, M Russ, J Sun, M Vogel, H Vorobiev, I Weinberg, M Cumalat, J Ford, W Jensen, F Johnson, A Krohn, M Mulholland, T Stenson, K Wagner, S Alexander, J Chaves, J Chu, J Dittmer, S Mcdermott, K Mirman, N Nicolas Kaufman, G Patterson, J Rinkevicius, A Ryd, A Skinnari, L Soffi, L Tan, S Tao, Z Thom, J Tucker, J Wittich, P Zientek, M Winn, D Abdullin, S Albrow, M Apollinari, G Banerjee, S Bauerdick, L Beretvas, A Berryhill, J Bhat, P Bolla, G Burkett, K Butler, J Cheung, H Chlebana, F Cihangir, S Cremonesi, M Elvira, V Fisk, I Freeman, J Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hare, D Harris, R Hasegawa, S Hirschauer, J Hu, Z Jayatilaka, B Jindariani, S Johnson, M Joshi, U Klima, B Kreis, B Lammel, S Linacre, J Lincoln, D Lipton, R Liu, M Liu, T Lopes De Sa, R Lykken, J Maeshima, K Magini, N Marraffino, J Maruyama, S Mason, D McBride, P Merkel, P Mrenna, S Nahn, S Newman-Holmes, C O'Dell, V Pedro, K Prokofyev, O Rakness, G Ristori, L Sexton-Kennedy, E Soha, A Spalding, W Spiegel, L Stoynev, S Strait, J Strobbe, N Taylor, L Tkaczyk, S Tran, N Uplegger, L Vaandering, E Vernieri, C Verzocchi, M Vidal, R Wang, M Weber, H Whitbeck, A Wu, Y Acosta, D Avery, P Bortignon, P Bourilkov, D Brinkerhoff, A Carnes, A Carver, M Curry, D Das, S Field, R Furic, I Konigsberg, J Korytov, A Low, J Ma, P Matchev, K Mei, H Mitselmakher, G Rank, D Shchutska, L Sperka, D Thomas, L Wang, J Wang, S Yelton, J Linn, S Markowitz, P Martinez, G Rodriguez, J Ackert, A Adams, J Adams, T Askew, A Bein, S Diamond, B Hagopian, S Hagopian, V Johnson, K Khatiwada, A Prosper, H Santra, A Baarmand, M Bhopatkar, V Colafranceschi, S Hohlmann, M Noonan, D Roy, T Yumiceva, F Adams, M Apanasevich, L Berry, D Betts, R Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, C Hofman, D Jung, K Kurt, P O'Brien, C Sandoval Gonzalez, I Turner, P Varelas, N Wang, H Wu, Z Zakaria, M Zhang, J Bilki, B Clarida, W Dilsiz, K Durgut, S Gandrajula, R Haytmyradov, M Khristenko, V Merlo, J-P Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Snyder, C Tiras, E Wetzel, J Yi, K Anderson, I Blumenfeld, B Cocoros, A Eminizer, N Fehling, D Feng, L Gritsan, A Maksimovic, P Martin, C Osherson, M Roskes, J Sarica, U Swartz, M Xiao, M Xin, Y You, C Al-bataineh, A Baringer, P Bean, A Boren, S Bowen, J Bruner, C Castle, J Forthomme, L Kenny, R Khalil, S Kropivnitskaya, A Majumder, D Mcbrayer, W Murray, M Sanders, S Stringer, R Tapia Takaki, J Wang, Q Ivanov, A Kaadze, K Maravin, Y Mohammadi, A Saini, L Skhirtladze, N Toda, S Rebassoo, F Wright, D Anelli, C Baden, A Baron, O Belloni, A Calvert, B Eno, S Ferraioli, C Gomez, J Hadley, N Jabeen, S Kellogg, R Kolberg, T Kunkle, J Lu, Y Mignerey, A Ricci-Tam, F Shin, Y Skuja, A Tonjes, M Tonwar, S Abercrombie, D Allen, B Apyan, A Barbieri, R Baty, A Bi, R Bierwagen, K Brandt, S Busza, W Cali, I Demiragli, Z Matteo, L Gomez Ceballos, G Goncharov, M Hsu, D Iiyama, Y Innocenti, G Klute, M Kovalskyi, D Krajczar, K Lai, Y Lee, Y-J Levin, A Luckey, P Maier, B Marini, A Mcginn, C Mironov, C Narayanan, S Niu, X Paus, C Roland, C Roland, G Salfeld-Nebgen, J Stephans, G Sumorok, K Tatar, K Varma, M Velicanu, D Veverka, J Wang, J Wang, T Wyslouch, B Yang, M Zhukova, V Benvenuti, A Chatterjee, R Evans, A Finkel, A Gude, A Hansen, P Kalafut, S Kao, S Kubota, Y Lesko, Z Mans, J Nourbakhsh, S Ruckstuhl, N Rusack, R Tambe, N Turkewitz, J Acosta, J Oliveros, S Avdeeva, E Bartek, R Bloom, K Claes, D Dominguez, A Fangmeier, C Gonzalez Suarez, R Kamalieddin, R Kravchenko, I Malta Rodrigues, A Meier, F Monroy, J Siado, J Snow, G Stieger, B Alyari, M Dolen, J George, J Godshalk, A Harrington, C Iashvili, I Kaisen, J Kharchilava, A Kumar, A Parker, A Rappoccio, S Roozbahani, B Alverson, G Barberis, E Hortiangtham, A Massironi, A Morse, D Nash, D Orimoto, T Teixeira De Lima, R Trocino, D Wang, R-J Wood, D Bhattacharya, S Hahn, K Kubik, A Kumar, A Mucia, N Odell, N Pollack, B Schmitt, M Sung, K Trovato, M Velasco, M Dev, N Hildreth, M Hurtado Anampa, K Jessop, C Karmgard, D Kellams, N Lannon, K Marinelli, N Meng, F Mueller, C Musienko, Y Planer, M Reinsvold, A Ruchti, R Smith, G Taroni, S Wayne, M Wolf, M Woodard, A Alimena, J Antonelli, L Brinson, J Bylsma, B Durkin, L Flowers, S Francis, B Hart, A Hill, C Hughes, R Ji, W Liu, B Luo, W Puigh, D Winer, B Wulsin, H Cooperstein, S Driga, O Elmer, P Hardenbrook, J Hebda, P Lange, D Luo, J Marlow, D Mc Donald, J Medvedeva, T Mei, K Mooney, M Olsen, J Palmer, C Pirou P Stickland, D Svyatkovskiy, A Tully, C Zuranski, A Malik, S Barker, A Barnes, V Folgueras, S Gutay, L Jha, M Jones, M Jung, A Miller, D Neumeister, N Schulte, J Shi, X Sun, J Wang, F Xie, W Xu, L Parashar, N Stupak, J Adair, A Akgun, B Chen, Z Ecklund, K Geurts, F Guilbaud, M Li, W Michlin, B Northup, M Padley, B Redjimi, R Roberts, J Rorie, J Tu, Z Zabel, J Betchart, B Bodek, A Barbaro, P Demina, R Duh, Y Ferbel, T Galanti, M Garcia-Bellido, A Han, J Hindrichs, O Khukhunaishvili, A Lo, K Tan, P Verzetti, M Agapitos, A Chou, J Contreras-Campana, E Gershtein, Y Gmez Espinosa, T Halkiadakis, E Heindl, M Hidas, D Hughes, E Kaplan, S Kunnawalkam Elayavalli, R Kyriacou, S Lath, A Nash, K Saka, H Salur, S Schnetzer, S Sheffield, D Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Delannoy, A Foerster, M Heideman, J Riley, G Rose, K Spanier, S Thapa, K Bouhali, O Celik, A Dalchenko, M Mattia, M Delgado, A Dildick, S Eusebi, R Gilmore, J Huang, T Juska, E Kamon, T Mueller, R Pakhotin, Y Patel, R Perloff, A PerniS, L Rathjens, D Rose, A Safonov, A Tatarinov, A Ulmer, K Akchurin, N Cowden, C Damgov, J Guio, F Dragoiu, C Dudero, P Faulkner, J Gurpinar, E Kunori, S Lamichhane, K Lee, S Libeiro, T Peltola, T Undleeb, S Volobouev, I Wang, Z Greene, S Gurrola, A Janjam, R Johns, W Maguire, C Melo, A Ni, H Sheldon, P Tuo, S Velkovska, J Xu, Q Arenton, M Barria, P Cox, B Goodell, J Hirosky, R Ledovskoy, A Li, H Neu, C Sinthuprasith, T Sun, X Wang, Y Wolfe, E Xia, F Clarke, C Harr, R Karchin, P Sturdy, J Belknap, D Caillol, C Dasu, S Dodd, L Duric, S Gomber, B Grothe, M Herndon, M Herv,, A Klabbers, P Lanaro, A Levine, A Long, K Loveless, R Ojalvo, I Perry, T Pierro, G Polese, G Ruggles, T Savin, A Smith, N Smith, W Taylor, D Woods, N AF Ruiz Vargas, J. C. Battilana, C. Malberti, M. Pigazzini, S. Nardo, G. De Thyssen, F. Zanetti, M. Fedi, G. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. SavoyNavarro, A. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Cipriani, M. Re, D. Del Diemoz, M. Gelli, S. Longo, E. Margaroli, F. Marzocchi, B. Meridiani, P. Organtini, G. Paramatti, R. Preiato, F. Rahatlou, S. Rovelli, C. Santanastasio, F. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bartosik, N. Bellan, R. Biino, C. Cartiglia, N. Cenna, F. Costa, M. Covarelli, R. Degano, A. Demaria, N. Finco, L. Kiani, B. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Monteil, E. Obertino, M. M. Pacher, L. Pastrone, N. Pelliccioni, M. Pinna Angioni, G. L. Ravera, F. Romero, A. Ruspa, M. Sacchi, R. Shchelina, K. Sola, V. Solano, A. Staiano, A. Traczyk, P. Belforte, S. Casarsa, M. Cossutti, F. Della Ricca, G. Zanetti, A. Kim, D. H. Kim, G. N. Kim, M. S. Lee, S. Lee, S. W. Oh, Y. D. Sekmen, S. Son, D. C. Yang, Y. C. Lee, A. Kim, H. Brochero Cifuentes, J. A. Kim, T. J. Cho, S. Choi, S. Go, Y. Gyun, D. Ha, S. Hong, B. Jo, Y. Kim, Y. Lee, B. Lee, K. Lee, K. S. Lee, S. Lim, J. Park, S. K. Roh, Y. Almond, J. Kim, J. Lee, H. Oh, S. B. Radburn-Smith, B. C. Seo, S. h. Yang, U. K. Yoo, H. D. Yu, G. B. Choi, M. Kim, H. Kim, J. H. Lee, J. S. H. Park, I. C. Ryu, G. Ryu, M. S. Choi, Y. Goh, J. Hwang, C. Lee, J. Yu, I. Dudenas, V. Juodagalvis, A. Vaitkus, J. Ahmed, I. Ibrahim, Z. A. Komaragiri, J. R. Ali, M. A. B. Md Mohamad Idris, F. Wan Abdullah, W. A. T. Yusli, M. N. Zolkapli, Z. Castilla-Valdez, H. Cruz-Burelo, E. De La Heredia-De La Cruz, I. Hernandez-Almada, A. Lopez-Fernandez, R. Magaa Villalba, R. Mejia Guisao, J. Sanchez-Hernandez, A. Carrillo Moreno, S. Oropeza Barrera, C. Vazquez Valencia, F. Carpinteyro, S. Pedraza, I. Salazar Ibarguen, H. A. Uribe Estrada, C. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khan, W. A. Saddique, A. Shah, M. A. Shoaib, M. Waqas, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Grski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Bunkowski, K. Byszuk, A. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Walczak, M. Bargassa, P. Beiro Da Cruz E Silva, C. Francesco, A. Di Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Hollar, J. Leonardo, N. Lloret Iglesias, L. Nemallapudi, M. V. Rodrigues Antunes, J. Seixas, J. Toldaiev, O. Vadruccio, D. Varela, J. Vischia, P. Alexakhin, V. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Karjavin, V. Kozlov, G. Lanev, A. Malakhov, A. Matveev, V. Palichik, V. Perelygin, V. Savina, M. Shmatov, S. Shulha, S. Skatchkov, N. Smirnov, V. Zarubin, A. Chtchipounov, L. Golovtsov, V. Ivanov, Y. Kim, V. Kuznetsova, E. Murzin, V. Oreshkin, V. Sulimov, V. Vorobyev, A. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Karneyeu, A. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Pozdnyakov, I. Safronov, G. Spiridonov, A. Toms, M. Vlasov, E. Zhokin, A. Bylinkin, A. Chistov, R. Danilov, M. Rusinov, V. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Rusakov, S. V. Terkulov, A. Baskakov, A. Belyaev, A. Boos, E. Bunichev, V. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Miagkov, I. Obraztsov, S. Savrin, V. Snigirev, A. Blinov, V. Skovpen, Y. Shtol, D. Azhgirey, I. Bayshev, I. Bitioukov, S. Elumakhov, D. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Cirkovic, P. Devetak, D. Dordevic, M. Milosevic, J. Rekovic, V. Alcaraz Maestre, J. Barrio Luna, M. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. Cruz, B. De La Delgado Peris, A. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Navarro De Martino, E. Prez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. Trocniz, J. F. de Missiroli, M. Moran, D. Cuevas, J. Fernandez Menendez, J. Gonzalez Caballero, I. Gonzalez Fernandez, J. R. Palencia Cortezon, E. Sanchez Cruz, S. Suarez Andrs, I. Vizan Garcia, J. M. Cabrillo, I. J. Calderon, A. Castieiras De Saa, J. R. Curras, E. Fernandez, M. Garcia-Ferrero, J. Gomez, G. Lopez Virto, A. Marco, J. Martinez Rivero, C. Matorras, F. Piedra Gomez, J. Rodrigo, T. Ruiz-Jimeno, A. Scodellaro, L. Trevisani, N. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Bloch, P. Bocci, A. Bonato, A. Botta, C. Camporesi, T. Castello, R. Cepeda, M. Cerminara, G. D'Alfonso, M. d'Enterria, D. Dabrowski, A. Daponte, V. David, A. Gruttola, M. De Roeck, A. De Marco, E. Di Dobson, M. Dorney, B. Pree, T. du Duggan, D. Dunser, M. Dupont, N. Elliott-Peisert, A. Fartoukh, S. Franzoni, G. Fulcher, J. Funk, W. Gigi, D. Gill, K. Girone, M. Glege, F. Gulhan, D. Gundacker, S. Guthoff, M. Hammer, J. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kieseler, J. Kirschenmann, H. Knunz, V. Kornmayer, A. Kortelainen, M. J. Kousouris, K. Krammer, M. Lange, C. Lecoq, P. Louren, C. Lucchini, M. T. Malgeri, L. Mannelli, M. Martelli, A. Meijers, F. Merlin, J. A. Mersi, S. Meschi, E. Milenovic, P. Moortgat, F. Morovic, S. Mulders, M. Neugebauer, H. Orfanelli, S. Orsini, L. Pape, L. Perez, E. Peruzzi, M. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Racz, A. Reis, T. Rolandi, G. Rovere, M. Ruan, M. Sakulin, H. Sauvan, J. B. Schafer, C. Schwick, C. Seidel, M. Sharma, A. Silva, P. Sphicas, P. Steggemann, J. Stoye, M. Takahashi, Y. Tosi, M. Treille, D. Triossi, A. Tsirou, A. Veckalns, V. Veres, G. I. Wardle, N. Wohri, H. K. Zagozdzinska, A. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Rohe, T. Bachmair, F. Bani, L. Bianchini, L. Casal, B. Dissertori, G. Dittmar, M. Doneg, M. Grab, C. Heidegger, C. Hits, D. Hoss, J. Kasieczka, G. Lecomte, P. Lustermann, W. Mangano, B. Marionneau, M. Martinez Ruiz del Arbol, P. Masciovecchio, M. Meinhard, M. T. Meister, D. Micheli, F. Musella, P. Nessi-Tedaldi, F. Pandolfi, F. Pata, J. Pauss, F. Perrin, G. Perrozzi, L. Quittnat, M. Rossini, M. Schonenberger, M. Starodumov, A. Tavolaro, V. R. Theofilatos, K. Wallny, R. Aarrestad, T. K. Amsler, C. Caminada, L. Canelli, M. F. Cosa, A. De Galloni, C. Hinzmann, A. Hreus, T. Kilminster, B. Ngadiuba, J. Pinna, D. Rauco, G. Robmann, P. Salerno, D. Yang, Y. Zucchetta, A. Candelise, V. Doan, T. H. Jain, Sh. Khurana, R. Konyushikhin, M. Kuo, C. M. Lin, W. Lu, Y. J. Pozdnyakov, A. Yu, S. S. Kumar, Arun Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Fiori, F. Hou, W. -S. Hsiung, Y. Liu, Y. F. Lu, R. -S. Miano Moya, M. Paganis, E. Psallidas, A. Tsai, J. f. Tzeng, Y. M. Asavapibhop, B. Singh, G. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Damarseckin, S. Demiroglu, Z. S. Dozen, C. Eskut, E. Girgis, S. Gokbulut, G. Guler, Y. Hos, I. Kangal, E. E. Kara, O. Kayis Topaksu, A. Kiminsu, U. Oglakci, M. Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Tali, B. Turkcapar, S. Zorbakir, I. S. Zorbilmez, C. Bilin, B. Bilmis, S. Isildak, B. Karapinar, G. Yalvac, M. Zeyrek, M. Gulmez, E. Kaya, M. Kaya, O. Yetkin, E. A. Yetkin, T. Cakir, A. Cankocak, K. Sen, S. Grynyov, B. Levchuk, L. Sorokin, P. Aggleton, R. Ball, F. Beck, L. Brooke, J. J. Burns, D. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Newbold, D. M. Paramesvaran, S. Poll, A. Sakuma, T. Seif El Nasr-storey, S. Smith, D. Smith, V. J. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Calligaris, L. Cieri, D. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Williams, T. Baber, M. Bainbridge, R. Buchmuller, O. Bundock, A. Burton, D. Casasso, S. Citron, M. Colling, D. Corpe, L. Dauncey, P. Davies, G. Wit, A. De Della Negra, M. Maria, R. Di Dunne, P. Elwood, A. Futyan, D. Haddad, Y. Hall, G. Iles, G. James, T. Lane, R. Laner, C. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Mastrolorenzo, L. Nash, J. Nikitenko, A. Pela, J. Penning, B. Pesaresi, M. Raymond, D. M. Richards, A. Rose, A. Seez, C. Summers, S. Tapper, A. Uchida, K. Vazquez Acosta, M. Virdee, T. Wright, J. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Borzou, A. Call, K. Dittmann, J. Hatakeyama, K. Liu, H. Pastika, N. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. West, C. Arcaro, D. Avetisyan, A. Bose, T. Gastler, D. Rankin, D. Richardson, C. Rohlf, J. Sulak, L. Zou, D. Benelli, G. Berry, E. Cutts, D. Garabedian, A. Hakala, J. Heintz, U. Hogan, J. M. Jesus, O. Kwok, K. H. M. Laird, E. Landsberg, G. Mao, Z. Narain, M. Piperov, S. Sagir, S. Spencer, E. Syarif, R. Breedon, R. Breto, G. Burns, D. Calderon De La Barca Sanchez, M. Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Flores, C. Funk, G. Gardner, M. Ko, W. Lander, R. Mclean, C. Mulhearn, M. Pellett, D. Pilot, J. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Bravo, C. Cousins, R. Dasgupta, A. Everaerts, P. Florent, A. Hauser, J. Ignatenko, M. Mccoll, N. Saltzberg, D. Schnaible, C. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Ghiasi Shirazi, S. M. A. Hanson, G. Heilman, J. Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Olmedo Negrete, M. Paneva, M. I. Shrinivas, A. Si, W. Wei, H. Wimpenny, S. Yates, B. R. Branson, J. G. Cerati, G. B. Cittolin, S. Derdzinski, M. Gerosa, R. Holzner, A. Klein, D. Krutelyov, V. Letts, J. Macneill, I. Olivito, D. Padhi, S. Pieri, M. Sani, M. Sharma, V. Simon, S. Tadel, M. Vartak, A. Wasserbaech, S. Welke, C. Wood, J. Wurthwein, F. Yagil, A. Zevi Della Porta, G. Amin, N. Bhandari, R. Bradmiller-Feld, J. Campagnari, C. Dishaw, A. Dutta, V. Flowers, K. Franco Sevilla, M. Geffert, P. George, C. Golf, F. Gouskos, L. Gran, J. Heller, R. Incandela, J. Mullin, S. D. Ovcharova, A. Richman, J. Stuart, D. Suarez, I. Yoo, J. Anderson, D. Apresyan, A. Bendavid, J. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Lawhorn, J. M. Mott, A. Newman, H. B. Pena, C. Spiropulu, M. Vlimant, J. R. Xie, S. Zhu, R. Y. Andrews, M. B. Azzolini, V. Ferguson, T. Paulini, M. Russ, J. Sun, M. Vogel, H. Vorobiev, I. Weinberg, M. Cumalat, J. P. Ford, W. T. Jensen, F. Johnson, A. Krohn, M. Mulholland, T. Stenson, K. Wagner, S. R. Alexander, J. Chaves, J. Chu, J. Dittmer, S. Mcdermott, K. Mirman, N. Nicolas Kaufman, G. Patterson, J. R. Rinkevicius, A. Ryd, A. Skinnari, L. Soffi, L. Tan, S. M. Tao, Z. Thom, J. Tucker, J. Wittich, P. Zientek, M. Winn, D. Abdullin, S. Albrow, M. Apollinari, G. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Cremonesi, M. Elvira, V. D. Fisk, I. Freeman, J. Gottschalk, E. Gray, L. Green, D. Grunendahl, S. Gutsche, O. Hare, D. Harris, R. M. Hasegawa, S. Hirschauer, J. Hu, Z. Jayatilaka, B. Jindariani, S. Johnson, M. Joshi, U. Klima, B. Kreis, B. Lammel, S. Linacre, J. Lincoln, D. Lipton, R. Liu, M. Liu, T. Lopes De Sa, R. Lykken, J. Maeshima, K. Magini, N. Marraffino, J. M. Maruyama, S. Mason, D. McBride, P. Merkel, P. Mrenna, S. Nahn, S. Newman-Holmes, C. O'Dell, V. Pedro, K. Prokofyev, O. Rakness, G. Ristori, L. Sexton-Kennedy, E. Soha, A. Spalding, W. J. Spiegel, L. Stoynev, S. Strait, J. Strobbe, N. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vernieri, C. Verzocchi, M. Vidal, R. Wang, M. Weber, H. A. Whitbeck, A. Wu, Y. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Brinkerhoff, A. Carnes, A. Carver, M. Curry, D. Das, S. Field, R. D. Furic, I. K. Konigsberg, J. Korytov, A. Low, J. F. Ma, P. Matchev, K. Mei, H. Mitselmakher, G. Rank, D. Shchutska, L. Sperka, D. Thomas, L. Wang, J. Wang, S. Yelton, J. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Ackert, A. Adams, J. R. Adams, T. Askew, A. Bein, S. Diamond, B. Hagopian, S. Hagopian, V. Johnson, K. F. Khatiwada, A. Prosper, H. Santra, A. Baarmand, M. M. Bhopatkar, V. Colafranceschi, S. Hohlmann, M. Noonan, D. Roy, T. Yumiceva, F. Adams, M. R. Apanasevich, L. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Jung, K. Kurt, P. O'Brien, C. Sandoval Gonzalez, I. D. Turner, P. Varelas, N. Wang, H. Wu, Z. Zakaria, M. Zhang, J. Bilki, B. Clarida, W. Dilsiz, K. Durgut, S. Gandrajula, R. P. Haytmyradov, M. Khristenko, V. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Snyder, C. Tiras, E. Wetzel, J. Yi, K. Anderson, I. Blumenfeld, B. Cocoros, A. Eminizer, N. Fehling, D. Feng, L. Gritsan, A. V. Maksimovic, P. Martin, C. Osherson, M. Roskes, J. Sarica, U. Swartz, M. Xiao, M. Xin, Y. You, C. Al-bataineh, A. Baringer, P. Bean, A. Boren, S. Bowen, J. Bruner, C. Castle, J. Forthomme, L. Kenny, R. P. I. I. I. Khalil, S. Kropivnitskaya, A. Majumder, D. Mcbrayer, W. Murray, M. Sanders, S. Stringer, R. Tapia Takaki, J. D. Wang, Q. Ivanov, A. Kaadze, K. Maravin, Y. Mohammadi, A. Saini, L. K. Skhirtladze, N. Toda, S. Rebassoo, F. Wright, D. Anelli, C. Baden, A. Baron, O. Belloni, A. Calvert, B. Eno, S. C. Ferraioli, C. Gomez, J. A. Hadley, N. J. Jabeen, S. Kellogg, R. G. Kolberg, T. Kunkle, J. Lu, Y. Mignerey, A. C. Ricci-Tam, F. Shin, Y. H. Skuja, A. Tonjes, M. B. Tonwar, S. C. Abercrombie, D. Allen, B. Apyan, A. Barbieri, R. Baty, A. Bi, R. Bierwagen, K. Brandt, S. Busza, W. Cali, I. A. Demiragli, Z. Matteo, L. Di Gomez Ceballos, G. Goncharov, M. Hsu, D. Iiyama, Y. Innocenti, G. M. Klute, M. Kovalskyi, D. Krajczar, K. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Maier, B. Marini, A. C. Mcginn, C. Mironov, C. Narayanan, S. Niu, X. Paus, C. Roland, C. Roland, G. Salfeld-Nebgen, J. Stephans, G. S. F. Sumorok, K. Tatar, K. Varma, M. Velicanu, D. Veverka, J. Wang, J. Wang, T. W. Wyslouch, B. Yang, M. Zhukova, V. Benvenuti, A. C. Chatterjee, R. M. Evans, A. Finkel, A. Gude, A. Hansen, P. Kalafut, S. Kao, S. C. Kubota, Y. Lesko, Z. Mans, J. Nourbakhsh, S. Ruckstuhl, N. Rusack, R. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bartek, R. Bloom, K. Claes, D. R. Dominguez, A. Fangmeier, C. Gonzalez Suarez, R. Kamalieddin, R. Kravchenko, I. Malta Rodrigues, A. Meier, F. Monroy, J. Siado, J. E. Snow, G. R. Stieger, B. Alyari, M. Dolen, J. George, J. Godshalk, A. Harrington, C. Iashvili, I. Kaisen, J. Kharchilava, A. Kumar, A. Parker, A. Rappoccio, S. Roozbahani, B. Alverson, G. Barberis, E. Hortiangtham, A. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. Teixeira De Lima, R. Trocino, D. Wang, R. -J. Wood, D. Bhattacharya, S. Hahn, K. A. Kubik, A. Kumar, A. Mucia, N. Odell, N. Pollack, B. Schmitt, M. H. Sung, K. Trovato, M. Velasco, M. Dev, N. Hildreth, M. Hurtado Anampa, K. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Marinelli, N. Meng, F. Mueller, C. Musienko, Y. Planer, M. Reinsvold, A. Ruchti, R. Smith, G. Taroni, S. Wayne, M. Wolf, M. Woodard, A. Alimena, J. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Francis, B. Hart, A. Hill, C. Hughes, R. Ji, W. Liu, B. Luo, W. Puigh, D. Winer, B. L. Wulsin, H. W. Cooperstein, S. Driga, O. Elmer, P. Hardenbrook, J. Hebda, P. Lange, D. Luo, J. Marlow, D. Mc Donald, J. Medvedeva, T. Mei, K. Mooney, M. Olsen, J. Palmer, C. Pirou, P. Stickland, D. Svyatkovskiy, A. Tully, C. Zuranski, A. Malik, S. Barker, A. Barnes, V. E. Folgueras, S. Gutay, L. Jha, M. K. Jones, M. Jung, A. W. Miller, D. H. Neumeister, N. Schulte, J. F. Shi, X. Sun, J. Wang, F. Xie, W. Xu, L. Parashar, N. Stupak, J. Adair, A. Akgun, B. Chen, Z. Ecklund, K. M. Geurts, F. J. M. Guilbaud, M. Li, W. Michlin, B. Northup, M. Padley, B. P. Redjimi, R. Roberts, J. Rorie, J. Tu, Z. Zabel, J. Betchart, B. Bodek, A. Barbaro, P. de Demina, R. Duh, Y. t. Ferbel, T. Galanti, M. Garcia-Bellido, A. Han, J. Hindrichs, O. Khukhunaishvili, A. Lo, K. H. Tan, P. Verzetti, M. Agapitos, A. Chou, J. P. Contreras-Campana, E. Gershtein, Y. Gmez Espinosa, T. A. Halkiadakis, E. Heindl, M. Hidas, D. Hughes, E. Kaplan, S. Kunnawalkam Elayavalli, R. Kyriacou, S. Lath, A. Nash, K. Saka, H. Salur, S. Schnetzer, S. Sheffield, D. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Delannoy, A. G. Foerster, M. Heideman, J. Riley, G. Rose, K. Spanier, S. Thapa, K. Bouhali, O. Celik, A. Dalchenko, M. Mattia, M. De Delgado, A. Dildick, S. Eusebi, R. Gilmore, J. Huang, T. Juska, E. Kamon, T. Mueller, R. Pakhotin, Y. Patel, R. Perloff, A. PerniS, L. Rathjens, D. Rose, A. Safonov, A. Tatarinov, A. Ulmer, K. A. Akchurin, N. Cowden, C. Damgov, J. Guio, F. De Dragoiu, C. Dudero, P. R. Faulkner, J. Gurpinar, E. Kunori, S. Lamichhane, K. Lee, S. W. Libeiro, T. Peltola, T. Undleeb, S. Volobouev, I. Wang, Z. Greene, S. Gurrola, A. Janjam, R. Johns, W. Maguire, C. Melo, A. Ni, H. Sheldon, P. Tuo, S. Velkovska, J. Xu, Q. Arenton, M. W. Barria, P. Cox, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Neu, C. Sinthuprasith, T. Sun, X. Wang, Y. Wolfe, E. Xia, F. Clarke, C. Harr, R. Karchin, P. E. Sturdy, J. Belknap, D. A. Caillol, C. Dasu, S. Dodd, L. Duric, S. Gomber, B. Grothe, M. Herndon, M. Herv, A. Klabbers, P. Lanaro, A. Levine, A. Long, K. Loveless, R. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ruggles, T. Savin, A. Smith, N. Smith, W. H. Taylor, D. Woods, N. TI Search for heavy resonances decaying to tau lepton pairs in proton-proton collisions at root s=13 TeV SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Beyond Standard Model; Hadron-Hadron scattering (experiments); Particle and resonance production ID TOPCOLOR-ASSISTED TECHNICOLOR; RESUMMATION AB A search for heavy resonances that decay to tau lepton pairs is performed using proton-proton collisions at root s = 13 TeV. The data were collected with the CMS detector at the CERN LHC and correspond to an integrated luminosity of 2.2 fb(-1). The observations are in agreement with standard model predictions. An upper limit at 95% confidence level on the product of the production cross section and branching fraction into tau lepton pairs is calculated as a function of the resonance mass. For the sequential standard model, the presence of Z' bosons decaying into tau lepton pairs is excluded for Z/ masses below 2.1 TeV, extending previous limits for this final state. For the topcolor-assisted technicolor model, which predicts Z' bosons that preferentially couple to third-generation fermions, Z' masses below 1.7 TeV are excluded, representing the most stringent limit to date. C1 Yerevan Phys Inst, Yerevan, Armenia. Inst Hochenergiephys, Vienna, Austria. Inst Nucl Problems, Minsk, Byelarus. Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. Univ Antwerp, Antwerp, Belgium. Vrije Univ Brussel, Brussels, Belgium. Univ Libre Bruxelles, Brussels, Belgium. Univ Ghent, Ghent, Belgium. Catholic Univ Louvain, Louvain La Neuve, Belgium. Univ Mons, Mons, Belgium. Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. Univ Estado Rio De Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Sao Paulo, Brazil. Univ Fed ABC, Sao Paulo, Brazil. Inst Nucl Energy Res, Sofia, Bulgaria. Univ Sofia, Sofia, Bulgaria. Beihang Univ, Beijing, Peoples R China. Inst High Energy Phys, Beijing, Peoples R China. Peking Univ, State Key Lab Nucl Phys & Technol, Beijing, Peoples R China. Univ Los Andes, Bogota, Colombia. Univ Split, Fac Elect Engn, Mech Engn & Naval Architecture, Split, Croatia. Univ Split, Fac Sci, Split, Croatia. Rudjer Boskovic Inst, Zagreb, Croatia. Univ Cyprus, Nicosia, Cyprus. Charles Univ Prague, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Arab Republ Egypt, Acad Sci Res & Technol, Egyptian Network High Energy Phys, Cairo, Egypt. NICPB, Tallinn, Estonia. Univ Helsinki, Dept Phys, Helsinki, Finland. Helsinki Inst Phys, Helsinki, Finland. Lappeenranta Univ Technol, Lappeenranta, Finland. Univ Paris Saclay, CEA, IRFU, Gif Sur Yvette, France. Ecole Polytech, Lab Leprince Ringuet, IN2P3 CNRS, Palaiseau, France. Univ Strasbourg, Univ Haute Alsace Mulhouse, CNRS IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. Ctr Calcul Inst Natl Phys Nucl & Phys Particules, CNRS IN2P3, Villeurbanne, France. Univ Lyon 1, CNRS IN2P3, Inst Phys Nucl Lyon, Villeurbanne, France. Georgian Tech Univ, Tbilisi, Rep of Georgia. Tbilisi State Univ, Tbilisi, Rep of Georgia. Rhein Westfal TH Aachen, Inst Phys, Aachen, Germany. Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. DESY, Hamburg, Germany. Univ Hamburg, Hamburg, Germany. Inst Phys Expt, Karlsruhe, Germany. Inst Nucl & Particle Phys INPP, NCSR Demokritos, Aghia Paraskevi, Greece. Univ Athens, Athens, Greece. Univ Ioannina, Ioannina, Greece. Eotvos Lorand Univ, MTA ELTE Lendulet CMS Particle & Nucl Phys Grp, Budapest, Hungary. Wigner Res Ctr Phys, Budapest, Hungary. Inst Nucl Res ATOMKI, Debrecen, Hungary. Univ Debrecen, Inst Phys, Debrecen, Hungary. Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. Panjab Univ, Chandigarh, India. Univ Delhi, Delhi, India. Saha Inst Nucl Phys, Kolkata, India. Indian Inst Technol Madras, Madras, Tamil Nadu, India. Bhabha Atom Res Ctr, Mumbai, Maharashtra, India. Tata Inst Fundamental Res, Mumbai, Maharashtra, India. Tata Inst Fundamental Res B, Mumbai, Maharashtra, India. Indian Inst Sci Educ & Res IISER, Pune, Maharashtra, India. Inst Res Fundamental Sci IPM, Tehran, Iran. Univ Coll Dublin, Dublin, Ireland. INFN, Sez Bari, Bari, Italy. Univ Bari, Bari, Italy. Politecn Bari, Bari, Italy. INFN, Sez Bologna, Bologna, Italy. Univ Bologna, Bologna, Italy. INFN, Sez Catania, Catania, Italy. Univ Catania, Catania, Italy. INFN, Sez Firenze, Florence, Italy. Univ Firenze, Florence, Italy. INFN, Lab Nazl Frascati, Frascati, Italy. INFN, Sez Genova, Genoa, Italy. Univ Genoa, Genoa, Italy. INFN, Sez Milano Bicocca, Milan, Italy. Univ Milano Bicocca, Milan, Italy. INFN, Sez Napoli, Naples, Italy. Univ Napoli Federico II, Naples, Italy. Univ Basilicata, Potenza, Italy. Univ G Marconi, Rome, Italy. INFN, Sez Padova, Padua, Italy. Univ Padua, Padua, Italy. Univ Trento, Trento, Italy. INFN, Sez Pavia, Pavia, Italy. Univ Pavia, Pavia, Italy. INFN, Sez Perugia, Perugia, Italy. Univ Perugia, Perugia, Italy. [Giassi, A.; Lomtadze, T.; Palla, F.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P. G.] INFN, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Cavallari, F.; Diemoz, M.; Meridiani, P.; Paramatti, R.; Rovelli, C.] INFN Sez Roma, Rome, Italy. [Barone, L.; Cipriani, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Organtini, G.; Preiato, F.; Rahatlou, S.; Santanastasio, F.] Univ Roma, Rome, Italy. [Bartosik, N.; Biino, C.; Cartiglia, N.; Demaria, N.; Mariotti, C.; Maselli, S.; Pastrone, N.; Pelliccioni, M.; Sola, V.; Staiano, A.] INFN Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Finco, L.; Kiani, B.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Sacchi, R.; Shchelina, K.; Solano, A.; Traczyk, P.] Univ Torino, Turin, Italy. [Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Belforte, S.; Casarsa, M.; Cossutti, F.; Zanetti, A.] INFN Sez Trieste, Trieste, Italy. [Della Ricca, G.] Univ Trieste, Trieste, Italy. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.] Kyungpook Natl Univ, Daegu, South Korea. [Lee, A.] Chonbuk Natl Univ, Jeonju, South Korea. [Kim, H.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Brochero Cifuentes, J. A.; Kim, T. J.] Hanyang Univ, Seoul, South Korea. [Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.] Seoul Natl Univ, Seoul, South Korea. [Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Dudenas, V.; Juodagalvis, A.; Vaitkus, J.] Vilnius Univ, Vilnius, Lithuania. [Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Castilla-Valdez, H.; Cruz-Burelo, E. De La; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaa Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.] Ctr Invest Estudios Avanzados IPN, Mexico City, DF, Mexico. [Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Morelos Pineda, A.] Univ Autnoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland, New Zealand. [Butler, P. H.] Univ Canterbury, Christchurch, New Zealand. [Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Grski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bargassa, P.; Beiro Da Cruz E Silva, C.; Francesco, A. Di; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.] Fis Expt Particulas, Lab Instrumentacao, Lisbon, Portugal. [Alexakhin, V.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.] Petersburg Nucl Phys Inst, Gatchina, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow, Russia. Moscow Inst Phys & Technol, Moscow, Russia. [Matveev, V.; Bylinkin, A.; Rusinov, V.] Natl Res Nucl Univ Moscow Engn Phys Inst MEPhI, Moscow, Russia. [Chistov, R.; Danilov, M.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Terkulov, A.] PN Lebedev Phys Inst, Moscow, Russia. [Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Savrin, V.; Snigirev, A.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. Novosibirsk State Univ NSU, Novosibirsk, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.] Univ Belgrade, Fac Phys, Vinca Inst Nucl Sci, Belgrade, Serbia. [Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; Cruz, B. De La; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Prez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] Ctr Invest Energ, Ticas Medioambient Tecnol CIEMAT, Madrid, Spain. [Trocniz, J. F. de; Missiroli, M.; Moran, D.] Univ Autonoma Barcelona, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; Gonzalez Fernandez, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suarez Andrs, I.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Cabrillo, I. J.; Calderon, A.; Castieiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.] CSIC Univ Cantabria, Inst Fis Cantabria IFCA, Santander, Spain. [Re, D. Del; Arcidiacono, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; Gruttola, M. De; Roeck, A. De; Marco, E. Di; Dobson, M.; Dorney, B.; Pree, T. du; Duggan, D.; Dunser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knunz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Lange, C.; Lecoq, P.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schafer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wohri, H. K.; Zeuner, W. D.] CERN, European Org Nucl Res, Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Bani, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Doneg, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schonenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Aarrestad, T. K.; Caminada, L.; Canelli, M. F.; Cosa, A. De; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Zucchetta, A.] Univ Zurich, Zurich, Switzerland. [Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan. [Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W. -S.; Hsiung, Y.; Liu, Y. F.; Lu, R. -S.; Miano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Tzeng, Y. M.] Natl Taiwan Univ NTU, Taipei, Taiwan. [Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Dept Phys, Fac Sci, Bangkok, Thailand. [Adiguzel, A.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Polatoz, A.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.] Cukurova Univ, Sci & Art Fac, Dept Phys, Adana, Turkey. [Bilin, B.; Bilmis, S.; Yalvac, M.; Zeyrek, M.] Middle East Tech Univ, Dept Phys, Ankara, Turkey. [Gulmez, E.] Bogazici Univ, Istanbul, Turkey. [Cakir, A.; Cankocak, K.] Istanbul Tech Univ, Istanbul, Turkey. [Grynyov, B.] Natl Acad Sci Ukraine, Inst Scintillat Mat, Kharkov, Ukraine. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Newbold, D. M.; Bell, K. W.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.] Rutherford Appleton Lab, Didcot, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; Wit, A. De; Della Negra, M.; Maria, R. Di; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Virdee, T.; Wright, J.; Zenz, S. C.] Imperial Coll, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge, Middx, England. [Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.] Baylor Univ, Waco, TX USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.] Univ Alabama, Tuscaloosa, AL USA. [Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.] Boston Univ, Boston, MA USA. [Benelli, G.; Berry, E.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.] Brown Univ, Providence, RI USA. [Breedon, R.; Breto, G.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA USA. [Bravo, C.; Cousins, R.; Dasgupta, A.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.] Univ Calif Riverside, Riverside, CA USA. [Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Welke, C.; Wood, J.; Wurthwein, F.; Yagil, A.; Zevi Della Porta, G.] Univ Calif San Diego, San Diego, CA USA. [Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA USA. [Dubinin, M.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA USA. [Andrews, M. B.; Azzolini, V.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.] Carnegie Mellon Univ, Pittsburgh, PA USA. [Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.] Univ Colorado, Boulder, CO USA. [Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT USA. [Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grunendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sa, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Kuznetsova, E.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.] Univ Florida, Gainesville, FL USA. [Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL USA. [Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.] Florida State Univ, Tallahassee, FL USA. [Baarmand, M. M.; Bhopatkar, V.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL USA. [Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Jung, K.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.] Univ Illinois, Chicago, IL USA. [Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J. -P.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.] Johns Hopkins Univ, Baltimore, MD USA. [Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Bruner, C.; Castle, J.; Forthomme, L.; Kenny, R. P. I. I. I.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.] Univ Kansas, Lawrence, KS USA. [Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.] Kansas State Univ, Manhattan, KS USA. [Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD USA. [Abercrombie, D.; Allen, B.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Matteo, L. Di; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.] MIT, Cambridge, MA USA. [Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bartek, R.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.] Univ Nebraska Lincoln, Lincoln, NE USA. [Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.] SUNY Buffalo, Buffalo, NY USA. [Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R. -J.; Wood, D.] Northeastern Univ, Boston, MA USA. [Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Kumar, A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.] Northwestern Univ, Evanston, IL USA. [Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN USA. [Alimena, J.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Mc Donald, J.; Medvedeva, T.; Mei, K.; Mooney, M.; Olsen, J.; Palmer, C.; Pirou, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Zuranski, A.] Princeton Univ, Princeton, NJ USA. [Malik, S.] Univ Puerto Rico, Mayaguez, PR USA. [SavoyNavarro, A.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Wang, F.; Xie, W.; Xu, L.] Purdue Univ, W Lafayette, IN USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Barbaro, P. de; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.] Univ Rochester, Rochester, NY 14627 USA. [Agapitos, A.; Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Gmez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.] Univ Tennessee, Knoxville, TN USA. [Celik, A.; Dalchenko, M.; Mattia, M. De; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; PerniS, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Guio, F. De; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.] Texas Tech Univ, Lubbock, TX USA. [Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.] Vanderbilt Univ, Nashville, TN USA. [Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Herv, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.] Univ Wisconsin, Madison, WI USA. [Krammer, M.] Vienna Univ Technol, Vienna, Austria. Univ Estadual Campinas, Campinas, SP, Brazil. Univ Fed Pelotas, Pelotas, Brazil. Ain Shams Univ, Cairo, Egypt. British Univ Egypt, Cairo, Egypt. Zewail City Sci & Technol, Zewail, Egypt. Univ, Haute Alsace, Mulhouse, France. Brandenburg Tech Univ Cottbus, Cottbus, Germany. Indian Inst Sci Educ & Res, Bhopal, India. Inst Phys, Bhubaneswar, Orissa, India. Visva Bharati Univ, Santini Ketan, W Bengal, India. Univ Ruhuna, Matara, Sri Lanka. Isfahan Univ Technol, Esfahan, Iran. Univ Tehran, Dept Engn Sci, Tehran, Iran. Yazd Univ, Yazd, Iran. Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. INFN, Lab Nazl Legnaro, Legnaro, Italy. [Grippo, M. T.] Univ Siena, Siena, Italy. [Ali, M. A. B. Md] Int Islamic Univ Malaysia, Kuala Lumpur, Malaysia. [Mohamad Idris, F.] Agensi Nuklear Malaysia, MOSTI, Kajang, Malaysia. [Heredia-De La Cruz, I.] Consejo Nacl Ciencia & Technol, Mexico City, DF, Mexico. [Byszuk, A.; Zagozdzinska, A.] Warsaw Univ Technol, Inst Elect Syst, Warsaw, Poland. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Blinov, V.; Skovpen, Y.; Shtol, D.] Budker Inst Nucl Phys, Novosibirsk, Russia. [Adzic, P.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Rolandi, G.] Scuola Normale & Sez INFN, Pisa, Italy. [Veckalns, V.] Riga Tech Univ, Riga, Latvia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Kangal, E. E.] Mersin Univ, Mersin, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Ozdemir, K.] Piri Reis Univ, Istanbul, Turkey. [Ozturk, S.] Gaziosmanpasa Univ, Tokat, Turkey. [Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Yetkin, E. A.] Istanbul Bilgi Univ, Istanbul, Turkey. [Yetkin, T.] Yildiz Tech Univ, Istanbul, Turkey. [Sen, S.] Hacettepe Univ, Ankara, Turkey. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Vazquez Acosta, M.] Inst Astrofis Canarias, San Cristobal la Laguna, Spain. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Colafranceschi, S.] Univ Roma, FacoltA Ingn, Rome, Italy. [Bilki, B.] Argonne Natl Lab, Argonne, IL USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Dominguez, A.] Cathol Univ Amer, Washington, DC USA. [Bouhali, O.] Texas A&M Univ, Doha, Qatar. CERN, CH-1211 Geneva 23, Switzerland. RI Lokhtin, Igor/D-7004-2012; Fernandez Menendez, Javier/B-6550-2014; Della Ricca, Giuseppe/B-6826-2013; Terkulov, Adel/M-8581-2015; Goh, Junghwan/Q-3720-2016 OI Fernandez Menendez, Javier/0000-0002-5213-3708; Della Ricca, Giuseppe/0000-0003-2831-6982; Goh, Junghwan/0000-0002-1129-2083 FU BMWFW (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER (Estonia); ERC IUT (Estonia); ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NIH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP (Republic of Korea); NRF (Republic of Korea); LAS (Lithuania); MOE (Malaysia); UM (Malaysia); BUAP (Mexico); CINVESTAV (Hungary); CONACYT (Hungary); LNS (Hungary); SEP (Hungary); UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Dubna); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MESTD (Serbia); SEIDI (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter (Thailand); IPST (Thailand); STAR (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); SFFR (Ukraine); STFC (United Kingdom); DOE (U.S.A.); NSF (U.S.A.); Marie-Curie program; European Research Council; EPLANET (European Union); Leventis Foundation; A.P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Council of Science and Industrial Research, India; HOMING PLUS program of the Foundation for Polish Science; European Union; Regional Development Fund; Mobility Plus program of the Ministry of Science and Higher Education; National Science Center (Poland) [2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202, 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, Sonatabis 2012/07/E/ST2/01406]; Thalis program - EU-ESF; Aristeia program - EU-ESF; National Priorities Research Program by Qatar National Research Fund; Programa Clarin-COFUND del Principado de Asturias; Rachadapisek Sompot Fund for Postdoctoral Fellowship (Thailand); Chulalongkorn University (Thailand); Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); Welch Foundation [C-1845]; Thalis program - Greek NSRF; Aristeia program - Greek NSRF FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.).; Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202, 2014/13/B/ST2/02543 and 2014/15/B/ST2/03998, Sonatabis 2012/07/E/ST2/01406; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarin-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845. NR 47 TC 0 Z9 0 U1 15 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB 9 PY 2017 IS 2 AR 048 DI 10.1007/JHEP02(2017)048 PG 35 WC Physics, Particles & Fields SC Physics GA EL0OP UT WOS:000394322000001 ER PT J AU Mebel, AM Landera, A Kaiser, RI AF Mebel, Alexander M. Landera, Alexander Kaiser, Ralf I. TI Formation Mechanisms of Naphthalene and Indene: From the Interstellar Medium to Combustion Flames SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID POLYCYCLIC AROMATIC-HYDROCARBONS; CROSSED-MOLECULAR-BEAM; INITIO G3-TYPE/STATISTICAL THEORY; SINGLE-COLLISION CONDITIONS; DENSITY-FUNCTIONAL THEORY; LOW-TEMPERATURE FORMATION; AB-INITIO; PHENYL RADICALS; MASTER EQUATION; CYCLOPENTADIENE PYROLYSIS AB The article addresses the formation mechanisms of naphthalene and indene, which represent prototype polycyclic aromatic hydrocarbons (PAH) carrying two six-membered and one five-plus a six-membered ring. Theoretical studies of the relevant chemical reactions are overviewed in terms of their potential energy surfaces, rate constants, and product branching ratios; these data are compared with experimental measurements in crossed molecular beams and the pyrolytic chemical reactor emulating the extreme conditions in the interstellar medium (ISM) and the combustion-like environment, respectively. The outcome of the reactions potentially producing naphthalene and indene is shown to critically depend on temperature and pressure or collision energy and hence the reaction mechanisms and their contributions to the PAH growth can be rather different in the ISM, planetary atmospheres, and in combustion flames at different temperatures and pressures. Specifically, this paradigm is illustrated with new theoretical results, for rate constants and product branching ratios for the reaction of phenyl radical with vinylacetylene. The analysis of the formatibn mechanisms of naphthalene and its derivatives shows that in combustion they can be produced via hydrogen-abstraction-acetylene-addition (HACA) routes, recombination of cyclopentadienyl radical with itself and with cyclopentadiene, the reaction:of benzyl radical with propargyl, methylation of indenyl radical, and the reactions of phenyl radical with vinylacetylene and 1,3-butadiene. In extreme astrochemical conditions, naphthalene and dihydronaphthalene can be formed in the C6H5 + vinylacetylene and C6H5 + 1,3 butadiene reactions, respectively, Ethynyl-substituted naphthalenes can be produced via the ethynyl addition mechanism beginning with benzene (in dehydrogenated forms) or with styrene. The formation mechanisms of indene in combustion include the reactions of the phenyl radical with C3H4 isomers allene and propyne, reaction of the benzyl radical with acetylene, and unimolecular decomposition of the 1-phenylallyl radical originating from 3-phenylpropene, a product of the C6H5 + propene reaction, or from C6H5 + C3H5. C1 [Mebel, Alexander M.] Florida Int Univ, Dept Chem & Biochem, Miami, FL 33199 USA. [Landera, Alexander] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Kaiser, Ralf I.] Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. RP Mebel, AM (reprint author), Florida Int Univ, Dept Chem & Biochem, Miami, FL 33199 USA.; Kaiser, RI (reprint author), Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. EM mebela@fiu.edu; ralfk@hawaii.edu FU U.S. Department of Energy, Basic Energy Sciences [DE-FG02-04ER15570, DE-FG02-03ER15411] FX This work was supported by the U.S. Department of Energy, Basic Energy Sciences DE-FG02-04ER15570 and DE-FG02-03ER15411 to Florida International University and to the University of Hawaii, respectively. A.M.M. acknowledges the Instructional & Research Computing Center (IRCC, http://ircc.fiu.edu) at Florida International University for providing HPC computing resources that have contributed to the research results reported within this paper. We are thankful to Drs. S. J. Klippenstein and Y. Georgievskii for stimulating discussions. NR 109 TC 0 Z9 0 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 9 PY 2017 VL 121 IS 5 BP 901 EP 926 DI 10.1021/acs.jpca.6b09735 PG 26 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EK4WL UT WOS:000393928200001 PM 28072538 ER PT J AU West, AC Schmidt, MW Gordon, MS Ruedenberg, K AF West, Aaron C. Schmidt, Michael W. Gordon, Mark S. Ruedenberg, Klaus TI Intrinsic Resolution of Molecular Electronic Wave Functions and Energies in Terms of Quasi-atoms and Their Interactions SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID TRANSITION-STATE METHOD; COMPREHENSIVE ANALYSIS; CHEMICAL-BOND; FORS MODEL; DECOMPOSITION ANALYSIS; LOCAL CONSTITUENTS; DENSITY-MATRIX; ORBITALS; VALENCE; COMPLEXES AB A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions, To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the juxtaposed nonbonded quasi-atoms and a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions, and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. The theoretical formulation of the resolution is quantitatively validated by an application to the C-2 molecule. C1 [Ruedenberg, Klaus] Iowa State Univ, USDOE, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, USDOE, Ames Lab, Ames, IA 50011 USA. RP Ruedenberg, K (reprint author), Iowa State Univ, USDOE, Dept Chem, Ames, IA 50011 USA. EM ruedenberg@iastate.edu FU National Science Foundation [CHE-1147446, CHE-1565888]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences through the Ames Laboratory at Iowa State University [DE-AC02-07CH11358] FX The present work was supported by the National Science Foundation under Grants CHE-1147446 and CHE-1565888 to Iowa State University. In part, the work was also supported (for K.R) by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences through the Ames Laboratory at Iowa State University under Contract DE-AC02-07CH11358. NR 46 TC 0 Z9 0 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 9 PY 2017 VL 121 IS 5 BP 1086 EP 1105 DI 10.1021/acs.jpca.6b10911 PG 20 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EK4WL UT WOS:000393928200019 PM 28134532 ER PT J AU Shrestha, UR Bhowmik, D Van Delinder, KW Mamontov, E O'Neill, H Zhang, Q Alatas, A Chu, XQ AF Shrestha, Utsab R. Bhowmik, Debsindhu Van Delinder, Kurt W. Mamontov, Eugene O'Neill, Hugh Zhang, Qiu Alatas, Ahmet Chu, Xiang-Qiang TI Collective Excitations in Protein as a Measure of Balance Between its Softness and Rigidity SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID HUMAN SERUM-ALBUMIN; X-RAY-SCATTERING; DEEP-SEA HYPERTHERMOPHILE; NEUTRON-SCATTERING; THERMAL-DENATURATION; ENZYME CATALYSIS; HYDRATION WATER; OLIGOMERIC PROTEIN; GLOBULAR-PROTEINS; LIGAND-BINDING AB In this article, we elucidate the protein activity from the perspective of protein softness and flexibility by studying the collective phonon-like excitations in a globular protein, human serum albumin (HSA), and taking advantage of the state-of-the-art inelastic X-ray scattering (IXS) technique. Such excitations demonstrate that the protein becomes softer upon thermal denaturation due to disruption of weak noncovalent bonds. On the other hand, no significant.change in the local excitations is detected in ligand (drugs) bound HSA compared to the ligand-free HSA. Our results clearly suggest that the protein conformational flexibility and rigidity are balanced by the native protein structure for biological activity. C1 [Shrestha, Utsab R.; Van Delinder, Kurt W.; Chu, Xiang-Qiang] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA. [Bhowmik, Debsindhu] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. [Mamontov, Eugene] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [O'Neill, Hugh; Zhang, Qiu] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Alatas, Ahmet] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Chu, XQ (reprint author), Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA. EM chux@wayne.edu RI Mamontov, Eugene/Q-1003-2015; OI Mamontov, Eugene/0000-0002-5684-2675; Chu, Xiang-qiang/0000-0003-4320-5316 FU Wayne State University; National Science Foundation, Division of Molecular and Cellular Biosciences (DMCB) [1616008]; DOE Office of Science [DE-AC02-06CH11357]; Center for Structural Molecular Biology - U.S. DOE, Office of Science, Office of Biological and Environmental Research (OBER) [ERKP291] FX This work was funded and supported by Wayne State University and the National Science Foundation, Division of Molecular and Cellular Biosciences (DMCB), under Grant No. 1616008. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. H.O'N. and QZ. acknowledge the support of the Center for Structural Molecular Biology funded by the U.S. DOE, Office of Science, Office of Biological and Environmental Research (OBER) Project ERKP291. We thank Dr. Bogdan M. Leu of Advanced Photon Source, Argonne National laboratory for his helpful discussion. NR 73 TC 0 Z9 0 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 9 PY 2017 VL 121 IS 5 BP 923 EP 930 DI 10.1021/acs.jpcb.6b10245 PG 8 WC Chemistry, Physical SC Chemistry GA EK4WJ UT WOS:000393928000003 PM 28080064 ER PT J AU Duan, XZ Zhang, Y Li, LY Zhang, R Ding, MM Huang, QR Xu, WS Shi, TF An, LJ AF Duan, Xiaozheng Zhang, Yang Li, Liangyi Zhang, Ran Ding, Mingming Huang, Qingrong Xu, Wen-Sheng Shi, Tongfei An, Lijia TI Effects of Concentration and Ionization Degree of Anchoring Cationic Polymers on the Lateral Heterogeneity of Anionic Lipid Monolayers SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID MONTE-CARLO; POLYELECTROLYTE ADSORPTION; CHARGED MACROMOLECULES; DYNAMICS SIMULATION; SURFACE-CHARGE; FORCE-FIELD; MEMBRANES; PROTEINS; BILAYERS; PIP2 AB We employed coarse-grained Monte Carlo simulations to investigate a system composed of cationic polymers and a phosphatidyl-choline membrane monolayer, doped with univalent anionic phosphatidylserine (PS) and tetravalent anionic phosphatidylinositol 4,S-bisphosphate (PIP2) lipid molecules. For this system, we consider the conditions under which multiple cationic polymers can anchor onto the monolayer and explore how the concentration and ionization degree of the polymers affect the lateral rearrangement and fluidity of the negatively charged lipids. Our work shows that the anchoring cationic polymers predominantly bind the tetravalent anionic PIP2 lipids and drag the PIP2 clusters to migrate on the monolayer. The polymer/PIP2 binding is found to be drastically enhanced by increasing the polymer ionization fraction, which causes the PIP2 lipids to form into larger clusters and reduces the mobility of the polymer/PIP2 complexes. As expected, stronger competition effects between anchoring polymers occur at higher polymer concentrations, for which each anchoring polymer partially dissociates from the monolayer and hence sequesters a smaller PIP2 cluster. The desorbed segments of the anchored polymers exhibit a faster mobility on the membrane, whereas the PIP2 dusters are closely restrained by the limited adhering cationic segments of anchoring polymers. We further demonstrate that the PIP2 molecules display a hierarchical mobility in the PIP2 clusters, which is regulated by the synergistic effect between the cationic segments of the polymers. The PS lipids sequester in the vicinity of the polymer/PIP2 complexes if the tetravalent PIP2 lipids cannot sufficiently neutralize the cationic polymers. Finally, we illustrate that the increase in the ionic concentration of the solution weakens the lateral clustering and the mobility heterogeneity of the charged lipids. Our work thus provides a better understanding of the fundamental biophysical mechanism of the concentration gradients and the hierarchical mobility of the anionic lipids in the membrane caused by the cationic polymer anchoring on length and time scales that are generally inaccessible by atomistic models. It also offers insight into the development and design of novel biological applications on the basis of the modulation of signaling lipids. C1 [Duan, Xiaozheng; Li, Liangyi; Zhang, Ran; Ding, Mingming; Shi, Tongfei; An, Lijia] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China. [Zhang, Yang] Northeast Normal Univ, Changchun 130024, Peoples R China. [Huang, Qingrong] Rutgers State Univ, Dept Food Sci, 65 Dudley Rd, New Brunswick, NJ 08901 USA. [Xu, Wen-Sheng] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Xu, Wen-Sheng] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Ding, MM; Shi, TF (reprint author), Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China.; Xu, WS (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.; Xu, WS (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM mmding@ciac.ac.cn3; wsxu0312@gmail.com; tfshi@ciac.ac.cn OI Xu, Wensheng/0000-0002-5442-8569 FU National Natural Science Foundation of China [21404103, 21234007, 21604086, 51473168]; Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund FX This study was funded by the National Natural Science Foundation of China (Nos. 21404103, 21234007, 21604086, and 51473168). The authors acknowledge the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) and the Computing Center of Jilin Province for their computational support. NR 55 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 9 PY 2017 VL 121 IS 5 BP 984 EP 994 DI 10.1021/acs.jpcb.6b12386 PG 11 WC Chemistry, Physical SC Chemistry GA EK4WJ UT WOS:000393928000009 PM 28110529 ER PT J AU Burstein, D Harrington, LB Strutt, SC Probst, AJ Anantharaman, K Thomas, BC Doudna, JA Banfield, JF AF Burstein, David Harrington, Lucas B. Strutt, Steven C. Probst, Alexander J. Anantharaman, Karthik Thomas, Brian C. Doudna, Jennifer A. Banfield, Jillian F. TI New CRISPR-Cas systems from uncultivated microbes SO NATURE LA English DT Article ID PROVIDES ACQUIRED-RESISTANCE; SPACER ACQUISITION; ADAPTIVE IMMUNITY; DNA ELEMENTS; SMALL RNA; ARCHAEA; ENDONUCLEASE; GENOMES; CLASSIFICATION; RECOGNITION AB CRISPR-Cas systems provide microbes with adaptive immunity by employing short DNA sequences, termed spacers, that guide Cas proteins to cleave foreign DNA(1,2). Class 2 CRISPR-Cas systems are streamlined versions, in which a single RNA-bound Cas protein recognizes and cleaves target sequences(3,4). The programmable nature of these minimal systems has enabled researchers to repurpose them into a versatile technology that is broadly revolutionizing biological and clinical research(5). However, current CRISPR-Cas technologies are based solely on systems from isolated bacteria, leaving the vast majority of enzymes from organisms that have not been cultured untapped. Metagenomics, the sequencing of DNA extracted directly from natural microbial communities, provides access to the genetic material of a huge array of uncultivated organisms(6,7). Here, using genome-resolved metagenomics, we identify a number of CRISPR-Cas systems, including the first reported Cas9 in the archaeal domain of life, to our knowledge. This divergent Cas9 protein was found in little studied nanoarchaea as part of an active CRISPR-Cas system. In bacteria, we discovered two previously unknown systems, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. Notably, all required functional components were identified by metagenomics, enabling validation of robust in vivo RNA-guided DNA interference activity in Escherichia coli. Interrogation of environmental microbial communities combined with in vivo experiments allows us to access an unprecedented diversity of genomes, the content of which will expand the repertoire of microbe-based biotechnologies. C1 [Burstein, David; Probst, Alexander J.; Anantharaman, Karthik; Thomas, Brian C.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Harrington, Lucas B.; Strutt, Steven C.; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Innovat Genom Initiat, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Lawrence Berkeley Natl Lab, MBIB Div, Berkeley, CA 94720 USA. [Banfield, Jillian F.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. RP Banfield, JF (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.; Doudna, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.; Doudna, JA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Doudna, JA (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA.; Doudna, JA (reprint author), Univ Calif Berkeley, Innovat Genom Initiat, Berkeley, CA 94720 USA.; Doudna, JA (reprint author), Lawrence Berkeley Natl Lab, MBIB Div, Berkeley, CA 94720 USA.; Banfield, JF (reprint author), Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. EM doudna@berkeley.edu; jbanfield@berkeley.edu FU EMBO fellowship; US National Science Foundation; German Science Foundation [DFG PR 1603/1-1]; Allen Distinguished Investigator Program, through The Paul G. Allen Frontiers Group; National Science Foundation [MCB-1244557]; Lawrence Berkeley National Laboratory's Sustainable Systems Scientific Focus Area - US Department of Energy [DE-AC02-05CH11231] FX We thank N. Ma, K. Zhou and D. McGrath for technical assistance; C. Brown, M. Olm, M. O'Connell, J. Chen and S. Floor for reading the manuscript and discussions; and V. Yu for the S. cerevisiae expression strain. D.B. was supported by a long-term EMBO fellowship, L.B.H. by a US National Science Foundation Graduate Research Fellowship, and A.J.P. by a fellowship of the German Science Foundation (DFG PR 1603/1-1). J.A.D. is an Investigator of the Howard Hughes Medical Institute. This research was supported in part by the Allen Distinguished Investigator Program, through The Paul G. Allen Frontiers Group, the National Science Foundation (MCB-1244557 to J.A.D.) and the Lawrence Berkeley National Laboratory's Sustainable Systems Scientific Focus Area funded by the US Department of Energy (DE-AC02-05CH11231 to J.F.B.). DNA sequencing was conducted at the DOE Joint Genome Institute, a DOE Office of Science User Facility, via the Community Science Program. NR 35 TC 2 Z9 2 U1 19 U2 19 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD FEB 9 PY 2017 VL 542 IS 7640 BP 237 EP 241 DI 10.1038/nature21059 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EK2DJ UT WOS:000393737500042 PM 28005056 ER PT J AU Brubaker, BM Zhong, L Gurevich, YV Cahn, SB Lamoreaux, SK Simanovskaia, M Root, JR Lewis, SM Al Kenany, S Backes, KM Urdinaran, I Rapidis, NM Shokair, TM van Bibber, KA Palken, DA Malnou, M Kindel, WF Anil, MA Lehnert, KW Carosi, G AF Brubaker, B. M. Zhong, L. Gurevich, Y. V. Cahn, S. B. Lamoreaux, S. K. Simanovskaia, M. Root, J. R. Lewis, S. M. Al Kenany, S. Backes, K. M. Urdinaran, I. Rapidis, N. M. Shokair, T. M. van Bibber, K. A. Palken, D. A. Malnou, M. Kindel, W. F. Anil, M. A. Lehnert, K. W. Carosi, G. TI First Results from a Microwave Cavity Axion Search at 24 mu eV SO PHYSICAL REVIEW LETTERS LA English DT Article ID INVISIBLE-AXION; HARMLESS AXION; COSMIC AXIONS; CP INVARIANCE; CONSTRAINTS; DENSITY; MODELS; LIMITS; HALO AB We report on the first results from a new microwave cavity search for dark matter axions with masses above 20 mu eV. We exclude axion models with two-photon coupling g(a gamma gamma) greater than or similar to 2 x 10(-14) GeV-1 over the range 23.55 < m(a) < 24.0 mu eV. These results represent two important achievements. First, we have reached cosmologically relevant sensitivity an order of magnitude higher in mass than any existing limits. Second, by incorporating a dilution refrigerator and Josephson parametric amplifier, we have demonstrated total noise approaching the standard quantum limit for the first time in an axion search. C1 [Brubaker, B. M.; Zhong, L.; Gurevich, Y. V.; Cahn, S. B.; Lamoreaux, S. K.] Yale Univ, Dept Phys, New Haven, CT 06511 USA. [Simanovskaia, M.; Root, J. R.; Lewis, S. M.; Al Kenany, S.; Backes, K. M.; Urdinaran, I.; Rapidis, N. M.; Shokair, T. M.; van Bibber, K. A.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Palken, D. A.; Malnou, M.; Kindel, W. F.; Anil, M. A.; Lehnert, K. W.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Palken, D. A.; Malnou, M.; Kindel, W. F.; Anil, M. A.; Lehnert, K. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Palken, D. A.; Malnou, M.; Kindel, W. F.; Anil, M. A.; Lehnert, K. W.] Natl Inst Stand & Technol, Boulder, CO 80309 USA. [Carosi, G.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. RP Brubaker, BM (reprint author), Yale Univ, Dept Phys, New Haven, CT 06511 USA. EM benjamin.brubaker@yale.edu RI Lehnert, Konrad/B-7577-2009 OI Lehnert, Konrad/0000-0002-0750-9649 FU National Science Foundation [PHY-1362305, PHY-1306729]; Heising-Simons Foundation [2014-181, 2014-182, 2014-183]; U.S. Department of Energy through Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported by the National Science Foundation, under Grants No. PHY-1362305 and No. PHY-1306729, by the Heising-Simons Foundation under Grants No. 2014-181, No. 2014-182, and No. 2014-183, and by the U.S. Department of Energy through Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. We gratefully acknowledge the critical contributions by Matthias Buhler of Low Temperature Solutions UG to the design of and upgrades to the cryogenic system. NR 32 TC 1 Z9 1 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 9 PY 2017 VL 118 IS 6 AR 061302 DI 10.1103/PhysRevLett.118.061302 PG 5 WC Physics, Multidisciplinary SC Physics GA EK2HF UT WOS:000393747700003 PM 28234529 ER PT J AU Le, BL Park, J Sklenar, J Chern, GW Nisoli, C Watts, JD Manno, M Rench, DW Samarth, N Leighton, C Schiffer, P AF Le, B. L. Park, J. Sklenar, J. Chern, G. -W. Nisoli, C. Watts, J. D. Manno, M. Rench, D. W. Samarth, N. Leighton, C. Schiffer, P. TI Understanding magnetotransport signatures in networks of connected permalloy nanowires SO PHYSICAL REVIEW B LA English DT Article ID ARTIFICIAL SPIN-ICE; DOMAIN-WALL; MAGNETORESISTANCE; FRUSTRATION; RULE AB The change in electrical resistance associated with the application of an external magnetic field is known as the magnetoresistance (MR). The measured MR is quite complex in the class of connected networks of single-domain ferromagnetic nanowires, known as "artificial spin ice," due to the geometrically induced collective behavior of the nanowire moments. We have conducted a thorough experimental study of the MR of a connected honeycomb artificial spin ice, and we present a simulation methodology for understanding the detailed behavior of this complex correlated magnetic system. Our results demonstrate that the behavior, even at low magnetic fields, can be well described only by including significant contributions from the vertices at which the legs meet, opening the door to new geometrically induced MR phenomena. C1 [Le, B. L.; Park, J.; Sklenar, J.; Schiffer, P.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Le, B. L.; Park, J.; Sklenar, J.; Schiffer, P.] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Chern, G. -W.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Nisoli, C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Watts, J. D.; Manno, M.; Leighton, C.] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. [Rench, D. W.; Samarth, N.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. [Rench, D. W.; Samarth, N.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. RP Le, BL (reprint author), Univ Illinois, Dept Phys, Urbana, IL 61801 USA.; Le, BL (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-SC0010778]; NSF MRSEC [DMR-1420013, DMR-1507048]; NNSA of the U.S. DOE at LANL [DE-AC52-06NA25396]; DOE at the LANL IMS FX The authors acknowledge Jarrett Moyer and Paul Lammert for useful discussions. This project was funded by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Grant No. DE-SC0010778. Work at the University of Minnesota was supported by the NSF MRSEC under award DMR-1420013, as well as by DMR-1507048. C.N.'s work is carried out under the auspices of the NNSA of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396 and financed by DOE at the LANL IMS. NR 37 TC 0 Z9 0 U1 10 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 9 PY 2017 VL 95 IS 6 AR 060405 DI 10.1103/PhysRevB.95.060405 PG 5 WC Physics, Condensed Matter SC Physics GA EK0BB UT WOS:000393590300001 ER PT J AU Hu, Z Mao, JH Curtis, C Huang, G Gu, SD Heiser, L Lenburg, ME Korkola, JE Bayani, N Samarajiwa, S Seoane, JA Dane, MA Esch, A Feiler, HS Wang, NJ Hardwicke, MA Laquerre, S Jackson, J Wood, KW Weber, B Spellman, PT Aparicio, S Wooster, R Caldas, C Gray, JW AF Hu, Zhi Mao, Jian-Hua Curtis, Christina Huang, Ge Gu, Shenda Heiser, Laura Lenburg, Marc E. Korkola, James E. Bayani, Nora Samarajiwa, Shamith Seoane, Jose A. Dane, Mark A. Esch, Amanda Feiler, Heidi S. Wang, Nicholas J. Hardwicke, Mary Ann Laquerre, Sylvie Jackson, Jeff Wood, Kenneth W. Weber, Barbara Spellman, Paul T. Aparicio, Samuel Wooster, Richard Caldas, Carlos Gray, Joe W. TI Genome co-amplification upregulates a mitotic gene network activity that predicts outcome and response to mitotic protein inhibitors in breast cancer (vol 18, pg 70, 2016) SO BREAST CANCER RESEARCH LA English DT Correction C1 [Hu, Zhi; Huang, Ge; Gu, Shenda; Heiser, Laura; Korkola, James E.; Dane, Mark A.; Esch, Amanda; Feiler, Heidi S.; Wang, Nicholas J.; Spellman, Paul T.; Gray, Joe W.] Oregon Hlth & Sci Univ, Sch Med, Dept Biomed Engn, 3303 SW Bond Ave, Portland, OR 97239 USA. [Mao, Jian-Hua; Bayani, Nora] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94127 USA. [Curtis, Christina; Seoane, Jose A.] Stanford Univ, Div Oncol, Dept Med, Sch Med, Stanford, CA 94305 USA. [Curtis, Christina; Seoane, Jose A.] Stanford Univ, Dept Genet, Sch Med, Stanford, CA 94305 USA. [Lenburg, Marc E.] Boston Univ, Dept Pathol & Lab Med, Sch Med, Boston, MA 02215 USA. [Samarajiwa, Shamith] Univ Cambridge, MRC Canc Unit, Cambridge CB2 0XZ, England. [Hardwicke, Mary Ann; Laquerre, Sylvie; Jackson, Jeff; Weber, Barbara; Wooster, Richard] GlaxoSmithKline, Collegeville, PA 19425 USA. [Wood, Kenneth W.] Cytokinetics Inc, San Francisco, CA 94080 USA. [Aparicio, Samuel] BC Canc Res Ctr, Mol Oncol, Vancouver, BC, Canada. [Caldas, Carlos] Canc Res UK, Cambridge Inst, Cambridge, England. RP Gray, JW (reprint author), Oregon Hlth & Sci Univ, Sch Med, Dept Biomed Engn, 3303 SW Bond Ave, Portland, OR 97239 USA.; Caldas, C (reprint author), Canc Res UK, Cambridge Inst, Cambridge, England. EM carlos.caldas@cancer.org.uk; Grayjo@ohsu.edu NR 1 TC 0 Z9 0 U1 3 U2 3 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1465-542X EI 1465-5411 J9 BREAST CANCER RES JI Breast Cancer Res. PD FEB 9 PY 2017 VL 19 AR 17 DI 10.1186/s13058-017-0809-6 PG 1 WC Oncology SC Oncology GA EK0NQ UT WOS:000393623800002 PM 28183333 ER PT J AU Chen, J Gao, QL Sanson, A Jiang, XX Huang, QZ Carnera, A Rodriguez, CG Olivi, L Wang, L Hu, L Lin, K Ren, Y Lin, ZS Wang, C Gu, L Deng, JX Attfield, JP Xing, XR AF Chen, Jun Gao, Qilong Sanson, Andrea Jiang, Xingxing Huang, Qingzhen Carnera, Alberto Rodriguez, Clara Guglieri Olivi, Luca Wang, Lei Hu, Lei Lin, Kun Ren, Yang Lin, Zheshuai Wang, Cong Gu, Lin Deng, Jinxia Attfield, J. Paul Xing, Xianran TI Tunable thermal expansion in framework materials through redox intercalation SO NATURE COMMUNICATIONS LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; CUBIC SCF3; ZERO; FE; BEHAVIOR; ZRW2O8 AB Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework-type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF3, doped with 10% Fe to enable reduction. The small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. Redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion. C1 [Chen, Jun; Gao, Qilong; Hu, Lei; Lin, Kun; Deng, Jinxia; Xing, Xianran] Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China. [Sanson, Andrea; Carnera, Alberto] Univ Padua, Dept Phys & Astron, I-35131 Padua, Italy. [Jiang, Xingxing; Lin, Zheshuai] Chinese Acad Sci, Tech Inst Phys & Chem, Ctr Crystal R&D, Key Lab Funct Crystals & Laser Technol, Beijing 100190, Peoples R China. [Huang, Qingzhen] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Rodriguez, Clara Guglieri; Olivi, Luca] Elettra Sicrotrone Trieste, Str Statale 14 Km,AREA Sci Pk, I-34149 Basovizza, Italy. [Wang, Lei; Wang, Cong] Beihang Univ, Ctr Condensed Matter & Mat Phys, Dept Phys, Beijing 100191, Peoples R China. [Ren, Yang] Argonne Natl Lab, X Ray Sci Div, Argonne, IL 60439 USA. [Gu, Lin] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Attfield, J. Paul] Univ Edinburgh, Ctr Sci Extreme Condit, Peter Guthrie Tait Rd,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland. [Attfield, J. Paul] Univ Edinburgh, Sch Chem, Peter Guthrie Tait Rd,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland. RP Xing, XR (reprint author), Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China.; Attfield, JP (reprint author), Univ Edinburgh, Ctr Sci Extreme Condit, Peter Guthrie Tait Rd,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland.; Attfield, JP (reprint author), Univ Edinburgh, Sch Chem, Peter Guthrie Tait Rd,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland. EM j.p.attfield@ed.ac.uk; xing@ustb.edu.cn RI Gu, Lin/D-9631-2011; OI Gu, Lin/0000-0002-7504-031X; Olivi, Luca/0000-0002-8368-7105 FU National Natural Science Foundation of China [21322102, 91422301, 21231001, 21590793, 11474292]; Program for Changjiang Scholars and the Innovative Research Team in University [IRT1207]; Changjiang Young Scholars Award; National Program for Support of Top-notch Young Professionals; Fundamental Research Funds for the Central Universities, China [FRF-TP-14-012C1]; Special Foundation of the Director of Technical Institute of Physics and Chemistry (TIPC); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the National Natural Science Foundation of China (grant nos. 21322102, 91422301, 21231001, 21590793 and 11474292), the Program for Changjiang Scholars and the Innovative Research Team in University (IRT1207), the Changjiang Young Scholars Award, National Program for Support of Top-notch Young Professionals, and the Fundamental Research Funds for the Central Universities, China (FRF-TP-14-012C1), the Special Foundation of the Director of Technical Institute of Physics and Chemistry (TIPC). The use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-AC02-06CH11357). We acknowledge the ELETTRA Synchrotron Radiation Facility for provision of synchrotron radiation as well as all the staff of the XAFS beamline. NR 51 TC 0 Z9 0 U1 26 U2 26 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB 9 PY 2017 VL 8 AR 14441 DI 10.1038/ncomms14441 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EK0AK UT WOS:000393588500001 PM 28181576 ER PT J AU Bansal, D Niedziela, JL May, AF Said, A Ehlers, G Abernathy, DL Huq, A Kirkham, M Zhou, HD Delaire, O AF Bansal, Dipanshu Niedziela, Jennifer L. May, Andrew F. Said, Ayman Ehlers, Georg Abernathy, Douglas L. Huq, Ashfia Kirkham, Melanie Zhou, Haidong Delaire, Olivier TI Lattice dynamics and thermal transport in multiferroic CuCrO2 SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; HEXAGONAL MANGANITES; SCATTERING; METALS AB Inelastic neutron and x-ray scattering measurements of phonons and spin waves were performed in the delafossite compound CuCrO2 over a wide range of temperature, and complemented with first-principles lattice dynamics simulations. The phonon dispersions and density of states are well reproduced by our density functional calculations, and reveal a strong anisotropy of Cu vibrations, which exhibit low-frequency modes of large amplitude parallel to the basal plane of the layered delafossite structure. The low frequency in-plane modes also show a systematic temperature dependence of neutron and x-ray scattering intensities. In addition, we find that spin fluctuations persist above 300 K, far above the Neel temperature for long-range antiferromagnetic order, T-N similar or equal to 24 K. Our modeling of the thermal conductivity, based on our phonon measurements and simulations, reveals a significant anisotropy and indicates that spin fluctuations above TN constitute an important source of phonon scattering, considerably suppressing the thermal conductivity compared to that of the isostructural but nonmagnetic compound CuAlO2. C1 [Bansal, Dipanshu; Niedziela, Jennifer L.; May, Andrew F.; Delaire, Olivier] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Said, Ayman] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ehlers, Georg; Abernathy, Douglas L.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Huq, Ashfia; Kirkham, Melanie] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Zhou, Haidong] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Delaire, Olivier] Duke Univ, Mech Engn & Mat Sci, Durham, NC 27708 USA. RP Bansal, D (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM bansald@ornl.gov; olivier.delaire@duke.edu RI Abernathy, Douglas/A-3038-2012 OI Abernathy, Douglas/0000-0002-3533-003X FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-SC0016166]; S3TEC EFRC, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0001299]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE; DOE Office of Science [DE-AC02-06CH11357]; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy [DE-AC05-00OR22725]; Department of Energy; [NSF-DMR-1350002] FX We thank John Tischler for help with software to fit the HERIX data. X-ray scattering measurements and first-principles simulations were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under the Early Career Award No. DE-SC0016166. Neutron scattering measurements were supported as part of the S3TEC EFRC, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0001299. A.F.M. acknowledges the support from the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. H.D.Z thanks the support from NSF-DMR-1350002. The use of Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Theoretical calculations were performed using resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 57 TC 0 Z9 0 U1 18 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 9 PY 2017 VL 95 IS 5 AR 054306 DI 10.1103/PhysRevB.95.054306 PG 12 WC Physics, Condensed Matter SC Physics GA EK0AZ UT WOS:000393590100002 ER PT J AU Galarraga, H Warren, RJ Lados, DA Dehoff, RR Kirka, MM Nandwana, P AF Galarraga, Haize Warren, Robert J. Lados, Diana A. Dehoff, Ryan R. Kirka, Michael M. Nandwana, Peeyush TI Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM) SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Additive manufacturing; Electron beam melting; Ti-6A1-4V; Microstructure evolution; Mechanical characterization; Heat treatment ID MECHANICAL-PROPERTIES; MELTED TI-6AL-4V AB Electron beam melting (EBM) is a metal powder bed fusion additive manufacturing (AM) technology that is used to fabricate three-dimensional near-net-shaped parts directly from computer models. Ti-6Al-4V is the most widely used and studied alloy for this technology and is the focus of this work in its ELI (Extra Low Interstitial) variation. Microstructure evolution and its influence on the mechanical properties of the alloy in the as-fabricated condition have been documented by various researchers. In the present work, different heat treatments were performed based on three approaches in order to study the effects of heat treatments on the unique microstructure formed during the EBM fabrication process. In the first approach, the effect of various cooling rates after the solutionizing process was studied. In the second approach, a correlation between the variation of a lath thickness during aging and the subsequent effect on mechanical properties was established. Lastly, several combined solutionizing and aging experiments were conducted; the results will be systematically discussed in the context of structural performance and design. C1 [Galarraga, Haize; Warren, Robert J.; Lados, Diana A.] Worcester Polytech Inst, Integrat Mat Design Ctr, 100 Inst Rd, Worcester, MA 01609 USA. [Dehoff, Ryan R.; Kirka, Michael M.; Nandwana, Peeyush] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Dehoff, Ryan R.; Kirka, Michael M.; Nandwana, Peeyush] Oak Ridge Natl Lab, Mfg Demonstrat Facil, Knoxville, TN 37932 USA. RP Warren, RJ (reprint author), Worcester Polytech Inst, Integrat Mat Design Ctr, 100 Inst Rd, Worcester, MA 01609 USA. EM rwarren@wpi.edu OI Lados, Diana/0000-0003-1903-1563 FU US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office [DE-AC05-000R22725]; UT-Battelle; LLC FX This research was performed under the Additive Manufacturing program of the Integrative Material Design Center (iMdc) at Worcester Polytechnic Institute, in collaboration with the Additive Manufacturing Demonstration Facility of Oak Ridge National Laboratory, and sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-000R22725 with UT-Battelle, LLC. Ph.D. candidates Yuwei Zhai and Anthony Spangenberger of the iMdc also collaborated actively in the material characterization performed during this study. NR 47 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD FEB 8 PY 2017 VL 685 BP 417 EP 428 DI 10.1016/j.msea.2017.01.019 PG 12 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA EK8RD UT WOS:000394190400047 ER PT J AU Leal, SL Landau, SM Bell, RK Jagust, WJ AF Leal, Stephanie L. Landau, Susan M. Bell, Rachel K. Jagust, William J. TI Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline SO ELIFE LA English DT Article ID A-BETA-DEPOSITION; ALZHEIMERS-DISEASE; NEURONAL-ACTIVITY; BRAIN ACTIVATION; MOUSE MODELS; IMPAIRMENT; NETWORK; MEMORY; HYPERACTIVITY; CONNECTIVITY AB The amyloid hypothesis suggests that beta-amyloid (A beta) deposition leads to alterations in neural function and ultimately to cognitive decline in Alzheimer's disease. However, factors that underlie A beta deposition are incompletely understood. One proposed model suggests that synaptic activity leads to increased A beta deposition. More specifically, hyperactivity in the hippocampus may be detrimental and could be one factor that drives A beta deposition. To test this model, we examined the relationship between hippocampal activity during a memory task using fMRI and subsequent longitudinal change in A beta using PIB-PET imaging in cognitively normal older adults. We found that greater hippocampal activation at baseline was associated with increased A beta accumulation. Furthermore, increasing A beta accumulation mediated the influence of hippocampal activation on declining memory performance, demonstrating a crucial role of A beta in linking hippocampal activation and memory. These findings support a model linking increased hippocampal activation to subsequent A beta deposition and cognitive decline. C1 [Leal, Stephanie L.; Landau, Susan M.; Bell, Rachel K.; Jagust, William J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Landau, Susan M.; Jagust, William J.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA. RP Leal, SL; Jagust, WJ (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA.; Jagust, WJ (reprint author), Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA. EM stephanieleal@berkeley.edu; jagust@berkeley.edu FU National Institute on Aging [AG054116, AG034570] FX National Institute on Aging AG054116 Stephanie L Leal; National Institute on Aging AG034570 William J Jagust; The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. NR 47 TC 0 Z9 0 U1 1 U2 1 PU ELIFE SCIENCES PUBLICATIONS LTD PI CAMBRIDGE PA SHERATON HOUSE, CASTLE PARK, CAMBRIDGE, CB3 0AX, ENGLAND SN 2050-084X J9 ELIFE JI eLife PD FEB 8 PY 2017 VL 6 BP 1 EP 15 AR e22978 DI 10.7554/eLife.22978 PG 15 WC Biology SC Life Sciences & Biomedicine - Other Topics GA EM3WH UT WOS:000395244800001 ER PT J AU Pan, HL Han, KS Vijayakumar, M Xiao, J Cao, RG Chen, JZ Zhang, JG Mueller, KT Shao, YY Liu, J AF Pan, Huilin Han, Kee Sung Vijayakumar, M. Xiao, Jie Cao, Ruiguo Chen, Junzheng Zhang, Jiguang Mueller, Karl T. Shao, Yuyan Liu, Jun TI Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium-Sulfur Batteries SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE lithium sulfur batteries; lithium sulfide; solubility; ammonium additive; NMR ID HIGH-PERFORMANCE; LIQUID ELECTROLYTES; IONIC LIQUIDS; AIR BATTERIES; POLYSULFIDE; DENSITY; SPECTROSCOPY; CHALLENGES; STABILITY; CHEMISTRY AB In rechargeable Li-S batteries, the uncontrollable passivation of electrodes by highly insulating Li2S limits sulfur utilization, increases polarization, and decreases cycling stability. Dissolving Li2S in organic electrolyte is a facile solution to maintain the active reaction interface between electrolyte and sulfur cathode, and thus address the above issues. Herein, ammonium salts are demonstrated as effective additives to promote the dissolution of Li2S to 1.25 M in DMSO solvent at room temperature. NMR measurements show that the strong hydrogen binding effect of N H groups plays a critical role in dissolving Li2S by forming complex ligands with 52 anions coupled with the solvent's solvating surrounding. Ammonium additives in electrolyte can also significantly improve the oxidation kinetics of Li2S, and therefore enable the direct use of Li2S as cathode material in Li S battery system in the future. This provides a new approach to manage the solubility of lithium sulfides through cation coordination with sulfide anion. C1 [Pan, Huilin; Han, Kee Sung; Vijayakumar, M.; Xiao, Jie; Cao, Ruiguo; Chen, Junzheng; Zhang, Jiguang; Mueller, Karl T.; Shao, Yuyan; Liu, Jun] Pacific Northwest Natl Lab, Joint Ctr Energy Storage Res, Richland, WA 99354 USA. RP Shao, YY; Liu, J (reprint author), Pacific Northwest Natl Lab, Joint Ctr Energy Storage Res, Richland, WA 99354 USA. EM yuyan.shao@pnnl.gov; jun.liu@pnnl.gov RI Shao, Yuyan/A-9911-2008 OI Shao, Yuyan/0000-0001-5735-2670 FU Joint Center for Energy Storage Research, an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences; U.S. Department of Energy's Office of Biological and Environmental Research FX This work was supported as part of the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. The NMR, SEM Raman analysis and DFT calculation were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). NR 44 TC 0 Z9 0 U1 46 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD FEB 8 PY 2017 VL 9 IS 5 BP 4290 EP 4295 DI 10.1021/acsami.6b04158 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EK3SX UT WOS:000393848900003 PM 27367455 ER PT J AU Zheng, D Liu, D Harris, JB Ding, TY Si, JY Andrew, S Qu, DY Yang, XQ Qu, DY AF Zheng, Dong Liu, Dan Harris, Joshua B. Ding, Tianyao Si, Jingyu Andrew, Sergei Qu, Deyu Yang, Xiao-Qing Qu, Deyang TI Investigation of the Li-S Battery Mechanism by Real-Time Monitoring of the Changes of Sulfur and Polysulfide Species during the Discharge and Charge SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE Li-S battery; polysulfide and sulfur determination; charge and discharge mechanisms; HPLC; polysulfide equilibrium ID X-RAY-DIFFRACTION; IN-SITU; LITHIUM/SULFUR BATTERY; RAMAN-SPECTROSCOPY; ELECTROLYTE; IDENTIFICATION; MICROSCOPY; SPECIATION; REDUCTION; STABILITY AB The mechanism of the sulfur cathode in Li-S batteries has been proposed. It was revealed by the real-time quantitative determination of polysulfide species and elemental sulfur by means of high-performance liquid chromatography in the course of the discharge and recharge of a Li-S battery. A three-step reduction mechanism including two chemical equilibrium reactions was proposed for the sulfur cathode discharge. The typical two-plateau discharge curve for the sulfur cathode can be explained. A two-step oxidation mechanism for Li2S and Li2S2 with a single chemical equilibrium among soluble polysulfide ions was proposed. The chemical equilibrium among S-5(2)-, S-6(2-), S-7(2-), and S-8(2-) throughout the entire oxidation process resulted for a single flat recharge curve in Li-S batteries. C1 [Zheng, Dong; Harris, Joshua B.; Ding, Tianyao; Si, Jingyu; Andrew, Sergei; Qu, Deyang] Univ Wisconsin, Coll Engn & Appl Sci, Dept Mech Engn, Milwaukee, WI 53211 USA. [Liu, Dan; Qu, Deyu] Wuhan Univ Technol, Sch Sci, Dept Chem, Wuhan 430070, Hubei, Peoples R China. [Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Qu, DY (reprint author), Univ Wisconsin, Coll Engn & Appl Sci, Dept Mech Engn, Milwaukee, WI 53211 USA. EM qud@uwm.edu FU Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, under the program of Vehicle Technology Program [DE-SC0012704]; Fundamental Research Funds for the Central Universities [WUT 2015-IB-001] FX The authors from University of Wisconsin-Milwaukee and Brookhaven National Laboratory are indebted to the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, under the program of Vehicle Technology Program (Contract DE-SC0012704). The authors from Wuhan University of Technology are grateful for support from Fundamental Research Funds for the Central Universities (Grant WUT 2015-IB-001). NR 36 TC 0 Z9 0 U1 23 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD FEB 8 PY 2017 VL 9 IS 5 BP 4326 EP 4332 DI 10.1021/acsami.6b08904 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EK3SX UT WOS:000393848900008 PM 27612389 ER PT J AU Huang, JP Payraz, AS Lee, SY Wu, LJ Zhu, YM Marschilok, AC Takeuchi, KJ Takeuchi, ES AF Huang, Jianping Payraz, Altug S. Lee, Seung-Yong Wu, Lijun Zhu, Yimei Marschilok, Amy C. Takeuchi, Kenneth J. Takeuchi, Esther S. TI Silver-Containing alpha-MnO2 Nanorods: Electrochemistry in Na-Based Battery Systems SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE alpha manganese oxide; sodium battery; silver hollandite; electrochemistry; X-ray diffraction ID SODIUM-ION BATTERIES; OCTAHEDRAL MOLECULAR-SIEVES; VANADIUM PHOSPHORUS OXIDE; ELECTRICAL ENERGY-STORAGE; X-RAY-DIFFRACTION; CATHODE MATERIALS; HYDROTHERMAL SYNTHESIS; BETA-MNO2 NANORODS; CRYSTALLITE SIZE; HIGH-CAPACITY AB Manganese oxides are considered attractive cathode materials for rechargeable batteries due to the high abundance and environmental friendliness of manganese. In particular, cryptomelane and hollandite are desirable due to their ability to host cations within their octahedral molecular sieve (OMS-2) alpha-MnO2 structure. In this work, we investigate silver containing alpha-MnO2 structured materials (Ag Mn8O16, x = 1.22, L-Ag-OMS-2 or 1.66, H-Ag-OMS-2) as host materials for Li ion and Na ion insertion/deinsertion. The results indicate a significant difference in the lithiation versus sodiation process of the OMS-2 materials. Initial reduction of Ag1.22Mn8O16 to 1.O V delivered similar to 370 mAh/g. Cycling of Ag1.22Mn8O16 between voltage ranges of 3.8-1.7 V and 3.8-1.3 V in a Na battery delivered initial capacities of 113 and 247 mAh/g, respectively. In contrast, Ag1.66Mn8O16 delivered only 15 mAh/ g, O.5 electron equivalents, to 1.7 and 1.3 V. Study of the system by electrochemical impedance spectroscopy (EIS) showed a significant decrease in charge transfer resistance from 2029 S2 to 594 52 after 1.5 electron equivalents per Ag1.22Mn8O16 formula unit of Na ion insertion. In contrast, both Ag1.22Mn8O16 and Ag1.22Mn8O16 exhibited gradual impedance increases during lithiation. The formation of silver metal could be detected only in the sodiated material by X-ray diffraction (XRD). Thus, the impedance of Ag-OMS-2 decreases upon sodiation coincident with the formation of silver metal during the discharge process, consistent with the more favorable formation of silver metal during the sodiation process relative to the lithation process. C1 [Huang, Jianping; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Payraz, Altug S.; Lee, Seung-Yong; Wu, Lijun; Zhu, Yimei; Takeuchi, Esther S.] Brookhaven Natl Lab, Energy Sci Directorate, Upton, NY 11973 USA. RP Marschilok, AC; Takeuchi, KJ; Takeuchi, ES (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.; Marschilok, AC; Takeuchi, KJ; Takeuchi, ES (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA.; Takeuchi, ES (reprint author), Brookhaven Natl Lab, Energy Sci Directorate, Upton, NY 11973 USA. EM amy.marschilok@stonybrook.edu; kenneth.takeuchi.1@stonybrook.edu; esther.takeuchi@stonybrook.edu FU U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012673]; Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering [DE-SC0012704]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX The authors acknowledge the Center for Mesoscale Transport Properties, an Energy Frontier Research Center supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under award #DE-SC0012673 for financial support. The XPS experiments were carried out at the Center for Functional Nanomaterials at Brookhaven National Laboratory, which are supported by the Department of Energy, Office of Basic Energy Sciences (DE-AC02-98CH10886). TEM work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering, under Contract DE-SC0012704. The X-ray absorption spectroscopy measurements were performed at Beamline 12BM-B of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357. The authors thank Christopher J. Pelliccione for helpful discussions regarding XAS. NR 53 TC 0 Z9 0 U1 27 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD FEB 8 PY 2017 VL 9 IS 5 BP 4333 EP 4342 DI 10.1021/acsami.6b08549 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EK3SX UT WOS:000393848900009 PM 27583534 ER PT J AU Gutierrez, A Kim, S Fister, TT Johnson, CS AF Gutierrez, Arturo Kim, Soojeong Fister, Timothy T. Johnson, Christopher S. TI Microwave-Assisted Synthesis of NaCoPO4 Red-Phase and Initial Characterization as High Voltage Cathode for Sodium-Ion Batteries SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE NaCoPO4; sodium batteries; microwave synthesis; polyanion; polymorph; XANES ID RAY-ABSORPTION SPECTROSCOPY; ELECTRODE MATERIAL; CRYSTAL-STRUCTURE; COBALT PHOSPHATE; HIGH-CAPACITY; MAGNETIC-PROPERTIES; LIFEPO4; NA2COPO4F; TRANSPORT; OLIVINES AB Transition metal-containing polyanion compounds are attractive for use as cathode materials in sodium ion batteries (SIB) because they possess elevated higher intrinsic electrochemical potentials versus oxide analogs given the same Mn+/(n+1)+ redox couple, which leads to higher energy densities. NaMPO4 (M = transition metal) compounds have a driving force to form into the electrochemically inactive maricite phase when using conventional methods. Herein we report on the synthesis of a NaCoPO4 (NCP) polymorph ("Red"-phase) by a microwave-assisted solvothermal process at 200 degrees C using tetraethylene glycol as the solvent. Ex situ XRD, XANES, and electrochemical data are used to determine the reversibility of the Co2+/3+ redox center. C1 [Gutierrez, Arturo; Kim, Soojeong; Fister, Timothy T.; Johnson, Christopher S.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA. RP Johnson, CS (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA. EM cjohnson@anl.gov FU Department of Energy [DE-AC02-06CH11357]; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; Department of Energy; MRCAT; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX Funding from the Department of Energy under Contract DE-AC02-06CH11357 is gratefully acknowledged. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 33 TC 0 Z9 0 U1 20 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD FEB 8 PY 2017 VL 9 IS 5 BP 4391 EP 4396 DI 10.1021/acsami.6b14341 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EK3SX UT WOS:000393848900015 PM 28106986 ER PT J AU Zhang, B DeBartolo, JE Song, J AF Zhang, Ben DeBartolo, Janae E. Song, Jie TI Shape Recovery with Concomitant Mechanical Strengthening of Amphiphilic Shape Memory Polymers in Warm Water SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE amphiphilic biodegradable polymers; hydration-induced stiffening effect; minimal invasive surgery; shape memory; weight-bearing implantation ID BONE DEFECTS; NETWORKS; COPOLYMERS; PERFORMANCE AB Maintaining adequate or enhancing mechanical properties of shape memory polymers (SMPs) after shape recovery in an aqueous environment are greatly desired for biomedical applications of SMPs as self-fitting tissue scaffolds or minimally invasive surgical implants. Here we report stable temporary shape fixing and facile shape recovery of biodegradable triblock amphiphilic SMPs containing a poly(ethylene glycol) (PEG) center block and flanking poly(lactic acid) or poly(lactic-co-glycolic acid) blocks in warm water, accompanied by concomitant enhanced mechanical strengths. Differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WXRD), and small-angle X-ray scattering (SAXS) analyses revealed that the unique stiffening of the amphiphilic SMPs upon hydration was due to hydration-driven microphase separation and PEG crystallization. We further demonstrated that the chemical composition of degradable blocks in these SMPs could be tailored to affect the persistence of hydration-induced stiffening upon subsequent dehydration. These properties combined open new horizons for these amphiphilic SMPs for smart weight-bearing in vivo applications (e.g., as self-fitting intervertebral discs). This study also provides a new material design strategy to strengthen polymers in aqueous environment in general. C1 [Zhang, Ben; Song, Jie] Univ Massachusetts, Sch Med, Dept Orthoped & Phys Rehabil, 55 Lake Ave North, Worcester, MA 01655 USA. [DeBartolo, Janae E.] Argonne Natl Lab, Adv Photon Source, Chem & Mat Sci Grp, 9700 Cass Ave, Lemont, IL 60439 USA. RP Song, J (reprint author), Univ Massachusetts, Sch Med, Dept Orthoped & Phys Rehabil, 55 Lake Ave North, Worcester, MA 01655 USA. EM Jie.Song@umassmed.edu FU J.R. Neff Award (Established Investigator Grant) from the Musculoskeletal Transplant Foundation; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX This work was supported by a J.R. Neff Award (Established Investigator Grant to J.S.) from the Musculoskeletal Transplant Foundation. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357. NR 27 TC 0 Z9 0 U1 8 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD FEB 8 PY 2017 VL 9 IS 5 BP 4450 EP 4456 DI 10.1021/acsami.6b14167 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EK3SX UT WOS:000393848900022 PM 28125208 ER PT J AU Riha, SC Koegel, AA Emery, JD Pellin, MJ Martinson, ABF AF Riha, Shannon C. Koegel, Alexandra A. Emery, Jonathan D. Pellin, Michael J. Martinson, Alex B. F. TI Low-Temperature Atomic Layer Deposition of CuSbS2 for Thin-Film Photovoltaics SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE copper antimony sulfide; CuSbS2; thin film; atomic layer deposition; photovoltaics; thin-film solar cell; ternary metal sulfide ID COPPER-ANTIMONY-SULFIDE; CU(IN,GA)SE-2 SOLAR-CELLS; ABSORBER MATERIAL; HIGH-EFFICIENCY; 20.8-PERCENT; NANOCRYSTALS; 21.7-PERCENT; FABRICATION; CONVERSION; PROGRESS AB Copper antimony sulfide (CuSbS2) has been gaining traction as an earth-abundant absorber for thin-film photovoltaics given its near ideal band gap for solar energy conversion (similar to 1.5 eV), large absorption coefficient (>10(4) cm(-1)), and elemental abundance. Through careful in situ analysis of the deposition conditions, a low-temperature route to CuSbS2 thin films via atomic layer deposition has been developed. After a short (15 min) postprocess anneal at 225 degrees C, the ALD-grown CuSbS2 films were crystalline with micron-sized grains, exhibited a band gap of 1.6 eV and an absorption coefficient >10(4) cm(-1), as well as a hole concentration of 10(15) cm(-3). Finally, the ALD-grown CuSbS2 films were paired with ALD-grown TiO2 to form a photovoltaic device. This photovoltaic device architecture represents one of a very limited number of Cd-free CuSbS2 PV device stacks reported to date, and it is the first to demonstrate an open-circuit voltage on par with CuSbS2/CdS heterojunction PV devices. While far from optimized, this work demonstrates the potential for ALD-grown CuSbS2 thin films in environmentally benign photovoltaics. C1 [Riha, Shannon C.; Koegel, Alexandra A.] Univ Wisconsin, Dept Chem, Stevens Point, WI 54481 USA. [Emery, Jonathan D.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Pellin, Michael J.; Martinson, Alex B. F.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Emery, Jonathan D.; Pellin, Michael J.; Martinson, Alex B. F.] Argonne Natl Lab, Argonne Northwestern Solar Energy Res ANSER Ctr, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Riha, SC (reprint author), Univ Wisconsin, Dept Chem, Stevens Point, WI 54481 USA.; Martinson, ABF (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.; Martinson, ABF (reprint author), Argonne Natl Lab, Argonne Northwestern Solar Energy Res ANSER Ctr, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sriha@uwsp.edu; martinson@anl.gov FU U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Visiting Faculty Program (VFP); Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Awards under the EERE Solar Program; DOE [DE-AC05-06OR23100]; Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Science [DE-SC0001059]; U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX S.C.R. and A.A.K. were supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Visiting Faculty Program (VFP). S.C.R. was supported in part by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Awards under the EERE Solar Program administered by the Oak Ridge Institute for Science and Education (ORISE) for the DOE. ORISE is managed by Oak Ridge Associated Universities (ORAU) under DOE contract No. DE-AC05-06OR23100. J.D.E., A.B.F.M., and M.J.P. were supported by the Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science under award No. DE-SC0001059. The research was performed at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. Use of the Center for Nanoscale Materials, including resources in the Electron Microscopy Center, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 38 TC 0 Z9 0 U1 9 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD FEB 8 PY 2017 VL 9 IS 5 BP 4667 EP 4673 DI 10.1021/acsami.6b13033 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EK3SX UT WOS:000393848900045 PM 28117960 ER PT J AU Zhao, JQ Zhang, W Huq, A Misture, ST Zhang, BL Guo, SM Wu, LJ Zhu, YM Chen, ZH Amine, K Pan, F Bai, JM Wang, F AF Zhao, Jianqing Zhang, Wei Huq, Ashfia Misture, Scott T. Zhang, Boliang Guo, Shengmin Wu, Lijun Zhu, Yimei Chen, Zonghai Amine, Khalil Pan, Feng Bai, Jianming Wang, Feng TI In Situ Probing and Synthetic Control of Cationic Ordering in Ni-Rich Layered Oxide Cathodes SO ADVANCED ENERGY MATERIALS LA English DT Article DE lithium ion batteries; Ni-rich layered oxide cathodes; cationic ordering; in situ XRD ID LITHIUM-ION BATTERIES; TRANSITION-METAL OXIDE; ELECTROCHEMICAL PROPERTIES; OXYGEN NONSTOICHIOMETRY; PECHINI METHOD; NICKEL; LINIO2; LI; PERFORMANCE; MECHANISM AB Ni-rich layered oxides (LiNi1-xMxO2; M = Co, Mn, ...) are appealing alternatives to conventional LiCoO2 as cathodes in Li-ion batteries for automobile and other large-scale applications due to their high theoretical capacity and low cost. However, preparing stoichiometric LiNi1-xMxO2 with ordered layer structure and high reversible capacity, has proven difficult due to cation mixing in octahedral sites. Herein, in situ studies of synthesis reactions and the associated structural ordering in preparing LiNiO2 and the Co-substituted variant, LiNi0.8Co0.2O2, are made, to gain insights into synthetic control of the structure and electrochemical properties of Ni-rich layered oxides. Results from this study indicate a direct transformation of the intermediate from the rock salt structure into hexagonal phase, and during the process, Co substitution facilities the nucleation of a Co-rich layered phase at low temperatures and subsequent growth and stabilization of solid solution Li(Ni, Co)O-2 upon further heat treatment. Optimal conditions are identified from the in situ studies and utilized to obtain stoichiometric LiNi0.8Co0.2O2 that exhibits high capacity (up to 200 mA h g(-1) ) with excellent retention. The findings shed light on designing high performance Ni-rich layered oxide cathodes through synthetic control of the structural ordering in the materials. C1 [Zhao, Jianqing; Zhang, Wei; Wang, Feng] Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA. [Zhao, Jianqing] Soochow Univ, Sch Energy, Coll Phys Optoelect & Energy, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215006, Peoples R China. [Huq, Ashfia] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Misture, Scott T.] Alfred Univ, Kazuo Inamori Sch Engn, Alfred, NY 14802 USA. [Zhang, Boliang; Guo, Shengmin] Louisiana State Univ, Dept Mech & Ind Engn, Baton Rouge, LA 70803 USA. [Wu, Lijun; Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Chen, Zonghai; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Pan, Feng] Peking Univ, Shenzhen Grad Sch, Sch Adv Mat, Shenzhen 518055, Guangdong, Peoples R China. [Bai, Jianming] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. RP Wang, F (reprint author), Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA.; Bai, JM (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. EM jmbai@bnl.gov; fwang@bnl.gov FU U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy under the Advanced Battery Materials Research (BMR) program [DE-SC0012704]; Inamori Professorship; U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0012704]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering [DE-SC0012704] FX This work was supported by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy under the Advanced Battery Materials Research (BMR) program under Contract No. DE-SC0012704. Laboratory in situ XRD measurements carried out at Alfred University (X-ray Diffraction and Scatting Lab) were supported by the Inamori Professorship held by SM. Synchrotron X-ray and TEM-EELS measurements carried out at the Center for Functional Nanomaterials and the National Synchrotron Light Source II (XPD beamline; 28-ID-2), Brookhaven National Laboratory, were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. Neutron powder diffreaction measurement at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. L.W. and Y.Z. were supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering under Contract No. DE-SC0012704. We thank John Johnson, Yusuf Celebi, Eric Dooryhee, Sanjit Ghose and John Trunk for technical support. We thank Dawei Wang, Patrick Looney, Gerbrand Ceder and Wei Tong for insightful discussions. NR 66 TC 0 Z9 0 U1 34 U2 34 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD FEB 8 PY 2017 VL 7 IS 3 AR 1601266 DI 10.1002/aenm.201601266 PG 13 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA EL9KW UT WOS:000394940100006 ER PT J AU Kusoglu, A Weber, AZ AF Kusoglu, Ahmet Weber, Adam Z. TI New Insights into Perfluorinated Sulfonic-Acid lonomers SO CHEMICAL REVIEWS LA English DT Review ID PROTON-EXCHANGE MEMBRANES; POLYMER-ELECTROLYTE MEMBRANES; FUEL-CELL MEMBRANES; ATOMIC-FORCE MICROSCOPY; X-RAY-SCATTERING; NAFION THIN-FILMS; SHORT-SIDE-CHAIN; PERFLUOROSULFONATED IONOMER MEMBRANES; MOLECULAR-DYNAMICS SIMULATIONS; SOLID-STATE NMR AB In this comprehensive review, recent progress and developments on perfluorinated sulfonic-acid (PFSA) membranes have been summarized on many key topics. Although quite well investigated for decades, PFSA ionomers' complex behavior, along with their key role in many emerging technologies, have presented significant scientific challenges but also helped create a unique cross-disciplinary research field to overcome such challenges. Research and progress on PFSAs, especially when considered with their applications, are at the forefront of bridging electrochemistry and polymer (physics), which have also opened up development of state-of-the-art in situ characterization techniques as well as multiphysics computation models. Topics reviewed stem from correlating the various physical (e.g., mechanical) and transport properties with morphology and structure across time and length scales. In addition, topics of recent interest such as structure/transport correlations and modeling, composite PFSA membranes, degradation phenomena, and PFSA thin films are presented. Throughout, the impact of PFSA chemistry and side-chain is also discussed to present a broader perspective. C1 [Kusoglu, Ahmet; Weber, Adam Z.] Lawrence Berkeley Natl Lab, Energy Convers Grp, Energy Technol Area, 1 Cyclotron Rd,MS70-108B, Berkeley, CA 94720 USA. RP Kusoglu, A (reprint author), Lawrence Berkeley Natl Lab, Energy Convers Grp, Energy Technol Area, 1 Cyclotron Rd,MS70-108B, Berkeley, CA 94720 USA. EM akusoglu@lbl.gov FU Fuel Cell Performance and Durability Consortium (FC-PAD); Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, of the U.S. Department of Energy [DE-ACO2-05CH11231] FX Part of this work was funded under the Fuel Cell Performance and Durability Consortium (FC-PAD) funded by the Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, of the U.S. Department of Energy under Contract No. DE-ACO2-05CH11231. The authors are grateful to myriads of meetings and discussions with researchers over the years that helped refine this review; and particular acknowledgements go out to Steve Hamrock, Andy Herring, Michael Hickner, and Klaus-Dieter Kreuer, for helpful discussions and their resourceful comments on various topics, as well as Andrew Crothers, Meron Tesfaye, and Shouwen Shi for proofreading of the article and discussions. NR 916 TC 0 Z9 0 U1 14 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0009-2665 EI 1520-6890 J9 CHEM REV JI Chem. Rev. PD FEB 8 PY 2017 VL 117 IS 3 BP 987 EP 1104 DI 10.1021/acs.chemrev.6b00159 PG 118 WC Chemistry, Multidisciplinary SC Chemistry GA EK3RT UT WOS:000393845700004 PM 28112903 ER PT J AU Mitchell, D AchutaRao, K Allen, M Bethke, I Beyerle, U Ciavarella, A Forster, PM Fuglestvedt, J Gillett, N Haustein, K Ingram, W Iversen, T Kharin, V Klingaman, N Massey, N Fischer, E Schleussner, CF Scinocca, J Seland, O Shiogama, H Shuckburgh, E Sparrow, S Stone, D Uhe, P Wallom, D Wehner, M Zaaboul, R AF Mitchell, Daniel AchutaRao, Krishna Allen, Myles Bethke, Ingo Beyerle, Urs Ciavarella, Andrew Forster, Piers M. Fuglestvedt, Jan Gillett, Nathan Haustein, Karsten Ingram, William Iversen, Trond Kharin, Viatcheslav Klingaman, Nicholas Massey, Neil Fischer, Erich Schleussner, Carl-Friedrich Scinocca, John Seland, Oyvind Shiogama, Hideo Shuckburgh, Emily Sparrow, Sarah Stone, Daithi Uhe, Peter Wallom, David Wehner, Michael Zaaboul, Rashyd TI Half a degree additional warming, prognosis and projected impacts (HAPPI): background and experimental design SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID EARTH SYSTEM MODEL; 1.5 DEGREES-C; PARIS AGREEMENT; CLIMATE-CHANGE; ATTRIBUTION; NORESM1-M; SCIENCE; CMIP5 AB The Intergovernmental Panel on Climate Change (IPCC) has accepted the invitation from the UNFCCC to provide a special report on the impacts of global warming of 1.5 degrees C above pre-industrial levels and on related global greenhouse-gas emission pathways. Many current experiments in, for example, the Coupled Model Inter-comparison Project (CMIP), are not specifically designed for informing this report. Here, we document the design of the half a degree additional warming, projections, prognosis and impacts (HAPPI) experiment. HAPPI provides a framework for the generation of climate data describing how the climate, and in particular extreme weather, might differ from the present day in worlds that are 1.5 and 2.0 degrees C warmer than pre-industrial conditions. Output from participating climate models includes variables frequently used by a range of impact models. The key challenge is to separate the impact of an additional approximately half degree of warming from uncertainty in climate model responses and internal climate variability that dominate CMIP-style experiments under low-emission scenarios. Large ensembles of simulations (> 50 members) of atmosphere-only models for three time slices are proposed, each a decade in length: the first being the most recent observed 10-year period (2006-2015), the second two being estimates of a similar decade but under 1.5 and 2 degrees C conditions a century in the future. We use the representative concentration pathway 2.6 (RCP2.6) to provide the model boundary conditions for the 1.5 degrees C scenario, and a weighted combination of RCP2.6 and RCP4.5 for the 2 degrees C scenario. C1 [Mitchell, Daniel; Allen, Myles; Haustein, Karsten; Massey, Neil; Uhe, Peter] Univ Oxford, Sch Geog & Environm, Environm Change Inst, Oxford, England. [AchutaRao, Krishna] Indian Inst Technol Delhi, Ctr Atmospher Sci, New Delhi 110016, India. [Allen, Myles; Ingram, William] Univ Oxford, AOPP, Oxford, England. [Bethke, Ingo] Bjerknes Ctr Climate Res, Uni Res Climate, Bergen, Norway. [Beyerle, Urs; Fischer, Erich] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Ciavarella, Andrew; Ingram, William] Met Off Hadley Ctr Climate Sci & Serv, Exeter, Devon, England. [Forster, Piers M.] Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England. [Fuglestvedt, Jan] Ctr Int Climate & Environm Res Oslo CICERO, POB 1129, N-0318 Oslo, Norway. [Gillett, Nathan; Kharin, Viatcheslav; Scinocca, John] Univ Victoria, Environm & Climate Change Canada, Canadian Ctr Climate Modelling & Anal, Victoria, BC V8W 2Y2, Canada. [Iversen, Trond; Seland, Oyvind] Norwegian Meteorol Inst, Oslo, Norway. [Klingaman, Nicholas] Univ Reading, Dept Meteorol, Natl Ctr Atmospher Sci Climate, Reading, Berks, England. [Schleussner, Carl-Friedrich] Climate Analyt, Berlin, Germany. [Schleussner, Carl-Friedrich] Potsdam Inst Climate Impact Res, Potsdam, Germany. [Shiogama, Hideo] Natl Inst Environm Studies, Ctr Global Environm Res, 16-2 Onogawa, Tsukuba, Ibaraki 3058506, Japan. [Shuckburgh, Emily] BAS, Madingley Rd, Cambridge, England. [Sparrow, Sarah; Uhe, Peter; Wallom, David] Univ Oxford, Oxford E Res Ctr OeRC, Oxford, England. [Wehner, Michael] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Zaaboul, Rashyd] Int Ctr Biosaline Agr, POB 14660, Dubai, U Arab Emirates. [Mitchell, Daniel] Univ Bristol, Sch Geog Sci, Bristol, Avon, England. RP Mitchell, D (reprint author), Univ Oxford, Sch Geog & Environm, Environm Change Inst, Oxford, England.; Mitchell, D (reprint author), Univ Bristol, Sch Geog Sci, Bristol, Avon, England. EM mitchell@atm.ox.ac.uk OI Wallom, David/0000-0001-7527-3407 FU NERC ACE Africa; NERC Independent Research Fellowship [NE/N014057/1]; Research Council of Norway [261821]; US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Program for Risk Information on Climate Change from the Ministry of Education, Culture, Sports, Science and Technology of Japan; Environment Research and Technology Development Fund of the Ministry of the Environment of Japan [S-10]; German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety [11_II_093_Global_A_SIDS, LDCs]; UK Natural Environment Research Council [NE/L010976/1] FX We would like to thank Ben Sanderson, Reto Knutti and Annette Hirsch for their in-depth reviews of our paper. Daniel Mitchell received support from the NERC ACE Africa and a NERC Independent Research Fellowship (NE/N014057/1). Jan Fuglestvedt, Ingo Bethke, Trond Iversen and Oyvind Seland received support from the Research Council of Norway, project no. 261821. This material involved work supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, under contract number DE-AC02-05CH11231. Hideo Shiogama was supported by the Program for Risk Information on Climate Change from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by the Environment Research and Technology Development Fund (S-10) of the Ministry of the Environment of Japan. Carl-Friedrich Schleussner was supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (11_II_093_Global_A_SIDS and LDCs). Nicholas Klingaman was funded by an Independent Research Fellowship from the UK Natural Environment Research Council (NE/L010976/1). NR 45 TC 0 Z9 0 U1 4 U2 4 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PD FEB 8 PY 2017 VL 10 IS 2 BP 571 EP 583 DI 10.5194/gmd-10-571-2017 PG 13 WC Geosciences, Multidisciplinary SC Geology GA EM5YS UT WOS:000395390500001 ER PT J AU Xie, ZH Yan, BH Zhang, L Chen, JGG AF Xie, Zhenhua Yan, Binhang Zhang, Li Chen, Jingguang G. TI Comparison of Methodologies of Activation Barrier Measurements for Reactions with Deactivation SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID CO2 REDUCTION; CATALYSTS AB Methodologies of activation barrier measurements for reactions with deactivation were theoretically analyzed. Reforming of ethane with CO2 was introduced as an example for reactions with deactivation to experimentally evaluate these methodologies. Both the theoretical and experimental results showed that due to catalyst deactivation, the conventional method would inevitably lead to a much lower activation barrier, compared to the intrinsic value, even though heat and mass transport limitations were excluded. In this work, an optimal method was identified in order to provide a reliable and efficient activation barrier measurement for reactions with deactivation. C1 [Xie, Zhenhua; Zhang, Li] Chongqing Univ, Coll Power Engn, Chongqing 400044, Peoples R China. [Xie, Zhenhua; Chen, Jingguang G.] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. [Yan, Binhang; Chen, Jingguang G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Zhang, L (reprint author), Chongqing Univ, Coll Power Engn, Chongqing 400044, Peoples R China.; Chen, JGG (reprint author), Columbia Univ, Dept Chem Engn, New York, NY 10027 USA.; Chen, JGG (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM lizhang@cqu.edu.cn; jgchen@columbia.edu FU U.S. Department of Energy [DE-SC0012704]; China Scholarship Council; Tang Lixin Scholarship FX The research was sponsored under Contract No. DE-SC0012704 with the U.S. Department of Energy. Z.X. also acknowledges financial support from the China Scholarship Council and the Tang Lixin Scholarship. NR 14 TC 0 Z9 0 U1 2 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD FEB 8 PY 2017 VL 56 IS 5 BP 1360 EP 1364 DI 10.1021/acs.iecr.6b04626 PG 5 WC Engineering, Chemical SC Engineering GA EK3SV UT WOS:000393848700023 ER PT J AU Nandi, S Collins, S Chakraborty, D Banerjee, D Thallapally, PK Woo, TK Vaidhyanathan, R AF Nandi, Shyamapada Collins, Sean Chakraborty, Debanjan Banerjee, Debasis Thallapally, Praveen K. Woo, Tom K. Vaidhyanathan, Ramanathan TI Ultralow Parasitic Energy for Postcombustion CO2 Capture Realized in a Nickel lsonicotinate Metal-Organic Framework with Excellent Moisture Stability SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CARBON-DIOXIDE CAPTURE; SWING ADSORPTION; AIR CAPTURE; ZEOLITE 13X; ADSORBENTS; PRESSURE; KINETICS; REMOVAL; BINDING; WATER AB Metal-organic frameworks (MOFs) have attracted significant attention as solid sorbents in gas separation processes for low-energy postcombustion CO2 capture. The parasitic energy (PE) has been put forward as a holistic parameter that measures how energy efficient (and therefore cost-effective) the CO2 capture process will be using the material. In this work, we present a nickel isonicotinate based ultramicroporous MOF, 1 [Ni-(4PyC)(2)center dot DMF], that has the lowest PE for postcombustion CO, capture reported to date. We calculate a PE of 655 kJ/kg CO2, which is lower than that of the best performing material previously reported, Mg-MOF-74. Further, 1 exhibits exceptional hydrolytic stability with the CO2 adsorption isotherm being unchanged following 7 days of steam-treatment (>85% RH) or 6 months of exposure to the atmosphere. The diffusion coefficient of CO2 in 1 is also 2 orders of magnitude higher than in zeolites currently used in industrial scrubbers. Breakthrough experiments show that 1 only loses 7% of its maximum CO2 capacity under humid conditions. C1 [Nandi, Shyamapada; Chakraborty, Debanjan; Vaidhyanathan, Ramanathan] Indian Inst Sci Educ & Res, Dept Chem, Pune 411008, Maharashtra, India. [Vaidhyanathan, Ramanathan] Indian Inst Sci Educ & Res, Ctr Energy Sci, Pune 411008, Maharashtra, India. [Collins, Sean; Woo, Tom K.] Univ Ottawa, Ctr Catalysis Res & Innovat, Ottawa, ON K1N 6N5, Canada. [Collins, Sean; Woo, Tom K.] Univ Ottawa, Dept Chem & Biomol Sci, Ottawa, ON K1N 6N5, Canada. [Banerjee, Debasis; Thallapally, Praveen K.] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99354 USA. RP Vaidhyanathan, R (reprint author), Indian Inst Sci Educ & Res, Dept Chem, Pune 411008, Maharashtra, India.; Vaidhyanathan, R (reprint author), Indian Inst Sci Educ & Res, Ctr Energy Sci, Pune 411008, Maharashtra, India.; Woo, TK (reprint author), Univ Ottawa, Ctr Catalysis Res & Innovat, Ottawa, ON K1N 6N5, Canada.; Woo, TK (reprint author), Univ Ottawa, Dept Chem & Biomol Sci, Ottawa, ON K1N 6N5, Canada.; Thallapally, PK (reprint author), Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99354 USA. EM Praveen.thallapally@pnnl.gov; twoo@uottawa.ca; vaidhya@iiserpune.ac.in FU IISER-Pune; NSERC of Canada; MHRD-FAST program FX We thank Dr. J.M. Huck for help in calculating the parasitic energies. We acknowledge IISER-Pune, NSERC of Canada, and the MHRD-FAST program for the necessary funding. NR 38 TC 0 Z9 0 U1 43 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 8 PY 2017 VL 139 IS 5 BP 1734 EP 1737 DI 10.1021/jacs.6b10455 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA EK3ST UT WOS:000393848400007 PM 28107782 ER PT J AU Dydio, P Key, HM Hayashi, H Clark, DS Hartwig, JF AF Dydio, Pawel Key, Hanna M. Hayashi, Hiroki Clark, Douglas S. Hartwig, John F. TI Chemoselective, Enzymatic C-H Bond Amination Catalyzed by a Cytochrome P450 Containing an Ir(Me)-PIX Cofactor SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID C(SP(3))-H AMINATION; ENZYMES; METALLOENZYMES AB Cytochrome P450 enzymes have been engineered to catalyze abiological C-H bond amination reactions, but the yields of these reactions have been limited by low chemoselectivity for the amination of C-H bonds over competing reduction of the azide substrate to a sulfonamide. Here we report that P450s derived from a thermophilic organism and containing an iridium porphyrin cofactor (Ir(Me)-PIX) in place of the heme catalyze enantioselective intramolecular C-H bond amination reactions of sulfonyl azides. These reactions occur with chemoselectivity for insertion of the nitrene units into C-H bonds over reduction of the azides to the sulfonamides that is higher and with substrate scope that is broader than those of enzymes containing iron porphyrins. The products from C-H amination are formed in up to 98% yield and similar to 300 TON. In one case, the enantiomeric excess reaches 95:5 er, and the reactions can occur with divergent site selectivity. The chemoselectivity for C-H bond amination is greater than 20:1 in all cases. Variants of the Ir(Me)-PIX CYP119 displaying these properties were identified rapidly by evaluating CYP119 mutants containing Ir(Me)-PIX in cell lysates, rather than as purified enzymes. This study sets the stage to discover suitable enzymes to catalyze challenging C-H amination reactions. C1 [Dydio, Pawel; Key, Hanna M.; Hayashi, Hiroki; Hartwig, John F.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Dydio, Pawel; Key, Hanna M.; Hayashi, Hiroki; Hartwig, John F.] Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Clark, Douglas S.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Clark, Douglas S.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Hartwig, JF (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Hartwig, JF (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jhartwig@berkeley.edu FU Office of Science, of the U.S. Department of Energy [DE-AC02- 05CH11231]; NSF; NWO Netherlands Organization for Scientific Research [680-50-1306]; Naito Foundation FX The authors gratefully acknowledge Cynthia Mantassas for her work on related studies that informed aspects of this publication. This work was supported by the Director, Office of Science, of the U.S. Department of Energy under contract no. DE-AC02- 05CH11231, the NSF (graduate research fellowship to H.M.K.), the NWO Netherlands Organization for Scientific Research (Rubicon postdoctoral fellowship no. 680-50-1306 to P.D.), and the Naito Foundation (postdoctoral fellowship to H.H.). We thank the QB3MacroLab facility at UC Berkeley (competent cells) and the UC Berkeley DNA Sequencing Facility (plasmid sequencing). NR 20 TC 0 Z9 0 U1 11 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 8 PY 2017 VL 139 IS 5 BP 1750 EP 1753 DI 10.1021/jacs.6b11410 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA EK3ST UT WOS:000393848400011 PM 28080030 ER PT J AU McMillan, JR Brodin, JD Millan, JA Lee, B de la Cruz, MO Mirkin, CA AF McMillan, Janet R. Brodin, Jeffrey D. Millan, Jaime A. Lee, Byeongdu de la Cruz, Monica Olvera Mirkin, Chad A. TI Modulating Nanoparticle Superlattice Structure Using Proteins with Tunable Bond Distributions SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID GOLD NANOPARTICLES; DNA; CRYSTALS; CRYSTALLIZATION; DESIGN; FRAMEWORKS AB Herein, we investigate the use of proteins with tunable DNA modification distributions to modulate nanoparticle superlattice structure. Using beta-galactosidase (beta gal) as a model system, we have employed the orthogonal chemical reactivities of surface amines and thiols to synthesize protein DNA conjugates with 36 evenly distributed or 8 specifically positioned oligonucleotides. When these are assembled into crystalline super lattices with gold nanoparticles, we find that the distribution of DNA modifications modulates the favored structure: beta gal with uniformly distributed DNA bonding elements results in body-centered cubic crystals, whereas DNA functionalization of cysteines results in AB(2) packing. We probe the role of protein oligonucleotide number and conjugate size on this observation, which revealed the importance of oligonucleotide distribution in this observed assembly behavior. These results indicate that proteins with defined DNA modification patterns are powerful tools for controlling nanoparticle superlattices architecture, and establish the importance of oligonucleotide distribution in the assembly behavior of protein-DNA conjugates. C1 [McMillan, Janet R.; Brodin, Jeffrey D.; de la Cruz, Monica Olvera; Mirkin, Chad A.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Millan, Jaime A.; de la Cruz, Monica Olvera; Mirkin, Chad A.] Northwestern Univ, Dept Mat Sci & Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA. [McMillan, Janet R.; Brodin, Jeffrey D.; Millan, Jaime A.; de la Cruz, Monica Olvera; Mirkin, Chad A.] Northwestern Univ, Int Inst Nanotechnol, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Lee, Byeongdu] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Mirkin, CA (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.; Mirkin, CA (reprint author), Northwestern Univ, Dept Mat Sci & Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA.; Mirkin, CA (reprint author), Northwestern Univ, Int Inst Nanotechnol, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM chadnano@northwestern.edu OI Lee, Byeongdu/0000-0003-2514-8805 FU U.S. Department of Defense National Security Science and Engineering Faculty Fellowship [N00014-15-1-0043]; AFOSR [FA9550-11-1-0275]; U.S. Department of Energy [DE-AC02-06CH11357]; Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource [NSF NNCI-1542205]; MRSEC program at the Materials Research Center [NSF DMR-1121262]; International Institute for Nanotechnology (IIN); Keck Foundation; State of Illinois, through the IIN. J.A.M; IIN Fellowship; Center for Computation and Theory of Soft Materials at Northwestern University; NSF [DMR-1611076]; National Science and Engineering Research Council of Canada FX This material is based upon work supported by the U.S. Department of Defense National Security Science and Engineering Faculty Fellowship (award N00014-15-1-0043) and the AFOSR (award FA9550-11-1-0275). SAXS experiments were carried out at the Dupont-Northwestern-Dow Collaborative Access Team beamline at the Advanced Photon Source (APS) at Argonne National Laboratory, and use of the APS was supported by the U.S. Department of Energy (DE-AC02-06CH11357). This work made use of the EPIC facility of Northwestern University's NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. J.A.M. is supported by an IIN Fellowship, the Center for Computation and Theory of Soft Materials at Northwestern University, and NSF award DMR-1611076. J.R.M. gratefully acknowledges the National Science and Engineering Research Council of Canada for a Postgraduate Fellowship. NR 36 TC 0 Z9 0 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 8 PY 2017 VL 139 IS 5 BP 1754 EP 1757 DI 10.1021/jacs.6b11893 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA EK3ST UT WOS:000393848400012 PM 28121437 ER PT J AU Chen, XH Choing, SN Aschaffenburg, DJ Pemmaraju, CD Prendergast, D Cuk, T AF Chen, Xihan Choing, Stephanie N. Aschaffenburg, Daniel J. Pemmaraju, C. D. Prendergast, David Cuk, Tanja TI The Formation Time of Ti-O-center dot and Ti-O-center dot Ti Radicals at the n-SrTiO3/Aqueous Interface during Photocatalytic Water Oxidation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; VIBRATIONAL-RELAXATION; OXYGEN EVOLUTION; DYNAMICS; SURFACE; SPECTROSCOPY; PHOTOLUMINESCENCE; RECOMBINATION; PHOTOANODES AB The initial step of photocatalytic water oxidation reaction at the metal oxide/aqueous interface involves intermediates formed by trapping photogenerated, valence band holes on different reactive sites of the oxide surface. In SrTiO3, these one-electron intermediates are radicals located in Ti-O (oxyl) and Ti-O-Ti (bridge) groups arranged perpendicular and parallel to the surface respectively, and form electronic states in the band gap of SrTiO3. Using an ultrafast sub band gap probe of 400 nm and white light, we excited transitions between these radical states and the conduction band. By measuring the time evolution of surface reflectivity following the pump pulse of 266 nm light, we determined an initial radical formation time of 1.3 +/- 0.2 ps, which is identical to the time to populate the surface with titanium oxyl (Ti-O) radicals. The oxyl was separately observed by a subsurface vibration near 800 cm(-1) from Ti-O located in the plane right below Ti-O. Second, a polarized transition optical dipole allows us to assign the 1.3 ps time constant to the production of both O-site radicals. After a 4.5 ps delay, another distinct surface species forms with a time constant of 36 +/- 10 ps with a yet undetermined structure. As would be expected, the radicals decay, specifically probed by the oxyls subsurface vibration, parallels that of the photocurrent. Our results led us to propose a nonadiabatic kinetic mechanism for generating radicals of the type Ti-O and Ti-O-Ti from valence band holes based on their solvation at aqueous interfaces. C1 [Chen, Xihan; Choing, Stephanie N.; Aschaffenburg, Daniel J.; Cuk, Tanja] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Pemmaraju, C. D.; Cuk, Tanja] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Prendergast, David] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Cuk, T (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Cuk, T (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM tanjacuk@berkeley.edu FU Department of Energy Office of Basic Energy Sciences, under the CPIMS program (FWP) [KC030102, CH12CUK1]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This material is based upon work supported by the Department of Energy Office of Basic Energy Sciences, under the CPIMS program KC030102 (FWP no. CH12CUK1). We thank Dr. Dylan Lu for help with taking the photoluminescence measurements and Professor Peidong Yang for the use of the photoluminescence instrument. We would also like to thank Dr. Miguel Salmeron and Dr. Heinz Frei for proof-reading the manuscript and offering very helpful suggestions. Density functional theory simulations were performed as part of a User Project with C.D.P. and D.P. at The Molecular Foundry (TMF), Lawrence Berkeley National Laboratory, and calculations were executed on their Vulcan and Nano compute clusters, administered by the High-Performance Computing Services Group at LBNL. TMF is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. NR 53 TC 0 Z9 0 U1 11 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 8 PY 2017 VL 139 IS 5 BP 1830 EP 1841 DI 10.1021/jacs.6b09550 PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA EK3ST UT WOS:000393848400031 PM 27997159 ER PT J AU Palla, KS Hurlburt, TJ Buyanin, AM Somorjai, GA Francis, MB AF Palla, Kanwal S. Hurlburt, Tyler J. Buyanin, Alexander M. Somorjai, Gabor A. Francis, Matthew B. TI Site-Selective Oxidative Coupling Reactions for the Attachment of Enzymes to Glass Surfaces through DNA-Directed Immobilization SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SUM-FREQUENCY GENERATION; GOLD NANOPARTICLES; VIBRATIONAL SPECTROSCOPY; PROTEIN ORIENTATION; ORTHO-AMINOPHENOLS; COVALENT; BIOCONJUGATION; STRATEGIES; ANILINES; TRANSAMINATION AB Enzymes are able to maintain remarkably high selectivity toward their substrates while still retaining high catalytic rates. By immobilizing enzymes onto surfaces we can heterogenize these biological catalysts, making it practical to study, use, and combine them in an easily controlled system. In this work, we developed a platform that allows for the simple and oriented immobilization of proteins through DNA-directed immobilization. First, we modified a glass surface with single stranded DNA. We then site-selectively attached the complementary DNA strand to the N-terminus of a protein. Both DNA modifications were carried out using an oxidative coupling strategy, and the DNA strands served as easily tunable and reversible chemical handles to hybridize the protein DNA conjugates onto the surface. We have used the aldolase enzyme as a model protein to conduct our studies. We characterized each step of the protein immobilization process using fluorescent reporters as well as atomic force microscopy. We also conducted activity assays on the surfaces with DNA-linked aldolase to validate that, despite being modified with DNA and undergoing subsequent immobilization, the enzyme was still able to retain its catalytic activity and the surfaces were reusable in subsequent cycles. C1 [Palla, Kanwal S.; Hurlburt, Tyler J.; Buyanin, Alexander M.; Somorjai, Gabor A.; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Hurlburt, Tyler J.; Somorjai, Gabor A.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Buyanin, Alexander M.; Somorjai, Gabor A.; Francis, Matthew B.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Francis, MB (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM mbfrancis@berkeley.edu FU NSF [CHE 1413666]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division [DE-AC02-05CH11231]; NSF; Berkeley Chemical Biology Graduate Program (NRSA Training Grant) [1 T32 GMO66698] FX The work directed toward N-terminal protein functionalization was funded by NSF (CHE 1413666). The surface immobilization and characterization studies were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under Contract DE-AC02-05CH11231. K.S.P. was supported by a predoctoral fellowship from the NSF and from the Berkeley Chemical Biology Graduate Program (NRSA Training Grant 1 T32 GMO66698). NR 43 TC 0 Z9 0 U1 9 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 8 PY 2017 VL 139 IS 5 BP 1967 EP 1974 DI 10.1021/jacs.6b11716 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA EK3ST UT WOS:000393848400046 PM 28001056 ER PT J AU Paull, SH Horton, DE Ashfaq, M Rastogi, D Kramer, LD Diffenbaugh, NS Kilpatrick, AM AF Paull, Sara H. Horton, Daniel E. Ashfaq, Moetasim Rastogi, Deeksha Kramer, Laura D. Diffenbaugh, Noah S. Kilpatrick, A. Marm. TI Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts SO PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES LA English DT Article DE vector-borne disease; nonlinear temperature-disease relationship; Culex; disease ecology; global warming ID LOUIS-ENCEPHALITIS-VIRUS; CULEX-TARSALIS DIPTERA; UNITED-STATES; INDUCED AMPLIFICATION; INFECTIOUS-DISEASES; RISK-FACTORS; LAND-USE; TEMPERATURE; MOSQUITOS; TRANSMISSION AB The effect of global climate change on infectious disease remains hotly debated because multiple extrinsic and intrinsic drivers interact to influence transmission dynamics in nonlinear ways. The dominant drivers of widespread pathogens, like West Nile virus, can be challenging to identify due to regional variability in vector and host ecology, with past studies producing disparate findings. Here, we used analyses at national and state scales to examine a suite of climatic and intrinsic drivers of continental-scale West Nile virus epidemics, including an empirically derived mechanistic relationship between temperature and transmission potential that accounts for spatial variability in vectors. We found that drought was the primary climatic driver of increased West Nile virus epidemics, rather than within-season or winter temperatures, or precipitation independently. Local-scale data from one region suggested drought increased epidemics via changes in mosquito infection prevalence rather than mosquito abundance. In addition, human acquired immunity following regional epidemics limited subsequent transmission in many states. We show that over the next 30 years, increased drought severity from climate change could triple West Nile virus cases, but only in regions with low human immunity. These results illustrate how changes in drought severity can alter the transmission dynamics of vector-borne diseases. C1 [Paull, Sara H.; Kilpatrick, A. Marm.] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, 1156 High St, Santa Cruz, CA 95064 USA. [Paull, Sara H.] Natl Ctr Atmospher Res, Res Applicat Lab, 3450 Mitchell Ln, Boulder, CO 80301 USA. [Horton, Daniel E.] Northwestern Univ, Dept Earth & Planetary Sci, Evanston, IL 60208 USA. [Horton, Daniel E.; Diffenbaugh, Noah S.] Stanford Univ, Dept Earth Syst Sci, Stanford, CA 94305 USA. [Horton, Daniel E.; Diffenbaugh, Noah S.] Stanford Univ, Woods Inst Environm, Stanford, CA 94305 USA. [Ashfaq, Moetasim; Rastogi, Deeksha] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Kramer, Laura D.] New York State Dept Hlth, Wadsworth Ctr, Slingerlands, NY 12159 USA. [Kramer, Laura D.] SUNY Albany, Sch Publ Hlth, Dept Biomed Sci, Albany, NY 12201 USA. RP Paull, SH; Kilpatrick, AM (reprint author), Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, 1156 High St, Santa Cruz, CA 95064 USA.; Paull, SH (reprint author), Natl Ctr Atmospher Res, Res Applicat Lab, 3450 Mitchell Ln, Boulder, CO 80301 USA. EM sara.paull@colorado.edu; akilpatr@ucsc.edu FU National Institutes of Health [1R01AI090159-01]; National Science Foundation [EF-0914866, DEB-1115895, DEB-1336290]; NIAID [14-0131-01] FX This work was supported with funding from the National Institutes of Health (1R01AI090159-01), the National Science Foundation (EF-0914866, DEB-1115895 and DEB-1336290) and NIAID contract no. 14-0131-01. NR 65 TC 0 Z9 0 U1 12 U2 12 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 0962-8452 EI 1471-2954 J9 P ROY SOC B-BIOL SCI JI Proc. R. Soc. B-Biol. Sci. PD FEB 8 PY 2017 VL 284 IS 1848 AR 20162078 DI 10.1098/rspb.2016.2078 PG 10 WC Biology; Ecology; Evolutionary Biology SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology GA EK2IC UT WOS:000393750000004 ER PT J AU Shamie, JS Liu, CH Shaw, LL Sprenkle, VL AF Shamie, Jack S. Liu, Caihong Shaw, Leon L. Sprenkle, Vincent L. TI New Mechanism for the Reduction of Vanadyl Acetylacetonate to Vanadium Acetylacetonate for Room Temperature Flow Batteries SO CHEMSUSCHEM LA English DT Article DE ambient temperature; flow batteries; non-aqueous catholyte; sodium; vanadium acetylacetonate ID ENERGY DENSITY; MEMBRANE; ELECTROLYTES; SULFOXIDE; SOLVENTS AB In this study, a new mechanism for the reduction of vanadyl acetylacetonate, VO(acac)(2), to vanadium acetylacetonate, V(acac)(3), is introduced. V(acac)(3) has been studied for use in redox flow batteries (RFBs) for some time; however, contamination by moisture leads to the formation of VO(acac)(2). In previous work, once this transformation occurs, it is no longer reversible because there is a requirement for extreme low potentials for the reduction to occur. Here, we propose that, in the presence of excess acetylacetone (Hacac) and free protons (H+), the reduction can take place between 2.25 and 1.5 V versus Na/Na+ via a one-electron-transfer reduction. This reduction can take place in situ during discharge in a novel hybrid Na-based flow battery (HNFB) with a molten Na-Cs alloy as the anode. The in situ recovery of V(acac)(3) during discharge is shown to allow the Coulombic efficiency of the HNFB to be & 100% with little or no capacity decay over cycles. In addition, utilizing two-electron-transfer redox reactions (i.e., V3+/V4+ and V2+/V3+ redox couples) per V ion to increase the energy density of RFBs becomes possible owing to the in situ recovery of V(acac)(3) during discharge. The concept of in situ recovery of material can lead to more advances in maintaining the cycle life of RFBs in the future. C1 [Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.] IIT, Dept Mech Mat & Aerosp Engn, Chicago, IL 60616 USA. [Sprenkle, Vincent L.] Pacific Northwest Natl Lab, Energy Storage & Convers Energy Mat, Richland, WA 99352 USA. RP Shaw, LL (reprint author), IIT, Dept Mech Mat & Aerosp Engn, Chicago, IL 60616 USA. EM lshaw2@iit.edu FU U.S. DOE Office of Electricity Delivery and Energy Reliability (OE) Energy Storage Program FX Financial support from the U.S. DOE Office of Electricity Delivery and Energy Reliability (OE) Energy Storage Program (Dr. Imre Gyuk) is greatly appreciated. NR 31 TC 0 Z9 0 U1 12 U2 12 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD FEB 8 PY 2017 VL 10 IS 3 BP 533 EP 540 DI 10.1002/cssc.201601126 PG 8 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA EL4DO UT WOS:000394572100009 PM 27863095 ER PT J AU Malhotra, D Koech, PK Heldebrant, DJ Cantu, DC Zheng, F Glezakou, VA Rousseau, R AF Malhotra, Deepika Koech, Phillip K. Heldebrant, David J. Cantu, David C. Zheng, Feng Glezakou, Vassiliki-Alexandra Rousseau, Roger TI Reinventing Design Principles for Developing Low-Viscosity Carbon Dioxide-Binding Organic Liquids for Flue Gas Clean Up SO CHEMSUSCHEM LA English DT Article DE carbon dioxide; hydrogen bonding; molecular design; organic liquids; viscosity ID REVERSIBLE IONIC LIQUIDS; CO2 CAPTURE; REGENERATION; ABSORPTION; SORBENTS; SOLVENTS AB Anthropogenic CO2 emissions from point sources (e.g., coal fired-power plants) account for the majority of the greenhouse gases in the atmosphere. Water-lean solvent systems such as CO2-binding organic liquids (CO(2)BOLs) are being developed to reduce the energy requirement for CO2 capture. Many water-lean solvents such as CO(2)BOLs are currently limited by the high viscosities of concentrated electrolyte solvents, thus many of these solvents have yet to move toward commercialization. Conventional standard trial-and-error approaches for viscosity reduction, while effective, are time consuming and economically expensive. We rethink the metrics and design principles of low-viscosity CO2-capture solvents using a combined synthesis and computational modeling approach. We critically study the effects of viscosity reducing factors such as orientation of hydrogen bonding, introduction of higher degrees of freedom, and cation or anion charge solvation, and assess whether or how each factor affects viscosity of CO2BOL CO2 capture solvents. Ultimately, we found that hydrogen bond orientation and strength is the predominant factor influencing the viscosity in CO2BOL solvents. With this knowledge, a new CO2BOL variant, 1-MEIPADM-2-BOL, was synthesized and tested, resulting in a solvent that is approximately 60% less viscous at 25 mol% CO2 loading than our base compound 1-IPADM-2-BOL. The insights gained from the current study redefine the fundamental concepts and understanding of what influences viscosity in concentrated organic CO2-capture solvents. C1 [Malhotra, Deepika; Koech, Phillip K.; Heldebrant, David J.; Zheng, Feng] Pacific Northwest Natl Lab, Energy Proc & Mat Div, Richland, WA 99352 USA. [Cantu, David C.; Glezakou, Vassiliki-Alexandra; Rousseau, Roger] Pacific Northwest Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Koech, PK (reprint author), Pacific Northwest Natl Lab, Energy Proc & Mat Div, Richland, WA 99352 USA. EM phillip.koech@pnnl.gov RI Rousseau, Roger/C-3703-2014 FU U.S. Department of Energy's Office of Fossil Energy [FWP-65872]; U.S. Department of Energy [DE-AC 05-76RL01830] FX The authors acknowledge the U.S. Department of Energy's Office of Fossil Energy for funding award number FWP-65872. Computational resources were provided through a National Energy Research Scientific Computing Center User Proposal, and Pacific Northwest National Laboratory (PNNL) Institutional Computing. The authors acknowledge Ms. Maura K. Zimmerschied for technical editing this paper. PNNL is proudly operated by Battelle for the U.S. Department of Energy under contract No. DE-AC 05-76RL01830. NR 31 TC 0 Z9 0 U1 7 U2 7 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD FEB 8 PY 2017 VL 10 IS 3 BP 636 EP 642 DI 10.1002/cssc.201601622 PG 7 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA EL4DO UT WOS:000394572100020 PM 28004518 ER PT J AU Aaboud, M Aad, G Abbott, B Abdallah, J Abdinov, O Abeloos, B Aben, R AbouZeid, OS Abraham, NL Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adachi, S Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Ali, B Aliev, M Alimonti, G Alison, J Alkire, SP Allbrooke, BMM Allen, BW Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Alshehri, AA Alstaty, M Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antel, C Antonelli, M Antonov, A Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Armitage, LJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Artz, S Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisits, MS Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska-Blenessy, Z Baroncelli, A Barone, G Barr, AJ Navarro, LB Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bedognetti, M Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, AS Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Belyaev, NL Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Benitez, J Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Beringer, J Berlendis, S Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertram, IA Bertsche, C Bertsche, D Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethani, A Bethke, S Bevan, AJ Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bielski, R Biesuz, NV Biglietti, M De Mendizabal, JB Billoud, TRV Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Bisanz, T Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blue, A Blum, W Blumenschein, U Blunier, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Boerner, D Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bokan, P Bold, T Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Bortfeldt, J Bortoletto, D Bortolotto, V Bos, K Boscherini, D Bosman, M Sola, JDB Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Boutle, SK Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Broughton, JH de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruni, LS Brunt, BH Bruschi, M Bruscino, N Bryant, P Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Budagov, IA Buehrer, F Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burka, K Burke, S Burmeister, I Burr, JTP Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Callea, G Caloba, LP Lopez, SC Calvet, D Calvet, S Calvet, TP Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Camincher, C Campana, S Campanelli, M Camplani, A Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Carbone, RM Cardarelli, R Cardillo, F Carli, I Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Casper, DW Castaneda-Miranda, E Castelijn, R Castelli, A Gimenez, VC Castro, NF Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavallaro, E Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Alberich, LC Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chan, SK Chan, YL Chang, P Chapman, JD Charlton, DG Chatterjee, A Chau, CC Barajas, CAC Che, S Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, HJ Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chitan, A Chizhov, MV Choi, K Chomont, AR Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocca, C Ciocio, A Cirotto, F Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, BL Clark, MR Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Colasurdo, L Cole, B Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cormier, KJR Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cottin, G Cowan, G Cox, BE Cranmer, K Crawley, SJ Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cueto, A Donszelmann, TC Cummings, J Curatolo, M Cuth, J Czirr, H Czodrowski, P D'amen, G D'Auria, S D'Onofrio, M De Sousa, MJDC Da Via, C Dabrowski, W Dado, T Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Dann, NS Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, M Davison, P Dawe, E Dawson, I De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Maria, A De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Dehghanian, N Deigaard, I Del Gaudio, M Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Denysiuk, D Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Clemente, WK Di Donato, C Di Girolamo, A Di Girolamo, B Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Cornell, SD Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dolejsi, J Dolezal, Z Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Du, Y Duarte-Campderros, J Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudder, AC Duffield, EM Duflot, L Duhrssen, M Dumancic, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edwards, NC Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellajosyula, V Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Ennis, JS Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, F Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farina, C Farina, EM Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fawcett, WJ Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, RRM Flick, T Castillo, LRF Flowerdew, MJ Forcolin, GT Formica, A Forti, A Foster, AG Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D Fressard-Batraneanu, SM Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, LG Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Bravo, AG Gasnikova, K Gatti, C Gaudiello, A Gaudio, G Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Gecse, Z Gee, CNP Geich-Gimbel, C Geisen, M Geisler, MP Gellerstedt, K Gemme, C Genest, MH Geng, C Gentile, S Gentsos, C George, S Gerbaudo, D Gershon, A Ghasemi, S Ghneimat, M Giacobbe, B Giagu, S Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuli, F Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, G Gonella, L Gongadze, A de la Hoz, SG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goudet, CR Goujdami, D Goussiou, AG Govender, N Gozani, E Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gravila, PM Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Grevtsov, K Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Groh, S Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guan, W Guenther, J Guescini, F Guest, D Gueta, O Gui, B Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, R Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Hadef, A Hagebock, S Hagihara, M Hajduk, Z Hakobyan, H Haleem, M Haley, J Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hartmann, NM Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hayakawa, D Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, JJ Heinrich, L Heinz, C Hejbal, J Helary, L Hellman, S Helsens, C Henderson, J Henderson, RCW Heng, Y Henkelmann, S Correia, AMH Henrot-Versille, S Herbert, GH Herde, H Herget, V Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohn, D Holmes, TR Homann, M Honda, T Hong, TM Hooberman, BH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howarth, J Hoya, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, Q Hu, S Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Huo, P Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Ishijima, N Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ito, F Ponce, JMI Iuppa, R Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, P Jain, V Jakobi, KB Jakobs, K Jakobsen, S Jakoubek, T Jamin, DO Jana, DK Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Javurkova, M Jeanneau, F Jeanty, L Jeng, GY Jennens, D Jenni, P Jeske, C Jezequel, S Ji, H Jia, J Jiang, H Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Jivan, H Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, S Jones, TJ Jongmanns, J Jorge, PM Jovicevic, J Ju, X Rozas, AJ Kohler, MK Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kaji, T Kajomovitz, E Kalderon, CW Kaluza, A Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kanjir, L Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawade, K Kawagoe, K Kawamoto, T Kawamura, G Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khader, M Khalil-zada, F Khanov, A Kharlamov, AG Kharlamova, T Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kilby, CR Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kohler, NM Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotwal, A Koulouris, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Kowalewska, AB Kowalewski, R Kowalski, TZ Kozakai, C Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kravchenko, A Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuechler, JT Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lammers, S Lampl, W Lancon, E Landgraf, U Landon, MPJ Lanfermann, MC Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Lazzaroni, M Le, B Le Dortz, O Le Guirriec, E Le Quilleuc, EP LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, B Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Lerner, G Leroy, C Lesage, AAJ Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, D Leyko, AM Leyton, M Li, B Li, C Li, H Li, HL Li, L Li, L Li, Q Li, S Li, X Li, Y Liang, Z Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limosani, A Lin, SC Lin, TH Lindquist, BE Lionti, AE Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, YL Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, EM Loch, P Loebinger, FK Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Longo, L Looper, KA Lopez, JA Mateos, DL Paredes, BL Paz, IL Solis, AL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, H Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Luzi, PM Lynn, D Lysak, R Lytken, E Lyubushkin, V Ma, H Ma, LL Ma, Y Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Malone, C Maltezos, S Malyukov, S Mamuzic, J Mancini, G Mandelli, L Mandic, I Maneira, J de Andrade, L Ramos, JM Mann, A Manousos, A Mansoulie, B Mansour, JD Mantifel, R Mantoani, M Manzoni, S Mapelli, L Marceca, G March, L Marchiori, G Marcisovsky, M Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Outschoorn, VIM Martin-Haugh, S Martoiu, VS Martyniuk, AC Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Maznas, I Mazza, SM Mc Fadden, NC Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McClymont, LI McDonald, EF Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melini, D Garcia, BRM Melo, M Meloni, F Meng, XT Mengarelli, A Menke, S Meoni, E Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Theenhausen, HMZ Miano, F Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Minegishi, Y Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Mlynarikova, M Moa, T Mochizuki, K Mohapatra, S Molander, S Moles-Valls, R Monden, R Mondragon, MC Monig, K Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, S Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Sanchez, FJM Quijada, JAM Murray, WJ Musheghyan, H Muskinja, M Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nagai, K Nagai, R Nagano, K Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Garcia, RFN Narayan, R Villar, DIN Naryshkin, I Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Manh, TN Nickerson, RB Nicolaidou, R Nielsen, J Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Norjoharuddeen, N Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Nurse, E Nuti, F O'grady, F O'Neil, DC O'Rourke, AA O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okawa, H Okumura, Y Okuyama, T Olariu, A Seabra, LFO Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oreglia, MJ Oren, Y Orestano, D Orlando, N Orr, RS Osculati, B Ospanov, R Garzon, GY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Rodriguez, LP Aranda, CP Griso, SP Paganini, M Paige, F Pais, P Pajchel, K Palacino, G Palazzo, S Palestini, S Palka, M Pallin, D St Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, AJ Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pascuzzi, VR Pasqualucci, E Passaggio, S Pastore, F Pasztor, G Pataraia, S Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Penc, O Peng, C Peng, H Penwell, J Peralva, BS Perego, MM Perepelitsa, DV Codina, EP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrov, M Petrucci, F Pettersson, NE Peyaud, A Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pilcher, JE Pilkington, AD Pin, AWJ Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Astigarraga, MEP Pralavorio, P Pranko, A Prell, S Price, D Price, LE Primavera, M Prince, S Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Przybycien, M Puddu, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Raine, JA Rajagopalan, S Rammensee, M Rangel-Smith, C Ratti, MG Rauch, DM Rauscher, F Rave, S Ravenscroft, T Ravinovich, I Raymond, M Read, AL Readioff, NP Reale, M Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reed, RG Reeves, K Rehnisch, L Reichert, J Reiss, A Rembser, C Ren, H Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rimoldi, M Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Rizzi, C Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodina, Y Perez, AR Rodriguez, DR Roe, S Rogan, CS Rohne, O Roloff, J Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosien, NA Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Rozanov, A Rozen, Y Ruan, X Rubbo, F Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryu, S Ryzhov, A Rzehorz, GF Saavedra, AF Sabato, G Sacerdoti, S Sadrozinski, HFW Sadykov, R Tehrani, FS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, J Martinez, VS Pineda, AS Sandaker, H Sandbach, RL Sandhoff, M Sandoval, C Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sato, K Sauvan, E Savage, G Savard, P Savic, N Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schachtner, BM Schaefer, D Schaefer, L Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schier, S Schillo, C Schioppa, M Schlenker, S Schmidt-Sommerfeld, KR Schmieden, K Schmitt, C Schmitt, S Schmitz, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schott, M Schouwenberg, JFP Schovancova, J Schramm, S Schreyer, M Schuh, N Schulte, A Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwarz, TA Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciolla, G Scuri, F Scutti, F Searcy, J Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shaikh, NW Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shirabe, S Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shope, DR Shrestha, S Shulga, E Shupe, MA Sicho, P Sickles, AM Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silverstein, SB Simak, V Simic, L Simion, S Simioni, E Simmons, B Simon, D Simon, M Sinervo, P Sinev, NB Sioli, M Siragusa, G Sivoklokov, SY Sjolin, J Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Slovak, R Smakhtin, V Smart, BH Smestad, L Smiesko, J Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snyder, IM Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Sanchez, CAS Solar, M Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Son, H Song, HY Sood, A Sopczak, A Sopko, V Sorin, V Sosa, D Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M St Denis, RD Stabile, A Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, GH Stark, J Stark, SH Staroba, P Starovoitov, P Starz, S Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Suchek, S Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeshita, T Takubo, Y Talby, M Talyshev, AA Tan, KG Tanaka, J Tanaka, M Tanaka, R Tanaka, S Tanioka, R Tannenwald, BB Araya, ST Tapprogge, S Tarem, S Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, AC Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, PD Thompson, AS Thomsen, LA Thomson, E Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Tong, B Tornambe, P Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Trofymov, A Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tseng, JCL Tsiareshka, PV Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsui, KM Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tu, Y Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turgeman, D Turra, R Tuts, PM Tyndel, M Ucchielli, G Ueda, I Ughetto, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usui, J Vacavant, L Vacek, V Vachon, B Valderanis, C Santurio, EV Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Ferrer, JAV Van Den Wollenberg, W Van Der Deijl, PC van der Graaf, H van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vasquez, JG Vasquez, GA Vazeille, F Schroeder, TV Veatch, J Veeraraghavan, V Veloce, LM Veloso, F Veneziano, S Ventura, A Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigani, L Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vittori, C Vivarelli, I Vlachos, S Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wallangen, V Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, W Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Weber, SA Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, MD Werner, P Wessels, M Wetter, J Whalen, K Whallon, NL Wharton, AM White, A White, MJ White, R Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilk, F Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wingerter-Seez, I Winklmeier, F Winston, OJ Winter, BT Wittgen, M Wittkowski, J Wolf, TMH Wolter, MW Wolters, H Worm, SD Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yang, Z Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zakharchuk, N Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, JC Zeng, Q Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, M Zhang, R Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A Zur Nedden, M Zwalinski, L AF Aaboud, M. Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Abeloos, B. Aben, R. AbouZeid, O. S. Abraham, N. L. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adachi, S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Ali, B. Aliev, M. Alimonti, G. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allen, B. W. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Alshehri, A. A. Alstaty, M. Gonzalez, B. Alvarez Piqueras, D. Alvarez Alviggi, M. G. Amadio, B. T. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antel, C. Antonelli, M. Antonov, A. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Armitage, L. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Artz, S. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisits, M-S Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska-Blenessy, Z. Baroncelli, A. Barone, G. Barr, A. J. Navarro, L. Barranco Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bedognetti, M. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, A. S. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Belyaev, N. L. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Benitez, J. Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Beringer, J. Berlendis, S. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertram, I. A. Bertsche, C. Bertsche, D. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethani, A. Bethke, S. Bevan, A. J. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bielski, R. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Billoud, T. R. V. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Bisanz, T. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blue, A. Blum, W. Blumenschein, U. Blunier, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Boerner, D. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bokan, P. Bold, T. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Bortfeldt, J. Bortoletto, D. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Sola, J. D. Bossio Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Broughton, J. H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruni, L. S. Brunt, B. H. Bruschi, M. Bruscino, N. Bryant, P. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Budagov, I. A. Buehrer, F. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burka, K. Burke, S. Burmeister, I. Burr, J. T. P. Busato, E. Buscher, D. Buscher, V. Bussey, P. Butler, J. M. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Urban, S. Cabrera Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Callea, G. Caloba, L. P. Lopez, S. Calvente Calvet, D. Calvet, S. Calvet, T. P. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Camincher, C. Campana, S. Campanelli, M. Camplani, A. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, I. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Casper, D. W. Castaneda-Miranda, E. Castelijn, R. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavallaro, E. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Alberich, L. Cerda Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, S. K. Chan, Y. L. Chang, P. Chapman, J. D. Charlton, D. G. Chatterjee, A. Chau, C. C. Barajas, C. A. Chavez Che, S. Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, H. J. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chitan, A. Chizhov, M. V. Choi, K. Chomont, A. R. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocca, C. Ciocio, A. Cirotto, F. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, B. L. Clark, M. R. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Colasurdo, L. Cole, B. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cormier, K. J. R. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Crawley, S. J. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cueto, A. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Czirr, H. Czodrowski, P. D'amen, G. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dado, T. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Dann, N. S. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, M. Davison, P. Dawe, E. Dawson, I. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Maria, A. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Dehghanian, N. Deigaard, I. Del Gaudio, M. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Denysiuk, D. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Clemente, W. K. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Cornell, S. Diez Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dolejsi, J. Dolezal, Z. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Du, Y. Duarte-Campderros, J. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudder, A. Chr. Duffield, E. M. Duflot, L. Duhrssen, M. Dumancic, M. Dunford, M. Yildiz, H. Duran Duren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edwards, N. C. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellajosyula, V. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Ennis, J. S. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, F. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farina, C. Farina, E. M. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fawcett, W. J. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Martinez, P. Fernandez Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, R. R. M. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Forcolin, G. T. Formica, A. Forti, A. Foster, A. G. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. Fressard-Batraneanu, S. M. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, L. G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Bravo, A. Gascon Gasnikova, K. Gatti, C. Gaudiello, A. Gaudio, G. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisen, M. Geisler, M. P. Gellerstedt, K. Gemme, C. Genest, M. H. Geng, C. Gentile, S. Gentsos, C. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghneimat, M. Giacobbe, B. Giagu, S. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuli, F. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, G. Gonella, L. Gongadze, A. de la Hoz, S. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gossling, C. Gostkin, M. I. Goudet, C. R. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstrom, P. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gravila, P. M. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Grevtsov, K. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Groh, S. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guan, W. Guenther, J. Guescini, F. Guest, D. Gueta, O. Gui, B. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, R. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Hadef, A. Hagebock, S. Hagihara, M. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hartmann, N. M. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayakawa, D. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, J. J. Heinrich, L. Heinz, C. Hejbal, J. Helary, L. Hellman, S. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Henkelmann, S. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Herde, H. Herget, V. Jimenez, Y. Hernandez Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohn, D. Holmes, T. R. Homann, M. Honda, T. Hong, T. M. Hooberman, B. H. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howarth, J. Hoya, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, Q. Hu, S. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huo, P. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Ishijima, N. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ito, F. Ponce, J. M. Iturbe Iuppa, R. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, P. Jain, V. Jakobi, K. B. Jakobs, K. Jakobsen, S. Jakoubek, T. Jamin, D. O. Jana, D. K. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Javurkova, M. Jeanneau, F. Jeanty, L. Jeng, G. -Y. Jennens, D. Jenni, P. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, H. Jiang, Y. Jiggins, S. Pena, J. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Jivan, H. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, S. Jones, T. J. Jongmanns, J. Jorge, P. M. Jovicevic, J. Ju, X. Rozas, A. Juste Kohler, M. K. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kaji, T. Kajomovitz, E. Kalderon, C. W. Kaluza, A. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kanjir, L. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawade, K. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khader, M. Khalil-zada, F. Khanov, A. Kharlamov, A. G. Kharlamova, T. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kilby, C. R. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kohler, N. M. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Kopke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotwal, A. Koulouris, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Kowalewska, A. B. Kowalewski, R. Kowalski, T. Z. Kozakai, C. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kravchenko, A. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Kruger, H. Krumnack, N. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuechler, J. T. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. Navarro, J. L. La Rosa La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lammers, S. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lanfermann, M. C. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Lazzaroni, M. Le, B. Le Dortz, O. Le Guirriec, E. Le Quilleuc, E. P. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, B. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Lerner, G. Leroy, C. Lesage, A. A. J. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, D. Leyko, A. M. Leyton, M. Li, B. Li, C. Li, H. Li, H. L. Li, L. Li, L. Li, Q. Li, S. Li, X. Li, Y. Liang, Z. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limosani, A. Lin, S. C. Lin, T. H. Lindquist, B. E. Lionti, A. E. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. L. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. M. Loch, P. Loebinger, F. K. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Longo, L. Looper, K. A. Lopez, J. A. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Solis, A. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Losel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, H. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Luzi, P. M. Lynn, D. Lysak, R. Lytken, E. Lyubushkin, V. Ma, H. Ma, L. L. Ma, Y. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Miguens, J. Machado Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Malone, C. Maltezos, S. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, L. Mandic, I. Maneira, J. Manhaes de Andrade Filho, L. Ramos, J. Manjarres Mann, A. Manousos, A. Mansoulie, B. Mansour, J. D. Mantifel, R. Mantoani, M. Manzoni, S. Mapelli, L. Marceca, G. March, L. Marchiori, G. Marcisovsky, M. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Outschoorn, V. I. Martinez Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mattig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Maznas, I. Mazza, S. M. Mc Fadden, N. C. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McClymont, L. I. McDonald, E. F. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melini, D. Garcia, B. R. Mellado Melo, M. Meloni, F. Meng, X. T. Mengarelli, A. Menke, S. Meoni, E. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Theenhausen, H. Meyer Zu Miano, F. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Minegishi, Y. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Mlynarikova, M. Moa, T. Mochizuki, K. Mohapatra, S. Molander, S. Moles-Valls, R. Monden, R. Mondragon, M. C. Monig, K. Monk, J. Monnier, E. Montalbano, A. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, S. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Sanchez, F. J. Munoz Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Muskinja, M. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nagai, K. Nagai, R. Nagano, K. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naryshkin, I. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Manh, T. Nguyen Nickerson, R. B. Nicolaidou, R. Nielsen, J. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Norjoharuddeen, N. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Nurse, E. Nuti, F. O'grady, F. O'Neil, D. C. O'Rourke, A. A. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Seabra, L. F. Oleiro Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Rodriguez, L. Pacheco Aranda, C. Padilla Griso, S. Pagan Paganini, M. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palazzo, S. Palestini, S. Palka, M. Pallin, D. St. Panagiotopoulou, E. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, A. J. Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pascuzzi, V. R. Pasqualucci, E. Passaggio, S. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Penc, O. Peng, C. Peng, H. Penwell, J. Peralva, B. S. Perego, M. M. Perepelitsa, D. V. Codina, E. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrov, M. Petrucci, F. Pettersson, N. E. Peyaud, A. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Astigarraga, M. E. Pozo Pralavorio, P. Pranko, A. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Przybycien, M. Puddu, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Raine, J. A. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Ratti, M. G. Rauch, D. M. Rauscher, F. Rave, S. Ravenscroft, T. Ravinovich, I. Raymond, M. Read, A. L. Readioff, N. P. Reale, M. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reed, R. G. Reeves, K. Rehnisch, L. Reichert, J. Reiss, A. Rembser, C. Ren, H. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rimoldi, M. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Rizzi, C. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodina, Y. Perez, A. Rodriguez Rodriguez, D. Rodriguez Roe, S. Rogan, C. S. Rohne, O. Roloff, J. Romaniouk, A. Romano, M. Saez, S. M. Romano Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosien, N. -A. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rudolph, M. S. Ruhr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryu, S. Ryzhov, A. Rzehorz, G. F. Saavedra, A. F. Sabato, G. Sacerdoti, S. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Loyola, J. E. Salazar Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, J. Martinez, V. Sanchez Pineda, A. Sanchez Sandaker, H. Sandbach, R. L. Sandhoff, M. Sandoval, C. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sato, K. Sauvan, E. Savage, G. Savard, P. Savic, N. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schachtner, B. M. Schaefer, D. Schaefer, L. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schafer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schier, S. Schillo, C. Schioppa, M. Schlenker, S. Schmidt-Sommerfeld, K. R. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schott, M. Schouwenberg, J. F. P. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schulte, A. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwarz, T. A. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shaikh, N. W. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shirabe, S. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shope, D. R. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sickles, A. M. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simon, M. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sivoklokov, S. Yu. Sjolin, J. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Slovak, R. Smakhtin, V. Smart, B. H. Smestad, L. Smiesko, J. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snyder, I. M. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Sanchez, C. A. Solans Solar, M. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Son, H. Song, H. Y. Sood, A. Sopczak, A. Sopko, V. Sorin, V. Sosa, D. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. St. Denis, R. D. Stabile, A. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, G. H. Stark, J. Stark, S. H. Staroba, P. Starovoitov, P. Starz, S. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Strohmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Suchek, S. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tan, K. G. Tanaka, J. Tanaka, M. Tanaka, R. Tanaka, S. Tanioka, R. Tannenwald, B. B. Araya, S. Tapia Tapprogge, S. Tarem, S. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, A. C. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tong, B. Tornambe, P. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Trofymov, A. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tseng, J. C-L. Tsiareshka, P. V. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsui, K. M. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tu, Y. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turgeman, D. Turra, R. Tuts, P. M. Tyndel, M. Ucchielli, G. Ueda, I. Ughetto, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usui, J. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Santurio, E. Valdes Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Ferrer, J. A. Valls Van Den Wollenberg, W. Van Der Deijl, P. C. van der Graaf, H. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasquez, J. G. Vasquez, G. A. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veeraraghavan, V. Veloce, L. M. Veloso, F. Veneziano, S. Ventura, A. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigani, L. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vittori, C. Vivarelli, I. Vlachos, S. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wallangen, V. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, W. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Weber, S. A. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, M. D. Werner, P. Wessels, M. Wetter, J. Whalen, K. Whallon, N. L. Wharton, A. M. White, A. White, M. J. White, R. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilk, F. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winston, O. J. Winter, B. T. Wittgen, M. Wittkowski, J. Wolf, T. M. H. Wolter, M. W. Wolters, H. Worm, S. D. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yang, Z. Yao, W-M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zakharchuk, N. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, J. C. Zeng, Q. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, M. Zhang, R. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. Zur Nedden, M. Zwalinski, L. CA ATLAS Collaboration TI Search for anomalous electroweak production of WW/WZ in association with a high-mass dijet system in pp collisions at root S=8 TeV with the ATLAS detector SO PHYSICAL REVIEW D LA English DT Article ID QUARTIC GAUGE COUPLINGS; GAMMA CROSS-SECTION; HADRON COLLIDERS; BOSON COUPLINGS; PAIR PRODUCTION; LIMITS; LEP; RESUMMATION; LHC AB A search is presented for anomalous quartic gauge boson couplings in vector-boson scattering. The data for the analysis correspond to 20.2 fb(-1) of root S = 8 TeV pp collisions and were collected in 2012 by the ATLAS experiment at the Large Hadron Collider. The search looks for the production ofWW or WZ boson pairs accompanied by a high-mass dijet system, with one W decaying leptonically and a W or Z decaying hadronically. The hadronically decaying W/Z is reconstructed as either two small-radius jets or one largeradius jet using jet substructure techniques. Constraints on the anomalous quartic gauge boson coupling parameters a 4 and a 5 are set by fitting the transverse mass of the diboson system, and the resulting 95% confidence intervals are -0.024 < alpha(4) < 0.030 and -0.028 < alpha(5) < 0.033. C1 [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Czodrowski, P.; Dassoulas, J.; Dehghanian, N.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Kim, Y. K.; Moore, R. W.; Pinfold, J. L.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Robson, A.; Sauvan, E.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Robson, A.; Sauvan, E.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mt Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; LeCompte, T.; Love, J.; Malon, D.; Metcalfe, J.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ryu, S.; Stanek, R. W.; van Gemmeren, P.; Wang, K.; Webster, J. S.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Jones, S.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veeraraghavan, V.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Abdallah, J.; Brandt, A.; Bullock, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Gkialas, I.; Ioannou, P.; Kourkoumelis, C.; Papageorgiou, K.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Koulouris, A.; Leontsinis, S.; Maltezos, S.; St. Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Andeen, T.; Ilchenko, Y.; Narayan, R.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavallaro, E.; Cavalli-Sforza, M.; Farooque, T.; Perez, S. Fernandez; Fischer, C.; Fracchia, S.; Gerbaudo, D.; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rizzi, C.; Perez, A. Rodriguez; Sorin, V.; Terzo, S.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Barcelona Inst Sci & Technol, IFAE, Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bokan, P.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin Dit; Smestad, L.; Stugu, B.; Yang, Z.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA USA. [Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Mergelmeyer, S.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; Zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Miucci, A.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Miucci, A.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allport, P. P.; Andari, N.; Bella, L. Aperio; Baca, M. J.; Bracinik, J.; Broughton, J. H.; Casadei, D.; Charlton, D. G.; Daniells, A. C.; Foster, A. G.; Gonella, L.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Sacerdoti, S.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Phys Engn, Gaziantep, Turkey. [Cetin, S. A.] Istanbul Bilgi Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Beddall, A. J.] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Biondi, S.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Caudron, J.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Ghneimat, M.; Grefe, C.; Hagebock, S.; Hansen, M. C.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kroseberg, J.; Kruger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Seema, P.; Stillings, J. A.; von Toerne, E.; Wagner, P.; Wang, S. M.; Wermes, N.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.; Zhang, R.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Dhaliwal, S.; Goblirsch-Kolb, M.; Herde, H.; Loew, K. M.; Sciolla, G.; Venturini, A.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.; Peralva, B. S.] Fed Univ Juiz De Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Dei Rei, Brazil. [Donadelli, M.; Navarro, J. L. La Rosa; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, Sao Paulo, Brazil. [Gibbard, B.; Klimentov, A.; Kravchenko, A.; Tricoli, A.; Undrus, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. [Gravila, P. M.] West Univ Timisoara, Timisoara, Romania. [Sola, J. D. Bossio; Marceca, G.; Otero y Garzon, G.; Piegaia, R.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Brunt, B. H.; Carter, J. R.; Chapman, J. D.; Cottin, G.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Lester, C. G.; Malone, C.; Mueller, T.; Parker, M. A.; Potter, C. J.; Robinson, D.; Rosten, J. H. N.; Warburton, A.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Gillberg, D.; Lacey, J.; Leight, W. A.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Ruiz-Martinez, A.; Vincter, M. G.; Weber, S. A.] Carleton Univ, Dept Phys, Ottawa, ON, Canada. [Boveia, A.; Catinaccio, A.; Cattai, A.; Cortes-Gonzalez, A.; Dell'Acqua, A.; Di Girolamo, A.; Dudarev, A.; Hoecker, A.; Krasznahorkay, A.; Manousos, A.; Marzin, A.; Poppleton, A.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Bryant, P.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Gardner, R. W.; Kapliy, A.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Oreglia, M. J.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Stark, G. H.; Swiatlowski, M.; Vukotic, I.; Wu, M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Blunier, S.; Diaz, M. A.; Ochoa-Ricoux, J. P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Lopez, J. A.; Pezoa, R.; Prokoshin, F.; Loyola, J. E. Salazar; Araya, S. Tapia; Vasquez, G. A.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; da Costa, J. Barreiro Guimaraes; Cheng, H. J.; Fang, Y.; Jin, S.; Li, Q.; Liang, Z.; Merino, J. Llorente; Lou, X.; Mansour, J. D.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Chen, S.; Wang, C.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Univ Blaise Pascal, Univ Clermont Auvergne, Lab Phys Corpusculaire, CNRS IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Angerami, A.; Brooijmans, G.; Carbone, R. M.; Clark, M. R.; Cole, B.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Monk, J.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Stark, S. H.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Callea, G.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Coll Cosenza, Lab Nazl Frascati, Rome, Italy. [Cairo, V. M.; Callea, G.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Gach, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Burka, K.; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Kowalewska, A. B.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Gupta, R.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] Southern Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Cornell, S. Diez; Dutta, B.; Dyndal, M.; Eckardt, C.; Ferrando, J.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Gasnikova, K.; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E. M.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Monig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Queitsch-Maitland, M.; Rauch, D. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Zakharchuk, N.] DESY, Hamburg, Germany. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Cornell, S. Diez; Dutta, B.; Dyndal, M.; Eckardt, C.; Ferrando, J.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Gasnikova, K.; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E. M.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Monig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Queitsch-Maitland, M.; Rauch, D. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Zakharchuk, N.] DESY, Zeuthen, Germany. [Burmeister, I.; Cinca, D.; Dette, K.; Erdmann, J.; Esch, H.; Gossling, C.; Homann, M.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Lehrstuhl Expt Phys 4, Dortmund, Germany. [Duschinger, D.; Friedrich, F.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Siegert, F.; Socher, F.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mijovic, L.; Mills, C.; Pino, S. A. Olivares; Wardrope, D. R.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buscher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Glatzer, J.; Gonella, G.; Herten, G.; Hirose, M.; Jakobs, K.; Javurek, T.; Javurkova, M.; Jenni, P.; Kiss, F.; Koneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Luedtke, C.; Nagel, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruhr, F.; Rurikova, Z.; Sammel, D.; Schillo, C.; Schnoor, U.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tornambe, P.; Tsiskaridze, V.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Albert Ludwigs Univ, Fak Math & Phys, Freiburg, Germany. [Ancu, L. S.; De Mendizabal, J. Bilbao; Calace, N.; Chatterjee, A.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Khoo, T. J.; Lanfermann, M. C.; Lionti, A. E.; March, L.; Mermod, P.; Nackenhorst, O.; Paolozzi, L.; Ristic, B.; Schramm, S.; Sfyrla, A.; Wu, X.] Univ Geneva, Dept Phys Nucl & Corpusculaire, Geneva, Switzerland. [Aloisio, A.; Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Miglioranzi, S.; Morettini, P.; Oide, H.; Osculati, B.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Miglioranzi, S.; Oide, H.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, High Energy Phys Inst, Tbilisi, Rep of Georgia. [Duren, M.; Heinz, C.; Kreutzfeldt, K.; Stenzel, H.] Justus Liebig Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Blue, A.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Crawley, S. J.; D'Auria, S.; Doyle, A. T.; Gul, U.; Mullen, P.; O'Shea, V.; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; St. Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland. [Bindi, M.; Bisanz, T.; Blumenschein, U.; Brandt, G.; De Maria, A.; Drechsler, E.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Quadt, A.; Rieger, J.; Rosien, N. -A.; Rzehorz, G. F.; Shabalina, E.; Stolte, P.; Veatch, J.; Weingarten, J.; Zinonos, Z.] Georg August Univ, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Berlendis, S.; Bethani, A.; Camincher, C.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Gradin, P. O. J.; Hostachy, J-Y.; Hu, Q.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Petit, E.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [Chan, S. K.; Clark, B. L.; Franklin, M.; Giromini, P.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Morii, M.; Rogan, C. S.; Roloff, J.; Rotaru, M.; Skottowe, H. P.; Sun, S.; Tolley, E.; Tong, B.; Tuna, A. N.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Barnovska-Blenessy, Z.; Gao, J.; Geng, C.; Guo, Y.; Han, L.; Jiang, Y.; Li, B.; Li, C.; Liu, J. B.; Liu, M.; Liu, Y. L.; Liu, Y.; Peng, H.; Song, H. Y.; Wang, T.; Zhang, G.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Harbin, Anhui, Peoples R China. [Andrei, V.; Antel, C.; Baas, A. E.; Brandt, O.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Theenhausen, H. Meyer Zu; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Suchek, S.; Wessels, M.] Ruprecht Karls Univ Heidelberg, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; de Lima, D. E. Ferreira; Giulini, M.; Kolb, M.; Lisovyi, M.; Schaetzel, S.; Schoening, A.; Sosa, D.] Ruprecht Karls Univ Heidelberg, Inst Phys, Heidelberg, Germany. [Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsui, K. M.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.; Orlando, N.; Salvucci, A.; Tu, Y.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.; Salvucci, A.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.; Salvucci, A.] Hong Kong Univ Sci & Technol, Inst Adv Study, Kowloon, Hong Kong, Peoples R China. [Calfayan, P.; Choi, K.; Evans, H.; Gagnon, P.; Kopeliansky, R.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Guenther, J.; Iwanski, W.; Jansky, R.; Kneringer, E.; Lukas, W.; Milic, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Argyropoulos, S.; Benitez, J.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Jiang, H.; Krumnack, N.; Pluth, D.; Prell, S.; Werner, M. D.; Yu, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gongadze, A.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Lyubushkin, V.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Soloshenko, A.; Turchikhin, S.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Honda, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kondo, T.; Kono, T.; Makida, Y.; Nagai, R.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Usui, J.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Tanioka, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan. [Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Shirabe, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka, Japan. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Bertram, I. A.; Borissov, G.; Bouhova-Thacker, E. V.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Muenstermann, D.; Parker, A. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Aliev, M.; Bachas, K.; Chiodini, G.; Longo, L.; Primavera, M.; Reale, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Aliev, M.; Bachas, K.; Gorini, E.; Longo, L.; Reale, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool, Merseyside, England. [Cindro, V.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Jozef Stefan Inst, Dept Expt Particle Phys, Ljubljana, Slovenia. [Cindro, V.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Dept Phys, Ljubljana, Slovenia. [Armitage, L. J.; Bevan, A. J.; Bona, M.; Hays, J. M.; Hickling, R.; Hughes, G.; Landon, M. P. J.; Lewis, D.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Giannelli, M. Faucci; Gadomski, S.; George, S.; Gibson, S. M.; Kempster, J. J.; Kilby, C. R.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bell, A. S.; Butterworth, J. M.; Campanelli, M.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Grout, Z. J.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Leney, K. J. C.; Martyniuk, A. C.; McClymont, L. I.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Ward, C. P.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Barreiro, F.; Lopez, S. Calvente; Cueto, A.; Del Peso, J.; Glasman, C.; Monnier, E.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Artz, S.; Becker, M.; Bertella, C.; Blum, W.; Buscher, V.; Cuth, J.; Dudder, A. Chr.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Geisen, M.; Groh, S.; Heck, T.; Jakobi, K. B.; Kaluza, A.; Karnevskiy, M.; Kleinknecht, K.; Kopke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Pleskot, V.; Rave, S.; Reiss, A.; Schaeffer, J.; Schafer, U.; Schmitt, C.; Schmitz, S.; Schott, M.; Schuh, N.; Schulte, A.; Simioni, E.; Simon, M.; Tapprogge, S.; Urrejola, P.; Webb, S.; Yildirim, E.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Barnes, S. L.; Bielski, R.; Cox, B. E.; Da Via, C.; Dann, N. S.; Forcolin, G. T.; Forti, A.; Ponce, J. M. Iturbe; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Sanchez, F. J. Munoz; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Prince, S.; Qin, Y.; Raine, J. A.; Schweiger, H.; Shaw, S. M.; Tomlinson, L.; Watts, S.; Wilk, F.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Moyse, E. J. W.; Pais, P.; Pettersson, N. E.; Picazio, A.; Wang, C.; Willocq, S.; Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Moyse, E. J. W.; Pais, P.; Pettersson, N. E.; Picazio, A.; Wang, C.; Willocq, S.; Zhang, R.] CNRS IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Moyse, E. J. W.; Pais, P.; Pettersson, N. E.; Picazio, A.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Lefebvre, B.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, J.; Wanotayaroj, C.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Goldfarb, S.; Jennens, D.; Kubota, T.; Le, B.; McDonald, E. F.; Milesi, M.; Nuti, F.; Rados, P.; Scutti, F.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Taylor, P. T. E.; Ungaro, F. C.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Guan, L.; Levin, D.; Liu, H.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Meng, X. T.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Arabidze, G.; Chegwidden, A.; De la Torre, H.; Halladjian, G.; Hayden, D.; Huston, J.; Martin, B.; Mondragon, M. C.; Pope, B. G.; Schoenrock, B. D.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Camplani, A.; Carminati, L.; Cavalli, D.; Citterio, M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Manzoni, S.; Mazza, S. M.; Meroni, C.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Camplani, A.; Carminati, L.; Fanti, M.; Lazzaroni, M.; Manzoni, S.; Mazza, S. M.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.] Byelorussian State Univ, Res Inst Nucl Problems, Minsk, Byelarus. [Arguin, J-F.; Azuelos, G.; Billoud, T. R. V.; Dallaire, F.; Ducu, O. A.; Gagnon, L. G.; Gauthier, L.; Leroy, C.; Mochizuki, K.; Manh, T. Nguyen; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Aloisio, A.; Antonov, A.; Belotskiy, K.; Belyaev, N. L.; Bulekov, O.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Gladilin, L. K.; Kharlamova, T.; Kramarenko, V. A.; Maevskiy, A.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Bender, M.; Biebel, O.; Bock, C.; Chow, B. K. B.; Duckeck, G.; Hartmann, N. M.; Heinrich, J. J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Losel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Rauscher, F.; Ruschke, A.; Schachtner, B. M.; Schaile, D.; Unverdorben, C.; Valderanis, C.; Walker, R.; Wittkowski, J.] Ludwig Maximilians Univ Munchen, Fac Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Knue, A.; Kohler, N. M.; Kortner, O.; Kortner, S.; Kroha, H.; La Rosa, A.; Macchiolo, A.; Maier, A. A.; McCarthy, T. G.; Menke, S.; Mueller, F.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Savic, N.; Schacht, P.; Schmidt-Sommerfeld, K. R.; Spettel, F.; Stonjek, S.; von der Schmitt, H.; Wildauer, A.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Kawade, K.; Nakahama, Y.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi, Japan. [Horii, Y.; Kawade, K.; Nakahama, Y.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Merola, L.; Perrella, S.; Rossi, E.; Pineda, A. Sanchez; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Di Donato, C.; Merola, L.; Perrella, S.; Rossi, E.; Pineda, A. Sanchez] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Mc Fadden, N. C.; Seidel, S. C.; Taylor, A. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Konig, A. C.; Nektarijevic, S.; Schouwenberg, J. F. P.; Strubig, A.] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Graaf, H.; van Vulpen, I.; van Woerden, M. C.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.; Wolf, T. M. H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Graaf, H.; van Vulpen, I.; van Woerden, M. C.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.; Wolf, T. M. H.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Brost, E.; Burghgrave, B.; Chakraborty, D.; Klimek, P.; Saha, P.] Northern Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Kharlamova, T.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] RAS, SB, Budker Inst Nucl Phys, Novosibirsk, Russia. [Becot, C.; Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Beacham, J. B.; Che, S.; Gan, K. K.; Gui, B.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama, Japan. [Abbott, B.; Alhroob, M.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Severini, H.; Shope, D. R.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Cantero, J.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Abreu, R.; Allen, B. W.; Brau, J. E.; Dattagupta, A.; Gkougkousis, E. L.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Radloff, P.; Sinev, N. B.; Snyder, I. M.; Strom, D. M.; Torrence, E.; Wang, W.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abeloos, B.; Ayoub, M. K.; Bassalat, A.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Goudet, C. R.; Grivaz, J. -F.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Maiani, C.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] Univ Paris Saclay, Univ Paris Sud, LAL, CNRS IN2P3, Orsay, France. [Delgove, D.; Ishijima, N.; Nomachi, M.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, M. K.; Cameron, D.; Catmore, J. R.; Feigl, S.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Serfon, C.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Artoni, G.; Backes, M.; Barr, A. J.; Becker, K.; Beresford, L.; Bortoletto, D.; Burr, J. T. P.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Fawcett, W. J.; Frost, J. A.; Gallas, E. J.; Giuli, F.; Gupta, S.; Gwenlan, C.; Hays, C. P.; Henderson, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Nagai, K.; Nickerson, R. B.; Norjoharuddeen, N.; Petrov, M.; Pickering, M. A.; Radescu, V.; Tseng, J. C-L.; Viehhauser, G. H. A.; Vigani, L.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Dondero, P.; Farina, E. M.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Kourkoumeli-Charalampidi, A.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Dondero, P.; Farina, E. M.; Fraternali, M.; Introzzi, G.; Kourkoumeli-Charalampidi, A.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, Pavia, Italy. [Balunas, W. K.; Brendlinger, K.; Di Clemente, W. K.; Fletcher, R. R. M.; Haney, B.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Mistry, K. P.; Reichert, J.; Schaefer, L.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Naryshkin, I.; Ryabov, Y. F.; Schegelsky, V. A.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Farina, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Araque, J. P.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Maio, A.; Maneira, J.; Seabra, L. F. Oleiro; Onofre, A.; Pedro, R.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Pedro, R.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor, Granada, Spain. [Aguilar-Saavedra, J. A.; Melini, D.] Univ Granada, Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.; Melini, D.] Univ Granada, CAFPE, Granada, Spain. [Melini, D.] Univ Nova Lisboa, Dept Fis, Fac Ciencias & Tecnol, Caparica, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Ali, B.; Augsten, K.; Caforio, D.; Gallus, P.; Hubacek, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Sopczak, A.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Berta, P.; Carli, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Kosek, T.; Leitner, R.; Mlynarikova, M.; Reznicek, P.; Scheirich, D.; Slovak, R.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Koffas, T.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Ryzhov, A.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] NRC KI, State Res Ctr Inst High Energy Phys Protvino, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.; Worm, S. D.] Rutherford Appleton Lab, Particle Phys Dept, Didcot, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; De Pedis, D.; De Salvo, A.; Falciano, S.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Messina, A.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Vanadia, M.; Verducci, M.; Zanello, L.] Sapienza Univ Roma, Dipartimento Fis, Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cerrito, L.; Di Ciaccio, A.; Liberti, B.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cerrito, L.; Di Ciaccio, A.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Ceradini, F.; Di Micco, B.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Tayalati, Y.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Denysiuk, D.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Jeanneau, F.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, J. F.; Le Quilleuc, E. P.; Lesage, A. A. J.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Rodriguez, L. Pacheco; Perego, M. M.; Peyaud, A.; Saimpert, M.; Santos, H.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay, Inst Rech Lois Fondament Univers, DSM IRFU, Commissariat Energie Atom & Energies Alternat, Gif Sur Yvette, France. [AbouZeid, O. S.; Battaglia, M.; Cheatham, S.; Debenedetti, C.; Grillo, A. A.; Hance, M.; Johnson, W. J.; Kuhl, A.; Law, A. T.; Litke, A. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schier, S.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Alpigiani, C.; Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Lubatti, H. J.; Meehan, S.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.; Whallon, N. L.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Du, Y.; Feng, C.; Ma, L. L.; Ma, Y.; Wang, C.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Bret, M. Cano; Guo, J.; Hu, S.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Shanghai Key Lab Particle Phys & Cosmol, Key Lab Particle Phys Astrophys & Cosmol, Dept Phys & Astron,Minist Educ, Shanghai, Peoples R China. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Campoverde, A.; Czirr, H.; Fleck, I.; Ghasemi, S.; Ibragimov, I.; Li, Y.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada. [Armbruster, A. J.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Su, D.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Dado, T.; Melo, M.; Plazak, L.; Smiesko, J.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice, Slovakia. [Castaneda-Miranda, E.; Govender, N.; Hamilton, A.; Yacoob, S.] Univ Cape Town, Dept Phys, Cape Town, South Africa. [Connell, S. H.; Jimenez, Y. Hernandez] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hsu, C.; Jivan, H.; Kar, D.; Garcia, B. R. Mellado; Reed, R. G.; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Oskar Klein Ctr, Stockholm, Sweden. [Kastanas, A.; Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Purohit, M.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Purohit, M.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Abraham, N. L.; Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Lerner, G.; Miano, F.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.; Winston, O. J.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW, Australia. [Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Song, H. Y.; Teng, P. K.; Wang, R.; Yang, Y.; Zhang, G.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Gabizon, O.; Gozani, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Duarte-Campderros, J.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel. [Gentsos, C.; Gkaitatzis, S.; Iliadis, D.; Kimura, N.; Kordas, K.; Maznas, I.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Adachi, S.; Asai, S.; Chen, S.; Enari, Y.; Hanawa, K.; Ishino, M.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kishimoto, T.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Minegishi, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Okumura, Y.; Saito, T.; Sakamoto, H.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Adachi, S.; Asai, S.; Chen, S.; Enari, Y.; Hanawa, K.; Ishino, M.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kishimoto, T.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Minegishi, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Okumura, Y.; Saito, T.; Sakamoto, H.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.; Tanaka, J.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo, Japan. [Hayakawa, D.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Tanaka, M.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo, Japan. [Vaniachine, A.] Tomsk State Univ, Tomsk, Russia. [Batista, S. J.; Cormier, K. J. R.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Keoshkerian, H.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Pascuzzi, V. R.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Iuppa, R.] Ist Nazl Fis Nucl, TIFPA, Rome, Italy. [Iuppa, R.] Univ Trento, Trento, Italy. [Canepa, A.; Chekulaev, S. V.; Hod, N.; Jovicevic, J.; Codina, E. Perez; Schneider, B.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC, Canada. [Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON, Canada. [Hagihara, M.; Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Hagihara, M.; Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Sliwa, K.; Son, H.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Casper, D. W.; Colombo, T.; Frate, M.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Ntekas, K.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Boldyrev, A. S.; Cheatham, S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] Ist Nazl Fis Nucl, Grp Coll Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Boldyrev, A. S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, Udine, Italy. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Maddocks, H. J.; Ohman, H.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Atkinson, M.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Hooberman, B. H.; Khader, M.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Outschoorn, V. I. Martinez; Neubauer, M. S.; Rybar, M.; Shang, R.; Sickles, A. M.; Vichou, I.; Zeng, J. C.; Zhang, M.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Alberich, L. Cerda; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Mamuzic, J.; Melini, D.; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Hoya, J.; Keeler, R.; Kowalewski, R.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; McPherson, R. A.; Pearce, J.; Seuster, R.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Ennis, J. S.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry, W Midlands, England. [Iizawa, T.; Kaji, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Balek, P.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Dumancic, M.; Ellinghaus, F.; Gross, E.; Hamacher, K.; Kohler, M. K.; Kuwertz, E. S.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Ravinovich, I.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.; Turgeman, D.; Zeitnitz, C.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Banerjee, Sw.; Guan, W.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Ming, Y.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zhou, C.; Zobernig, G.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Herget, V.; Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Strohmer, R.; Trefzger, T.; Weber, S. W.; Zibell, A.] Julius Maximilians Univ, Fak Phys & Astron, Wurzburg, Germany. [Bannoura, A. A. E.; Boerner, D.; Cornelissen, T.; Ernis, G.; Fischer, J.; Flick, T.; Gilles, G.; Harenberg, T.; Hirschbuehl, D.; Kersten, S.; Kuechler, J. T.; Mattig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Vogel, M.; Wagner, W.] Berg Univ Wuppertal, Fachgrp Phys, Fak Math & Nat Wissensch, Wuppertal, Germany. [Baker, O. K.; Noccioli, E. Benhar; Cummings, J.; Demers, S.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Paganini, M.; Hernandez, D. Paredes; Thomsen, L. A.; Tipton, P.; Vasquez, J. G.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Kharlamova, T.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk, Russia. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC, Canada. [Banerjee, Sw.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Bassalat, A.] An Najah Natl Univ, Dept Phys, Nablus, Palestine. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, Fribourg, Switzerland. [Casado, M. P.] Univ Autonoma Barcelona, Dept Fis, Barcelona, Spain. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk, Russia. [Chen, X.] CICQM, Beijing, Peoples R China. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; Geng, C.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] IPP, Ancaster, ON, Canada. [Ducu, O. A.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Fedin, O. L.; Vichou, I.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Guo, Y.; Li, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Bassalat, A.] CSIR Campus, Ctr High Performance Comp, Cape Town, South Africa. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Hanagaki, K.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Igonkina, O.] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jenni, P.] CERN, Geneva, Switzerland. [Khubua, J.] GTU, Tbilisi, Rep of Georgia. [Kono, T.; Nagai, R.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Lin, S. C.] Acad Sinica, Inst Phys, Grid Comp, Taipei, Taiwan. [Liu, B.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Moss, J.] Calif State Univ Sacramento, Dept Phys, Sacramento, CA 95819 USA. Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Dept Phys Nucl & Corpusculaire, Geneva, Switzerland. [Pasztor, G.] Eotvos Lorand Univ, Budapest, Hungary. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ South Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.] Sun Yat Sen Univ, Sch Phys, Guangzhou, Guangdong, Peoples R China. [Shiyakova, M.] Bulgarian Acad Sci, INRNE, Sofia, Bulgaria. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vest, A.] Flensburg Univ Appl Sci, Flensburg, Germany. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur, Malaysia. RP Aaboud, M (reprint author), LPTPM, Oujda, Morocco. RI Prokoshin, Fedor/E-2795-2012; Tikhomirov, Vladimir/M-6194-2015; Soldatov, Evgeny/E-3990-2017; Warburton, Andreas/N-8028-2013; Gladilin, Leonid/B-5226-2011; Livan, Michele/D-7531-2012; Doyle, Anthony/C-5889-2009; Vanyashin, Aleksandr/H-7796-2013; Mitsou, Vasiliki/D-1967-2009; Camarri, Paolo/M-7979-2015; Solodkov, Alexander/B-8623-2017; Carvalho, Joao/M-4060-2013; Sezgin, Berk/C-1112-2015 OI Prokoshin, Fedor/0000-0001-6389-5399; Tikhomirov, Vladimir/0000-0002-9634-0581; Soldatov, Evgeny/0000-0003-0694-3272; Warburton, Andreas/0000-0002-2298-7315; Gladilin, Leonid/0000-0001-9422-8636; Livan, Michele/0000-0002-5877-0062; Doyle, Anthony/0000-0001-6322-6195; Vanyashin, Aleksandr/0000-0002-0367-5666; Mitsou, Vasiliki/0000-0002-1533-8886; Camarri, Paolo/0000-0002-5732-5645; Solodkov, Alexander/0000-0002-2737-8674; Carvalho, Joao/0000-0002-3015-7821; FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; FWF, Austria; BMWFW, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; MPG, Germany; BMBF, Germany; HGF, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; Benoziyo Center, Israel; ISF, Israel; I-CORE, Israel; INFN, Italy; JSPS, Japan; MEXT, Japan; CNRST, Morocco; NWO, Netherlands; FOM, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; MIZS, Slovenia; ARRS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; NSF, United States of America; DOE, United States of America; BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; FP7, European Union; Horizon, European Union; Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex, France; Investissements d'Avenir Idex, France; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; AvH Foundation, Germany; DFG, Germany; Herakleitos, programme - EU-ESF; Thales, programme - EU-ESF; Aristeia, programme - EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; Leverhulme Trust, United Kingdom; Royal Society, United Kingdom FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF, and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020, and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne, and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; BSF, GIF, and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [74]. NR 73 TC 0 Z9 0 U1 17 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 8 PY 2017 VL 95 IS 3 AR 032001 DI 10.1103/PhysRevD.95.032001 PG 25 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EJ8WZ UT WOS:000393509100002 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Agnew, JP Alexeev, GD Alkhazov, G Alton, A Askew, A Atkins, S Augsten, K Aushev, V Aushev, Y Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Borysova, M Brandt, A Brandt, O Brochmann, M Brock, R Bross, A Brown, D Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Buszello, CP Camacho-Perez, E Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chan, KM Chandra, A Chapon, E Chen, G Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cuth, J Cutts, D Das, A Davies, G de Jong, SJ De La Cruz-Burelo, E Deliot, F Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dubey, A Dudko, LV Duperrin, A Dutt, S Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, A Evdokimov, VN Faure, A Feng, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Franc, J Fuess, S Garbincius, PH Garcia-Bellido, A Garcia-Gonzalez, JA Gavrilov, V Geng, W Gerber, CE Gershtein, Y Ginther, G Gogota, O Golovanov, G Grannis, PD Greder, S Greenlee, H Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hogan, J Hohlfeld, M Holzbauer, JL Howley, I Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jayasinghe, A Jeong, MS Jesik, R Jiang, P Johns, K Johnson, E Johnson, M Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kajfasz, E Karmanov, D Katsanos, I Kaur, M Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kiselevich, I Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Lammers, S Lebrun, P Lee, HS Lee, SW Lee, WM Lei, X Lellouch, J Li, D Li, H Li, L Li, QZ Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, H Liu, Y Lobodenko, A Lokajicek, M de Sa, RL Luna-Garcia, R Lyon, AL Maciel, AKA Madar, R Magana-Villalba, R Malik, S Malyshev, VL Mansour, J Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Mulhearn, M Nagy, E Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nguyen, HT Nunnemann, T Orduna, J Osman, N Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Pleier, MA Podstavkov, VM Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Ratoff, PN Razumov, I Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Sajot, G Sanchez-Hernandez, A Sanders, MP Santos, AS Savage, G Savitskyi, M Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schott, M Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shaw, S Shchukin, AA Shkola, O Simak, V Skubic, P Slattery, P Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stefaniuk, N Stoyanova, DA Strauss, M Suter, L Svoisky, P Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verkheev, AY Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weichert, J Welty-Rieger, L Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, S Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yin, H Yip, K Youn, SW Yu, JM Zennamo, J Zhao, TG Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Agnew, J. P. Alexeev, G. D. Alkhazov, G. Alton, A. Askew, A. Atkins, S. Augsten, K. Aushev, V. Aushev, Y. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Borysova, M. Brandt, A. Brandt, O. Brochmann, M. Brock, R. Bross, A. Brown, D. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Buszello, C. P. Camacho-Perez, E. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cuth, J. Cutts, D. Das, A. Davies, G. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dubey, A. Dudko, L. V. Duperrin, A. Dutt, S. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, A. Evdokimov, V. N. Faure, A. Feng, L. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Franc, J. Fuess, S. Garbincius, P. H. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Gavrilov, V. Geng, W. Gerber, C. E. Gershtein, Y. Ginther, G. Gogota, O. Golovanov, G. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Grunendahl, S. Grunewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hogan, J. Hohlfeld, M. Holzbauer, J. L. Howley, I. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jayasinghe, A. Jeong, M. S. Jesik, R. Jiang, P. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kajfasz, E. Karmanov, D. Katsanos, I. Kaur, M. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kiselevich, I. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Lammers, S. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, H. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Mansour, J. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Mulhearn, M. Nagy, E. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nguyen, H. T. Nunnemann, T. Orduna, J. Osman, N. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Pleier, M. -A. Podstavkov, V. M. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Ratoff, P. N. Razumov, I. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santos, A. S. Savage, G. Savitskyi, M. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schott, M. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shaw, S. Shchukin, A. A. Shkola, O. Simak, V. Skubic, P. Slattery, P. Snow, G. R. Snow, J. Snyder, S. Soldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stefaniuk, N. Stoyanova, D. A. Strauss, M. Suter, L. Svoisky, P. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verkheev, A. Y. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, S. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. M. Zennamo, J. Zhao, T. G. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Measurement of the direct CP violating charge asymmetry in B-+/- -> mu(+/-)nu D-mu(0) decays SO PHYSICAL REVIEW D LA English DT Article ID DETECTOR AB We present the first measurement of the CP violating charge asymmetry in B-+/- -> mu(+/-)nu D-mu(0) decays using the full Run II integrated luminosity of 10.4 fb(-1) in proton-antiproton collisions collected with the D0 detector at the Fermilab Tevatron Collider. We measure a difference in the yield of B- and B+ mesons in these decays by fitting the reconstructed invariant mass distributions. This results in an asymmetry of A(mu D0) = [-0.14 +/- 0.20] %, which is consistent with standard model predictions. C1 [Hensel, C.; Maciel, A. K. A.; Santos, A. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, BR-22290 Rio De Janeiro, RJ, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550 Rio De Janeiro, RJ, Brazil. [Mercadante, P. G.] Univ Fed ABC, BR-09210 Santo Andre, SP, Brazil. [Han, L.; Jiang, P.; Liu, Y.; Yang, S.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota 111711, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, CR-11636 Prague 1, Czech Republic. [Augsten, K.; Franc, J.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, Prague 11636 6, Czech Republic. [Kupco, A.; Lokajicek, M.; Royon, C.] Acad Sci Czech Republic, Inst Phys, Prague 18221, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph.] Univ Blaise Pascal, LPC, CNRS IN2P3, F-63178 Aubiere, France. [Sajot, G.; Stark, J.] Univ Joseph Fourier Grenoble 1, LPSC, Inst Natl Polytech Grenoble, CNRS IN2P3, F-38026 Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CPPM, CNRS IN2P3, F-13288 Marseille 09, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris Saclay, Univ Paris Sud, LAL, CNRS IN2P3, F-91898 Orsay, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris VI, LPNHE, CNRS IN2P3, F-75005 Paris, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris VII, LPNHE, CNRS IN2P3, F-75005 Paris, France. [Bassler, U.; Besancon, M.; Chapon, E.; Couderc, F.; Deliot, F.; Faure, A.; Grohsjean, A.; Hubacek, Z.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA Saclay, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS IN2P3, F-67037 Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon 1, IPNL, CNRS IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, F-69361 Lyon 07, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, D-52056 Aachen, Germany. [Bernhard, R.; Madar, R.] Univ Freiburg, Inst Phys, D-79085 Freiburg, Germany. [Brandt, O.; Mansour, J.; Meyer, J.; Quadt, A.; Shabalina, E.] Georg August Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Buescher, V.; Cuth, J.; Fiedler, F.; Hohlfeld, M.; Schott, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Ludwig Maximilians Univ Munchen, D-80539 Munich, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kaur, M.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Grunewald, M. W.] Univ Coll Dublin, Dublin 4, Ireland. [Cho, S. W.; Choi, S.; Jeong, M. S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul 02841, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Garcia-Gonzalez, J. A.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 07360, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 AJ Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna 141980, Russia. [Gavrilov, V.; Kiselevich, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow 119991, Russia. [Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg 188300, Russia. [Juste, A.] ICREA, Bellaterra 08193, Barcelona, Spain. [Juste, A.] IFAE, Bellaterra 08193, Barcelona, Spain. [Buszello, C. P.] Uppsala Univ, S-75105 Uppsala, Sweden. [Borysova, M.; Gogota, O.; Savitskyi, M.; Shkola, O.; Stefaniuk, N.] Taras Shevchenko Natl Univ Kyiv, UA-01601 Kiev, Ukraine. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.] Univ Lancaster, Lancaster LA1 4YB, England. [Agnew, J. P.; Deterre, C.; Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Peters, Y.; Petridis, K.; Price, D.; Schwanenberger, C.; Shaw, S.; Soldner-Rembold, S.; Suter, L.; Vesterinen, M.; Wyatt, T. R.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.; Verzocchi, M.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Li, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Blessing, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Garbincius, P. H.; Ginther, G.; Greenlee, H.; Grunendahl, S.; Gutierrez, G.; Herner, K.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; de Sa, R. Lopes; Lyon, A. L.; Melnitchouk, A.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Savage, G.; Wang, M. H. L. S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Evdokimov, A.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] Northern Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Williams, M. R. J.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Ruchti, R.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barberis, E.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Neal, H. A.; Qian, J.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Johnson, E.; Linnemann, J.; Schwienhorst, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Holzbauer, J. L.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Hegab, H.; Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Aushev, V.; Aushev, Y.; Haley, J.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Schellman, H.] Oregon State Univ, Corvallis, OR 97331 USA. [Cutts, D.; Heintz, U.; Narain, M.; Orduna, J.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Das, A.; Ilchenko, Y.; Kehoe, R.; Liu, H.] Southern Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Hogan, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Bandurin, D. V.; Hirosky, R.; Li, H.; Mulhearn, M.; Nguyen, H. T.; Svoisky, P.] Univ Virginia, Charlottesville, VA 22904 USA. [Watts, G.] Univ Washington, Seattle, WA 98195 USA. RP Jiang, P (reprint author), Univ Sci & Technol China, Hefei 230026, Peoples R China.; Lipaev, VV (reprint author), Inst High Energy Phys, Protvino 142281, Moscow Region, Russia.; Cihangir, S (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. FU Department of Energy (United States of America); National Science Foundation (United States of America); Alternative Energies and Atomic Energy Commission (France); National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation (Russia); National Research Center "Kurchatov Institute" of the Russian Federation (Russia); Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology (Brazil); Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Science and Technology (India); Department of Atomic Energy (India); Administrative Department of Science, Technology and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (The Netherlands); Science and Technology Facilities Council (United Kingdom); Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium fur Bildung und Forschung (Federal Ministry of Education and Research) (Germany); Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences (China); National Natural Science Foundation of China (China); Ministry of Education and Science of Ukraine (Ukraine) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the Department of Energy and National Science Foundation (United States of America); Alternative Energies and Atomic Energy Commission and National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation, National Research Center "Kurchatov Institute" of the Russian Federation, and Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology and Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy and Department of Science and Technology (India); Administrative Department of Science, Technology and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (The Netherlands); Science and Technology Facilities Council and The Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium fur Bildung und Forschung (Federal Ministry of Education and Research) and Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences and National Natural Science Foundation of China (China); and Ministry of Education and Science of Ukraine (Ukraine). NR 12 TC 0 Z9 0 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 8 PY 2017 VL 95 IS 3 AR 031101 DI 10.1103/PhysRevD.95.031101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EJ8WZ UT WOS:000393509100001 ER PT J AU Chakraborty, R Woo, H Dehal, P Walker, R Zemla, M Auer, M Goodwin, LA Kazakov, A Novichkov, P Arkin, AP Hazen, TC AF Chakraborty, Romy Woo, Hannah Dehal, Paramvir Walker, Robert Zemla, Marcin Auer, Manfred Goodwin, Lynne A. Kazakov, Alexey Novichkov, Pavel Arkin, Adam P. Hazen, Terry C. TI Complete genome sequence of Pseudomonas stutzeri strain RCH2 isolated from a Hexavalent Chromium [Cr(VI)] contaminated site SO STANDARDS IN GENOMIC SCIENCES LA English DT Article DE Pseudomonas; Nitrate reduction; Chromium; Hanford 100H ID DENITRIFYING CONDITIONS; PETROLEUM-HYDROCARBONS; AROMATIC-HYDROCARBONS; MICROBIAL COMMUNITIES; RNA GENES; REDUCTION; BACTERIA; GROUNDWATER; PUTIDA; SUBSURFACE AB Hexavalent Chromium [Cr(VI)] is a widespread contaminant found in soil, sediment, and ground water in several DOE sites, including Hanford 100 H area. In order to stimulate microbially mediated reduction of Cr(VI) at this site, a poly-lactate hydrogen release compound was injected into the chromium contaminated aquifer. Targeted enrichment of dominant nitrate-reducing bacteria post injection resulted in the isolation of Pseudomonas stutzeri strain RCH2. P. stutzeri strain RCH2 was isolated using acetate as the electron donor and is a complete denitrifier. Experiments with anaerobic washed cell suspension of strain RCH2 revealed it could reduce Cr(VI) and Fe(III). The genome of strain RCH2 was sequenced using a combination of Illumina and 454 sequencing technologies and contained a circular chromosome of 4.6 Mb and three plasmids. Global genome comparisons of strain RCH2 with six other fully sequenced P. stutzeri strains revealed most genomic regions are conserved, however strain RCH2 has an additional 244 genes, some of which are involved in chemotaxis, Flp pilus biogenesis and pyruvate/2-oxogluturate complex formation. C1 [Chakraborty, Romy; Dehal, Paramvir; Walker, Robert; Zemla, Marcin; Auer, Manfred; Kazakov, Alexey; Novichkov, Pavel; Arkin, Adam P.; Hazen, Terry C.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Woo, Hannah; Hazen, Terry C.] Univ Tennessee, Knoxville, TN USA. [Goodwin, Lynne A.] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. RP Chakraborty, R (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM rchakraborty@lbl.gov FU Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH1123]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The work conducted at Lawrence Berkeley National Lab by ENIGMA-Ecosystems and Networks Integrated with Genes and Molecular Assemblies (http://enigma.lbl.gov), a Scientific Focus Area Program) and at the Joint Genome Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH1123. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 50 TC 0 Z9 0 U1 4 U2 4 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1944-3277 J9 STAND GENOMIC SCI JI Stand. Genomic Sci. PD FEB 8 PY 2017 VL 12 AR 23 DI 10.1186/s40793-017-0233-7 PG 9 WC Genetics & Heredity; Microbiology SC Genetics & Heredity; Microbiology GA EL1OI UT WOS:000394389300001 PM 28194258 ER PT J AU Yang, R Dai, YM Xu, B Zhang, W Qiu, ZY Sui, QT Homes, CC Qiu, XG AF Yang, Run Dai, Yaomin Xu, Bing Zhang, Wei Qiu, Ziyang Sui, Qiangtao Homes, Christopher C. Qiu, Xianggang TI Anomalous phonon behavior in superconducting CaKFe4As4: An optical study SO PHYSICAL REVIEW B LA English DT Article ID IRON PNICTIDES; TRANSITION; INPLANE AB The temperature dependence of ab-plane optical conductivity of CaKFe4As4 has been measured below and above its superconducting transition temperature T-c similar or equal to 35.5 K. In the normal state, analysis with the twoDrude model reveals a T -linear scattering rate for the coherent response, which suggests strong spin-fluctuation scattering. Below the superconducting transition, the optical conductivity below 120 cm(-1) vanishes, indicating nodeless gap(s). The Mattis-Bardeen fitting in the superconducting state gives two gaps of Delta(1) similar or equal to 9 meV and Delta(2) similar or equal to 14 meV, in good agreement with recent angle-resolved photoemission spectroscopy (ARPES) results. In addition, around 255 cm(-1), we observe two different infrared-active Fe-As modes with obvious asymmetric lineshape, originating from strong coupling between lattice vibrations and spin or charge excitations. Considering a moderate Hund's rule coupling determined from spectral weight analysis, we propose that the strong fluctuations induced by the coupling between itinerant carriers and local moments may affect the phonon mode, and the electron-phonon coupling through the spin channel is likely to play an important role in the unconventional pairing in iron-based superconductors. C1 [Yang, Run; Zhang, Wei; Qiu, Ziyang; Sui, Qiangtao; Qiu, Xianggang] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, POB 603, Beijing 100190, Peoples R China. [Dai, Yaomin; Homes, Christopher C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Div, Upton, NY 11973 USA. [Xu, Bing] Ctr High Pressure Sci & Technol Adv Res, Beijing 100094, Peoples R China. [Qiu, Xianggang] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China. RP Homes, CC (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Div, Upton, NY 11973 USA. EM homes@bnl.gov; xgqiu@iphy.ac.cn RI Dai, Yaomin/E-4259-2016 OI Dai, Yaomin/0000-0002-2464-3161 FU NSFC [11374345, 91421304]; MOST [2015CB921303, 2015CB921102]; Office of Science, U.S. Department of Energy [DE-SC0012704] FX We thank Congcong Le, Xianxin Wu, Huiqian Luo, Guodong Liu, Bohong Li, Fei Cheng, and Kashif Nadeem for useful discussions. Work at Chinese Academy of Science was supported by NSFC (Projects No. 11374345 and No. 91421304) and MOST (Projects No. 2015CB921303 and No. 2015CB921102). Work at Brookhaven National Laboratory was supported by the Office of Science, U.S. Department of Energy under Contract No. DE-SC0012704. NR 43 TC 0 Z9 0 U1 12 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 8 PY 2017 VL 95 IS 6 AR 064506 DI 10.1103/PhysRevB.95.064506 PG 7 WC Physics, Condensed Matter SC Physics GA EJ8TT UT WOS:000393499800008 ER PT J AU Tripathi, V Lubna, RS Abromeit, B Crawford, HL Liddick, SN Utsuno, Y Bender, PC Crider, BP Dungan, R Fallon, P Kravvaris, K Larson, N Macchiavelli, AO Otsuka, T Prokop, CJ Richard, AL Shimizu, N Tabor, SL Volya, A Yoshida, S AF Tripathi, Vandana Lubna, R. S. Abromeit, B. Crawford, H. L. Liddick, S. N. Utsuno, Y. Bender, P. C. Crider, B. P. Dungan, R. Fallon, P. Kravvaris, K. Larson, N. Macchiavelli, A. O. Otsuka, T. Prokop, C. J. Richard, A. L. Shimizu, N. Tabor, S. L. Volya, A. Yoshida, S. TI beta decay of Si-38,Si-40 (T-z =+5,+6) to low-lying core excited states in odd-odd P-38,P-40 isotopes SO PHYSICAL REVIEW C LA English DT Article ID NEUTRON-RICH; SHELL-MODEL; SPECTROSCOPY; NUCLEI; MASS AB Low-lying excited states in P-38,P-40 have been identified in the beta decay of T-z = +5,+6, Si-38,Si-40. Based on the allowed nature of the Gamow-Teller (GT) decay observed, these states are assigned spin and parity of 1(+) and are core-excited 1p1h intruder stateswith a parity opposite to the ground state. The occurrence of intruder states at low energies highlights the importance of pairing and quadrupole correlation energies in lowering the intruder states despite the N = 20 shell gap. Configuration interaction shell model calculations with the state-of-art SDPF-MU effective interaction were performed to understand the structure of these 1p1h states in the even-A phosphorus isotopes. States in P-40 with N = 25 were found to have very complex configurations involving all the fp orbitals leading to deformed states as seen in neutron-rich nuclei with N approximate to 28. The calculated GT matrix elements for the beta decay highlight the dominance of the decay of the core neutrons rather than the valence neutrons. C1 [Tripathi, Vandana; Lubna, R. S.; Abromeit, B.; Dungan, R.; Kravvaris, K.; Macchiavelli, A. O.; Tabor, S. L.; Volya, A.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Crawford, H. L.; Fallon, P.; Kravvaris, K.; Macchiavelli, A. O.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Liddick, S. N.; Larson, N.; Prokop, C. J.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Liddick, S. N.; Bender, P. C.; Crider, B. P.; Larson, N.; Prokop, C. J.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Utsuno, Y.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Utsuno, Y.; Shimizu, N.] Univ Tokyo, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. [Otsuka, T.; Yoshida, S.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Otsuka, T.] Katholieke Univ Leuven, Inst Voor Kern En Stralingsfys, B-3001 Leuven, Belgium. [Richard, A. L.] Ohio Univ, Inst Nucl & Particle Phys, Dept Phys & Astron, Athens, OH 45701 USA. RP Tripathi, V (reprint author), Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. FU NSF [PHY-1401574, PHY-1102511]; U.S. Department of Energy [DEAC02-05CH11231, DE-SC0009883]; U.S. National Nuclear Security Agency [DE-NA0000979, DE-NA0002132]; JSPS KAKENHI (Japan) [25870168, 15K05094] FX The authors thank the NSCL operations staff for the excellent beam and support during the experiment. The work was supported by NSF Grants No. PHY-1401574 (FSU) and No. PHY-1102511 (NSCL), U.S. Department of Energy under Contracts No. DEAC02-05CH11231 (LBNL) and No. DE-SC0009883 (FSU), and the U.S. National Nuclear Security Agency under Awards No. DE-NA0000979 and No. DE-NA0002132. Authors also want to acknowledge support from JSPS KAKENHI (Japan), Grants No. 25870168 and No. 15K05094. NR 30 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD FEB 8 PY 2017 VL 95 IS 2 AR 024308 DI 10.1103/PhysRevC.95.024308 PG 7 WC Physics, Nuclear SC Physics GA EJ8UN UT WOS:000393502000002 ER PT J AU Ferreira, PG Hill, CT Ross, GG AF Ferreira, Pedro G. Hill, Christopher T. Ross, Graham G. TI Weyl current, scale-invariant inflation, and Planck scale generation SO PHYSICAL REVIEW D LA English DT Article ID MODEL HIGGS-BOSON; TENSOR; MASS AB Scalar fields, phi(i), can be coupled nonminimally to curvature and satisfy the general criteria: (i) the theory has no mass input parameters, including M-P = 0; (ii) the phi(i) have arbitrary values and gradients, but undergo a general expansion and relaxation to constant values that satisfy a nontrivial constraint, K (phi(i)) = constant; (iii) this constraint breaks scale symmetry spontaneously, and the Planck mass is dynamically generated; (iv) there can be adequate inflation associated with slow roll in a scale-invariant potential subject to the constraint; (v) the final vacuum can have a small to vanishing cosmological constant; (vi) large hierarchies in vacuum expectation values can naturally form; (vii) there is a harmless dilaton which naturally eludes the usual constraints on massless scalars. These models are governed by a global Weyl scale symmetry and its conserved current, K-mu. At the quantum level the Weyl scale symmetry can be maintained by an invariant specification of renormalized quantities. C1 [Ferreira, Pedro G.] Univ Oxford, Dept Phys, Astrophys, 1 Keble Rd, Oxford OX1 3RH, England. [Hill, Christopher T.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Ross, Graham G.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, 1 Keble Rd, Oxford OX1 3NP, England. RP Ferreira, PG (reprint author), Univ Oxford, Dept Phys, Astrophys, 1 Keble Rd, Oxford OX1 3RH, England. EM pedro.ferreira@physics.ox.ac.uk; hill@fnal.gov; g.ross1@physics.ox.ac.uk FU United States Department of Energy [DE-AC02-07CH11359] FX We thank W. Bardeen and J. D. Bjorken for discussions. Part of this work was done at Fermilab, operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 41 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 8 PY 2017 VL 95 IS 4 AR 043507 DI 10.1103/PhysRevD.95.043507 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EJ8YE UT WOS:000393512400004 ER PT J AU Gallis, MA Bitter, NP Koehler, TP Torczynski, JR Plimpton, SJ Papadakis, G AF Gallis, M. A. Bitter, N. P. Koehler, T. P. Torczynski, J. R. Plimpton, S. J. Papadakis, G. TI Molecular-Level Simulations of Turbulence and Its Decay SO PHYSICAL REVIEW LETTERS LA English DT Article ID MONTE-CARLO AB We provide the first demonstration that molecular-level methods based on gas kinetic theory and molecular chaos can simulate turbulence and its decay. The direct simulation Monte Carlo (DSMC) method, a molecular-level technique for simulating gas flows that resolves phenomena from molecular to hydrodynamic (continuum) length scales, is applied to simulate the Taylor-Green vortex flow. The DSMC simulations reproduce the Kolmogorov -5/3 law and agree well with the turbulent kinetic energy and energy dissipation rate obtained from direct numerical simulation of the Navier-Stokes equations using a spectral method. This agreement provides strong evidence that molecular-level methods for gases can be used to investigate turbulent flows quantitatively. C1 [Gallis, M. A.; Bitter, N. P.; Koehler, T. P.; Torczynski, J. R.] Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. [Plimpton, S. J.] Sandia Natl Labs, Ctr Res Comp, POB 5800, Albuquerque, NM 87185 USA. [Papadakis, G.] Imperial Coll, Dept Aeronaut, London SW7 2AZ, England. RP Gallis, MA (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM magalli@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multimission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors thank Drs. L. J. DeChant, E. S. Piekos, W. J. Rider, and S. N. Kempka of Sandia National Laboratories for many useful discussions and suggestions. NR 24 TC 0 Z9 0 U1 6 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 8 PY 2017 VL 118 IS 6 AR 064501 DI 10.1103/PhysRevLett.118.064501 PG 5 WC Physics, Multidisciplinary SC Physics GA EJ8ZY UT WOS:000393517200011 PM 28234505 ER PT J AU Kohler, J Spethmann, N Schreppler, S Stamper-Kurn, DM AF Kohler, Jonathan Spethmann, Nicolas Schreppler, Sydney Stamper-Kurn, Dan M. TI Cavity-Assisted Measurement and Coherent Control of Collective Atomic Spin Oscillators SO PHYSICAL REVIEW LETTERS LA English DT Article ID MECHANICAL OSCILLATOR; RADIATION-PRESSURE; QUANTUM FEEDBACK; BACK-ACTION; MICROMIRROR; TIMES; LIMIT AB We demonstrate continuous measurement and coherent control of the collective spin of an atomic ensemble undergoing Larmor precession in a high-finesse optical cavity. The coupling of the precessing spin to the cavity field yields phenomena similar to those observed in cavity optomechanics, including cavity amplification, damping, and optical spring shifts. These effects arise from autonomous optical feedback onto the atomic spin dynamics, conditioned by the cavity spectrum. We use this feedback to stabilize the spin in either its high-or low-energy state, where, in equilibrium with measurement backaction heating, it achieves a steady-state temperature, indicated by an asymmetry between the Stokes and the anti-Stokes scattering rates. For sufficiently large Larmor frequency, such feedback stabilizes the spin ensemble in a nearly pure quantum state, in spite of continuous measurement by the cavity field. C1 [Kohler, Jonathan; Spethmann, Nicolas; Schreppler, Sydney; Stamper-Kurn, Dan M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Spethmann, Nicolas] Tech Univ Kaiserslautern, Dept Phys, D-67663 Kaiserslautern, Germany. [Spethmann, Nicolas] Tech Univ Kaiserslautern, Res Ctr OPTIMAS, D-67663 Kaiserslautern, Germany. [Stamper-Kurn, Dan M.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Kohler, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM jkohler@berkeley.edu; dmsk@berkeley.edu FU Air Force Office of Scientific Research; Marie Curie International Outgoing Fellowship; U.S. Department of Defense through the National Defense Science and Engineering Graduate Fellowship program FX We thank L. Buchmann for helpful discussions and J. Gerber for assistance in the lab. This work was supported by the Air Force Office of Scientific Research. N. S. was supported by a Marie Curie International Outgoing Fellowship, and J. K. and S. S. by the U.S. Department of Defense through the National Defense Science and Engineering Graduate Fellowship program. NR 43 TC 0 Z9 0 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 8 PY 2017 VL 118 IS 6 AR 063604 DI 10.1103/PhysRevLett.118.063604 PG 6 WC Physics, Multidisciplinary SC Physics GA EJ8ZY UT WOS:000393517200009 PM 28234539 ER PT J AU Thygesen, PMM Paddison, JAM Zhang, RH Beyer, KA Chapman, KW Playford, HY Tucker, MG Keen, DA Hayward, MA Goodwin, AL AF Thygesen, Peter M. M. Paddison, Joseph A. M. Zhang, Ronghuan Beyer, Kevin A. Chapman, Karena W. Playford, Helen Y. Tucker, Matthew G. Keen, David A. Hayward, Michael A. Goodwin, Andrew L. TI Orbital Dimer Model for the Spin-Glass State in Y2Mo2O7 SO PHYSICAL REVIEW LETTERS LA English DT Article ID PYROCHLORE ANTIFERROMAGNET Y2MO2O7; NONLINEAR SUSCEPTIBILITY; TOTAL SCATTERING; DYNAMICS; BEHAVIOR; DISORDER; FRUSTRATION; ICE; RELAXATION; TRANSITION AB The formation of a spin glass generally requires that magnetic exchange interactions are both frustrated and disordered. Consequently, the origin of spin-glass behavior in Y2Mo2O7-in which magnetic Mo4+ ions occupy a frustrated pyrochlore lattice with minimal compositional disorder-has been a longstanding question. Here, we use neutron and x-ray pair-distribution function (PDF) analysis to develop a disorder model that resolves apparent incompatibilities between previously reported PDF, extended x-rayabsorption fine structure spectroscopy, and NMR studies, and provides a new and physical explanation of the exchange disorder responsible for spin-glass formation. We show that Mo4+ ions displace according to a local "two-in-two-out" rule on each Mo-4 tetrahedron, driven by orbital dimerization of Jahn-Teller active Mo4+ ions. Long-range orbital order is prevented by the macroscopic degeneracy of dimer coverings permitted by the pyrochlore lattice. Cooperative O2- displacements yield a distribution of Mo-O-Mo angles, which in turn introduces disorder into magnetic interactions. Our study demonstrates experimentally how frustration of atomic displacements can assume the role of compositional disorder in driving a spin-glass transition. C1 [Thygesen, Peter M. M.; Paddison, Joseph A. M.; Hayward, Michael A.; Goodwin, Andrew L.] Univ Oxford, Dept Chem, South Parks Rd, Oxford OX1 3QR, England. [Paddison, Joseph A. M.; Playford, Helen Y.; Tucker, Matthew G.; Keen, David A.] Rutherford Appleton Lab, ISIS Facil, Harwell Campus, Didcot OX11 0QX, Oxon, England. [Paddison, Joseph A. M.] Georgia Inst Technol, Sch Phys, 837 State St, Atlanta, GA 30332 USA. [Beyer, Kevin A.; Chapman, Karena W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Tucker, Matthew G.] Diamond Light Source, Chilton OX11 0DE, Oxfordshire, England. [Tucker, Matthew G.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Paddison, JAM (reprint author), Univ Oxford, Dept Chem, South Parks Rd, Oxford OX1 3QR, England.; Paddison, JAM (reprint author), Rutherford Appleton Lab, ISIS Facil, Harwell Campus, Didcot OX11 0QX, Oxon, England.; Paddison, JAM (reprint author), Georgia Inst Technol, Sch Phys, 837 State St, Atlanta, GA 30332 USA. EM paddison@gatech.edu FU DOE Office of Science [DE-AC02-06CH11357]; Science and Technology Facilities Council (UK); Engineering and Physical Sciences Research Council (UK) [EP/G004528/2]; European Research Council [279705]; Georgia Tech's College of Sciences; Churchill College, Cambridge FX We thank A. Simonov, J. R. Stewart, M. Mourigal, C. R. Wiebe, H. J. Silverstein, M. J. P. Gingras, F. Flicker, and J. S. Gardner for useful discussions. We acknowledge the Rutherford Appleton Laboratory for access to the ISIS Neutron Source. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. P. M. M. T., J.A.M.P., and A. L. G. acknowledge financial support from the Science and Technology Facilities Council (UK), Engineering and Physical Sciences Research Council (UK) (EP/G004528/2), and the European Research Council (Grant Ref: 279705). J.A.M.P. acknowledges funding from Georgia Tech's College of Sciences, and Churchill College, Cambridge. NR 64 TC 0 Z9 0 U1 14 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 8 PY 2017 VL 118 IS 6 AR 067201 DI 10.1103/PhysRevLett.118.067201 PG 6 WC Physics, Multidisciplinary SC Physics GA EJ8ZY UT WOS:000393517200017 PM 28234510 ER PT J AU Bastea, S AF Bastea, Sorin TI Nanocarbon condensation in detonation SO SCIENTIFIC REPORTS LA English DT Article ID NUCLEATION THEORY; HIGH EXPLOSIVES; FREE-ENERGY; CARBON; NANOPARTICLES; NANODIAMOND; PRODUCTS; DIAMOND; SIZE; KINETICS AB We analyze the definition of the Gibbs free energy of a nanoparticle in a reactive fluid environment, and propose an approach for predicting the size of carbon nanoparticles produced by the detonation of carbon- rich explosives that regards their condensation as a nucleation process and takes into account absolute entropy effects of the cluster population. The results are consistent with experimental observations and indicate that such entropy considerations are important for determining chemical equilibrium states in energetic materials that contain an excess of carbon. The analysis may be useful for other applications that deal with the nucleation of nanoparticles under reactive conditions. C1 [Bastea, Sorin] Lawrence Livermore Natl Lab, Energet Mat Ctr, 7000 East Ave, Livermore, CA 94550 USA. RP Bastea, S (reprint author), Lawrence Livermore Natl Lab, Energet Mat Ctr, 7000 East Ave, Livermore, CA 94550 USA. EM sbastea@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 67 TC 0 Z9 0 U1 12 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 8 PY 2017 VL 7 AR 42151 DI 10.1038/srep42151 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EJ9OQ UT WOS:000393556100001 PM 28176827 ER PT J AU Baudry, L Lukyanchuk, I Vinokur, VM AF Baudry, Laurent Lukyanchuk, Igor Vinokur, Valerii M. TI Ferroelectric symmetry-protected multibit memory cell SO SCIENTIFIC REPORTS LA English DT Article ID THIN-FILMS; INFORMATION-STORAGE; POLARIZATION; GENERATION; BOUNDARY AB The tunability of electrical polarization in ferroelectrics is instrumental to their applications in information-storage devices. The existing ferroelectric memory cells are based on the two-level storage capacity with the standard binary logics. However, the latter have reached its fundamental limitations. Here we propose ferroelectric multibit cells (FMBC) utilizing the ability of multiaxial ferroelectric materials to pin the polarization at a sequence of the multistable states. Employing the catastrophe theory principles we show that these states are symmetry-protected against the information loss and thus realize novel topologically-controlled access memory (TAM). Our findings enable developing a platform for the emergent many-valued non-Boolean information technology and target challenges posed by needs of quantum and neuromorphic computing. C1 [Baudry, Laurent] Univ Sci & Technol Lille, IEMN, DHS Dept, UMR CNRS 8520, F-59652 Villeneuve Dascq, France. [Lukyanchuk, Igor] Univ Picardie, Lab Condensed Matter Phys, F-80039 Amiens, France. [Vinokur, Valerii M.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60637 USA. RP Vinokur, VM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60637 USA. EM vinokour@anl.gov FU ITN-NOTEDEV FP7 mobility program; U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division FX We thank to N. Lemee and A. Razumnaya for clarification of the experimental situation in strained PbTiO3 films. This work was supported by ITN-NOTEDEV FP7 mobility program (I.L.) and by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division (V.V. and partly I.L.). NR 27 TC 0 Z9 0 U1 6 U2 6 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 8 PY 2017 VL 7 AR 42196 DI 10.1038/srep42196 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EJ9VG UT WOS:000393574600001 PM 28176866 ER PT J AU Wallace, DC Chisolm, ED De Lorenzi-Venneri, G AF Wallace, Duane C. Chisolm, Eric D. De Lorenzi-Venneri, Giulia TI V-T theory for the self-intermediate scattering function in a monatomic liquid SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE liquid theory; liquid dynamics; liquid structure; diffusion; atomic motion; time correlation functions ID GLASS-FORMING LIQUIDS; MODE-COUPLING THEORY; SUPERCOOLED LIQUIDS; TRANSITION; PARTICLE; DYNAMICS; STATE AB In V-T theory the atomic motion is harmonic vibrations in a liquid-specific potential energy valley, plus transits, which move the system rapidly among the multitude of such valleys. In its first application to the self intermediate scattering function (SISF), V-T theory produced an accurate account of molecular dynamics (MD) data at all wave numbers q and time t. Recently, analysis of the mean square displacement (MSD) resolved a crossover behavior that was not observed in the SISF study. Our purpose here is to apply the more accurate MSD calibration to the SISF, and assess the results. We derive and discuss the theoretical equations for vibrational and transit contributions to the SISF. The time evolution is divided into three successive intervals: the vibrational interval when the vibrational contribution alone accurately accounts for the MD data; the crossover when the vibrational contribution saturates and the transit contribution becomes resolved; and the diffusive interval when the transit contribution alone accurately accounts for the MD data. The resulting theoretical error is extremely small at all q and t. V-T theory is compared to mode-coupling theories for the MSD and SISF, and to recent developments in Brownian motion experiments and theory. C1 [Wallace, Duane C.; Chisolm, Eric D.; De Lorenzi-Venneri, Giulia] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP De Lorenzi-Venneri, G (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM gvenneri@lanl.gov FU Department of Energy [DE-AC52-06NA25396] FX We are pleased to thank Brad Clements for helpful and encouraging discussions. This research is supported by the Department of Energy under Contract No. DE-AC52-06NA25396. NR 39 TC 0 Z9 0 U1 5 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 8 PY 2017 VL 29 IS 5 AR 055101 DI 10.1088/1361-648X/29/5/055101 PG 9 WC Physics, Condensed Matter SC Physics GA EG1EA UT WOS:000390773500001 PM 27941219 ER PT J AU Satchell, N Witt, JDS Burnell, G Curran, PJ Kinane, CJ Charlton, TR Langridge, S Cooper, JFK AF Satchell, N. Witt, J. D. S. Burnell, G. Curran, P. J. Kinane, C. J. Charlton, T. R. Langridge, S. Cooper, J. F. K. TI Probing the spiral magnetic phase in 6 nm textured erbium using polarised neutron reflectometry SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE magnetism; spiral magnetism; erbium; thin film; spintronics ID RARE-EARTH; REFLECTIVITY; DIFFRACTION; DOMAINS AB We characterise the magnetic state of highly-textured, sputter deposited erbium for a film of thickness 6 nm. Using polarised neutron reflectometry it is found that the film has a high degree of magnetic disorder, and we present some evidence that the film's local magnetic state is consistent with bulk-like spiral magnetism. This, combined with complementary characterisation techniques, show that thin film erbium is a strong candidate material for incorporation into device structures. C1 [Satchell, N.; Witt, J. D. S.; Burnell, G.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Satchell, N.; Kinane, C. J.; Charlton, T. R.; Langridge, S.; Cooper, J. F. K.] STFC Rutherford Appleton Lab, ISIS, Didcot OX11 0QX, Oxon, England. [Curran, P. J.] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England. [Charlton, T. R.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Burnell, G (reprint author), Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. EM nathan.satchell@stfc.ac.uk; g.burnell@leeds.ac.uk OI Satchell, Nathan/0000-0003-1597-2489 FU UK EPSRC [EP/J010634/1, EP/J010650/1]; JEOL Europe; ISIS FX The authors would like to thank the UK EPSRC (grant-numbers: EP/J010634/1 and EP/J010650/1) for their financial support. The ISIS neutron and muon source for allocating beamtime (RB:1410611). NS acknowledges JEOL Europe and ISIS for PhD funding. NR 21 TC 0 Z9 0 U1 13 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 8 PY 2017 VL 29 IS 5 AR 055801 DI 10.1088/1361-648X/29/5/055801 PG 5 WC Physics, Condensed Matter SC Physics GA EF5DK UT WOS:000390350700001 PM 27911887 ER PT J AU Trotochaud, L Head, AR Karslioglu, O Kyhl, L Bluhm, H AF Trotochaud, Lena Head, Ashley R. Karslioglu, Osman Kyhl, Line Bluhm, Hendrik TI Ambient pressure photoelectron spectroscopy: Practical considerations and experimental frontiers SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Review DE surface science; ambient-pressure x-ray photoelectron spectroscopy; solid/liquid interface; solid/vapor interface; liquid/vapor interface; intercalation; 2D materials ID HEXAGONAL BORON-NITRIDE; CHEMICAL-VAPOR-DEPOSITION; SITU X-RAY; OXYGEN REDUCTION REACTION; ROOT-5)R27-DEGREES-O SURFACE OXIDE; TEMPERATURE GRAPHENE GROWTH; METAL-CATALYZED REACTIONS; FUEL-CELL CATHODE; IN-SITU; DOPED GRAPHENE AB Over the past several decades, ambient pressure x-ray photoelectron spectroscopy (APXPS) has emerged as a powerful technique for in situ and operando investigations of chemical reactions under relevant ambient atmospheres far from ultra-high vacuum conditions. This review focuses on exemplary cases of APXPS experiments, giving special consideration to experimental techniques, challenges, and limitations specific to distinct condensed matter interfaces. We discuss APXPS experiments on solid/vapor interfaces, including the special case of 2D films of graphene and hexagonal boron nitride on metal substrates with intercalated gas molecules, liquid/vapor interfaces, and liquid/solid interfaces, which are a relatively new class of interfaces being probed by APXPS. We also provide a critical evaluation of the persistent limitations and challenges of APXPS, as well as the current experimental frontiers. C1 [Trotochaud, Lena; Head, Ashley R.; Karslioglu, Osman; Kyhl, Line; Bluhm, Hendrik] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Kyhl, Line] Univ Aarhus, iNANO, DK-8000 Aarhus C, Denmark. RP Bluhm, H (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM hbluhm@lbl.gov FU Department of Defense [HDTRA11510005]; Danish Research Council for Independent Research and Innovation Fund Denmark (under the National Initiative for Advanced Graphene Coatings and Composites); Office of Science, Office of Basic Energy Sciences, and by the Division of Chemical Sciences, Geosciences and Biosciences of the US Department of Energy at LBNL [DE-AC02-05CH11231] FX LT and ARH acknowledge funding by the Department of Defense under Grant HDTRA11510005. LK acknowledges support from the Danish Research Council for Independent Research and Innovation Fund Denmark (under the National Initiative for Advanced Graphene Coatings and Composites). OK and HB acknowledge support by the Director, Office of Science, Office of Basic Energy Sciences, and by the Division of Chemical Sciences, Geosciences and Biosciences of the US Department of Energy at LBNL under Contract No. DE-AC02-05CH11231. NR 195 TC 0 Z9 0 U1 46 U2 46 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 8 PY 2017 VL 29 IS 5 AR 053002 DI 10.1088/1361-648X/29/5/053002 PG 29 WC Physics, Condensed Matter SC Physics GA EF5DD UT WOS:000390350000002 PM 27911885 ER PT J AU Duranty, ER Baschnagel, J Dadmun, M AF Duranty, Edward R. Baschnagel, Jorg Dadmun, Mark TI Diffusion of copolymers composed of monomers with drastically different friction factors in copolymer/homopolymer blends SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID BOND-FLUCTUATION MODEL; ISOPRENE TETRABLOCK COPOLYMERS; MONTE-CARLO SIMULATIONS; POLYMER MELTS; GLASS-TRANSITION; BLOCK-COPOLYMER; DYNAMICS; STYRENE; MIXTURES AB Copolymers are commonly used as interface modifiers that allow for the compatibilization of polymer components in a blend. For copolymers to function as a compatibilizer, they must diffuse through the matrix of the blend to the interface between the two blend components. The diffusivity of a copolymer in a blend matrix therefore becomes important in determining good candidates for use as compatibilizers. In this work, coarse-grained Monte Carlo simulations using the bond fluctuation model modified with an overlap penalty have been developed to study the diffusive behavior of PS/PMMA random copolymers in a PMMA homopolymer blend. The simulations vary the connectivity between different monomers, the thermodynamic interactions between the monomers which manifest within a chain, and between copolymer and homopolymer matrix and define the monomer friction coefficient of each component independently, allowing for the determination of the combined effect of these parameters on copolymer chain diffusion. The results of this work indicate that PS-r-PMMA copolymer diffusion is not linearly dependent on the copolymer composition on a logarithmic scale, but its diffusion is a balance of the kinetics governed by the dominant motion of the faster styrene monomers and thermodynamics, which are governed by the concentration of styrene monomer within a given monomer's local volume. Published by AIP Publishing. C1 [Duranty, Edward R.; Dadmun, Mark] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Baschnagel, Jorg] CNRS, Inst Charles Sadron, UdS, 23 Rue Loess, F-67034 Strasbourg 2, France. [Dadmun, Mark] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Duranty, ER (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. OI Dadmun, Mark/0000-0003-4304-6087 FU Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX This research is supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. NR 20 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 7 PY 2017 VL 146 IS 5 AR 054905 DI 10.1063/1.4975022 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EL4FH UT WOS:000394576600059 PM 28178796 ER PT J AU Preston, TC Davies, JF Wilson, KR AF Preston, Thomas C. Davies, James F. Wilson, Kevin R. TI The frequency-dependent response of single aerosol particles to vapour phase oscillations and its application in measuring diffusion coefficients SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID SECONDARY ORGANIC AEROSOL; COMPLEX REFRACTIVE-INDEX; ISOTOPIC WATER DIFFUSION; OPTICAL TWEEZERS; GLASSY; VISCOSITY; MICRODROPLETS; SPECTROSCOPY; REACTIVITY; CHEMISTRY AB A new method for measuring diffusion in the condensed phase of single aerosol particles is proposed and demonstrated. The technique is based on the frequency-dependent response of a binary particle to oscillations in the vapour phase of one of its chemical components. We discuss how this physical situation allows for what would typically be a non-linear boundary value problem to be approximately reduced to a linear boundary value problem. For the case of aqueous aerosol particles, we investigate the accuracy of the closed-form analytical solution to this linear problem through a comparison with the numerical solution of the full problem. Then, using experimentally measured whispering gallery modes to track the frequency-dependent response of aqueous particles to relative humidity oscillations, we determine diffusion coefficients as a function of water activity. The measured diffusion coefficients are compared to previously reported values found using the two common experiments: (i) the analysis of the sorption/desorption of water from a particle after a step-wise change to the surrounding relative humidity and (ii) the isotopic exchange of water between a particle and the vapour phase. The technique presented here has two main strengths: first, when compared to the sorption/desorption experiment, it does not require the numerical evaluation of a boundary value problem during the fitting process as a closed-form expression is available. Second, when compared to the isotope exchange experiment, it does not require the use of labeled molecules. Therefore, the frequency-dependent experiment retains the advantages of these two commonly used methods but does not suffer from their drawbacks. C1 [Preston, Thomas C.] McGill Univ, Dept Atmospher & Ocean Sci, 805 Sherbrooke St West, Montreal, PQ H3A 0B9, Canada. [Preston, Thomas C.] McGill Univ, Dept Chem, 805 Sherbrooke St West, Montreal, PQ H3A 0B9, Canada. [Davies, James F.; Wilson, Kevin R.] Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94611 USA. RP Preston, TC (reprint author), McGill Univ, Dept Atmospher & Ocean Sci, 805 Sherbrooke St West, Montreal, PQ H3A 0B9, Canada.; Preston, TC (reprint author), McGill Univ, Dept Chem, 805 Sherbrooke St West, Montreal, PQ H3A 0B9, Canada. EM thomas.preston@mcgill.ca FU Natural Sciences and Engineering Research Council of Canada (NSERC); Department of Energy's Office of Science Early Career Research Program and of the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences, Geosciences; Biosciences Division of the U. S. Department of Energy under Contract [DE-AC02-05CH11231] FX T. C. P. acknowledges support from the Natural Sciences and Engineering Research Council of Canada (NSERC). J. F. D. and K. R. W. acknowledge the support of the Department of Energy's Office of Science Early Career Research Program and of the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 40 TC 0 Z9 0 U1 1 U2 1 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PD FEB 7 PY 2017 VL 19 IS 5 BP 3922 EP 3931 DI 10.1039/c6cp07711k PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EM5BY UT WOS:000395328100053 PM 28106191 ER PT J AU Chen, LH Bryantsev, VS AF Chen, Lihua Bryantsev, Vyacheslav S. TI A density functional theory based approach for predicting melting points of ionic liquids SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AB-INITIO CALCULATIONS; WAVE BASIS-SET; TRANSPORT-PROPERTIES; ATOMISTIC SIMULATION; ROOM-TEMPERATURE; SOLVATION MODELS; SALTS; THERMODYNAMICS; DYNAMICS AB Accurate prediction of melting points of ILs is important both from the fundamental point of view and from the practical perspective for screening ILs with low melting points and broadening their utilization in a wider temperature range. In this work, we present an ab initio approach to calculate melting points of ILs with known crystal structures and illustrate its application for a series of 11 ILs containing imidazolium/pyrrolidinium cations and halide/polyatomic fluoro-containing anions. The melting point is determined as a temperature at which the Gibbs free energy of fusion is zero. The Gibbs free energy of fusion can be expressed through the use of the Born-Fajans-Haber cycle via the lattice free energy of forming a solid IL from gaseous phase ions and the sum of the solvation free energies of ions comprising IL. Dispersion-corrected density functional theory (DFT) involving (semi) local (PBE-D3) and hybrid exchange-correlation (HSE06-D3) functionals is applied to estimate the lattice enthalpy, entropy, and free energy. The ions solvation free energies are calculated with the SMD-generic-IL solvation model at the M06-2X/6-31+G(d) level of theory under standard conditions. The melting points of ILs computed with the HSE06-D3 functional are in good agreement with the experimental data, with a mean absolute error of 30.5 K and a mean relative error of 8.5%. The model is capable of accurately reproducing the trends in melting points upon variation of alkyl substituents in organic cations and replacement one anion by another. The results verify that the lattice energies of ILs containing polyatomic fluoro-containing anions can be approximated reasonably well using the volume-based thermodynamic approach. However, there is no correlation of the computed lattice energies with molecular volume for ILs containing halide anions. Moreover, entropies of solid ILs follow two different linear relationships with molecular volume for halides and polyatomic fluoro-containing anions. Continuous progress in predicting crystal structures of organic salts with halide anions will be a key factor for successful prediction of melting points with no prior knowledge of the crystal structure. C1 [Chen, Lihua] Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA. [Chen, Lihua; Bryantsev, Vyacheslav S.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Bryantsev, VS (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM bryantsevv@ornl.gov FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was funded by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. We are thankful to Vinit Sharma (ORNL) for making helpful suggestions. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 64 TC 0 Z9 0 U1 3 U2 3 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PD FEB 7 PY 2017 VL 19 IS 5 BP 4114 EP 4124 DI 10.1039/c6cp08403f PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EM5BY UT WOS:000395328100073 PM 28111666 ER PT J AU Zhulin, IB AF Zhulin, Igor B. TI By Staying Together, Two Genes Keep the Motor Running SO STRUCTURE LA English DT Editorial Material ID FLAGELLAR ROTOR AB In this issue of Structure, Lynch et al. (2017) reveal that the interaction between two key proteins in the bacterial flagellar motor results in a shared structural domain. This unusual arrangement keeps the corresponding genes together through the course of evolution. C1 [Zhulin, Igor B.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Zhulin, Igor B.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. RP Zhulin, IB (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.; Zhulin, IB (reprint author), Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. EM ijouline@utk.edu FU NIH [R01GM072285, R01DE024463] FX The work in my laboratory is supported by NIH grants R01GM072285 and R01DE024463. NR 9 TC 0 Z9 0 U1 0 U2 0 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 EI 1878-4186 J9 STRUCTURE JI Structure PD FEB 7 PY 2017 VL 25 IS 2 BP 214 EP 215 DI 10.1016/j.str.2017.01.005 PG 2 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA EO4ZL UT WOS:000396702700002 PM 28178456 ER PT J AU Coltrin, ME Kaplar, RJ AF Coltrin, Michael E. Kaplar, Robert J. TI Transport and breakdown analysis for improved figure-of-merit for AlGaN power devices SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ELECTRON-MOBILITY; IONIZED IMPURITIES; ALLOY SCATTERING; BULK GAN; SEMICONDUCTORS; POLARIZATION; NITRIDES; GALLIUM; TERNARY; DIODES AB Mobility and critical electric field for bulk AlxGa1-xN alloys across the full composition range (0 <= x <= 1) are analyzed to address the potential application of this material system for power electronics. Calculation of the temperature-dependent electron mobility includes the potential limitations due to different scattering mechanisms, including alloy, optical polar phonon, deformation potential, and piezoelectric scattering. The commonly used unipolar figure of merit (appropriate for vertical-device architectures), which increases strongly with increasing mobility and critical electric field, is examined across the alloy composition range to estimate the potential performance in power electronics applications. Alloy scattering is the dominant limitation to mobility and thus also for the unipolar figure of merit. However, at higher alloy compositions, the limitations due to alloy scattering are overcome by increased critical electric field. These trade-offs, and their temperature dependence, are quantified in the analysis. Published by AIP Publishing. C1 [Coltrin, Michael E.; Kaplar, Robert J.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Coltrin, ME (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mecoltr@sandia.gov FU Laboratory Directed Research and Development (LDRD) program at Sandia; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development (LDRD) program at Sandia, and the authors acknowledge the contributions of all members of the UWBG Grand Challenge LDRD team. The authors thank J. Dickerson and A. Armstrong of Sandia for reviewing the manuscript and for numerous useful suggestions, M. Hollis of MIT Lincoln Lab and E. Bellotti of Boston University for helpful and stimulating discussions concerning the critical electric field in AlGaN, and M. P. King of Sandia for discussions concerning the temperature dependence of the critical electric field. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 45 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 7 PY 2017 VL 121 IS 5 AR 055706 DI 10.1063/1.4975346 PG 6 WC Physics, Applied SC Physics GA EL0XS UT WOS:000394345700052 ER PT J AU Ding, Z Gaowei, M Sinsheimer, J Xie, J Schubert, S Padmore, H Muller, E Smedley, J AF Ding, Z. Gaowei, M. Sinsheimer, J. Xie, J. Schubert, S. Padmore, H. Muller, E. Smedley, J. TI In-situ synchrotron x-ray characterization of K2CsSb photocathode grown by ternary co-evaporation SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID STRAIN-ENERGY; FILMS AB K2CsSb is a promising photocathode candidate to serve as an electron source in next-generation light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). As the traditional recipe for creation of K2CsSb photocathodes typically results in a rough surface that deteriorates electron beam quality, significant effort has been made to explore novel growth methods for K2CsSb photocathodes. In this paper, a method of ternary co-evaporation of K, Cs, and Sb is described. By using in-situ synchrotron X-ray techniques, the quality of the photocathode is characterized during and after the growth. K2CsSb photocathodes grown by this method on Si (100) and MgO (001) substrates show strong (222) texture, and the two photocathodes exhibit 1.7% and 3.4% quantum efficiencies at a wavelength of 530 nm, with a rms surface roughness of about 2-4 nm. This represents an order of magnitude reduction in roughness compared to typical sequential deposition and should result in a significant improvement in the brightness of the generated electron beam. Published by AIP Publishing. C1 [Ding, Z.; Muller, E.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Gaowei, M.; Sinsheimer, J.; Smedley, J.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Xie, J.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Schubert, S.; Padmore, H.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Ding, Z (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. FU U.S. DoE [KC0407-ALSJNT-I0013]; SBIR [DE-SC0009540]; National Science Foundation; National Institutes of Health/National Institute of General Medical Sciences under NSF Award [DMR-0936384, DMR-1332208] FX This work was funded by U.S. DoE, under KC0407-ALSJNT-I0013 and SBIR Grant No. DE-SC0009540. The experiment at CHESS was supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences under NSF Award Nos. DMR-0936384 and DMR-1332208. The authors would like to thank John Walsh from BNL for his dedicated technical support throughout the project and Arthur Woll from Cornell University for his support during the beam time experiment. NR 16 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 7 PY 2017 VL 121 IS 5 AR 055305 DI 10.1063/1.4975113 PG 5 WC Physics, Applied SC Physics GA EL0XS UT WOS:000394345700045 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Asilar, E Bergauer, T Brandstetter, J Brondolin, E Dragicevic, M Ero, J Flechl, M Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Konig, A Kratschmer, I Liko, D Matsushita, T Mikulec, I Rabady, D Rad, N Rahbaran, B Rohringer, H Schieck, J Strauss, J Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S De Wolf, EA Janssen, X Lauwers, J De Klundert, MV Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Abu Zeid, S Blekman, F D'Hondt, J Daci, N De Bruyn, I Deroover, K Heracleous, N Lowette, S Moortgat, S Moreels, L Olbrechts, A Python, Q Tavernier, S Van Doninck, W Van Mulders, P Van Parijs, I Brun, H Caillol, C Clerbaux, B De Lentdecker, G Delannoy, H Fasanella, G Favart, L Goldouzian, R Grebenyuk, A Karapostoli, G Lenzi, T Leonard, A Luetic, J Maerschalk, T Marinov, A Randle-conde, A Seva, T Vander Velde, C Vanlaer, P Yonamine, R Zenoni, F Zhang, F Cimmino, A Cornelis, T Dobur, D Fagot, A Garcia, G Gul, M Poyraz, D Salva, S Schofbeck, R Tytgat, M Van Driessche, W Yazgan, E Zaganidis, N Bakhshiansohi, H Beluffi, C Bondu, O Brochet, S Bruno, G Caudron, A Ceard, L De Visscher, S Delaere, C Delcourt, M Forthomme, L Francois, B Giammanco, A Jafari, A Jez, P Komm, M Lemaitre, V Magitteri, A Mertens, A Musich, M Nuttens, C Piotrzkowski, K Quertenmont, L Selvaggi, M Marono, MV Wertz, S Beliy, N Alda, WL Alves, FL Alves, GA Brito, L Hensel, C Moraes, A Pol, ME Teles, PR Das Chagas, EBB Carvalho, W Chinellato, J Custodio, A Da Costa, EM Da Silveira, GG Damiao, DD Martins, CD De Souza, SF Guativa, LMH Malbouisson, H Figueiredo, DM Herrera, CM Mundim, L Nogima, H Da Silva, WLP Santoro, A Sznajder, A Manganote, EJT Pereira, AV Ahuja, S Bernardes, CA Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Moon, CS Novaes, SF Padula, SS Abad, DR Vargas, JCR Aleksandrov, A Hadjiiska, R Iaydjiev, P Rodozov, M Stoykova, S Sultanov, G Vutova, M Dimitrov, A Glushkov, I Litov, L Pavlov, B Petkov, P Fang, W Ahmad, M Bian, JG Chen, GM Chen, HS Chen, M Chen, Y Cheng, T Jiang, CH Leggat, D Liu, Z Romeo, F Shaheen, SM Spiezia, A Tao, J Wang, C Wang, Z Zhang, H Zhao, J Ban, Y Li, Q Liu, S Mao, Y Qian, SJ Wang, D Xu, Z Avila, C Cabrera, A Sierra, LFC Florez, C Gomez, JP Hernandez, CFG Alvarez, JDR Sanabria, JC Godinovic, N Lelas, D Puljak, I Cipriano, PMR Antunovic, Z Kovac, M Brigljevic, V Ferencek, D Kadija, K Micanovic, S Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Rykaczewski, H Finger, M Finger, M Jarrin, EC Elgammal, S Mohamed, A Mohammed, Y Salama, E Calpas, B Kadastik, M Murumaa, M Perrini, L Raidal, M Tiko, A Veelken, C Eerola, P Pekkanen, J Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Peltola, T Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Ghosh, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Kucher, I Locci, E Machet, M Malcles, J Rander, J Rosowsky, A Titov, M Zghiche, A Abdulsalam, A Antropov, I Baffioni, S Beaudette, F Busson, P Cadamuro, L Chapon, E Charlot, C Davignon, O de Cassagnac, RG Jo, M Lisniak, S Mine, P Naranjo, IN Nguyen, M Ochando, C Ortona, G Paganini, P Pigard, P Regnard, S Salerno, R Sirois, Y Strebler, T Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Buttignol, M Chabert, EC Chanon, N Collard, C Conte, E Coubez, X Fontaine, JC Gele, D Goerlach, U Le Bihan, AC Merlin, JA Skovpen, K Van Hove, P Gadrat, S Beauceron, S Bernet, C Boudoul, G Bouvier, E Montoya, CAC Chierici, R Contardo, D Courbon, B Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Grenier, G Ille, B Lagarde, F Laktineh, IB Lethuillier, M Mirabito, L Pequegnot, AL Perries, S Popov, A Sabes, D Sordini, V Donckt, MV Verdier, P Viret, S Toriashvili, T Tsamalaidze, Z Autermann, C Beranek, S Feld, L Heister, A Kiesel, MK Klein, K Lipinski, M Ostapchuk, A Preuten, M Raupach, F Schael, S Schomakers, C Schulte, JF Schulz, J Verlage, T Weber, H Zhukov, V Brodski, M Dietz-Laursonn, E Duchardt, D Endres, M Erdmann, M Erdweg, S Esch, T Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Knutzen, S Merschmeyer, M Meyer, A Millet, P Mukherjee, S Olschewski, M Padeken, K Papacz, P Pook, T Radziej, M Reithler, H Rieger, M Scheuch, F Sonnenschein, L Teyssier, D Thur, S Cherepanov, V Erdogan, Y Flugge, G Ahmad, WH Hoehle, F Kargoll, B Kress, T Kunsken, A Lingemann, J Nehrkorn, A Nowack, A Nugent, IM Pistone, C Pooth, O Stahl, A Martin, MA Asawatangtrakuldee, C Asin, I Beernaert, K Behnke, O Behrens, U Bin Anuar, AA Borras, K Campbell, A Connor, P Contreras-Campana, C Costanza, F Pardos, CD Dolinska, G Eckerlin, G Eckstein, D Gallo, E Garcia, JG Geiser, A Gizhko, A Luyando, JMG Gunnellini, P Harb, A Hauk, J Hempel, M Jung, H Kalogeropoulos, A Karacheban, O Kasemann, M Keaveney, J Kieseler, J Kleinwort, C Korol, I Lange, W Lelek, A Leonard, J Lipka, K Lobanov, A Lohmann, W Mankel, R Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Ntomari, E Pitzl, D Placakyte, R Raspereza, A Roland, B Sahin, MO Saxena, P Schoerner-Sadenius, T Seitz, C Spannagel, S Stefaniuk, N Trippkewitz, KD Van Onsem, GP Walsh, R Wissing, C Blobel, V Vignali, MC Draeger, AR Dreyer, T Garutti, E Goebel, K Gonzalez, D Haller, J Hoffmann, M Junkes, A Klanner, R Kogler, R Kovalchuk, N Lapsien, T Lenz, T Marchesini, I Marconi, D Meyer, M Niedziela, M Nowatschin, D Ott, J Pantaleo, F Peiffer, T Perieanu, A Poehlsen, J Sander, C Scharf, C Schleper, P Schmidt, A Schumann, S Schwandt, J Stadie, H Steinbruck, G Stober, FM Stover, M Tholen, H Troendle, D Usai, E Vanelderen, L Vanhoefer, A Vormwald, B Barth, C Baus, C Berger, J Butz, E Chwalek, T Colombo, F De Boer, W Dierlamm, A Fink, S Friese, R Giffels, M Gilbert, A Haitz, D Hartmann, F Heindl, SM Husemann, U Katkov, I Pardo, PL Maier, B Mildner, H Mozer, MU Muller, T Muller, T Plagge, M Quast, G Rabbertz, K Rocker, S Roscher, F Schroder, M Sieber, G Simonis, HJ Ulrich, R Wagner-Kuhr, J Wayand, S Weber, M Weiler, T Williamson, S Wohrmann, C Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Topsis-Giotis, I Agapitos, A Kesisoglou, S Panagiotou, A Saoulidou, N Tziaferi, E Evangelou, I Flouris, G Foudas, C Kokkas, P Loukas, N Manthos, N Papadopoulos, I Paradas, E Filipovic, N Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Makovec, A Molnar, J Szillasi, Z Bartok, M Raics, P Trocsanyi, ZL Ujvari, B Bahinipati, S Choudhury, S Mal, P Mandal, K Nayak, A Sahoo, DK Sahoo, N Swain, SK Bansal, S Beri, SB Bhatnagar, V Chawla, R Bhawandeep, U Kalsi, AK Kaur, A Kaur, M Kumar, R Mehta, A Mittal, M Singh, JB Walia, G Kumar, A Bhardwaj, A Choudhary, BC Garg, RB Keshri, S Kumar, A Malhotra, S Naimuddin, M Nishu, N Ranjan, K Sharma, R Sharma, V Bhattacharya, R Bhattacharya, S Chatterjee, K Dey, S Dutt, S Dutta, S Ghosh, S Majumdar, N Modak, A Mondal, K Mukhopadhyay, S Nandan, S Purohit, A Roy, A Roy, D Chowdhury, SR Sarkar, S Sharan, M Thakur, S Behera, PK Chudasama, R Dutta, D Jha, V Kumar, V Mohanty, AK Netrakanti, PK Pant, LM Shukla, P Topkar, A Aziz, T Dugad, S Kole, G Mahakud, B Mitra, S Mohanty, GB Sur, N Sutar, B Banerjee, S Bhowmik, S Dewanjee, RK Ganguly, S Guchait, M Jain, S Kumar, S Maity, M Majumder, G Mazumdar, K Parida, B Sarkar, T Wickramage, N Chauhan, S Dube, S Kapoor, A Kothekar, K Rane, A Sharma, S Behnamian, H Chenarani, S Tadavani, EE Etesami, SM Fahim, A Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Calabria, C Caputo, C Colaleo, A Creanza, D Cristella, L De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Miniello, G My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Ranieri, A Selvaggi, G Silvestris, L Venditti, R Verwilligen, P Abbiendi, G Battilana, C Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Chhibra, SS Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Rossi, AM Rovelli, T Siroli, GP Tosi, N Albergo, S Chiorboli, M Costa, S Di Mattia, A Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Viliani, L Benussi, L Bianco, S Fabbri, F Piccolo, D Primavera, F Calvelli, V Ferro, F Lo Vetere, M Monge, MR Robutti, E Tosi, S Brianza, L Dinardo, ME Fiorendi, S Gennai, S Ghezzi, A Govoni, P Malvezzi, S Manzoni, RA Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Pigazzini, S Ragazzi, S de Fatis, TT Buontempo, S Cavallo, N De Nardo, G Di Guida, S Esposito, M Fabozzi, F Iorio, AOM Lanza, G Lista, L Meola, S Paolucci, P Sciacca, C Thyssen, F Azzi, P Bacchetta, N Benato, L Bisello, D Boletti, A Carlin, R De Oliveira, ACA Checchia, P Dall'Osso, M Manzano, PD Dorigo, T Dosselli, U Gasparini, F Gasparini, U Gozzelino, A Lacaprara, S Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Zanetti, M Zotto, P Zucchetta, A Zumerle, G Braghieri, A Magnani, A Montagna, P Ratti, SP Re, V Riccardi, C Salvini, P Vai, I Vitulo, P Solestizi, LA Bilei, GM Ciangottini, D Fano, L Lariccia, P Leonardi, R Mantovani, G Menichelli, M Saha, A Santocchia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fedi, G Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Savoy-Navarro, A Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Cipriani, M D'imperio, G Del Re, D Diemoz, M Gelli, S Jorda, C Longo, E Margaroli, F Meridiani, P Organtini, G Paramatti, R Preiato, F Rahatlou, S Rovelli, C Santanastasio, F Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bartosik, N Bellan, R Biino, C Cartiglia, N Cenna, F Costa, M Covarelli, R Degano, A Demaria, N Finco, L Kiani, B Mariotti, C Maselli, S Migliore, E Monaco, V Monteil, E Obertino, MM Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Ravera, F Romero, A Ruspa, M Sacchi, R Shchelina, K Sola, V Solano, A Staiano, A Traczyk, P Belforte, S Casarsa, M Cossutti, F Della Ricca, G La Licata, C Schizzi, A Zanetti, A Kim, DH Kim, GN Kim, MS Lee, S Lee, SW Oh, YD Sekmen, S Son, DC Yang, YC Lee, A Cifuentes, JAB Kim, TJ Cho, S Choi, S Go, Y Gyun, D Ha, S Hong, B Jo, Y Kim, Y Lee, B Lee, K Lee, KS Lee, S Lim, J Park, SK Roh, Y Almond, J Kim, J Oh, SB Seo, SH Yang, UK Yoo, HD Yu, GB Choi, M Kim, H Kim, H Kim, JH Lee, JSH Park, IC Ryu, G Ryu, MS Choi, Y Goh, J Hwang, C Lee, J Yu, I Dudenas, V Juodagalvis, A Vaitkus, J Ahmed, I Ibrahim, ZA Komaragiri, JR Ali, MABM Idris, FM Abdullah, WATW Yusli, MN Zolkapli, Z Castilla-Valdez, H De la Cruz-Burelo, E la Cruz, IHD Hernandez-Almada, A Lopez-Fernandez, R Guisao, JM Sanchez-Hernandez, A Moreno, SC Barrera, CO Valencia, FV Carpinteyro, S Pedraza, I Ibarguen, HAS Estrada, CU Pineda, AM Krofcheck, D Butler, PH Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khan, WA Shah, MA Shoaib, M Waqas, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Bunkowski, K Byszuk, A Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Walczak, M Bargassa, P Silva, CBDE Di Francesco, A Faccioli, P Parracho, PGF Gallinaro, M Hollar, J Leonardo, N Iglesias, LL Nemallapudi, MV Antunes, JR Seixas, J Toldaiev, O Vadruccio, D Varela, J Vischia, P Golunov, A Golutvin, I Gorbounov, N Kamenev, A Karjavin, V Korenkov, V Lanev, A Malakhov, A Matveev, V Mitsyn, VV Moisenz, P Palichik, V Perelygin, V Shmatov, S Shulha, S Skatchkov, N Smirnov, V Tikhonenko, E Zarubin, A Chtchipounov, L Golovtsov, V Ivanov, Y Kim, V Kuznetsova, E Murzin, V Oreshkin, V Sulimov, V Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Karneyeu, A Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Pozdnyakov, I Safronov, G Spiridonov, A Toms, M Vlasov, E Zhokin, A Chadeeva, M Danilov, M Markin, O Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Rusakov, SV Terkulov, A Baskakov, A Belyaev, A Boos, E Bunichev, V Dubinin, M Dudko, L Klyukhin, V Kodolova, O Korneeva, N Lokhtin, I Miagkov, I Obraztsov, S Perfilov, M Savrin, V Volkov, P Vorotnikov, G Azhgirey, I Bayshev, I Bitioukov, S Elumakhov, D Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Cirkovic, P Devetak, D Milosevic, J Rekovic, V Maestre, JA Calvo, E Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS de Troconiz, JF Missiroli, M Moran, D Cuevas, J Menendez, JF Caballero, IG Fernandez, JRG Cortezon, EP Cruz, SS Andres, IS Garcia, JMV Cabrillo, IJ Calderon, A De Saa, JRC Curras, E Fernandez, M Garcia-Ferrero, J Gomez, G Virto, AL Marco, J Rivero, CM Matorras, F Gomez, JP Rodrigo, T Ruiz-Jimeno, A Scodellaro, L Trevisani, N Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Bloch, P Bocci, A Bonato, A Botta, C Camporesi, T Castello, R Cepeda, M Cerminara, G D'Alfonso, M d'Enterria, D Dabrowski, A Daponte, V David, A De Gruttola, M De Guio, F De Roeck, A Di Marco, E Dobson, M Dordevic, M Dorney, B du Pree, T Duggan, D Dunser, M Dupont, N Elliott-Peisert, A Fartoukh, S Franzoni, G Fulcher, J Funk, W Gigi, D Gill, K Girone, M Glege, F Gulhan, D Gundacker, S Guthoff, M Hammer, J Harris, P Hegeman, J Innocente, V Janot, P Kirschenmann, H Knunz, V Kornmayer, A Kortelainen, MJ Kousouris, K Krammer, M Lecoq, P Lourenco, C Lucchini, MT Malgeri, L Mannelli, M Martelli, A Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Neugebauer, H Orfanelli, S Orsini, L Pape, L Perez, E Peruzzi, M Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Racz, A Reis, T Rolandi, G Rovere, M Ruan, M Sakulin, H Sauvan, JB Schafer, C Schwick, C Seidel, M Sharma, A Silva, P Simon, M Sphicas, P Steggemann, J Stoye, M Takahashi, Y Tosi, M Treille, D Triossi, A Tsirou, A Veckalns, V Veres, GI Wardle, N Wohri, HK Zagozdzinska, A Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Rohe, T Bachmair, F Bani, L Bianchini, L Casal, B Dissertori, G Dittmar, M Donega, M Eller, P Grab, C Heidegger, C Hits, D Hoss, J Kasieczka, G Lecomte, P Lustermann, W Mangano, B Marionneau, M del Arbol, PMR Masciovecchio, M Meinhard, MT Meister, D Micheli, F Musella, P Nessi-Tedaldi, F Pandolfi, F Pata, J Pauss, F Perrin, G Perrozzi, L Quittnat, M Rossini, M Schonenberger, M Starodumov, A Takahashi, M Tavolaro, VR Theofilatos, K Wallny, R Aarrestad, TK Amsler, C Caminada, L Canelli, MF Chiochia, V De Cosa, A Galloni, C Hinzmann, A Hreus, T Kilminster, B Lange, C Ngadiuba, J Pinna, D Rauco, G Robmann, P Salerno, D Yang, Y Candelise, V Doan, TH Jain, S Khurana, R Konyushikhin, M Kuo, CM Lin, W Lu, YJ Pozdnyakov, A Yu, SS Kumar, A Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Fiori, F Hou, WS Hsiung, Y Liu, YF Lu, RS Moya, MM Paganis, E Psallidas, A Tsai, JF Tzeng, YM Asavapibhop, B Singh, G Srimanobhas, N Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Damarseckin, S Demiroglu, ZS Dozen, C Dumanoglu, I Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Kara, O Topaksu, AK Kiminsu, U Oglakci, M Onengut, G Ozdemir, K Tali, B Turkcapar, S Zorbakir, IS Zorbilmez, C Bilin, B Bilmis, S Isildak, B Karapinar, G Yalvac, M Zeyrek, M Gulmez, E Kaya, M Kaya, O Yetkin, EA Yetkin, T Cakir, A Cankocak, K Sen, S Grynyov, B Levchuk, L Sorokin, P Aggleton, R Ball, F Beck, L Brooke, JJ Burns, D Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Newbold, DM Paramesvaran, S Poll, A Sakuma, T El Nasr-Storey, SS Smith, D Smith, VJ Bell, KW Belyaev, A Brew, C Brown, RM Calligaris, L Cieri, D Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, H Thea, A Tomalin, IR Williams, T Baber, M Bainbridge, R Buchmuller, O Bundock, A Burton, D Casasso, S Citron, M Colling, D Corpe, L Dauncey, P Davies, G De Wit, A Della Negra, M Dunne, P Elwood, A Futyan, D Haddad, Y Hall, G Iles, G Lane, R Laner, C Lucas, R Lyons, L Magnan, AM Malik, S Mastrolorenzo, L Nash, J Nikitenko, A Pela, J Penning, B Pesaresi, M Raymond, DM Richards, A Rose, A Seez, C Tapper, A Uchida, K Acosta, MV Virdee, T Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Reid, ID Symonds, P Teodorescu, L Turner, M Borzou, A Call, K Dittmann, J Hatakeyama, K Liu, H Pastika, N Charaf, O Cooper, SI Henderson, C Rumerio, P Arcaro, D Avetisyan, A Bose, T Gastler, D Rankin, D Richardson, C Rohlf, J Sulak, L Zou, D Benelli, G Berry, E Cutts, D Garabedian, A Hakala, J Heintz, U Hogan, JM Jesus, O Laird, E Landsberg, G Mao, Z Narain, M Piperov, S Sagir, S Spencer, E Syarif, R Breedon, R Breto, G Burns, D Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Flores, C Funk, G Gardner, M Ko, W Lander, R Mclean, C Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Florent, A Hauser, J Ignatenko, M Saltzberg, D Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Jandir, P Kennedy, E Lacroix, F Long, OR Malberti, M Negrete, MO Paneva, MI Shrinivas, A Wei, H Wimpenny, S Yates, BR Branson, JG Cerati, GB Cittolin, S Derdzinski, M Gerosa, R Holzner, A Klein, D Krutelyov, V Letts, J Macneill, I Olivito, D Padhi, S Pieri, M Sani, M Sharma, V Simon, S Tadel, M Vartak, A Wasserbaech, S Welke, C Wood, J Wurthwein, F Yagil, A Della Porta, GZ Bhandari, R Bradmiller-Feld, J Campagnari, C Dishaw, A Dutta, V Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Gran, J Heller, R Incandela, J Mccoll, N Mullin, SD Ovcharova, A Richman, J Stuart, D Suarez, I West, C Yoo, J Anderson, D Apresyan, A Bendavid, J Bornheim, A Bunn, J Chen, Y Duarte, J Mott, A Newman, HB Pena, C Spiropulu, M Vlimant, JR Xie, S Zhu, RY Andrews, MB Azzolini, V Carlson, B Ferguson, T Paulini, M Russ, J Sun, M Vogel, H Vorobiev, I Cumalat, JP Ford, WT Jensen, F Johnson, A Krohn, M Mulholland, T Stenson, K Wagner, SR Alexander, J Chaves, J Chu, J Dittmer, S Mcdermott, K Mirman, N Kaufman, GN Patterson, JR Rinkevicius, A Ryd, A Skinnari, L Soffi, L Tan, SM Tao, Z Thom, J Tucker, J Wittich, P Zientek, M Winn, D Abdullin, S Albrow, M Apollinari, G Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Cremonesi, M Elvira, VD Fisk, I Freeman, J Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hare, D Harris, RM Hasegawa, S Hirschauer, J Hu, Z Jayatilaka, B Jindariani, S Johnson, M Joshi, U Klima, B Kreis, B Lammel, S Linacre, J Lincoln, D Lipton, R Liu, T De Sa, RL Lykken, J Maeshima, K Magini, N Marraffino, JM Maruyama, S Mason, D McBride, P Merkel, P Mrenna, S Nahn, S Newman-Holmes, C O'Dell, V Pedro, K Prokofyev, O Rakness, G Ristori, L Sexton-Kennedy, E Soha, A Spalding, WJ Spiegel, L Stoynev, S Strobbe, N Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vernieri, C Verzocchi, M Vidal, R Wang, M Weber, HA Whitbeck, A Acosta, D Avery, P Bortignon, P Bourilkov, D Brinkerhoff, A Carnes, A Carver, M Curry, D Das, S Field, RD Furic, IK Konigsberg, J Korytov, A Ma, P Matchev, K Mei, H Milenovic, P Mitselmakher, G Rank, D Shchutska, L Sperka, D Thomas, L Wang, J Wang, S Yelton, J Linn, S Markowitz, P Martinez, G Rodriguez, JL Ackert, A Adams, JR Adams, T Askew, A Bein, S Diamond, B Hagopian, S Hagopian, V Johnson, KF Khatiwada, A Prosper, H Santra, A Weinberg, M Baarmand, MM Bhopatkar, V Colafranceschi, S Hohlmann, M Noonan, D Roy, T Yumiceva, F Adams, MR Apanasevich, L Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Kurt, P O'Brien, C Gonzalez, IDS Turner, P Varelas, N Wang, H Wu, Z Zakaria, M Zhang, J Bilki, B Clarida, W Dilsiz, K Durgut, S Gandrajula, RP Haytmyradov, M Khristenko, V Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Snyder, C Tiras, E Wetzel, J Yi, K Anderson, I Blumenfeld, B Cocoros, A Eminizer, N Fehling, D Feng, L Gritsan, AV Maksimovic, P Osherson, M Roskes, J Sarica, U Swartz, M Xiao, M Xin, Y You, C Al-bataineh, A Baringer, P Bean, A Bowen, J Bruner, C Castle, J Kenny, RP Kropivnitskaya, A Majumder, D Mcbrayer, W Murray, M Sanders, S Stringer, R Takaki, JDT Wang, Q Ivanov, A Kaadze, K Khalil, S Makouski, M Maravin, Y Mohammadi, A Saini, LK Skhirtladze, N Toda, S Lange, D Rebassoo, F Wright, D Anelli, C Baden, A Baron, O Belloni, A Calvert, B Eno, SC Ferraioli, C Gomez, JA Hadley, NJ Jabeen, S Kellogg, RG Kolberg, T Kunkle, J Lu, Y Mignerey, AC Shin, YH Skuja, A Tonjes, MB Tonwar, SC Abercrombie, D Allen, B Apyan, A Barbieri, R Baty, A Bi, R Bierwagen, K Brandt, S Busza, W Cali, IA Demiragli, Z Di Matteo, L Ceballos, GG Goncharov, M Hsu, D Iiyama, Y Innocenti, GM Klute, M Kovalskyi, D Krajczar, K Lai, YS Lee, YJ Levin, A Luckey, PD Marini, AC Mcginn, C Mironov, C Narayanan, S Niu, X Paus, C Roland, C Roland, G Salfeld-Nebgen, J Stephans, GSF Sumorok, K Tatar, K Varma, M Velicanu, D Veverka, J Wang, J Wang, TW Wyslouch, B Yang, M Zhukova, V Benvenuti, AC Chatterjee, RM Evans, A Finkel, A Gude, A Hansen, P Kalafut, S Kao, SC Kubota, Y Lesko, Z Mans, J Nourbakhsh, S Ruckstuhl, N Rusack, R Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bartek, R Bloom, K Bose, S Claes, DR Dominguez, A Fangmeier, C Suarez, RG Kamalieddin, R Knowlton, D Kravchenko, I Rodrigues, AM Meier, F Monroy, J Siado, JE Snow, GR Stieger, B Alyari, M Dolen, J George, J Godshalk, A Harrington, C Iashvili, I Kaisen, J Kharchilava, A Kumar, A Parker, A Rappoccio, S Roozbahani, B Alverson, G Barberis, E Baumgartel, D Hortiangtham, A Massironi, A Morse, DM Nash, D Orimoto, T De Lima, RT Trocino, D Wang, RJ Wood, D Bhattacharya, S Hahn, KA Kubik, A Low, JF Mucia, N Odell, N Pollack, B Schmitt, MH Sung, K Trovato, M Velasco, M Dev, N Hildreth, M Anampa, KH Jessop, C Karmgard, DJ Kellams, N Lannon, K Marinelli, N Meng, F Mueller, C Musienko, Y Planer, M Reinsvold, A Ruchti, R Smith, G Taroni, S Valls, N Wayne, M Wolf, M Woodard, A Alimena, J Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Francis, B Hart, A Hill, C Hughes, R Ji, W Liu, B Luo, W Puigh, D Winer, BL Wulsin, HW Cooperstein, S Driga, O Elmer, P Hardenbrook, J Hebda, P Luo, J Marlow, D Medvedeva, T Mooney, M Olsen, J Palmer, C Piroue, P Stickland, D Tully, C Zuranski, A Malik, S Barker, A Barnes, VE Benedetti, D Folgueras, S Gutay, L Jha, MK Jones, M Jung, AW Jung, K Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Sun, J Svyatkovskiy, A Wang, F Xie, W Xu, L Parashar, N Stupak, J Adair, A Akgun, B Chen, Z Ecklund, KM Geurts, FJM Guilbaud, M Li, W Michlin, B Northup, M Padley, BP Redjimi, R Roberts, J Rorie, J Tu, Z Zabel, J Betchart, B Bodek, A de Barbaro, P Demina, R Duh, YT Ferbel, T Galanti, M Garcia-Bellido, A Han, J Hindrichs, O Khukhunaishvili, A Lo, KH Tan, P Verzetti, M Chou, JP Contreras-Campana, E Gershtein, Y Espinosa, TAG Halkiadakis, E Heindl, M Hidas, D Hughes, E Kaplan, S Elayavalli, RK Kyriacou, S Lath, A Nash, K Saka, H Salur, S Schnetzer, S Sheffield, D Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Foerster, M Heideman, J Riley, G Rose, K Spanier, S Thapa, K Bouhali, O Celik, A Dalchenko, M De Mattia, M Delgado, A Dildick, S Eusebi, R Gilmore, J Huang, T Juska, E Kamon, T Mueller, R Pakhotin, Y Patel, R Perloff, A Pernie, L Rathjens, D Rose, A Safonov, A Tatarinov, A Ulmer, KA Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kunori, S Lamichhane, K Lee, SW Libeiro, T Undleeb, S Volobouev, I Wang, Z Delannoy, AG Greene, S Gurrola, A Janjam, R Johns, W Maguire, C Melo, A Ni, H Sheldon, P Tuo, S Velkovska, J Xu, Q Arenton, MW Barria, P Cox, B Goodell, J Hirosky, R Ledovskoy, A Li, H Neu, C Sinthuprasith, T Sun, X Wang, Y Wolfe, E Xia, F Clarke, C Harr, R Karchin, PE Lamichhane, P Sturdy, J Belknap, DA Dasu, S Dodd, L Duric, S Gomber, B Grothe, M Herndon, M Herve, A Klabbers, P Lanaro, A Levine, A Long, K Loveless, R Ojalvo, I Perry, T Pierro, GA Polese, G Ruggles, T Savin, A Sharma, A Smith, N Smith, WH Taylor, D Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Asilar, E. Bergauer, T. Brandstetter, J. Brondolin, E. Dragicevic, M. Eroe, J. Flechl, M. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Koenig, A. Kraetschmer, I. Liko, D. Matsushita, T. Mikulec, I. Rabady, D. Rad, N. Rahbaran, B. Rohringer, H. Schieck, J. Strauss, J. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. De Wolf, E. A. Janssen, X. Lauwers, J. De Klundert, M. Van Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Abu Zeid, S. Blekman, F. D'Hondt, J. Daci, N. De Bruyn, I. Deroover, K. Heracleous, N. Lowette, S. Moortgat, S. Moreels, L. Olbrechts, A. Python, Q. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Parijs, I. Brun, H. Caillol, C. Clerbaux, B. De Lentdecker, G. Delannoy, H. Fasanella, G. Favart, L. Goldouzian, R. Grebenyuk, A. Karapostoli, G. Lenzi, T. Leonard, A. Luetic, J. Maerschalk, T. Marinov, A. Randle-conde, A. Seva, T. Vander Velde, C. Vanlaer, P. Yonamine, R. Zenoni, F. Zhang, F. Cimmino, A. Cornelis, T. Dobur, D. Fagot, A. Garcia, G. Gul, M. Poyraz, D. Salva, S. Schofbeck, R. Tytgat, M. Van Driessche, W. Yazgan, E. Zaganidis, N. Bakhshiansohi, H. Beluffi, C. Bondu, O. Brochet, S. Bruno, G. Caudron, A. Ceard, L. De Visscher, S. Delaere, C. Delcourt, M. Forthomme, L. Francois, B. Giammanco, A. Jafari, A. Jez, P. Komm, M. Lemaitre, V. Magitteri, A. Mertens, A. Musich, M. Nuttens, C. Piotrzkowski, K. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Wertz, S. Beliy, N. Alda Junior, W. L. Alves, F. L. Alves, G. A. Brito, L. Hensel, C. Moraes, A. Pol, M. E. Rebello Teles, P. Belchior Batista Das Chagas, E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. Da Silveira, G. G. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Huertas Guativa, L. M. Malbouisson, H. Matos Figueiredo, D. Mora Herrera, C. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Ahuja, S. Bernardes, C. A. Dogra, S. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Moon, C. S. Novaes, S. F. Padula, Sandra S. Romero Abad, D. Ruiz Vargas, J. C. Aleksandrov, A. Hadjiiska, R. Iaydjiev, P. Rodozov, M. Stoykova, S. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Litov, L. Pavlov, B. Petkov, P. Fang, W. Ahmad, M. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Chen, Y. Cheng, T. Jiang, C. H. Leggat, D. Liu, Z. Romeo, F. Shaheen, S. M. Spiezia, A. Tao, J. Wang, C. Wang, Z. Zhang, H. Zhao, J. Ban, Y. Li, Q. Liu, S. Mao, Y. Qian, S. J. Wang, D. Xu, Z. Avila, C. Cabrera, A. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gonzalez Hernandez, C. F. Ruiz Alvarez, J. D. Sanabria, J. C. Godinovic, N. Lelas, D. Puljak, I. Cipriano, P. M. Ribeiro Antunovic, Z. Kovac, M. Brigljevic, V. Ferencek, D. Kadija, K. Micanovic, S. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Rykaczewski, H. Finger, M. Finger, M., Jr. Carrera Jarrin, E. Elgammal, S. Mohamed, A. Mohammed, Y. Salama, E. Calpas, B. Kadastik, M. Murumaa, M. Perrini, L. Raidal, M. Tiko, A. Veelken, C. Eerola, P. Pekkanen, J. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Peltola, T. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Ghosh, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Kucher, I. Locci, E. Machet, M. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Zghiche, A. Abdulsalam, A. Antropov, I. Baffioni, S. Beaudette, F. Busson, P. Cadamuro, L. Chapon, E. Charlot, C. Davignon, O. de Cassagnac, R. Granier Jo, M. Lisniak, S. Mine, P. Naranjo, I. N. Nguyen, M. Ochando, C. Ortona, G. Paganini, P. Pigard, P. Regnard, S. Salerno, R. Sirois, Y. Strebler, T. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Buttignol, M. Chabert, E. C. Chanon, N. Collard, C. Conte, E. Coubez, X. Fontaine, J. -C. Gele, D. Goerlach, U. Le Bihan, A. -C. Merlin, J. A. Skovpen, K. Van Hove, P. Gadrat, S. Beauceron, S. Bernet, C. Boudoul, G. Bouvier, E. Montoya, C. A. Carrillo Chierici, R. Contardo, D. Courbon, B. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Grenier, G. Ille, B. Lagarde, F. Laktineh, I. B. Lethuillier, M. Mirabito, L. Pequegnot, A. L. Perries, S. Popov, A. Sabes, D. Sordini, V. Donckt, M. Vander Verdier, P. Viret, S. Toriashvili, T. Tsamalaidze, Z. Autermann, C. Beranek, S. Feld, L. Heister, A. Kiesel, M. K. Klein, K. Lipinski, M. Ostapchuk, A. Preuten, M. Raupach, F. Schael, S. Schomakers, C. Schulte, J. F. Schulz, J. Verlage, T. Weber, H. Zhukov, V. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Endres, M. Erdmann, M. Erdweg, S. Esch, T. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Knutzen, S. Merschmeyer, M. Meyer, A. Millet, P. Mukherjee, S. Olschewski, M. Padeken, K. Papacz, P. Pook, T. Radziej, M. Reithler, H. Rieger, M. Scheuch, F. Sonnenschein, L. Teyssier, D. Thuer, S. Cherepanov, V. Erdogan, Y. Fluegge, G. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuensken, A. Lingemann, J. Nehrkorn, A. Nowack, A. Nugent, I. M. Pistone, C. Pooth, O. Stahl, A. Martin, M. Aldaya Asawatangtrakuldee, C. Asin, I. Beernaert, K. Behnke, O. Behrens, U. Bin Anuar, A. A. Borras, K. Campbell, A. Connor, P. Contreras-Campana, C. Costanza, F. Pardos, C. Diez Dolinska, G. Eckerlin, G. Eckstein, D. Gallo, E. Garcia, J. Garay Geiser, A. Gizhko, A. Luyando, J. M. Grados Gunnellini, P. Harb, A. Hauk, J. Hempel, M. Jung, H. Kalogeropoulos, A. Karacheban, O. Kasemann, M. Keaveney, J. Kieseler, J. Kleinwort, C. Korol, I. Lange, W. Lelek, A. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Mankel, R. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Ntomari, E. Pitzl, D. Placakyte, R. Raspereza, A. Roland, B. Sahin, M. O. Saxena, P. Schoerner-Sadenius, T. Seitz, C. Spannagel, S. Stefaniuk, N. Trippkewitz, K. D. Van Onsem, G. P. Walsh, R. Wissing, C. Blobel, V. Vignali, M. Centis Draeger, A. R. Dreyer, T. Garutti, E. Goebel, K. Gonzalez, D. Haller, J. Hoffmann, M. Junkes, A. Klanner, R. Kogler, R. Kovalchuk, N. Lapsien, T. Lenz, T. Marchesini, I. Marconi, D. Meyer, M. Niedziela, M. Nowatschin, D. Ott, J. Pantaleo, F. Peiffer, T. Perieanu, A. Poehlsen, J. Sander, C. Scharf, C. Schleper, P. Schmidt, A. Schumann, S. Schwandt, J. Stadie, H. Steinbrueck, G. Stober, F. M. Stoever, M. Tholen, H. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Vormwald, B. Barth, C. Baus, C. Berger, J. Butz, E. Chwalek, T. Colombo, F. De Boer, W. Dierlamm, A. Fink, S. Friese, R. Giffels, M. Gilbert, A. Haitz, D. Hartmann, F. Heindl, S. M. Husemann, U. Katkov, I. Pardo, P. Lobelle Maier, B. Mildner, H. Mozer, M. U. Mueller, T. Mueller, Th. Plagge, M. Quast, G. Rabbertz, K. Roecker, S. Roscher, F. Schroeder, M. Sieber, G. Simonis, H. J. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weber, M. Weiler, T. Williamson, S. Woehrmann, C. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Topsis-Giotis, I. Agapitos, A. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Tziaferi, E. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Loukas, N. Manthos, N. Papadopoulos, I. Paradas, E. Filipovic, N. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Makovec, A. Molnar, J. Szillasi, Z. Bartok, M. Raics, P. Trocsanyi, Z. L. Ujvari, B. Bahinipati, S. Choudhury, S. Mal, P. Mandal, K. Nayak, A. Sahoo, D. K. Sahoo, N. Swain, S. K. Bansal, S. Beri, S. B. Bhatnagar, V. Chawla, R. Bhawandeep, U. Kalsi, A. K. Kaur, A. Kaur, M. Kumar, R. Mehta, A. Mittal, M. Singh, J. B. Walia, G. Kumar, Ashok Bhardwaj, A. Choudhary, B. C. Garg, R. B. Keshri, S. Kumar, A. Malhotra, S. Naimuddin, M. Nishu, N. Ranjan, K. Sharma, R. Sharma, V. Bhattacharya, R. Bhattacharya, S. Chatterjee, K. Dey, S. Dutt, S. Dutta, S. Ghosh, S. Majumdar, N. Modak, A. Mondal, K. Mukhopadhyay, S. Nandan, S. Purohit, A. Roy, A. Roy, D. Chowdhury, S. Roy Sarkar, S. Sharan, M. Thakur, S. Behera, P. K. Chudasama, R. Dutta, D. Jha, V. Kumar, V. Mohanty, A. K. Netrakanti, P. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Dugad, S. Kole, G. Mahakud, B. Mitra, S. Mohanty, G. B. Sur, N. Sutar, B. Banerjee, S. Bhowmik, S. Dewanjee, R. K. Ganguly, S. Guchait, M. Jain, Sa. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Parida, B. Sarkar, T. Wickramage, N. Chauhan, S. Dube, S. Kapoor, A. Kothekar, K. Rane, A. Sharma, S. Behnamian, H. Chenarani, S. Tadavani, E. Eskandari Etesami, S. M. Fahim, A. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Calabria, C. Caputo, C. Colaleo, A. Creanza, D. Cristella, L. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Miniello, G. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Ranieri, A. Selvaggi, G. Silvestris, L. Venditti, R. Verwilligen, P. Abbiendi, G. Battilana, C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Chhibra, S. S. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Albergo, S. Chiorboli, M. Costa, S. Di Mattia, A. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Viliani, L. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Primavera, F. Calvelli, V. Ferro, F. Lo Vetere, M. Monge, M. R. Robutti, E. Tosi, S. Brianza, L. Dinardo, M. E. Fiorendi, S. Gennai, S. Ghezzi, A. Govoni, P. Malvezzi, S. Manzoni, R. A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Pigazzini, S. Ragazzi, S. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. De Nardo, G. Di Guida, S. Esposito, M. Fabozzi, F. Iorio, A. O. M. Lanza, G. Lista, L. Meola, S. Paolucci, P. Sciacca, C. Thyssen, F. Azzi, P. Bacchetta, N. Benato, L. Bisello, D. Boletti, A. Carlin, R. De Oliveira, A. Carvalho Antunes Checchia, P. Dall'Osso, M. Manzano, P. De Castro Dorigo, T. Dosselli, U. Gasparini, F. Gasparini, U. Gozzelino, A. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Zanetti, M. Zotto, P. Zucchetta, A. Zumerle, G. Braghieri, A. Magnani, A. Montagna, P. Ratti, S. P. Re, V. Riccardi, C. Salvini, P. Vai, I. Vitulo, P. Solestizi, L. Alunni Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Leonardi, R. Mantovani, G. Menichelli, M. Saha, A. Santocchia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fedi, G. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Savoy-Navarro, A. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Cipriani, M. D'imperio, G. Del Re, D. Diemoz, M. Gelli, S. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Organtini, G. Paramatti, R. Preiato, F. Rahatlou, S. Rovelli, C. Santanastasio, F. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bartosik, N. Bellan, R. Biino, C. Cartiglia, N. Cenna, F. Costa, M. Covarelli, R. Degano, A. Demaria, N. Finco, L. Kiani, B. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Monteil, E. Obertino, M. M. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Ravera, F. Romero, A. Ruspa, M. Sacchi, R. Shchelina, K. Sola, V. Solano, A. Staiano, A. Traczyk, P. Belforte, S. Casarsa, M. Cossutti, F. Della Ricca, G. La Licata, C. Schizzi, A. Zanetti, A. Kim, D. H. Kim, G. N. Kim, M. S. Lee, S. Lee, S. W. Oh, Y. D. Sekmen, S. Son, D. C. Yang, Y. C. Lee, A. Cifuentes, J. A. Brochero Kim, T. J. Cho, S. Choi, S. Go, Y. Gyun, D. Ha, S. Hong, B. Jo, Y. Kim, Y. Lee, B. Lee, K. Lee, K. S. Lee, S. Lim, J. Park, S. K. Roh, Y. Almond, J. Kim, J. Oh, S. B. Seo, S. H. Yang, U. K. Yoo, H. D. Yu, G. B. Choi, M. Kim, H. Kim, H. Kim, J. H. Lee, J. S. H. Park, I. C. Ryu, G. Ryu, M. S. Choi, Y. Goh, J. Hwang, C. Lee, J. Yu, I. Dudenas, V. Juodagalvis, A. Vaitkus, J. Ahmed, I. Ibrahim, Z. A. Komaragiri, J. R. Ali, M. A. B. Md Idris, F. Mohamad Abdullah, W. A. T. Wan Yusli, M. N. Zolkapli, Z. Castilla-Valdez, H. De la Cruz-Burelo, E. la Cruz, I. Heredia-De Hernandez-Almada, A. Lopez-Fernandez, R. Mejia Guisao, J. Sanchez-Hernandez, A. Carrillo Moreno, S. Oropeza Barrera, C. Vazquez Valencia, F. Carpinteyro, S. Pedraza, I. Salazar Ibarguen, H. A. Uribe Estrada, C. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khan, W. A. Shah, M. A. Shoaib, M. Waqas, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Bunkowski, K. Byszuk, A. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Walczak, M. Bargassa, P. Da Cruz E Silva, C. Beirao Di Francesco, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Hollar, J. Leonardo, N. Lloret Iglesias, L. Nemallapudi, M. V. Rodrigues Antunes, J. Seixas, J. Toldaiev, O. Vadruccio, D. Varela, J. Vischia, P. Golunov, A. Golutvin, I. Gorbounov, N. Kamenev, A. Karjavin, V. Korenkov, V. Lanev, A. Malakhov, A. Matveev, V. Mitsyn, V. V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Shulha, S. Skatchkov, N. Smirnov, V. Tikhonenko, E. Zarubin, A. Chtchipounov, L. Golovtsov, V. Ivanov, Y. Kim, V. Kuznetsova, E. Murzin, V. Oreshkin, V. Sulimov, V. Vorobyev, A. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Karneyeu, A. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Pozdnyakov, I. Safronov, G. Spiridonov, A. Toms, M. Vlasov, E. Zhokin, A. Chadeeva, M. Danilov, M. Markin, O. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Rusakov, S. V. Terkulov, A. Baskakov, A. Belyaev, A. Boos, E. Bunichev, V. Dubinin, M. Dudko, L. Klyukhin, V. Kodolova, O. Korneeva, N. Lokhtin, I. Miagkov, I. Obraztsov, S. Perfilov, M. Savrin, V. Volkov, P. Vorotnikov, G. Azhgirey, I. Bayshev, I. Bitioukov, S. Elumakhov, D. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Cirkovic, P. Devetak, D. Milosevic, J. Rekovic, V. Alcaraz Maestre, J. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De la Cruz, B. Peris, A. Delgado Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. de Troconiz, J. F. Missiroli, M. Moran, D. Cuevas, J. Fernandez Menendez, J. Gonzalez Caballero, I. Gonzalez Fernandez, J. R. Palencia Cortezon, E. Sanchez Cruz, S. Suarez Andres, I. Vizan Garcia, J. M. Cabrillo, I. J. Calderon, A. Castineiras De Saa, J. R. Curras, E. Fernandez, M. Garcia-Ferrero, J. Gomez, G. Lopez Virto, A. Marco, J. Martinez Rivero, C. Matorras, F. Piedra Gomez, J. Rodrigo, T. Ruiz-Jimeno, A. Scodellaro, L. Trevisani, N. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Bloch, P. Bocci, A. Bonato, A. Botta, C. Camporesi, T. Castello, R. Cepeda, M. Cerminara, G. D'Alfonso, M. d'Enterria, D. Dabrowski, A. Daponte, V. David, A. De Gruttola, M. De Guio, F. De Roeck, A. Di Marco, E. Dobson, M. Dordevic, M. Dorney, B. du Pree, T. Duggan, D. Dunser, M. Dupont, N. Elliott-Peisert, A. Fartoukh, S. Franzoni, G. Fulcher, J. Funk, W. Gigi, D. Gill, K. Girone, M. Glege, F. Gulhan, D. Gundacker, S. Guthoff, M. Hammer, J. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kirschenmann, H. Knunz, V. Kornmayer, A. Kortelainen, M. J. Kousouris, K. Krammer, M. Lecoq, P. Lourenco, C. Lucchini, M. T. Malgeri, L. Mannelli, M. Martelli, A. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Neugebauer, H. Orfanelli, S. Orsini, L. Pape, L. Perez, E. Peruzzi, M. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Racz, A. Reis, T. Rolandi, G. Rovere, M. Ruan, M. Sakulin, H. Sauvan, J. B. Schafer, C. Schwick, C. Seidel, M. Sharma, A. Silva, P. Simon, M. Sphicas, P. Steggemann, J. Stoye, M. Takahashi, Y. Tosi, M. Treille, D. Triossi, A. Tsirou, A. Veckalns, V. Veres, G. I. Wardle, N. Wohri, H. K. Zagozdzinska, A. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Rohe, T. Bachmair, F. Bani, L. Bianchini, L. Casal, B. Dissertori, G. Dittmar, M. Donega, M. Eller, P. Grab, C. Heidegger, C. Hits, D. Hoss, J. Kasieczka, G. Lecomte, P. Lustermann, W. Mangano, B. Marionneau, M. del Arbol, P. Martinez Ruiz Masciovecchio, M. Meinhard, M. T. Meister, D. Micheli, F. Musella, P. Nessi-Tedaldi, F. Pandolfi, F. Pata, J. Pauss, F. Perrin, G. Perrozzi, L. Quittnat, M. Rossini, M. Schonenberger, M. Starodumov, A. Takahashi, M. Tavolaro, V. R. Theofilatos, K. Wallny, R. Aarrestad, T. K. Amsler, C. Caminada, L. Canelli, M. F. Chiochia, V. De Cosa, A. Galloni, C. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Ngadiuba, J. Pinna, D. Rauco, G. Robmann, P. Salerno, D. Yang, Y. Candelise, V. Doan, T. H. Jain, Sh. Khurana, R. Konyushikhin, M. Kuo, C. M. Lin, W. Lu, Y. J. Pozdnyakov, A. Yu, S. S. Kumar, Arun Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Fiori, F. Hou, W. -S. Hsiung, Y. Liu, Y. F. Lu, R. -S. Moya, M. Minano Paganis, E. Psallidas, A. Tsai, J. f. Tzeng, Y. M. Asavapibhop, B. Singh, G. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Damarseckin, S. Demiroglu, Z. S. Dozen, C. Dumanoglu, I. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Kara, O. Topaksu, A. Kayis Kiminsu, U. Oglakci, M. Onengut, G. Ozdemir, K. Tali, B. Turkcapar, S. Zorbakir, I. S. Zorbilmez, C. Bilin, B. Bilmis, S. Isildak, B. Karapinar, G. Yalvac, M. Zeyrek, M. Gulmez, E. Kaya, M. Kaya, O. Yetkin, E. A. Yetkin, T. Cakir, A. Cankocak, K. Sen, S. Grynyov, B. Levchuk, L. Sorokin, P. Aggleton, R. Ball, F. Beck, L. Brooke, J. J. Burns, D. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Newbold, D. M. Paramesvaran, S. Poll, A. Sakuma, T. El Nasr-Storey, S. Seif Smith, D. Smith, V. J. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Calligaris, L. Cieri, D. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, H. Thea, A. Tomalin, I. R. Williams, T. Baber, M. Bainbridge, R. Buchmuller, O. Bundock, A. Burton, D. Casasso, S. Citron, M. Colling, D. Corpe, L. Dauncey, P. Davies, G. De Wit, A. Della Negra, M. Dunne, P. Elwood, A. Futyan, D. Haddad, Y. Hall, G. Iles, G. Lane, R. Laner, C. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Mastrolorenzo, L. Nash, J. Nikitenko, A. Pela, J. Penning, B. Pesaresi, M. Raymond, D. M. Richards, A. Rose, A. Seez, C. Tapper, A. Uchida, K. Acosta, M. Vazquez Virdee, T. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Borzou, A. Call, K. Dittmann, J. Hatakeyama, K. Liu, H. Pastika, N. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Arcaro, D. Avetisyan, A. Bose, T. Gastler, D. Rankin, D. Richardson, C. Rohlf, J. Sulak, L. Zou, D. Benelli, G. Berry, E. Cutts, D. Garabedian, A. Hakala, J. Heintz, U. Hogan, J. M. Jesus, O. Laird, E. Landsberg, G. Mao, Z. Narain, M. Piperov, S. Sagir, S. Spencer, E. Syarif, R. Breedon, R. Breto, G. Burns, D. Sanchez, M. Calderon De la Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Flores, C. Funk, G. Gardner, M. Ko, W. Lander, R. Mclean, C. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Florent, A. Hauser, J. Ignatenko, M. Saltzberg, D. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Malberti, M. Negrete, M. Olmedo Paneva, M. I. Shrinivas, A. Wei, H. Wimpenny, S. Yates, B. R. Branson, J. G. Cerati, G. B. Cittolin, S. Derdzinski, M. Gerosa, R. Holzner, A. Klein, D. Krutelyov, V. Letts, J. Macneill, I. Olivito, D. Padhi, S. Pieri, M. Sani, M. Sharma, V. Simon, S. Tadel, M. Vartak, A. Wasserbaech, S. Welke, C. Wood, J. Wurthwein, F. Yagil, A. Della Porta, G. Zevi Bhandari, R. Bradmiller-Feld, J. Campagnari, C. Dishaw, A. Dutta, V. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Gran, J. Heller, R. Incandela, J. Mccoll, N. Mullin, S. D. Ovcharova, A. Richman, J. Stuart, D. Suarez, I. West, C. Yoo, J. Anderson, D. Apresyan, A. Bendavid, J. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Mott, A. Newman, H. B. Pena, C. Spiropulu, M. Vlimant, J. R. Xie, S. Zhu, R. Y. Andrews, M. B. Azzolini, V. Carlson, B. Ferguson, T. Paulini, M. Russ, J. Sun, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Jensen, F. Johnson, A. Krohn, M. Mulholland, T. Stenson, K. Wagner, S. R. Alexander, J. Chaves, J. Chu, J. Dittmer, S. Mcdermott, K. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Rinkevicius, A. Ryd, A. Skinnari, L. Soffi, L. Tan, S. M. Tao, Z. Thom, J. Tucker, J. Wittich, P. Zientek, M. Winn, D. Abdullin, S. Albrow, M. Apollinari, G. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Cremonesi, M. Elvira, V. D. Fisk, I. Freeman, J. Gottschalk, E. Gray, L. Green, D. Grunendahl, S. Gutsche, O. Hare, D. Harris, R. M. Hasegawa, S. Hirschauer, J. Hu, Z. Jayatilaka, B. Jindariani, S. Johnson, M. Joshi, U. Klima, B. Kreis, B. Lammel, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. De Sa, R. Lopes Lykken, J. Maeshima, K. Magini, N. Marraffino, J. M. Maruyama, S. Mason, D. McBride, P. Merkel, P. Mrenna, S. Nahn, S. Newman-Holmes, C. O'Dell, V. Pedro, K. Prokofyev, O. Rakness, G. Ristori, L. Sexton-Kennedy, E. Soha, A. Spalding, W. J. Spiegel, L. Stoynev, S. Strobbe, N. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vernieri, C. Verzocchi, M. Vidal, R. Wang, M. Weber, H. A. Whitbeck, A. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Brinkerhoff, A. Carnes, A. Carver, M. Curry, D. Das, S. Field, R. D. Furic, I. K. Konigsberg, J. Korytov, A. Ma, P. Matchev, K. Mei, H. Milenovic, P. Mitselmakher, G. Rank, D. Shchutska, L. Sperka, D. Thomas, L. Wang, J. Wang, S. Yelton, J. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Ackert, A. Adams, J. R. Adams, T. Askew, A. Bein, S. Diamond, B. Hagopian, S. Hagopian, V. Johnson, K. F. Khatiwada, A. Prosper, H. Santra, A. Weinberg, M. Baarmand, M. M. Bhopatkar, V. Colafranceschi, S. Hohlmann, M. Noonan, D. Roy, T. Yumiceva, F. Adams, M. R. Apanasevich, L. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Kurt, P. O'Brien, C. Gonzalez, I. D. Sandoval Turner, P. Varelas, N. Wang, H. Wu, Z. Zakaria, M. Zhang, J. Bilki, B. Clarida, W. Dilsiz, K. Durgut, S. Gandrajula, R. P. Haytmyradov, M. Khristenko, V. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Snyder, C. Tiras, E. Wetzel, J. Yi, K. Anderson, I. Blumenfeld, B. Cocoros, A. Eminizer, N. Fehling, D. Feng, L. Gritsan, A. V. Maksimovic, P. Osherson, M. Roskes, J. Sarica, U. Swartz, M. Xiao, M. Xin, Y. You, C. Al-bataineh, A. Baringer, P. Bean, A. Bowen, J. Bruner, C. Castle, J. Kenny, R. P., III Kropivnitskaya, A. Majumder, D. Mcbrayer, W. Murray, M. Sanders, S. Stringer, R. Takaki, J. D. Tapia Wang, Q. Ivanov, A. Kaadze, K. Khalil, S. Makouski, M. Maravin, Y. Mohammadi, A. Saini, L. K. Skhirtladze, N. Toda, S. Lange, D. Rebassoo, F. Wright, D. Anelli, C. Baden, A. Baron, O. Belloni, A. Calvert, B. Eno, S. C. Ferraioli, C. Gomez, J. A. Hadley, N. J. Jabeen, S. Kellogg, R. G. Kolberg, T. Kunkle, J. Lu, Y. Mignerey, A. C. Shin, Y. H. Skuja, A. Tonjes, M. B. Tonwar, S. C. Abercrombie, D. Allen, B. Apyan, A. Barbieri, R. Baty, A. Bi, R. Bierwagen, K. Brandt, S. Busza, W. Cali, I. A. Demiragli, Z. Di Matteo, L. Ceballos, G. Gomez Goncharov, M. Hsu, D. Iiyama, Y. Innocenti, G. M. Klute, M. Kovalskyi, D. Krajczar, K. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Marini, A. C. Mcginn, C. Mironov, C. Narayanan, S. Niu, X. Paus, C. Roland, C. Roland, G. Salfeld-Nebgen, J. Stephans, G. S. F. Sumorok, K. Tatar, K. Varma, M. Velicanu, D. Veverka, J. Wang, J. Wang, T. W. Wyslouch, B. Yang, M. Zhukova, V. Benvenuti, A. C. Chatterjee, R. M. Evans, A. Finkel, A. Gude, A. Hansen, P. Kalafut, S. Kao, S. C. Kubota, Y. Lesko, Z. Mans, J. Nourbakhsh, S. Ruckstuhl, N. Rusack, R. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bartek, R. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Fangmeier, C. Suarez, R. Gonzalez Kamalieddin, R. Knowlton, D. Kravchenko, I. Rodrigues, A. Malta Meier, F. Monroy, J. Siado, J. E. Snow, G. R. Stieger, B. Alyari, M. Dolen, J. George, J. Godshalk, A. Harrington, C. Iashvili, I. Kaisen, J. Kharchilava, A. Kumar, A. Parker, A. Rappoccio, S. Roozbahani, B. Alverson, G. Barberis, E. Baumgartel, D. Hortiangtham, A. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. De Lima, R. Teixeira Trocino, D. Wang, R. -J. Wood, D. Bhattacharya, S. Hahn, K. A. Kubik, A. Low, J. F. Mucia, N. Odell, N. Pollack, B. Schmitt, M. H. Sung, K. Trovato, M. Velasco, M. Dev, N. Hildreth, M. Anampa, K. Hurtado Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Marinelli, N. Meng, F. Mueller, C. Musienko, Y. Planer, M. Reinsvold, A. Ruchti, R. Smith, G. Taroni, S. Valls, N. Wayne, M. Wolf, M. Woodard, A. Alimena, J. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Francis, B. Hart, A. Hill, C. Hughes, R. Ji, W. Liu, B. Luo, W. Puigh, D. Winer, B. L. Wulsin, H. W. Cooperstein, S. Driga, O. Elmer, P. Hardenbrook, J. Hebda, P. Luo, J. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Palmer, C. Piroue, P. Stickland, D. Tully, C. Zuranski, A. Malik, S. Barker, A. Barnes, V. E. Benedetti, D. Folgueras, S. Gutay, L. Jha, M. K. Jones, M. Jung, A. W. Jung, K. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Sun, J. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Parashar, N. Stupak, J. Adair, A. Akgun, B. Chen, Z. Ecklund, K. M. Geurts, F. J. M. Guilbaud, M. Li, W. Michlin, B. Northup, M. Padley, B. P. Redjimi, R. Roberts, J. Rorie, J. Tu, Z. Zabel, J. Betchart, B. Bodek, A. de Barbaro, P. Demina, R. Duh, Y. T. Ferbel, T. Galanti, M. Garcia-Bellido, A. Han, J. Hindrichs, O. Khukhunaishvili, A. Lo, K. H. Tan, P. Verzetti, M. Chou, J. P. Contreras-Campana, E. Gershtein, Y. Espinosa, T. A. Gomez Halkiadakis, E. Heindl, M. Hidas, D. Hughes, E. Kaplan, S. Elayavalli, R. Kunnawalkam Kyriacou, S. Lath, A. Nash, K. Saka, H. Salur, S. Schnetzer, S. Sheffield, D. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Foerster, M. Heideman, J. Riley, G. Rose, K. Spanier, S. Thapa, K. Bouhali, O. Celik, A. Dalchenko, M. De Mattia, M. Delgado, A. Dildick, S. Eusebi, R. Gilmore, J. Huang, T. Juska, E. Kamon, T. Mueller, R. Pakhotin, Y. Patel, R. Perloff, A. Pernie, L. Rathjens, D. Rose, A. Safonov, A. Tatarinov, A. Ulmer, K. A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kunori, S. Lamichhane, K. Lee, S. W. Libeiro, T. Undleeb, S. Volobouev, I. Wang, Z. Delannoy, A. G. Greene, S. Gurrola, A. Janjam, R. Johns, W. Maguire, C. Melo, A. Ni, H. Sheldon, P. Tuo, S. Velkovska, J. Xu, Q. Arenton, M. W. Barria, P. Cox, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Neu, C. Sinthuprasith, T. Sun, X. Wang, Y. Wolfe, E. Xia, F. Clarke, C. Harr, R. Karchin, P. E. Lamichhane, P. Sturdy, J. Belknap, D. A. Dasu, S. Dodd, L. Duric, S. Gomber, B. Grothe, M. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Levine, A. Long, K. Loveless, R. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ruggles, T. Savin, A. Sharma, A. Smith, N. Smith, W. H. Taylor, D. Woods, N. CA CMS Collaboration TI Search for anomalous Wtb couplings and flavour-changing neutral currents in t-channel single top quark production in pp collisions at root s=7 and 8 TeV SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Flavour Changing Neutral Currents; Hadron-Hadron scattering (experiments); Top physics ID P(P)OVER-BAR COLLISIONS; STANDARD-MODEL; HIGGS; POLARIZATION; TEVATRON; EVENTS AB Single top quark events produced in the t channel are used to set limits on anomalous Wtb couplings and to search for top quark flavour-changing neutral current (FCNC) interactions. The data taken with the CMS detector at the LHC in proton-proton collisions at and 8 TeV correspond to integrated luminosities of 5.0 and 19.7 fb(-1), respectively. The analysis is performed using events with one muon and two or three jets. A Bayesian neural network technique is used to discriminate between the signal and backgrounds, which are observed to be consistent with the standard model prediction. The 95% confidence level (CL) exclusion limits on anomalous right-handed vector, and left- and right-handed tensor Wtb couplings are measured to be vertical bar f (V) (R) vertical bar < 0.16,aEuro,vertical bar f (T) (L) vertical bar < 0.057, and - 0.049 < f (T) (R) < 0.048, respectively. For the FCNC couplings kappa (tug) and kappa (tcg), the 95% CL upper limits on coupling strengths are vertical bar kappa (tug)vertical bar/I > < 4.1 x 10(- 3) TeV-1 and vertical bar kappa (tcg)vertical bar/Lambda < 1.8 x 10(- 2) TeV-1, where I > is the scale for new physics, and correspond to upper limits on the branching fractions of 2.0 x 10(-5) and 4.1 x 10(-4) for the decays t -> ug and t -> cg, respectively. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Eroe, J.; Flechl, M.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Koenig, A.; Kraetschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; De Klundert, M. Van; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.] Vrije Univ Brussel, Brussels, Belgium. [Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Leonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Fang, W.] Univ Libre Bruxelles, Brussels, Belgium. [Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Poyraz, D.; Salva, S.; Schofbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.] Univ Ghent, Ghent, Belgium. [Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; De Visscher, S.; Delaere, C.; Delcourt, M.; Forthomme, L.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Wertz, S.] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.] Univ Mons, Mons, Belgium. [Alda Junior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. [Ahuja, S.; Dogra, S.; Fernandez Perez Tomei, T. R.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Ruiz Vargas, J. C.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.; Romero Abad, D.; Ruiz Vargas, J. C.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, Sofia, Bulgaria. [Fang, W.] Beihang Univ, Beijing, Peoples R China. [Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.] Inst High Energy Phys, Beijing, Peoples R China. [Zhang, F.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing, Peoples R China. [Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gonzalez Hernandez, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Puljak, I.; Cipriano, P. M. Ribeiro] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Ferencek, D.; Kadija, K.; Micanovic, S.; Sudic, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Carrera Jarrin, E.] Univ San Francisco Quito, Quito, Ecuador. [Elgammal, S.; Mohamed, A.; Mohammed, Y.; Salama, E.] Egyptian Network High Energy Phys, Acad Sci Res & Technol Arab Republ Egypt, Cairo, Egypt. [Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.] NICPB, Tallinn, Estonia. [Eerola, P.; Pekkanen, J.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.] Univ Paris Saclay, IRFU, CEA, Gif Sur Yvette, France. [Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; de Cassagnac, R. Granier; Jo, M.; Lisniak, S.; Mine, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, Palaiseau, France. [Beluffi, C.; Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Le Bihan, A. -C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.] Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, Univ Haute Alsace Mulhouse, CNRS,IN2P3, Strasbourg, France. [Gadrat, S.] CNRS, IN2P3, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Montoya, C. A. Carrillo; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, Villeurbanne, France. [Toriashvili, T.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Tsamalaidze, Z.] Tbilisi State Univ, Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulte, J. F.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thuer, S.] Rhein Westfal TH Aachen, Phys Inst 3 A, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuensken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst 3 B, Aachen, Germany. [Chen, Y.; Martin, M. Aldaya; Asawatangtrakuldee, C.; Asin, I.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Gallo, E.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Luyando, J. M. Grados; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. O.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Van Onsem, G. P.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Gallo, E.; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Dreyer, T.; Garutti, E.; Goebel, K.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrueck, G.; Stober, F. M.; Stoever, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Pardo, P. Lobelle; Maier, B.; Mildner, H.; Mozer, M. U.; Mueller, T.; Mueller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Roecker, S.; Roscher, F.; Schroeder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Woehrmann, C.; Wolf, R.] Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys, Aghia Paraskevi, Greece. [Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, Ioannina, Greece. [Filipovic, N.; Vesztergombi, G.; Bartok, M.] Eotvos Lorand Univ, MTA ELTE Lendulet CMS Particle & Nucl Phys Grp, Budapest, Hungary. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Bartok, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.] Panjab Univ, Chandigarh, India. [Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.] Univ Delhi, Delhi, India. [Ghosh, S.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.; Thakur, S.] Saha Inst Nucl Phys, Kolkata, India. [Behera, P. K.] Indian Inst Technol, Madras, Tamil Nadu, India. [Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay, Maharashtra, India. [Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.] Tata Inst Fundamental Res A, Bombay, Maharashtra, India. [Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Parida, B.; Sarkar, T.; Wickramage, N.] Tata Inst Fundamental Res B, Bombay, Maharashtra, India. [Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.] Indian Inst Sci Educ & Res, Pune, Maharashtra, India. [Behnamian, H.; Chenarani, S.; Tadavani, E. Eskandari; Etesami, S. M.; Fahim, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin, Ireland. [Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Abbrescia, M.; Calabria, C.; Caputo, C.; Cristella, L.; De Palma, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.] Univ Bologna, Bologna, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.] Ist Nazl Fis Nucl, Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Viliani, L.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Calvelli, V.; Lo Vetere, M.; Monge, M. R.; Tosi, S.] Univ Genoa, Genoa, Italy. [Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, Milan, Italy. [Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Ghezzi, A.; Govoni, P.; Manzoni, R. A.; Marzocchi, B.; Paganoni, M.; Pigazzini, S.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [De Nardo, G.; Esposito, M.; Iorio, A. O. M.; Sciacca, C.; Thyssen, F.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; De Nardo, G.; Fabozzi, F.; Thyssen, F.] Univ Basilicata, Potenza, Italy. [De Nardo, G.; Meola, S.; Thyssen, F.; De Guio, F.] Univ G Marconi, Rome, Italy. [Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; De Oliveira, A. Carvalho Antunes; Checchia, P.; Dall'Osso, M.; Manzano, P. De Castro; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; De Oliveira, A. Carvalho Antunes; Dall'Osso, M.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Zanetti, M.] Univ Trento, Trento, Italy. [Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Magnani, A.; Montagna, P.; Ratti, S. P.; Riccardi, C.; Vai, I.; Vitulo, P.] Univ Pavia, Pavia, Italy. [Solestizi, L. Alunni; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.] Ist Nazl Fis Nucl, Sez Perugia, Perugia, Italy. [Solestizi, L. Alunni; Ciangottini, D.; Fano, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Santocchia, A.] Univ Perugia, Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Fedi, G.; Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Donato, S.; Fedi, G.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Cipriani, M.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Cipriani, M.; D'imperio, G.; Del Re, D.; Gelli, S.; Longo, E.; Margaroli, F.; Organtini, G.; Preiato, F.; Rahatlou, S.; Santanastasio, F.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Finco, L.; Kiani, B.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Sacchi, R.; Shchelina, K.; Solano, A.; Traczyk, P.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; La Licata, C.; Schizzi, A.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Della Ricca, G.; La Licata, C.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Kamon, T.] Kyungpook Natl Univ, Daegu, South Korea. [Lee, A.] Chonbuk Natl Univ, Jeonju, South Korea. [Cifuentes, J. A. Brochero; Kim, T. J.] Hanyang Univ, Seoul, South Korea. [Lee, S.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Park, S. K.; Roh, Y.; Kim, J.] Korea Univ, Seoul, South Korea. [Almond, J.; Kim, J.; Oh, S. B.; Seo, S. H.; Yang, U. K.; Yoo, H. D.; Yu, G. B.] Seoul Natl Univ, Seoul, South Korea. [Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Dudenas, V.; Juodagalvis, A.; Vaitkus, J.] Vilnius Univ, Vilnius, Lithuania. [Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Idris, F. Mohamad; Abdullah, W. A. T. Wan; Yusli, M. N.; Zolkapli, Z.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Castilla-Valdez, H.; De la Cruz-Burelo, E.; la Cruz, I. Heredia-De; Hernandez-Almada, A.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.] IPN, Ctr Invest & Estudios Avanzados, Mexico City, DF, Mexico. [Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland, New Zealand. [Butler, P. H.] Univ Canterbury, Christchurch, New Zealand. [Ahmad, M.; Ahmad, A.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Shah, M. A.; Shoaib, M.; Waqas, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Bargassa, P.; Da Cruz E Silva, C. Beirao; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Tsamalaidze, Z.; Golunov, A.; Golutvin, I.; Gorbounov, N.; Kamenev, A.; Karjavin, V.; Korenkov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Matveev, V.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow, Russia. [Matveev, V.; Chadeeva, M.; Danilov, M.; Markin, O.] Natl Res Nucl Univ, Moscow Engn Phys Inst, Moscow, Russia. [Chadeeva, M.; Danilov, M.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Terkulov, A.] PN Lebedev Phys Inst, Moscow, Russia. [Popov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Klyukhin, V.; Kodolova, O.; Korneeva, N.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Volkov, P.; Vorotnikov, G.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Peris, A. Delgado; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] CIEMAT, Madrid, Spain. [de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; Gonzalez Fernandez, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suarez Andres, I.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Cabrillo, I. J.; Calderon, A.; Castineiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, Santander, Spain. [Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dunser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knunz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lecoq, P.; Lourenco, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schafer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Wohri, H. K.; Zagozdzinska, A.; Zeuner, W. D.] CERN, European Org Nucl Res, Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Bani, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donega, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schonenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan. [Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W. -S.; Hsiung, Y.; Liu, Y. F.; Lu, R. -S.; Moya, M. Minano; Paganis, E.; Psallidas, A.; Tsai, J. f.; Tzeng, Y. M.] Natl Taiwan Univ, Taipei, Taiwan. [Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kara, O.; Topaksu, A. Kayis; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, Ankara, Turkey. [Gulmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.] Bogazici Univ, Istanbul, Turkey. [Cakir, A.; Cankocak, K.; Sen, S.] Istanbul Tech Univ, Istanbul, Turkey. [Grynyov, B.] Natl Acad Sci Ukraine, Inst Scintillat Mat, Kharkov, Ukraine. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Ctr Nat Sci, Kharkov, Ukraine. [Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; El Nasr-Storey, S. Seif; Smith, D.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Belyaev, A.; Newbold, D. M.; Bell, K. W.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, H.; Thea, A.; Tomalin, I. R.; Williams, T.] Rutherford Appleton Lab, Didcot, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge, Middx, England. [Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL 35487 USA. [Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.] Boston Univ, Boston, MA 02215 USA. [Benelli, G.; Berry, E.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Clarida, W.] Brown Univ, Providence, RI 02912 USA. [Chauhan, S.; Burns, D.; Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Negrete, M. Olmedo; Paneva, M. I.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Wurthwein, F.; Yagil, A.; Della Porta, G. Zevi] Univ Calif San Diego, La Jolla, CA 92093 USA. [Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Ovcharova, A.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Chen, Y.; Dubinin, M.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Andrews, M. B.; Azzolini, V.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.] Univ Colorado Boulder, Boulder, CO 80309 USA. [Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.] Cornell Univ, Ithaca, NY 14850 USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Banerjee, S.; Abdullin, S.; Albrow, M.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grunendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; De Sa, R. Lopes; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Kuznetsova, E.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.] Univ Florida, Gainesville, FL 32611 USA. [Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Gonzalez, I. D. Sandoval; Turner, P.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.] Univ Illinois, Chicago, IL 60607 USA. [Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA 52242 USA. [Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Al-bataineh, A.; Baringer, P.; Bean, A.; Bowen, J.; Bruner, C.; Castle, J.; Kenny, R. P., III; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Takaki, J. D. Tapia; Wang, Q.] Univ Kansas, Lawrence, KS 66045 USA. [Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.] Kansas State Univ, Manhattan, KS 66506 USA. [Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Wang, J.; Abercrombie, D.; Allen, B.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Ceballos, G. Gomez; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.] MIT, Cambridge, England. [Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN 55455 USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS 38677 USA. [Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Suarez, R. Gonzalez; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Rodrigues, A. Malta; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.] Univ Nebraska, Lincoln, NE 68588 USA. [Kumar, A.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.] SUNY Buffalo, Buffalo, NY 14228 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; De Lima, R. Teixeira; Trocino, D.; Wang, R. -J.; Wood, D.] Northeastern Univ, Boston, MA 02115 USA. [Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.] Northwestern Univ, Evanston, IL 60208 USA. [Dev, N.; Hildreth, M.; Anampa, K. Hurtado; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Alimena, J.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Luo, J.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroue, P.; Stickland, D.; Tully, C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Malik, S.] Univ Puerto Rico, Mayaguez, PR USA. [Savoy-Navarro, A.; Barker, A.; Barnes, V. E.; Benedetti, D.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA 46323 USA. [Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. T.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.] Univ Rochester, Rochester, NY 14611 USA. [Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Espinosa, T. A. Gomez; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Elayavalli, R. Kunnawalkam; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.] Univ Tennessee, Knoxville, TN 37996 USA. [Rose, A.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Pernie, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX 77843 USA. [Wang, Z.; Lee, S. W.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Libeiro, T.; Undleeb, S.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA. [Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.] Univ Virginia, Charlottesville, VA 22903 USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI 48202 USA. [Sharma, A.; Belknap, D. A.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA. [Fruehwirth, R.; Jeitler, M.; Schieck, J.; Wulz, C. -E.; Krammer, M.] Vienna Univ Technol, Vienna, Austria. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, Brazil. [Elgammal, S.; Salama, E.] British Univ Egypt, Cairo, Egypt. [Mohamed, A.] Zewail City Sci & Technol, Zewail, Egypt. [Mohammed, Y.] Fayoum Univ, Al Fayyum, Egypt. [Salama, E.] Ain Shams Univ, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Hempel, M.; Karacheban, O.; Lohmann, W.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Choudhury, S.] Indian Inst Sci Educ & Res, Bhopal, India. [Nayak, A.] Inst Phys, Bhubaneswar, Orissa, India. [Bhowmik, S.; Maity, M.; Sarkar, T.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Chenarani, S.; Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Univ Tehran, Dept Engn Sci, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.] Univ Siena, Siena, Italy. [Ali, M. A. B. Md] Int Islamic Univ Malaysia, Kuala Lumpur, Malaysia. [Idris, F. Mohamad] Agensi Nuklear Malaysia, MOSTI, Kajang, Malaysia. [la Cruz, I. Heredia-De] Consejo Nacl Ciencia & Technol, Mexico City, DF, Mexico. [Byszuk, A.; Zagozdzinska, A.] Warsaw Univ Technol, Inst Elect Syst, Warsaw, Poland. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Orfanelli, S.] Natl Tech Univ Athens, Athens, Greece. [Rolandi, G.] Scuola Normale, Pisa, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Veckalns, V.] Riga Tech Univ, Riga, Latvia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Kangal, E. E.] Mersin Univ, Mersin, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Ozdemir, K.] Piri Reis Univ, Istanbul, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Yetkin, E. A.] Istanbul Bilgi Univ, Istanbul, Turkey. [Yetkin, T.] Yildiz Tech Univ, Istanbul, Turkey. [Sen, S.] Hacettepe Univ, Ankara, Turkey. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Acosta, M. Vazquez] Inst Astrofis Canarias, San Cristobal la Laguna, Spain. [Wasserbaech, S.] Utah Valley Univ, Orem, UT 84058 USA. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Bilki, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Bouhali, O.] Texas A&M Univ Qatar, Doha, Qatar. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Lokhtin, Igor/D-7004-2012; Della Ricca, Giuseppe/B-6826-2013; Konecki, Marcin/G-4164-2015 OI Della Ricca, Giuseppe/0000-0003-2831-6982; Konecki, Marcin/0000-0001-9482-4841 FU Austrian Federal Ministry of Science, Research and Economy; Austrian Science Fund; Belgian Fonds de la Recherche Scientifique; Brazilian Funding Agency CNPq; Brazilian Funding Agency CAPES; Brazilian Funding Agency FAPERJ; Brazilian Funding Agency FAPESP; Fonds voor Wetenschappelijk Onderzoek; Bulgarian Ministry of Education and Science; CERN; Chinese Academy of Sciences, Ministry of Science and Technology; National Natural Science Foundation of China; Colombian Funding Agency (COLCIENCIAS); Croatian Ministry of Science, Education and Sport; Croatian Science Foundation; Research Promotion Foundation, Cyprus; Secretariat for Higher Education, Science, Technology and Innovation, Ecuador; Ministry of Education and Research, Estonian Research Council, Estonia [IUT23-4, IUT23-6]; European Regional Development Fund, Estonia; Academy of Finland, Finnish Ministry of Education and Culture; Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France; Bundesministerium fur Bildung und Forschung, Germany; Deutsche Forschungsgemeinschaft, Germany; Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; General Secretariat for Research and Technology, Greece; National Scientific Research Foundation, Hungary; National Innovation Office, Hungary; Department of Atomic Energy, India; Institute for Studies in Theoretical Physics and Mathematics, Iran; Science Foundation, Ireland; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Science, ICT and Future Planning, Republic of Korea; National Research Foundation (NRF), Republic of Korea; Lithuanian Academy of Sciences; Ministry of Education, (Malaysia); BUAP; CINVESTAV; CONACYT; LNS; SEP; UASLP-FAI; Ministry of Business, Innovation and Employment, New Zealand; Pakistan Atomic Energy Commission; Ministry of Science and Higher Education, Poland; National Science Centre, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; Ministry of Education and Science of the Russian Federation; Federal Agency of Atomic Energy of the Russian Federation; Russian Academy of Sciences; Russian Foundation for Basic Research; Ministry of Education, Science and Technological Development of Serbia; Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Spain; Programa Consolider-Ingenio, Spain; ETH Board; ETH Zurich; PSI; SNF; UniZH; Canton Zurich; SER; Ministry of Science and Technology, Taipei; Thailand Center of Excellence in Physics; Institute for the Promotion of Teaching Science and Technology of Thailand; Special Task Force for Activating Research; National Science and Technology Development Agency of Thailand; Scientific and Technical Research Council of Turkey; Turkish Atomic Energy Authority; National Academy of Sciences of Ukraine, Ukraine; State Fund for Fundamental Researches, Ukraine; Science and Technology Facilities Council, U.K.; US Department of Energy; US National Science Foundation; Marie-Curie programme (European Union); European Research Council (European Union); EPLANET (European Union); Leventis Foundation; A.P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Council of Science and Industrial Research, India; HOMING PLUS programme of the Foundation for Polish Science; European Union; Regional Development Fund; Mobility Plus programme of the Ministry of Science and Higher Education; National Science Center (Poland) [Harmonia 2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202, 2014/13/B/ST2/02543, 2014/15/B/ST2/03998]; Thalis programme - EU-ESF; Greek NSRF; National Priorities Research Program by Qatar National Research Fund; Programa Clarin-COFUND del Principado de Asturias; Rachadapisek Sompot Fund for Postdoctoral Fellowship (Thailand); Chulalongkorn University (Thailand); Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); Welch Foundation [C-1845]; Department of Science and Technology, India; University of Malaya (Malaysia); Sonata-bis [2012/07/E/ST2/01406]; Aristeia programme - EU-ESF; Helsinki Institute of Physics; Commissariat a l'Energie Atomique et aux Energies Alternatives / CEA, France FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses.; Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Secretariat for Higher Education, Science, Technology and Innovation, Ecuador; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT23-6 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat a l'Energie Atomique et aux Energies Alternatives / CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, U.K.; the US Department of Energy, and the US National Science Foundation.; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202, 2014/13/B/ST2/02543 and 2014/15/B/ST2/03998, Sonata-bis 2012/07/E/ST2/01406; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarin-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845. NR 79 TC 0 Z9 0 U1 10 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB 7 PY 2017 IS 2 AR 028 DI 10.1007/JHEP02(2017)028 PG 45 WC Physics, Particles & Fields SC Physics GA EL6RO UT WOS:000394750000001 ER PT J AU Mathews, TP Carter, MD Johnson, D Isenberg, SL Graham, LA Thomas, JD Johnson, RC AF Mathews, Thomas P. Carter, Melissa D. Johnson, Darryl Isenberg, Samantha L. Graham, Leigh Ann Thomas, Jerry D. Johnson, Rudolph C. TI High-Confidence Qualitative Identification of Organophosphorus Nerve Agent Adducts to Human Butyrylcholinesterase SO ANALYTICAL CHEMISTRY LA English DT Article ID TANDEM MASS-SPECTROMETRY; IMMUNOMAGNETIC-UHPLC-MS/MS; CHEMICAL WARFARE AGENTS; HUMAN-SERUM; RETROSPECTIVE DETECTION; EXPOSURE; CHOLINESTERASE; SARIN; ACETYLCHOLINESTERASE; PHOSPHONYLATION AB In this study, a data-dependent, high-resolution tandem mass spectrometry (ddHRMS/MS) method capable of detecting all organophosphorus nerve agent (OPNA) adducts to human butyrylcholinesterase (BChE) was developed. After an exposure event, immunoprecipitation from blood with a BChE-specific antibody and digestion with pepsin produces a nine amino acid peptide containing the OPNA adduct. Signature product ions of this peptic BChE nonapeptide (FGES*AGAAS) offer a route to broadly screen for OPNA exposure. Taking this approach on an HRMS instrument identifies biomarkers, including unknowns, with high mass accuracy. Using a set of pooled human sera exposed to OPNAs as quality control (QC) materials, the developed method successfully identified precursor ions with <1 ppm and tied them to signature product ions with <5 ppm deviation from their chemical formulas. This high mass accuracy data from precursor and product ions, collected over 23 independent immunoprecipitation preparations, established method operating limits. QC data and experiments with 14 synthetic reference peptides indicated that reliable qualitative identification of biomarkers was possible for analytes >15 ng/mL. The developed method was applied to a convenience set of 96 unexposed serum samples and a blinded set of 80 samples treated with OPNAs. OPNA biomarkers were not observed in convenience set samples and no false positive or negative identifications were observed in blinded samples. All biomarkers in the blinded serum set >15 ng/mL were correctly identified. For the first time, this study reports a ddHRIVIS/MS method capable of complementing existing quantitative methodologies and suitable for identifying exposure to unknown organophosphorus agents. C1 [Mathews, Thomas P.; Graham, Leigh Ann] Battelle Ctr Dis Control & Prevent, Atlanta, GA 30341 USA. [Carter, Melissa D.; Isenberg, Samantha L.; Thomas, Jerry D.; Johnson, Rudolph C.] Ctr Dis Control & Prevent, Natl Ctr Environm Hlth, Div Sci Lab, Atlanta, GA 30341 USA. [Johnson, Darryl] Ctr Dis Control & Prevent, Oak Ridge Inst Sci & Educ, Atlanta, GA 30341 USA. RP Carter, MD (reprint author), Ctr Dis Control & Prevent, Natl Ctr Environm Hlth, Div Sci Lab, Atlanta, GA 30341 USA. EM melissa.carter@cdc.hhs.gov FU Defense Threat Reduction Agency, Office of Public Health Preparedness and Response at the Centers for Disease Control; Oak Ridge Institute for Science Education FX This work was supported by the Defense Threat Reduction Agency, Office of Public Health Preparedness and Response at the Centers for Disease Control, and the Oak Ridge Institute for Science Education. The authors would like to thank Ms. Chariety Sapp for dispensing individual serum for convenience set analysis and distribution of blinded samples. NR 36 TC 0 Z9 0 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD FEB 7 PY 2017 VL 89 IS 3 BP 1955 EP 1964 DI 10.1021/acs.analchem.6b04441 PG 10 WC Chemistry, Analytical SC Chemistry GA EK2DQ UT WOS:000393738300076 PM 28208252 ER PT J AU Ibrahim, YM Hamid, AM Cox, JT Garimella, SVB Smith, RD AF Ibrahim, Yehia M. Hamid, Ahmed M. Cox, Jonathan T. Garimella, Sandilya V. B. Smith, Richard D. TI Ion Elevators and Escalators in Multilevel Structures for Lossless Ion Manipulations SO ANALYTICAL CHEMISTRY LA English DT Article ID MOBILITY SEPARATIONS; TRAVELING-WAVES; MASS-SPECTROMETRY; FUNNEL TRAP; POPULATIONS; MODULE; SLIM AB We describe two approaches based upon ion "elevator" and "escalator" components that allow moving ions to different levels in structures for lossless ion manipulations (SLIM). Guided by ion motion simulations, we designed elevator and escalator components based upon ion current measurements providing essentially lossless transmission in multilevel designs. The ion elevator design allowed ions to efficiently bridge a 4 mm gap between levels. The component was integrated in a SLIM and coupled to a QTOF mass spectrometer using an ion funnel interface to evaluate the m/z range transmitted as compared to transmission within a level (e.g., in a linear section). The analysis of singly charged ions of m/z 600-2700 produced similar mass spectra for both elevator and straight (linear motion) components. In the ion escalator design, traveling waves (TW) were utilized to transport ions efficiently between two SLIM levels. Ion current measurements and ion mobility (IM) spectrometry analysis illustrated that ions can be transported between TW-SLIM levels with no significant loss of either ions or IM resolution. These developments provide a path for the development of multilevel designs providing, e.g., much longer IM path lengths, more compact designs, and the implementation of much more complex SLIM devices in which, e.g., different levels may operate at different temperatures or with different gases. C1 [Ibrahim, Yehia M.; Hamid, Ahmed M.; Cox, Jonathan T.; Garimella, Sandilya V. B.; Smith, Richard D.] Pacific Northwest Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific Northwest Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM rds@pnnl.gov RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Garimella, Sandilya Venkata Bhaskara/0000-0001-6649-9842; Ibrahim, Yehia/0000-0001-6085-193X FU Laboratory Directed Research and Development (LDRD) program at the Pacific Northwest National Laboratory, National Institutes of Health (NIH) NIGMS Proteomics Research Resource [P41 GM103493]; Department of Energy Office of Biological and Environmental Research Genome Sciences Program under the Pan-Omics Project; DOE [DE-AC05-76RL0 1830] FX Portions of this research were supported by the Laboratory Directed Research and Development (LDRD) program at the Pacific Northwest National Laboratory, National Institutes of Health (NIH) NIGMS Proteomics Research Resource under Grant P41 GM103493 and by the Department of Energy Office of Biological and Environmental Research Genome Sciences Program under the Pan-Omics Project. Work was performed in the Environmental Molecular Sciences Laboratory (EMSL), a DOE national scientific user facility at the Pacific Northwest National Laboratory (PNNL) in Richland WA. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RL0 1830. NR 22 TC 0 Z9 0 U1 7 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD FEB 7 PY 2017 VL 89 IS 3 BP 1972 EP 1977 DI 10.1021/acs.analchem.6b04500 PG 6 WC Chemistry, Analytical SC Chemistry GA EK2DQ UT WOS:000393738300078 PM 28208272 ER PT J AU Daly, P van Munster, JM Blythe, MJ Ibbett, R Kokolski, M Gaddipati, S Lindquist, E Singan, VR Barry, KW Lipzen, A Ngan, CY Petzold, CJ Chan, LJG Pullan, ST Delmas, S Waldron, PR Grigoriev, IV Tucker, GA Simmons, BA Archer, DB AF Daly, Paul van Munster, Jolanda M. Blythe, Martin J. Ibbett, Roger Kokolski, Matt Gaddipati, Sanyasi Lindquist, Erika Singan, Vasanth R. Barry, Kerrie W. Lipzen, Anna Ngan, Chew Yee Petzold, Christopher J. Chan, Leanne Jade G. Pullan, Steven T. Delmas, Stephane Waldron, Paul R. Grigoriev, Igor V. Tucker, Gregory A. Simmons, Blake A. Archer, David B. TI Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Aspergillus niger; Lignocellulose; Ionic liquid and hydrothermal pretreatments; Straw; Transcriptomic responses; CAZy; Hemicellulose; RNA-seq; Targeted proteomics ID TRICHODERMA-REESEI; NEUROSPORA-CRASSA; GENE-EXPRESSION; LIGNOCELLULOSIC BIOMASS; SUGARCANE BAGASSE; XYLAN DEGRADATION; SYSTEMS-ANALYSIS; ENZYMES; CLONING; LIGNIN AB Background: The capacity of fungi, such as Aspergillus niger, to degrade lignocellulose is harnessed in biotechnology to generate biofuels and high-value compounds from renewable feedstocks. Most feedstocks are currently pretreated to increase enzymatic digestibility: improving our understanding of the transcriptomic responses of fungi to pretreated lignocellulosic substrates could help to improve the mix of activities and reduce the production costs of commercial lignocellulose saccharifying cocktails. Results: We investigated the responses of A. niger to untreated, ionic liquid and hydrothermally pretreated wheat straw over a 5-day time course using RNA-seq and targeted proteomics. The ionic liquid pretreatment altered the cellulose crystallinity while retaining more of the hemicellulosic sugars than the hydrothermal pretreatment. Ionic liquid pretreatment of straw led to a dynamic induction and repression of genes, which was correlated with the higher levels of pentose sugars saccharified from the ionic liquid-pretreated straw. Hydrothermal pretreatment of straw led to reduced levels of transcripts of genes encoding carbohydrate-active enzymes as well as the derived proteins and enzyme activities. Both pretreatments abolished the expression of a large set of genes encoding pectinolytic enzymes. These reduced levels could be explained by the removal of parts of the lignocellulose by the hydrothermal pretreatment. The time course also facilitated identification of temporally limited gene induction patterns. Conclusions: The presented transcriptomic and biochemical datasets demonstrate that pretreatments caused modifications of the lignocellulose, to both specific structural features as well as the organisation of the overall lignocellulosic structure, that determined A. niger transcript levels. The experimental setup allowed reliable detection of substrate-specific gene expression patterns as well as hitherto non-expressed genes. Our data suggest beneficial effects of using untreated and IL-pretreated straw, but not HT-pretreated straw, as feedstock for CAZyme production. C1 [Daly, Paul; van Munster, Jolanda M.; Kokolski, Matt; Pullan, Steven T.; Delmas, Stephane; Archer, David B.] Univ Nottingham, Sch Life Sci, Univ Pk, Nottingham NG7 2RD, England. [Blythe, Martin J.] Univ Nottingham, Fac Med & Hlth Sci, Queens Med Ctr, Deep Seq, Nottingham NG7 2UH, England. [Ibbett, Roger; Gaddipati, Sanyasi; Waldron, Paul R.; Tucker, Gregory A.] Univ Nottingham, Sch Biosci, Sutton Bonington Campus, Loughborough LE12 5RD, Leics, England. [Lindquist, Erika; Singan, Vasanth R.; Barry, Kerrie W.; Lipzen, Anna; Ngan, Chew Yee; Grigoriev, Igor V.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Petzold, Christopher J.; Chan, Leanne Jade G.; Simmons, Blake A.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Daly, Paul] Univ Utrecht, Fungal Physiol, CBS KNAW Fungal Biodivers Ctr, Uppsalalaan 8, NL-3584 CT Utrecht, Netherlands. [van Munster, Jolanda M.] Univ Manchester, Chem Biol, Manchester Inst Biotechnol, 131 Princess St, Manchester M1 7DN, Lancs, England. [Pullan, Steven T.] Publ Hlth England, TB Programme, Microbiol Serv, Salisbury, Wilts, England. [Delmas, Stephane] Univ Paris 06, CNRS UMR7238, UPMC, Sorbonne Univ, 15 Rue Ecole Med, F-75270 Paris, France. RP Archer, DB (reprint author), Univ Nottingham, Sch Life Sci, Univ Pk, Nottingham NG7 2RD, England. EM David.Archer@nottingham.ac.uk FU Biotechnology and Biological Sciences Research Council (BBSRC) [BB/G01616X/1, BB/K01434X/1]; U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Office of Science of the U. S. Department of Energy [DE-AC02-05CH11231] FX We gratefully acknowledge the support from the Biotechnology and Biological Sciences Research Council (BBSRC) (Grant refs. BB/G01616X/1 and BB/K01434X/1). This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy. The work conducted by the U. S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, was supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 70 TC 0 Z9 0 U1 5 U2 5 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD FEB 7 PY 2017 VL 10 AR 35 DI 10.1186/s13068-017-0700-9 PG 19 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA EK3RN UT WOS:000393843800001 PM 28184248 ER PT J AU Breunig, HM Jin, L Robinson, A Scown, CD AF Breunig, Hanna M. Jin, Ling Robinson, Alastair Scown, Corinne D. TI Bioenergy Potential from Food Waste in California SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID GREENHOUSE-GAS EMISSIONS; UNITED-STATES; METHANE YIELD; CO-DIGESTION; PERFORMANCE; MANAGEMENT AB Food waste makes up approximately 15% of municipal solid waste generated in the United States, and 95% of food waste is ultimately landfilled. Its bioavailable carbon and nutrient content makes it a major contributor to landfill methane emissions, but also presents an important opportunity for energy recovery. This paper presents the first detailed analysis of monthly food waste generation in California at a county level, and its potential contribution to the state's energy production. Scenarios that rely on excess capacity at existing anaerobic digester (AD) and solid biomass combustion facilities, and alternatives that allow for new facility construction, are developed and modeled. Potential monthly electricity generation from the conversion of gross food waste using a combination of AD and combustion varies from 420 to 700 MW, averaging 530 MW. At least 66% of gross high moisture solids and 23% of gross low moisture solids can be treated using existing county infrastructure, and this fraction increases to 99% of high moisture solids and 55% of low moisture solids if waste can be shipped anywhere within the state. Biogas flaring practices at AD facilities can reduce potential energy production by 10 to 40%. C1 [Breunig, Hanna M.; Jin, Ling; Robinson, Alastair; Scown, Corinne D.] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA. [Scown, Corinne D.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. RP Breunig, HM (reprint author), Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA. EM hannabreunig@lbl.gov FU California Energy Commission [EPC-14-030]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX The research for this paper was financially supported by the California Energy Commission under agreement number EPC-14-030. We thank S. Sherman, G. Kester, E. Bariani, K. Piscopo, N. Carr, H. Youngs, T. Pray, and P. Sethi for their insight and assistance gathering data. This work was also part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 57 TC 0 Z9 0 U1 11 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 7 PY 2017 VL 51 IS 3 BP 1120 EP 1128 DI 10.1021/acs.est.6b04591 PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA EK2DU UT WOS:000393738700016 PM 28072520 ER PT J AU Gaston, CJ Pratt, KA Suski, KJ May, NW Gill, TE Prather, KA AF Gaston, Cassandra J. Pratt, Kerri A. Suski, Kaitlyn J. May, Nathaniel W. Gill, Thomas E. Prather, Kimberly A. TI Laboratory Studies of the Cloud Droplet Activation Properties and Corresponding Chemistry of Saline Playa Dust SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID OWENS DRY LAKE; CONDENSATION NUCLEI ACTIVITY; MINERAL DUST; AEROSOL-PARTICLES; MASS-SPECTROMETER; CCN ACTIVATION; WATER-UPTAKE; NITRIC-ACID; CALIFORNIA; PRECIPITATION AB Playas emit large quantities of dust that can facilitate the activation of cloud droplets. Despite the potential importance of playa dusts for cloud formation, most climate models assume that all dust is nonhygroscopic; however, measurements are needed to clarify the role of dusts in aerosol-cloud interactions. Here, we report measurements of CCN activation from playa dusts and parameterize these results in terms of both kappa-Kohler theory and adsorption activation theory for inclusion in atmospheric models. kappa ranged from 0.002 +/- 0.001 to 0.818 +/- 0.094, whereas Frankel-Halsey-Hill (FHH) adsorption parameters of A(FHH) = 2.20 +/- 0.60 and B-FHH = 1.24 +/- 0.14 described the water uptake properties of the dusts. Measurements made using aerosol time-of flight mass spectrometry (ATOFMS) revealed the presence of halite, sodium sulfates, and sodium carbonates that were strongly correlated with kappa underscoring the role that mineralogy, including salts, plays in water uptake by dust. Predictions of kappa made using bulk chemical techniques generally showed good agreement with measured values. However, several samples were poorly predicted suggesting that chemical heterogeneities as a function of size or chemically distinct particle surfaces can determine the hygroscopicity of playa dusts. Our results further demonstrate the importance of dust in aerosol-cloud interactions. C1 [Gaston, Cassandra J.; Prather, Kimberly A.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Gaston, Cassandra J.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Dept Atmospher Sci, Miami, FL 33149 USA. [Pratt, Kerri A.; Suski, Kaitlyn J.; Prather, Kimberly A.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Pratt, Kerri A.; May, Nathaniel W.] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. [Gill, Thomas E.] Univ Texas El Paso, Environm Sci & Engn Program, El Paso, TX 79968 USA. [Gill, Thomas E.] Univ Texas El Paso, Dept Geol Sci, El Paso, TX 79968 USA. [Suski, Kaitlyn J.] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. RP Prather, KA (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA.; Prather, KA (reprint author), Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. EM kprather@ucsd.edu RI Pratt, Kerri/F-8025-2010; OI Pratt, Kerri/0000-0003-4707-2290; Gill, Thomas E/0000-0001-9011-4105 FU National Science Foundation [ATM-0650659, ATM-0625526]; National Oceanic and Atmospheric Administration, Educational Partnership Program, US Department of Commerce [NA11SEC4810003, NA16SEC4810006]; USDOTSPTC [DTRT13-G-UTC36]; University of Michigan College of Literature, Science, and the Arts and Department of Chemistry FX Wes Thompson (Bio-West) is thanked for samples from the Great Salt Lake region and Adriana Perez (University of Texas El Paso) for the Salt Flat Basin sample. Ryan Sullivan (University of California, San Diego, now Carnegie Mellon University) is acknowledged for the Black Rock Desert sample and for discussions. Greg Roberts (University of California, San Diego) is acknowledged for use of a miniature CCN counter. K.A.P., and K.A.P. acknowledge the National Science Foundation for support of ICE-L laboratory studies (ATM-0650659 and ATM-0625526) and for a graduate research fellowship for K.A.P. T.E.G acknowledges support by the National Oceanic and Atmospheric Administration, Educational Partnership Program, US Department of Commerce, under Agreement Numbers #NA11SEC4810003 and #NA16SEC4810006. T.E.G. also acknowledges USDOTSPTC Contract DTRT13-G-UTC36. K.A.P. and N.W.M. acknowledge support from the University of Michigan College of Literature, Science, and the Arts and Department of Chemistry. We thank the anonymous reviewers for their helpful comments and suggestions. NR 74 TC 0 Z9 0 U1 5 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 7 PY 2017 VL 51 IS 3 BP 1348 EP 1356 DI 10.1021/acs.est.6b04487 PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA EK2DU UT WOS:000393738700041 PM 28005339 ER PT J AU Liu, YY Xu, F Liu, CX AF Liu, Yuanyuan Xu, Fen Liu, Chongxuan TI Coupled Hydro-Biogeochemical Processes Controlling Cr Reductive Immobilization in Columbia River Hyporheic Zone SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ORGANIC-CARBON; CHROMIUM(VI) REDUCTION; HEXAVALENT CHROMIUM; BACTERIAL REDUCTION; CHROMATE REDUCTION; TRANSIENT STORAGE; BATCH EXPERIMENTS; SURFACE-WATER; STREAM; GROUNDWATER AB An experiment and modeling study was conducted to investigate coupled hydro-biogeochemical processes controlling reductive immobilization of groundwater Cr in the hyporheic zone (HZ) at the U.S. Department of Energy's Hanford Site, where dynamic surface water groundwater exchange occurs on a daily basis. Experiments were performed to calibrate kinetic models, and the calibrated models were incorporated into a multicomponent reactive transport model to simulate Cr redox transformation and immobilization under field hydrological conditions. The results revealed that the rates of Cr(VI) reduction, Cr(III) accumulation, and Cr(VI) release to the river are mostly affected by dynamic sediment redox conditions represented by Fe(II) reactivity, which is controlled by its cyclic interaction with O-2 carried by river water, microbial activities, and the supply and bioavailability of organic carbon (OC) that is present in the HZ and/or carried by transport. In addition, the HZ geophysical properties including hydraulic conductivity and the thickness of the top alluvial layer have a significant influence on Cr reactive transport and immobilization by controlling residence times for reactions and the supply rates of O-2, Cr, and OC into the HZ. The results provide important insights into the dynamic redox environments in the HZ that can reductively immobilize contaminants. C1 [Liu, Yuanyuan; Xu, Fen; Liu, Chongxuan] Pacific Northwest Natl Lab, Richland, WA 99354 USA. [Xu, Fen] China Univ Geosci, Sch Environm Studies, Wuhan 430074, Peoples R China. [Liu, Chongxuan] Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China. RP Liu, CX (reprint author), Pacific Northwest Natl Lab, Richland, WA 99354 USA.; Liu, CX (reprint author), Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China. EM liucx@sustc.edu.cn RI Liu, Chongxuan/C-5580-2009 FU U.S. Department of Energy, Office of Science, Biological and Environmental Research (BER), Subsurface Biogeochemical Research (SBR) Program through Pacific Northwest National Laboratory (PNNL) SBR Science Focus Area (SFA) Research Project; Research Funds from the National Natural Science Foundation of China [41572228, 41521001, 41502233]; China Postdoctoral Science Foundation [2015M582305] FX This research is supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research (BER), as part of the Subsurface Biogeochemical Research (SBR) Program through Pacific Northwest National Laboratory (PNNL) SBR Science Focus Area (SFA) Research Project. F. Xu and C. Liu also acknowledge support from Research Funds from the National Natural Science Foundation of China (41572228, 41521001, and 41502233) and China Postdoctoral Science Foundation (2015M582305). NR 80 TC 0 Z9 0 U1 6 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 7 PY 2017 VL 51 IS 3 BP 1508 EP 1517 DI 10.1021/acs.est.6b05099 PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA EK2DU UT WOS:000393738700058 PM 27996242 ER PT J AU Newton, S McMahen, R Stoeckel, JA Chislock, M Lindstrom, A Strynar, M AF Newton, Seth McMahen, Rebecca Stoeckel, James A. Chislock, Michael Lindstrom, Andrew Strynar, Mark TI Novel Polyfluorinated Compounds Identified Using High Resolution Mass Spectrometry Downstream of Manufacturing Facilities near Decatur, Alabama SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID PERFLUOROALKYL SUBSTANCES; MADRID STATEMENT; WATER; ACIDS; DISCOVERY; ALCOHOLS; SURFACE; SLUDGE; SOILS; CHAIN AB Concern over persistence, bioaccumulation, and toxicity has led to international regulation and phaseouts of certain perfluorinated compounds and little is known about their replacement products. High resolution mass spectrometry was used to investigate the occurrence and identity of replacement fluorinated compounds in surface water and sediment of the Tennessee River near Decatur, Alabama. Analysis of legacy Per-and polyfluoroalkyl substances (PFASs) revealed a marked increase in concentrations downstream of manufacturing facilities, with the most abundant compounds being perfluorooctanesulfonate (PFOS), perfluorobutanesulfonate (PFBS), and perfluorooctanoic acid (PFOA) as high as 220 ng L-1, 160 ng L-1, and 120 ng L-1, respectively. A series of nine polyfluorinated carboxylic acids was discovered, each differing by CF2CH2. These acids are likely products or byproducts of a manufacturing process that uses 1,1-difluoroethene, which is registered to a manufacturing facility in the area. Two other predominant compounds discovered have structures consistent with perfluorobutanesulfonate and perfluoroheptanoic acid but have a single hydrogen substituted for a fluorine someplace in their structure. A polyfluoroalkyl sulfate with differing mixes of hydrogen and fluorine substitution was also observed. N-methyl perfluorobutane sulfonamidoacetic acid (MeFBSAA) was observed at high concentrations and several other perfluorobutane sulfonamido substances were present as well. C1 [Newton, Seth; Lindstrom, Andrew; Strynar, Mark] US EPA, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA. [McMahen, Rebecca] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Stoeckel, James A.; Chislock, Michael] Auburn Univ, Sch Fisheries Aquaculture & Aquat Sci, Auburn, AL 36849 USA. RP Strynar, M (reprint author), US EPA, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA. EM strynar.mark@epa.gov NR 39 TC 0 Z9 0 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 7 PY 2017 VL 51 IS 3 BP 1544 EP 1552 DI 10.1021/acs.est.6b05330 PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA EK2DU UT WOS:000393738700062 PM 28084732 ER PT J AU Bray, JM Lauchnor, EG Redden, GD Gerlach, R Fujita, Y Codd, SL Seymour, JD AF Bray, Joshua M. Lauchnor, Ellen G. Redden, George D. Gerlach, Robin Fujita, Yoshiko Codd, Sarah L. Seymour, Joseph D. TI Impact of Mineral Precipitation on Flow and Mixing in Porous Media Determined by Microcomputed Tomography and MRI SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CALCIUM-CARBONATE PRECIPITATION; REACTIVE TRANSPORT; PORE-SCALE; NMR; BIOMINERALIZATION; DISPERSION; SYSTEM AB Precipitation reactions influence transport properties in porous media and can be coupled to advective and dispersive transport. For example, in subsurface environments, mixing of groundwater and injected solutions can induce mineral supersaturation of constituents and drive precipitation reactions. Magnetic resonance imaging (MRI) and microcomputed tomography (mu-CT) were employed as complementary techniques to evaluate advection, dispersion, and formation of precipitate in a 3D porous media flow cell. Two parallel fluids were flowed concentrically through packed glass beads under two relative flow rates with Na2CO3 and CaCl2 in the inner and outer fluids, respectively. CaCO3 became supersaturated and formed a precipitate at the mixing interface between the two solutions. Spatial maps of changing local velocity fields and dispersion in the flow cell were generated from MRI, while high resolution mu-CT imaging visualized the precipitate formed in the porous media. Formation of a precipitate minimized dispersive and advective transport between the two fluids and the shape of the precipitation front was influenced by the relative flow rates. This work demonstrates that the combined use of MRI and mu-CT can be highly complementary in the study of reactive transport processes in porous media. C1 [Bray, Joshua M.; Lauchnor, Ellen G.; Redden, George D.; Gerlach, Robin; Seymour, Joseph D.] Montana State Univ, Chem & Biol Engn, 306 Cobleigh Hall, Bozeman, MT 59717 USA. [Bray, Joshua M.; Lauchnor, Ellen G.; Gerlach, Robin; Codd, Sarah L.; Seymour, Joseph D.] Montana State Univ, Ctr Biofilm Engn, Bozeman, MT 59717 USA. [Bray, Joshua M.; Codd, Sarah L.] Montana State Univ, Mech & Ind Engn, Bozeman, MT 59717 USA. [Fujita, Yoshiko] Idaho Natl Lab, Idaho Falls, ID 83402 USA. RP Seymour, JD (reprint author), Montana State Univ, Chem & Biol Engn, 306 Cobleigh Hall, Bozeman, MT 59717 USA.; Seymour, JD (reprint author), Montana State Univ, Ctr Biofilm Engn, Bozeman, MT 59717 USA. EM jseymour@coe.montana.edu RI Seymour, Joseph/E-8518-2012 OI Seymour, Joseph/0000-0003-4264-5416 FU U.S. Department of Energy (DOE), Office of Science, Subsurface Biogeochemical Research (SBR) Program [DE-AC07-05ID14517]; U.S. DOE, Office of Science, SBR Program [DE-FG-02-09ER64758]; National Science Foundation's Collaborations in Mathematical Geosciences (CMG) program [DMS-0934696]; U.S. NSF Major Research Instrumentation program; M.J. Murdock Charitable Trust; [DE-FE0004478]; [DE-FE0009599]; [DE-FG02-13ER86571] FX A portion of this research was conducted under DOE Idaho Operations Office Contract DE-AC07-05ID14517, with funding provided by the U.S. Department of Energy (DOE), Office of Science, Subsurface Biogeochemical Research (SBR) Program. J.D.S. and S.L.C. acknowledge the U.S. NSF Major Research Instrumentation program and the M.J. Murdock Charitable Trust for MR equipment and p-CT instrument funding. RG. and E.L. acknowledge the U.S. DOE, Office of Science, SBR Program, contract no. DE-FG-02-09ER64758; additional support was provided through grant numbers DE-FE0004478, DE-FE0009599, and DE-FG02-13ER86571 and by the National Science Foundation's Collaborations in Mathematical Geosciences (CMG) program award no. DMS-0934696. NR 36 TC 0 Z9 0 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 7 PY 2017 VL 51 IS 3 BP 1562 EP 1569 DI 10.1021/acs.est.6b02999 PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA EK2DU UT WOS:000393738700064 PM 28001377 ER PT J AU Maes, S Zhuang, WQ Rabaey, K Alvarez-Cohen, L Hennebel, T AF Maes, Synthia Zhuang, Wei-Qin Rabaey, Korneel Alvarez-Cohen, Lisa Hennebel, Tom TI Concomitant Leaching and Electrochemical Extraction of Rare Earth Elements from Monazite SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID LOW-CARBON TECHNOLOGIES; CRITICAL METALS; RECOVERY; CRITICALITY; NEODYMIUM; PLATINUM; REMOVAL; SYSTEMS; COBALT; ACIDS AB Rare earth elements (REEs) have become increasingly important in modern day technologies. Unfortunately, their recycling is currently limited, and the conventional technologies for their extraction and purification are exceedingly energy and chemical intensive. New sustainable technologies for REE extraction from both primary and secondary resources would be extremely beneficial. This research investigated a two-stage recovery strategy focused on the recovery of neodymium (Nd) and lanthanum (La) from monazite ore that combines microbially based leaching (using citric acid and spent fungal supernatant) with electrochemical extraction. Pretreating the phosphate-based monazite rock (via roasting) dramatically increased the microbial REE leaching efficiency. Batch experiments demonstrated the effective and continued leaching of REEs by recycled citric acid, with up to 392 mg of Nd L-1 and 281 mg of La L-1 leached during seven consecutive 24 h cycles. Neodymium was further extracted in the catholyte of a three-compartment electrochemical system, with up to 880 mg of Nd L-1 achieved within 4 days (at 40 A m(-2)). Meanwhile, the radioactive element thorium and counterions phosphate and citrate were separated effectively from the REEs in the anolyte, favoring REE extraction and allowing sustainable reuse of the leaching agent. This study shows a promising technology that is suitable for primary ores and can further be optimized for secondary resources. C1 [Maes, Synthia; Rabaey, Korneel; Hennebel, Tom] Univ Ghent, Ctr Microbial Ecol & Technol, Coupure Links 653, B-9000 Ghent, Belgium. [Zhuang, Wei-Qin] Univ Auckland, Dept Civil & Environm Engn, Auckland 1142, New Zealand. [Zhuang, Wei-Qin; Alvarez-Cohen, Lisa; Hennebel, Tom] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Alvarez-Cohen, Lisa] Lawrence Berkeley Natl Lab, Div Earth & Environm Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Hennebel, T (reprint author), Univ Ghent, Ctr Microbial Ecol & Technol, Coupure Links 653, B-9000 Ghent, Belgium.; Hennebel, T (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM Tom.Hennebel@ugent.be FU Agency for Innovation by Science and Technology (IWT Flanders); Scientific Research Committee of the Faculty of Bioscience Engineering of Ghent University; Research Foundation Flanders (FWO Flanders); Siemens, Inc FX S.M. was supported by a Ph.D. grant from the Agency for Innovation by Science and Technology (IWT Flanders) and by a scholarship for a scientific stay abroad from the Scientific Research Committee of the Faculty of Bioscience Engineering of Ghent University. T.H. was supported by a postdoctoral fellowship from the Research Foundation Flanders (FWO Flanders). L.A.-C.'s research was funded by Siemens, Inc. The authors thank Vanessa Brisson, Peng Wan, Baolin Deng, Negassi Hadgu, and Antonin Prevoteau for their contribution and assistance. The authors also thank Sam Van Nevel and Jeet Varia for critically reading the manuscript and Tim Lacoere for his contribution to the graphical designs. NR 36 TC 0 Z9 0 U1 9 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 7 PY 2017 VL 51 IS 3 BP 1654 EP 1661 DI 10.1021/acs.est.6b03675 PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA EK2DU UT WOS:000393738700075 PM 28056169 ER PT J AU Guttman, S Sapir, Z Ocko, BM Deutsch, M Sloutskin, E AF Guttman, Shani Sapir, Zvi Ocko, Benjamin M. Deutsch, Moshe Sloutskin, Eli TI Temperature-Tuned Faceting and Shape Changes in Liquid Alkane Droplets SO LANGMUIR LA English DT Article ID INTERFACIAL HETEROGENEOUS NUCLEATION; SURFACE-TENSION MEASUREMENTS; PHASE-INDUCED NUCLEATION; HEXANE-WATER INTERFACE; N-ALKANE; ROTATOR PHASES; CRYSTALLIZATION BEHAVIORS; HOMOGENEOUS NUCLEATION; EMULSION DROPLETS; CONFINED GEOMETRY AB Recent extensive studies reveal that surfactant-stabilized spherical alkane emulsion droplets spontaneously adopt polyhedral shapes upon cooling below a temperature T-d while remaining liquid. Further cooling induces the growth of tails and spontaneous droplet splitting. Two mechanisms were offered to account for these intriguing effects. One assigns the effects to the formation of an intradroplet frame of tubules consisting of crystalline rotator phases with cylindrically curved lattice planes. The second assigns the sphere-to-polyhedron transition to the buckling of defects in a crystalline interfacial monolayer, known to form in these systems at some T-s > T-d. The buckling reduces the extensional energy of the crystalline monolayer's defects, unavoidably formed when wrapping a spherical droplet by a hexagonally packed interfacial monolayer. The tail growth, shape changes, and droplet splitting were assigned to the decrease and vanishing of surface tension, gamma. Here we present temperature-dependent gamma(T), optical microscopy measurements, and interfacial entropy determinations for several alkane/surfactant combinations. We demonstrate the advantages and accuracy of the in situ gamma(T) measurements made simultaneously with the microscopy measurements on the same droplet. The in situ and coinciding ex situ Wilhelmy plate gamma(T) measurements confirm the low interfacial tension, less than or similar to 0.1 mN/m, observed at T-d. Our results provide strong quantitative support validating the crystalline monolayer buckling mechanism. C1 [Guttman, Shani; Sapir, Zvi; Deutsch, Moshe; Sloutskin, Eli] Bar Ilan Univ, Dept Phys, IL-5290002 Ramat Gan, Israel. [Guttman, Shani; Sapir, Zvi; Deutsch, Moshe; Sloutskin, Eli] Bar Ilan Univ, Inst Nanotechnol, IL-5290002 Ramat Gan, Israel. [Ocko, Benjamin M.] Brookhaven Natl Lab, NSLS II, Upton, NY 11973 USA. [Sapir, Zvi] Intel Israel Ltd, Kiryat Gat, Israel. RP Sloutskin, E (reprint author), Bar Ilan Univ, Dept Phys, IL-5290002 Ramat Gan, Israel.; Sloutskin, E (reprint author), Bar Ilan Univ, Inst Nanotechnol, IL-5290002 Ramat Gan, Israel. EM eli.sloutskin@biu.ac.il OI Sloutskin, Eli/0000-0002-7109-6893 FU U.S. Department of Energy, Office of Basic Energy Sciences [DESC0012704] FX We thank C. Quilliet (University of Grenoble-Alpes), T. A. Witten (University of Chicago), and R. Bruinsma (UCLA) for illuminating discussions. We are grateful to M. Weitman and M. Schultz (Bar-Ilan University) for technical assistance and thank the Donors of the American Chemical Society Petroleum Research Fund (E.S. and M.D.) and the U.S. Department of Energy, Office of Basic Energy Sciences, under contract no. DESC0012704 (B.M.O), for support. NR 65 TC 0 Z9 0 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD FEB 7 PY 2017 VL 33 IS 5 BP 1305 EP 1314 DI 10.1021/acs.langmuir.6b02926 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EK2DI UT WOS:000393737400022 PM 28064482 ER PT J AU Huang, MX Anderson, B Huang, CW Kunde, GJ Vreeland, EC Huang, JW Matlashov, AN Karaulanov, T Nettles, CP Gomez, A Minser, K Weldon, C Paciotti, G Harsh, M Lee, RR Flynn, ER AF Huang, Ming-Xiong Anderson, Bill Huang, Charles W. Kunde, Gerd J. Vreeland, Erika C. Huang, Jeffrey W. Matlashov, Andrei N. Karaulanov, Todor Nettles, Christopher P. Gomez, Andrew Minser, Kayla Weldon, Caroline Paciotti, Giulio Harsh, Michael Lee, Roland R. Flynn, Edward R. TI Development of advanced signal processing and source imaging methods for superparamagnetic relaxometry SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article DE inverse problem; magnetic relaxometry; cancer; superparamagnetic nanoparticles ID MAGNETIC NANOPARTICLES; BIOMEDICAL APPLICATIONS; SOURCE LOCALIZATION; CANCER-DETECTION; MEG; RESPONSES; RESOLUTION AB Superparamagnetic relaxometry (SPMR) is a highly sensitive technique for the in vivo detection of tumor cells and may improve early stage detection of cancers. SPMR employs superparamagnetic iron oxide nanoparticles (SPION). After a brief magnetizing pulse is used to align the SPION, SPMR measures the time decay of SPION using super-conducting quantum interference device (SQUID) sensors. Substantial research has been carried out in developing the SQUID hardware and in improving the properties of the SPION. However, little research has been done in the pre-processing of sensor signals and post-processing source modeling in SPMR. In the present study, we illustrate new pre-processing tools that were developed to: (1) remove trials contaminated with artifacts, (2) evaluate and ensure that a single decay process associated with bounded SPION exists in the data, (3) automatically detect and correct flux jumps, and (4) accurately fit the sensor signals with different decay models. Furthermore, we developed an automated approach based on multi-start dipole imaging technique to obtain the locations and magnitudes of multiple magnetic sources, without initial guesses from the users. A regularization process was implemented to solve the ambiguity issue related to the SPMR source variables. A procedure based on reduced chi-square cost-function was introduced to objectively obtain the adequate number of dipoles that describe the data. The new pre-processing tools and multi-start source imaging approach have been successfully evaluated using phantom data. In conclusion, these tools and multi-start source modeling approach substantially enhance the accuracy and sensitivity in detecting and localizing sources from the SPMR signals. Furthermore, multi-start approach with regularization provided robust and accurate solutions for a poor SNR condition similar to the SPMR detection sensitivity in the order of 1000 cells. We believe such algorithms will help establishing the industrial standards for SPMR when applying the technique in pre-clinical and clinical settings. C1 [Huang, Ming-Xiong; Lee, Roland R.] VA San Diego Healthcare Syst, Radiol & Res Serv, San Diego, CA USA. [Huang, Ming-Xiong; Lee, Roland R.] Univ Calif San Diego, Dept Radiol, San Diego, CA 92103 USA. [Anderson, Bill; Kunde, Gerd J.; Vreeland, Erika C.; Matlashov, Andrei N.; Karaulanov, Todor; Nettles, Christopher P.; Gomez, Andrew; Minser, Kayla; Weldon, Caroline; Paciotti, Giulio; Harsh, Michael; Flynn, Edward R.] Imag Biosyst, Albuquerque, NM USA. [Huang, Charles W.] Univ Calif San Diego, Dept Bioengn, San Diego, CA 92103 USA. [Matlashov, Andrei N.; Karaulanov, Todor] Los Alamos Natl Lab, Los Alamos, NM USA. [Huang, Jeffrey W.] Westview High Sch, San Diego, CA USA. [Huang, Ming-Xiong] Univ Calif San Diego, Radiol Imaging Lab, 3510 Dunhill St, San Diego, CA 92121 USA. RP Huang, MX (reprint author), Univ Calif San Diego, Radiol Imaging Lab, 3510 Dunhill St, San Diego, CA 92121 USA. EM mxhuang@ucsd.edu FU US National Institutes of Health [RAI066765B, RCA096154B, RCA105742]; US Department of Veterans Affairs [MHBA-010-14F (I01-CX000499)] FX This work was supported in part by the US National Institutes of Health under grants RAI066765B (PI: Flynn), RCA096154B (PI: Flynn), and RCA105742 (PI: Flynn), and by Merit Review Grants from the US Department of Veterans Affairs MHBA-010-14F (I01-CX000499, PI: Huang). We also thank Dr John Hazle, Dr David Fuentes, Ms Sara Loupot, Dr Wolfgang Stefan, and Dr Kelsey Mathieu at MD Anderson Cancer Center for helpful discussions. NR 29 TC 0 Z9 0 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 EI 1361-6560 J9 PHYS MED BIOL JI Phys. Med. Biol. PD FEB 7 PY 2017 VL 62 IS 3 BP 734 EP 757 DI 10.1088/1361-6560/aa553b PG 24 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA EK2NH UT WOS:000393763500003 ER PT J AU Haliburton, JR Shao, WJ Deutschbauer, A Arkin, A Abate, AR AF Haliburton, John R. Shao, Wenjun Deutschbauer, Adam Arkin, Adam Abate, Adam R. TI Genetic interaction mapping with microfluidic-based single cell sequencing SO PLOS ONE LA English DT Article ID HIGH-THROUGHPUT; INTERACTION NETWORKS; SYSTEMS BIOLOGY; E. COLI; MICROORGANISMS; EPISTASIS AB Genetic interaction mapping is useful for understanding the molecular basis of cellular decision making, but elucidating interactions genome-wide is challenging due to the massive number of gene combinations that must be tested. Here, we demonstrate a simple approach to thoroughly map genetic interactions in bacteria using microfluidic-based single cell sequencing. Using single cell PCR in droplets, we link distinct genetic information into single DNA sequences that can be decoded by next generation sequencing. Our approach is scalable and theoretically enables the pooling of entire interaction libraries to interrogate multiple pairwise genetic interactions in a single culture. The speed, ease, and low-cost of our approach makes genetic interaction mapping viable for routine characterization, allowing the interaction network to be used as a universal read out for a variety of biology experiments, and for the elucidation of interaction networks in non-model organisms. C1 [Haliburton, John R.; Abate, Adam R.] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA. [Shao, Wenjun; Deutschbauer, Adam; Arkin, Adam] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Deutschbauer, Adam; Arkin, Adam] EO Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Abate, AR (reprint author), Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA. EM adam.abate@ucsf.edu FU National Science Foundation through a CAREER Award [DBI-1253293]; National Institutes of Health (NIH) [HG007233-01, R01-EB019453-01, DP2-AR068129-01]; Defense Advanced Research Projects Agency Living Foundries Program [HR0011-12-C-0065, N66001-12-C-4211, HR0011-12-C-0066] FX This work was supported by the National Science Foundation through a CAREER Award [DBI-1253293]; National Institutes of Health (NIH) [HG007233-01, R01-EB019453-01, DP2-AR068129-01]; Defense Advanced Research Projects Agency Living Foundries Program [contract numbers HR0011-12-C-0065, N66001-12-C-4211, HR0011-12-C-0066]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 29 TC 0 Z9 0 U1 2 U2 2 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD FEB 7 PY 2017 VL 12 IS 2 AR e0171302 DI 10.1371/journal.pone.0171302 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EK1SG UT WOS:000393705500030 PM 28170417 ER PT J AU Das, P Lory, PF Flint, R Kong, T Hiroto, T Bud'ko, SL Canfield, PC de Boissieu, M Kreyssig, A Goldman, AI AF Das, Pinaki Lory, P. -F. Flint, R. Kong, T. Hiroto, T. Bud'ko, S. L. Canfield, P. C. de Boissieu, M. Kreyssig, A. Goldman, A. I. TI Crystal electric field excitations in the quasicrystal approximant TbCd6 studied by inelastic neutron scattering SO PHYSICAL REVIEW B LA English DT Article ID ICOSAHEDRAL SYMMETRY; PENROSE LATTICE; SINGLE-CRYSTALS; SOLUTION GROWTH; CD; PHASE; ORDER; ZN AB We have performed inelastic neutron scattering measurements on powder samples of the quasicrystal approximant, TbCd6, grown using isotopically enriched Cd-112. Both quasielastic scattering and distinct inelastic excitations were observed below 3 meV. The intensity of the quasielastic scattering measured in the paramagnetic phase diverges as T-N similar to 22 K is approached from above. The inelastic excitations, and their evolution with temperature, are well characterized by the leading term, (B2O20)-O-0, of the crystal electric field (CEF) level scheme for local pentagonal symmetry for the rare-earth ions [S. Jazbec et al., Phys. Rev. B 93, 054208 (2016)] indicating that the Tb moment is directed primarily along the unique local pseudofivefold axis of the Tsai-type clusters. We also find good agreement between the inverse susceptibility determined from magnetization measurements using a magnetically diluted Tb0.05Y0.95Cd6 sample and that calculated using the CEF level scheme determined from the neutron measurements. C1 [Das, Pinaki; Flint, R.; Kong, T.; Bud'ko, S. L.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Das, Pinaki; Flint, R.; Kong, T.; Bud'ko, S. L.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Lory, P. -F.; de Boissieu, M.] Univ Grenoble Alpes, CNRS, SIMAP, F-38000 Grenoble, France. [Hiroto, T.] Tokyo Univ Sci, Dept Mat Sci & Technol, JP-2788510 Noda, Chiba, Japan. RP Das, P (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA.; Das, P (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. FU Department of Energy, Basic Energy Sciences, Division ofMaterials Sciences Engineering [DE-AC02-07CH11358] FX We gratefully acknowledge the Institut Laue-Langevin, France for allocation of beam time and resources for this work, the assistance of S. Rolls during the measurements, and useful discussions with G. Beutier and R. J. McQueeney. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences, Division ofMaterials Sciences & Engineering, under Contract No. DE-AC02-07CH11358. Part of this study was carried out within the European C-MAC network. NR 32 TC 0 Z9 0 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 7 PY 2017 VL 95 IS 5 AR 054408 DI 10.1103/PhysRevB.95.054408 PG 6 WC Physics, Condensed Matter SC Physics GA EJ8TC UT WOS:000393498000004 ER PT J AU Sadovskyy, IA Wang, YL Xiao, ZL Kwok, WK Glatz, A AF Sadovskyy, I. A. Wang, Y. L. Xiao, Z. -L. Kwok, W. -K. Glatz, A. TI Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films SO PHYSICAL REVIEW B LA English DT Article ID VORTICES; LATTICES AB Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers-varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patterned molybdenumgermanium films, obtaining good agreement. Our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior. C1 [Sadovskyy, I. A.; Wang, Y. L.; Xiao, Z. -L.; Kwok, W. -K.; Glatz, A.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60637 USA. [Sadovskyy, I. A.] Univ Chicago, Computat Inst, 5735 S Ellis Ave, Chicago, IL 60637 USA. [Wang, Y. L.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Xiao, Z. -L.; Glatz, A.] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Sadovskyy, IA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60637 USA.; Sadovskyy, IA (reprint author), Univ Chicago, Computat Inst, 5735 S Ellis Ave, Chicago, IL 60637 USA. FU Scientific Discovery through Advanced Computing (SciDAC) program - U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Science; Oak Ridge National Laboratory (DOE) [DE-AC05-00OR22725]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; NSF [DMR-1407175] FX We are delighted to thank A. E. Koshelev and G. Kimmel for illuminating discussions. The computational work was supported by the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Science. The computational part of this work was performed on Titan at the Leadership Computing Facility at Oak Ridge National Laboratory (DOE Contract No. DE-AC05-00OR22725) and GAEA at Northern Illinois University. The experimental study at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. The nanopatterning and morphological analysis were performed at Argonne National Laboratory's Center for Nanoscale Materials. Z.L.X. acknowledges NSF Grant No. DMR-1407175. NR 47 TC 0 Z9 0 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 7 PY 2017 VL 95 IS 7 AR 075303 DI 10.1103/PhysRevB.95.075303 PG 9 WC Physics, Condensed Matter SC Physics GA EJ8TZ UT WOS:000393500400003 ER PT J AU Simutis, G Gvasaliya, S Beesetty, NS Yoshida, T Robert, J Petit, S Kolesnikov, AI Stone, MB Bourdarot, F Walker, HC Adroja, DT Sobolev, O Hess, C Masuda, T Revcolevschi, A Buchner, B Zheludev, A AF Simutis, G. Gvasaliya, S. Beesetty, N. S. Yoshida, T. Robert, J. Petit, S. Kolesnikov, A. I. Stone, M. B. Bourdarot, F. Walker, H. C. Adroja, D. T. Sobolev, O. Hess, C. Masuda, T. Revcolevschi, A. Buechner, B. Zheludev, A. TI Spin pseudogap in the S=1/2 chain material Sr2CuO3 with impurities SO PHYSICAL REVIEW B LA English DT Article ID HEISENBERG ANTIFERROMAGNETIC CHAIN; MAGNETIC-SUSCEPTIBILITY; TEMPERATURE; LOCALIZATION; TRANSPORT; SRCUO2 AB The low-energy magnetic excitation spectrum of the Heisenberg antiferromagnetic S = 1/2 chain system Sr2CuO3 with Ni and Ca impurities is studied by neutron spectroscopy. In all cases, a defect-induced spectral pseudogap is observed and shown to scale proportionately to the number of scattering centers in the spin chains. C1 [Simutis, G.; Gvasaliya, S.; Zheludev, A.] ETH, Solid State Phys Lab, Neutron Scattering & Magnetism, Zurich, Switzerland. [Beesetty, N. S.; Revcolevschi, A.] Univ Paris 11, Synth Proprietes & Modelisat Mat, F-91405 Orsay, France. [Yoshida, T.] Univ Tokyo, Inst Solid State Phys, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778581, Japan. [Robert, J.; Petit, S.] CEA Saclay, CEACNRS, Lab Leon Brillouin, F-91191 Gif Sur Yvette, France. [Kolesnikov, A. I.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Stone, M. B.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Bourdarot, F.] Univ Grenoble Alpes, Modelisat & Dexplorat Mat, 17 Rue Martyrs, F-38054 Grenoble, France. [Bourdarot, F.] CEA, INAC, 17 Rue Martyrs, F-38054 Grenoble, France. [Walker, H. C.; Adroja, D. T.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 OQX, Oxon, England. [Sobolev, O.] Tech Univ Munich, Forsch Neutronenquelle Heinz Maier Leibnitz FRM 2, D-85747 Garching, Germany. [Hess, C.; Buechner, B.] Leibniz Inst Solid State & Mat Res IFW Dresden, POB 270116, D-01171 Dresden, Germany. RP Simutis, G (reprint author), ETH, Solid State Phys Lab, Neutron Scattering & Magnetism, Zurich, Switzerland. EM gsimutis@phys.ethz.ch RI Stone, Matthew/G-3275-2011; Hess, Christian/F-3170-2014 OI Stone, Matthew/0000-0001-7884-9715; Hess, Christian/0000-0002-8977-6811 FU Swiss National Science Foundation; Deutsche Forschungsgemeinschaft through D-A-CH Project [HE 3439/12]; European Commission through the LOTHERM project [PITN-GA-2009-238475]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; EU Framework 7 program NMI3; Swiss State Secretariat for Education, Research and Innovation (SERI) FX This work was supported by the Swiss National Science Foundation, Division 2. The work at IFW was supported by the Deutsche Forschungsgemeinschaft through D-A-CH Project No. HE 3439/12 and the European Commission through the LOTHERM project (Project No. PITN-GA-2009-238475). The neutron scattering experiments at Oak Ridge National Laboratory's Spallation Neutron Source were sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The experiment at the MLZ was financially supported by EU Framework 7 program NMI3. Additional support for the work at ILL was provided by the Swiss State Secretariat for Education, Research and Innovation (SERI) through a CRG grant. NR 33 TC 0 Z9 0 U1 11 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 7 PY 2017 VL 95 IS 5 AR 054409 DI 10.1103/PhysRevB.95.054409 PG 6 WC Physics, Condensed Matter SC Physics GA EJ8TC UT WOS:000393498000005 ER PT J AU Binosi, D Chang, L Papavassiliou, J Qin, SX Roberts, CD AF Binosi, Daniele Chang, Lei Papavassiliou, Joannis Qin, Si-Xue Roberts, Craig D. TI Natural constraints on the gluon-quark vertex SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL-SYMMETRY BREAKING; QUANTUM CHROMODYNAMICS; INFRARED BEHAVIOR; SCHWINGER-DYSON; DECAY CONSTANT; GAUGE-THEORIES; ONE-LOOP; QCD; HADRONS; PROPAGATOR AB In principle, the strong-interaction sector of the standard model is characterized by a unique renormalization-group-invariant (RGI) running interaction and a unique form for the dressed-gluonquark vertex, Gamma mu; but, whilst much has been learnt about the former, the latter is still obscure. In order to improve this situation, we use a RGI running-interaction that reconciles top-down and bottom-up analyses of the gauge sector in quantum chromodynamics (QCD) to compute dressed-quark gap equation solutions with 1,660,000 distinct Ansatze for Gamma mu. Each one of the solutions is then tested for compatibility with three physical criteria and, remarkably, we find that merely 0.55% of the solutions survive the test. Evidently, even a small selection of observables places extremely tight bounds on the domain of realistic vertex Ansatze. This analysis and its results should prove useful in constraining insightful contemporary studies of QCD and hadronic phenomena. C1 [Binosi, Daniele] European Ctr Theoret Studies Nucl Phys & Related, Str Tabarelle 286, I-38123 Villazzano, TN, Italy. [Binosi, Daniele] Fdn Bruno Kessler Villa Tambosi, Str Tabarelle 286, I-38123 Villazzano, TN, Italy. [Chang, Lei] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China. [Papavassiliou, Joannis] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain. [Papavassiliou, Joannis] Univ Valencia, IFIC, E-46100 Valencia, Spain. [Papavassiliou, Joannis] CSIC, E-46100 Valencia, Spain. [Qin, Si-Xue; Roberts, Craig D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Binosi, D (reprint author), European Ctr Theoret Studies Nucl Phys & Related, Str Tabarelle 286, I-38123 Villazzano, TN, Italy.; Binosi, D (reprint author), Fdn Bruno Kessler Villa Tambosi, Str Tabarelle 286, I-38123 Villazzano, TN, Italy. FU Spanish MEYC [FPA2014-53631-C2-1-P, SEV-2014-0398]; Generalitat Valenciana [Prometeo II/2014/066]; Argonne National Laboratory, Office of the Director through the Named Postdoctoral Fellowship Program; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357] FX D.B. acknowledges correspondence with H. Sanchis-Alepuz and D. Gazda. Our results were obtained using the KORE HPC of the Fondazione Bruno Kessler. Research supported by: Spanish MEYC under Grants No. FPA2014-53631-C2-1-P and No. SEV-2014-0398, and Generalitat Valenciana under Grant No. Prometeo II/2014/066; Argonne National Laboratory, Office of the Director, through the Named Postdoctoral Fellowship Program; and U.S. Department of Energy, Office of Science, Office of Nuclear Physics, Contract No. DE-AC02-06CH11357. NR 69 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 7 PY 2017 VL 95 IS 3 AR 031501 DI 10.1103/PhysRevD.95.031501 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EJ8WK UT WOS:000393507500001 ER PT J AU Shrivastava, M Lou, S Zelenyuk, A Easter, RC Corley, RA Thrall, BD Rasch, PJ Fast, JD Simonich, SLM Shen, HZ Tao, S AF Shrivastava, Manish Lou, Silja Zelenyuk, Alla Easter, Richard C. Corley, Richard A. Thrall, Brian D. Rasch, Philip J. Fast, Jerome D. Simonich, Staci L. Massey Shen, Huizhong Tao, Shu TI Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE polycyclic aromatic hydrocarbons; organic aerosols; climate model; viscous aerosol shield; heterogeneous chemistry ID ATMOSPHERIC TRANSPORT; HETEROGENEOUS REACTIONS; OH RADICALS; PARTICLES; REACTIVITY; PAHS; MODEL; OZONE; KINETICS; PHASE AB Polycyclic aromatic hydrocarbons (PAHs) have toxic impacts on humans and ecosystems. One of the most carcinogenic PAHs, benzo(a) pyrene (BaP), is efficiently bound to and transported with atmospheric particles. Laboratory measurements show that particle-bound BaP degrades in a few hours by heterogeneous reaction with ozone, yet field observations indicate BaP persists much longer in the atmosphere, and some previous chemical transport modeling studies have ignored heterogeneous oxidation of BaP to bring model predictions into better agreement with field observations. We attribute this unexplained discrepancy to the shielding of BaP from oxidation by coatings of viscous organic aerosol (OA). Accounting for this OA viscosity-dependent shielding, which varies with temperature and humidity, in a global climate/chemistry model brings model predictions into much better agreement with BaP measurements, and demonstrates stronger long-range transport, greater deposition fluxes, and substantially elevated lung cancer risk from PAHs. Model results indicate that the OA coating is more effective in shielding BaP in the middle/high latitudes compared with the tropics because of differences in OA properties (semisolid when cool/dry vs. liquid-like when warm/humid). Faster chemical degradation of BaP in the tropics leads to higher concentrations of BaP oxidation products over the tropics compared with higher latitudes. This study has profound implications demonstrating that OA strongly modulates the atmospheric persistence of PAHs and their cancer risks. C1 [Shrivastava, Manish; Lou, Silja; Zelenyuk, Alla; Easter, Richard C.; Corley, Richard A.; Thrall, Brian D.; Rasch, Philip J.; Fast, Jerome D.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Simonich, Staci L. Massey] Oregon State Univ, Dept Chem, Gilbert Hall 153, Corvallis, OR 97331 USA. [Simonich, Staci L. Massey] Oregon State Univ, Environm & Mol Toxicol, Corvallis, OR 97331 USA. [Shen, Huizhong] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Tao, Shu] Peking Univ, Coll Urban & Environm Sci, Lab Earth Surface Proc, Beijing 100871, Peoples R China. RP Shrivastava, M (reprint author), Pacific Northwest Natl Lab, Richland, WA 99352 USA. EM ManishKumar.Shrivastava@pnnl.gov RI Shen, Huizhong/E-8152-2017 OI Shen, Huizhong/0000-0003-1335-8477 FU Environmental Molecular Science Laboratory (EMSL); US DOE's Office of Biological and Environmental Research; National Science Foundation; Office of Science of the DOE; US DOE [DE-AC05-76RL01830]; National Institute of Environmental Health Sciences (NIEHS) [P30ES00210, P42ES016465]; National Science Foundation (NSF) [AGS-11411214]; US DOE Office of Science, Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences and Biosciences; US DOE, Office of Science, Biological and Environmental Research programas part of the Earth System Modeling Program; Ministry of Education, Youth and Sports of the Czech Republic [LM2015051]; National Sustainability Programme [LO1214] FX The research described in this paper was conducted under the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL), a multiprogram national laboratory operated by Battelle for the US Department of Energy (DOE). This research was also supported by the Environmental Molecular Science Laboratory (EMSL), a US DOE Office of Science user facility sponsored by the US DOE's Office of Biological and Environmental Research and located at PNNL. The PNNL Institutional Computing (PIC) program and EMSL provided computational resources for the model simulations. The Community Earth System Model (CESM) project is supported by the National Science Foundation and the Office of Science of the DOE. The Pacific Northwest National Laboratory is operated for the US DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. R.C. and S.L.M.S. were supported by the National Institute of Environmental Health Sciences (NIEHS) through grant numbers P30ES00210 and P42ES016465. S.L.M.S. was also supported by the National Science Foundation (NSF) through grant number AGS-11411214. A.Z. was supported by the US DOE Office of Science, Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences and Biosciences. P.J.R. was supported by the US DOE, Office of Science, Biological and Environmental Research programas part of the Earth System Modeling Program. Part of the BaP measurements data used in this research were provided by Jana Boruvkova, carried out with the support of core facilities of RECETOX Research Infrastructure, project number LM2015051, funded by the Ministry of Education, Youth and Sports of the Czech Republic and LO1214 (National Sustainability Programme). NR 52 TC 1 Z9 1 U1 11 U2 11 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 7 PY 2017 VL 114 IS 6 BP 1246 EP 1251 DI 10.1073/pnas.1618475114 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EJ7SH UT WOS:000393422200029 PM 28115713 ER PT J AU Peng, JJ Chen, NQ He, R Wang, ZY Dai, S Jin, XB AF Peng, Junjun Chen, Nanqing He, Rui Wang, Zhiyong Dai, Sheng Jin, Xianbo TI Electrochemically Driven Transformation of Amorphous Carbons to Crystalline Graphite Nanoflakes: A Facile and Mild Graphitization Method SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE anion intercalation; electrochemical graphitization; ionic liquids; nanostructured graphite; porous graphite ID MOLTEN CALCIUM-CHLORIDE; CATALYTIC GRAPHITIZATION; STRUCTURAL EVOLUTION; DIAMOND; NANOPARTICLES; TRANSITION; REDUCTION; DIOXIDE; SILICON AB Although, in the carbon family, graphite is the most thermodynamically stable allotrope, conversion of other carbon allotropes, even amorphous carbons, into graphite is extremely hard. We report a simple electrochemical route for the graphitization of amorphous carbons through cathodic polarization in molten CaCl2 at temperatures of about 1100 K, which generates porous graphite comprising petaloid nanoflakes. This nanostructured graphite allows fast and reversible intercalation/deintercalation of anions, promising a superior cathode material for batteries. In a Pyr(14)TFSI ionic liquid, it exhibits a specific discharge capacity of 65 and 116 mAhg(-1) at a rate of 1800 mAg(-1) when charged to 5.0 and 5.25 V vs. Li/Li+, respectively. The capacity remains fairly stable during cycling and decreases by only about 8% when the charge/discharge rate is increased to 10000 mAg(-1) during cycling between 2.25 and 5.0 V. C1 [Peng, Junjun; He, Rui; Wang, Zhiyong; Jin, Xianbo] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China. [Peng, Junjun] Wuhan Text Univ, Coll Chem & Chem Engn, Wuhan 430032, Peoples R China. [Chen, Nanqing; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Jin, XB (reprint author), Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China.; Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM dais@ornl.gov; xbjin@whu.edu.cn OI , Sheng/0000-0002-8046-3931 FU NSFC [21173161, 21673164]; MOE [NCET-11-0397]; Large-scale Instrument and Equipment Sharing Foundation of Wuhan University; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy FX We appreciate the funding support from NSFC (21173161, 21673164), MOE (NCET-11-0397), and the Large-scale Instrument and Equipment Sharing Foundation of Wuhan University. N.Q.C. and S.D. were supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy under contract with UT-Battelle, LLC. NR 28 TC 0 Z9 0 U1 7 U2 7 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD FEB 6 PY 2017 VL 56 IS 7 BP 1751 EP 1755 DI 10.1002/anie.201609565 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA EM8IN UT WOS:000395554900005 PM 28090748 ER PT J AU Gentil, S Lalaoui, N Dutta, A Nedellec, Y Cosnier, S Shaw, WJ Artero, V Le Goff, A AF Gentil, Solene Lalaoui, Noemie Dutta, Arnab Nedellec, Yannig Cosnier, Serge Shaw, Wendy J. Artero, Vincent Le Goff, Alan TI Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE biofuel cells; bio-inspired catalysts; H-2 oxidation; multicopper oxidases; nickel complexes ID OUTER COORDINATION SPHERE; H-2 OXIDATION CATALYST; MOLECULAR ELECTROCATALYSTS; THERMOSTABLE ENZYMES; OXYGEN; ELECTRODES; PERFORMANCE; NANOMATERIALS; MODEL; ELECTROCHEMISTRY AB A biomimetic nickel bis-diphosphine complex incorporating the amino acid arginine in the outer coordination sphere was immobilized on modified carbon nanotubes (CNTs) through electrostatic interactions. The functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H-2/2H(+) interconversion from pH0 to 9, with catalytic preference for H-2 oxidation at all pH values. The high activity of the complex over a wide pH range allows us to integrate this bio-inspired nanomaterial either in an enzymatic fuel cell together with a multicopper oxidase at the cathode, or in a proton exchange membrane fuel cell (PEMFC) using Pt/C at the cathode. The Ni-based PEMFC reaches 14mWcm(-2), only six-times-less as compared to full-Pt conventional PEMFC. The Pt-free enzyme-based fuel cell delivers approximate to 2mWcm(-2), a new efficiency record for a hydrogen biofuel cell with base metal catalysts. C1 [Gentil, Solene; Lalaoui, Noemie; Nedellec, Yannig; Cosnier, Serge; Le Goff, Alan] Univ Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France. [Gentil, Solene; Artero, Vincent] Univ Grenoble Alpes, Lab Chim & Biol Met, CNRS UMR5249, CEA, F-38000 Grenoble, France. [Dutta, Arnab; Shaw, Wendy J.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Dutta, Arnab] IIT Gandhinagar, Dept Chem, Gandhinagar 382355, Gujarat, India. RP Le Goff, A (reprint author), Univ Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.; Artero, V (reprint author), Univ Grenoble Alpes, Lab Chim & Biol Met, CNRS UMR5249, CEA, F-38000 Grenoble, France.; Shaw, WJ (reprint author), Pacific Northwest Natl Lab, Richland, WA 99352 USA. EM wendy.shaw@pnnl.gov; vincent.artero@cea.fr; alan.le-goff@univ-grenoble-alpes.fr OI Le Goff, Alan/0000-0002-6765-5859 FU Ministere de l'Environnement, de l'Energie et de la Mer; Agence Nationale de la Recherche [ANR-13-BIOME-0003-02]; LabEx ARCANE programme [ANR-11-LABX-0003-01]; plateforme de Chimie NanoBio ICMG (PCN-ICMG) [FR 2607] FX This work was supported by the Ministere de l'Environnement, de l'Energie et de la Mer, and the Agence Nationale de la Recherche through the CAROUCELL project (ANR-13-BIOME-0003-02) and LabEx ARCANE programme (ANR-11-LABX-0003-01). The authors acknowledge support from the plateforme de Chimie NanoBio ICMG FR 2607 (PCN-ICMG). WJS and AD acknowledge the Office of Science Early Career Research Program through the U.S. Department of Energy, Basic Energy Sciences. PNNL is operated by Battelle for the US DOE. Valerie Flaud and Dominique Granier from Institut Charles Gerhardt (University of Montpellier 2) are gratefully acknowledged for XPS analysis. NR 45 TC 0 Z9 0 U1 18 U2 18 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD FEB 6 PY 2017 VL 56 IS 7 BP 1845 EP 1849 DI 10.1002/anie.201611532 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA EM8IN UT WOS:000395554900024 PM 28078719 ER PT J AU Li, K Wojcik, M Jacobsen, C AF Li, Kenan Wojcik, Michael Jacobsen, Chris TI Multislice does it all-calculating the performance of nanofocusing X-ray optics SO OPTICS EXPRESS LA English DT Article ID FRESNEL ZONE PLATES; SPATIAL-RESOLUTION; FOURIER IMAGES; DIFFRACTION; REFLECTION; MICROSCOPY; SIMULATION; FOCUS AB We describe an approach to calculating the optical performance of a wide range of nanofocusing X-ray optics using multislice scalar wave propagation with a complex X-ray refractive index. This approach produces results indistinguishable from methods such as coupled wave theory, and it allows one to reproduce other X-ray optical phenomena such as grazing incidence reflectivity where the direction of energy flow is changed significantly. Just as finite element analysis methods allow engineers to compute the thermal and mechanical responses of arbitrary structures too complex to model by analytical approaches, multislice propagation can be used to understand the properties of the real-world optics of finite extent and with local imperfections, allowing one to better understand the limits to nanoscale X-ray imaging. (C) 2017 Optical Society of America C1 [Li, Kenan] Northwestern Univ, Appl Phys, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Wojcik, Michael; Jacobsen, Chris] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Jacobsen, Chris] Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Jacobsen, Chris] Northwestern Univ, Chem Life Proc Inst, 2170 Campus Dr, Evanston, IL 60208 USA. RP Jacobsen, C (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.; Jacobsen, C (reprint author), Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA.; Jacobsen, C (reprint author), Northwestern Univ, Chem Life Proc Inst, 2170 Campus Dr, Evanston, IL 60208 USA. EM cjacobsen@anl.gov FU Office of Science, Department of Energy [DE-AC02-06CH11357] FX Office of Science, Department of Energy (DE-AC02-06CH11357). NR 39 TC 0 Z9 0 U1 1 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 6 PY 2017 VL 25 IS 3 BP 1831 EP 1846 DI 10.1364/OE.25.001831 PG 16 WC Optics SC Optics GA EP3XI UT WOS:000397314600021 ER PT J AU Okur, S Nami, M Rishinaramangalam, AK Oh, SH DenBaars, SP Liu, S Brener, I Feezell, DF AF Okur, Serdal Nami, Mohsen Rishinaramangalam, Ashwin K. Oh, Sang H. DenBaars, Steve P. Liu, Sheng Brener, Igal Feezell, Daniel F. TI Internal quantum efficiency and carrier dynamics in semipolar (20(2)over-bar(1)over-bar) InGaN/GaN light-emitting diodes SO OPTICS EXPRESS LA English DT Article ID TIME-RESOLVED PHOTOLUMINESCENCE; BULK GAN; WELLS; POLARIZATION; NONPOLAR AB The internal quantum efficiencies (IQE) and carrier lifetimes of semipolar (20 (2) over bar(1) over bar) InGaN/GaN LEDs with different active regions are measured using temperature-dependent, carrier-density-dependent, and time-resolved photoluminescence. Three active regions are investigated: one 12-nm-thick single quantum well (SQW), two 6-nm-thick QWs, and three 4-nm-thick QWs. The IQE is highest for the 12-nm-thick SQW and decreases as the well width decreases. The radiative lifetimes are similar for all structures, while the nonradiative lifetimes decrease as the well width decreases. The superior IQE and longer nonradiative lifetime of the SQW structure suggests using thick SQW active regions for high brightness semipolar (20 (2) over bar(1) over bar) LEDs. (C) 2017 Optical Society of America C1 [Okur, Serdal; Nami, Mohsen; Rishinaramangalam, Ashwin K.; Feezell, Daniel F.] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA. [Oh, Sang H.] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA. [DenBaars, Steve P.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Liu, Sheng; Brener, Igal] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Feezell, DF (reprint author), Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA. EM dfeezell@unm.edu FU Department of Defense [W911NF-15-1-0428] FX This work was supported by Department of Defense award number W911NF-15-1-0428. NR 42 TC 0 Z9 0 U1 1 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 6 PY 2017 VL 25 IS 3 BP 2178 EP 2186 DI 10.1364/OE.25.002178 PG 9 WC Optics SC Optics GA EP3XI UT WOS:000397314600050 ER PT J AU Harilal, SS LaHaye, NL Phillips, MC AF Harilal, S. S. LaHaye, N. L. Phillips, M. C. TI High-resolution spectroscopy of laser ablation plumes using laser-induced fluorescence SO OPTICS EXPRESS LA English DT Article ID INDUCED BREAKDOWN SPECTROSCOPY; INDUCED PLASMA; AMBIENT GAS; SPECTROMETRY; TEMPERATURE; EXPANSION; DYNAMICS; DENSITY; URANIUM; SAMPLES AB We report laser-induced fluorescence spectroscopy (LIF) of laser-produced plasmas under varying nitrogen pressure levels up to atmospheric pressure. The plasmas were generated on a glass target containing minor amounts of U and Al using 1064 nm, 6 ns pulses from a Nd: YAG laser. A frequency-doubled continuous- wave Ti: Sapphire laser was used as an ultra-narrowband tunable LIF excitation source to increase the magnitude and persistence of emission from selected U and Al atomic transitions in a laser-produced plasma. 2Dfluorescence spectroscopy (2D-FS) absorption/emission images were recorded at various nitrogen pressure levels, showing both excitation and emission spectral features. At lower pressure levels (100 Torr), fluorescence emission was found to be well separated in time from thermally-excited emission. However, as the ambient pressure increased, the thermally-excited emission persisted for longer times along with a reduction of LIF emission persistence and intensity. The excitation spectral features showed the inherent linewidths of various transitions in the plasma, which have significantly narrower spectral linewidths than observed in emission spectra. We evaluated two nearby transitions separated by only 18 pm to demonstrate the effectiveness of fluorescence spectra over thermally-excited spectra for high-resolution studies. The present results highlight the importance of LIF as a diagnostic tool employing continuous- wave laser re-excitation, addressing some of the limitations of traditional emission and absorption spectroscopic methods. (C) 2017 Optical Society of America C1 [Harilal, S. S.; LaHaye, N. L.; Phillips, M. C.] Pacific Northwest Natl Lab, POB 999,902 Battelle Blvd, Richland, WA 99352 USA. RP Harilal, SS (reprint author), Pacific Northwest Natl Lab, POB 999,902 Battelle Blvd, Richland, WA 99352 USA. EM hari@pnnl.gov FU DOE/NNSA Office of Nonproliferation and Verification Research and Development [NA22]; U.S. DOE by Battelle Memorial Institute [DE-AC05-76RLO1830] FX DOE/NNSA Office of Nonproliferation and Verification Research and Development (NA22). Pacific Northwest National Laboratory is operated for the U.S. DOE by Battelle Memorial Institute under Contract No. DE-AC05-76RLO1830. NR 53 TC 0 Z9 0 U1 1 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 6 PY 2017 VL 25 IS 3 BP 2312 EP 2326 DI 10.1364/OE.25.002312 PG 15 WC Optics SC Optics GA EP3XI UT WOS:000397314600063 ER PT J AU Frank, P Szilagyi, RK Gramlich, V Hsu, HF Hedman, B Hodgson, KO AF Frank, Patrick Szilagyi, Robert K. Gramlich, Volker Hsu, Hua-Fen Hedman, Britt Hodgson, Keith O. TI Spin-Polarization-Induced Preedge Transitions in the Sulfur K-Edge XAS Spectra of Open-Shell Transition-Metal Sulfates: Spectroscopic Validation of sigma-Bond Electron Transfer SO INORGANIC CHEMISTRY LA English DT Article ID X-RAY-ABSORPTION; DENSITY-FUNCTIONAL THEORY; THERMOGRAVIMETRIC ANALYSIS; CRYSTAL-STRUCTURE; LIGAND COVALENCY; MODEL COMPLEXES; THERMAL-DECOMPOSITION; TUNNELING PATHWAYS; BIVALENT COBALT; COPPER AB Sulfur K-edge X-ray absorption spectroscopy (XAS) spectra of the monodentate sulfate complexes [MII(itao)(SO4)(H2O)(0,1)] (M = Co, Ni, Cu) and [Cu-(Me(6)tren)(SO4)] exhibit well-defined preedge transitions at 2479.4, 2479.9, 2478.4, and 2477.7 eV, respectively, despite having no direct metal-sulfur bond, while the XAS preedge of [Zn(itao)(SO4)] is featureless. The sulfur K-edge XAS of [Cu(itao)(SO4)] but not of [Cu(Me(6)tren)(SO4)] uniquely exhibits a weak transition at 2472.1 eV, an extraordinary 8.7 eV below the first inflection of the rising K-edge. Preedge transitions also appear in the sulfur K-edge XAS of crystalline [M-II(SO4)(H2O)] (M = Fe, Co, Ni, and Cu, but not Zn) and in sulfates of higher-valent early transition metals. Ground-state density functional theory (DFT) and time-dependent DFT (TDDFT) calculations show that charge transfer from coordinated sulfate to paramagnetic late transition metals produces spin polarization that differentially mixes the spin-up (alpha) and spin-down (beta) spin orbitals of the sulfate ligand, inducing negative spin density at the sulfate sulfur. Ground-state DFT calculations show that sulfur 3p character then mixes into metal 4s and 4p valence orbitals and various combinations of ligand antibonding orbitals, producing measurable sulfur XAS transitions. TDDFT calculations confirm the presence of XAS preedge features 0.5-2 eV below the rising sulfur K-edge energy. The 2472.1 eV feature arises when orbitals at lower energy than the frontier occupied orbitals with S 3p character mix with the copper(II) electron hole. Transmission of spin polarization and thus of radical character through several bonds between the sulfur and electron hole provides a new mechanism for the counterintuitive appearance of preedge transitions in the XAS spectra of transition-metal oxoanion ligands in the absence of any direct metal-absorber bond. The 2472.1 eV transition is evidence for further radicalization from copper(II), which extends across a hydrogen-bond bridge between sulfate and the itao ligand and involves orbitals at energies below the frontier set. This electronic structure feature provides a direct spectroscopic confirmation of the through-bond electron-transfer mechanism of redox-active metalloproteins. C1 [Frank, Patrick; Hodgson, Keith O.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Frank, Patrick; Hedman, Britt] Stanford Univ, SLAC, Stanford Synchrotron Radiat Lightsource, Stanford, CA 94309 USA. [Szilagyi, Robert K.] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Szilagyi, Robert K.] MTA ELTE Momentum Chem Struct Funct Lab, H-1117 Budapest, Hungary. [Gramlich, Volker] ETH Zentrum, Lab Kristallog, Sonneggstr 5,G 62, CH-8092 Zurich, Switzerland. [Hsu, Hua-Fen] Natl Cheng Kung Univ, Dept Chem, Tainan 701, Taiwan. [Hodgson, Keith O.] Stanford Univ, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Frank, P (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA.; Frank, P (reprint author), Stanford Univ, SLAC, Stanford Synchrotron Radiat Lightsource, Stanford, CA 94309 USA.; Szilagyi, RK (reprint author), Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA.; Szilagyi, RK (reprint author), MTA ELTE Momentum Chem Struct Funct Lab, H-1117 Budapest, Hungary. EM pfrank@slac.stanford.edu; szilagyi@montana.edu FU Hungarian Academy of Sciences, Budapest, Hungary [96122, LP2015-10/2015]; U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; DOE, Office of Biological and Environmental Research; National Institutes of Health (NIH), National Institute of General Medical Sciences (NIGMS) [P41GM103393] FX The authors thank Dr. Ya-Ho Chang at the National Cheng Kung University for magnetic measurement. We also thank the anonymous reviewers whose critical concerns were instrumental toward uncovering the connections between this work and biological electron transfer. This work was supported by Grant P41GM103393 (to K.O.H.). The MTA-ELTE Chemical Structure & Function "Momentum" Laboratory (ID 96122) is supported by the Hungarian Academy of Sciences, Budapest, Hungary (Contract LP2015-10/2015). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE, Office of Biological and Environmental Research, and by the National Institutes of Health (NIH), National Institute of General Medical Sciences (NIGMS; including P41GM103393). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS or NIH. NR 75 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 6 PY 2017 VL 56 IS 3 BP 1080 EP 1093 DI 10.1021/acs.inorgchem.6b00991 PG 14 WC Chemistry, Inorganic & Nuclear SC Chemistry GA EK0PX UT WOS:000393630300013 PM 28068071 ER PT J AU Ellis, RJ Brigham, DM Delmau, L Ivanov, AS Williams, NJ Vo, MN Reinhart, B Moyer, BA Bryantsev, VS AF Ellis, Ross J. Brigham, Derek M. Delmau, Laetitia Ivanov, Alexander S. Williams, Neil J. Minh Nguyen Vo Reinhart, Benjamin Moyer, Bruce A. Bryantsev, Vyacheslav S. TI "Straining" to Separate the Rare Earths: How the Lanthanide Contraction Impacts Chelation by Diglycolamide Ligands SO INORGANIC CHEMISTRY LA English DT Article ID EFFECTIVE IONIC-RADII; SOLVENT-EXTRACTION; COORDINATION CHEMISTRY; DENSITY; COMPLEXATION; ACTINIDE; ELEMENTS; ENERGY; DESIGN; THERMOCHEMISTRY AB The subtle energetic differences underpinning adjacent lanthanide discrimination are explored with diglycolamide ligands. Our approach converges liquid-liquid extraction experiments with solution-phase X-ray absorption spectroscopy (XAS) and density functional theory (DFT) simulations, spanning the lanthanide series. The homoleptic [(DGA)(3)Ln](3+) complex was confirmed in the organic extractive solution by XAS, and this was modeled using DFT. An interplay between steric strain and coordination energies apparently gives rise to a nonlinear trend in discriminatory lanthanide ion complexation across the series. Our results highlight the importance of optimizing chelate molecular geometry to account for both coordination interactions and strain energies when designing new ligands for efficient adjacent lanthanide separation for rare-earth refining. C1 [Ellis, Ross J.; Brigham, Derek M.; Delmau, Laetitia; Ivanov, Alexander S.; Williams, Neil J.; Minh Nguyen Vo; Moyer, Bruce A.; Bryantsev, Vyacheslav S.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Williams, Neil J.] Univ Tennessee, Dept Chem, Buehler Hall 1420 Circle Dr, Knoxville, TN 37996 USA. [Minh Nguyen Vo] Univ Pittsburgh, Swanson Sch Engn, Dept Chem & Petr Engn, 804 Benedum Hall,3700 OHara St, Pittsburgh, PA 15261 USA. [Reinhart, Benjamin] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Ellis, RJ; Bryantsev, VS (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM ellisrj1@ornl.gov; bryantsevv@ornl.gov FU Critical Materials Institute, an Energy Innovation Hub - U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office; ASTRO internship program at ORNL; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. M.N.V was supported through ASTRO2016 internship program at ORNL. This research used resources of the National Energy Research Scientific Computing Center supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 46 TC 0 Z9 0 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 6 PY 2017 VL 56 IS 3 BP 1152 EP 1160 DI 10.1021/acs.inorgchem.6b02156 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA EK0PX UT WOS:000393630300020 PM 28161941 ER PT J AU Grimes, TS Heathman, CR Jansone-Popova, S Bryantsev, VS Srinivasan, SG Nakase, M Zalupski, PR AF Grimes, Travis S. Heathman, Colt R. Jansone-Popova, Santa Bryantsev, Vyacheslav S. Srinivasan, Sriram Goverapet Nakase, Masahiko Zalupski, Peter R. TI Thermodynamic, Spectroscopic, and Computational Studies of f-Element Complexation by N-Hydroxyethyl-diethylenetriamine-N,N ',N '',N ''-tetraacetic Acid SO INORGANIC CHEMISTRY LA English DT Article ID MRI CONTRAST AGENTS; SEPARATING TRIVALENT LANTHANIDES; EVERYDAY CONSUMER PRODUCTS; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; DIETHYLENETRIAMINEPENTAACETIC ACID; EQUILIBRIUM-CONSTANTS; TRANSURANIC ELEMENTS; TALSPEAK SEPARATIONS AB Potentiometric and spectroscopic techniques were combined with DFT calculations to probe the coordination environment and determine thermodynamic features of trivalent f-element complexation by N-hydroxyethyl-diethylenetriamine-N,N',N '',N ''-tetraacetic acid, HEDTTA. Ligand protonation constants and lanthanide stability constants were determined using potentiometry. Five protonation constants were accessible in I = 2.0 M (H+/Na+)ClO4. UV-vis spectroscopy was used to determine stability constants for Nd3+ and Am3+ complexation with HEDTTA. Luminescence spectroscopy indicates two water molecules in the inner coordination sphere of the Eu/HEDTTA complex, suggesting HEDTTA is heptadentate. Luminescence data was supported by DFT calculations, which demonstrate that substitution of the acetate pendant arm by a N-hydroxyethyl group weakens the metal nitrogen bond. This bond elongation is reflected in HEDTTA's ability to differentiate trivalent actinides from trivalent lanthanides. The trans-lanthanide Ln/HEDTTA complex stability trend is analogous to Ln/DTPA complexation; however, the loss of one chelate ring resulting from structural substitution weakens the complexation by similar to 3 orders of magnitude. Successful separation of trivalent americium from trivalent lanthanides was demonstrated when HEDTTA was utilized as aqueous holdback complexant in a liquid liquid system. Time-dependent extraction studies for HEDTTA were compared to diethylenetriamine-N,N,N',N '',N ''-pentaacetic acid (DTPA) and N-hydroxyethyl-ethylenediamine-N,N',Ni-triacetic acid (HEDTA). The results indicate substantially enhanced phase-transfer kinetic rates for mixtures containing HEDTTA. C1 [Grimes, Travis S.; Heathman, Colt R.; Zalupski, Peter R.] Idaho Natl Lab, Aqueous Separat & Radiochem, Idaho Falls, ID 83415 USA. [Jansone-Popova, Santa; Bryantsev, Vyacheslav S.; Srinivasan, Sriram Goverapet] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Nakase, Masahiko] Japan Atom Energy Agcy, Mat Sci Res Ctr, Actinide Chem Grp, 1-1-1 Kouto,Sayo Cho, Mikazuki, Hyogo 6795148, Japan. RP Grimes, TS; Zalupski, PR (reprint author), Idaho Natl Lab, Aqueous Separat & Radiochem, Idaho Falls, ID 83415 USA. EM travis.grimes@inl.gov; peter.zalupski@inl.gov FU U.S. Department of Energy, Office of Nuclear Energy, DOE Idaho Operations Office [DE-AC07-05ID14517]; Fuel Cycle Research and Development Program, Office of Nuclear Energy, U.S. Department of Energy; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC05-00OR22725] FX The experimental work conducted by T.S.G., C.R.H., M.N., and P.R.Z. at the Idaho National Laboratory was supported by the U.S. Department of Energy, Office of Nuclear Energy, DOE Idaho Operations Office, under contract DE-AC07-05ID14517. The synthetic work by S.J.-P. and computational studies by V.S.B. and S.G.S. were supported by the Fuel Cycle Research and Development Program, Office of Nuclear Energy, U.S. Department of Energy. DFT calculations used resources of the National Energy Research Scientific Computing Center and the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, both of which are supported by the Office of Science of the U.S. Department of Energy under contract nos. DE-AC02-05CH11231 and DE-AC05-00OR22725, respectively. NR 63 TC 0 Z9 0 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 6 PY 2017 VL 56 IS 3 BP 1722 EP 1733 DI 10.1021/acs.inorgchem.6b02897 PG 12 WC Chemistry, Inorganic & Nuclear SC Chemistry GA EK0PX UT WOS:000393630300075 PM 28116904 ER PT J AU Chillara, VK Pantea, C Sinha, DN AF Chillara, Vamshi Krishna Pantea, Cristian Sinha, Dipen N. TI Low-frequency ultrasonic Bessel-like collimated beam generation from radial modes of piezoelectric transducers SO APPLIED PHYSICS LETTERS LA English DT Article ID DIFFRACTION-FREE BEAMS; NONDIFFRACTING BEAM AB We present a very simple approach to generate a collimated ultrasonic beam that exploits the natural Bessel-like vibration pattern of the radial modes of a piezoelectric disc with lateral clamping. This eliminates the need for the conventional annular Bessel pattern of the electrodes with individual electrode excitation on the piezo-disc, thus simplifying the transducer design. Numerical and experimental studies are carried out to investigate the Bessel-like vibration patterns of these radial modes showing an excellent agreement between these two studies. Measured ultrasonic beam-profiles in water from the radial modes confirm the profile to be a Bessel beam. Collimated beam generation from radial modes is investigated using a coupled electromechanical finiteelement model. It is found that clamping the lateral edges of piezoelectric transducers results in a high-degree of collimation with practically no side-lobes similar to a parametric array beam. Ultrasonic beam-profile measurements in water with both free and clamped piezoelectric transducer are presented. The collimated beam generation using the present technique of using the laterally clamped radial modes finds significant applications in low-frequency imaging through highly attenuating materials. Published by AIP Publishing. C1 [Chillara, Vamshi Krishna; Pantea, Cristian; Sinha, Dipen N.] Los Alamos Natl Lab, Acoust & Sensors Team, Mat Phys & Applicat MPA 11, Los Alamos, NM 87545 USA. RP Chillara, VK (reprint author), Los Alamos Natl Lab, Acoust & Sensors Team, Mat Phys & Applicat MPA 11, Los Alamos, NM 87545 USA. EM vamshik.iitm007@gmail.com RI Pantea, Cristian/D-4108-2009 FU DOE EERE-Geothermal Technologies Program through SubTER (Subsurface Technology and Engineering Research, Development and Demonstration) FX This research was funded by DOE EERE-Geothermal Technologies Program through SubTER (Subsurface Technology and Engineering Research, Development and Demonstration). NR 22 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 6 PY 2017 VL 110 IS 6 AR 064101 DI 10.1063/1.4975800 PG 5 WC Physics, Applied SC Physics GA EK6UC UT WOS:000394058600042 ER PT J AU Farmand, M Celestre, R Denes, P Kilcoyne, ALD Marchesini, S Padmore, H Tyliszczak, T Warwick, T Shi, X Lee, J Yu, YS Cabana, J Joseph, J Krishnan, H Perciano, T Maia, FRNC Shapiro, DA AF Farmand, Maryam Celestre, Richard Denes, Peter Kilcoyne, A. L. David Marchesini, Stefano Padmore, Howard Tyliszczak, Tolek Warwick, Tony Shi, Xiaowen Lee, James Yu, Young-Sang Cabana, Jordi Joseph, John Krishnan, Harinarayan Perciano, Talita Maia, Filipe R. N. C. Shapiro, David A. TI Near-edge X-ray refraction fine structure microscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID ADVANCED LIGHT-SOURCE; CLUSTER-ANALYSIS; PARTICLE-SIZE; SPECTROMICROSCOPY; SCATTERING; RESOLUTION; NANOSCALE; SPECTROSCOPY; ABSORPTION; DEPENDENCE AB We demonstrate a method for obtaining increased spatial resolution and specificity in nanoscale chemical composition maps through the use of full refractive reference spectra in soft x-ray spectro- microscopy. Using soft x-ray ptychography, we measure both the absorption and refraction of x-rays through pristine reference materials as a function of photon energy and use these reference spectra as the basis for decomposing spatially resolved spectra from a heterogeneous sample, thereby quantifying the composition at high resolution. While conventional instruments are limited to absorption contrast, our novel refraction based method takes advantage of the strongly energy dependent scattering cross-section and can see nearly five-fold improved spatial resolution on resonance. Published by AIP Publishing. C1 [Farmand, Maryam; Celestre, Richard; Denes, Peter; Kilcoyne, A. L. David; Marchesini, Stefano; Padmore, Howard; Tyliszczak, Tolek; Warwick, Tony; Shi, Xiaowen; Lee, James; Yu, Young-Sang; Shapiro, David A.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Shi, Xiaowen; Lee, James] Univ Oregon, Dept Phys, Eugene, OR 97401 USA. [Yu, Young-Sang; Cabana, Jordi] Univ Illinois, Dept Chem, Chicago, IL 60607 USA. [Joseph, John] Lawrence Berkeley Natl Lab, Div Engn, Berkeley, CA 94720 USA. [Krishnan, Harinarayan; Perciano, Talita] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Maia, Filipe R. N. C.] Uppsala Univ, Lab Mol Biophys, SE-75124 Uppsala, Sweden. RP Shapiro, DA (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM dashapiro@lbl.gov RI Kilcoyne, David/I-1465-2013 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Center for Applied Mathematics for Energy Research Applications (CAMERA); Northeast Center for Chemical Energy Storage, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences Award [DE-SC0012583] FX Soft X-ray ptychographic microscopy was carried out at beamline 5.3.2.1 at the Advanced Light Source. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was partially supported by the Center for Applied Mathematics for Energy Research Applications (CAMERA), which is a partnership between Basic Energy Sciences (BES) and Advanced Scientific Computing Research (ASRC) at the U.S. Department of Energy. Partial support was also provided by the Northeast Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0012583. NR 30 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 6 PY 2017 VL 110 IS 6 AR 063101 DI 10.1063/1.4975377 PG 5 WC Physics, Applied SC Physics GA EK6UC UT WOS:000394058600031 ER PT J AU Mitrofanov, O Han, ZH Ding, F Bozhevolnyi, SI Brener, I Reno, JL AF Mitrofanov, Oleg Han, Zhanghua Ding, Fei Bozhevolnyi, Sergey I. Brener, Igal Reno, John L. TI Detection of internal fields in double-metal terahertz resonators SO APPLIED PHYSICS LETTERS LA English DT Article ID MICROCAVITIES; PROBE; ANTENNAS; WAVES AB Terahertz (THz) double-metal plasmonic resonators enable enhanced light-matter coupling by exploiting strong field confinement. The double-metal design however restricts access to the internal fields. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal electromagnetic fields in double-metal plasmonic resonators. We use the concept of image charges and aperture-type scanning near-field THz time-domain microscopy to probe the fields confined within the closed resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub-wavelength volumes at THz frequencies. Published by AIP Publishing. C1 [Mitrofanov, Oleg] UCL, Elect & Elect Engn, London WC1E 7JE, England. [Mitrofanov, Oleg; Brener, Igal; Reno, John L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. [Han, Zhanghua] China Jiliang Univ, Ctr Terahertz Res, Hangzhou 310018, Zhejiang, Peoples R China. [Ding, Fei; Bozhevolnyi, Sergey I.] Univ Southern Denmark, Ctr Nano Opt, DK-5230 Odense, Denmark. [Brener, Igal; Reno, John L.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Mitrofanov, O (reprint author), UCL, Elect & Elect Engn, London WC1E 7JE, England.; Mitrofanov, O (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA.; Han, ZH (reprint author), China Jiliang Univ, Ctr Terahertz Res, Hangzhou 310018, Zhejiang, Peoples R China. EM o.mitrofanov@ucl.ac.uk; han@cjlu.edu.cn OI Bozhevolnyi, Sergey/0000-0002-0393-4859; Han, Zhanghua/0000-0002-4177-2555 FU Royal Society [U130493]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; National Science Foundation of China [51511140421] FX This work was supported in part by the Royal Society under Grant No. U130493. The experimental work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Z.H. acknowledges the support from National Science Foundation of China (No. 51511140421). NR 28 TC 1 Z9 1 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 6 PY 2017 VL 110 IS 6 AR 061109 DI 10.1063/1.4975802 PG 5 WC Physics, Applied SC Physics GA EK6UC UT WOS:000394058600009 ER PT J AU Ophus, C Ercius, P Huijben, M Ciston, J AF Ophus, Colin Ercius, Peter Huijben, Mark Ciston, Jim TI Non-spectroscopic composition measurements of SrTiO3-La0.7Sr0.3MnO3 multilayers using scanning convergent beam electron diffraction SO APPLIED PHYSICS LETTERS LA English DT Article ID PHASE-CONTRAST; ATOMIC-RESOLUTION; THIN-FILMS; FERROELECTRICITY; PTYCHOGRAPHY; ENHANCEMENT; MICROSCOPY; INTERFACE AB The local atomic structure of a crystalline sample aligned along a zone axis can be probed with a focused electron probe, which produces a convergent beam electron diffraction pattern. The introduction of high speed direct electron detectors has allowed for experiments that can record a full diffraction pattern image at thousands of probe positions on a sample. By incoherently summing these patterns over crystalline unit cells, we demonstrate that in addition to crystal structure and thickness, we can also estimate the local composition of a perovskite superlattice sample. This is achieved by matching the summed patterns to a library of simulated diffraction patterns. This technique allows for atomic-scale chemical measurements without requiring a spectrometer or hardware aberration correction. Published by AIP Publishing. C1 [Ophus, Colin; Ercius, Peter; Ciston, Jim] Lawrence Berkeley Natl Lab, Mol Foundry, Natl Ctr Electron Microscopy, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Huijben, Mark] Univ Twente, Fac Sci & Technol, Carre 3239, NL-7500 AE Enschede, Netherlands. RP Ophus, C (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Natl Ctr Electron Microscopy, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM cophus@gmail.com OI Ophus, Colin/0000-0003-2348-8558 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy Early Career Research Program FX The authors thank Cory Czarnik, Karen Bustillo, Marissa Libbee, and Michael Sarahan for their help with the experiments presented here. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. J.C. acknowledges additional support from the U.S. Department of Energy Early Career Research Program. NR 29 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 6 PY 2017 VL 110 IS 6 AR 063102 DI 10.1063/1.4975932 PG 4 WC Physics, Applied SC Physics GA EK6UC UT WOS:000394058600032 ER PT J AU Bateman, AP Gong, ZH Harder, TH de Sa, SS Wang, BB Castillo, P China, S Liu, YJ O'Brien, RE Palm, BB Shiu, HW Cirino, GG Thalman, R Adachi, K Alexander, ML Artaxo, P Bertram, AK Buseck, PR Gilles, MK Jimenez, JL Laskin, A Manzi, AO Sedlacek, A Souza, RAF Wang, J Zaveri, R Martin, ST AF Bateman, Adam P. Gong, Zhaoheng Harder, Tristan H. de Sa, Suzane S. Wang, Bingbing Castillo, Paulo China, Swarup Liu, Yingjun O'Brien, Rachel E. Palm, Brett B. Shiu, Hung-Wei Cirino, Glauber G. Thalman, Ryan Adachi, Kouji Alexander, M. Lizabeth Artaxo, Paulo Bertram, Allan K. Buseck, Peter R. Gilles, Mary K. Jimenez, Jose L. Laskin, Alexander Manzi, Antonio O. Sedlacek, Arthur Souza, Rodrigo A. F. Wang, Jian Zaveri, Rahul Martin, Scot T. TI Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SECONDARY ORGANIC AEROSOL; PHASE STATE; WATER-UPTAKE; RELATIVE-HUMIDITY; ALPHA-PINENE; MIXING STATE; RAIN-FOREST; PARTICLES; AMAZON; GROWTH AB The occurrence of nonliquid and liquid physical states of submicron atmospheric particulate matter (PM) downwind of an urban region in central Amazonia was investigated. Measurements were conducted during two intensive operating periods (IOP1 and IOP2) that took place during the wet and dry seasons of the GoAmazon2014/5 campaign. Air masses representing variable influences of background conditions, urban pollution, and regional-and continental-scale biomass burning passed over the research site. As the air masses varied, particle rebound fraction, an indicator of physical state, was measured in real time at ground level using an impactor apparatus. Micrographs collected by transmission electron microscopy confirmed that liquid particles adhered, while nonliquid particles rebounded. Relative humidity (RH) was scanned to collect rebound curves. When the apparatus RH matched ambient RH, 95% of the particles adhered as a campaign average. Secondary organic material, produced for the most part by the oxidation of volatile organic compounds emitted from the forest, produces liquid PM over this tropical forest. During periods of anthropogenic influence, by comparison, the rebound fraction dropped to as low as 60% at 95% RH. Analyses of the mass spectra of the atmospheric PM by positive-matrix factorization (PMF) and of concentrations of carbon monoxide, total particle number, and oxides of nitrogen were used to identify time periods affected by anthropogenic influences, including both urban pollution and biomass burning. The occurrence of nonliquid PM at high RH correlated with these indicators of anthropogenic influence. A linear model having as output the rebound fraction and as input the PMF factor loadings explained up to 70% of the variance in the observed rebound fractions. Anthropogenic influences can contribute to the presence of nonliquid PM in the atmospheric particle population through the combined effects of molecular species that increase viscosity when internally mixed with background PM and increased concentrations of nonliquid anthropogenic particles in external mixtures of anthropogenic and biogenic PM. C1 [Bateman, Adam P.; Gong, Zhaoheng; de Sa, Suzane S.; Liu, Yingjun; Martin, Scot T.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Harder, Tristan H.; O'Brien, Rachel E.; Gilles, Mary K.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA USA. [Wang, Bingbing; China, Swarup; Shiu, Hung-Wei; Alexander, M. Lizabeth; Laskin, Alexander; Zaveri, Rahul] Pacific Northwest Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Wang, Bingbing] Xiamen Univ, Coll Ocean & Earth Sci, State Key Lab Marine Environm Sci, Xiamen, Peoples R China. [Castillo, Paulo; Thalman, Ryan; Wang, Jian] Brookhaven Natl Lab, Environm & Climate Sci Dept, Upton, NY 11973 USA. [Palm, Brett B.; Jimenez, Jose L.] Univ Colorado, Dept Chem, Boulder, CO 80309 USA. [Palm, Brett B.; Jimenez, Jose L.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Cirino, Glauber G.; Manzi, Antonio O.] Natl Inst Amazonian Res, Manaus, Amazonas, Brazil. [Adachi, Kouji] Meteorol Res Inst, Atmospher Environm & Appl Meteorol Res Dept, Tsukuba, Ibaraki, Japan. [Artaxo, Paulo] Univ Sao Paulo, Dept Fis Aplicada, Sao Paulo, Brazil. [Bertram, Allan K.] Univ British Columbia, Dept Chem, Vancouver, BC, Canada. [Buseck, Peter R.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA. [Buseck, Peter R.] Arizona State Univ, Sch Mol Sci, Tempe, AZ USA. [Souza, Rodrigo A. F.] Amazonas State Univ, Manaus, Amazonas, Brazil. [Martin, Scot T.] Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA. [Harder, Tristan H.] Univ Wurzburg, Inst Phys, Hubland, D-97074 Wurzburg, Germany. [O'Brien, Rachel E.] MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Shiu, Hung-Wei] Natl Synchrotron Radiat Res Ctr, Sci Res Div, Hsinchu 30076, Taiwan. [Thalman, Ryan] Snow Coll, Dept Chem, Richfield, UT USA. [Thalman, Ryan] Snow Coll, Dept Nat Resources, Richfield, UT USA. RP Martin, ST (reprint author), Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.; Martin, ST (reprint author), Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA. EM scot_martin@harvard.edu RI Laskin, Alexander/I-2574-2012; OI Laskin, Alexander/0000-0002-7836-8417; Liu, Yingjun/0000-0001-6659-3660 FU Central Office of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA); National Institute of Amazonian Research (INPA); Amazonas State University (UEA); Office of Biological and Environmental Research of the Office of Science of the United States Department of Energy; Amazonas State Research Foundation (FAPEAM); Sao Paulo State Research Foundation (FAPESP); Brazil Scientific Mobility Program (CsF/CAPES); US National Science Foundation; Japanese Ministry of the Environment; Brazilian National Council for Scientific and Technological Development (CNPq) [001030/2012-4] FX Institutional support was provided by the Central Office of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA), the National Institute of Amazonian Research (INPA), and Amazonas State University (UEA). The Office of Biological and Environmental Research of the Office of Science of the United States Department of Energy is acknowledged for funding, specifically the Atmospheric Radiation Measurement (ARM) Climate Research Facility, the Atmospheric System Research (ASR) Program, the Division of Chemical Sciences, Geosciences, and Biosciences (Advanced Light Source at Lawrence Berkeley National Laboratory, Beamlines 5.3.2 and 11.0.2), the Environmental Molecular Sciences Laboratory (EMSL), and Pacific Northwest National Laboratory (PNNL). Further funding was provided by the Amazonas State Research Foundation (FAPEAM), the Sao Paulo State Research Foundation (FAPESP), the Brazil Scientific Mobility Program (CsF/CAPES), the US National Science Foundation, and the Japanese Ministry of the Environment. The work was conducted under scientific licenses 001030/2012-4 of the Brazilian National Council for Scientific and Technological Development (CNPq). NR 62 TC 0 Z9 0 U1 7 U2 7 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD FEB 6 PY 2017 VL 17 IS 3 BP 1759 EP 1773 DI 10.5194/acp-17-1759-2017 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EM1TJ UT WOS:000395099600001 ER PT J AU Debnath, M Iungo, GV Ashton, R Brewer, WA Choukulkar, A Delgado, R Lundquist, JK Shaw, WJ Wilczak, JM Wolfe, D AF Debnath, Mithu Iungo, G. Valerio Ashton, Ryan Brewer, W. Alan Choukulkar, Aditya Delgado, Ruben Lundquist, Julie K. Shaw, William J. Wilczak, James M. Wolfe, Daniel TI Vertical profiles of the 3-D wind velocity retrieved from multiple wind lidars performing triple range-height-indicator scans SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID COHERENT DOPPLER LIDAR; LOW-LEVEL JET; TURBINE WAKES; FIELD-MEASUREMENTS; SONIC ANEMOMETER; BOUNDARY-LAYER; REGIMES; ERROR AB Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved with good accuracy. However, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup. C1 [Debnath, Mithu; Iungo, G. Valerio; Ashton, Ryan] Univ Texas Dallas, Dept Mech Engn, Wind Fluids & Expt WindFluX Lab, Richardson, TX 75083 USA. [Brewer, W. Alan; Choukulkar, Aditya; Wilczak, James M.] NOAA, Earth Sci Res Lab, Boulder, CO USA. [Delgado, Ruben] Univ Maryland Baltimore Cty, Atmospher Phys Dept, Baltimore, MD 21228 USA. [Lundquist, Julie K.] Natl Renewable Energy Lab, Golden, CO USA. [Lundquist, Julie K.] Univ Colorado Boulder, Dept Atmospher & Ocean Sci, Boulder, CO USA. [Shaw, William J.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Wolfe, Daniel] NOAA, Div Phys Sci, Boulder, CO USA. RP Iungo, GV (reprint author), Univ Texas Dallas, Dept Mech Engn, Wind Fluids & Expt WindFluX Lab, Richardson, TX 75083 USA. EM valerio.iungo@utdallas.edu; julie.lundquist@colorado.edu; james.m.wilczak@noaa.gov OI Shaw, William/0000-0002-9979-1089; Delgado, Ruben/0000-0002-7133-2462 FU Alliance for Sustainable Energy, LLC FX The authors acknowledge A. J. Clifton for his contribution to the XPIA experiment. This paper was developed based upon funding from the Alliance for Sustainable Energy, LLC, Managing and Operating Contractor for the National Renewable Energy Laboratory for the US Department of Energy. NR 40 TC 1 Z9 1 U1 4 U2 4 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PD FEB 6 PY 2017 VL 10 IS 2 BP 431 EP 444 DI 10.5194/amt-10-431-2017 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EM1UO UT WOS:000395102800001 ER PT J AU Subramanian, V Schuster, LA Moore, KT Taylor, LE Baker, JO Wall, TAV Linger, JG Himmel, ME Decker, SR AF Subramanian, Venkataramanan Schuster, Logan A. Moore, Kyle T. Taylor, Larry E., II Baker, John O. Wall, Todd A. Vander Linger, Jeffrey G. Himmel, Michael E. Decker, Stephen R. TI A versatile 2A peptide-based bicistronic protein expressing platform for the industrial cellulase producing fungus, Trichoderma reesei SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Trichoderma reesei; Foot-and-mouth disease virus (FMDV) 2A peptide; Protein expression; Cellobiohydrolase; Fungus; Biomass hydrolysis; Green fluorescence protein ID HYPOCREA-JECORINA; CLEAVAGE ACTIVITIES; POLYPROTEIN; APHTHOVIRUS; IMPROVEMENT; SYSTEM AB Background: The industrial workhorse fungus, Trichoderma reesei, is typically exploited for its ability to produce cellulase enzymes, whereas use of this fungus for over-expression of other proteins (homologous and heterologous) is still very limited. Identifying transformants expressing target protein is a tedious task due to low transformation efficiency, combined with highly variable expression levels between transformants. Routine methods for identification include PCR-based analysis, western blotting, or crude activity screening, all of which are time-consuming techniques. To simplify this screening, we have adapted the 2A peptide system from the foot-and-mouth disease virus (FMDV) to T. reesei to express a readily screenable marker protein that is co-translated with a target protein. The 2A peptide sequence allows multiple independent genes to be transcribed as a single mRNA. Upon translation, the 2A peptide sequence causes a "ribosomal skip" generating two (or more) independent gene products. When the 2A peptide is translated, the "skip" occurs between its two C-terminal amino acids (glycine and proline), resulting in the addition of extra amino acids on the C terminus of the upstream protein and a single proline addition to the N terminus of the downstream protein. To test this approach, we have cloned two heterologous proteins on either side of a modified 2A peptide, a secreted cellobiohydrolase enzyme (Cel7A from Penicillium funiculosum) as our target protein, and an intracellular enhanced green fluorescent protein (eGFP) as our marker protein. Using straightforward monitoring of eGFP expression, we have shown that we can efficiently monitor the expression of the target Cel7A protein. Results: Co-expression of Cel7A and eGFP via the FMDV 2A peptide sequence resulted in successful expression of both test proteins in T. reesei. Separation of these two polypeptides via the modified 2A peptide was similar to 100% efficient. The Cel7A was efficiently secreted, whereas the eGFP remained intracellular. Both proteins were expressed when cloned in either order, i. e., Cel7A-2A-eGFP (C2G) or eGFP-2A-Cel7A (G2C); however, eGFP expression and/or functionality were dependent upon the order of transcription. Specifically, expression of Cel7A was linked to eGFP expression in the C2G orientation, whereas expression of Cel7A could not be reliably correlated to eGFP fluorescence in the G2C construct. Whereas eGFP stability and/or fluorescence were affected by gene order, Cel7A was expressed, secreted, and exhibited the expected functionality in both the G2C and C2G orientations. Conclusions: We have successfully demonstrated that two structurally unrelated proteins can be expressed in T. reesei using the FMDV 2A peptide approach; however, the order of the genes can be important. The addition of a single proline to the N terminus of eGFP in the C2G orientation did not appear to affect fluorescence, which correlated well with Cel7A expression. The addition of 21 amino acids to the C terminus of eGFP in the G2C orientation, however, appeared to severely reduce fluorescence and/or stability, which could not be linked with Cel7A expression. The molecular biology tool that we have implemented in this study will provide an efficient strategy to test the expression of heterologous proteins in T. reesei, while also providing a novel platform for developing this fungus as an efficient multi-protein-expressing host using a single polycistronic gene expression cassette. An additional advantage of this system is that the co-expressed proteins can be theoretically produced at equimolar ratios, as ( A) they all originate from a single transcript and ( B) unlike internal ribosome entry site ( IRES)-mediated polycistronic expression, each cistron should be translated equimolarly as there is no ribosomal dissociation or reloading between cistrons. C1 [Subramanian, Venkataramanan; Schuster, Logan A.; Moore, Kyle T.; Taylor, Larry E., II; Baker, John O.; Wall, Todd A. Vander; Himmel, Michael E.; Decker, Stephen R.] Natl Renewable Energy Lab, Biosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Linger, Jeffrey G.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Subramanian, V (reprint author), Natl Renewable Energy Lab, Biosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM venkat.subramanian@nrel.gov FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; Department of Energy Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office (BETO) FX This work was supported by the U.S. Department of Energy under Contract DE-AC36-08GO28308 with the National Renewable Energy Laboratory and by the Department of Energy Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office (BETO). NR 20 TC 0 Z9 0 U1 7 U2 7 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD FEB 6 PY 2017 VL 10 AR 34 DI 10.1186/s13068-017-0710-7 PG 15 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA EK3RM UT WOS:000393843600001 PM 28184247 ER PT J AU Qin, Y Pan, XY Kubicek, C Druzhinina, I Chenthamara, K Labbe, J Yuan, ZL AF Qin, Yuan Pan, Xueyu Kubicek, Christian Druzhinina, Irina Chenthamara, Komal Labbe, Jessy Yuan, Zhilin TI Diverse Plant-Associated Pleosporalean Fungi from Saline Areas: Ecological Tolerance and Nitrogen-Status Dependent Effects on Plant Growth SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE Pleosporales; dark septate endophytes; halophytes; organic nitrogen; symbiosis ID ARBUSCULAR MYCORRHIZAL FUNGI; ROOT-ENDOPHYTIC FUNGI; DARK-SEPTATE; ECTOMYCORRHIZAL FUNGI; ARABIDOPSIS-THALIANA; BIOMASS PRODUCTION; STRESS TOLERANCE; SYMBIOSIS; PHYLOGENY; MONTAGNULACEAE AB Similar to mycorrhizal mutualists, the rhizospheric and endophytic fungi are alsoconsidered to act as active regulators of host fitness (e.g., nutrition and stress tolerance).Despite considerable work in selected model systems, it is generally poorly understoodhow plant-associated fungi are structured in habitats with extreme conditions and towhat extent they contribute to improved plant performance. Here, we investigate thecommunity composition of root and seed-associated fungi from six halophytes growingin saline areas of China, and found that the pleosporalean taxa (Ascomycota) were mostfrequently isolated across samples. A total of twenty-seven representative isolates wereselected for construction of the phylogeny based on the multi-locus data (partial 18SrDNA, 28S rDNA, and transcription elongation factor 1-a), which classified them intoseven families, one clade potentially representing a novel lineage. Fungal isolates weresubjected to growth response assays by imposing temperature, pH, ionic and osmoticconditions. The fungi had a wide pH tolerance, while most isolates showed a variabledegree of sensitivity to increasing concentration of either salt or sorbitol. Subsequentplant-fungal co-culture assays indicated that most isolates had only neutral or evenadverse effects on plant growth in the presence of inorganic nitrogen. Interestingly,when provided with organic nitrogen sources the majority of the isolates enhancedplant growth especially aboveground biomass. Most of the fungi preferred organicnitrogen over its inorganic counterpart, suggesting that these fungi can readily mineralizeorganic nitrogen into inorganic nitrogen. Microscopy revealed that several isolatescan successfully colonize roots and form melanized hyphae and/or microsclerotia-likestructures within cortical cells suggesting a phylogenetic assignment as dark septateendophytes. This work provides a better understanding of the symbiotic relationshipbetween plants and pleosporalean fungi, and initial evidence for the use of this fungalgroup in benefiting plant production. C1 [Qin, Yuan; Pan, Xueyu; Yuan, Zhilin] Chinese Acad Forestry, Inst Subtrop Forestry, Hangzhou, Zhejiang, Peoples R China. [Kubicek, Christian; Druzhinina, Irina; Chenthamara, Komal] TU Wien, Inst Chem Engn, Res Area Biochem Technol, Vienna, Austria. [Labbe, Jessy] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. RP Yuan, ZL (reprint author), Chinese Acad Forestry, Inst Subtrop Forestry, Hangzhou, Zhejiang, Peoples R China. EM yuanzl@caf.ac.cn FU National Natural Science Foundation of China [31370704]; Fundamental Research Funds for the Central Non-profit Research Institution of RISF-CAF [RISF2013005]; U.S. Department of Energy, Office of Science, Biological and Environmental Research as part of the Plant-Microbe Interfaces Scientific Focus Area; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was financially supported by the National Natural Science Foundation of China (No. 31370704) and the Fundamental Research Funds for the Central Non-profit Research Institution of RISF-CAF (RISF2013005). JL was supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research as part of the Plant-Microbe Interfaces Scientific Focus Area (http://pmi.ornl.gov). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. We would like to express our sincere thanks to Prof. Liyan (Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences) and Prof. Xinhua (School of Life Science, Qingdao Agricultural University) for helping us collect and identify the halophytes. We also greatly appreciate Dr. David Weston (Biosciences Division, Oak Ridge National Laboratory) for improving the language. NR 94 TC 0 Z9 0 U1 11 U2 11 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD FEB 6 PY 2017 VL 8 AR 158 DI 10.3389/fmicb.2017.00158 PG 14 WC Microbiology SC Microbiology GA EJ6MQ UT WOS:000393333900001 PM 28220113 ER PT J AU Zammit, MC Savage, JS Fursa, DV Bray, I AF Zammit, Mark C. Savage, Jeremy S. Fursa, Dmitry V. Bray, Igor TI Electron-impact excitation of molecular hydrogen SO PHYSICAL REVIEW A LA English DT Article ID DIFFERENTIAL CROSS-SECTIONS; POTENTIAL-ENERGY CURVES; OPTICAL OSCILLATOR-STRENGTHS; CLOSE-COUPLING CALCULATIONS; R-MATRIX METHOD; TRANSITION MOMENTS; INTERMEDIATE ENERGIES; DIATOMIC-MOLECULES; VARIATIONAL METHOD; B3-SIGMA-U+ STATE AB We report the electron impact integrated and differential cross sections for excitation to the b(3)Sigma(+)(u), a(3)Sigma(+)(g), c(3)Pi(u), B-1 Sigma(+)(u), E,F-1 Sigma(+)(g), C-1 Pi(u), e(3)Sigma(+)(u), h(3)Sigma(+)(g), d(3)Pi(u), B'(1)Sigma(+)(u), D-1 Pi(u), B''(1)Sigma(+)(u), and D'(1)Pi(u) states of molecular hydrogen in the energy range from 10 to 300 eV. Total scattering and total ionization cross sections are also presented. The calculations have been performed by using the convergent close-coupling method within the fixed-nuclei approximation. Detailed convergence studies have been performed with respect to the size of the close-coupling expansion and a set of recommended cross sections has been produced. Significant differences with previous calculations are found. Agreement with experiment is mixed, ranging from excellent to poor depending on the transition and incident energies. C1 [Zammit, Mark C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zammit, Mark C.; Savage, Jeremy S.; Fursa, Dmitry V.; Bray, Igor] Curtin Univ, Curtin Inst Computat, Perth, WA, Australia. [Zammit, Mark C.; Savage, Jeremy S.; Fursa, Dmitry V.; Bray, Igor] Curtin Univ, Dept Phys Astron & Med Radiat Sci, Perth, WA, Australia. RP Zammit, MC (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.; Zammit, MC (reprint author), Curtin Univ, Curtin Inst Computat, Perth, WA, Australia.; Zammit, MC (reprint author), Curtin Univ, Dept Phys Astron & Med Radiat Sci, Perth, WA, Australia. EM mzammit@lanl.gov FU United States Air Force Office of Scientific Research; Curtin University; LANs ASC PEM Atomic Physics Project; Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; Australian government; government of Western Australia; Los Alamos National Laboratory (LANL) FX This work was supported by the United States Air Force Office of Scientific Research, Los Alamos National Laboratory (LANL) and Curtin University. M.C.Z. would like to specifically acknowledge LANs ASC PEM Atomic Physics Project for its support. The LANL is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. Resources were provided by the Pawsey Supercomputing center with funding from the Australian government and the government of Western Australia. NR 89 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD FEB 6 PY 2017 VL 95 IS 2 AR 022708 DI 10.1103/PhysRevA.95.022708 PG 17 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA EJ8SQ UT WOS:000393496700011 ER PT J AU Zammit, MC Fursa, DV Savage, JS Bray, I Chiari, L Zecca, A Brunger, MJ AF Zammit, Mark C. Fursa, Dmitry V. Savage, Jeremy S. Bray, Igor Chiari, Luca Zecca, Antonio Brunger, Michael J. TI Adiabatic-nuclei calculations of positron scattering from molecular hydrogen SO PHYSICAL REVIEW A LA English DT Article ID CROSS-SECTION MEASUREMENTS; LOW-ENERGY-ELECTRON; (1,3)DELTA(G) STATES; TRANSITION MOMENTS; SINGLE IONIZATION; H-2; COLLISIONS; IMPACT; CURVES; LOWEST AB The single-center adiabatic-nuclei convergent close-coupling method is used to investigate positron collisions with molecular hydrogen (H-2) in the ground and first vibrationally excited states. Cross sections are presented over the energy range from 1 to 1000 eV for elastic scattering, vibrational excitation, total ionization, and the grand total cross section. The present adiabatic-nuclei positron-H-2 scattering length is calculated as A = -2.70(a0) for the ground state and A = -3.16(a0) for the first vibrationally excited state. The present elastic differential cross sections are also used to "correct" the low-energy grand total cross-section measurements of the Trento group [A. Zecca et al., Phys. Rev. A 80, 032702 (2009)] for the forward-angle-scattering effect. In general, the comparison with experiment is good. By performing convergence studies, we estimate that our R-m = 1.448(a0) fixed-nuclei results are converged to within +/-5% for the major scattering integrated cross sections. C1 [Zammit, Mark C.] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA. [Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor] Curtin Univ, Curtin Inst Computat, Perth, WA 6102, Australia. [Zammit, Mark C.; Fursa, Dmitry V.; Savage, Jeremy S.; Bray, Igor] Curtin Univ, Dept Phys Astron & Med Radiat Sci, Perth, WA 6102, Australia. [Chiari, Luca] Tokyo Univ Sci, Dept Phys, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan. [Zecca, Antonio] Univ Trento, Dept Phys, Via Sommarive 14, I-38123 Trento, Italy. [Brunger, Michael J.] Flinders Univ S Australia, Sch Chem & Phys Sci, GPO Box 2100, Adelaide, SA 5001, Australia. RP Zammit, MC (reprint author), Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA.; Zammit, MC (reprint author), Curtin Univ, Curtin Inst Computat, Perth, WA 6102, Australia.; Zammit, MC (reprint author), Curtin Univ, Dept Phys Astron & Med Radiat Sci, Perth, WA 6102, Australia. EM mzammit@lanl.gov FU United States Air Force Office of Scientific Research; Los Alamos National Laboratory (LANL); Curtin University; LANL's ASC PEM Atomic Physics Project; Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy [DEAC52-06NA25396]; Australian Government; Government of Western Australia FX This work was supported by the United States Air Force Office of Scientific Research, Los Alamos National Laboratory (LANL), and Curtin University. M.C.Z. would like to specifically acknowledge LANL's ASC PEM Atomic Physics Project for its support. The LANL is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DEAC52-06NA25396. Resources were provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia. NR 74 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD FEB 6 PY 2017 VL 95 IS 2 AR 022707 DI 10.1103/PhysRevA.95.022707 PG 15 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA EJ8SQ UT WOS:000393496700010 ER PT J AU Hou, TJ Dulat, S Gao, J Guzzi, M Huston, J Nadolsky, P Pumplin, J Schmidt, C Stump, D Yuan, CP AF Hou, Tie-Jiun Dulat, Sayipjamal Gao, Jun Guzzi, Marco Huston, Joey Nadolsky, Pavel Pumplin, Jon Schmidt, Carl Stump, Daniel Yuan, C. -P. TI CTEQ-TEA parton distribution functions and HERA Run I and II combined data SO PHYSICAL REVIEW D LA English DT Article ID CURRENT CROSS-SECTIONS; DEEP-INELASTIC SCATTERING; CHARGED-CURRENT; QCD ANALYSIS; LOW Q(2); LOW X; PROTON COLLISIONS; HEAVY QUARKS; LEPTOPRODUCTION; F(2) AB We analyze the impact of the recent HERA Run I + II combination of inclusive deep inelastic scattering cross-section data on the CT14 global analysis of parton distribution functions (PDFs). New PDFs at next-to-leading order and next-to-next-to-leading order, called CT14(HERA2), are obtained by a refit of the CT14 data ensembles, in which the HERA Run I combined measurements are replaced by the new HERA Run I + II combination. The CT14 functional parametrization of PDFs is flexible enough to allow good descriptions of different flavor combinations, so we use the same parametrization for CT14(HERA2) but with an additional shape parameter for describing the strange quark PDF. We find that the HERA I + II data can be fit reasonably well, and both CT14 and CT14(HERA2) PDFs can describe equally well the non-HERA data included in our global analysis. Because the CT14 and CT14(HERA2) PDFs agree well within the PDF errors, we continue to recommend CT14 PDFs for the analysis of LHC Run 2 experiments. C1 [Hou, Tie-Jiun; Nadolsky, Pavel] Southern Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Dulat, Sayipjamal] Xinjiang Univ, Sch Phys Sci & Technol, Urumqi 830046, Xinjiang, Peoples R China. [Dulat, Sayipjamal] Xinjiang Univ, Ctr Theoret Phys, Urumqi 830046, Xinjiang, Peoples R China. [Dulat, Sayipjamal; Huston, Joey; Pumplin, Jon; Schmidt, Carl; Stump, Daniel; Yuan, C. -P.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Gao, Jun] Shanghai Jiao Tong Univ, INPAC, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai 200240, Peoples R China. [Gao, Jun] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Guzzi, Marco] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. RP Hou, TJ (reprint author), Southern Methodist Univ, Dept Phys, Dallas, TX 75275 USA. EM tiejiunh@mail.smu.edu; sdulat@msu.edu; jgao@anl.gov; marco.guzzi@manchester.ac.uk; huston@pa.msu.edu; nadolsky@physics.smu.edu; pumplin@pa.msu.edu; schmidt@pa.msu.edu; stump@pa.msu.edu; yuan@pa.msu.edu RI Gao, Jun/C-9777-2017 FU National Science Foundation [PHY-1410972, PHY-1417326]; U.S. Department of Energy [DE-AC02-06CH11357, DE-SC0013681, DE-SC0010129]; National Natural Science Foundation of China [11465018]; Lancaster-Manchester-Sheffield Consortium for Fundamental Physics under STFC [ST/L000520/1] FX This research was supported in part by the National Science Foundation under Grants No. PHY-1410972 and PHY-1417326; by the U.S. Department of Energy under Award No. DE-AC02-06CH11357 and Grants No. DE-SC0013681 and No. DE-SC0010129; by the National Natural Science Foundation of China under Grant No. 11465018; and by the Lancaster-Manchester-Sheffield Consortium for Fundamental Physics under STFC Grant No. ST/L000520/1. NR 66 TC 0 Z9 0 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 6 PY 2017 VL 95 IS 3 AR 034003 DI 10.1103/PhysRevD.95.034003 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EJ8WE UT WOS:000393506900002 ER PT J AU Vesala, T Sevanto, S Gronholm, T Salmon, Y Nikinmaa, E Hari, P Holtta, T AF Vesala, Timo Sevanto, Sanna Gronholm, Tiia Salmon, Yann Nikinmaa, Eero Hari, Pertti Holtta, Teemu TI Effect of Leaf Water Potential on Internal Humidity and CO2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure SO FRONTIERS IN PLANT SCIENCE LA English DT Article DE water potential; CO2 assimilation; carbon uptake; water uptake; Kelvin effect; water use efficiency; redwood ID MONTANE CLOUD FOREST; FOLIAR UPTAKE; GAS-EXCHANGE; NIGHTTIME TRANSPIRATION; ABIES-FRASERI; DROUGHT; PHOTOSYNTHESIS; PLANTS; XYLEM; CONDUCTANCE AB The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but withmuch lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/ intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO2 concentration based on leaf gas exchange measurements. Manufactures of leaf gas exchange measurement systems should incorporate leaf water potentials in measurement set-ups. C1 [Vesala, Timo; Gronholm, Tiia; Salmon, Yann] Univ Helsinki, Dept Phys, Helsinki, Finland. [Vesala, Timo; Nikinmaa, Eero; Hari, Pertti; Holtta, Teemu] Univ Helsinki, Dept Forest Sci, Helsinki, Finland. [Vesala, Timo] Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland. [Sevanto, Sanna] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM USA. RP Gronholm, T (reprint author), Univ Helsinki, Dept Phys, Helsinki, Finland. EM tiia.gronholm@helsinki.fi OI Vesala, Timo/0000-0002-4852-7464 FU Academy of Finland Centre of Excellence [118780]; Academy Professor projects [1284701, 1282842]; ICOS-Finland [281255]; Los Alamos National Laboratory LDRD program [20130442ER, 20160373ER] FX The financial support by the Academy of Finland Centre of Excellence (118780), Academy Professor projects (1284701 and 1282842) and ICOS-Finland (281255) are acknowledged. SS was supported by Los Alamos National Laboratory LDRD program projects #20130442ER and #20160373ER. Eija Juurola, Lauri Lindfors, Maurizio Mencuccini, and Ilona Riipinen are acknowledged for helpful discussions and comments on the work. NR 55 TC 0 Z9 0 U1 34 U2 34 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1664-462X J9 FRONT PLANT SCI JI Front. Plant Sci. PD FEB 6 PY 2017 VL 8 AR 54 DI 10.3389/fpls.2017.00054 PG 10 WC Plant Sciences SC Plant Sciences GA EJ6LL UT WOS:000393330800001 PM 28220128 ER PT J AU MacQuarrie, ER Otten, M Gray, SK Fuchs, GD AF MacQuarrie, E. R. Otten, M. Gray, S. K. Fuchs, G. D. TI Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin-strain interaction SO NATURE COMMUNICATIONS LA English DT Article ID QUANTUM GROUND-STATE; RADIATION-PRESSURE; DIAMOND; MICROMIRROR AB Cooling a mechanical resonator mode to a sub-thermal state has been a long-standing challenge in physics. This pursuit has recently found traction in the field of optomechanics in which a mechanical mode is coupled to an optical cavity. An alternate method is to couple the resonator to a well-controlled two-level system. Here we propose a protocol to dissipatively cool a room temperature mechanical resonator using a nitrogen-vacancy centre ensemble. The spin ensemble is coupled to the resonator through its orbitally-averaged excited state, which has a spin-strain interaction that has not been previously studied. We experimentally demonstrate that the spin-strain coupling in the excited state is 13.5 +/- 0.5 times stronger than the ground state spin-strain coupling. We then theoretically show that this interaction, combined with a high-density spin ensemble, enables the cooling of a mechanical resonator from room temperature to a fraction of its thermal phonon occupancy. C1 [MacQuarrie, E. R.; Otten, M.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Gray, S. K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Fuchs, G. D.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. RP Fuchs, GD (reprint author), Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. EM gdf9@cornell.edu FU Office of Naval Research (ONR) [N000141410812]; National Science Foundation [ECCS-15420819]; NSF MRSEC program [DMR-1120296]; U.S. Department of Energy Office of Science User Facility [DE-AC02-06CH11357]; Office of Science of the U. S. Department of Energy [DE-AC05-00OR22725] FX Research support was provided by the Office of Naval Research (ONR) (Grant N000141410812). Device fabrication was performed in part at the Cornell NanoScale Science and Technology Facility, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (Grant ECCS-15420819), and at the Cornell Center for Materials Research Shared Facilities which are supported through the NSF MRSEC program (DMR-1120296). Numerical simulations were performed in part at the Centre for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility under contract no. DE-AC02-06CH11357. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 61 TC 0 Z9 0 U1 9 U2 9 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB 6 PY 2017 VL 8 AR 14358 DI 10.1038/ncomms14358 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EJ7BD UT WOS:000393375100001 PM 28165477 ER PT J AU Zhu, YG Liu, Q Rong, YC Chen, HM Yang, J Jia, CK Yu, LJ Karton, A Ren, Y Xu, XX Adams, S Wang, Q AF Zhu, Yun Guang Liu, Qi Rong, Yangchun Chen, Haomin Yang, Jing Jia, Chuankun Yu, Li-Juan Karton, Amir Ren, Yang Xu, Xiaoxiong Adams, Stefan Wang, Qing TI Proton enhanced dynamic battery chemistry for aprotic lithium-oxygen batteries SO NATURE COMMUNICATIONS LA English DT Article ID CYCLING LI-O-2 BATTERIES; REDOX MEDIATOR; LIOH FORMATION; ELECTROLYTE; CATALYST; CELLS; LI2O2; OXIDATION; WATER; DECOMPOSITION AB Water contamination is generally considered to be detrimental to the performance of aprotic lithium-air batteries, whereas this view is challenged by recent contrasting observations. This has provoked a range of discussions on the role of water and its impact on batteries. In this work, a distinct battery chemistry that prevails in water-contaminated aprotic lithium-oxygen batteries is revealed. Both lithium ions and protons are found to be involved in the oxygen reduction and evolution reactions, and lithium hydroperoxide and lithium hydroxide are identified as predominant discharge products. The crystallographic and spectroscopic characteristics of lithium hydroperoxide monohydrate are scrutinized both experimentally and theoretically. Intriguingly, the reaction of lithium hydroperoxide with triiodide exhibits a faster kinetics, which enables a considerably lower overpotential during the charging process. The battery chemistry unveiled in this mechanistic study could provide important insights into the understanding of nominally aprotic lithium-oxygen batteries and help to tackle the critical issues confronted. C1 [Zhu, Yun Guang; Chen, Haomin; Yang, Jing; Jia, Chuankun; Adams, Stefan; Wang, Qing] Natl Univ Singapore, Dept Mat Sci & Engn, Fac Engn, Singapore 117576, Singapore. [Liu, Qi; Rong, Yangchun; Ren, Yang] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Yu, Li-Juan; Karton, Amir] Univ Western Australia, Sch Chem & Biochem, 35 Stirling Highway, Perth, WA 6009, Australia. [Xu, Xiaoxiong] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China. RP Wang, Q (reprint author), Natl Univ Singapore, Dept Mat Sci & Engn, Fac Engn, Singapore 117576, Singapore. EM msewq@nus.edu.sg RI Adams, Stefan/G-9146-2011; Wang, Qing/G-6475-2010 OI Adams, Stefan/0000-0003-0710-135X; Wang, Qing/0000-0002-0263-3579 FU National Research Foundation, Prime Minister's Office, Singapore, under its Competitive Research Program (CRP) [NRF-CRP8-2011-04, NRF-CRP10-2012-06] FX This research was supported by the National Research Foundation, Prime Minister's Office, Singapore, under its Competitive Research Program (CRP Awards No NRF-CRP8-2011-04 and NRF-CRP10-2012-06). We thank Dr Du Yuan for his assistance on the FTIR measurement. We thank Professor Hui Ying Yang and Dr Linfeng Sun from Singapore University of Technology and Design for their assistance on Raman measurement. NR 44 TC 0 Z9 0 U1 60 U2 60 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB 6 PY 2017 VL 8 AR 14308 DI 10.1038/ncomms14308 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EJ6PC UT WOS:000393340300001 PM 28165008 ER PT J AU Chen, Q Qin, H Liu, J AF Chen, Qiang Qin, Hong Liu, Jian TI Photons, phonons, and plasmons with orbital angular momentum in plasmas SO SCIENTIFIC REPORTS LA English DT Article ID LIGHT; LASER; SPIN AB Exact eigen modes with orbital angular momentum (OAM) in the complex media of unmagnetized homogeneous plasmas are studied. Three exact eigen modes with OAM are derived, i.e., photons, phonons, and plasmons. The OAM of different plasma components are closely related to the charge polarities. For photons, the OAM of electrons and ions are of the same magnitude but opposite direction, and the total OAM is carried by the field. For the phonons and plasmons, their OAM are carried by the electrons and ions. The OAM modes in plasmas and their characteristics can be explored for potential applications in plasma physics and accelerator physics. C1 [Chen, Qiang; Qin, Hong; Liu, Jian] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China. [Chen, Qiang; Qin, Hong; Liu, Jian] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Chen, Qiang] Luoyang Elect Equipment Testing Ctr, Luoyang 471000, Peoples R China. [Qin, Hong] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Chen, Q (reprint author), Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China.; Chen, Q (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.; Chen, Q (reprint author), Luoyang Elect Equipment Testing Ctr, Luoyang 471000, Peoples R China.; Qin, H (reprint author), Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. EM cq0405@ustc.edu.cn; hongqin@ustc.edu.cn FU National Natural Science Foundation of China [NSFC-51477182, 11505186, 11575185, 11575186]; ITER-China Program [2015GB111003, 2014GB124005] FX This research is supported by the National Natural Science Foundation of China (NSFC-51477182, 11505186, 11575185, 11575186) and ITER-China Program (2015GB111003, 2014GB124005). NR 39 TC 0 Z9 0 U1 3 U2 3 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 6 PY 2017 VL 7 AR 41731 DI 10.1038/srep41731 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EJ5TP UT WOS:000393281300001 PM 28164998 ER PT J AU Curtright, TL Van Kortryk, TS Zachos, CK AF Curtright, T. L. Van Kortryk, T. S. Zachos, C. K. TI Spin multiplicities SO PHYSICS LETTERS A LA English DT Article DE Spin; Angular momentum; Kronecker product; Asymptotic behavior ID QUANTUM ALGEBRAS; STRING MODELS; SYMMETRY AB The number of times spin s appears in the Kronecker product of n spin j representations is computed, and the large n asymptotic behavior of the result is obtained. Applications are briefly sketched. (C) 2016 Elsevier B.V. All rights reserved. C1 [Curtright, T. L.; Van Kortryk, T. S.; Zachos, C. K.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Van Kortryk, T. S.; Zachos, C. K.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Curtright, TL (reprint author), Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. EM curtright@miami.edu; vankortryk@gmail.com; zachos@anl.gov FU University of Miami Cooper Fellowship FX We thank J. Katriel and J. Mendonca for pointing out elegant ways to re-express the multiplicity in the general case - expressions that we had initially overlooked. We also thank A. Polychronakos and K. Sfetsos for providing an advance copy of their paper. This work was supported in part by a University of Miami Cooper Fellowship. NR 26 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 EI 1873-2429 J9 PHYS LETT A JI Phys. Lett. A PD FEB 5 PY 2017 VL 381 IS 5 BP 422 EP 427 DI 10.1016/j.physleta.2016.12.006 PG 6 WC Physics, Multidisciplinary SC Physics GA EI8SC UT WOS:000392776900003 ER PT J AU Yang, DY Xia, Y Wen, J Liang, JJ Mu, PC Wang, ZG Li, YH Wang, YQ AF Yang, Dongyan Xia, Yue Wen, Juan Liang, Jinjie Mu, Pengcheng Wang, Zhiguang Li, Yuhong Wang, Yongqiang TI Role of ion species in radiation effects of Lu2Ti2O7 pyrochlore SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Radiation effects; Ion species; Pyrochlores; Amorphization; Lattice swelling ID INDUCED AMORPHIZATION RESISTANCE; SWIFT HEAVY-IONS; WASTE IMMOBILIZATION; IRRADIATION; TOLERANCE; A(2)B(2)O(7); CERAMICS; DISORDER; GD2TI2O7; OXIDES AB In an attempt to investigate the role of ion species in the radiation effects of pyrochlores, polycrystalline Lu2Ti2O7 samples, prepared through a standard solid state process, were irradiated with three different ion beams: 400 keV Ne2+, 2.7 MeV Ar11+ and 6.5 MeV Xe26+. To characterize the damaged layers in Lu2Ti2O7, the grazing incident X-ray diffraction technique was applied. All the three irradiations induce significant amorphization processes and lattice swelling in Lu2Ti2O7. However, when the ion fluence is converted to a standard dose in dpa, the radiation effects of Lu2Ti2O7 show a great dependence on the implanted ion species. The threshold amorphization dose decreases with increasing ion mass and energy. Besides, the amorphization rate, as well as lattice swelling rate, increases with increasing ion mass and energy. That is, the Lu2Ti2O7 pyrochlore is more susceptible to amorphization and lattice swelling under heavier ion irradiation. These results are then discussed in the framework of defect configuration and the density of collision cascades based on Monte Carlo simulations. (C) 2016 Elsevier B.V. All rights reserved. C1 [Yang, Dongyan; Xia, Yue; Wen, Juan; Liang, Jinjie; Mu, Pengcheng; Li, Yuhong] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China. [Yang, Dongyan; Liang, Jinjie; Wang, Zhiguang] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. [Wang, Yongqiang] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Li, YH (reprint author), Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China. EM liyuhong@lzu.edu.cn FU National Natural Science Foundation of China [11475076, 11175076, 51471160]; Fundamental Research Funds for the Central Universities of China (Lanzhou University) [lzujbky-2015-239]; Center for Integrated Nanotechnologies, a DOE nanoscience user facility FX This work was sponsored by the National Natural Science Foundation of China (11475076, 11175076 and 51471160) and the Fundamental Research Funds for the Central Universities of China (Lanzhou University, lzujbky-2015-239). Ion Beam Materials Laboratory was supported by the Center for Integrated Nanotechnologies, a DOE nanoscience user facility jointly operated by Los Alamos and Sandia National Laboratories. The authors would also like to thank the operational staff at the 320 kV platform for multi-discipline research with highly charged ions at the Institute of Modern Physics, CAS. NR 48 TC 0 Z9 0 U1 12 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD FEB 5 PY 2017 VL 693 BP 565 EP 572 DI 10.1016/j.jallcom.2016.09.227 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA ED1MU UT WOS:000388610400072 ER PT J AU Song, G Sun, ZQ Clausen, B Liaw, PK AF Song, Gian Sun, Zhiqian Clausen, Bjorn Liaw, Peter K. TI Microstructural characteristics of a Ni2TiAl-precipitate-strengthened ferritic alloy SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Heusler phases; Neutron diffraction; Precipitation hardening; Transmission electron microscopy ID FE-NI-AL; NEUTRON-DIFFRACTION; CREEP-BEHAVIOR; DEFORMATION MECHANISMS; ELECTRON-MICROSCOPY; HIGH-TEMPERATURES; BASE SUPERALLOYS; STEELS; RESISTANCE AB The microstructure of a Ni2TiAl-strengthened ferritic alloy at room and elevated temperatures is characterized, using scanning/transmission-electron microscopy (SEM/TEM) and neutron-diffraction (ND). The SEM/TEM results revealed that this alloy contains a L2(1)-type Ni2TiAl precipitate distributed in the Fe matrix, and the L2(1) precipitate is decorated with a high density of interfacial dislocations (semi-coherent interfaces). The TEM energy-dispersive X-ray spectroscopy (EDS) was used to derive the compositions and volume fractions of the precipitate and matrix phases, using the lever rule. The in-situ ND was conducted to investigate the evolution of the microstructures, such as lattice parameters and thermal-expansion coefficients of the Fe and L21 phases, and the composition and volume fraction of the precipitate, during heating to 700 degrees C. These in-situ ND studies revealed an increase in the intensity ratio of the (220)(L21) to (110)(Fe) and the non-linear evolution of the lattice misfit between the precipitate and matrix during heating to 700 degrees C, which suggests a possible variation in the composition and volume fraction of the precipitate around 700 degrees C. (C) 2016 Elsevier B.V. All rights reserved. C1 [Song, Gian; Sun, Zhiqian; Liaw, Peter K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Clausen, Bjorn] Los Alamos Natl Lab, Lujan Ctr, Los Alamos, NM 87545 USA. RP Song, G; Liaw, PK (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM gsong1@vols.utk.edu; pkliaw@utk.edu OI Song, Gian/0000-0001-7462-384X FU Department of Energy (DOE), Office of Fossil Energy Program [DE-09NT0008089, DE-FE0005868, DE-FE-0011194, DE-FE-0024054]; Office of Basic Energy Sciences (DOE); DOE [DE-AC52-06NA-25396] FX The research is supported by the Department of Energy (DOE), Office of Fossil Energy Program, under Grants of DE-09NT0008089, DE-FE0005868, DE-FE-0011194, and DE-FE-0024054 with Mr. Richard Dunst, Mr. Vito Cedro, Dr. Patricia Rawls, Mr. Steven Markovich, and Dr. Jessica Mullen as the program managers. The work has been benefitted from the use of the Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE), which is funded by the Office of Basic Energy Sciences (DOE). Los Alamos National Laboratory is operated by the Los Alamos National Security LLC under the DOE Contract number of DE-AC52-06NA-25396. NR 40 TC 0 Z9 0 U1 24 U2 24 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD FEB 5 PY 2017 VL 693 BP 921 EP 928 DI 10.1016/j.jallcom.2016.09.177 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA ED1MU UT WOS:000388610400116 ER PT J AU Aad, G Abbott, B Abdallah, J Abdinov, O Abeloos, B Aben, R Abolins, M AbouZeid, OS Abraham, NL Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Alkire, SP Allbrooke, BMM Allen, BW Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Alstaty, M Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Armitage, LJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Artz, S Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Navarro, LB Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bedognetti, M Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, AS Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Belyaev, NL Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Benitez, J Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Beringer, J Berlendis, S Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertram, IA Bertsche, C Bertsche, D Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bielski, R Biesuz, NV Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Blunier, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Boerner, D Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bokan, P Bold, T Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Bortfeldt, J Bortoletto, D Bortolotto, V Bos, K Boscherini, D Bosman, M Sola, JDB Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Boutle, SK Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Broughton, JH de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Brunt, B Bruschi, M Bruscino, N Bryant, P Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Budagov, IA Buehrer, F Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burka, K Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Calvet, TP Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Camincher, C Campana, S Campanelli, M Camplani, A Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Carbone, RM Cardarelli, R Cardillo, F Carli, I Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Casper, DW Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavallaro, E Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Alberich, LC Cerio, BC Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chan, SK Chan, YL Chang, P Chapman, JD Charlton, DG Chatterjee, A Chau, CC Barajas, CAC Che, S Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, HJ Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chitan, A Chizhov, MV Choi, K Chomont, AR Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocio, A Cirotto, F Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, BL Clark, MR Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Colasurdo, L Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cormier, KJR Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cottin, G Cowan, G Cox, BE Cranmer, K Crawley, SJ Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuth, J Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dado, T Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Dann, NS Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, M Davison, P Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Deigaard, I Del Gaudio, M Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Denysiuk, D Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Clemente, WK Di Donato, C Di Girolamo, A Di Girolamo, B Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Du, Y Duarte-Campderros, J Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duflot, L Duguid, L Duhrssen, M Dumancic, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edwards, NC Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellajosyula, V Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Ennis, JS Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, F Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farina, C Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fawcett, WJ Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Forcolin, GT Formica, A Forti, A Foster, AG Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D Fressard-Batraneanu, SM Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, LG Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Bravo, AG Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Gecse, Z Gee, CNP Geich-Gimbel, C Geisler, MP Gemme, C Genest, MH Geng, C Gentile, S George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Ghneimat, M Giacobbe, B Giagu, S Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuli, F Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, L Gongadze, A de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gssling, C Gostkin, MI Goudet, CR Goujdami, D Goussiou, AG Govender, N Gozani, E Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Grevtsov, K Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Groh, S Grohs, JP Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guan, W Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Hadef, A Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, JJ Heinrich, L Heinz, C Hejbal, J Helary, L Hellman, S Helsens, C Henderson, J Henderson, RCW Heng, Y Henkelmann, S Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohlfeld, M Hohn, D Holmes, TR Homann, M Hong, TM Hooberman, BH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hub, Q Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Huo, P Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ito, F Ponce, JMI Iuppa, R Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jain, V Jakobi, KB Jakobs, K Jakobsen, S Jakoubek, T Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanneau, F Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, H Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, S Jones, TJ Jongmanns, J Jorge, PM Jovicevic, J Ju, X Rozas, AJ Kohler, MK Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kaluza, A Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kanjir, L Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Kentaro, K Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khalil-zada, F Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Kowalewska, AB Kowalewski, R Kowalski, TZ Kozakai, C Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuechler, JT Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLLR La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lammers, S Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Lazzaroni, M Le, B Le Dortz, O Le Guirriec, E Le Quilleuc, EP LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Lerner, G Leroy, C Lesage, AAJ Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, Q Li, S Li, X Li, Y Liang, Z Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limosani, A Lin, SC Lin, TH Lindquist, BE Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, YL Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Longo, L Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Solis, AL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, H Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lynn, D Lysak, R Lytken, E Lyubushkin, V Ma, H Ma, LL Ma, Y Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Maneira, J de Andrade, LM Ramos, JM Mann, A Mansoulie, B Mansour, JD Mantifel, R Mantoani, M Manzoni, S Mapelli, L Marceca, G March, L Marchiori, G Marcisovsky, M Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mc Fadden, NC Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McClymont, LI McDonald, EF McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melini, D Garcia, BRM Melo, M Meloni, F Mengarelli, A Menke, S Meoni, E Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Theenhausen, HMZ Miano, F Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monden, R Mondragon, MC Monig, K Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Sanchez, FJM Quijada, JAM Murray, WJ Musheghyan, H Muskinja, M Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagano, K Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naryshkin, I Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Manh, TN Nickerson, RB Nicolaidou, R Nielsen, J Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Norjoharuddeen, N Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Nurse, E Nuti, F O'grady, F O'Neil, DC O'Rourke, AA O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okawa, H Okumura, Y Okuyama, T Olariu, A Seabra, LFO Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oreglia, MJ Oren, Y Orestano, D Orlando, N Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A St Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, AJ Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pascuzzi, VR Pasqualucci, E Passaggio, S Pastore, F Pastore, F Pasztor, G Pataraia, S Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Penc, O Peng, C Peng, H Penwell, J Peralva, BS Perego, MM Perepelitsa, DV Codina, EP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrov, M Petrucci, F Pettersson, NE Peyaud, A Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pilcher, JE Pilkington, AD Pin, AWJ Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Astigarraga, MEP Pralavorio, P Pranko, A Prell, S Price, D Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Przybycien, M Puddu, D Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Raine, JA Rajagopalan, S Rammensee, M Rangel-Smith, C Ratti, MG Rauscher, F Rave, S Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Rembser, C Ren, H Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Rizzi, C Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodina, Y Perez, AR Rodriguez, DR Roe, S Rogan, CS Rohne, O Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosenthal, O Rosien, NA Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rud, VI Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryu, S Ryzhov, A Rzehorz, GF Saavedra, AF Sabato, G Sacerdoti, S Sadrozinski, HFW Sadykov, R Tehrani, FS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schillo, C Schioppa, M Schlenker, S Schmieden, K Schmitt, C Schmitt, S Schmitz, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schorlemmer, ALS Schott, M Schovancova, J Schramm, S Schreyer, M Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciolla, G Scuri, F Scutti, F Searcy, J Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shaikh, NW Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Sicho, P Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Simon, M Sinervo, P Sinev, NB Sioli, M Siragusa, G Sivoklokov, SY Sjolin, J Sjursen, TB Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Slovak, R Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Sanchez, CAS Solar, M Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Son, H Song, HY Sood, A Sopczak, A Sopko, V Sorin, V Sosa, D Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M St Denis, RD Stabile, A Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, GH Stark, J Staroba, P Starovoitov, P Starz, S Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Suchek, S Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Araya, ST Tapprogge, S Tarem, S Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, AC Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Tong, B Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Trofymov, A Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tseng, JCL Tsiareshka, PV Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsui, KM Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turgeman, D Turra, R Turvey, AJ Tuts, PM Tyndel, M Ucchielli, G Ueda, I Ueno, R Ughetto, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Santurio, EV Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC van der Geer, R van der Graaf, H van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vasquez, JG Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Veneziano, S Ventura, A Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigani, L Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vittori, C Vivarelli, I Vlachos, S Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wallangen, V Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K Whallon, NL Wharton, AM White, A White, MJ White, R White, S Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilk, F Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wingerter-Seez, I Winklmeier, F Winston, OJ Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yang, Z Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yusuff, I Zabinski, B Zaidand, R Zaitsev, AM Zakharchuk, N Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, JC Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, R Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Abeloos, B. Aben, R. Abolins, M. AbouZeid, O. S. Abraham, N. L. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allen, B. W. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Alstaty, M. Gonzalez, B. Alvarez Piqueras, D. Alvarez Alviggi, M. G. Amadio, B. T. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Armitage, L. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Artz, S. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Navarro, L. Barranco Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bedognetti, M. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, A. S. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Belyaev, N. L. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Benitez, J. Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Beringer, J. Berlendis, S. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertram, I. A. Bertsche, C. Bertsche, D. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bielski, R. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Blunier, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Boerner, D. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bokan, P. Bold, T. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Bortfeldt, J. Bortoletto, D. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Sola, J. D. Bossio Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Broughton, J. H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Brunt, Bh Bruschi, M. Bruscino, N. Bryant, P. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Budagov, I. A. Buehrer, F. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burka, K. Burke, S. Burmeister, I. Busato, E. Buscher, D. Buscher, V. Bussey, P. Butler, J. M. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Urban, S. Cabrera Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Calvet, T. P. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Camincher, C. Campana, S. Campanelli, M. Camplani, A. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, I. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Casper, D. W. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavallaro, E. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Alberich, L. Cerda Cerio, B. C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, S. K. Chan, Y. L. Chang, P. Chapman, J. D. Charlton, D. G. Chatterjee, A. Chau, C. C. Barajas, C. A. Chavez Che, S. Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, H. J. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chitan, A. Chizhov, M. V. Choi, K. Chomont, A. R. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocio, A. Cirotto, F. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, B. L. Clark, M. R. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Colasurdo, L. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cormier, K. J. R. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Crawley, S. J. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dado, T. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Dann, N. S. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, M. Davison, P. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Deigaard, I. Del Gaudio, M. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Denysiuk, D. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Clemente, W. K. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Du, Y. Duarte-Campderros, J. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duflot, L. Duguid, L. Duhrssen, M. Dumancic, M. Dunford, M. Yildiz, H. Duran Duren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edwards, N. C. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellajosyula, V. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Ennis, J. S. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, F. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farina, C. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fawcett, W. J. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Martinez, P. Fernandez Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Forcolin, G. T. Formica, A. Forti, A. Foster, A. G. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. Fressard-Batraneanu, S. M. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, L. G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Bravo, A. Gascon Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisler, M. P. Gemme, C. Genest, M. H. Geng, C. Gentile, S. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Ghneimat, M. Giacobbe, B. Giagu, S. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuli, F. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gongadze, A. de la Hoz, S. Gonzalez Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gssling, C. Gostkin, M. I. Goudet, C. R. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstrom, P. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Grevtsov, K. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Groh, S. Grohs, J. P. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guan, W. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Hadef, A. Haefner, P. Hagebock, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, J. J. Heinrich, L. Heinz, C. Hejbal, J. Helary, L. Hellman, S. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Henkelmann, S. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Jimenez, Y. Hernandez Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohlfeld, M. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. Hooberman, B. H. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hub, Q. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hulsing, T. A. Huo, P. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ito, F. Ponce, J. M. Iturbe Iuppa, R. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jain, V. Jakobi, K. B. Jakobs, K. Jakobsen, S. Jakoubek, T. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanneau, F. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, H. Jiang, Y. Jiggins, S. Pena, J. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, S. Jones, T. J. Jongmanns, J. Jorge, P. M. Jovicevic, J. Ju, X. Rozas, A. Juste Kohler, M. K. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kaluza, A. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kanjir, L. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Kentaro, K. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khalil-zada, F. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Kopke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Kowalewska, A. B. Kowalewski, R. Kowalski, T. Z. Kozakai, C. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Kruger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuechler, J. T. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. Navarro, J. L. La Rosa La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lammers, S. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Lazzaroni, M. Le, B. Le Dortz, O. Le Guirriec, E. Le Quilleuc, E. P. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Lerner, G. Leroy, C. Lesage, A. A. J. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, Q. Li, S. Li, X. Li, Y. Liang, Z. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limosani, A. Lin, S. C. Lin, T. H. Lindquist, B. E. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. L. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Longo, L. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Solis, A. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Losel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, H. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lynn, D. Lysak, R. Lytken, E. Lyubushkin, V. Ma, H. Ma, L. L. Ma, Y. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Miguens, J. Machado Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Maneira, J. Manhaes de Andrade Filho, L. Ramos, J. Manjarres Mann, A. Mansoulie, B. Mansour, J. D. Mantifel, R. Mantoani, M. Manzoni, S. Mapelli, L. Marceca, G. March, L. Marchiori, G. Marcisovsky, M. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mattig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mc Fadden, N. C. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McClymont, L. I. McDonald, E. F. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melini, D. Garcia, B. R. Mellado Melo, M. Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Theenhausen, H. Meyer Zu Miano, F. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Monden, R. Mondragon, M. C. Monig, K. Monk, J. Monnier, E. Montalbano, A. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Sanchez, F. J. Munoz Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Muskinja, M. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagano, K. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naryshkin, I. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Manh, T. Nguyen Nickerson, R. B. Nicolaidou, R. Nielsen, J. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Norjoharuddeen, N. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Nurse, E. Nuti, F. O'grady, F. O'Neil, D. C. O'Rourke, A. A. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Seabra, L. F. Oleiro Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. St Panagiotopoulou, E. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, A. J. Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pascuzzi, V. R. Pasqualucci, E. Passaggio, S. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Penc, O. Peng, C. Peng, H. Penwell, J. Peralva, B. S. Perego, M. M. Perepelitsa, D. V. Codina, E. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrov, M. Petrucci, F. Pettersson, N. E. Peyaud, A. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Astigarraga, M. E. Pozo Pralavorio, P. Pranko, A. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Przybycien, M. Puddu, D. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Raine, J. A. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Ratti, M. G. Rauscher, F. Rave, S. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Rembser, C. Ren, H. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Rizzi, C. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodina, Y. Perez, A. Rodriguez Rodriguez, D. Rodriguez Roe, S. Rogan, C. S. Rohne, O. Romaniouk, A. Romano, M. Saez, S. M. Romano Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosenthal, O. Rosien, N. -A. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rud, V. I. Rudolph, M. S. Ruhr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryu, S. Ryzhov, A. Rzehorz, G. F. Saavedra, A. F. Sabato, G. Sacerdoti, S. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Loyola, J. E. Salazar Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schafer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schillo, C. Schioppa, M. Schlenker, S. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schorlemmer, A. L. S. Schott, M. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shaikh, N. W. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simon, M. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Slovak, R. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Sanchez, C. A. Solans Solar, M. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Son, H. Song, H. Y. Sood, A. Sopczak, A. Sopko, V. Sorin, V. Sosa, D. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. St Denis, R. D. Stabile, A. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, G. H. Stark, J. Staroba, P. Starovoitov, P. Starz, S. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Strohmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Suchek, S. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Araya, S. Tapia Tapprogge, S. Tarem, S. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, A. C. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tong, B. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Trofymov, A. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tseng, J. C-L. Tsiareshka, P. V. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsui, K. M. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turgeman, D. Turra, R. Turvey, A. J. Tuts, P. M. Tyndel, M. Ucchielli, G. Ueda, I. Ueno, R. Ughetto, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Santurio, E. Valdes Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Vallecorsa, S. Ferrer, J. A. Valls Van den Wollenberg, W. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasquez, J. G. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloce, L. M. Veloso, F. Veneziano, S. Ventura, A. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigani, L. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vittori, C. Vivarelli, I. Vlachos, S. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wallangen, V. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. Whallon, N. L. Wharton, A. M. White, A. White, M. J. White, R. White, S. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilk, F. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winston, O. J. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yang, Z. Yao, W-M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yusuff, I. Zabinski, B. Zaidand, R. Zaitsev, A. M. Zakharchuk, N. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, J. C. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zwalinski, L. CA ATLAS Collaboration TI Search for lepton-flavour-violating decays of the Higgs and Z bosons with the ATLAS detector SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID HADRON COLLIDERS; PARTICLE; TAU; NUMBER AB Direct searches for lepton flavour violation in decays of the Higgs and Z bosons with the ATLAS detector at the LHC are presented. The following three decays are considered: H -> e tau, H -> mu tau, and Z -> mu tau. The searches are based on the data sample of proton-proton collisions collected by the ATLAS detector corresponding to an integrated luminosity of 20.3 fb(-1) at a centre-of-mass energy of root s = 8 TeV. No significant excess is observed, and upper limits on the lepton-flavour-violating branching ratios are set at the 95% confidence level: Br(H -> e tau) < 1.04%, Br(H -> mu tau) < 1.43%, and Br(Z -> mu tau) < 1.69 x 10(-5). C1 [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Czodrowski, P.; Dassoulas, J.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mt Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; LeCompte, T.; Love, J.; Malon, D.; Metcalfe, J.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ryu, S.; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Wang, R.; Webster, J. S.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Jones, S.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Annovi, A.; Brandt, A.; Bullock, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; St Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Andeen, T.; Ilchenko, Y.; Narayan, R.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavallaro, E.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Perez, S. Fernandez; Fischer, C.; Fracchia, S.; Gerbaudo, D.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rizzi, C.; Perez, A. Rodriguez; Sorin, V.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Barcelona Inst Sci & Technol, IFAE, Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bokan, P.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Aloisio, A.; Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin Dit; Sjursen, T. B.; Smestad, L.; Stugu, B.; Yang, Z.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Mergelmeyer, S.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Mullier, G. A.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Allport, P. P.; Bella, L. Aperio; Baca, M. J.; Bracinik, J.; Broughton, J. H.; Casadei, D.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Foster, A. G.; Gonella, L.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Istanbul Bilgi Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Beddall, A. J.] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] INFN, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Biondi, S.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Ghneimat, M.; Grefe, C.; Haefner, P.; Hagebock, S.; Hansen, M. C.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Kruger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Mijovic, L.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Seema, P.; Stillings, J. A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.; Zhang, R.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Dhaliwal, S.; Loew, K. M.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.; Peralva, B. S.] Univ Fed Juiz de Fora, Elect Circuits Dept, Juiz de Fora, Brazil. [do Vale, M. A. B.] Univ Fed Sao Joao del Rei, Sao Joao del Rei, Brazil. [Donadelli, M.; Navarro, J. L. La Rosa; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Elmsheuser, J.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lee, C. A.; Lissauer, D.; Liu, H.; Lynn, D.; Ma, H.; Maeno, T.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Tricoli, A.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Sola, J. D. Bossio; Marceca, G.; Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Brunt, Bh; Carter, J. R.; Chapman, J. D.; Cottin, G.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Potter, C. J.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Gillberg, D.; Koffas, T.; Lacey, J.; Leight, W. A.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Ruiz-Martinez, A.; Ueno, R.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON, Canada. [Aleksa, M.; Aloisio, A.; Gonzalez, B. Alvarez; Amoroso, S.; Anders, G.; Anghinolfi, F.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Burckhart, H.; Camarda, S.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Colombo, T.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feng, E. J.; Francis, D.; Fressard-Batraneanu, S. M.; Froidevaux, D.; Gadatsch, S.; Glatzer, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Gumpert, C.; Hawkings, R. J.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jakobsen, S.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Marzin, A.; Milic, A.; Berlingen, J. Montejo; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Astigarraga, M. E. Pozo; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Sforza, F.; Sanchez, C. A. Solans; Spigo, G.; Starz, S.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Bryant, P.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Gardner, R. W.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Oreglia, M. J.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Stark, G. H.; Swiatlowski, M.; Vukotic, I.; Wu, M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Blunier, S.; Diaz, M. A.; Ochoa-Ricoux, J. P.] Catholic Univ Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; Loyola, J. E. Salazar; Araya, S. Tapia; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; da Costa, J. Barreiro Guimaraes; Cheng, H. J.; Fang, Y.; Jin, S.; Li, Q.; Liang, Z.; Merino, J. Llorente; Lou, X.; Mansour, J. D.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Geng, C.; Guo, Y.; Han, L.; Hub, Q.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, M.; Liu, Y. L.; Peng, H.; Song, H. Y.; Zhang, G.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Du, Y.; Feng, C.; Ma, L. L.; Ma, Y.; Wang, C.; Zaidand, R.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Bret, M. Cano; Guo, J.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai, Peoples R China. [Bret, M. Cano; Guo, J.; Li, L.; Yang, H.] PKU CHEP, Shanghai, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Univ Blaise Pascal, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Angerami, A.; Brooijmans, G.; Carbone, R. M.; Clark, M. R.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Lab Nazl Frascati, Frascati, Italy. [Cairo, V. M.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dyndal, M.; Gach, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Burka, K.; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Kowalewska, A. B.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] Southern Methodist Univ, Dept Phys, Dallas, TX USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX USA. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Monig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Yildirim, E.; Zakharchuk, N.] DESY, Hamburg, Germany. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Monig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Yildirim, E.; Zakharchuk, N.] DESY, Zeuthen, Germany. [Burmeister, I.; Dette, K.; Erdmann, J.; Esch, H.; Gssling, C.; Homann, M.; Jentzsch, J.; Klingenberg, R.; Kroeninger, K.; Schorlemmer, A. L. S.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Siegert, F.; Socher, F.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; Pino, S. A. Olivares; Proissl, M.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buscher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Luedtke, C.; Mohr, W.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruhr, F.; Rurikova, Z.; Sammel, D.; Schillo, C.; Schnoor, U.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tsiskaridze, V.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Albert Ludwigs Univ, Fak Math & Phys, Freiburg, Germany. [Ancu, L. S.; De Mendizabal, J. Bilbao; Calace, N.; Chatterjee, A.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; March, L.; Mermod, P.; Miucci, A.; Nackenhorst, O.; Paolozzi, L.; Ristic, B.; Schramm, S.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Miglioranzi, S.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] INFN, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Miglioranzi, S.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Duren, M.; Heinz, C.; Kreutzfeldt, K.; Stenzel, H.] Justus Liebig Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; Crawley, S. J.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; Gul, U.; Knue, A.; Mullen, P.; O'Shea, V.; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Blumenschein, U.; Brandt, G.; Drechsler, E.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nadal, J.; Quadt, A.; Rieger, J.; Rosien, N. -A.; Rzehorz, G. F.; Shabalina, E.; Stolte, P.; Veatch, J.; Weingarten, J.; Zinonos, Z.] Georg August Univ, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Berlendis, S.; Camincher, C.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Gradin, P. O. J.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Petit, E.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Chan, S. K.; Clark, B. L.; Franklin, M.; Giromini, P.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Morii, M.; Rogan, C. S.; Skottowe, H. P.; Sun, S.; Tolley, E.; Tong, B.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Theenhausen, H. Meyer Zu; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Suchek, S.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; de Lima, D. E. Ferreira; Giulini, M.; Kolb, M.; Lisovyi, M.; Radescu, V.; Schaetzel, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsui, K. M.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.; Orlando, N.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Kopeliansky, R.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jansky, R.; Kneringer, E.; Lukas, W.; Usanova, A.; Vigne, R.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Abdallah, J.; Argyropoulos, S.; Benitez, J.; Mallik, U.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Jiang, H.; Krumnack, N.; Pluth, D.; Prell, S.; Yu, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gongadze, A.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Lyubushkin, V.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kondo, T.; Kono, T.; Makida, Y.; Nagai, R.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kishimoto, T.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan. [Ishino, M.; Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka, Japan. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Annovi, A.; Barton, A. E.; Beattie, M. D.; Bertram, I. A.; Borissov, G.; Bouhova-Thacker, E. V.; Cheatham, S.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Muenstermann, D.; Parker, A. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Aliev, M.; Bachas, K.; Chiodini, G.; Gorini, E.; Longo, L.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN, Sez Lecce, Lecce, Italy. [Aliev, M.; Bachas, K.; Gorini, E.; Longo, L.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Armitage, L. J.; Bevan, A. J.; Bona, M.; Cerrito, L.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bell, A. S.; Butterworth, J. M.; Campanelli, M.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Leney, K. J. C.; Martyniuk, A. C.; McClymont, L. I.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Artz, S.; Becker, M.; Bertella, C.; Blum, W.; Buscher, V.; Caputo, R.; Caudron, J.; Cuth, J.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Groh, S.; Heck, T.; Hohlfeld, M.; Hulsing, T. A.; Jakobi, K. B.; Kaluza, A.; Karnevskiy, M.; Kleinknecht, K.; Kopke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Pleskot, V.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schafer, U.; Schmitt, C.; Schmitz, S.; Schott, M.; Schuh, N.; Simioni, E.; Simon, M.; Tapprogge, S.; Urrejola, P.; Webb, S.; Wollstadt, S. J.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Barnes, S. L.; Bielski, R.; Cox, B. E.; Da Via, C.; Dann, N. S.; Forcolin, G. T.; Forti, A.; Ponce, J. M. Iturbe; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Sanchez, F. J. Munoz; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Raine, J. A.; Schwanenberger, C.; Schweiger, H.; Shaw, S. M.; Tomlinson, L.; Watts, S.; Wilk, F.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Gao, J.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Gao, J.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pettersson, N. E.; Picazio, A.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Jennens, D.; Le, B.; McDonald, E. F.; Milesi, M.; Nuti, F.; Scutti, F.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Ungaro, F. C.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Guan, L.; Levin, D.; Liu, H.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Martin, B.; Mondragon, M. C.; Plucinski, P.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Camplani, A.; Carminati, L.; Cavalli, D.; Citterio, M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaroni, M.; Mandelli, L.; Manzoni, S.; Mazza, S. M.; Meroni, C.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Carminati, L.; Fanti, M.; Lazzaroni, M.; Manzoni, S.; Mazza, S. M.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Shojaii, S.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Ducu, O. A.; Gagnon, L. G.; Gauthier, L.; Leroy, C.; Manh, T. Nguyen; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Belyaev, N. L.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Heinrich, J. J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Losel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Rauscher, F.; Ruschke, A.; Schaile, D.; Unverdorben, C.; Valderanis, C.; Walker, R.; Wittkowski, J.] Ludwig Maximilians Univ Munchenyy, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; La Rosa, A.; Macchiolo, A.; Maier, A. A.; Menke, S.; Mueller, F.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Spettel, F.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Kentaro, K.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi, Japan. [Horii, Y.; Kentaro, K.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] INFN, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Napoli, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Mc Fadden, N. C.; Seidel, S. C.; Taylor, A. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Konig, A. C.; Nektarijevic, S.; Strubig, A.] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Nikhef, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Andari, N.; Burghgrave, B.; Chakraborty, D.; Cole, S.; Saha, P.] Northern Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] RAS, SB, Budker Inst Nucl Phys, Novosibirsk, Russia. [Becot, C.; Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Beacham, J. B.; Che, S.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama, Japan. [Abbott, B.; Alhroob, M.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK USA. [Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Abreu, R.; Allen, B. W.; Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Radloff, P.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abeloos, B.; Ayoub, M. K.; Bassalat, A.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Goudet, C. R.; Grivaz, J. -F.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Maiani, C.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.] Univ Paris Saclay, Univ Paris Sud, LAL, CNRS,IN2P3, Orsay, France. [Endo, M.; Nomachi, M.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, M. K.; Cameron, D.; Catmore, J. R.; Feigl, S.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Serfon, C.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Artoni, G.; Barr, A. J.; Becker, K.; Beresford, L.; Bortoletto, D.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Fawcett, W. J.; Frost, J. A.; Gallas, E. J.; Giuli, F.; Gupta, S.; Gwenlan, C.; Hays, C. P.; Henderson, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Nagai, K.; Nickerson, R. B.; Norjoharuddeen, N.; Petrov, M.; Pickering, M. A.; Tseng, J. C-L.; Viehhauser, G. H. A.; Vigani, L.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] INFN, Sez Pavia, Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Introzzi, G.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, Pavia, Italy. [Balunas, W. K.; Brendlinger, K.; Di Clemente, W. K.; Fletcher, R. R. M.; Haney, B.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Mistry, K. P.; Reichert, J.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Naryshkin, I.; Ryabov, Y. F.; Schegelsky, V. A.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] INFN, Sez Pisa, Pisa, Italy. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Farina, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Seabra, L. F. Oleiro; Onofre, A.; Palma, A.; Pedro, R.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Caparica, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Caforio, D.; Gallus, P.; Guenther, J.; Hubacek, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Sopczak, A.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Balek, P.; Berta, P.; Carli, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Kosek, T.; Leitner, R.; Reznicek, P.; Scheirich, D.; Slovak, R.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Ryzhov, A.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] NRC KI, State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; De Pedis, D.; De Salvo, A.; Di Donato, C.; Falciano, S.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Messina, A.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] INFN, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; Di Donato, C.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Vanadia, M.; Verducci, M.; Zanello, L.] Sapienza Univ Roma, Dipartimento Fis, Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Salamon, A.; Santonico, R.] INFN, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] INFN, Sez Roma Tre, Rome, Italy. [Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Res Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Denysiuk, D.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Jeanneau, F.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, J. F.; Le Quilleuc, E. P.; Lesage, A. A. J.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Perego, M. M.; Peyaud, A.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay, DSM IRFU, Gif Sur Yvette, France. [AbouZeid, O. S.; Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Hance, M.; Kuhl, A.; Law, A. T.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Alpigiani, C.; Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Johnson, W. J.; Lubatti, H. J.; Marx, M.; Meehan, S.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.; Whallon, N. L.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ghasemi, S.; Ibragimov, I.; Li, Y.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada. [Armbruster, A. J.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Su, D.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Dado, T.; Melo, M.; Plazak, L.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice, Slovakia. [Castaneda-Miranda, E.; Hamilton, A.; Yacoob, S.] Univ Cape Town, Dept Phys, Cape Town, South Africa. [Connell, S. H.; Govender, N.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hsu, C.; Kar, D.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Abraham, N. L.; Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Lerner, G.; Miano, F.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.; Winston, O. J.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW, Australia. [Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Gozani, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Duarte-Campderros, J.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel. [Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo, Japan. [Batista, S. J.; Chau, C. C.; Cormier, K. J. R.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Keoshkerian, H.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Pascuzzi, V. R.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Hod, N.; Jovicevic, J.; Codina, E. Perez; Schneider, B.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC, Canada. [Garcia, J. A. Benitez; Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON, Canada. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Sliwa, K.; Son, H.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Casper, D. W.; Corso-Radu, A.; Frate, M.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Boldyrev, A. S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] INFN, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Boldyrev, A. S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, Udine, Italy. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Maddocks, H. J.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Atkinson, M.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Hooberman, B. H.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Neubauer, M. S.; Rybar, M.; Shang, R.; Vichou, I.; Zeng, J. C.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, IMB, CNM, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; King, S. B.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; McPherson, R. A.; Pearce, J.; Seuster, R.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Annovi, A.; Beckingham, M.; Ennis, J. S.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Bressler, S.; Citron, Z. H.; Duchovni, E.; Dumancic, M.; Gross, E.; Kohler, M. K.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.; Turgeman, D.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Banerjee, Sw.; Guan, W.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Kruse, A.; Ming, Y.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Strohmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Julius Maximilians Univ, Fak Phys & Astron, Wurzburg, Germany. [Bannoura, A. A. E.; Boerner, D.; Braun, H. M.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Flick, T.; Gabizon, O.; Gilles, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kersten, S.; Kuechler, J. T.; Mattig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Vogel, M.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachgrp Phys, Fak Math & Nat Wissensch, Wuppertal, Germany. [Baker, O. K.; Noccioli, E. Benhar; Cummings, J.; Demers, S.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Hernandez, D. Paredes; Thomsen, L. A.; Tipton, P.; Vasquez, J. G.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk, Russia. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC, Canada. [Banerjee, Sw.] Univ Louisville, Dept Phys & Astron, Louisville, KY USA. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, Fribourg, Switzerland. [Casado, M. P.] Univ Autonoma Barcelona, Dept Fis, Barcelona, Spain. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] IPP, Victoria, BC, Canada. [Ducu, O. A.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Geng, C.; Guo, Y.; Li, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Govender, N.] Rosebank, Ctr High Performance Comp, CSIR Campus, Cape Town, South Africa. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Barcelona, Spain. [Hanagaki, K.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu, Taiwan. [Igonkina, O.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Jenni, P.] CERN, Geneva, Switzerland. [Khubua, J.] GTU, Tbilisi, Rep of Georgia. [Kono, T.; Nagai, R.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellen Open Univ, Patras, Greece. [Lin, S. C.] Acad Sinica, Acad Sinica Grid Comp, Inst Phys, Taipei, Taiwan. [Liu, B.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pasztor, G.] Eotvos Lorand Univ, Budapest, Hungary. [Pinamonti, M.] SISSA, Trieste, Italy. [Purohit, M.] Univ South Carolina, Dept Phys & Astron, Columbia, SC USA. [Shi, L.; Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Shiyakova, M.] Bulgarian Acad Sci, INRNE, Sofia, Bulgaria. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Song, H. Y.; Zhang, G.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vest, A.] Flensburg Univ Appl Sci, Flensburg, Germany. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur, Malaysia. [Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France. [Zhang, R.] CNRS, IN2P3, Marseille, France. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France.; Aad, G (reprint author), CNRS, IN2P3, Marseille, France. RI Gladilin, Leonid/B-5226-2011; Prokoshin, Fedor/E-2795-2012; OI Gladilin, Leonid/0000-0001-9422-8636; Prokoshin, Fedor/0000-0001-6389-5399; Muenstermann, Daniel/0000-0001-6223-2497; Bertram, Iain/0000-0003-4073-4941 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC, NRC; CFI, Canada; CERN; CONICYT, Chile; CAS, MOST; NSFC, China; COLCIENCIAS, Colombia; MSMT CR; MPO CR; VSC CR; Czech Republic; DNRF; DNSRC, Denmark; IN2P3-CNRS; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF; HGF; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM; NWO, The Netherlands; RCN, Norway; MNiSW; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia; NRC KI; Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC; Wallenberg Foundation, Sweden; SERI; SNSF; Cantons of Bern; Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, UK; DOE; NSF, USA; BCKDF; Canada Council; CANARIE; CRC; Compute Canada; FQRNT; Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020; Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex; Idex; ANR; Region Auvergne; Fondation Partager le Savoir, France; DFG; AvH Foundation, Germany; Herakleitos; Thales; Aristeia programmes; EU-ESF; Greek NSRF; BSF, GIF; Minerva, Israel; BRF, Norway; Generalitat de Catalunya; Generalitat Valenciana, Spain; Royal Society; Leverhulme Trust, UK FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We thank Avital Dery and Aielet Efrati for their significant contribution and dedication to this study. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, The Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, UK; DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, UK. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (The Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities world wide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [70]. NR 69 TC 1 Z9 1 U1 8 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD FEB 4 PY 2017 VL 77 IS 2 AR 70 DI 10.1140/epjc/s10052-017-4624-0 PG 31 WC Physics, Particles & Fields SC Physics GA EK9DR UT WOS:000394224700002 ER PT J AU Khare, A Saxena, A AF Khare, Avinash Saxena, Avadh TI Integrable oscillator type and Schrodinger type dimers SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article DE PT-symmetry; nonlinear oscillator; stokes variables; constants of motion AB A PT-symmetric dimer is a two-site nonlinear oscillator dimer or a two-site nonlinear Schrodinger dimer where one site loses and the other site gains energy at the same rate. We present a wide class of integrable oscillator type dimers whose Hamiltonian is of arbitrary even order. Further, we also present a wide class of integrable nonlinear Schrodinger type dimers where again the Hamiltonian is of arbitrary even order. Finally, we consider a recently discussed complex dimer model and point out a few integrable cases in that model. C1 [Khare, Avinash] Savitribai Phule Pune Univ, Dept Phys, Pune 411007, Maharashtra, India. [Saxena, Avadh] Los Alamos Natl Lab, Theoret Div & Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Khare, A (reprint author), Savitribai Phule Pune Univ, Dept Phys, Pune 411007, Maharashtra, India. EM khare@physics.unipune.ac.in; avadh@lanl.gov FU Indian National Science Academy (INSA); US Department of Energy FX We thank P G Kevrekidis and J Cuevas-Maraver for discussions in the initial stages. One of us (AK) is grateful to Indian National Science Academy (INSA) for the award of INSA senior Scientist position at Savitribai Phule Pune University. This work was supported in part by the US Department of Energy. NR 13 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 EI 1751-8121 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD FEB 3 PY 2017 VL 50 IS 5 AR 055202 DI 10.1088/1751-8121/aa5362 PG 10 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA EP2LL UT WOS:000397214500009 ER PT J AU Wan, H Zhang, K Rasch, PJ Singh, B Chen, XY Edwards, J AF Wan, Hui Zhang, Kai Rasch, Philip J. Singh, Balwinder Chen, Xingyuan Edwards, Jim TI A new and inexpensive non-bit-for-bit solution reproducibility test based on time step convergence (TSC1.0) SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID COMMUNITY ATMOSPHERE MODEL; CONSISTENCY; ENSEMBLE AB A test procedure is proposed for identifying numerically significant solution changes in evolution equations used in atmospheric models. The test issues a "fail" signal when any code modifications or computing environment changes lead to solution differences that exceed the known time step sensitivity of the reference model. Initial evidence is provided using the Community Atmosphere Model (CAM) version 5.3 that the proposed procedure can be used to distinguish rounding-level solution changes from impacts of compiler optimization or parameter perturbation, which are known to cause substantial differences in the simulated climate. The test is not exhaustive since it does not detect issues associated with diagnostic calculations that do not feedback to the model state variables. Nevertheless, it provides a practical and objective way to assess the significance of solution changes. The short simulation length implies low computational cost. The independence between ensemble members allows for parallel execution of all simulations, thus facilitating fast turnaround. The new method is simple to implement since it does not require any code modifications. We expect that the same methodology can be used for any geophysical model to which the concept of time step convergence is applicable. C1 [Wan, Hui; Zhang, Kai; Rasch, Philip J.; Singh, Balwinder; Chen, Xingyuan] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Edwards, Jim] Natl Ctr Atmospher Res, Climate & Global Dynam Lab, POB 3000, Boulder, CO 80307 USA. RP Wan, H (reprint author), Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. EM hui.wan@pnnl.gov RI Zhang, Kai/F-8415-2010 OI Zhang, Kai/0000-0003-0457-6368 FU Accelerated Climate Modeling for Energy (ACME) program-US Department of Energy, Office of Science, Office of Biological and Environmental Research (BER); BER as part of the Scientific Discovery through Advanced Computing (SciDAC) Program; Linus Pauling Distinguished Postdoctoral Fellowship of the Pacific Northwest National Laboratory (PNNL); Office of Science of DOE [DE-AC05-00OR22725]; National Center for Atmospheric Research (NCAR) Computational and Information Systems Laboratory - National Science Foundation; DOE [DE-AC05-76RL01830] FX The authors thank W. Sacks (NCAR) and the two anonymous reviewers for their valuable comments and suggestions. This research was supported as part of the Accelerated Climate Modeling for Energy (ACME) program, funded by the US Department of Energy, Office of Science, Office of Biological and Environmental Research (BER). The basis of the work, the time step convergence study, was previously supported by BER as part of the Scientific Discovery through Advanced Computing (SciDAC) Program, and by the Linus Pauling Distinguished Postdoctoral Fellowship of the Pacific Northwest National Laboratory (PNNL). This research used high-performance computing resources from the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, supported by the Office of Science of DOE under contract no. DE-AC05-00OR22725, and the National Center for Atmospheric Research (NCAR) Computational and Information Systems Laboratory, sponsored by the National Science Foundation. PNNL is operated by Battelle Memorial Institute for DOE under contract DE-AC05-76RL01830. NCAR is sponsored by the National Science Foundation. NR 18 TC 0 Z9 0 U1 3 U2 3 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PD FEB 3 PY 2017 VL 10 IS 2 BP 537 EP 552 DI 10.5194/gmd-10-537-2017 PG 16 WC Geosciences, Multidisciplinary SC Geology GA EM1XS UT WOS:000395111200002 ER PT J AU Wang, M Jin, SJ Yi, M Song, Y Jiang, HC Zhang, WL Sun, HL Luo, HQ Christianson, AD Bourret-Courchesne, E Lee, DH Yao, DX Birgeneau, RJ AF Wang, Meng Jin, S. J. Yi, Ming Song, Yu Jiang, H. C. Zhang, W. L. Sun, H. L. Luo, H. Q. Christianson, A. D. Bourret-Courchesne, E. Lee, D. H. Yao, Dao-Xin Birgeneau, R. J. TI Strong ferromagnetic exchange interaction under ambient pressure in BaFe2S3 SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; BA-FE-S; IRON PNICTIDES; SPIN DYNAMICS; PHASES; LADDER; CHALCOGENIDES; WAVES; STATE AB Inelastic neutron scattering measurements have been performed to investigate the spin waves of the quasione- dimensional antiferromagnetic ladder compound BaFe2S3, where a superconducting transition was observed under pressure [H. Takahashi et al., Nat. Mater. 14, 1008 (2015); T. Yamauchi et al., Phys. Rev. Lett. 115, 246402 (2015)]. By fitting the spherically averaged experimental data collected on a powder sample to a Heisenberg Hamiltonian, we find that the one-dimensional antiferromagnetic ladder exhibits a strong nearest-neighbor ferromagnetic exchange interaction (SJR = -71 +/- 4meV) along the rung direction, an antiferromagnetic SJ(L) = 49 +/- 3 meV along the leg direction, and a ferromagnetic SJ(2) = -15 +/- 2 meV along the diagonal direction. Our data demonstrate that the antiferromagnetic spin excitations are a common characteristic for the iron-based superconductors, while specific relative values for the exchange interactions do not appear to be unique for the parent states of the superconducting materials. C1 [Wang, Meng; Yi, Ming; Lee, D. H.; Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Wang, Meng; Jin, S. J.; Yao, Dao-Xin] Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Guangdong, Peoples R China. [Song, Yu] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Jiang, H. C.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Jiang, H. C.] Stanford Univ, Menlo Pk, CA 94025 USA. [Zhang, W. L.; Luo, H. Q.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. [Sun, H. L.] Chinese Acad Sci, Beijing Synchrotron Radiat Facil, Inst High Energy Phys, Beijing 100049, Peoples R China. [Christianson, A. D.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Bourret-Courchesne, E.; Lee, D. H.; Birgeneau, R. J.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Birgeneau, R. J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Wang, M (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; Wang, M (reprint author), Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Guangdong, Peoples R China. EM wangmeng5@mail.sysu.edu.cn FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05-CH11231, KC2202]; Office of Basic Energy Sciences, US DOE [DE-AC03-76SF008]; Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-76SF00515]; Youth Innovation Promotion Association of CAS [2016004]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; [NBRPC-2012CB821400]; [NSFC-11275279]; [NSFC-11574404]; [NSFG-2015A030313176]; [NSFC-11374011]; [NSFC-11674372] FX This work was supported by the Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract No. DE-AC02-05-CH11231 within the Quantum Materials Program (KC2202) and the Office of Basic Energy Sciences, US DOE, Grant No. DE-AC03-76SF008. The research at Sun Yat-Sen University was supported by NBRPC-2012CB821400, NSFC-11275279, NSFC-11574404, and NSFG-2015A030313176. H.C.J. was supported by the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-76SF00515. H.Q.L. was supported by NSFC-11374011, NSFC-11674372, and the Youth Innovation Promotion Association of CAS (No. 2016004). The experiment at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 43 TC 0 Z9 0 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 3 PY 2017 VL 95 IS 6 AR 060502 DI 10.1103/PhysRevB.95.060502 PG 6 WC Physics, Condensed Matter SC Physics GA EN6DU UT WOS:000396095500002 ER PT J AU Zhu, L Gong, HL Dai, ZX Guo, GX Teatini, P AF Zhu, Lin Gong, Huili Dai, Zhenxue Guo, Gaoxuan Teatini, Pietro TI Modeling 3-D permeability distribution in alluvial fans using facies architecture and geophysical acquisitions SO HYDROLOGY AND EARTH SYSTEM SCIENCES LA English DT Article ID TRANSITION-PROBABILITY GEOSTATISTICS; AQUIFER HYDRAULIC PARAMETERS; CROSS-STRATIFIED SEDIMENT; LAND SUBSIDENCE; FLUVIAL SYSTEMS; HIERARCHICAL ARCHITECTURE; CARBON SEQUESTRATION; SPATIAL VARIABILITY; GROUND FISSURE; BEIJING PLAIN AB Alluvial fans are highly heterogeneous in hydraulic properties due to complex depositional processes, which make it difficult to characterize the spatial distribution of the hydraulic conductivity (K). An original methodology is developed to identify the spatial statistical parameters (mean, variance, correlation range) of the hydraulic conductivity in a three-dimensional (3-D) setting by using geological and geophysical data. More specifically, a large number of inexpensive vertical electric soundings are integrated with a facies model developed from borehole lithologic data to simulate the log(10) K/continuous distributions in multiplezone heterogeneous alluvial megafans. The Chaobai River alluvial fan in the Beijing Plain, China, is used as an example to test the proposed approach. Due to the non-stationary property of the K distribution in the alluvial fan, a multiplezone parameterization approach is applied to analyze the conductivity statistical properties of different hydrofacies in the various zones. The composite variance in each zone is computed to describe the evolution of the conductivity along the flow direction. Consistently with the scales of the sedimentary transport energy, the results show that conductivity variances of fine sand, medium-coarse sand, and gravel decrease from the upper (zone 1) to the lower (zone 3) portion along the flow direction. In zone 1, sediments were moved by higher-energy flooding, which induces poor sorting and larger conductivity variances. The composite variance confirms this feature with statistically different facies from zone 1 to zone 3. The results of this study provide in-sights to improve our understanding on conductivity heterogeneity and a method for characterizing the spatial distribution of K in alluvial fans. C1 [Zhu, Lin; Gong, Huili] Capital Normal Univ, Coll Resource Environm & Tourism, Lab Cultivat Base Environm Proc & Digital Simulat, Beijing, Peoples R China. [Dai, Zhenxue] Jilin Univ, Coll Construct Engn, Changchun 130021, Peoples R China. [Dai, Zhenxue] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM USA. [Guo, Gaoxuan] Beijing Inst Hydrogeol & Engn Geol, Beijing, Peoples R China. [Teatini, Pietro] Univ Padua, Dept Civil Environm & Architectural Engn, Padua, Italy. RP Zhu, L; Gong, HL (reprint author), Capital Normal Univ, Coll Resource Environm & Tourism, Lab Cultivat Base Environm Proc & Digital Simulat, Beijing, Peoples R China. EM hi-zhulin@163.com; gonghl@263.com OI Dai, Zhenxue/0000-0002-0805-7621 FU National Natural Science Foundation [41201420, 41130744]; Beijing Nova Program [Z111106054511097]; University of Padova, Italy, within the International Cooperation Program FX This work was supported by the National Natural Science Foundation (nos. 41201420, 41130744) and Beijing Nova Program (no. Z111106054511097). Pietro Teatini was partially supported by the University of Padova, Italy, within the 2016 International Cooperation Program. NR 58 TC 0 Z9 0 U1 3 U2 3 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1027-5606 EI 1607-7938 J9 HYDROL EARTH SYST SC JI Hydrol. Earth Syst. Sci. PD FEB 3 PY 2017 VL 21 IS 2 DI 10.5194/hess-21-721-2017 PG 13 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA EM1YJ UT WOS:000395112900001 ER PT J AU Chandonia, JM Fox, NK Brenner, SE AF Chandonia, John-Marc Fox, Naomi K. Brenner, Steven E. TI SCOPe: Manual Curation and Artifact Removal in the Structural Classification of Proteins - extended Database SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE structure classification; protein evolution; database ID ASTRAL COMPENDIUM; DATA-BANK; DOMAIN; GENOMICS; CATH; EXPECTATIONS; SEQUENCES; IMPACT AB SCOPe (Structural Classification of Proteins extended, http://scop.berkeley.edu) is a database of relationships between protein structures that extends the Structural Classification of Proteins (SCOP) database. SCOP is an expert-curated ordering of domains from the majority of proteins of known structure in a hierarchy according to structural and evolutionary relationships. SCOPe classifies the majority of protein structures released since SCOP development concluded in 2009, using a combination of manual curation and highly precise automated tools, aiming to have the same accuracy as fully hand-curated SCOP releases. SCOPe also incorporates and updates the ASTRAL compendium, which provides several databases and tools to aid in the analysis of the sequences and structures of proteins classified in SCOPe. SCOPe continues high-quality manual classification of new superfamilies, a key feature of SCOP. Artifacts such as expression tags are now separated into their own class, in order to distinguish them from the homology-based annotations in the remainder of the SCOPe hierarchy. SCOPe 2.06 contains 77,439 Protein Data Bank entries, double the 38,221 structures classified in SCOP. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). C1 [Chandonia, John-Marc; Brenner, Steven E.] Lawrence Berkeley Natl Lab, Environm Genom & Syst Biol Div, Berkeley, CA 94720 USA. [Chandonia, John-Marc; Fox, Naomi K.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. [Brenner, Steven E.] Univ Calif Berkeley, Dept Plant & Microbial Biol, 461A Koshland Hall, Berkeley, CA 94720 USA. [Fox, Naomi K.] Invitae, 458 Brannan St, San Francisco, CA 94107 USA. RP Brenner, SE (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, 461A Koshland Hall, Berkeley, CA 94720 USA.; Chandonia, JM (reprint author), Berkeley Natl Lab, Environm Genom & Syst Biol Div, Berkeley, CA 94720 USA. EM scope@compbio.berkeley.edu FU National Institutes of Health through the U.S. Department of Energy [R01-GM073109, DE-AC02-05CH11231] FX This work was supported by the National Institutes of Health (R01-GM073109) through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 30 TC 1 Z9 1 U1 0 U2 0 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 EI 1089-8638 J9 J MOL BIOL JI J. Mol. Biol. PD FEB 3 PY 2017 VL 429 IS 3 SI SI BP 348 EP 355 DI 10.1016/j.jmb.2016.11.023 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA EL1VY UT WOS:000394410700002 PM 27914894 ER PT J AU Andonian, G Barber, S O'Shea, FH Fedurin, M Kusche, K Swinson, C Rosenzweig, JB AF Andonian, G. Barber, S. O'Shea, F. H. Fedurin, M. Kusche, K. Swinson, C. Rosenzweig, J. B. TI Generation of Ramped Current Profiles in Relativistic Electron Beams Using Wakefields in Dielectric Structures SO PHYSICAL REVIEW LETTERS LA English DT Article AB Temporal pulse tailoring of charged-particle beams is essential to optimize efficiency in collinear wakefield acceleration schemes. In this Letter, we demonstrate a novel phase space manipulation method that employs a beam wakefield interaction in a dielectric structure, followed by bunch compression in a permanent magnet chicane, to longitudinally tailor the pulse shape of an electron beam. This compact, passive, approach was used to generate a nearly linearly ramped current profile in a relativistic electron beam experiment carried out at the Brookhaven National Laboratory Accelerator Test Facility. Here, we report on these experimental results including beam and wakefield diagnostics and pulse profile reconstruction techniques. C1 [Andonian, G.; Barber, S.; Rosenzweig, J. B.] UCLA, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Andonian, G.; O'Shea, F. H.] RadiaBeam Technol, Santa Monica, CA 90404 USA. [Fedurin, M.; Kusche, K.; Swinson, C.] Brookhaven Natl Lab, Accelerator Test Facil, Upton, NY 11973 USA. RP Andonian, G (reprint author), UCLA, Dept Phys & Astron, Los Angeles, CA 90095 USA.; Andonian, G (reprint author), RadiaBeam Technol, Santa Monica, CA 90404 USA. FU DOE SBIR Grant [DE-SC0011271]; DOE HEP Grant [DE-SC0009914] FX This work supported by DOE SBIR Grant No. DE-SC0011271 and DOE HEP Grant No. DE-SC0009914. The authors acknowledge useful discussions and contributions from P. Frigola, P. Hoang, A. Murokh, P. Musumeci, B. O'Shea, and O. Williams. This research used resources of the BNL ATF, which is a U.S. Department of Energy Office of Science User Facility. NR 25 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 3 PY 2017 VL 118 IS 5 AR 054802 DI 10.1103/PhysRevLett.118.054802 PG 5 WC Physics, Multidisciplinary SC Physics GA EO0VE UT WOS:000396415600006 PM 28211719 ER PT J AU Jiao, JY Carro, L Liu, L Gao, XY Zhang, XT Hozzein, WN Lapidus, A Huntemann, M Reddy, TBK Varghese, N Hadjithomas, M Ivanova, NN Goker, M Pillay, M Eisen, JA Woyke, T Klenk, HP Kyrpides, NC Li, WJ AF Jiao, Jian-Yu Carro, Lorena Liu, Lan Gao, Xiao-Yang Zhang, Xiao-Tong Hozzein, Wael N. Lapidus, Alla Huntemann, Marcel Reddy, T. B. K. Varghese, Neha Hadjithomas, Michalis Ivanova, Natalia N. Goeker, Markus Pillay, Manoj Eisen, Jonathan A. Woyke, Tanja Klenk, Hans-Peter Kyrpides, Nikos C. Li, Wen-Jun TI Complete genome sequence of Jiangella gansuensis strain YIM 002(T) (DSM 44835(T)), the type species of the genus Jiangella and source of new antibiotic compounds SO STANDARDS IN GENOMIC SCIENCES LA English DT Article DE Jiangella gansuensis; Jiangellales; Desert; Genome; Taxonomic comments; GEBA ID SP-NOV.; SP. NOV.; ACTINOMYCETE; PROPOSAL; BACTERIAL; ARCHAEA; SYSTEM; TOOL; ACTINOBACTERIUM; CLASSIFICATION AB Jiangella gansuensis strain YIM 002(T) is the type strain of the type species of the genus Jiangella, which is at the present time composed of five species, and was isolated from desert soil sample in Gansu Province (China). The five strains of this genus are clustered in a monophyletic group when closer actinobacterial genera are used to infer a 16S rRNA gene sequence phylogeny. The study of this genome is part of the Genomic Encyclopedia of Bacteria and Archaea project, and here we describe the complete genome sequence and annotation of this taxon. The genome of J. gansuensis strain YIM 002(T) contains a single scaffold of size 5,585,780 bp, which involves 149 pseudogenes, 4905 protein-coding genes and 50 RNA genes, including 2520 hypothetical proteins and 4 rRNA genes. From the investigation of genome sizes of Jiangella species, J. gansuensis shows a smaller size, which indicates this strain might have discarded too much genetic information to adapt to desert environment. Seven new compounds from this bacterium have recently been described; however, its potential should be higher, as secondary metabolite gene cluster analysis predicted 60 gene clusters, including the potential to produce the pristinamycin. C1 [Jiao, Jian-Yu; Liu, Lan; Zhang, Xiao-Tong; Li, Wen-Jun] Sun Yat Sen Univ, Coll Life Sci, State Key Lab Biocontrol, Guangzhou, Guangdong, Peoples R China. [Jiao, Jian-Yu; Liu, Lan; Zhang, Xiao-Tong; Li, Wen-Jun] Sun Yat Sen Univ, Coll Life Sci, Guangdong Prov Key Lab Plant Resources, Guangzhou, Guangdong, Peoples R China. [Carro, Lorena; Klenk, Hans-Peter] Newcastle Univ, Sch Biol, Newcastle Upon Tyne, Tyne & Wear, England. [Gao, Xiao-Yang] Chinese Acad Sci, Xishuangbanna Trop Bot Garden, Key Lab Trop Plant Resources & Sustainable Use, Kunming, Yunnan Province, Peoples R China. [Hozzein, Wael N.] King Saud Univ, Coll Sci, BRC, Riyadh, Saudi Arabia. [Lapidus, Alla] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Lapidus, Alla] St Petersburg State Univ, Ctr Algorithm Biotechnol, St Petersburg, Russia. [Huntemann, Marcel; Reddy, T. B. K.; Varghese, Neha; Hadjithomas, Michalis; Ivanova, Natalia N.] DOE Joint Genome Inst, Walnut Creek, CA USA. [Goeker, Markus; Klenk, Hans-Peter] Leibniz Inst DSMZ German Collect Microorganisms &, Braunschweig, Germany. [Pillay, Manoj] Lawrence Berkeley Natl Lab, Biol Data Management & Technol Ctr, Berkeley, CA USA. [Eisen, Jonathan A.] Univ Calif Davis, Davis, CA 95616 USA. [Kyrpides, Nikos C.] King Abdulaziz Univ, Dept Biol Sci, Fac Sci, Jeddah, Saudi Arabia. [Hozzein, Wael N.] Beni Suef Univ, Dept Bot & Microbiol, Fac Sci, Bani Suwayf, Egypt. [Li, Wen-Jun] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Key Lab Biogeog & Bioresource Arid Land, Urumqi, Peoples R China. RP Li, WJ (reprint author), Sun Yat Sen Univ, Coll Life Sci, State Key Lab Biocontrol, Guangzhou, Guangdong, Peoples R China.; Li, WJ (reprint author), Sun Yat Sen Univ, Coll Life Sci, Guangdong Prov Key Lab Plant Resources, Guangzhou, Guangdong, Peoples R China.; Klenk, HP (reprint author), Newcastle Univ, Sch Biol, Newcastle Upon Tyne, Tyne & Wear, England.; Klenk, HP (reprint author), Leibniz Inst DSMZ German Collect Microorganisms &, Braunschweig, Germany.; Li, WJ (reprint author), Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Key Lab Biogeog & Bioresource Arid Land, Urumqi, Peoples R China. EM hans-peter.klenk@ncl.ac.uk; liwenjun3@mail.sysu.edu.cn RI Fac Sci, KAU, Biol Sci Dept/L-4228-2013; Lapidus, Alla/I-4348-2013 OI Lapidus, Alla/0000-0003-0427-8731 FU US Department of Energy's Office of Science, Biological and Environmental Research Program; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; University of California, Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; St. Petersburg State University [1.38.253.2015]; Natural Science Foundation of China [31670009]; Deanship of Scientific Research at King Saud University [PRG-1436-27]; 'Hundred Talents Program' of the Chinese Academy of Sciences; Guangdong Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme FX We would like to gratefully acknowledge the help of Marlen Jando for growing J. gansuensis cultures, and Evelyne-Marie Brambilla for DNA extraction and quality control (both at DSMZ). This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. AL was also supported by St. Petersburg State University grant (No 1.38.253.2015). WJL and WNH would like to extend their appreciation to Deanship of Scientific Research at King Saud University for funding this work through the research group No. PRG-1436-27 and Natural Science Foundation of China (No. 31670009). WJL was also supported by 'Hundred Talents Program' of the Chinese Academy of Sciences and Guangdong Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme (2014). NR 46 TC 0 Z9 0 U1 1 U2 1 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1944-3277 J9 STAND GENOMIC SCI JI Stand. Genomic Sci. PD FEB 3 PY 2017 VL 12 AR 21 DI 10.1186/s40793-017-0226-6 PG 8 WC Genetics & Heredity; Microbiology SC Genetics & Heredity; Microbiology GA EL1OF UT WOS:000394389000001 PM 28174619 ER PT J AU Ziegler, SE Benner, R Billings, SA Edwards, KA Philben, M Zhu, XB Laganiere, J AF Ziegler, Susan E. Benner, Ronald Billings, Sharon A. Edwards, Kate A. Philben, Michael Zhu, Xinbiao Laganiere, Jerome TI Climate Warming Can Accelerate Carbon Fluxes without Changing Soil Carbon Stocks SO FRONTIERS IN EARTH SCIENCE LA English DT Article DE soil carbon; climate change; boreal forests; organic matter biogeochemistry; ecosystem carbon fluxes ID BLACK SPRUCE FORESTS; ORGANIC-MATTER; TEMPERATURE SENSITIVITY; MASS-SPECTROMETRY; BOREAL FORESTS; NMR-SPECTRA; RESPIRATION; TURNOVER; STORAGE; DYNAMICS AB Climate warming enhances multiple ecosystem C fluxes, but the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal to centennial time scales remains unclear. We investigated the effects of climate on C fluxes and soil C stocks using space-for-time substitution along a boreal forest climate gradient encompassing spatially replicated sites at each of three latitudes. All regions had similar SOC concentrations and stocks (5.6 to 6.7 kg C m(-2)). The three lowest latitude forests exhibited the highest productivity across the transect, with tree biomass:age ratios and litterfall rates 300 and 125% higher than those in the highest latitude forests, respectively. Likewise, higher soil respiration rates (similar to 55%) and dissolved organic C fluxes (similar to 300%) were observed in the lowest latitude forests compared to those in the highest latitude forests. The mid-latitude forests exhibited intermediate values for these indices and fluxes. The mean radiocarbon content (Delta C-14) of mineral-associated SOC (+9.6) was highest in the lowest latitude forests, indicating a more rapid turnover of soil C compared to the mid- and highest latitude soils (Delta C-14 of -35 and -30, respectively). Indicators of the extent of soil organic matter decomposition, including C:N, d13C, and amino acid and alkyl-C:O-alkyl-C indices, revealed highly decomposed material across all regions. These data indicate that the lowest latitude forests experience accelerated C fluxes that maintain relatively young but highly decomposed SOC. Collectively, these observations of within-biome soil C responses to climate demonstrate that the enhanced rates of SOC loss that typically occur with warming can be balanced on decadal to centennial time scales by enhanced rates of C inputs. C1 [Ziegler, Susan E.; Philben, Michael; Laganiere, Jerome] Mem Univ Newfoundland, Dept Earth Sci, St John, NF, Canada. [Benner, Ronald] Univ South Carolina, Dept Biol Sci, Columbia, SC USA. [Benner, Ronald] Univ South Carolina, Marine Sci Program, Columbia, SC USA. [Billings, Sharon A.] Univ Kansas, Kansas Biol Survey, Dept Ecol & Evolut Biol, Lawrence, KS 66045 USA. [Edwards, Kate A.; Zhu, Xinbiao] Canadian Forest Serv, Nat Resources Canada, Atlantic Forestry Ctr, Corner Brook, NF, Canada. [Philben, Michael] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA. [Laganiere, Jerome] Canadian Forest Serv, Nat Resources Canada, Laurentian Forestry Ctr, Quebec City, PQ, Canada. RP Ziegler, SE (reprint author), Mem Univ Newfoundland, Dept Earth Sci, St John, NF, Canada. EM sziegler@mun.ca FU NSERC [397494-10]; Centre for Forest Science and Innovation of the Newfoundland and Labrador Agrifoods Agency; Canada Research Chairs Programme; Canadian Forest Service of Natural Resources Canada FX This research was funded by the NSERC Discovery and Strategic Project (#397494-10) Grants programs, Centre for Forest Science and Innovation of the Newfoundland and Labrador Agrifoods Agency, Canada Research Chairs Programme, and the Canadian Forest Service of Natural Resources Canada. NR 71 TC 0 Z9 0 U1 13 U2 13 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 2296-6463 J9 FRONT EARTH SCI JI Front. Earth Sci. PD FEB 3 PY 2017 VL 5 AR UNSP 2 DI 10.3389/feart.2017.00002 PG 12 WC Geosciences, Multidisciplinary SC Geology GA EK0JC UT WOS:000393611700001 ER PT J AU Jennings, RD Moran, JJ Jay, ZJ Beam, JP Whitmore, LM Kozubal, MA Kreuzer, HW Inskeep, WP AF Jennings, Ryan de Montmollin Moran, James J. Jay, Zackary J. Beam, Jacob P. Whitmore, Laura M. Kozubal, Mark A. Kreuzer, Helen W. Inskeep, William P. TI Integration of Metagenomic and Stable Carbon Isotope Evidence Reveals the Extent and Mechanisms of Carbon Dioxide Fixation in High-Temperature Microbial Communities SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE autotrophy; CO2 fixation; stable C isotopes; geothermal; Aquificales; Crenarchaeota ID YELLOWSTONE-NATIONAL-PARK; ACIDIC GEOTHERMAL SPRINGS; ARCHAEBACTERIUM THERMOPROTEUS-NEUTROPHILUS; CO2 FIXATION; ASSIMILATION; ARCHAEA; PATHWAY; CYCLE; SPECIALIZATION; ENVIRONMENTS AB Although the biological fixation of CO2 by chemolithoautotrophs provides a diverse suite of organic compounds utilized by chemoorganoheterotrophs as a carbon and energy source, the relative amounts of autotrophic C in chemotrophic microbial communities are not well-established. The extent and mechanisms of CO2 fixation were evaluated across a comprehensive set of high-temperature, chemotrophic microbial communities in Yellowstone National Park by combining metagenomic and stable (13)G isotope analyses. Fifteen geothermal sites representing three distinct habitat types (iron-oxide mats, anoxic sulfur sediments, and filamentous "streamer" communities) were investigated. Genes of the 3-hydroxypropionate/4-hydroxybutyrate, dicarboxylate/4-hydroxybutyrate, and reverse tricarboxylic acid CO2 fixation pathways were identified in assembled genome sequence corresponding to the predominant Crenarchaeota and Aquificales observed across this habitat range. Stable C-13 analyses of dissolved inorganic and organic C (DIG, DOC), and possible landscape C sources were used to interpret the C-13 content of microbial community samples. Isotope mixing models showed that the minimum fractions of autotrophic C in microbial biomass were->50% in the majority of communities analyzed. The significance of CO2 as a C source in these communities provides a foundation for understanding community assembly and succession, and metabolic linkages among early-branching thermophilic autotrophs and heterotrophs. C1 [Jennings, Ryan de Montmollin; Jay, Zackary J.; Beam, Jacob P.; Kozubal, Mark A.; Inskeep, William P.] Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59717 USA. [Jennings, Ryan de Montmollin; Jay, Zackary J.; Beam, Jacob P.; Inskeep, William P.] Montana State Univ, Thermal Biol Inst, Bozeman, MT 59717 USA. [Moran, James J.; Whitmore, Laura M.; Kreuzer, Helen W.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Jennings, Ryan de Montmollin] Mercer Univ, Macon, GA 31207 USA. [Beam, Jacob P.] Bigalow Lab Ocean Sci, East Boothbay, ME USA. RP Inskeep, WP (reprint author), Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59717 USA.; Inskeep, WP (reprint author), Montana State Univ, Thermal Biol Inst, Bozeman, MT 59717 USA.; Moran, JJ (reprint author), Pacific Northwest Natl Lab, Richland, WA 99352 USA. EM james.moran@pnnl.gov; binskeep@montana.edu FU DOE-Pacific Northwest National Laboratory [112443, 254840]; Department of Energy (DOE)-Joint Genome Institute Community Sequencing Program [CSP 787081, CSP701]; National Science Foundation IGERT Program [NSF DGE 0654336]; Genomic Science Program, Office of Biological and Environmental Research, U.S. DOE [DOE-AC02-05CH11231] FX The authors acknowledge support from the DOE-Pacific Northwest National Laboratory (subcontracts 112443 and 254840), the Department of Energy (DOE)-Joint Genome Institute Community Sequencing Program (CSP 787081, CSP701), and the National Science Foundation IGERT Program for support to RJ, JB, and ZJ (NSF DGE 0654336). Work conducted by the Pacific Northwest National Laboratory (Foundational Scientific Focus Area) and the Joint Genome Institute (DOE-AC02-05CH11231) is supported by the Genomic Science Program, Office of Biological and Environmental Research, U.S. DOE. The authors appreciate assistance from C Carey and A Mazurie (MSU) for Illumina metagenome and iTag data processing, and thank C Hendrix, S Sigler and D Hallac (Center for Resources, YNP) for permitting this work in YNP (permits YELL-SCI-5068 and -5686). NR 50 TC 0 Z9 0 U1 5 U2 5 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD FEB 3 PY 2017 VL 8 AR 88 DI 10.3389/fmicb.2017.00088 PG 11 WC Microbiology SC Microbiology GA EJ4XB UT WOS:000393219500001 PM 28217111 ER PT J AU Banu, N Singh, S Satpati, B Roy, A Basu, S Chakraborty, P Movva, HCP Lauter, V Dev, BN AF Banu, Nasrin Singh, Surendra Satpati, B. Roy, A. Basu, S. Chakraborty, P. Movva, Hema C. P. Lauter, V. Dev, B. N. TI Evidence of Formation of Superdense Nonmagnetic Cobalt SO SCIENTIFIC REPORTS LA English DT Article ID THIN-FILMS AB Because of the presence of 3d transition metals in the Earth's core, magnetism of these materials in their dense phases has been a topic of great interest. Theory predicts a dense face-centred-cubic phase of cobalt, which would be nonmagnetic. However, this dense nonmagnetic cobalt has not yet been observed. Recent investigations in thin film polycrystalline materials have shown the formation of compressive stress, which can increase the density of materials. We have discovered the existence of ultrathin superdense nonmagnetic cobalt layers in a polycrystalline cobalt thin film. The densities of these layers are about 1.2-1.4 times the normal density of Co. This has been revealed by X-ray reflectometry experiments, and corroborated by polarized neutron reflectometry (PNR) experiments. Transmission electron microscopy provides further evidence. The magnetic depth profile, obtained by PNR, shows that the superdense Co layers near the top of the film and at the film-substrate interface are nonmagnetic. The major part of the Co film has the usual density and magnetic moment. These results indicate the possibility of existence of nonmagnetic Co in the earth's core under high pressure. C1 [Banu, Nasrin; Dev, B. N.] Indian Assoc Cultivat Sci, Dept Mat Sci, 2A & 2B Raja SC Mullick Rd, Kolkata 700032, India. [Singh, Surendra; Basu, S.] Bhabha Atom Res Ctr, Div Solid State Phys, Mumbai 400085, Maharashtra, India. [Satpati, B.; Chakraborty, P.] Saha Inst Nucl Phys, Surface Phys & Mat Sci Div, 1-AF Bidhannagar, Kolkata 700064, India. [Roy, A.; Movva, Hema C. P.] Univ Texas Austin, Microelect Res Ctr, 10100 Burnet Rd,Bldg 160,MER 1-606J, Austin, TX 78758 USA. [Lauter, V.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Neutron Sci Directorate, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Dev, BN (reprint author), Indian Assoc Cultivat Sci, Dept Mat Sci, 2A & 2B Raja SC Mullick Rd, Kolkata 700032, India. EM msbnd@iacs.res.in FU IBIQuS project [6/12/2009/BARC/RD-I/50]; CSIR fellowship [09/080(0765)/2011-EMR-I]; Scientific User Facilities Division, Office of Basic Energy Sciences, DOE FX We acknowledge the help of V.B. Jaykrishnan, Dr. Avijit Das and Anjan Bhukta in XRR, SIMS and RBS experiments respectively. We thank the staff at the Ion Beam Laboratory, Institute of Physics, Bhubaneswar. Helpful discussion with Dr. Sumalay Roy is gratefully acknowledged. The work has been partially supported by the IBIQuS project (DAE OM No. 6/12/2009/BARC/R&D-I/50, Dated 01.4.2009). Nasrin Banu is supported by CSIR fellowship (09/080(0765)/2011-EMR-I). The work performed at SNS ORNL was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, DOE. NR 21 TC 0 Z9 0 U1 4 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 3 PY 2017 VL 7 AR 41856 DI 10.1038/srep41856 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EJ9NC UT WOS:000393552000001 PM 28157186 ER PT J AU Hang, B Snijders, AM Huang, YR Schick, SF Wang, P Xia, YK Havel, C Jacob, P Benowitz, N Destaillats, H Gundel, LA Mao, JH AF Hang, Bo Snijders, Antoine M. Huang, Yurong Schick, Suzaynn F. Wang, Pin Xia, Yankai Havel, Christopher Jacob, Peyton, III Benowitz, Neal Destaillats, Hugo Gundel, Lara A. Mao, Jian-Hua TI Early exposure to thirdhand cigarette smoke affects body mass and the development of immunity in mice SO SCIENTIFIC REPORTS LA English DT Article ID NICOTINE; WEIGHT; NITROSAMINES; NONSMOKERS; CHAMBER; IMPACT; OZONE; CELLS AB Thirdhand smoke (THS) is the fraction of cigarette smoke that persists in indoor environments after smoking. We investigated the effects of neonatal and adult THS exposure on bodyweight and blood cell populations in C57BL/6 J mice. At the end of neonatal exposure, THS-treated male and female mice had significantly lower bodyweight than their respective control mice. However, five weeks after neonatal exposure ended, THS-treated mice weighed the same as controls. In contrast, adult THS exposure did not change bodyweight of mice. On the other hand, both neonatal and adult THS exposure had profound effects on the hematopoietic system. Fourteen weeks after neonatal THS exposure ended, eosinophil number and platelet volume were significantly higher, while hematocrit, mean cell volume, and platelet counts were significantly lower compared to control. Similarly, adult THS exposure also decreased platelet counts and increased neutrophil counts. Moreover, both neonatal and adult THS exposure caused a significant increase in percentage of B-cells and significantly decreased percentage of myeloid cells. Our results demonstrate that neonatal THS exposure decreases bodyweight and that THS exposure induces persistent changes in the hematopoietic system independent of age at exposure. These results also suggest that THS exposure may have adverse effects on human health. C1 [Hang, Bo; Snijders, Antoine M.; Huang, Yurong; Mao, Jian-Hua] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA. [Schick, Suzaynn F.; Havel, Christopher; Jacob, Peyton, III; Benowitz, Neal] Univ Calif San Francisco, Div Occupat & Environm Med, Dept Med, Box 0843, San Francisco, CA 94143 USA. [Wang, Pin] Nanjing Med Univ, Sch Clin Med, Dept Gastroenterol, Affiliated Drum Tower, Nanjing 210008, Jiangsu, Peoples R China. [Xia, Yankai] Nanjing Med Univ, Inst Toxicol, State Key Lab Reprod Med, Nanjing 211166, Peoples R China. [Destaillats, Hugo; Gundel, Lara A.] Lawrence Berkeley Natl Lab, Indoor Environm Grp, Berkeley, CA 94720 USA. RP Mao, JH (reprint author), Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA. EM JHMao@lbl.gov FU University of California Tobacco-Related Disease Research Program (TRDRP) [23PT-0013, 24RT-0038]; TRDRP grant [12ST-011, 12FT-0144]; NIH grant [P30 DA012393]; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was funded by the University of California Tobacco-Related Disease Research Program (TRDRP) consortium grant 23PT-0013 to B.H. and P.J. (sub-projects, N. B Consortium PI) and research project grant 24RT-0038 to B.H. and J.H.M., the TRDRP grant 12ST-011 to S.S. and TRDRP grant 12FT-0144 to N.B. Laboratory Infrastructure at the University of California, San Francisco was supported by NIH grant P30 DA012393. Lawrence Berkeley National Laboratory (LBNL) operates under U.S. Department of Energy Contract DE-AC02-05CH11231. NR 29 TC 0 Z9 0 U1 3 U2 3 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 3 PY 2017 VL 7 AR 41915 DI 10.1038/srep41915 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EJ9OG UT WOS:000393555100001 PM 28157226 ER PT J AU Xu, YS Chiu, J Miao, L He, HW Alpichshev, Z Kapitulnik, A Biswas, RR Wray, LA AF Xu, Yishuai Chiu, Janet Miao, Lin He, Haowei Alpichshev, Zhanybek Kapitulnik, A. Biswas, Rudro R. Wray, L. Andrew TI Disorder enabled band structure engineering of a topological insulator surface SO Nature Communications LA English DT Article ID SINGLE DIRAC CONE; SPIN TEXTURE; STATES; DIFFUSION; ABSENCE; BI2SE3; BI2TE3; STEPS AB Three-dimensional topological insulators are bulk insulators with Z(2) topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond the localized regime usually associated with impurity bands. At native densities in the model Bi2X3 (X = Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport. C1 [Xu, Yishuai; Chiu, Janet; Miao, Lin; He, Haowei; Wray, L. Andrew] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Miao, Lin] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Alpichshev, Zhanybek] MIT, Dept Phys, Cambridge, MA 02139 USA. [Alpichshev, Zhanybek; Kapitulnik, A.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Biswas, Rudro R.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Wray, L. Andrew] NYU Shanghai, NYU ECNU Inst Phys, 3663 Zhongshan Rd North, Shanghai 200062, Peoples R China. RP Wray, LA (reprint author), NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA.; Biswas, RR (reprint author), Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA.; Wray, LA (reprint author), NYU Shanghai, NYU ECNU Inst Phys, 3663 Zhongshan Rd North, Shanghai 200062, Peoples R China. EM rrbiswas@purdue.edu; lawray@nyu.edu FU Department of Energy [DE-AC02-76SF00515]; Purdue University startup funds FX We are grateful for discussions with W. Wu, P. Hohenberg and Y.-D. Chuang. Work at Stanford University was supported by the Department of Energy Grant DE-AC02-76SF00515. R.R.B. was supported by Purdue University startup funds. NR 47 TC 0 Z9 0 U1 21 U2 21 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB 3 PY 2017 VL 8 AR 14081 DI 10.1038/ncomms14081 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EJ4EN UT WOS:000393169800001 PM 28155858 ER PT J AU McCaffrey, K Quelet, PT Choukulkar, A Wilczak, JM Wolfe, DE Oncley, SP Brewer, WA Debnath, M Ashton, R Iungo, GV Lundquist, JK AF McCaffrey, Katherine Quelet, Paul T. Choukulkar, Aditya Wilczak, James M. Wolfe, Daniel E. Oncley, Steven P. Brewer, W. Alan Debnath, Mithu Ashton, Ryan Iungo, G. Valerio Lundquist, Julie K. TI Identification of tower-wake distortions using sonic anemometer and lidar measurements SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID SHADOW AB The eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) field campaign took place in March through May 2015 at the Boulder Atmospheric Observatory, utilizing its 300 m meteorological tower, instrumented with two sonic anemometers mounted on opposite sides of the tower at six heights. This allowed for at least one sonic anemometer at each level to be upstream of the tower at all times and for identification of the times when a sonic anemometer is in the wake of the tower frame. Other instrumentation, including profiling and scanning lidars aided in the identification of the tower wake. Here we compare pairs of sonic anemometers at the same heights to identify the range of directions that are affected by the tower for each of the opposing booms. The mean velocity and turbulent kinetic energy are used to quantify the wake impact on these first-and second-order wind measurements, showing up to a 50% reduction in wind speed and an order of magnitude increase in turbulent kinetic energy. Comparisons of wind speeds from profiling and scanning lidars confirmed the extent of the tower wake, with the same reduction in wind speed observed in the tower wake, and a speed-up effect around the wake boundaries. Wind direction differences between pairs of sonic anemometers and between sonic anemometers and lidars can also be significant, as the flow is deflected by the tower structure. Comparisons of lengths of averaging intervals showed a decrease in wind speed deficit with longer averages, but the flow deflection remains constant over longer averages. Furthermore, asymmetry exists in the tower effects due to the geometry and placement of the booms on the triangular tower. An analysis of the percentage of observations in the wake that must be removed from 2 min mean wind speed and 20 min turbulent values showed that removing even small portions of the time interval due to wakes impacts these two quantities. However, a vast majority of intervals have no observations in the tower wake, so removing the full 2 or 20 min intervals does not diminish the XPIA dataset. C1 [McCaffrey, Katherine; Choukulkar, Aditya] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [McCaffrey, Katherine; Wilczak, James M.; Wolfe, Daniel E.] NOAA, Div Phys Sci, Earth Syst Res Lab, Boulder, CO 80305 USA. [Quelet, Paul T.; Lundquist, Julie K.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Choukulkar, Aditya; Brewer, W. Alan] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO USA. [Oncley, Steven P.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Debnath, Mithu; Ashton, Ryan; Iungo, G. Valerio] Univ Texas Dallas, Dept Mech Engn, Dallas, TX USA. [Lundquist, Julie K.] Natl Renewable Energy Lab, Golden, CO USA. RP McCaffrey, K (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.; McCaffrey, K (reprint author), NOAA, Div Phys Sci, Earth Syst Res Lab, Boulder, CO 80305 USA. EM katherine.mccaffrey@noaa.gov FU Atmospheres to Electrons (A2e) program of the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Office; NOAA's Earth System Research Laboratory; Characterizing the Atmospheric Boundary Layer (CABL) program of the National Center for Atmospheric Research; University of Colorado; NRC RAP Postdoctoral Research Fellowship FX Funding for this study was provided by the Atmospheres to Electrons (A2e) program of the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Office, NOAA's Earth System Research Laboratory, and the Characterizing the Atmospheric Boundary Layer (CABL) program of the National Center for Atmospheric Research and the University of Colorado. Funding for Katherine McCaffrey was provided by the NRC RAP Postdoctoral Research Fellowship. NR 17 TC 3 Z9 3 U1 0 U2 0 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PD FEB 2 PY 2017 VL 10 IS 2 BP 393 EP 407 DI 10.5194/amt-10-393-2017 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EM1UD UT WOS:000395101600001 ER PT J AU Zhao, YD Qiao, JS Yu, ZH Yu, P Xu, K Lau, SP Zhou, W Liu, Z Wang, XR Ji, W Chai, Y AF Zhao, Yuda Qiao, Jingsi Yu, Zhihao Yu, Peng Xu, Kang Lau, Shu Ping Zhou, Wu Liu, Zheng Wang, Xinran Ji, Wei Chai, Yang TI High-Electron- Mobility and Air-Stable 2D Layered PtSe2 FETs SO ADVANCED MATERIALS LA English DT Article ID FIELD-EFFECT TRANSISTORS; METAL-INSULATOR-TRANSITION; MOLYBDENUM-DISULFIDE MONOLAYERS; AUGMENTED-WAVE METHOD; BLACK PHOSPHORUS; DISSOCIATIVE ATTACHMENT; MOS2 TRANSISTORS; THIN-FILM; TRANSPORT; CONTACTS AB The electrical and optical measurements, in combination with density functional theory calculations, show distinct layer-dependent semiconductor-to-semimetal evolution of 2D layered PtSe2. The high room-temperature electron mobility and near-infrared photo-response, together with much better air-stability, make PtSe2 a versatile electronic 2D layered material. C1 [Zhao, Yuda; Qiao, Jingsi; Xu, Kang; Lau, Shu Ping; Chai, Yang] Hong Kong Polytech Univ, Dept Appl Phys, Kowloon, Hong Kong, Peoples R China. [Zhao, Yuda; Lau, Shu Ping; Chai, Yang] Hong Kong Polytech Univ Shenzhen, Res Inst, Shenzhen 518057, Peoples R China. [Qiao, Jingsi; Ji, Wei] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. [Qiao, Jingsi; Ji, Wei] Renmin Univ China, Beijing Key Lab Optoelect Funct Mat & Micronano D, Beijing 100872, Peoples R China. [Yu, Zhihao; Wang, Xinran] Nanjing Univ, Natl Lab Solid State Microstruct, Sch Elect Sci & Engn, Nanjing 210093, Jiangsu, Peoples R China. [Yu, Zhihao; Wang, Xinran] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Yu, Peng; Liu, Zheng] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore. [Zhou, Wu] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Ji, W (reprint author), Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China.; Ji, W (reprint author), Renmin Univ China, Beijing Key Lab Optoelect Funct Mat & Micronano D, Beijing 100872, Peoples R China. EM wji@ruc.edu.cn; ychai@polyu.edu.hk RI Ji, Wei/G-6097-2010; Lau, Shu Ping/A-6083-2008 OI Ji, Wei/0000-0001-5249-6624; Lau, Shu Ping/0000-0002-5315-8472 FU Research Grant Council of Hong Kong [PolyU 152145/15E]; Hong Kong Polytechnic University [G-SB53, 1-ZVDH, 1-ZVGH]; National Natural Science Foundation of China (NSFC) [61302045, 11274380, 11622437, 61674171, 91433103]; Singapore National Research Foundation through the NRF RF [NRF-RF2013-08]; Ministry of Science and Technology (MOST) of China [2012CB932704]; Fundamental Research Funds for the Central Universities; Renmin University of China [16XNLQ01, 16XNH062] FX Y.Z. and J.Q. contributed equally to this work. This work was supported by the Research Grant Council of Hong Kong (Grant No. PolyU 152145/15E), the Hong Kong Polytechnic University (Grants Nos. G-SB53, 1-ZVDH, and 1-ZVGH), the National Natural Science Foundation of China (NSFC) (Grants Nos. 61302045, 11274380, 11622437, 61674171, and 91433103), the Singapore National Research Foundation through the NRF RF Award No. NRF-RF2013-08, Ministry of Science and Technology (MOST) of China under Grant No. 2012CB932704, and the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China under Grant Nos. 16XNLQ01 and 16XNH062. Theoretical calculations were performed at the Physics Laboratory for High-Performance Computing of Renmin University and at the Shanghai Supercomputer Center. NR 60 TC 0 Z9 0 U1 26 U2 26 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD FEB 2 PY 2017 VL 29 IS 5 AR UNSP 1604230 DI 10.1002/adma.201604230 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EN6VS UT WOS:000396142100019 ER PT J AU Yang, YS Chen, CC Scott, MC Ophus, C Xu, R Pryor, A Wu, L Sun, F Theis, W Zhou, JH Eisenbach, M Kent, PRC Sabirianov, RF Zeng, H Ercius, P Miao, JW AF Yang, Yongsoo Chen, Chien-Chun Scott, M. C. Ophus, Colin Xu, Rui Pryor, Alan, Jr. Wu, Li Sun, Fan Theis, Wolfgang Zhou, Jihan Eisenbach, Markus Kent, Paul R. C. Sabirianov, Renat F. Zeng, Hao Ercius, Peter Miao, Jianwei TI Deciphering chemical order/disorder and material properties at the single-atom level SO NATURE LA English DT Article ID AUGMENTED-WAVE METHOD; ELECTRON TOMOGRAPHY; FEPT NANOPARTICLES; MICROSCOPY; NANOCRYSTALS; RESOLUTION; STATE; CRYSTALLOGRAPHY; RECONSTRUCTION; SCALE AB Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects(1-3). Such disruption in periodicity strongly affects material properties and functionality(1-3). Despite rapid development of quantitative material characterization methods(1,4-18), correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling 'real' materials with dopants, dislocations, grain boundaries and interfaces(19,20); but these calculations rely heavily on average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. This work combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure-property relationships at the fundamental level. C1 [Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.; Xu, Rui; Pryor, Alan, Jr.; Wu, Li; Zhou, Jihan; Miao, Jianwei] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.; Xu, Rui; Pryor, Alan, Jr.; Wu, Li; Zhou, Jihan; Miao, Jianwei] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA. [Chen, Chien-Chun] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 80424, Taiwan. [Scott, M. C.; Ophus, Colin; Ercius, Peter] Lawrence Berkeley Natl Lab, Natl Ctr Electro Microscopy, Mol Foundry, Berkeley, CA 94720 USA. [Sun, Fan; Zeng, Hao] SUNY Buffalo, Univ Buffalo, Dept Phys, Buffalo, NY 14260 USA. [Theis, Wolfgang] Univ Birmingham, Sch Phys & Astron, Nanoscale Phys Res Lab, Birmingham B15 2TT, W Midlands, England. [Eisenbach, Markus] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Kent, Paul R. C.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Kent, Paul R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Sabirianov, Renat F.] Univ Nebraska, Dept Phys, Omaha, NE 68182 USA. RP Miao, JW (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.; Miao, JW (reprint author), Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA. EM miao@physics.ucla.edu RI Yang, Yongsoo/P-7716-2014 OI Yang, Yongsoo/0000-0001-8654-302X FU Office of Basic Energy Sciences of the US DOE [DE-SC0010378]; Division of Materials Research of the US NSF [DMR-1548924, DMR-1437263]; DARPA [DARPA-BAA-12-63] FX We thank J. Shan, J. A. Rodriguez, M. Gallagher-Jones and J. Ma for help with this project. This work was primarily supported by the Office of Basic Energy Sciences of the US DOE (DE-SC0010378). This work was also supported by the Division of Materials Research of the US NSF (DMR-1548924 and DMR-1437263) and DARPA (DARPA-BAA-12-63). The chemical ordering analysis and ADF-STEM imaging with TEAM I were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences of the US DOE (DE-AC02-05CH11231). M.E. (DFT calculations) was supported by the US DOE, Office of Science, Basic Energy Sciences, Material Sciences and Engineering Division. DFT calculations by P.K. were conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. This research used resources of the Oak Ridge Leadership Computing Facility, which is supported by the Office of Science of the US DOE (DE-AC05-00OR22725). NR 56 TC 0 Z9 0 U1 24 U2 24 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD FEB 2 PY 2017 VL 542 IS 7639 BP 75 EP + DI 10.1038/nature21042 PG 18 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EN6MY UT WOS:000396119300034 ER PT J AU Asenjo, FA Comisso, L AF Asenjo, Felipe A. Comisso, Luca TI Relativistic Magnetic Reconnection in Kerr Spacetime SO PHYSICAL REVIEW LETTERS LA English DT Article ID ROTATING BLACK-HOLES; LOW-LUMINOSITY AGNS; PARTICLE-ACCELERATION; MAGNETOHYDRODYNAMIC SIMULATIONS; ENERGY EXTRACTION; PLASMA DYNAMICS; PAIR PLASMAS; EMISSION; DISCS; LAW AB The magnetic reconnection process is analyzed for relativistic magnetohydrodynamical plasmas around rotating black holes. A simple generalization of the Sweet-Parker model is used as a first approximation to the problem. The reconnection rate, as well as other important properties of the reconnection layer, has been calculated taking into account the effect of spacetime curvature. Azimuthal and radial current sheet configurations in the equatorial plane of the black hole have been studied, and the case of small black hole rotation rate has been analyzed. For the azimuthal configuration, it is found that the black hole rotation decreases the reconnection rate. On the other hand, in the radial configuration, it is the gravitational force created by the black hole mass that decreases the reconnection rate. These results establish a fundamental interaction between gravity and magnetic reconnection in astrophysical contexts. C1 [Asenjo, Felipe A.] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile. [Comisso, Luca] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Comisso, Luca] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. RP Asenjo, FA (reprint author), Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7941169, Chile.; Comisso, L (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.; Comisso, L (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. EM felipe.asenjo@uai.cl; lcomisso@princeton.edu FU Fondecyt-Chile [11140025] FX It is a pleasure to acknowledge fruitful discussions with Gabriele Brambilla, Luis Lehner, Russell Kulsrud, and Alexander Tchekhovskoy. F. A. A. thanks Fondecyt-Chile Grant No. 11140025. L. C. is grateful for the hospitality of the Universidad Adolfo Ibanez, where part of this work was done. NR 44 TC 0 Z9 0 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 2 PY 2017 VL 118 IS 5 AR 055101 DI 10.1103/PhysRevLett.118.055101 PG 5 WC Physics, Multidisciplinary SC Physics GA EO0UZ UT WOS:000396415100005 PM 28211707 ER PT J AU Walker, JA Pattathil, S Bergeman, LF Beebe, ET Deng, K Mirzai, M Northen, TR Hahn, MG Fox, BG AF Walker, Johnnie A. Pattathil, Sivakumar Bergeman, Lai F. Beebe, Emily T. Deng, Kai Mirzai, Maryam Northen, Trent R. Hahn, Michael G. Fox, Brian G. TI Determination of glycoside hydrolase specificities during hydrolysis of plant cell walls using glycome profiling SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Glycoside hydrolase; Xylanase; Xyloglucanase; Glycome profiling; Nanostructure-initiator mass spectrometry; Enzyme specificity ID CARBOHYDRATE-BINDING MODULES; AMMONIA FIBER EXPANSION; REDUCING END-GROUPS; LIGNOCELLULOSIC BIOMASS; CLOSTRIDIUM-THERMOCELLUM; MONOCLONAL-ANTIBODIES; CRYSTAL-STRUCTURE; DILUTE-ACID; ENZYMATIC SACCHARIFICATION; THERMOSTABILIZING DOMAINS AB Background: Glycoside hydrolases (GHs) are enzymes that hydrolyze polysaccharides into simple sugars. To better understand the specificity of enzyme hydrolysis within the complex matrix of polysaccharides found in the plant cell wall, we studied the reactions of individual enzymes using glycome profiling, where a comprehensive collection of cell wall glycan-directed monoclonal antibodies are used to detect polysaccharide epitopes remaining in the walls after enzyme treatment and quantitative nanostructure initiator mass spectrometry (oxime-NIMS) to determine soluble sugar products of their reactions. Results: Single, purified enzymes from the GH5_4, GH10, and GH11 families of glycoside hydrolases hydrolyzed hemicelluloses as evidenced by the loss of specific epitopes from the glycome profiles in enzyme-treated plant biomass. The glycome profiling data were further substantiated by oxime-NIMS, which identified hexose products from hydrolysis of cellulose, and pentose-only and mixed hexose-pentose products from the hydrolysis of hemicelluloses. The GH10 enzyme proved to be reactive with the broadest diversity of xylose-backbone polysaccharide epitopes, but was incapable of reacting with glucose-backbone polysaccharides. In contrast, the GH5 and GH11 enzymes studied here showed the ability to react with both glucose-and xylose-backbone polysaccharides. Conclusions: The identification of enzyme specificity for a wide diversity of polysaccharide structures provided by glycome profiling, and the correlated identification of soluble oligosaccharide hydrolysis products provided by oximeNIMS, offers a unique combination to understand the hydrolytic capabilities and constraints of individual enzymes as they interact with plant biomass. C1 [Walker, Johnnie A.; Bergeman, Lai F.; Beebe, Emily T.; Fox, Brian G.] Univ Wisconsin, US DOE, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Walker, Johnnie A.; Bergeman, Lai F.; Beebe, Emily T.; Fox, Brian G.] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. [Pattathil, Sivakumar; Mirzai, Maryam; Hahn, Michael G.] Oak Ridge Natl Lab, US DOE, Bioenergy Sci Ctr, Oak Ridge, TN 37831 USA. [Pattathil, Sivakumar; Mirzai, Maryam; Hahn, Michael G.] Univ Georgia, Complex Carbohydrate Res Ctr, 220 Riverbend Rd, Athens, GA 30602 USA. [Deng, Kai; Northen, Trent R.] US DOE, Joint Bioenergy Inst, Emeryville, CA 94608 USA. [Deng, Kai] Sandia Natl Labs, Livermore, CA 94551 USA. [Northen, Trent R.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Fox, BG (reprint author), Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. EM bgfox@biochem.wisc.edu FU US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-FC02-07ER64494, DE-AC02-05CH11231, DE-PS02-717 06ER64304]; US National Science Foundation Plant Genome Program [DBI-0421683, IOS-0923992]; UW-Madison Science and Medicine Graduate Research Scholars Advanced Opportunity Fellowship Program; National Institute of General Medical Sciences Molecular Biophysics Training Program [NIH T32 GM08293]; National Science Foundation Graduate Research Fellowship [DGE-1256259] FX The DOE Great Lakes Bioenergy Research Center, DOE Joint BioEnergy Institute, and DOE Bioenergy Sciences Center are supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contracts DE-FC02-07ER64494, DE-AC02-05CH11231, and DE-PS02-717 06ER64304, respectively. The generation of the plant glycan-directed monoclonal antibodies used in this study was funded by grants from the US National Science Foundation Plant Genome Program to M.G.H. (DBI-0421683 and IOS-0923992). J.A.W. was supported by the UW-Madison Science and Medicine Graduate Research Scholars Advanced Opportunity Fellowship Program, the National Institute of General Medical Sciences Molecular Biophysics Training Program (NIH T32 GM08293), and a National Science Foundation Graduate Research Fellowship (DGE-1256259). The funding bodies have no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript. NR 104 TC 0 Z9 0 U1 7 U2 7 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD FEB 2 PY 2017 VL 10 AR 31 DI 10.1186/s13068-017-0703-6 PG 19 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA EK3RK UT WOS:000393843400003 PM 28184246 ER PT J AU Boschen, JS Theis, D Ruedenberg, K Windus, TL AF Boschen, Jeffery S. Theis, Daniel Ruedenberg, Klaus Windus, Theresa L. TI Correlation Energy Extrapolation by Many-Body Expansion SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID FRAGMENTATION METHODS; THEORETICAL EVIDENCE; INTERSECTION SEAM; EXCITED-STATES; GROUND-STATE; OZONE; SURFACES; SYMMETRY; NITROGEN; NEON AB Accounting for electron correlation is required for high accuracy calculations of molecular energies. The full configuration interaction (CI) approach can fully capture the electron correlation within a given basis, but it does so at a computational expense that is impractical for all but the smallest chemical systems. In this work, a new methodology is presented to approximate configuration interaction calculations at a reduced computational expense and memory requirement, namely, the correlation energy extrapolation by many-body expansion (CEEMBE). This method combines a MBE approximation of the CI energy with an extrapolated correction obtained from CI calculations using subsets of the virtual orbitals. The extrapolation approach is inspired by, and analogous to, the method of correlation energy extrapolation by intrinsic scaling. Benchmark calculations of the new method are performed on diatomic fluorine and ozone. The method consistently achieves agreement with CI calculations to within a few mhartree and often achieves agreement to within similar to 1 millihartree or less, while requiring significantly less computational resources. C1 [Windus, Theresa L.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Windus, TL (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM twindus@iastate.edu FU US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences, through the Ames Laboratory at Iowa State University [DE-AC02-07CH11358]; Research IT team at Iowa State University; NSF under MRI [CNS 1229081]; CRI [1205413] FX This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences, through the Ames Laboratory at Iowa State University under Contract No. DE-AC02-07CH11358. The work was partially supported by compute time and software management provided by the Research IT team at Iowa State University, utilizing HPC@ISU equipment, some of which has been purchased through funding provided by NSF under MRI grant number CNS 1229081 and CRI grant number 1205413. NR 33 TC 1 Z9 1 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 2 PY 2017 VL 121 IS 4 BP 836 EP 844 DI 10.1021/acs.jpca.6b10953 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EJ7ZW UT WOS:000393443000012 PM 28068093 ER PT J AU Sarode, HN Yang, Y Motz, AR Li, YF Knauss, DM Seifert, S Herring, AM AF Sarode, Himanshu N. Yang, Yuan Motz, Andrew R. Li, Yifan Knauss, Daniel M. Seifert, Soenke Herring, Andrew M. TI Understanding Anion, Water, and Methanol Transport in a Polyethylene-b-poly(vinylbenzyl trimethylammonium) Copolymer Anion-Exchange Membrane for Electrochemical Applications SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ALKALINE FUEL-CELL; FUNCTIONALIZED POLYETHYLENE; FIELD GRADIENT; CONDUCTIVITY; HYDROXIDE; DIFFUSION; IONS; MORPHOLOGY; STABILITY; CATION AB Herein, we report the anion and water transport properties of an anion-exchange membrane (AEM) comprising a block copolymer of polyethylene and poly(vinylbenzyl trimethylammonium) (PE-b-PVBTMA) with an cs) ion-exchange capacity (IEC) of 1.08 mequiv/g. The conductivity varied little among the anions CO32-, HCO3-, ryi and F-, with a value of E-a approximate to 20 kJ/mol and a maximum fluoride conductivity of 34 mS/cm at 90 degrees C and 95% relative humidity. The Br- conductivity showed a transition at 60 degrees C. Pulsed gradient stimulated spin echo nuclear magnetic resonance (PGSE NMR) experiments showed that water diffusion in this AEM is heterogeneous and is affected by the anion present, being fastest in the presence of F-. We determined the methanol self-diffusion in this membrane and observed that it is lower than that in Nafion 117, because of the lower water uptake. This article reports the first measurements of C-13-labeled bicarbonate self-diffusion in an AEM using PGSE NMR spectrometry, which was found to be significantly slower than F- self-diffusion. Back-calculation of the bicarbonate conductivity using the Nernst-Einstein equation gave a value that was significantly lower than the measured value, implying that bicarbonate transport involves OH- in the transport mechanism. Fourier transform infrared spectroscopy, PGSE NMR spectrometry, and small-angle X-ray scattering (SAXS) indicated the presence of different types of waters present in the membrane at different length scales. The SAXS data indicated that there is a water-rich region within the hydrophilic domains of the polymer that has a temperature dependence in intensity at 95% relative humidity (RH). C1 [Sarode, Himanshu N.; Motz, Andrew R.; Herring, Andrew M.] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. [Yang, Yuan; Li, Yifan; Knauss, Daniel M.] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. [Seifert, Soenke] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Herring, AM (reprint author), Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. EM aherring@mines.edu OI Herring, Andrew/0000-0001-7318-5999 FU Army Research Office [W911NF-11-1-0462]; Colorado School of Mines NMR facility - National Science Foundation under MRI [CHE-0923537]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX The authors thank the Army Research Office for support of this research under the MUM program, Grant W911NF-11-1-0462, and The Colorado School of Mines NMR facility funded by National Science Foundation under MRI Grant CHE-0923537. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE), Office of Science, User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357. NR 44 TC 0 Z9 0 U1 16 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 2 PY 2017 VL 121 IS 4 BP 2035 EP 2045 DI 10.1021/acs.jpcc.6b09205 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EJ7ZY UT WOS:000393443200002 ER PT J AU Kawasaki, S Holmstrom, E Takahashi, R Spijker, P Foster, AS Onishi, H Lippmaa, M AF Kawasaki, Seiji Holmstrom, Eero Takahashi, Ryota Spijker, Peter Foster, Adam S. Onishi, Hiroshi Lippmaa, Mikk TI Intrinsic Superhydrophilicity of Titania-Terminated Surfaces SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ATOMIC-FORCE MICROSCOPY; PHOTOINDUCED HYDROPHILICITY; ELECTRON-DIFFRACTION; MOLECULAR-DYNAMICS; CRYSTAL-SURFACES; THIN-FILM; TIO2; WATER; SPECTROSCOPY; SUBSTRATE AB The wettability of solid surfaces is of fundamental scientific interest and related to many diverse chemical and physical phenomena at the heart of practical technologies. In particular, the hydrophilicity of the photo catalytically active metal-oxide TiO2 has attracted considerable attention for many applications. However, the intrinsic hydrophilicity of Ti-oxide surfaces is not fully understood. In this work, we investigate the intrinsic hydrophilicity of Ti-oxide surfaces on the atomically stable (root 13 x root 13)-R33.7 degrees SrTiO3 (001) surface. The surface has a TiOx double layer on a TiO2-terminated SrTiO3 (001) surface, which is available as a surface marker to assess the atomic-scale structural stability of the surface. Both experimental and theoretical results show that Ti-oxide surfaces are intrinsically superhydrophilic with a water contact angle of similar to 0 degrees. The results show that airborne surface contamination is the most significant factor affecting the wettability of titania surfaces, strongly supporting the contamination model for explaining the mechanism of photoinduced superhydrophilicity observed on titanate surfaces. We emphasize that the effect of airborne contamination has to be carefully evaluated when investigating the wettability of surfaces. C1 [Kawasaki, Seiji; Takahashi, Ryota; Lippmaa, Mikk] Univ Tokyo, Inst Solid State Phys, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778581, Japan. [Holmstrom, Eero; Spijker, Peter; Foster, Adam S.] Aalto Univ, Dept Appl Phys, COMP, Otakaari 1, FI-00076 Helsinki, Finland. [Takahashi, Ryota] JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan. [Foster, Adam S.] Kanazawa Univ, Div Elect Engn & Comp Sci, Kanazawa, Ishikawa 9201192, Japan. [Onishi, Hiroshi] Kobe Univ, Dept Chem, 1-1 Rokkodai, Kobe, Hyogo 6578501, Japan. [Kawasaki, Seiji] Lawrence Berkeley Natl Lab, Mat Sci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Kawasaki, S; Lippmaa, M (reprint author), Univ Tokyo, Inst Solid State Phys, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778581, Japan. EM skawasaki@sci-res.net; mlippmaa@issp.u-tokyo.ac.jp RI Foster, Adam/E-1275-2012; OI Foster, Adam/0000-0001-5371-5905; Takahashi, Ryota/0000-0003-2430-2444 FU Japan Society for the Promotion of Science (JSPS); Academy of Finland through the Centres of Excellence Program [251748]; CSC - IT Center for Science, Finland; JSPS kakenhi [26105002]; Program for Leading Graduate Schools (MERIT) FX S.K. was supported by the Japan Society for the Promotion of Science (JSPS) and the Program for Leading Graduate Schools (MERIT). Prof. Katsuyuki Fukutani, Prof. Fumio Komori, Prof. Yuji Matsumoto, Prof. Maki Kawai, and Dr. Ryota Shimizu are acknowledged for fruitful discussion. The FM-AFM used in this study was developed by the Advanced Measurement and Analysis Project of the Japan Science and Technology Agency. Dr. Yuki Araki, Mr. Shunsuke Suiko, and Mr. Yusuke Tanaka are acknowledged for optimizing the FM-AFM equipment. E.H., P.S., and A.S.F. acknowledge financial support by the Academy of Finland through the Centres of Excellence Program (Project No. 251748) and generous grants of computing time from CSC - IT Center for Science, Finland. The work was supported in part by JSPS kakenhi Grant No. 26105002. NR 50 TC 0 Z9 0 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 2 PY 2017 VL 121 IS 4 BP 2268 EP 2275 DI 10.1021/acs.jpcc.6b12130 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EJ7ZY UT WOS:000393443200028 ER PT J AU Zamar, DS Gopaluni, B Sokhansanj, S Newlands, NK AF Zamar, David S. Gopaluni, Bhushan Sokhansanj, Shahab Newlands, Nathaniel K. TI A quantile-based scenario analysis approach to biomass supply chain optimization under uncertainty SO COMPUTERS & CHEMICAL ENGINEERING LA English DT Article DE Uncertainty; Scenario analysis; Optimization; Renewable energy systems; Biomass ID DESIGN; MANAGEMENT; CHALLENGES; BIOENERGY; SYSTEM; OIL AB Supply chain optimization for biomass-based power plants is an important research area due to greater emphasis on renewable power energy sources. Biomass supply chain design and operational planning models are often formulated and studied using deterministic mathematical models. While these models are beneficial for making decisions, their applicability to real world problems may be limited because they do not capture all the complexities in the supply chain, including uncertainties in the parameters. This paper develops a statistically robust quantile-based approach for stochastic optimization under uncertainty, which builds upon scenario analysis. We apply and evaluate the performance of our approach to address the problem of analyzing competing biomass supply chains subject to stochastic demand and supply. The proposed approach was found to outperform alternative methods in terms of computational efficiency and ability to meet the stochastic problem requirements. Crown Copyright (C) 2016 Published by Elsevier Ltd. All rights reserved. C1 [Zamar, David S.; Gopaluni, Bhushan; Sokhansanj, Shahab] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Resource & Engn Syst Grp, Oak Ridge, TN 37831 USA. [Newlands, Nathaniel K.] Summerland Res & Dev Ctr, 4200 Highway 97,POB 5000, Summerland, BC V0H 1Z0, Canada. RP Zamar, DS (reprint author), Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. EM zamar.david@gmail.com; bhushan.gopaluni@ubc.ca; shahabs@chbe.ubc.ca; nathaniel.newlands@agr.gc.ca FU MITACS; NSERC; BioFuelNet NCE (BFN) FX We would like to acknowledge the financial support from MITACS, NSERC, and BioFuelNet NCE (BFN). NR 43 TC 0 Z9 0 U1 4 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-1354 EI 1873-4375 J9 COMPUT CHEM ENG JI Comput. Chem. Eng. PD FEB 2 PY 2017 VL 97 BP 114 EP 123 DI 10.1016/j.compchemeng.2016.11.015 PG 10 WC Computer Science, Interdisciplinary Applications; Engineering, Chemical SC Computer Science; Engineering GA EI8RK UT WOS:000392775000010 ER PT J AU Lewis, ZT Sidamonidze, K Tsaturyan, V Tsereteli, D Khachidze, N Pepoyan, A Zhgenti, E Tevzadze, L Manvelyan, A Balayan, M Imnadze, P Torok, T Lemay, DG Mills, DA AF Lewis, Zachery T. Sidamonidze, Ketevan Tsaturyan, Vardan Tsereteli, David Khachidze, Nika Pepoyan, Astghik Zhgenti, Ekaterine Tevzadze, Liana Manvelyan, Anahit Balayan, Marine Imnadze, Paata Torok, Tamas Lemay, Danielle G. Mills, David A. TI The Fecal Microbial Community of Breast-fed Infants from Armenia and Georgia SO Scientific Reports LA English DT Article ID HUMAN-MILK OLIGOSACCHARIDES; LONGUM SUBSP INFANTIS; BIFIDOBACTERIUM-BREVE UCC2003; GUT MICROBIOTA; FUCOSYLATED OLIGOSACCHARIDES; IMMUNE-SYSTEM; CONSUMPTION; DIVERSITY; SEQUENCES; CHILDREN AB Multiple factors help shape the infant intestinal microbiota early in life. Environmental conditions such as the presence of bioactive molecules from breast milk dictate gut microbial growth and survival. Infants also receive distinct, personalized, bacterial exposures leading to differential colonization. Microbial exposures and gut environmental conditions differ between infants in different locations, as does the typical microbial community structure in an infant's gut. Here we evaluate potential influences on the infant gut microbiota through a longitudinal study on cohorts of breast-fed infants from the neighboring countries of Armenia and Georgia, an area of the world for which the infant microbiome has not been previously investigated. Marker gene sequencing of 16S ribosomal genes revealed that the gut microbial communities of infants from these countries were dominated by bifidobacteria, were different from each other, and were marginally influenced by their mother's secretor status. Species-level differences in the bifidobacterial communities of each country and birth method were also observed. These community differences suggest that environmental variation between individuals in different locations may influence the gut microbiota of infants. C1 [Lewis, Zachery T.; Mills, David A.] Univ Calif Davis, Dept Food Sci & Technol, Davis, CA 95616 USA. [Lewis, Zachery T.; Mills, David A.] Univ Calif Davis, Foods Hlth Inst, Davis, CA 95616 USA. [Lewis, Zachery T.; Mills, David A.] Univ Calif Davis, Dept Viticulture & Enol, Davis, CA 95616 USA. [Sidamonidze, Ketevan; Tsereteli, David; Khachidze, Nika; Zhgenti, Ekaterine; Tevzadze, Liana; Imnadze, Paata] Natl Ctr Dis Control & Publ Hlth Georgia, Tbilisi, Rep of Georgia. [Tsaturyan, Vardan; Pepoyan, Astghik] IAHAHI, Yerevan, Armenia. [Manvelyan, Anahit; Balayan, Marine] Armenian Natl Agr Univ, Yerevan, Armenia. [Torok, Tamas] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. [Lemay, Danielle G.] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA. RP Mills, DA (reprint author), Univ Calif Davis, Dept Food Sci & Technol, Davis, CA 95616 USA.; Mills, DA (reprint author), Univ Calif Davis, Foods Hlth Inst, Davis, CA 95616 USA.; Mills, DA (reprint author), Univ Calif Davis, Dept Viticulture & Enol, Davis, CA 95616 USA. EM damills@ucdavis.edu FU U.S. Department of Energy Global Initiatives for Proliferation Prevention (GIPP) program [LBNL-291 0225-GE, LBNL-0231-AM]; Science and Technology Center in Ukraine (STCU) [P509]; International Science and Technology Center (ISTC) in Moscow, Russia [A-1957]; National Institutes of Health [R01AT007079, R01AT008759]; Peter J. Shields Endowed Chair in Dairy Food Science; Alfred P. Sloan Foundation Microbiology of the Built Environment postdoctoral fellowship FX The authors thank Khatuna Varsimashvili, Lana Tolordava, Lela Tinikashvili, Susanna Mirzabekyan, and Marika Gamkrelidze for technical support, and Astghik Harutyunyan and Evrik Afrikyan for guidance and advice on this work. This work was supported, in part, by the U.S. Department of Energy Global Initiatives for Proliferation Prevention (GIPP) program (LBNL-291 0225-GE and LBNL-0231-AM). The project in Georgia (P509) was funded through the Science and Technology Center in Ukraine (STCU). The International Science and Technology Center (ISTC) in Moscow, Russia provided the financial support to Armenia (A-1957). This work was also supported in part by funding from National Institutes of Health awards R01AT007079 and R01AT008759 and the Peter J. Shields Endowed Chair in Dairy Food Science (DAM). ZTL is supported by an Alfred P. Sloan Foundation Microbiology of the Built Environment postdoctoral fellowship. NR 75 TC 0 Z9 0 U1 15 U2 15 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 2 PY 2017 VL 7 AR 40932 DI 10.1038/srep40932 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EJ3FM UT WOS:000393098000001 PM 28150690 ER PT J AU Dhillon, SS Vitiello, MS Linfield, EH Davies, AG Hoffmann, MC Booske, J Paoloni, C Gensch, M Weightman, P Williams, GP Castro-Camus, E Cumming, DRS Simoens, F Escorcia-Carranza, I Grant, J Lucyszyn, S Kuwata-Gonokami, M Konishi, K Koch, M Schmuttenmaer, CA Cocker, TL Huber, R Markelz, AG Taylor, ZD Wallace, VP Zeitler, JA Sibik, J Korter, TM Ellison, B Rea, S Goldsmith, P Cooper, KB Appleby, R Pardo, D Huggard, PG Krozer, V Shams, H Fice, M Renaud, C Seeds, A Stohr, A Naftaly, M Ridler, N Clarke, R Cunningham, JE Johnston, MB AF Dhillon, S. S. Vitiello, M. S. Linfield, E. H. Davies, A. G. Hoffmann, Matthias C. Booske, John Paoloni, Claudio Gensch, M. Weightman, P. Williams, G. P. Castro-Camus, E. Cumming, D. R. S. Simoens, F. Escorcia-Carranza, I. Grant, J. Lucyszyn, Stepan Kuwata-Gonokami, Makoto Konishi, Kuniaki Koch, Martin Schmuttenmaer, Charles A. Cocker, Tyler L. Huber, Rupert Markelz, A. G. Taylor, Z. D. Wallace, Vincent P. Zeitler, J. Axel Sibik, Juraj Korter, Timothy M. Ellison, B. Rea, S. Goldsmith, P. Cooper, Ken B. Appleby, Roger Pardo, D. Huggard, P. G. Krozer, V. Shams, Haymen Fice, Martyn Renaud, Cyril Seeds, Alwyn Stoehr, Andreas Naftaly, Mira Ridler, Nick Clarke, Roland Cunningham, John E. Johnston, Michael B. TI The 2017 terahertz science and technology roadmap SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Review DE terahertz; time-domain spectroscopy; semiconductors ID QUANTUM-CASCADE LASERS; TIME-DOMAIN SPECTROSCOPY; PLASMONIC CONTACT ELECTRODES; BASAL-CELL CARCINOMA; METAL WAVE-GUIDES; NEAR-FIELD; PHOTOCONDUCTIVE EMITTERS; BIOLOGICAL-SYSTEMS; COHERENT-DETECTION; GRAPHENE PLASMONS AB Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz-30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to 'real world' applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies. C1 [Dhillon, S. S.] Univ Paris 06, Univ Paris Diderot, Sorbonne Univ,CNRS,Lab Pierre Aigrain, Sorbonne Paris Cite,Ecole Normale Super,PSL Res U, F-75231 Paris, France. [Vitiello, M. S.] CNR, Ist Nanosci, NEST, Piazza San Silvestro 12, I-56127 Pisa, Italy. [Vitiello, M. S.] Scuola Normale Super Pisa, Piazza San Silvestro 12, I-56127 Pisa, Italy. [Linfield, E. H.; Davies, A. G.; Cunningham, John E.] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England. [Hoffmann, Matthias C.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Booske, John] Univ Wisconsin Madison, Dept Elect & Comp Engn, Madison, WI USA. [Paoloni, Claudio] Univ Lancaster, Dept Engn, Lancaster, England. [Gensch, M.] Helmholtz Zentrum Dresden Rossendorf, Inst Radiat Phys, Bautzner Landstr 400, D-01328 Dresden, Germany. [Weightman, P.] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Williams, G. P.] Jefferson Lab, 12000 Jefferson Ave Suite 21, Newport News, VA 23606 USA. [Castro-Camus, E.] Ctr Invest Opt AC, Loma Bosque 115, Guanajuato 37150, Mexico. [Cumming, D. R. S.; Escorcia-Carranza, I.; Grant, J.] Glasgow, Sch Engn, Microsyst Technol Grp, Glasgow G12 8LT, Lanark, Scotland. [Simoens, F.] CEA Leti MINATEC, 17 Rue Martyrs, F-38054 Grenoble 9, France. [Lucyszyn, Stepan] Imperial Coll London, Dept EEE, Ctr Terahertz Sci & Engn, London, England. [Kuwata-Gonokami, Makoto; Konishi, Kuniaki] Univ Tokyo, Dept Phys, Tokyo, Japan. [Koch, Martin] Philipps Univ Marburg, Fac Phys, D-35032 Marburg, Germany. [Koch, Martin] Philipps Univ Marburg, Ctr Mat Sci, D-35032 Marburg, Germany. [Schmuttenmaer, Charles A.] Yale Univ, Dept Chem, 225 Prospect St,POB 208107, New Haven, CT 06520 USA. [Schmuttenmaer, Charles A.] Yale Univ, Energy Sci Inst, 225 Prospect St,POB 208107, New Haven, CT 06520 USA. [Cocker, Tyler L.; Huber, Rupert] Univ Regensburg, Inst Expt & Angew Phys, Univ Str 31, D-93053 Regensburg, Germany. [Markelz, A. G.] Univ Buffalo State Univ New York, Dept Phys, Buffalo, NY 14620 USA. [Taylor, Z. D.] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA. [Wallace, Vincent P.] Univ Western Australia M013, 35 Stirling Highway, Crawley, WA 6009, Australia. [Zeitler, J. Axel; Sibik, Juraj] Magnet Resonance Res Ctr, Dept Chem Engn, JJ Thompson Ave, Cambridge CB3 0HE, England. [Korter, Timothy M.] Syracuse Univ, Dept Chem, 1-014 CST,111 Coll Pl, Syracuse, NY 13244 USA. [Ellison, B.; Rea, S.; Pardo, D.; Huggard, P. G.] RAL Space, STFC, Millimetre Wave Technol Grp, Didcot OX11 0QX, Oxon, England. [Goldsmith, P.] Jet Prop Lab, M-S 180-703,4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Cooper, Ken B.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Appleby, Roger] Innovasec Ltd, 212b West Malvern Rd, Malvern WR14 4BA, Worcs, England. [Krozer, V.] Goethe Univ Frankfurt Main, Goethe Leibniz Terahertz Ctr, D-60323 Frankfurt, Germany. [Shams, Haymen; Fice, Martyn; Renaud, Cyril; Seeds, Alwyn] UCL, Dept Elect & Elect Engn, Torrington Pl, London WC1E 7JE, England. [Stoehr, Andreas] Univ Duisburg Essen, Fac Engn, Dept Optoelect, Lotharstr 55, D-47057 Duisburg, Germany. [Naftaly, Mira; Ridler, Nick] Natl Phys Lab, Div Time Quantum & Electromagnet, Teddington TW11 0LW, Middx, England. [Clarke, Roland] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England. [Johnston, Michael B.] Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. RP Cunningham, JE (reprint author), Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England.; Johnston, MB (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM enrique@cio.mx; david.cumming.2@glasgow.ac.uk; J.E.Cunningham@leeds.ac.uk; michael.johnston@physics.ox.ac.uk RI Hoffmann, Matthias/B-3893-2009; Johnston, Michael/B-9813-2008; OI Hoffmann, Matthias/0000-0002-3596-9853; Johnston, Michael/0000-0002-0301-8033; PAOLONI, CLAUDIO/0000-0002-0265-0862 NR 209 TC 0 Z9 0 U1 83 U2 83 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 EI 1361-6463 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD FEB 2 PY 2017 VL 50 IS 4 AR 043001 DI 10.1088/1361-6463/50/4/043001 PG 49 WC Physics, Applied SC Physics GA EI0HL UT WOS:000392153700001 ER PT J AU Stankovikj, F McDonald, AG Helms, GL Olarte, MV Garcia-Perez, M AF Stankovikj, Filip McDonald, Armando G. Helms, Gregory L. Olarte, Mariefel V. Garcia-Perez, Manuel TI Characterization of the Water-Soluble Fraction of Woody Biomass Pyrolysis Oils SO ENERGY & FUELS LA English DT Article ID SOLID-STATE NMR; BIO-OIL; MOLECULAR-STRUCTURE; INSOLUBLE FRACTION; FTIR SPECTROSCOPY; FUNCTIONAL-GROUPS; MODEL COMPOUNDS; TOTAL PHENOLS; PINE WOOD; LIGNIN AB This paper reports a study of the chemical composition of the water-soluble (WS) fraction obtained by cold water precipitation of two commercial wood pyrolysis oils (BTG and Amaron). The fraction studied accounts for between 50.3 and 51.3 wt % of the oils. With the most common analytical techniques used today for the characterization of this fraction (KF titration, GC MS, hydrolyzable sugars, and total carbohydrates), it is possible to quantify only between 45 and 50 wt % of the fraction. Our results confirm that most of the total carbohydrates (hydrolyzable sugars and nonhydrolyzable) are soluble in water. The ion chromatography hydrolysis method showed that between 11.6 and 17.3 wt % of these oils were hydrolyzable sugars. A small quantity of phenols detectable by GC MS (between 2.5 and 3.9 wt %) were identified. It is postulated that the unknown high molecular weight fraction (30-55 wt %) is formed by highly dehydrated sugars rich in carbonyl groups and WS phenols. The overall content of carbonyl, carboxyl, hydroxyl, and phenolic compounds in the WS fraction was quantified by titration, the Folin Ciocalteu method, P-31 NMR, and H-1 NMR. The WS fraction contains between 5.5 and 6.2 mmol/g carbonyl groups, between 0.4 and 1.0 mmol/g carboxylic acid groups, between 1.2 and 1.8 mmol/g phenolic -OH, and between 6.0 and 7.9 mmol/g of aliphatic alcohol groups. Translation into weight fractions of the WS was done by supposing surrogate structures for the water-soluble phenols, carbonyl groups, and carboxyl groups, and we estimated the content of WS phenols (21-27 wt %), carbonyls (5-14 wt %), and carboxyls (0-4 wt %). Together with the total carbohydrates (23-27 wt %), this approach leads to >90 wt % of the WS material in the bio-oils being quantified. We speculate the larger portion of the difference between the total carbohydrates and hydrolyzable sugars is the missing furanic fraction. Further refinement of the suggested methods and development of separation schemes to obtain and quantify subfractions with homogeneous composition (e.g., carbohydrates, high molecular weight WS phenols, furans, and dehydrated sugars) warrant further investigation. C1 [Stankovikj, Filip; Garcia-Perez, Manuel] Washington State Univ, Dept Biol Syst Engn, Pullman, WA 99164 USA. [Helms, Gregory L.] Washington State Univ, Ctr NMR Spect, POB 644630, Pullman, WA 99164 USA. [McDonald, Armando G.] Univ Idaho, Dept Forest Rangeland & Fire Sci, Renewable Mat Program, Moscow, ID 83844 USA. [Olarte, Mariefel V.] Pacific Northwest Natl Lab, Richland, WA 99354 USA. RP Garcia-Perez, M (reprint author), Washington State Univ, Dept Biol Syst Engn, Pullman, WA 99164 USA. EM mgarcia-perez@wsu.edu FU NIH [RR0631401, RR12948]; NSF [CHE-9115282, DBI-9604689]; Murdock Charitable Trust; U.S. National Science Foundation [CBET-1434073, CAREER CBET-1150430]; USDA/NIFA through Hatch Project [WNP00701]; Bioenergy Technologies Office of the U.S. Department of Energy [DE-AC06-76RLO-1830]; Battelle FX The authors want to thank Fulbright S&T for providing scholarships and Jonathan Lomber within the Analytical Chemistry Service Center in the Biological Systems Engineering Department, Washington State University-Pullman for providing instrumentation and technical support. The WSU NMR Center equipment was supported by NIH grants RR0631401 and RR12948, NSF grants CHE-9115282 and DBI-9604689, and the Murdock Charitable Trust. M.G.-P. is very thankful for the financial support provided by the U.S. National Science Foundation (Grants CBET-1434073 and CAREER CBET-1150430). This project was also partially funded by the USDA/NIFA through Hatch Project WNP00701. M.V.O. acknowledges the financial support of the Bioenergy Technologies Office of the U.S. Department of Energy under contract DE-AC06-76RLO-1830 with Battelle as well as the technical support of Ms. Marie Swita, Dr. Teresa Lemmon, and Dr. Asanga Padmaperuma. NR 73 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2017 VL 31 IS 2 BP 1650 EP 1664 DI 10.1021/acs.energyfuels.6b02950 PG 15 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EL3ZY UT WOS:000394560900064 ER PT J AU Adsley, P Neveling, R Papka, P Dyers, Z Brummer, JW Diget, CA Hubbard, NJ Li, KCW Long, A Marin-Lambarri, DJ Pellegri, L Pesudo, V Pool, LC Smit, FD Triambak, S AF Adsley, P. Neveling, R. Papka, P. Dyers, Z. Brummer, J. W. Diget, C. Aa. Hubbard, N. J. Li, K. C. W. Long, A. Marin-Lambarri, D. J. Pellegri, L. Pesudo, V. Pool, L. C. Smit, F. D. Triambak, S. TI CAKE: the coincidence array for K600 experiments SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Instrumentation and methods for time-of-flight (TOF) spectroscopy; Particle identification methods; Spectrometers AB The combination of a magnetic spectrometer and ancillary detectors such as silicon detectors is a powerful tool for the study of nuclear reactions and nuclear structure. This paper discusses the recently commissioned silicon array called the 'CAKE' which is designed for use with the K600 magnetic spectrometer at iThemba LABS. C1 [Adsley, P.; Papka, P.; Brummer, J. W.; Li, K. C. W.] Univ Stellenbosch, Dept Phys, Stellenbosch, South Africa. [Adsley, P.; Neveling, R.; Papka, P.; Dyers, Z.; Brummer, J. W.; Li, K. C. W.; Marin-Lambarri, D. J.; Pellegri, L.; Pesudo, V.; Pool, L. C.; Smit, F. D.] IThemba LABS, Cape Town, South Africa. [Diget, C. Aa.; Hubbard, N. J.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Long, A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Pellegri, L.] Univ Witwatersrand, Sch Phys, ZA-2050 Johannesburg, South Africa. [Marin-Lambarri, D. J.; Pesudo, V.; Triambak, S.] Univ Western Cape, Dept Phys, P-B X17, ZA-7535 Bellville, South Africa. [Adsley, P.] Univ Paris Sud 11, CNRS IN2P3, UMR8608, Inst Phys Nucl Orsay, F-91406 Orsay, France. [Long, A.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Adsley, P (reprint author), Univ Stellenbosch, Dept Phys, Stellenbosch, South Africa.; Adsley, P (reprint author), IThemba LABS, Cape Town, South Africa.; Adsley, P (reprint author), Univ Paris Sud 11, CNRS IN2P3, UMR8608, Inst Phys Nucl Orsay, F-91406 Orsay, France. EM padsley@gmail.com FU NRF [86052, 85509] FX The authors thank the accelerator group at iThemba LABS for the provision of a variety of high-quality halo-free dispersion-matched beams. The K600 is supported by the NRF and the CAKE was funded by the NRF under grant number 86052. RN acknowledges financial support from the NRF through grant number 85509. We thank the University of York for loaning additional electronics for the silicon detectors and the K600 DAQ. PA thanks Michael Munch and Alan Howard of Aarhus University for advice on the instrumentation of the silicon detectors. NR 12 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2017 VL 12 AR T02004 DI 10.1088/1748-0221/12/02/T02004 PG 15 WC Instruments & Instrumentation SC Instruments & Instrumentation GA EQ1JG UT WOS:000397825400004 ER PT J AU Burgoon, LD Druwe, IL Painter, K Yost, EE AF Burgoon, Lyle D. Druwe, Ingrid L. Painter, Kyle Yost, Erin E. TI Using In Vitro High-Throughput Screening Data for Predicting Benzo[k] Fluoranthene Human Health Hazards SO RISK ANALYSIS LA English DT Article DE High-throughput screening; human health hazard prioritization values; H3PV; riskassessment; risk screening ID ALPHA AB Today there are more than 80,000 chemicals in commerce and the environment. The potential human health risks are unknown for the vast majority of these chemicals as they lack human health risk assessments, toxicity reference values, and risk screening values. We aim to use computational toxicology and quantitative high-throughput screening (qHTS) technologies to fill these data gaps, and begin to prioritize these chemicals for additional assessment. In this pilot, we demonstrate how we were able to identify that benzo[k] fluoranthene may induce DNA damage and steatosis using qHTS data and two separate adverse outcome pathways (AOPs). We also demonstrate how bootstrap natural spline-based meta-regression can be used to integrate data across multiple assay replicates to generate a concentration-response curve. We used this analysis to calculate an in vitro point of departure of 0.751 mu M and risk-specific in vitro concentrations of 0.29 mu M and 0.28 mu M for 1: 1,000 and 1: 10,000 risk, respectively, for DNA damage. Based on the available evidence, and considering that only a single HSD17B4 assay is available, we have low overall confidence in the steatosis hazard identification. This case study suggests that coupling qHTS assays with AOPs and ontologies will facilitate hazard identification. Combining this with quantitative evidence integration methods, such as bootstrap meta-regression, may allow risk assessors to identify points of departure and risk-specific internal/in vitro concentrations. These results are sufficient to prioritize the chemicals; however, in the longer term we will need to estimate external doses for risk screening purposes, such as through margin of exposure methods. C1 [Burgoon, Lyle D.] US Army Engineer Res & Dev Ctr, Res Triangle Pk, NC 27711 USA. [Druwe, Ingrid L.; Painter, Kyle; Yost, Erin E.] US EPA, Oak Ridge Inst Sci & Educ, Natl Ctr Environm Assessment, Res Triangle Pk, NC 27711 USA. RP Burgoon, LD (reprint author), US Army Engineer Res & Dev Ctr, Res Triangle Pk, NC 27711 USA. EM lyle.d.burgoon@usace.army.mil FU U.S. Environmental Protection Agency (EPA) Human Health Risk Assessment Program; U.S. Army Environmental Quality and Installations Rapid Hazard Assessment Focus Area Research Project FX The authors thank Drs. Ila Cote, Michelle Angrish, Reeder Sams, and John Vandenberg for their comments on earlier drafts of this article. This project started when Dr. Burgoon was at the U.S. Environmental Protection Agency's National Center for Environmental Assessment, and completed after Dr. Burgoon began working at the U.S. Army Engineer Research and Development Center. The U.S. Environmental Protection Agency (EPA) Human Health Risk Assessment Program and the U.S. Army Environmental Quality and Installations Rapid Hazard Assessment Focus Area Research Project provided financial support. Drs. Druwe and Yost and Mr. Painter were supported by an appointment to the Internship/Research Participation Program at the Office of Research and Development, U.S. EPA, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the U.S. EPA. NR 9 TC 0 Z9 0 U1 1 U2 1 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0272-4332 EI 1539-6924 J9 RISK ANAL JI Risk Anal. PD FEB PY 2017 VL 37 IS 2 BP 280 EP 290 DI 10.1111/risa.12613 PG 11 WC Public, Environmental & Occupational Health; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods SC Public, Environmental & Occupational Health; Mathematics; Mathematical Methods In Social Sciences GA EQ0QQ UT WOS:000397776100010 PM 27088631 ER PT J AU Stoklosa, RJ Orjuela, AD Sousa, LD Uppugundla, N Williams, DL Dale, BE Hodge, DB Balan, V AF Stoklosa, Ryan J. Orjuela, Andrea del Pilar Sousa, Leonardo da Costa Uppugundla, Nirmal Williams, Daniel L. Dale, Bruce E. Hodge, David B. Balan, Venkatesh TI Techno-economic comparison of centralized versus decentralized biorefineries for two alkaline pretreatment processes SO BIORESOURCE TECHNOLOGY LA English DT Article DE AFEX; AHP; Pretreatment; Enzyme hydrolysis; Biorefinery; Techno-economic analysis ID ETHANOL SELLING PRICE; FIBER EXPANSION AFEX; CORN STOVER; ENZYMATIC-HYDROLYSIS; DILUTE-ACID; SACCHAROMYCES-CEREVISIAE; PEROXIDE PRETREATMENT; BLACK LIQUOR; BIOMASS; DELIGNIFICATION AB In this work, corn stover subjected to ammonia fiber expansion (AFEXTM) 1 pretreatment or alkaline pre-extraction followed by hydrogen peroxide post-treatment (AHP pretreatment) were compared for their enzymatic hydrolysis yields over a range of solids loadings, enzymes loadings, and enzyme combinations. Process techno-economic models were compared for cellulosic ethanol production for a biorefinery that handles 2000 tons per day of corn stover employing a centralized biorefinery approach with AHP or a decentralized AFEX pretreatment followed by biomass densification feeding a centralized biorefinery. A techno-economic analysis (TEA) of these scenarios shows that the AFEX process resulted in the highest capital investment but also has the lowest minimum ethanol selling price (MESP) at $2.09/gal, primarily due to good energy integration and an efficient ammonia recovery system. The economics of AHP could be made more competitive if oxidant loadings were reduced and the alkali and sugar losses were also decreased. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Stoklosa, Ryan J.; Orjuela, Andrea del Pilar; Sousa, Leonardo da Costa; Uppugundla, Nirmal; Williams, Daniel L.; Dale, Bruce E.; Hodge, David B.; Balan, Venkatesh] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. [Stoklosa, Ryan J.; Sousa, Leonardo da Costa; Uppugundla, Nirmal; Williams, Daniel L.; Dale, Bruce E.; Hodge, David B.; Balan, Venkatesh] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Hodge, David B.] Michigan State Univ, Dept Biosyst & Agr Engn, E Lansing, MI 48824 USA. [Hodge, David B.] Lulea Univ Technol, Div Sustainable Proc Engn, Lulea, Sweden. RP Hodge, DB; Balan, V (reprint author), Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. EM hodgeda@egr.msu.edu FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DEFC02-07ER64494]; AgBioResearch at Michigan State University; USDA NIFA program FX We would like to thank Great Lakes Bioenergy Research Center (http://www.greatlakes-bioenergy.org/) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through Cooperative Agreement DEFC02-07ER64494 between the Board of Regents of the University of Wisconsin System and the U.S. Department of Energy. Coauthor Dale also thanks AgBioResearch at Michigan State University and the USDA NIFA program for supporting his work. We also thank Novozymes and DuPont Danisco for supplying the enzymes used in this work. NR 40 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD FEB PY 2017 VL 226 BP 9 EP 17 DI 10.1016/j.biortech.2016.11.092 PG 9 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA EQ2TA UT WOS:000397922400002 PM 27951509 ER PT J AU Black, S Ferrell, JR AF Black, Stuart Ferrell, Jack R., III TI Determination of Carbonyl Functional Groups in Bio-oils by Potentiometric Titration: The Faix Method SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Chemistry; Issue 120; pyrolysis; bio-oil; analysis; analytical; carbonyl; titration ID FAST PYROLYSIS AB Carbonyl compounds present in bio-oils are known to be responsible for bio-oil property changes upon storage and during upgrading. Specifically, carbonyls cause an increase in viscosity (often referred to as 'aging') during storage of bio-oils. As such, carbonyl content has previously been used as a method of tracking bio-oil aging and condensation reactions with less variability than viscosity measurements. Additionally, carbonyls are also responsible for coke formation in bio-oil upgrading processes. Given the importance of carbonyls in bio-oils, accurate analytical methods for their quantification are very important for the bio-oil community. Potentiometric titration methods based on carbonyl oximation have long been used for the determination of carbonyl content in pyrolysis bio-oils. Here, we present a modification of the traditional carbonyl oximation procedures that results in less reaction time, smaller sample size, higher precision, and more accurate carbonyl determinations. While traditional carbonyl oximation methods occur at room temperature, the Faix method presented here occurs at an elevated temperature of 80 degrees C. C1 [Black, Stuart; Ferrell, Jack R., III] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Ferrell, JR (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. EM jack.ferrell@nrel.gov FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; U.S. DOE Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Funding provided by U.S. DOE Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 10 TC 0 Z9 0 U1 0 U2 0 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD FEB PY 2017 IS 120 AR e55165 DI 10.3791/55165 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EQ1RQ UT WOS:000397847700060 ER PT J AU Duan, WT Vemuri, RS Hu, DH Yang, Z Wei, XL AF Duan, Wentao Vemuri, Rama S. Hu, Dehong Yang, Zheng Wei, Xiaoliang TI A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Chemistry; Issue 120; redox flow battery; nonaqueous; symmetric; organic; state of charge; FTIR ID RESEARCH-AND-DEVELOPMENT; PROGRESS; ELECTROLYTES; SEPARATORS; SOLVENTS; IMPACT AB Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, non-aqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of non-aqueous electrolytes. However, significant technical hurdles exist currently limiting non-aqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we recently reported a non-aqueous flow battery based on a highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1oxyl-3-oxide (PTIO). This redox material exhibits an ambipolar electrochemical property, and therefore can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry. Moreover, we demonstrated that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC), as cross-validated by electron spin resonance (ESR) measurements. Herein we present a video protocol for the electrochemical evaluation and SOC diagnosis of the PTIO symmetric flow battery. With a detailed description, we experimentally demonstrated the route to achieve such purposes. This protocol aims to spark more interests and insights on the safety and reliability in the field of non-aqueous redox flow batteries. C1 [Duan, Wentao; Vemuri, Rama S.; Yang, Zheng; Wei, Xiaoliang] Joint Ctr Energy Storage Res JCESR, Argonne, IL 60439 USA. [Duan, Wentao; Wei, Xiaoliang] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA USA. [Vemuri, Rama S.; Hu, Dehong] Pacific Northwest Natl Lab, Earth & Biol Syst Directorate, Richland, WA USA. [Yang, Zheng] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA USA. RP Wei, XL (reprint author), Joint Ctr Energy Storage Res JCESR, Argonne, IL 60439 USA.; Wei, XL (reprint author), Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA USA. EM Xiaoliang.Wei@pnnl.gov FU Joint Center for Energy Storage Research (JCESR); Energy Innovation Hub-U.S. Department of Energy FX This work was financially supported by Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. The authors also acknowledge Journal of Materials Chemistry A (a Royal Society of Chemistry journal) for originally publishing this research (http:// pubs.rsc.org/en/content/articlehtml/2016/ta/c6ta01177b). PNNL is a multi-program national laboratory operated by Battelle for DOE under Contract DE-AC05-76RL01830. NR 31 TC 0 Z9 0 U1 2 U2 2 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD FEB PY 2017 IS 120 AR e55171 DI 10.3791/55171 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EQ1RQ UT WOS:000397847700062 ER PT J AU Nash, CP Farberow, CA Hensley, JE AF Nash, Connor P. Farberow, Carrie A. Hensley, Jesse E. TI Temperature-programmed Deoxygenation of Acetic Acid on Molybdenum Carbide Catalysts SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Chemistry; Issue 120; micro-scale; reactor; upgrading; acetic acid; catalyst; model compound; mass spectrometry; gas chromatography; molybdenum carbide; temperature-programmed reaction ID CARBOXYLIC-ACIDS; HYDRODEOXYGENATION; METHANOL; NANOPARTICLES; REDUCTION; OXIDATION; OXIDES AB Temperature programmed reaction (TPRxn) is a simple yet powerful tool for screening solid catalyst performance at a variety of conditions. A TPRxn system includes a reactor, furnace, gas and vapor sources, flow control, instrumentation to quantify reaction products ( e.g., gas chromatograph), and instrumentation to monitor the reaction in real time ( e.g., mass spectrometer). Here, we apply the TPRxn methodology to study molybdenum carbide catalysts for the deoxygenation of acetic acid, an important reaction among many in the upgrading/stabilization of biomass pyrolysis vapors. TPRxn is used to evaluate catalyst activity and selectivity and to test hypothetical reaction pathways ( e.g., decarbonylation, ketonization, and hydrogenation). The results of the TPRxn study of acetic acid deoxygenation show that molybdenum carbide is an active catalyst for this reaction at temperatures above ca. 300 degrees C and that the reaction favors deoxygenation ( i.e., C-O bond-breaking) products at temperatures below ca. 400 degrees C and decarbonylation ( i.e., C-C bond-breaking) products at temperatures above ca. 400 degrees C. C1 [Nash, Connor P.; Farberow, Carrie A.; Hensley, Jesse E.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO USA. RP Hensley, JE (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO USA. EM Jesse.Hensley@nrel.gov FU Department of Energy Bioenergy Technologies Office [DE-AC36-08-GO28308] FX This work was supported by the Department of Energy Bioenergy Technologies Office under Contract no. DE-AC36-08-GO28308. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 31 TC 0 Z9 0 U1 2 U2 2 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD FEB PY 2017 IS 120 AR e55314 DI 10.3791/55314 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EQ1RQ UT WOS:000397847700084 ER PT J AU Cho, HJ Ren, LM Vattipalli, V Yeh, YH Gould, N Xu, BJ Gorte, RJ Lobo, R Dauenhauer, PJ Tsapatsis, M Fan, W AF Cho, Hong Je Ren, Limin Vattipalli, Vivek Yeh, Yu-Hao Gould, Nicholas Xu, Bingjun Gorte, Raymond J. Lobo, Raul Dauenhauer, Paul J. Tsapatsis, Michael Fan, Wei TI Renewable p-Xylene from 2,5-Dimethylfuran and Ethylene Using Phosphorus-Containing Zeolite Catalysts SO CHEMCATCHEM LA English DT Article DE cycloaddition; heterogeneous catalysis; phosphorus; renewable resources; zeolites ID BIOMASS-DERIVED DIMETHYLFURAN; ACID; NANOPARTICLES; GASOLINE; CARBON AB p-Xylene is a major commodity chemical used for the production of polyethylene terephthalate, a polymer with applications in polyester fibers, films, and bottles. The Diels-Alder cycloaddition of 2,5-dimethylfuran and ethylene and the subsequent dehydration of the cycloadduct intermediate is an attractive reaction pathway to produce renewable p-xylene from biomass feedstocks. However, the highest yields reported previously do not exceed 75%. We report that P-containing zeolite Beta is an active, stable, and selective catalyst for this reaction with an unprecedented p-xylene yield of 97%. It can catalyze the dehydration reaction selectively from the furan-ethylene cycloadduct to p-xylene without the production of alkylated and oligomerized products. This behavior is distinct from that of Al-containing zeolites and other solid phosphoric acid catalysts and establishes a commercially attractive process for renewable p-xylene production. C1 [Cho, Hong Je; Vattipalli, Vivek; Fan, Wei] Univ Massachusetts, Dept Chem Engn Dept, Amherst, MA 01003 USA. [Ren, Limin; Dauenhauer, Paul J.; Tsapatsis, Michael] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. [Yeh, Yu-Hao; Gorte, Raymond J.] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA. [Gould, Nicholas; Xu, Bingjun; Lobo, Raul] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA. [Cho, Hong Je; Ren, Limin; Vattipalli, Vivek; Gould, Nicholas; Xu, Bingjun; Gorte, Raymond J.; Lobo, Raul; Dauenhauer, Paul J.; Tsapatsis, Michael; Fan, Wei] US DOE, Catalysis Ctr Energy Innovat, Energy Frontier Res Ctr, Washington, DC 20585 USA. RP Fan, W (reprint author), Univ Massachusetts, Dept Chem Engn Dept, Amherst, MA 01003 USA. EM wfan@ecs.umass.edu FU Catalysis Center for Energy Innovation; Energy Frontier Research Center - US Dept. of Energy, Office of Science, and Office of Basic Energy Sciences [DE-SC0001004] FX This work was supported by the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the US Dept. of Energy, Office of Science, and Office of Basic Energy Sciences under award number DE-SC0001004. NR 30 TC 0 Z9 0 U1 5 U2 5 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1867-3880 EI 1867-3899 J9 CHEMCATCHEM JI ChemCatChem PD FEB PY 2017 VL 9 IS 3 BP 398 EP 402 DI 10.1002/cctc.201601294 PG 5 WC Chemistry, Physical SC Chemistry GA EM8UU UT WOS:000395587400005 ER PT J AU Casas, LMJ Ceresa, D Kulis, S Miryala, S Christiansen, J Francisco, R Gnani, D AF Casas, L. M. Jara Ceresa, D. Kulis, S. Miryala, S. Christiansen, J. Francisco, R. Gnani, D. TI Characterization of radiation effects in 65nm digital circuits with the DRAD digital radiation test chip SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Radiation damage to electronic components; Radiation-hard electronics AB A Digital RADiation (DRAD) test chip has been specifically designed to study the impact of Total Ionizing Dose (TID) (< 1 Grad) and Single Event Upset (SEU) on digital logic gates in a 65 nm CMOS technology. Nine different versions of standard cell libraries are studied in this chip, basically differing in the device dimensions, V-t flavor and layout of the device. Each library has eighteen test structures specifically designed to characterize delay degradation and power consumption of the standard cells. For SEU study, a dedicated test structure based on a shift register is designed for each library. TID results up to 500 Mrad are reported. C1 [Casas, L. M. Jara; Ceresa, D.; Kulis, S.; Christiansen, J.; Francisco, R.] CERN, CH-1211 Geneva, Switzerland. [Miryala, S.] Nikhef, Sci Pk 105, NL-1098XG Amsterdam, Netherlands. [Gnani, D.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Casas, LMJ (reprint author), CERN, CH-1211 Geneva, Switzerland. EM luis.miguel.jara.casas@cern.ch NR 5 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2017 VL 12 AR C02039 DI 10.1088/1748-0221/12/02/C02039 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA EQ1JK UT WOS:000397825800039 ER PT J AU Guo, D Gong, D Xiang, AC Moreira, P Kulis, S Chen, J Hou, S Liu, C Liu, T Prosser, A He, H Sun, Q Wang, J Yang, D Ye, J Zhou, W AF Guo, D. Gong, D. Xiang, A. C. Moreira, P. Kulis, S. Chen, J. Hou, S. Liu, C. Liu, T. Prosser, A. He, H. Sun, Q. Wang, J. Yang, D. Ye, J. Zhou, W. TI Developments of two 4 x 10 Gb/s VCSEL array drivers in 65 nm CMOS for HEP experiments SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Optical detector readout concepts; Radiation-hard electronics; Analogue electronic circuits; Front-end electronics for detector readout AB This paper presents the designs and test results of two radiation tolerant 4 x 10 Gb/s vertical cavity surface emitting laser (VCSEL) array drivers VLAD and lpVLAD, both fabricated in a 1.2V 65 nm CMOS technology. VLAD adopts a power efficient bandwidth-boost technology, and lpVLAD employs a novel high-efficiency output structure to achieve an ultra-lowpower consumption of 2.2 mW/Gb/ch with 2mA bias current and 6mA modulation current. Both drivers are optically tested passing 10 Gb/s eye mask with all channels active under the radiation of a total dose up to 350 Mrad(SiO2). C1 [Guo, D.; Gong, D.; Xiang, A. C.; Liu, C.; Liu, T.; Sun, Q.; Wang, J.; Yang, D.; Ye, J.; Zhou, W.] Southern Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Moreira, P.; Kulis, S.] CERN, CH-1211 Geneva 23, Switzerland. [Chen, J.] Univ Houston, Dept Elect Engn, Houston, TX 77004 USA. [Hou, S.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Prosser, A.] Fermi Natl Lab, Real Time Syst Engn Dept, Batavia, IL 60510 USA. [He, H.] Shenzhen Polytech, Shzenzhen 518055, Guangdong, Peoples R China. [He, H.] Cent China Normal Univ, Dept Phys, Wuhan 430079, Hubei, Peoples R China. [Wang, J.; Yang, D.] Univ Sci & Technol China, State Key Lab Particle Detect & Elect, Hefei 230026, Anhui, Peoples R China. RP Guo, D (reprint author), Southern Methodist Univ, Dept Phys, Dallas, TX 75275 USA. EM dig@smu.edu FU US-ATLAS RD program; U.S. Department of Energy Collider Detector Research and Development (CDRD) FX This work is supported by the US-ATLAS R&D program for the upgrade of the LHC, and the U.S. Department of Energy Collider Detector Research and Development (CDRD) data link program. The authors also would like to thank Csaba Soos, Jan Troska and Francois Vasey in CERN for supporting the optical and radiation tests. NR 16 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2017 VL 12 AR C02065 DI 10.1088/1748-0221/12/02/C02065 PG 11 WC Instruments & Instrumentation SC Instruments & Instrumentation GA EQ1JK UT WOS:000397825800064 ER PT J AU Santone, D Alduino, C Alfonso, K Artusa, DR Avignone, FT Azzolini, O Banks, TI Bari, G Beeman, JW Bellini, F Bersani, A Biassoni, M Branca, A Brofferio, C Bucci, C Camacho, A Caminata, A Canonica, L Cao, XG Capelli, S Cappelli, L Carbone, L Cardani, L Carniti, P Casali, N Cassina, L Chiesa, D Chott, N Clemenza, M Copello, S Cosmelli, C Cremonesi, O Creswick, RJ Cushman, JS D'Addabbo, A Dafinei, I Davis, CJ Dell'Oro, S Deninno, MM Di Domizio, S Di Vacri, ML Drobizhev, A Fang, DQ Faverzani, M Fernandes, G Ferri, E Ferroni, F Fiorini, E Franceschi, MA Freedman, SJ Fujikawa, BK Giachero, A Gironi, L Giuliani, A Gladstone, L Gorla, P Gotti, C Gutierrez, TD Haller, EE Han, K Hansen, E Heeger, KM Hennings-Yeomans, R Hickerson, KP Huang, HZ Kadel, R Keppel, G Kolomensky, YG Leder, A Ligi, C Lim, KE Liu, X Ma, YG Maino, M Marini, L Martinez, M Maruyama, RH Mei, Y Moggi, N Morganti, S Mosteiro, PJ Napolitano, T Nones, C Norman, EB Novati, V Nucciotti, A O'Donnell, T Orio, F Ouellet, JL Pagliarone, CE Pallavicini, M Palmieri, V Pattavina, L Pavan, M Pessina, G Pettinacci, V Piperno, G Pira, C Pirro, S Pozzi, S Previtali, E Rosenfeld, C Rusconi, C Sangiorgio, S Scielzo, ND Singh, V Sisti, M Smith, AR Taffarello, L Tenconi, M Terranova, F Tomei, C Trentalange, S Vignati, M Wagaarachchi, SL Wang, BS Wang, HW Wilson, J Winslow, LA Wise, T Woodcraft, A Zanotti, L Zhang, GQ Zhu, BX Zimmermann, S Zucchelli, S AF Santone, D. Alduino, C. Alfonso, K. Artusa, D. R. Avignone, F. T., III Azzolini, O. Banks, T. I. Bari, G. Beeman, J. W. Bellini, F. Bersani, A. Biassoni, M. Branca, A. Brofferio, C. Bucci, C. Camacho, A. Caminata, A. Canonica, L. Cao, X. G. Capelli, S. Cappelli, L. Carbone, L. Cardani, L. Carniti, P. Casali, N. Cassina, L. Chiesa, D. Chott, N. Clemenza, M. Copello, S. Cosmelli, C. Cremonesi, O. Creswick, R. J. Cushman, J. S. D'Addabbo, A. Dafinei, I. Davis, C. J. Dell'Oro, S. Deninno, M. M. Di Domizio, S. Di Vacri, M. L. Drobizhev, A. Fang, D. Q. Faverzani, M. Fernandes, G. Ferri, E. Ferroni, F. Fiorini, E. Franceschi, M. A. Freedman, S. J. Fujikawa, B. K. Giachero, A. Gironi, L. Giuliani, A. Gladstone, L. Gorla, P. Gotti, C. Gutierrez, T. D. Haller, E. E. Han, K. Hansen, E. Heeger, K. M. Hennings-Yeomans, R. Hickerson, K. P. Huang, H. Z. Kadel, R. Keppel, G. Kolomensky, Yu. G. Leder, A. Ligi, C. Lim, K. E. Liu, X. Ma, Y. G. Maino, M. Marini, L. Martinez, M. Maruyama, R. H. Mei, Y. Moggi, N. Morganti, S. Mosteiro, P. J. Napolitano, T. Nones, C. Norman, E. B. Novati, V. Nucciotti, A. O'Donnell, T. Orio, F. Ouellet, J. L. Pagliarone, C. E. Pallavicini, M. Palmieri, V. Pattavina, L. Pavan, M. Pessina, G. Pettinacci, V. Piperno, G. Pira, C. Pirro, S. Pozzi, S. Previtali, E. Rosenfeld, C. Rusconi, C. Sangiorgio, S. Scielzo, N. D. Singh, V. Sisti, M. Smith, A. R. Taffarello, L. Tenconi, M. Terranova, F. Tomei, C. Trentalange, S. Vignati, M. Wagaarachchi, S. L. Wang, B. S. Wang, H. W. Wilson, J. Winslow, L. A. Wise, T. Woodcraft, A. Zanotti, L. Zhang, G. Q. Zhu, B. X. Zimmermann, S. Zucchelli, S. CA CUORE Collaboration TI The CUORE cryostat and its bolometric detector SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Calorimeters; Cryogenic detectors; Cryogenics and thermal models; Double-beta decay detectors AB CUORE is a cryogenic detector that will be operated at LNGS to search for neutrinoless double beta decay (0 nu beta beta) of Te-130. The detector installation was completed in summer 2016. Before the installation, several cold runs were done to test the cryogenic system performance. In the last cold run the base temperature of 6.3mK was reached in stable condition. CUORE-0, a CUORE prototype, has proven the feasibility of CUORE, demonstrating that the target background of 0.01 counts/keV/kg/y and the energy resolution of 5 keV are within reach. C1 [Alduino, C.; Artusa, D. R.; Avignone, F. T., III; Chott, N.; Creswick, R. J.; Rosenfeld, C.; Wilson, J.] Univ South Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Alfonso, K.; Hansen, E.; Hickerson, K. P.; Huang, H. Z.; Liu, X.; Trentalange, S.; Zhu, B. X.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Santone, D.; Artusa, D. R.; Bucci, C.; Canonica, L.; Cappelli, L.; D'Addabbo, A.; Dell'Oro, S.; Di Vacri, M. L.; Gorla, P.; Pagliarone, C. E.; Pattavina, L.; Pirro, S.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, I-67010 Laquila, Italy. [Azzolini, O.; Camacho, A.; Keppel, G.; Palmieri, V.; Pira, C.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Banks, T. I.; Drobizhev, A.; Freedman, S. J.; Hennings-Yeomans, R.; Kolomensky, Yu. G.; O'Donnell, T.; Singh, V.; Wagaarachchi, S. L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Banks, T. I.; Drobizhev, A.; Freedman, S. J.; Fujikawa, B. K.; Hennings-Yeomans, R.; Kolomensky, Yu. G.; Mei, Y.; O'Donnell, T.; Smith, A. R.; Wagaarachchi, S. L.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Bari, G.; Deninno, M. M.; Moggi, N.; Zucchelli, S.] Ist Nazl Fis Nucl, Sez Bologna, I-40127 Bologna, Italy. [Beeman, J. W.; Haller, E. E.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Bellini, F.; Cardani, L.; Casali, N.; Cosmelli, C.; Ferroni, F.; Martinez, M.; Piperno, G.] Sapienza Univ Roma, Dipartimento Fis, I-00185 Rome, Italy. [Bellini, F.; Cardani, L.; Casali, N.; Cosmelli, C.; Dafinei, I.; Ferroni, F.; Martinez, M.; Morganti, S.; Mosteiro, P. J.; Orio, F.; Pettinacci, V.; Piperno, G.; Tomei, C.; Vignati, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Bersani, A.; Caminata, A.; Copello, S.; Di Domizio, S.; Fernandes, G.; Marini, L.; Pallavicini, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Biassoni, M.; Brofferio, C.; Capelli, S.; Carniti, P.; Cassina, L.; Chiesa, D.; Clemenza, M.; Faverzani, M.; Fiorini, E.; Gironi, L.; Gotti, C.; Maino, M.; Nucciotti, A.; Pavan, M.; Pozzi, S.; Sisti, M.; Terranova, F.; Zanotti, L.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Biassoni, M.; Branca, A.; Brofferio, C.; Capelli, S.; Carbone, L.; Carniti, P.; Cassina, L.; Chiesa, D.; Clemenza, M.; Cremonesi, O.; Faverzani, M.; Ferri, E.; Fiorini, E.; Giachero, A.; Gironi, L.; Gotti, C.; Maino, M.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pozzi, S.; Previtali, E.; Rusconi, C.; Sisti, M.; Terranova, F.; Zanotti, L.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. [Taffarello, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Canonica, L.; Gladstone, L.; Hansen, E.; Leder, A.; Ouellet, J. L.; Winslow, L. A.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Cao, X. G.; Fang, D. Q.; Ma, Y. G.; Wang, H. W.; Zhang, G. Q.] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Copello, S.; Di Domizio, S.; Fernandes, G.; Marini, L.; Pallavicini, M.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Cushman, J. S.; Davis, C. J.; Heeger, K. M.; Lim, K. E.; Maruyama, R. H.; Wise, T.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Dell'Oro, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Santone, D.; Di Vacri, M. L.] Univ Aquila, Dipartimento Sci Fis & Chim, I-67100 Laquila, Italy. [Franceschi, M. A.; Ligi, C.; Napolitano, T.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Rome, Italy. [Giuliani, A.; Novati, V.; Tenconi, M.] Univ Paris Saclay, Univ Paris Sud, CSNSM, CNRS,IN2P3, F-91405 Orsay, France. [Gutierrez, T. D.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93407 USA. [Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Han, K.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China. [Kadel, R.; Kolomensky, Yu. G.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Martinez, M.] Univ Zaragoza, Lab Fis Nucl & Astroparticulas, E-50009 Zaragoza, Spain. [Moggi, N.] Univ Bologna, Alma Mater Studiorum, Dipartimento Sci Qualita Vita, I-47921 Bologna, Italy. [Nones, C.] CEA Saclay, Serv Phys Particules, F-91191 Gif Sur Yvette, France. [Norman, E. B.; Sangiorgio, S.; Scielzo, N. D.; Wang, B. S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Norman, E. B.; Wang, B. S.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [O'Donnell, T.] Virginia Polytech Inst & State Univ, Ctr Neutrino Phys, Blacksburg, VA 24061 USA. [Pagliarone, C. E.] Univ Cassino & Lazio Merid, Dipartimento Ingn Civile & Meccan, I-03043 Cassino, Italy. [Wise, T.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Woodcraft, A.] Univ Edinburgh, Inst Astron, SUPA, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Zimmermann, S.] Lawrence Berkeley Natl Lab, Div Engn, Berkeley, CA 94720 USA. [Zucchelli, S.] Univ Bologna, Alma Mater Studiorum, Dipartimento Fis & Astron, I-40127 Bologna, Italy. RP Santone, D (reprint author), Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, I-67010 Laquila, Italy.; Santone, D (reprint author), Univ Aquila, Dipartimento Sci Fis & Chim, I-67100 Laquila, Italy. EM cuore-spokesperson@lngs.infn.it FU Istituto Nazionale di Fisica Nucleare (INFN); National Science; Alfred P. Sloan Foundation; University of Wisconsin Foundation; Yale University; US Department of Energy (DOE) Office of Science; DOE Office of Science, Office of Nuclear Physics FX The CUORE Collaboration thanks the directors and staff of the Laboratori Nazionali del Gran Sasso and the technical staff of our laboratories. This work was supported by the Istituto Nazionale di Fisica Nucleare (INFN), the National Science, the Alfred P. Sloan Foundation, the University of Wisconsin Foundation, and Yale University. This material is also based upon work supported by the US Department of Energy (DOE) Office of Science and by the DOE Office of Science, Office of Nuclear Physics. This research used resources of the National Energy Research Scientific Computing Center (NERSC). NR 6 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2017 VL 12 AR C02055 DI 10.1088/1748-0221/12/02/C02055 PG 11 WC Instruments & Instrumentation SC Instruments & Instrumentation GA EQ1JK UT WOS:000397825800054 ER PT J AU Heeter, RF Bailey, JE Craxton, RS DeVolder, BG Dodd, ES Garcia, EM Huffman, EJ Iglesias, CA King, JA Kline, JL Liedahl, DA McKenty, PW Opachich, YP Rochau, GA Ross, PW Schneider, MB Sherrill, ME Wilson, BG Zhang, R Perry, TS AF Heeter, R. F. Bailey, J. E. Craxton, R. S. DeVolder, B. G. Dodd, E. S. Garcia, E. M. Huffman, E. J. Iglesias, C. A. King, J. A. Kline, J. L. Liedahl, D. A. McKenty, P. W. Opachich, Y. P. Rochau, G. A. Ross, P. W. Schneider, M. B. Sherrill, M. E. Wilson, B. G. Zhang, R. Perry, T. S. TI Conceptual design of initial opacity experiments on the national ignition facility SO JOURNAL OF PLASMA PHYSICS LA English DT Article DE astrophysical plasmas; plasma diagnostics; plasma properties ID RAY; PLASMA AB Accurate models of X-ray absorption and re-emission in partly stripped ions are necessary to calculate the structure of stars, the performance of hohlraums for inertial confinement fusion and many other systems in high-energy-density plasma physics. Despite theoretical progress, a persistent discrepancy exists with recent experiments at the Sandia Z facility studying iron in conditions characteristic of the solar radiative-convective transition region. The increased iron opacity measured at Z could help resolve a longstanding issue with the standard solar model, but requires a radical departure for opacity theory. To replicate the Z measurements, an opacity experiment has been designed for the National Facility (NIF). The design uses established techniques scaled to NIF. A laser-heated hohlraum will produce X-ray-heated uniform iron plasmas in local thermodynamic equilibrium (LTE) at temperatures >= 150 eV and electron densities >= 7 x 1021 cm-3. The iron will be probed using continuum X-rays emitted in a similar to 200 ps, similar to 200 m diameter source from a 2 mm diameter polystyrene (CH) capsule implosion. In this design, 2/3 of the NIF beams deliver 500 kJ to the similar to 6 mm diameter hohlraum, and the remaining 1/3 directly drive the CH capsule with 200 kJ. Calculations indicate this capsule backlighter should outshine the iron sample, delivering a point-projection transmission opacity measurement to a time-integrated X-ray spectrometer viewing down the hohlraum axis. Preliminary experiments to develop the backlighter and hohlraum are underway, informing simulated measurements to guide the final design. C1 [Heeter, R. F.; Iglesias, C. A.; Liedahl, D. A.; Schneider, M. B.; Wilson, B. G.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [DeVolder, B. G.; Dodd, E. S.; Kline, J. L.; Sherrill, M. E.; Perry, T. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Huffman, E. J.; King, J. A.; Opachich, Y. P.; Ross, P. W.] Natl Secur Technol, Livermore, CA 94550 USA. [Bailey, J. E.; Rochau, G. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Craxton, R. S.; Garcia, E. M.; McKenty, P. W.; Zhang, R.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Heeter, RF (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM heeter1@llnl.gov FU U.S. Department of Energy [DE-AC52-07NA27344, DE-AC52-06NA25396, DE-AC04-94AL85000, DE-AC52-06NA25946] FX This work was performed under the auspices of the U.S. Department of Energy, by the LLNL authors under Contract No. DE-AC52-07NA27344, by the LANL authors under Contract no. DE-AC52-06NA25396, by the Sandia authors under Contract no. DE-AC04-94AL85000, by the University of Rochester authors under a Cooperative Agreement, and by the National Security Technologies authors under Contract No. DE-AC52-06NA25946. NR 28 TC 0 Z9 0 U1 1 U2 1 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-3778 EI 1469-7807 J9 J PLASMA PHYS JI J. Plasma Phys. PD FEB PY 2017 VL 83 AR 595830103 DI 10.1017/S0022377816001173 PN 1 PG 15 WC Physics, Fluids & Plasmas SC Physics GA EN6OK UT WOS:000396123100004 ER PT J AU Hirvijoki, E Brizard, AJ Pfefferie, D AF Hirvijoki, Eero Brizard, Alain J. Pfefferie, David TI Differential formulation of the gyrokinetic Landau operator SO JOURNAL OF PLASMA PHYSICS LA English DT Article DE fusion plasma; plasma nonlinear phenomena; plasma simulation ID FOKKER-PLANCK EQUATION; COLLISION OPERATOR; SIMULATION AB Subsequent to the recent rigorous derivation of an energetically consistent gyrokinetic collision operator in the so-called Landau representation, this paper investigates the possibility of finding a differential formulation of the gyrokinetic Landau collision operator. It is observed that, while a differential formulation is possible in the gyrokinetic phase space, reduction of the resulting system of partial differential equations to five dimensions via gyroaveraging poses a challenge. Based on the present work, it is likely that the gyrocentre analogues of the Rosenbluth-MacDonaldJudd potential functions must be kept gyroangle dependent. C1 [Hirvijoki, Eero; Pfefferie, David] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Brizard, Alain J.] St Michaels Coll, Dept Phys, Colchester, VT 05439 USA. RP Hirvijoki, E (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. EM ehirvijo@pppl.gov FU Department of Energy [DE-AC02-09CH11466, DE-SC0014032] FX The authors are grateful for the discussions with H. Qin, J. Burby, M. Lingam, A. Bhattacharjee, and the anonymous referees. The work of E. H. and D. P. is supported by the Department of Energy Contract no. DE-AC02-09CH11466 and the work of A. J. B. is supported by the Department of Energy grant no. DE-SC0014032. NR 20 TC 0 Z9 0 U1 1 U2 1 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-3778 EI 1469-7807 J9 J PLASMA PHYS JI J. Plasma Phys. PD FEB PY 2017 VL 83 AR 595830102 DI 10.1017/S0022377816001203 PN 1 PG 12 WC Physics, Fluids & Plasmas SC Physics GA EN6OK UT WOS:000396123100003 ER PT J AU Rodriguez, G Gilbertson, SM AF Rodriguez, George Gilbertson, Steve M. TI Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments SO SENSORS LA English DT Article DE fiber Bragg grating; fiber sensing; shock waves; detonation; high-speed interrogation AB Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz-1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 mu m to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor. C1 [Rodriguez, George] Los Alamos Natl Lab, Lab Ultrafast Mat & Opt Sci, MS K771, Los Alamos, NM 87545 USA. [Gilbertson, Steve M.] Los Alamos Natl Lab, DARHT Expt & Diagnost, MS P940, Los Alamos, NM 87545 USA. RP Rodriguez, G (reprint author), Los Alamos Natl Lab, Lab Ultrafast Mat & Opt Sci, MS K771, Los Alamos, NM 87545 USA. EM rodrigeo@lanl.gov; steveg@lanl.gov FU U.S. Department of Energy's National Nuclear Security Administration Science Campaign 2 Lyra Project Program; J-Division Integrated Experiments Program at Los Alamos National Laboratory under the auspices of the U.S. Department of Energy for Los Alamos National Security, LLC [DE-358 AC52-06NA25396] FX This work was supported by the U.S. Department of Energy's National Nuclear Security Administration Science Campaign 2 Lyra Project Program and J-Division Integrated Experiments Program at Los Alamos National Laboratory under the auspices of the U.S. Department of Energy for Los Alamos National Security, LLC. Contract No. DE-358 AC52-06NA25396. NR 20 TC 0 Z9 0 U1 0 U2 0 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD FEB PY 2017 VL 17 IS 2 DI 10.3390/s17020248 PG 20 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA EM7HS UT WOS:000395482700032 ER PT J AU Furst, AL Hoepker, AC Francis, MB AF Furst, Ariel L. Hoepker, Alexander C. Francis, Matthew B. TI Quantifying Hormone Disruptors with an Engineered Bacterial Biosensor SO ACS CENTRAL SCIENCE LA English DT Article ID ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; ESTROGEN-RECEPTOR BINDING; ENDOCRINE DISRUPTORS; IN-VITRO; CHEMICALS; PROTEINS; ASSAY; EXPOSURE; ALPHA AB Endocrine disrupting compounds are found in increasing amounts in our environment, originating from pesticides, plasticizers, and pharmaceuticals, among other sources. Although the full impact of these compounds is still under study, they have already been implicated in diseases such as obesity, diabetes, and cancer. The list of chemicals that disrupt normal hormone function is growing at an alarming rate, making it crucially important to find sources of contamination and identify new compounds that display this ability. However, there is currently no broad-spectrum, rapid test for these compounds, as they are difficult to monitor because of their high potency and chemical dissimilarity. To address this, we have developed a new detection strategy for endocrine disrupting compounds that is both fast and portable, and it requires no specialized skills to perform. This system is based on a native estrogen receptor construct expressed on the surface of Escherichia colt, which enables both the detection of many detrimental compounds and signal amplification from impedance measurements due to the binding of bacteria to a modified electrode. With this approach, sub-ppb levels of estradiol and ppm levels of bisphenol A are detected in complex solutions. Rather than responding to individual components, this system reports the total estrogenic activity of a sample using the most relevant biological receptor. As an applied example, estrogenic chemicals released from a plastic baby bottle following microwave heating were detectable with this technique. This approach should be broadly applicable to the detection of chemically diverse classes of compounds that bind to a single receptor. C1 [Furst, Ariel L.; Hoepker, Alexander C.; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Francis, Matthew B.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Francis, MB (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM mbfrancis@berkeley.edu FU Hound Labs; NSF [CHE-1413666]; Arnold O. Beckman Foundation; Administral Anstalt Liechtenstein FX This work was supported by Hound Labs and the NSF (CHE-1413666). A.L.F. was supported by the Arnold O. Beckman Foundation. A.C.H. was supported by Administral Anstalt Liechtenstein. Dr. Martin J. Mulvihill is also acknowledged for helpful discussions. NR 31 TC 0 Z9 0 U1 2 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2374-7943 EI 2374-7951 J9 ACS CENTRAL SCI JI ACS Central Sci. PD FEB PY 2017 VL 3 IS 2 BP 110 EP 116 DI 10.1021/acscentsci.6b00322 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA EL7WD UT WOS:000394831100006 PM 28280777 ER PT J AU Voylov, DN Holt, AP Doughty, B Bocharova, V Meyer, HM Cheng, SW Martin, H Dadmun, M Kisliuk, A Sokolov, AP AF Voylov, Dmitry N. Holt, Adam P. Doughty, Benjamin Bocharova, Vera Meyer, Harry M., III Cheng, Shiwang Martin, Halie Dadmun, Mark Kisliuk, Alexander Sokolov, Alexei P. TI Unraveling the Molecular Weight Dependence of Interfacial Interactions in Poly(2-vinylpyridine)/Silica Nanocomposites SO ACS MACRO LETTERS LA English DT Article ID RUBBER-SILICA NANOCOMPOSITES; BOUND POLYMER LAYER; 2ND-HARMONIC GENERATION; IMMOBILIZED POLYMER; DYNAMICS; SPECTROSCOPY; ADSORPTION; SURFACE; WATER; REINFORCEMENT AB The structure and polymer-nanoparticle interactions among physically adsorbed poly(2-vinylpyridine) chains on the surface of silica nanoparticles (NPs) were systematically studied as a function of molecular weight (MW) by sum frequency generation (SFG) and X-ray photoelectron (XPS) spectroscopies. Analysis of XPS data identified hydrogen bonds between the polymer and NPs, while SFG evaluated the change in the number of free OH sites on the NP's surface. Our data revealed that the hydrogen bonds and amount of the free -OH sites have a significant dependence on the polymer's MW. These results provide clear experimental evidence that the interaction of physically adsorbed chains with nanoparticles is strongly MW dependent and aids in unraveling the microscopic mechanism responsible for the strong MW dependence of dynamics of the interfacial layer in polymer nanocomposites. C1 [Voylov, Dmitry N.; Martin, Halie; Dadmun, Mark; Sokolov, Alexei P.] Univ Tennessee, Dept Chem, Knoxville, TN 37916 USA. [Holt, Adam P.; Sokolov, Alexei P.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37916 USA. [Doughty, Benjamin; Bocharova, Vera; Cheng, Shiwang; Kisliuk, Alexander] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37830 USA. [Meyer, Harry M., III] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. RP Voylov, DN (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37916 USA.; Bocharova, V (reprint author), Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37830 USA. EM dvoylov@utk.edu; bocharovav@ornl.gov OI Cheng, Shiwang/0000-0001-7396-4407; Dadmun, Mark/0000-0003-4304-6087 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. A portion of this research was conducted at the Center for Nanophase Materials Sciences ORNL, which is a DOE Office of Science User Facility. B.D. was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. NR 46 TC 0 Z9 0 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD FEB PY 2017 VL 6 IS 2 BP 68 EP 72 DI 10.1021/acsmacrolett.6b00915 PG 5 WC Polymer Science SC Polymer Science GA EL6KR UT WOS:000394732000001 ER PT J AU Jackson, NE Brettmann, BK Vishwanath, V Tirrell, M de Pablo, JJ AF Jackson, Nicholas E. Brettmann, Blair K. Vishwanath, Venkatram Tirrell, Matthew de Pablo, Juan J. TI Comparing Solvophobic and Multivalent Induced Collapse in Polyelectrolyte Brushes SO ACS MACRO LETTERS LA English DT Article ID MOLECULAR-DYNAMICS; SALT-SOLUTIONS; FLEXIBLE POLYELECTROLYTES; POOR SOLVENTS; COUNTERIONS; SURFACE; LAYERS AB Coarse-grained molecular dynamics enhanced by free-energy sampling methods is used to examine the roles of solvophobicity and multivalent salts on polyelectrolyte brush collapse. Specifically, we demonstrate that while ostensibly similar, solvophobic collapsed brushes and multivalent-ion collapsed brushes exhibit distinct mechanistic and structural features. Notably, multivalent-induced heterogeneous brush collapse is observed under good solvent polymer backbone conditions, demonstrating that the mechanism of multivalent collapse is not contingent upon a solvophobic backbone. Umbrella sampling of the potential of mean-force (PMF) between two individual brush strands confirms this analysis, revealing starkly different PMFs under solvophobic and multivalent conditions, suggesting the role of multivalent "bridging" as the discriminating feature in trivalent collapse. Structurally, multivalent ions show a propensity for nucleating order within collapsed brushes, whereas poor-solvent collapsed brushes are more disordered; this difference is traced to the existence of a metastable PMF minimum for poor solvent conditions, and a global PMF minimum for trivalent systems, under experimentally relevant conditions. C1 [Jackson, Nicholas E.; Brettmann, Blair K.; Tirrell, Matthew; de Pablo, Juan J.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Jackson, Nicholas E.; Tirrell, Matthew; de Pablo, Juan J.] Argonne Natl Lab, Inst Mol Engn, Argonne, IL 60439 USA. [Vishwanath, Venkatram] Argonne Natl Lab, Adv Leadership Comp Facil, Argonne, IL 60439 USA. RP Tirrell, M; de Pablo, JJ (reprint author), Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA.; Tirrell, M; de Pablo, JJ (reprint author), Argonne Natl Lab, Inst Mol Engn, Argonne, IL 60439 USA. EM mtirrell@uchicago.edu; depablo@uchicago.edu FU U.S. Department of Energy Office of Science, Program in Basic Energy Sciences, Materials Sciences and Engineering Division; Argonne National Laboratory Maria Goeppert Mayer Named Fellowship FX This work was supported by the U.S. Department of Energy Office of Science, Program in Basic Energy Sciences, Materials Sciences and Engineering Division. Dr. Jackson would like to thank the Argonne National Laboratory Maria Goeppert Mayer Named Fellowship for support. We thank Dr. Jing Yu for useful discussion. NR 28 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD FEB PY 2017 VL 6 IS 2 BP 155 EP 160 DI 10.1021/acsmacrolett.6b00837 PG 6 WC Polymer Science SC Polymer Science GA EL6KR UT WOS:000394732000019 ER PT J AU Ding, SW Mosher, C Lee, XY Das, SR Cargill, AA Tang, XH Chen, BL McLamore, ES Gomes, C Hostetter, JM Claussen, JC AF Ding, Shaowei Mosher, Curtis Lee, Xian Y. Das, Suprem R. Cargill, Allison A. Tang, Xiaohui Chen, Bolin McLamore, Eric S. Gomes, Carmen Hostetter, Jesse M. Claussen, Jonathan C. TI Rapid and Label-Free Detection of Interferon Gamma via an Electrochemical Aptasensor Comprising a Ternary Surface Monolayer on a Gold Interdigitated Electrode Array SO ACS SENSORS LA English DT Article DE interdigitated electrode array; electrochemical impedance spectroscopy; interferon gamma; aptamer capture probe; ternary surface monolayer; equivalent circuit model ID AVIUM SUBSP PARATUBERCULOSIS; ESCHERICHIA-COLI O157-H7; IMPEDANCE SPECTROSCOPY; DNA MONOLAYERS; IFN-GAMMA; BIOSENSOR; DISEASE; IMMOBILIZATION; HYBRIDIZATION; INFECTION AB A label-free electrochemical impedance spectroscopy (EIS) aptasensor for rapid detection (<35 min) of interferon-gamma (IFN-gamma) was fabricated by immobilizing a RNA aptamer capture probe (ACP), selective to IFN-gamma, on a gold interdigitated electrode array (Au IDE). The ACP was modified with a thiol group at the 5' terminal end and subsequently co immobilized with 1,6-hexanedithiol (HDT) and 6-mercapto-l-hexanolphosphate (MCH) to the gold surface through thiol gold interactions. This ACP/HDT-MCH ternary surface monolayer facilitates efficient hybridization with IFN-gamma and displays high resistance to nonspecific adsorption of nontarget proteins [i.e., fetal bovine serum (FBS) and bovine serum albumin (BSA)]. The Au IDE functionalized with ACP/HDT-MCH was able to measure IFN-gamma in actual FBS solution with a linear sensing range from 22.22 pM to 0.11 nM (1-5 ng/mL) and a detection limit of 11.56 pM. The ability to rapidly sense IFN-gamma within this sensing range makes the developed electrochemical platform conducive toward in-field disease detection of a variety of diseases including paratuberculosis (i.e., Johne's Disease). Furthermore, experimental results were numerically validated with an equivalent circuit model that elucidated the effects of the sensing process and the influence of the immobilized ternary monolayer on signal output. This is the first time that ternary surface monolayers have been used to selectively capture/detect IFN-gamma on Au IDEs. C1 [Ding, Shaowei; Lee, Xian Y.; Das, Suprem R.; Cargill, Allison A.; Tang, Xiaohui; Chen, Bolin; Claussen, Jonathan C.] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. [Hostetter, Jesse M.] Iowa State Univ, Vet Pathol Dept, Ames, IA 50011 USA. [Mosher, Curtis] Iowa State Univ, Roy J Carver Lab Ultrahigh Resolut Biol Microscop, Ames, IA 50014 USA. [Mosher, Curtis] Iowa State Univ, Dept Genet Dev & Cell Biol, Ames, IA 50014 USA. [McLamore, Eric S.] Univ Florida, Inst Food & Agr Sci, Agr & Biol Engn Dept, Gainesville, FL 32611 USA. [Gomes, Carmen] Texas A&M Univ, Biol & Agr Engn Dept, College Stn, TX 77843 USA. [Das, Suprem R.; Claussen, Jonathan C.] Ames Lab, Ames, IA 50011 USA. RP Claussen, JC (reprint author), Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA.; Claussen, JC (reprint author), Ames Lab, Ames, IA 50011 USA. EM jcclauss@iastate.edu OI Gomes, Carmen/0000-0003-0095-6478 FU Roy J. Carver Trust Foundation [15-4615]; department of Mechanical Engineering, Veterinary Medical School of Iowa State University; College of Engineering, Veterinary Medical School of Iowa State University FX This work is partially supported by Roy J. Carver Trust Foundation (grant #15-4615) and a financial support from the department of Mechanical Engineering and College of Engineering, Veterinary Medical School of Iowa State University. NR 57 TC 0 Z9 0 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2379-3694 J9 ACS SENSORS JI ACS Sens. PD FEB PY 2017 VL 2 IS 2 BP 210 EP 217 DI 10.1021/acssensors.6b00581 PG 8 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology SC Chemistry; Science & Technology - Other Topics GA EM0ZM UT WOS:000395047000005 ER PT J AU Chomvong, K Lin, E Blaisse, M Gillespie, AE Cate, JHD AF Chomvong, Kulika Lin, Eric Blaisse, Michael Gillespie, Abigail E. Cate, Jamie H. D. TI Relief of Xylose Binding to Cellobiose Phosphorylase by a Single Distal Mutation SO ACS SYNTHETIC BIOLOGY LA English DT Article DE cellobiose; phosphorylase; xylose; inhibitor; protein engineering ID SACCHAROMYCES-CEREVISIAE; FERMENTATION; MECHANISM AB Cellobiose phosphorylase (CBP) cleaves cellobiose-abundant in plant biomass-to glucose and glucose 1-phosphate. However, the pentose sugar xylose, also abundant in plant biomass, acts as a mixed-inhibitor and a substrate for the reverse reaction, limiting the industrial potential of CBP. Preventing xylose, which lacks only a single hydroxymethyl group relative to glucose, from binding to the CBP active site poses a spatial challenge for protein engineering, since simple steric occlusion cannot be used to block xylose binding without also preventing glucose binding. Using CRISPR-based chromosomal library selection, we identified a distal mutation in CBP, Y47H, responsible for improved cellobiose consumption in the presence of xylose. In silico analysis suggests this mutation may alter the conformation of the cellobiose phosphorylase dimer complex to reduce xylose binding to the active site. These results may aid in engineering carbohydrate phosphorylases for improved specificity in biofuel production, and also in the production of industrially important oligosaccharides. C1 [Chomvong, Kulika] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Lin, Eric] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Blaisse, Michael; Cate, Jamie H. D.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Gillespie, Abigail E.; Cate, Jamie H. D.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Cate, JHD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Cate, JHD (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.; Cate, JHD (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM jcate@lbl.gov FU Energy Biosciences Institute FX This work was supported by funding from the Energy Biosciences Institute to J.H.D.C. NR 19 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-5063 J9 ACS SYNTH BIOL JI ACS Synth. Biol. PD FEB PY 2017 VL 6 IS 2 BP 206 EP 210 DI 10.1021/acssynbio.6b00211 PG 5 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA EL6MJ UT WOS:000394736400005 PM 27676450 ER PT J AU Caveney, PM Norred, SE Chin, CW Boreyko, JB Razooky, BS Retterer, ST Collier, CP Simpson, ML AF Caveney, Patrick M. Norred, S. Elizabeth Chin, Charles W. Boreyko, Jonathan B. Razooky, Brandon S. Retterer, Scott T. Collier, C. Patrick Simpson, Michael L. TI Resource Sharing Controls Gene Expression Bursting SO ACS SYNTHETIC BIOLOGY LA English DT Article DE gene expression; bursting; confinement; resource sharing; cell-free; microfluidics ID ESCHERICHIA-COLI; TRANSCRIPTIONAL REGULATION; NOISE; STOCHASTICITY; MOLECULE; CELLS; TIME; CONSEQUENCES; FREQUENCY; NETWORKS AB Episodic gene expression, with periods of high expression separated by periods of no expression, is a pervasive biological phenomenon. This bursty pattern of expression draws from a finite reservoir of expression machinery in a highly time variant way, i.e., requiring no resources most of the time but drawing heavily on them during short intense bursts, that intimately links expression bursting and resource sharing. Yet, most recent investigations have focused, on specific molecular mechanisms intrinsic to the bursty behavior of individual genes, while little is known about the interplay between resource sharing and global expression bursting behavior. Here, we confine Escherichia coli cell extract in both cell-sized microfluidic chambers and lipid-based vesicles to explore bow resource sharing influences expression bursting. Interestingly, expression burst size, but not burst frequency, is highly sensitive to the site of the shared transcription and translation resource pools. The intriguing implication of these results is that expression bursts are more readily amplified than initiated, suggesting that burst formation occurs through. positive feedback or cooperativity. When extrapolated to prokaryotic cells these results suggest that large translational bursts may be correlated with large transcriptional bursts. This correlation is supported by recently reported transcription,and.:translation bursting studies in E. coli. The results reported here demonstrate a strong intimate link between global expression burst patterns and resource sharing, and they suggest that bursting plays an important role in optimizing the use of limited, shared expression resources. C1 [Caveney, Patrick M.; Norred, S. Elizabeth; Chin, Charles W.; Boreyko, Jonathan B.; Retterer, Scott T.; Simpson, Michael L.] Univ Tennessee, Bredesen Ctr, Knoxville, TN 37996 USA. [Caveney, Patrick M.; Norred, S. Elizabeth; Chin, Charles W.; Boreyko, Jonathan B.; Razooky, Brandon S.; Retterer, Scott T.; Collier, C. Patrick; Simpson, Michael L.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Boreyko, Jonathan B.] Virginia Tech, Dept Biomed Engn & Mech, Blacksburg, VA 24061 USA. [Razooky, Brandon S.] Rockefeller Univ, Lab Immune Cell Epigenet & Signaling, New York, NY 10065 USA. [Retterer, Scott T.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Simpson, Michael L.] Univ Tennessee, Knoxville & Oak Ridge Natl Lab, Joint Inst Biol Sci, Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Simpson, ML (reprint author), Univ Tennessee, Bredesen Ctr, Knoxville, TN 37996 USA.; Simpson, ML (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Bethel Valley Rd, Oak Ridge, TN 37831 USA.; Simpson, ML (reprint author), Univ Tennessee, Knoxville & Oak Ridge Natl Lab, Joint Inst Biol Sci, Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM SimpsonML1@ornl.gov FU Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville; University of Tennessee/Oak Ridge National Laboratory Joint Institute for Biological Sciences; Merck Postdoctoral Fellowship at the Rockefeller University FX This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. P.M.C., S.E.N., and C.W.C. also acknowledge Graduate Fellowships from the Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville. M.L.S. also acknowledges support from the University of Tennessee/Oak Ridge National Laboratory Joint Institute for Biological Sciences. B.S.R also acknowledges support from a Merck Postdoctoral Fellowship at the Rockefeller University. NR 57 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-5063 J9 ACS SYNTH BIOL JI ACS Synth. Biol. PD FEB PY 2017 VL 6 IS 2 BP 334 EP 343 DI 10.1021/acssynbio.6b00189 PG 10 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA EL6MJ UT WOS:000394736400017 PM 27690390 ER PT J AU Fortes, AD Fernandez-Alonso, F Tucker, M Wood, IG AF Fortes, A. Dominic Fernandez-Alonso, Felix Tucker, Matthew Wood, Ian G. TI Isothermal equation of state and high-pressure phase transitions of synthetic meridianiite (MgSO4.11D(2)O) determined by neutron powder diffraction and quasielastic neutron spectroscopy SO ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS LA English DT Article DE meridianiite; undecahydrate; enneahydrate; equation of state; neutron diffraction; quasielastic neutron scattering ID THERMAL-EXPANSION; MAGNESIUM-SULFATE; MELTING-POINT; ROOM-TEMPERATURE; SINGLE-CRYSTALS; LEAD; MARS; EUROPA; METALS; SALTS AB We have collected neutron powder diffraction data from MgSO4.11D(2)O (the deuterated analogue of meridianiite), a highly hydrated sulfate salt that is thought to be a candidate rock-forming mineral in some icy satellites of the outer solar system. Our measurements, made using the PEARL/HiPr and OSIRIS instruments at the ISIS neutron spallation source, covered the range 0.1 < P < 800 MPa and 150 < T < 280 K. The refined unit-cell volumes as a function of P and T are parameterized in the form of a Murnaghan integrated linear equation of state having a zero-pressure volume V-0 = 706.23 (8) angstrom(3), zero-pressure bulk modulus K-0 = 19.9 (4) GPa and its first pressure derivative, K-0 = 9 (1). The structure's compressibility is highly anisotropic, as expected, with the three principal directions of the unit-strain tensor having compressibilities of 9.6 x 10(-3), 3.4 x 10(-2) and 3.4 x 10(-3) GPa(-1), the most compressible direction being perpendicular to the long axis of a discrete hexadecameric water cluster, (D2O)(16). At high pressure we observed two different phase transitions. First, warming of MgSO4.11D(2)O at 545 MPa resulted in a change in the diffraction pattern at 275 K consistent with partial (peritectic) melting; quasielastic neutron spectra collected simultaneously evince the onset of the reorientational motion of D2O molecules with characteristic time-scales of 20-30 ps, longer than those found in bulk liquid water at the same temperature and commensurate with the lifetime of solvent-separated ion pairs in aqueousMgSO(4). Second, at similar to 0.9 GPa, 240 K, MgSO4.11D(2)O decomposed into high-pressure water ice phase VI and MgSO4.9D(2)O, a recently discovered phase that has hitherto only been formed at ambient pressure by quenching small droplets of MgSO4(aq) in liquid nitrogen. The fate of the high-pressure enneahydrate on further compression and warming is not clear from the neutron diffraction data, but its occurrence indicates that it may also be a rock-forming mineral in the deep mantles of large icy satellites. C1 [Fortes, A. Dominic; Fernandez-Alonso, Felix; Tucker, Matthew] STFC Rutherford Appleton Lab, ISIS Facil, Harwell Sci & Innovat Campus, Chilton OX11 0QX, Oxon, England. [Fortes, A. Dominic; Wood, Ian G.] UCL, Dept Earth Sci, Gower St, London WC1E 6BT, England. [Fernandez-Alonso, Felix] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Tucker, Matthew] Spallat Neutron Source, 8600 Spallat Dr, Oak Ridge, TN 37830 USA. RP Fortes, AD (reprint author), STFC Rutherford Appleton Lab, ISIS Facil, Harwell Sci & Innovat Campus, Chilton OX11 0QX, Oxon, England.; Fortes, AD (reprint author), UCL, Dept Earth Sci, Gower St, London WC1E 6BT, England. EM dominic.fortes@stfc.ac.uk FU UK Science and Technology Facilities Council (STFC) [PP/E006515/1]; STFC [ST/K000934/1] FX The authors thank the STFC ISIS facility for beam-time, and thank ISIS Technical Support staff for their invaluable assistance. ADF acknowledges an Advanced Fellowship from the UK Science and Technology Facilities Council (STFC), grant number PP/E006515/1 and STFC standard grant number ST/K000934/1. NR 92 TC 1 Z9 1 U1 4 U2 4 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2052-5206 J9 ACTA CRYSTALLOGR B JI Acta Crystallogr. Sect. B-Struct. Sci.Cryst. Eng. Mat. PD FEB PY 2017 VL 73 BP 33 EP 46 DI 10.1107/S2052520616018254 PN 1 PG 14 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA EN1QB UT WOS:000395783800005 ER PT J AU Jorgensen, MRV Piccoli, PMB Hathwar, VR Wang, XP Hoffmann, CM Yakovenko, AA Halder, GJ Schlueter, JA Iversen, BB Schultz, AJ AF Jorgensen, Mads R. V. Piccoli, Paula M. B. Hathwar, Venkatesha R. Wang, Xiaoping Hoffmann, Christina M. Yakovenko, Andrey A. Halder, Gregory J. Schlueter, John A. Iversen, Bo B. Schultz, Arthur J. TI Neutron and X-ray investigations of the Jahn-Teller switch in partially deuterated ammonium copper Tutton salt, (NH4)(2)[Cu(H2O)(6)](SO4)(2) SO ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS LA English DT Article DE single-crystal neutron diffraction; synchrotron powder diffraction; deuterium isotope phase transition; pressure-temperature phase transition ID CRYSTAL-STRUCTURE; HEXAAQUACOPPER(II) SULFATE; LATTICE INTERACTIONS; LOW-TEMPERATURE; DIFFRACTION; DEPENDENCE; DISTORTION; STATE; ZN; SUPERCONDUCTIVITY AB The structural phase transition accompanied by a Jahn-Teller switch has been studied over a range of H/D ratios in (NH4)(2)[Cu(H2O)(6)](SO4)(2) (ACTS). In particular, single-crystal neutron diffraction investigations of crystals with deuteration in the range 50 to 82% are shown to be consistent with previous electron paramagnetic resonance (EPR) experiments exhibiting a phase boundary at 50% deuteration under ambient pressure. Polycrystalline samples show that the two phases can co-exist. In addition, single-crystal neutron and polycrystalline X-ray diffraction pressure experiments show a shift to lower pressure at 60% deuteration versus previous measurements at 100% deuteration. C1 [Jorgensen, Mads R. V.; Hathwar, Venkatesha R.; Iversen, Bo B.] Aarhus Univ, Ctr Mat Crystallog, Dept Chem, Aarhus, Denmark. [Jorgensen, Mads R. V.; Hathwar, Venkatesha R.; Iversen, Bo B.] Aarhus Univ, iNANO, Aarhus, Denmark. [Jorgensen, Mads R. V.] Lund Univ, MAX Lab 4, Lund, Sweden. [Piccoli, Paula M. B.; Schultz, Arthur J.] Argonne Natl Lab, Intense Pulsed Neutron Source, 9700 S Cass Ave, Argonne, IL 60439 USA. [Hathwar, Venkatesha R.] Univ Tsukuba, Fac Pure & Appl Sci, Div Phys, Tsukuba, Ibaraki, Japan. [Wang, Xiaoping; Hoffmann, Christina M.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Yakovenko, Andrey A.; Halder, Gregory J.; Schultz, Arthur J.] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Schlueter, John A.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Schlueter, John A.] Natl Sci Fdn, Div Mat Sci, 4201 Wilson Blvd, Arlington, VA 22230 USA. RP Schultz, AJ (reprint author), 519 Blackstone Ave, La Grange, IL 60525 USA. EM ajschultz2@gmail.com OI Jorgensen, Mads Ry Vogel/0000-0001-5507-9615; Schultz, Arthur/0000-0003-3646-2269 FU DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-00OR22725]; Danish National Research Foundation; Danish Research Council for Nature and Universe (Danscatt); Independent Research/Development program FX This research used resources of the Intense Pulsed Neutron Source and the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The measurements carried out at the Spallation Neutron Source was sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy, under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. MRVJ, VRH and BBI are grateful for the support by the Danish National Research Foundation (Centre for Materials Crystallography, DNRF93) and the Danish Research Council for Nature and Universe (Danscatt). JAS acknowledges support from the Independent Research/Development program while serving at the National Science Foundation. NR 38 TC 0 Z9 0 U1 3 U2 3 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2052-5206 J9 ACTA CRYSTALLOGR B JI Acta Crystallogr. Sect. B-Struct. Sci.Cryst. Eng. Mat. PD FEB PY 2017 VL 73 BP 87 EP 93 DI 10.1107/S2052520616018412 PN 1 PG 7 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA EN1QB UT WOS:000395783800009 ER PT J AU Moriarty, NW Draizen, EJ Adams, PD AF Moriarty, Nigel W. Draizen, Eli J. Adams, Paul D. TI An editor for the generation and customization of geometry restraints SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY LA English DT Article DE crystallographic refinement; geometric restraints; ideal geometry; graphical user interfaces; PHENIX ID PROTEIN DATA-BANK; BACKBONE GEOMETRY; PHENIX; GLYCOINFORMATICS; GLYCOWORKBENCH; REFINEMENT; LIBRARY; SYSTEM; TOOL AB Chemical restraints for use in macromolecular structure refinement are produced by a variety of methods, including a number of programs that use chemical information to generate the required bond, angle, dihedral, chiral and planar restraints. These programs help to automate the process and therefore minimize the errors that could otherwise occur if it were performed manually. Furthermore, restraint-dictionary generation programs can incorporate chemical and other prior knowledge to provide reasonable choices of types and values. However, the use of restraints to define the geometry of a molecule is an approximation introduced with efficiency in mind. The representation of a bond as a parabolic function is a convenience and does not reflect the true variability in even the simplest of molecules. Another complicating factor is the interplay of the molecule with other parts of the macromolecular model. Finally, difficult situations arise from molecules with rare or unusual moieties that may not have their conformational space fully explored. These factors give rise to the need for an interactive editor for WYSIWYG interactions with the restraints and molecule. Restraints Editor, Especially Ligands (REEL) is a graphical user interface for simple and error-free editing along with additional features to provide greater control of the restraint dictionaries in macromolecular refinement. C1 [Moriarty, Nigel W.; Draizen, Eli J.; Adams, Paul D.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Moriarty, NW (reprint author), Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM nwmoriarty@lbl.gov FU NIH [1P01 GM063210]; PHENIX Industrial Consortium; US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the NIH (Project 1P01 GM063210), the PHENIX Industrial Consortium and in part by the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 20 TC 1 Z9 1 U1 0 U2 0 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2059-7983 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Struct. Biol. PD FEB PY 2017 VL 73 BP 123 EP 130 DI 10.1107/S2059798316016570 PN 2 PG 8 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA EN7UZ UT WOS:000396209000005 PM 28177308 ER PT J AU Liebschner, D Afonine, PV Moriarty, NW Poon, BK Sobolev, OV Terwilliger, TC Adams, PD AF Liebschner, Dorothee Afonine, Pavel V. Moriarty, Nigel W. Poon, Billy K. Sobolev, Oleg V. Terwilliger, Thomas C. Adams, Paul D. TI Polder maps: improving OMIT maps by excluding bulk solvent SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY LA English DT Article DE OMIT maps; polder maps; ligand validation; bulk solvent; weak density; residual (difference) Fourier synthesis; PHENIX ID MACROMOLECULAR CRYSTAL-STRUCTURES; STRUCTURE REFINEMENT; MAXIMUM-LIKELIHOOD; MODEL BIAS; RESOLUTION; IMPROVEMENT; REDUCTASE; ANGSTROM; PROTEASE; DESIGN AB The crystallographic maps that are routinely used during the structure-solution workflow are almost always model-biased because model information is used for their calculation. As these maps are also used to validate the atomic models that result from model building and refinement, this constitutes an immediate problem: anything added to the model will manifest itself in the map and thus hinder the validation. OMIT maps are a common tool to verify the presence of atoms in the model. The simplest way to compute an OMIT map is to exclude the atoms in question from the structure, update the corresponding structure factors and compute a residual map. It is then expected that if these atoms are present in the crystal structure, the electron density for the omitted atoms will be seen as positive features in this map. This, however, is complicated by the flat bulk-solvent model which is almost universally used in modern crystallographic refinement programs. This model postulates constant electron density at any voxel of the unit-cell volume that is not occupied by the atomic model. Consequently, if the density arising from the omitted atoms is weak then the bulk-solvent model may obscure it further. A possible solution to this problem is to prevent bulk solvent from entering the selected OMIT regions, which may improve the interpretative power of residual maps. This approach is called a polder (OMIT) map. Polder OMIT maps can be particularly useful for displaying weak densities of ligands, solvent molecules, side chains, alternative conformations and residues both in terminal regions and in loops. The tools described in this manuscript have been implemented and are available in PHENIX. C1 [Liebschner, Dorothee; Afonine, Pavel V.; Moriarty, Nigel W.; Poon, Billy K.; Sobolev, Oleg V.; Adams, Paul D.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. [Terwilliger, Thomas C.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Liebschner, D (reprint author), Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. EM dcliebschner@lbl.gov FU NIH [1P01 GM063210]; PHENIX Industrial Consortium; US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the NIH (Project 1P01 GM063210), the PHENIX Industrial Consortium and, in part, by the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 41 TC 1 Z9 1 U1 0 U2 0 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2059-7983 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Struct. Biol. PD FEB PY 2017 VL 73 BP 148 EP 157 DI 10.1107/S2059798316018210 PN 2 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA EN7UZ UT WOS:000396209000008 PM 28177311 ER PT J AU Livescu, V Bronkhorst, C Vander Wiel, S AF Livescu, Veronica Bronkhorst, Curt Vander wiel, Scott TI 3D MICROSTRUCTURES FOR MATERIALS AND DAMAGE MODELS SO ADVANCED MATERIALS & PROCESSES LA English DT Editorial Material ID EVOLUTION; TANTALUM C1 [Livescu, Veronica; Bronkhorst, Curt; Vander wiel, Scott] Los Alamos Natl Lab, Los Alamos, NM USA. RP Livescu, V (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, MST-8, Los Alamos, NM 87545 USA. EM vlivescu@lanl.gov NR 18 TC 0 Z9 0 U1 0 U2 0 PU ASM INT PI MATERIALS PARK PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002 USA SN 0882-7958 EI 2161-9425 J9 ADV MATER PROCESS JI Adv. Mater. Process. PD FEB-MAR PY 2017 VL 175 IS 2 BP 16 EP 20 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA EP5BC UT WOS:000397393000003 ER PT J AU Chang, C Zhou, QL Oostrom, M Kneafsey, TJ Mehta, H AF Chang, Chun Zhou, Quanlin Oostrom, Mart Kneafsey, Timothy J. Mehta, Hardeep TI Pore-scale supercritical CO2 dissolution and mass transfer under drainage conditions SO ADVANCES IN WATER RESOURCES LA English DT Article DE Geological carbon sequestration; Micromodel; Drainage; Dissolution; Mass transfer ID CARBON-DIOXIDE; POROUS-MEDIA; SALINE AQUIFERS; GEOLOGICAL SEQUESTRATION; RESERVOIR CONDITIONS; CO2-H2O MIXTURES; STORAGE; WATER; MICROMODEL; CAPILLARY AB Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO2 (scCO(2)) and a prolonged depletion of residual scCO(2). In this study, pore-scale scCO(2) dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 degrees C by injecting scCO(2) into the sandstone-analogue pore network initially saturated by water without dissolved CO2 (dsCO(2)). During the experiments, time-lapse images of dye intensity, reflecting water pH, were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO(2)-water interface area is low with respect to the volume of water filled pores and pore clusters, (2) fast scCO(2) dissolution and phase equilibrium occurs when scCO(2) bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to volume ratio is prevalent. The analysis also shows that two fundamental processes - scCO(2) dissolution at phase interfaces and diffusion of dsCO(2) at the pore scale (10-100 mu m) observed after scCO(2) bubble invasion into water-filled pores without pore throat constraints - are relatively fast. The overall slow dissolution of scCO(2) in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. This finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO(2) at narrow pore throats. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Chang, Chun] China Univ Min & Technol, State Key Lab Coal Resources & Safe Min, Beijing 100083, Peoples R China. [Chang, Chun; Zhou, Quanlin; Kneafsey, Timothy J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Earth & Environm Sci, Berkeley, CA 94720 USA. [Oostrom, Mart] Pacific Northwest Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd,POB 999,MSIN K8-96, Richland, WA 99352 USA. [Mehta, Hardeep] Pacific Northwest Natl Lab, Environm Mol Sci Lab, 902 Battelle Blvd,POB 999,MSIN K8-96, Richland, WA 99352 USA. RP Chang, C (reprint author), China Univ Min & Technol, State Key Lab Coal Resources & Safe Min, Beijing 100083, Peoples R China.; Chang, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Earth & Environm Sci, Berkeley, CA 94720 USA. EM chunchang_cumtb@126.com FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Energy Frontier Research Centers program [DE-AC02-05CH11231] FX This material was based upon the work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Energy Frontier Research Centers program under Contract no. DE-AC02-05CH11231. The micromodel experiments were conducted at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a scientific user facility of the United States Department of Energy's Office of Biological and Environmental Research operated by the Pacific Northwest National Laboratory (PNNL). The authors would like to thanks Pieter Bertier at RWTH Aachen University, Aachen, Germany and two anonymous reviewers for their careful review of the manuscript and the suggestion of improvements. NR 41 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 EI 1872-9657 J9 ADV WATER RESOUR JI Adv. Water Resour. PD FEB PY 2017 VL 100 BP 14 EP 25 DI 10.1016/j.advwatres.2016.12.003 PG 12 WC Water Resources SC Water Resources GA EL4ZM UT WOS:000394631100002 ER PT J AU Schmitz, S Maniaci, DC AF Schmitz, Sven Maniaci, David C. TI Methodology to Determine a Tip-Loss Factor for Highly Loaded Wind Turbines SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT 34th Wind Energy Symposium / SciTech Conference CY JAN 04-08, 2016 CL San Diego, CA ID AERODYNAMICS; STALL; MODEL AB The commonly observed overprediction of tip loads on wind-turbine blades by classical blade-element momentum theory is investigated by means of an analytical method that determines the exact tip-loss factor for a given blade flow angle. The analytical method is general and can be applied to any higher-fidelity computational method such as free-wake methods or computational fluid dynamics analyses. In this work, the higher-order free-wake method WindDVE is used to compute tip-vortex rollup and wake expansion in the near wake of a highly loaded wind-turbine rotor. The resulting spanwise distributions of the blade flow angle serve as input to the analytical method that is subsequently tested for the National Renewable Energy Laboratory phase 6 rotor by implementing a corrected tip-loss factor into the blade-element code XTurb. It is found that a simple modification can be added to the classical tip-loss factor in blade-element momentum theory that leads to improved prediction of blade tip loads at no additional computational expense. C1 [Schmitz, Sven] Penn State Univ, Aerosp Engn, University Pk, PA 16803 USA. [Maniaci, David C.] Sandia Natl Labs, Wind Energy Technol, POB 5800, Albuquerque, NM 87185 USA. RP Schmitz, S (reprint author), Penn State Univ, Aerosp Engn, University Pk, PA 16803 USA. FU U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind and Water Power Program FX This research was partially supported by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind and Water Power Program. The authors would like to thank Scott Schreck from the National Renewable Energy Laboratory (NREL) for providing the measured data of the NREL phase 6 rotor. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, which is a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 34 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD FEB PY 2017 VL 55 IS 2 BP 341 EP 351 DI 10.2514/1.J055112 PG 11 WC Engineering, Aerospace SC Engineering GA EM8IR UT WOS:000395555300001 ER PT J AU Adelstein, N Lee, DW DuBois, JL Ray, KG Varley, JB Lordi, V AF Adelstein, Nicole Lee, Donghwa DuBois, Jonathan L. Ray, Keith G. Varley, Joel B. Lordi, Vincenzo TI Magnetic stability of oxygen defects on the SiO2 surface SO AIP ADVANCES LA English DT Article ID SUPERCONDUCTING QUANTUM BITS; TOTAL-ENERGY CALCULATIONS; ELECTRON-SPIN-RESONANCE; SILICON-DIOXIDE FILMS; HIGH-PURITY SILICA; VITREOUS SILICA; AMORPHOUS SIO2; LOCAL-DENSITY; E' CENTER; VACANCIES AB The magnetic stability of E' centers and the peroxy radical on the surface of alpha-quartz is investigated with first-principles calculations to understand their role in magnetic flux noise in superconducting qubits (SQs) and superconducting quantum interference devices (SQUIDs) fabricated on amorphous silica substrates. Paramagnetic E' centers are common in both stoichiometric and oxygen deficient silica and quartz, and we calculate that they are more common on the surface than the bulk. However, we find the surface defects are magnetically stable in their paramagnetic ground state and thus will not contribute to 1/f noise through fluctuation at millikelvin temperatures. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license. C1 [Adelstein, Nicole] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. San Francisco State Univ, San Francisco, CA 94132 USA. RP Adelstein, N (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program [12-ERD-020, 15-ERD-051] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with support from the Laboratory Directed Research and Development Program, tracking numbers 12-ERD-020 and 15-ERD-051. NR 71 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD FEB PY 2017 VL 7 IS 2 AR 025110 DI 10.1063/1.4977194 PG 13 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA EN3HE UT WOS:000395898800028 ER PT J AU Jones, TS Perez, CR Santiago-Aviles, JJ AF Jones, T. S. Perez, C. R. Santiago-Aviles, J. J. TI Quantitative microwave impedance microscopy with effective medium approximations SO AIP ADVANCES LA English DT Article ID DOMAIN-WALLS; CARBON; CONDUCTIVITY; NANOSCALE AB Microwave impedance microscopy (MIM) is a scanning probe technique to measure local changes in tip-sample admittance. The imaginary part of the reported change is calibrated with finite element simulations and physical measurements of a standard capacitive sample, and thereafter the output Delta Y is given a reference value in siemens. Simulations also provide a means of extracting sample conductivity and permittivity from admittance, a procedure verified by comparing the estimated permittivity of polytetrafluoroethlyene (PTFE) to the accepted value. Simulations published by others have investigated the tip-sample system for permittivity at a given conductivity, or conversely conductivity and a given permittivity; here we supply the full behavior for multiple values of both parameters. Finally, the well-known effective medium approximation of Bruggeman is considered as a means of estimating the volume fractions of the constituents in inhomogeneous two-phase systems. Specifically, we consider the estimation of porosity in carbide-derived carbon, a nanostructured material known for its use in energy storage devices. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license. C1 [Jones, T. S.; Santiago-Aviles, J. J.] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA. [Perez, C. R.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87123 USA. RP Jones, TS (reprint author), Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA. EM jonests@seas.upenn.edu FU Department of Energy Office of Basic Science [DE-FG02-00ER45813-A000]; Nano/Bio Interface Center of the University of Pennsylvania, via the National Science Foundation NSEC fund [DMR08-32802] FX We acknowledge PrimeNano and K. Jones of Asylum Research for instrument time and technical support. We also thank J. McDonough and B. Dyatkin, students of Y. Gogotsi at Drexel University, for samples. This work was partially supported by the Department of Energy Office of Basic Science grant DE-FG02-00ER45813-A000, and the Nano/Bio Interface Center of the University of Pennsylvania, via the National Science Foundation NSEC DMR08-32802 fund. NR 19 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD FEB PY 2017 VL 7 IS 2 AR 025207 DI 10.1063/1.4976729 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA EN3HE UT WOS:000395898800042 ER PT J AU Hruszkewycz, SO Cha, W Andrich, P Anderson, CP Ulvestad, A Harder, R Fuoss, PH Awschalom, DD Heremans, FJ AF Hruszkewycz, S. O. Cha, W. Andrich, P. Anderson, C. P. Ulvestad, A. Harder, R. Fuoss, P. H. Awschalom, D. D. Heremans, F. J. TI In situ study of annealing-induced strain relaxation in diamond nanoparticles using Bragg coherent diffraction imaging SO APL MATERIALS LA English DT Article ID NANOSCALE; NANODIAMOND; SPIN; OXIDATION; DEFECTS; AMBIENT; AIR AB We observed changes in morphology and internal strain state of commercial diamond nanocrystals during high-temperature annealing. Three nanodiamonds were measured with Bragg coherent x-ray diffraction imaging, yielding three-dimensional strainsensitive images as a function of time/temperature. Up to temperatures of 800 degrees C, crystals with Gaussian strain distributions with a full-width-at-half-maximum of less than 8 x 10(-4) were largely unchanged, and annealing-induced strain relaxation was observed in a nanodiamond with maximum lattice distortions above this threshold. X-ray measurements found changes in nanodiamond morphology at temperatures above 600 degrees C that are consistent with graphitization of the surface, a result verified with ensemble Raman measurements. (C) 2017 Author(s). C1 [Hruszkewycz, S. O.; Cha, W.; Ulvestad, A.; Fuoss, P. H.; Awschalom, D. D.; Heremans, F. J.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Andrich, P.; Anderson, C. P.; Awschalom, D. D.; Heremans, F. J.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Anderson, C. P.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Harder, R.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Hruszkewycz, SO (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Air Force Office of Scientific Research; Army Research Office OSU-MURI (Ohio State University-Multidisciplinary University Research Initiative); Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program; NSF MRSEC Program [DMR-0820054]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX BCDI measurements and sample preparation of nanocrystalline diamond were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Raman measurements were supported by the Air Force Office of Scientific Research and by the Army Research Office OSU-MURI (Ohio State University-Multidisciplinary University Research Initiative). C.P.A. was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program. We made use of shared Raman spectroscopy facilities supported by the NSF MRSEC Program under DMR-0820054. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors thank P.C. Jerger, P. J. Mintun, C. G. Yale, and B. Zhou for useful discussion. NR 24 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD FEB PY 2017 VL 5 IS 2 AR 026105 DI 10.1063/1.4974865 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA EM0TU UT WOS:000395031400005 ER PT J AU Wu, CZ Jin, Y Reno, JL Kumar, S AF Wu, Chongzhao Jin, Yuan Reno, John L. Kumar, Sushil TI Large static tuning of narrow-beam terahertz plasmonic lasers operating at 78 K SO APL PHOTONICS LA English DT Article ID QUANTUM-CASCADE LASERS; WAVE-GUIDES; THZ AB A new tuning mechanism is demonstrated for single-mode metal-clad plasmonic lasers, in which the refractive-index of the laser's surrounding medium affects the resonant-cavity mode in the same vein as the refractive-index of gain medium inside the cavity. Reversible, continuous, and mode-hop-free tuning of similar to 57 GHz is realized for single-mode narrow-beam terahertz plasmonic quantum-cascade lasers (QCLs), which is demonstrated at a much more practical temperature of 78 K. The tuning is based on post-process deposition/etching of a dielectric (silicon-dioxide) on a QCL chip that has already been soldered and wire-bonded onto a copper mount. This is a considerably larger tuning range compared to previously reported results for terahertz QCLs with directional far-field radiation patterns. The key enabling mechanism for tuning is a recently developed antenna-feedback scheme for plasmonic lasers, which leads to the generation of hybrid surface-plasmon-polaritons propagating outside the cavity of the laser with a large spatial extent. The effect of dielectric deposition on QCL's characteristics is investigated in detail including that on maximum operating temperature, peak output power, and far-field radiation patterns. Single-lobed beam with low divergence (< 7 degrees) is maintained through the tuning range. The antenna-feedback scheme is ideally suited for modulation of plasmonic lasers and their sensing applications due to the sensitive dependence of spectral and radiative properties of the laser on its surrounding medium. (C) 2016 Author(s). C1 [Wu, Chongzhao; Jin, Yuan; Kumar, Sushil] Lehigh Univ, Dept Elect & Comp Engn, Bethlehem, PA 18015 USA. [Reno, John L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, MS 1303, Albuquerque, NM 87185 USA. RP Kumar, S (reprint author), Lehigh Univ, Dept Elect & Comp Engn, Bethlehem, PA 18015 USA. EM sushil@lehigh.edu FU United States National Science Foundation [ECCS 1351142, CMMI 1437168]; Sandia National Laboratories is a multiprogram laboratory [DE-AC04-94AL85000] FX This work is supported by the United States National Science Foundation through Grant Nos. ECCS 1351142 and CMMI 1437168. The work is performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy (DOE), Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOEs National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 31 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2378-0967 J9 APL PHOTONICS JI APL Phontonics PD FEB PY 2017 VL 2 IS 2 AR 026101 DI 10.1063/1.4972127 PG 9 WC Optics SC Optics GA EM5XD UT WOS:000395386300003 ER PT J AU Pendleton, SL Briner, JP Kaufman, DS Zimmerman, SR AF Pendleton, Simon L. Briner, Jason P. Kaufman, Darrell S. Zimmerman, Susan R. TI Using cosmogenic Be-10 exposure dating and lichenometry to constrain Holocene glaciation in the central Brooks Range, Alaska SO ARCTIC ANTARCTIC AND ALPINE RESEARCH LA English DT Article ID PRODUCTION-RATE CALIBRATION; GLACIER FLUCTUATIONS; MCCALL GLACIER; ARCTIC ALASKA; ICE-AGE; MAXIMUM; USA; DEGLACIATION; PRECIPITATION; NEOGLACIATION AB We compile new and previously published lichenometric and cosmogenic Be-10 moraine ages to summarize the timing of Holocene glacier expansions in the Brooks Range, Arctic Alaska. Foundational lichenometric studies suggested that glaciers likely grew to their Holocene maxima as early as the middle Holocene, followed by several episodes of moraine building prior to, and throughout, the last millennium. Previously published Be-10 ages on Holocene moraine boulders from the north-central Brooks Range constrain the culmination of maximum Holocene glacier advances between 4.6 ka and 2.6 ka. New Be-10 ages of moraine boulders from two different valleys in the central Brooks Range published here show that maximum Holocene glacial extents in these valleys were reached by 3.5 ka and ca. 2.6 ka, supporting previous studies showing that Holocene maximum, or near-maximum, glacial extents in the Brooks Range occurred prior to the Little Ice Age. However, in-depth reconciliations between glacier extent and local and regional climate are hampered by uncertainties associated with both lichenometry and Be-10 dating. C1 [Pendleton, Simon L.; Briner, Jason P.] Univ Buffalo, Dept Geol, 126 Cooke Hall, Buffalo, NY 14260 USA. [Kaufman, Darrell S.] No Arizona Univ, Sch Earth Sci & Environm Sustainabil, POB 5694, Flagstaff, AZ 86011 USA. [Zimmerman, Susan R.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, 7000 East Ave, Livermore, CA 94550 USA. RP Pendleton, SL (reprint author), Univ Colorado, INSTAAR, UCB 450, Boulder, CO 80309 USA. EM simon.pendleton@colorado.edu FU National Science Foundation [ARC-1107854, ARC-1107662]; Murie Science and Learning Center Fellowship; SUNY Buffalo grant FX We thank Kathryn Ladig for field assistance; Samuel Kelley, Nicolas Young, Sylvia Choi, and Mathew McClellan for laboratory assistance; Fred Luiszer for ICP measurements; and three reviewers for their helpful suggestions. This work was supported by National Science Foundation grants ARC-1107854 and ARC-1107662 to Briner and Kaufman, respectively, a Murie Science and Learning Center Fellowship and SUNY Buffalo grant to Pendleton. This is Lawrence Livermore National Laboratory contribution LLNL-JRNL-698449. NR 45 TC 0 Z9 0 U1 1 U2 1 PU INST ARCTIC ALPINE RES PI BOULDER PA UNIV COLORADO, BOULDER, CO 80309 USA SN 1523-0430 EI 1938-4246 J9 ARCT ANTARCT ALP RES JI Arct. Antarct. Alp. Res. PD FEB PY 2017 VL 49 IS 1 BP 115 EP 132 DI 10.1657/AAAR0016-045 PG 18 WC Environmental Sciences; Geography, Physical SC Environmental Sciences & Ecology; Physical Geography GA EL9CW UT WOS:000394918000009 ER PT J AU Kim, MG Lee, HM Arai, T Bock, J Cooray, A Jeong, WS Kim, SJ Korngut, P Lanz, A Lee, DH Lee, MG Matsumoto, T Matsuura, S Nam, UW Onishi, Y Shirahata, M Smidt, J Tsumura, K Yamamura, I Zemcov, M AF Kim, Min Gyu Lee, Hyung Mok Arai, Toshiaki Bock, James Cooray, Asantha Jeong, Woong-Seob Kim, Seong Jin Korngut, Phillip Lanz, Alicia Lee, Dae Hee Lee, Myung Gyoon Matsumoto, Toshio Matsuura, Shuji Nam, Uk Won Onishi, Yosuke Shirahata, Mai Smidt, Joseph Tsumura, Kohji Yamamura, Issei Zemcov, Michael TI LOW-RESOLUTION NEAR-INFRARED STELLAR SPECTRA OBSERVED BY THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER) SO ASTRONOMICAL JOURNAL LA English DT Article DE catalogs; infrared: stars; stars: general; techniques: spectroscopic ID MU-M; GIANT STARS; COOL STARS; LIGHT; BAND; TELESCOPE; 2MASS; WATER; SPECTROMETER; SPECTROSCOPY AB We present near-infrared (0.8-1.8 mu m) spectra of 105 bright (m(J) < 10) stars observed with the low-resolution spectrometer on the rocket-borne Cosmic Infrared Background Experiment. As our observations are performed above the Earth ' s atmosphere, our spectra are free from telluric contamination, which makes them a unique resource for near-infrared spectral calibration. Two-Micron All-Sky Survey photometry information is used to identify crossmatched stars after reduction and extraction of the spectra. We identify the spectral types of the observed stars by comparing them with spectral templates from the Infrared Telescope Facility library. All the observed spectra are consistent with late F to M stellar spectral types, and we identify various infrared absorption lines. C1 [Kim, Min Gyu; Lee, Hyung Mok; Lee, Myung Gyoon] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea. [Kim, Min Gyu; Jeong, Woong-Seob; Kim, Seong Jin; Nam, Uk Won] Korea Astron & Space Sci Inst KASI, Daejeon 34055, South Korea. [Arai, Toshiaki; Matsumoto, Toshio; Matsuura, Shuji; Onishi, Yosuke; Shirahata, Mai; Yamamura, Issei] Japan Aerosp Explorat Agcy JAXA, Inst Space & Astronaut Sci ISAS, Chuo Ku, Kanagawa 2525210, Japan. [Arai, Toshiaki; Matsumoto, Toshio; Matsuura, Shuji; Onishi, Yosuke; Shirahata, Mai; Yamamura, Issei] Japan Aerosp Explorat Agcy JAXA, Dept Space Astron & Astrophys, Chuo Ku, Kanagawa 2525210, Japan. [Bock, James; Korngut, Phillip; Lanz, Alicia] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Bock, James; Korngut, Phillip; Zemcov, Michael] Jet Prop Lab JPL, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Cooray, Asantha; Smidt, Joseph] Univ Calif Irvine, Ctr Cosmol, Irvine, CA 92697 USA. [Matsuura, Shuji] Kwansei Gakuin Univ, Dept Phys, Nishinomiya, Hyogo 6691337, Japan. [Onishi, Yosuke] Tokyo Inst Technol, Dept Phys, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528550, Japan. [Smidt, Joseph] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Tsumura, Kohji] Tohoku Univ, Frontier Res Inst Interdisciplinary Sci, Sendai, Miyagi 9808578, Japan. [Zemcov, Michael] Rochester Inst Technol, Ctr Detectors, Sch Phys & Astron, Rochester, NY 14623 USA. RP Kim, MG (reprint author), Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea. EM mgkim@astro.snu.ac.kr OI Jeong, Woong-Seob/0000-0002-2770-808X FU NASA APRA [NNX07AI54G, NNG05WC18G, NNX07AG43G, NNX07AJ24G, NNX10AE12G]; Jet Propulsion Laboratory's Director's Research and Development Fund; KAKENHI [2034, 18204018, 19540250, 21340047, 21111004, 26800112]; Japan Society for the Promotion of Science and the Ministry of Education, Culture, Sports, Science, and Technology; Pioneer Project from the Korea Astronomy and Space Science Institute; Global PhD Fellowship Program through the NRF; Ministry of Education [2011-0007760]; NRF [2012R1A4A1028713]; NASA; NSF CAREER [AST-0645427]; NSF [AST-1313319] FX This work was supported by NASA APRA research grants NNX07AI54G, NNG05WC18G, NNX07AG43G, NNX07AJ24G, and NNX10AE12G. Initial support was provided by an award to J.B. from the Jet Propulsion Laboratory's Director's Research and Development Fund. Japanese participation in CIBER was supported by KAKENHI (2034, 18204018, 19540250, 21340047, 21111004, and 26800112) from the Japan Society for the Promotion of Science and the Ministry of Education, Culture, Sports, Science, and Technology. Korean participation in CIBER was supported by the Pioneer Project from the Korea Astronomy and Space Science Institute. M.G.K. acknowledges support from the Global PhD Fellowship Program through the NRF, funded by the Ministry of Education (2011-0007760). H.M.L. and M.G.L. were supported by NRF grant 2012R1A4A1028713. M.Z. and P.K. acknowledge support from NASA postdoctoral program fellowships, and A.C. acknowledges support from NSF CAREER awards AST-0645427 and NSF AST-1313319. We acknowledge the dedicated efforts of the sounding rocket staff at the NASA Wallops Flight Facility and White Sands Missile Range and also thank Dr. Allan Smith, Dr. Keith Lykke, and Dr. Steven Brown (NIST) for the laboratory calibration of the LRS. This publication makes use of data products from 2MASS, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and the NSF. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and the SpeX library. NR 45 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD FEB PY 2017 VL 153 IS 2 AR 84 DI 10.3847/1538-3881/153/2/84 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EM6OT UT WOS:000395432700008 ER PT J AU Blondin, JM Gipson, E Harris, S Mezzacappa, A AF Blondin, John M. Gipson, Emily Harris, Sawyer Mezzacappa, Anthony TI The Standing Accretion Shock Instability: Enhanced Growth in Rotating Progenitors SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; hydrodynamics; shock waves; supernovae: general Supporting material: interactive figures ID CORE-COLLAPSE SUPERNOVAE; ACOUSTIC CYCLE; STABILITY; MODES AB We investigate the effect of progenitor rotation on the standing accretion shock instability (SASI) using two-and three-dimensional hydrodynamic simulations. We find that the growth rate of the SASI is a near-linearly increasing function of the specific angular momentum in the accreting gas. Both the growth rate and the angular frequency in the two-dimensional model with cylindrical geometry agree well with previous linear stability analyses. When excited by very small random perturbations, a one-armed spiral mode dominates the small rotation rates predicted by current stellar evolution models, while progressively higher-order modes are seen as the specific angular momentum increases. C1 [Blondin, John M.; Gipson, Emily; Harris, Sawyer] North Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Mezzacappa, Anthony] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Mezzacappa, Anthony] Oak Ridge Natl Lab, Joint Inst Computat Sci, POB 2008, Oak Ridge, TN 37831 USA. RP Blondin, JM (reprint author), North Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. OI Blondin, John/0000-0001-9691-6803 FU NSF REU award [AST-1062736]; National Science Foundation [ACI-1053575] FX E.G. and S.H. were supported by NSF REU award AST-1062736. Computer simulations were run at the Texas Advanced Computing Center (TACC) at The University of Texas at Austin using an allocation from the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. NR 18 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2017 VL 835 IS 2 AR 170 DI 10.3847/1538-4357/835/2/170 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EM1NT UT WOS:000395085000009 ER PT J AU Miranda, R Li, H Li, ST Jin, S AF Miranda, Ryan Li, Hui Li, Shengtai Jin, Sheng TI Long-lived Dust Asymmetries at Dead Zone Edges in Protoplanetary Disks SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; protoplanetary disks; submillimeter: planetary systems ID ROSSBY-WAVE INSTABILITY; LOPSIDED TRANSITION DISCS; THIN ACCRETION DISKS; TERM EVOLUTION; HYDRODYNAMICAL SIMULATIONS; CIRCUMSTELLAR DISKS; DRIVEN ACCRETION; IRS 48; VORTICES; GAS AB A number of transition disks exhibit significant azimuthal asymmetries in thermal dust emission. One possible origin for these asymmetries is dust trapping in vortices formed at the edges of dead zones. We carry out high-resolution, two-dimensional hydrodynamic simulations of this scenario, including the effects of dust feedback. We find that, although feedback weakens the vortices and slows down the process of dust accumulation, the dust distribution in the disk can nonetheless remain asymmetric for many thousands of orbits. We show that even after 104 orbits, or 2.5 Myr when scaled to the parameters of Oph IRS 48 (a significant fraction of its age), the dust is not dispersed into an axisymmetric ring, in contrast to the case of a vortex formed by a planet. This is because accumulation of mass at the dead zone edge constantly replenishes the vortex, preventing it from being fully destroyed. We produce synthetic dust emission images using our simulation results. We find that multiple small clumps of dust may be distributed azimuthally. These clumps, if not resolved from one another, appear as a single large feature. A defining characteristic of a disk with a dead zone edge is that an asymmetric feature is accompanied by a ring of dust located about twice as far from the central star. C1 [Miranda, Ryan] Cornell Univ, Dept Astron, Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY 14853 USA. [Miranda, Ryan; Li, Hui; Li, Shengtai; Jin, Sheng] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Jin, Sheng] Chinese Acad Sci, Key Lab Planetary Sci, Purple Mt Observ, Nanjing 210008, Jiangsu, Peoples R China. RP Miranda, R (reprint author), Cornell Univ, Dept Astron, Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY 14853 USA.; Miranda, R (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM rjm456@cornell.edu FU National Natural Science Foundation of China [11503092]; Strategic Priority Research Program-The Emergence of Cosmological Structures of the Chinese Academy of Sciences [XDB09000000] FX Support by LANL's LDRD, UC-Fee, CSES and CNLS programs are gratefully acknowledged. All computations were carried out using LANL's Institutional Computing resources. S.J. acknowledges support from the National Natural Science Foundation of China (Grant No. 11503092) and the Strategic Priority Research Program-The Emergence of Cosmological Structures of the Chinese Academy of Sciences (Grant No. XDB09000000). NR 46 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2017 VL 835 IS 2 AR 118 DI 10.3847/1538-4357/835/2/118 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EL4IV UT WOS:000394585800006 ER PT J AU Zhang, HC Li, H Guo, F Taylor, G AF Zhang, Haocheng Li, Hui Guo, Fan Taylor, Greg TI Polarization Signatures of Kink Instabilities in the Blazar Emission Region from Relativistic Magnetohydrodynamic Simulations SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: jets; gamma rays: galaxies; radiation mechanisms: non-thermal; relativistic processes ID GAMMA-RAY POLARIZATION; ACTIVE GALACTIC NUCLEI; SPECTRUM RADIO QUASARS; BANK VLBI SURVEY; MAGNETIC RECONNECTION; PARTICLE-ACCELERATION; 3C 279; ULTRARELATIVISTIC SHOCKS; NONTHERMAL PARTICLES; MULTIZONE MODEL AB Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. In this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares with polarization fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. Compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment. and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations. C1 [Zhang, Haocheng; Taylor, Greg] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Zhang, Haocheng; Li, Hui; Guo, Fan] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Zhang, HC (reprint author), Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.; Zhang, HC (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Guo, Fan/0000-0003-4315-3755 FU LANL/LDRD program; DoE/Office of Fusion Energy Science through CMSO; LANL; NASA Fermi Guest Investigator program [NNX12A075G, NNX14AQ87G, NNX15AU85G] FX We thank the anonymous referee for very insightful suggestions. H.Z., H.L., and F.G. acknowledge support from the LANL/LDRD program and by DoE/Office of Fusion Energy Science through CMSO. H.Z. and G.B.T. acknowledge support from LANL and from the NASA Fermi Guest Investigator program, grants NNX12A075G, NNX14AQ87G, and NNX15AU85G. Simulations are carried out on LANL clusters provided by LANL Institutional Computing. NR 59 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2017 VL 835 IS 2 AR 125 DI 10.3847/1538-4357/835/2/125 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EL4IV UT WOS:000394585800013 ER PT J AU Fu, W Lubow, SH Martin, RG AF Fu, Wen Lubow, Stephen H. Martin, Rebecca G. TI Fragmentation of Kozai-Lidov Disks SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE accretion, accretion disks; binaries: general; hydrodynamics; planets and satellites: formation; quasars: general ID GIANT PLANET FORMATION; SMOOTHED PARTICLE HYDRODYNAMICS; SELF-GRAVITATING DISCS; ACCRETION DISCS; PROTOPLANETARY DISCS; CIRCUMSTELLAR DISKS; RADIATIVE-TRANSFER; BINARY-SYSTEMS; GASEOUS DISKS; INSTABILITY AB We analyze the gravitational instability (GI) of a locally isothermal inclined disk around one component of a binary system. Such a disk can undergo global Kozai-Lidov (KL) cycles if the initial disk tilt is above the critical KL angle (of about 40 degrees.). During these cycles, an initially circular disk exchanges its inclination for eccentricity, and vice versa. Self-gravity may suppress the cycles under some circumstances. However, with hydrodynamic simulations that include self-gravity, we show that for a sufficiently high initial disk tilts and for certain disk masses, disks can undergo KL oscillations and fragment due to GI, even when the Toomre Q value for an equivalent undisturbed disk is well within the stable regime (Q > 2). We suggest that KL triggered disk fragmentation provides a mechanism for the efficient formation of giant planets in binary systems and may enhance the fragmentation of disks in massive black hole binaries. C1 [Fu, Wen; Martin, Rebecca G.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. [Fu, Wen] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Fu, Wen] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lubow, Stephen H.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Fu, W (reprint author), Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA.; Fu, W (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.; Fu, W (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM wf5@rice.edu FU NASA [NNX11AK61G]; institutional computing program at Los Alamos National Laboratory FX W.F. and S.H.L. acknowledge support from NASA grant NNX11AK61G. Computing resources supporting this work were provided by the institutional computing program at Los Alamos National Laboratory. We thank Daniel Price for providing the PHANTOM code for SPH simulations and the SPLASH code (Price 2007) for data analysis and rendering of figures. NR 48 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 1 PY 2017 VL 835 IS 2 AR L29 DI 10.3847/2041-8213/835/2/L29 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EM7QF UT WOS:000395506600008 ER PT J AU Negron-Juarez, RI Jenkins, HS Raupp, CFM Riley, WJ Kueppers, LM Marra, DM Ribeiro, GHPM Monteiro, MTF Candido, LA Chambers, JQ Higuchi, N AF Negron-Juarez, Robinson I. Jenkins, Hillary S. Raupp, Carlos F. M. Riley, William J. Kueppers, Lara M. Marra, Daniel Magnabosco Ribeiro, Gabriel H. P. M. Monteiro, Maria Terezinha F. Candido, Luis A. Chambers, Jeffrey Q. Higuchi, Niro TI Windthrow Variability in Central Amazonia SO ATMOSPHERE LA English DT Article DE windthrows; deep convection; squall lines; Central Amazonia ID ATLANTIC CONVERGENCE ZONE; MESOSCALE CONVECTIVE SYSTEMS; SCALE COMMON FEATURES; BAIU FRONTAL ZONE; SOUTH-AMERICA; FOREST DISTURBANCE; SQUALL LINES; INERTIAL INSTABILITY; BRAZILIAN AMAZON; LARGE BLOWDOWNS AB Windthrows are a recurrent disturbance in Amazonia and are an important driver of forest dynamics and carbon storage. In this study, we present for the first time the seasonal and interannual variability of windthrows, focusing on Central Amazonia, and discuss the potential meteorological factors associated with this variability. Landsat images over the 1998-2010 time period were used to detect the occurrence of windthrows, which were identified based on their spectral characteristics and shape. Here, we found that windthrows occurred every year but were more frequent between September and February. Organized convective activity associated with multicell storms embedded in mesoscale convective systems, such as northerly squall lines (that move from northeast to southwest) and southerly squall lines (that move from southwest to northeast) can cause windthrows. We also found that southerly squall lines occurred more frequently than their previously reported similar to 50 year interval. At the interannual scale, we did not find an association between El Nio-Southern Oscillation (ENSO) and windthrows. C1 [Negron-Juarez, Robinson I.; Riley, William J.; Kueppers, Lara M.; Chambers, Jeffrey Q.] Lawrence Berkeley Natl Lab, Climate Sci Dept, 1 Cyclotron Rd,MS74R316C, Berkeley, CA 94720 USA. [Jenkins, Hillary S.] Univ Redlands, Dept Environm Studies, 1200 E Colton Ave, Redlands, CA 92373 USA. [Raupp, Carlos F. M.] Univ Sao Paulo, Dept Atmospher Sci, Rua Matao 1226, BR-05508090 Sao Paulo, SP, Brazil. [Marra, Daniel Magnabosco] Univ Leipzig, Inst Biol, Johannisallee 21, D-04103 Leipzig, Germany. [Marra, Daniel Magnabosco] Max Planck Inst Biogeochem, Hans Knoell Str 10, D-07745 Jena, Germany. [Marra, Daniel Magnabosco; Ribeiro, Gabriel H. P. M.; Monteiro, Maria Terezinha F.; Candido, Luis A.; Higuchi, Niro] Brazils Natl Inst Amazonian Res, Ave Andre Araujo 2936, BR-6906097 Manaus, AM, Brazil. RP Negron-Juarez, RI (reprint author), Lawrence Berkeley Natl Lab, Climate Sci Dept, 1 Cyclotron Rd,MS74R316C, Berkeley, CA 94720 USA. EM robinson.inj@lbl.gov; hillary_jenkins@redlands.edu; carlos.raupp@iag.usp.br; wjriley@lbl.gov; lmkueppers@lbl.gov; daniel.marra@uni-leipzig.de; gabrielgiga@gmail.com; terezinha.monteiro@gmail.com; luiz.antonio.candido@gmail.com; jchambers@lbl.gov; higuchi.niro@gmail.com OI Ribeiro, Gabriel/0000-0002-3343-3043 FU Next Generation Ecosystem Experiments-Tropics; Regional and Global Climate Modeling; U. S. Department of Energy, Office of Science; Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This research was supported as part of the Next Generation Ecosystem Experiments-Tropics and the Regional and Global Climate Modeling, both funded by the U. S. Department of Energy, Office of Science, and the Office of Biological and Environmental Research under contract DE-AC02-05CH11231. We thank Maria Assuncao Faus da Silva Dias and Pedro Leite da Silva Dias of the University of Sao Paulo, Brazil and Julia Cohen of the Federal University of Para, Brazil for their valuable comments on southerly squall lines. NR 91 TC 0 Z9 0 U1 1 U2 1 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2073-4433 J9 ATMOSPHERE-BASEL JI Atmosphere PD FEB PY 2017 VL 8 IS 2 AR 28 DI 10.3390/atmos8020028 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EN7EZ UT WOS:000396166200006 ER PT J AU Ostrom, NE Ostrom, PH AF Ostrom, Nathaniel E. Ostrom, Peggy H. TI Mining the isotopic complexity of nitrous oxide: a review of challenges and opportunities SO BIOGEOCHEMISTRY LA English DT Review DE Nitrous oxide; Isotopomer; Site preference; Calibration; Clumped isotopes ID RATIO MASS-SPECTROMETRY; WASTE-WATER TREATMENT; INTRAMOLECULAR SITE PREFERENCE; AMMONIA-OXIDIZING ARCHAEA; WESTERN NORTH PACIFIC; STABLE-ISOTOPE; N2O ISOTOPOMERS; ABSORPTION-SPECTROSCOPY; ISOTOPOLOGUE FRACTIONATION; FUNGAL DENITRIFICATION AB Nitrous oxide (N2O) is an important focus of international greenhouse gas accounting agreements and mitigation of emissions will likely depend on understanding the mechanisms of its formation and reduction. Consequently, applications of stable isotope techniques to understand N2O cycling are proliferating and recent advances in technology are enabling (1) increases in the frequency of isotope analyses and (2) analyses not previously possible. The two isotopes of N and 3 isotopes of O combine to form a total of 12 possible isotopic molecules of N2O. Consequently, this remarkably simple molecule contains a wealth of isotopic information in the form of bulk (delta N-15, delta O-18), position dependent (site preference), mass independent (Delta O-17) and multiply-substituted or clumped isotope compositions. With recent developments in high-mass resolution double sector instruments all 12 isotopic molecules will likely be resolved in the near future. Advances in spectroscopic instruments hold the promise of substantial increases in sample throughput; however, spectroscopic analyses require corrections due to interferences from other gases and frequent and accurate calibration. Mass spectrometric approaches require mass overlap corrections that are not uniform between research groups and interlaboratory comparisons remain imprecise. The continued lack of attention to calibration by both funding agencies and investigators can only perpetuate disagreement between laboratories in reported isotope values for N2O that, in turn, will compromise global assessments of N2O sources and sinks based on isotope ratios. This review discusses the challenges and opportunities offered by the isotopic complexity of N2O. C1 [Ostrom, Nathaniel E.; Ostrom, Peggy H.] Michigan State Univ, Dept Integrat Biol, Ecol & Evolutionary Biol & Behav Program, 288 Farm Lane, E Lansing, MI 48864 USA. [Ostrom, Nathaniel E.; Ostrom, Peggy H.] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, 288 Farm Lane, E Lansing, MI 48864 USA. RP Ostrom, NE (reprint author), Michigan State Univ, Dept Integrat Biol, Ecol & Evolutionary Biol & Behav Program, 288 Farm Lane, E Lansing, MI 48864 USA.; Ostrom, NE (reprint author), Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, 288 Farm Lane, E Lansing, MI 48864 USA. EM ostromn@msu.edu FU National Science Foundation's (NSF) Earth Sciences Instrumentation and Facilities program [1456430]; NSF's Geobiology and Low Temperature Geochemistry program [1526926]; Department of Energy Great Lakes Bioenergy Research Center (DOE Office of Science BER) [DE-FC02-07ER64494] FX This work was funded by the National Science Foundation's (NSF) Earth Sciences Instrumentation and Facilities program (Grant #1456430), NSF's Geobiology and Low Temperature Geochemistry program (Grant #1526926) and the Department of Energy Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). NR 107 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0168-2563 EI 1573-515X J9 BIOGEOCHEMISTRY JI Biogeochemistry PD FEB PY 2017 VL 132 IS 3 BP 359 EP 372 DI 10.1007/s10533-017-0301-5 PG 14 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA EN6OO UT WOS:000396123500008 ER PT J AU Helgren, TR Chen, CL Wangtrakuldee, P Edwards, TE Staker, BL Abendroth, J Sankaran, B Housley, NA Myler, PJ Audia, JP Horn, JR Hagen, TJ AF Helgren, Travis R. Chen, Congling Wangtrakuldee, Phumvadee Edwards, Thomas E. Staker, Bart L. Abendroth, Jan Sankaran, Banumathi Housley, Nicole A. Myler, Peter J. Audia, Jonathon P. Horn, James R. Hagen, Timothy J. TI Rickettsia prowazekii methionine aminopeptidase as a promising target for the development of antibacterial agents SO BIOORGANIC & MEDICINAL CHEMISTRY LA English DT Article DE MetAP; Methionine aminopeptidase; Inhibition; Metalloenzyme; Epidemic typhus; Rickettsia prowazekii; Lung endothelial cells ID METALLOFORM-SELECTIVE INHIBITION; INTERFERENCE COMPOUNDS PAINS; STRUCTURAL GENOMICS CENTER; MYCOBACTERIUM-TUBERCULOSIS; INFECTIOUS-DISEASE; ESCHERICHIA-COLI; EPIDEMIC TYPHUS; DISCOVERY; ASSAY; ANGIOGENESIS AB Methionine aminopeptidase (MetAP) is a class of ubiquitous enzymes essential for the survival of numerous bacterial species. These enzymes are responsible for the cleavage of N-terminal formyl-methionine initiators from nascent proteins to initiate post-translational modifications that are often essential to proper protein function. Thus, inhibition of MetAP activity has been implicated as a novel antibacterial target. We tested this idea in the present study by targeting the MetAP enzyme in the obligate intracellular pathogen Rickettsia prowazekii. We first identified potent RpMetAP inhibitory species by employing an in vitro enzymatic activity assay. The molecular docking program AutoDock was then utilized to compare published crystal structures of inhibited MetAP species to docked poses of RpMetAP. Based on these in silico and in vitro screens, a subset of 17 compounds was tested for inhibition of R. prowazekii growth in a pulmonary vascular endothelial cell (EC) culture infection model system. All compounds were tested over concentration ranges that were determined to be non-toxic to the ECs and 8 of the 17 compounds displayed substantial inhibition of R. prowazekii growth. These data highlight the therapeutic potential for inhibiting RpMetAP as a novel antimicrobial strategy and set the stage for future studies in pre-clinical animal models of infection. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Helgren, Travis R.; Chen, Congling; Wangtrakuldee, Phumvadee; Horn, James R.; Hagen, Timothy J.] Northern Illinois Univ, Dept Chem & Biochem, 1425 W Lincoln Hwy, De Kalb, IL 60115 USA. [Edwards, Thomas E.; Abendroth, Jan] Beryllium Discovery Corp, 7869 NE Day Rd West, Bainbridge Isl, WA 98110 USA. [Staker, Bart L.; Myler, Peter J.] Seattle Biomed Res Inst, Ctr Infect Dis Res, 307 Westlake Ave N, Seattle, WA 98109 USA. [Edwards, Thomas E.; Staker, Bart L.; Abendroth, Jan; Myler, Peter J.] SSGCID, Seattle, WA USA. [Myler, Peter J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. [Myler, Peter J.] Univ Washington, Dept Biomed Informat & Med Educ, Seattle, WA 98195 USA. [Sankaran, Banumathi] Ernest Orlando Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. [Housley, Nicole A.; Audia, Jonathon P.] Univ S Alabama, Coll Med, Infect Dis Lab, Dept Microbiol & Immunol, 307 North Univ Blvd, Mobile, AL 36688 USA. [Housley, Nicole A.; Audia, Jonathon P.] Univ S Alabama, Coll Med, Infect Dis Lab, Ctr Lung Biol, 307 North Univ Blvd, Mobile, AL 36688 USA. RP Hagen, TJ (reprint author), Northern Illinois Univ, Dept Chem & Biochem, 1425 W Lincoln Hwy, De Kalb, IL 60115 USA. EM thagen@niu.edu FU Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN272200700057C, HHSN272201200025C]; National Institutes of Health, National Institute of General Medical Sciences; Howard Hughes Medical Institute; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; NIH [C06 RR029870, K22 AI089786] FX This project has been funded in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract Nos. HHSN272200700057C and HHSN272201200025C. The Berkeley Center for Structural Biology is supported in part by the National Institutes of Health, National Institute of General Medical Sciences, and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Finally, the authors would like to acknowledge funding from the NIH for construction of the BSL-3 facility at the University of South Alabama (Contract No. C06 RR029870) and for the procurement of a microscope utilized in this study (Contract No. K22 AI089786). NR 61 TC 0 Z9 0 U1 1 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0968-0896 EI 1464-3391 J9 BIOORGAN MED CHEM JI Bioorg. Med. Chem. PD FEB 1 PY 2017 VL 25 IS 3 BP 813 EP 824 DI 10.1016/j.bmc.2016.11.013 PG 12 WC Biochemistry & Molecular Biology; Chemistry, Medicinal; Chemistry, Organic SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Chemistry GA EK8VE UT WOS:000394201900001 PM 28089350 ER PT J AU Perez-Pimienta, JA Vargas-Tah, A Lopez-Ortega, KM Medina-Lopez, YN Mendoza-Perez, JA Avila, S Singh, S Simmons, BA Loaces, I Martinez, A AF Perez-Pimienta, Jose A. Vargas-Tah, Alejandra Lopez-Ortega, Karla M. Medina-Lopez, Yessenia N. Mendoza-Perez, Jorge A. Avila, Sayeny Singh, Seema Simmons, Blake A. Loaces, Ines Martinez, Alfredo TI Sequential enzymatic saccharification and fermentation of ionic liquid and organosolv pretreated agave bagasse for ethanol production SO BIORESOURCE TECHNOLOGY LA English DT Article DE Agave bagasse; Fuel ethanol; Ionic liquid; Organosolv Sequential saccharification and fermentation; Crystallinity ID CORN STOVER; HYDROLYSIS; BIOMASS; BIOFUELS; RECALCITRANCE; SWITCHGRASS; FEEDSTOCKS; BIOETHANOL; PEROXIDE; AFEX(TM) AB Agave bagasse (AGB) has gained recognition as a drought-tolerant biofuel feedstock with high productivity in semiarid regions. A comparative analysis of ionic liquid (IL) and organosolv (OV) pretreatment technologies in AGB was performed using a sequential enzymatic saccharification and fermentation (SESF) strategy with cellulolytic enzymes and the ethanologenic Escherichia coli strain MS04. After pretreatment, 86% of xylan and 45% of lignin were removed from OV-AGB, whereas IL-AGB reduced lignin content by 28% and xylan by 50% when compared to the untreated biomass. High glucan (>90%) and xylan (>83%) conversion was obtained with both pretreated samples. During the fermentation stage (48 h), 12.1 and 12.7 kg of ethanol were produced per 100 kg of untreated AGB for IL and OV, respectively. These comparative analyses showed the advantages of SESF using IL and OV in a biorefinery configuration where a better understanding of AGB recalcitrance is key for future applications. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Perez-Pimienta, Jose A.] Univ Autonoma Nayarit, Dept Chem Engn, Tepic, Mexico. [Vargas-Tah, Alejandra; Loaces, Ines; Martinez, Alfredo] Univ Nacl Autonoma Mexico, Inst Biotecnol, Dept Ingn Celular & Biocatalisis, Apdo Postal 510-3, Cuernavaca 62250, Morelos, Mexico. [Lopez-Ortega, Karla M.; Medina-Lopez, Yessenia N.] Univ Autonoma Nayarit, Unidad Acad Ciencias Quim Biol & Farmaceut, Tepic, Mexico. [Mendoza-Perez, Jorge A.] Inst Politecn Nacl, Dept Engn Environm Syst, Mexico City, DF, Mexico. [Avila, Sayeny; Singh, Seema; Simmons, Blake A.] Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Biol Syst & Engn Div, Emeryville, CA USA. [Singh, Seema; Simmons, Blake A.] Sandia Natl Labs, Biol & Engn Sci Ctr, Livermore, CA USA. [Loaces, Ines] Inst Invest Biol Clemente Estable, Dept Bioquim & Genom Microbiana, Montevideo, Uruguay. RP Perez-Pimienta, JA (reprint author), Univ Autonoma Nayarit, Dept Chem Engn, Tepic, Mexico.; Martinez, A (reprint author), Univ Nacl Autonoma Mexico, Inst Biotecnol, Dept Ingn Celular & Biocatalisis, Apdo Postal 510-3, Cuernavaca 62250, Morelos, Mexico. EM japerez@uan.edu.mx; alfredo@ibt.unam.mx FU Mexican National Council for Science and Technology (CONACYT) FONCICYT ERANet-LAC [C0013-248192]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; bilateral international cooperation of SRE-AMEXCID (Mexico); Universidad Autonoma de Nayarit; Programa Delfin FX We thank Mario A. Caro-Bermudez and Mercedes Enzaldo-Cruz for technical assistance at the Biotechnology Institute. This work was supported by the Mexican National Council for Science and Technology (CONACYT) FONCICYT ERANet-LAC Grant C0013-248192. Enzymatic preparations were kindly provided by Novozymes. This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. IL was supported by the bilateral international cooperation of SRE-AMEXCID (Mexico). Coauthor Perez-Pimienta also thanks to the Universidad Autonoma de Nayarit and Programa Delfin for undergraduate scholarships for Karla M. Lopez-Ortega and Yessenia N. Medina-Lopez. NR 43 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD FEB PY 2017 VL 225 BP 191 EP 198 DI 10.1016/j.biortech.2016.11.064 PG 8 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA EN0IO UT WOS:000395693700023 PM 27889478 ER PT J AU Carman, JC Eleuterio, DP Gallaudet, TC Geernaert, GL Harr, PA Kaye, JA McCarren, DH McLean, CN Sandgathe, SA Toepfer, F Uccellini, LW AF Carman, Jessie C. Eleuterio, Daniel P. Gallaudet, Timothy C. Geernaert, Gerald L. Harr, Patrick A. Kaye, Jack A. McCarren, David H. McLean, Craig N. Sandgathe, Scott A. Toepfer, Frederick Uccellini, Louis W. TI THE NATIONAL EARTH SYSTEM PREDICTION CAPABILITY Coordinating the Giant SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID WEATHER C1 [Carman, Jessie C.] NOAA, Off Weather & Air Qual, Silver Spring, MD USA. [Eleuterio, Daniel P.] Off Naval Res, Arlington, VA 22217 USA. [Gallaudet, Timothy C.] US Navy, Washington, DC USA. [Gallaudet, Timothy C.] Naval Meteorol & Oceanog Command, Stennis Space Ctr, MS USA. [Geernaert, Gerald L.] US DOE, Climate & Environm Sci Div, Germantown, MD USA. [Harr, Patrick A.] Natl Sci Fdn, Div Atmospher & Geospace Sci, 4201 Wilson Blvd, Arlington, VA 22230 USA. [Kaye, Jack A.] NASA, Div Earth Sci, Washington, DC 20546 USA. [McCarren, David H.] Naval Meteorol & Oceanog Command, Silver Spring, MD USA. [McLean, Craig N.] NOAA, Off Ocean & Atmospher Res, Silver Spring, MD USA. [Sandgathe, Scott A.] Univ Washington, Appl Phys Lab, Seattle, WA 98105 USA. [Toepfer, Frederick] NOAA, Natl Weather Serv, Off Sci Technol Integrat, Silver Spring, MD 20910 USA. [Uccellini, Louis W.] NOAA, Natl Weather Serv, Silver Spring, MD 20910 USA. RP Sandgathe, SA (reprint author), Univ Washington, Appl Phys Lab, Seattle, WA 98105 USA. EM sandgathe@apl.washington.edu NR 27 TC 0 Z9 0 U1 0 U2 0 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD FEB PY 2017 VL 98 IS 2 BP 239 EP 252 DI 10.1175/BAMS-D-16-0002.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EN2GA UT WOS:000395826700007 ER PT J AU Lundquist, JK Wilczak, JM Ashton, R Bianco, L Brewer, WA Choukulkar, A Clifton, A Debnath, M Delgado, R Friedrich, K Gunter, S Hamidi, A Iungo, GV Kaushik, A Kosovic, B Langan, P Lass, A Lavin, E Lee, JCY McCaffrey, KL Newsom, RK Noone, DC Oncley, SP Quelet, PT Sandberg, SP Schroeder, JL Shaw, WJ Sparling, L St Martin, C St Pe, A Strobach, E Tay, K Vanderwrwende, BJ Weickmann, A Wolfe, D Worsnop, R AF Lundquist, Julie K. Wilczak, James M. Ashton, Ryan Bianco, Laura Brewer, W. Alan Choukulkar, Aditya Clifton, Andrew Debnath, Mithu Delgado, Ruben Friedrich, Katja Gunter, Scott Hamidi, Armita Iungo, Giacomo Valerio Kaushik, Aleya Kosovic, Branko Langan, Patrick Lass, Adam Lavin, Evan Lee, Joseph C. -Y. McCaffrey, Katherine L. Newsom, Rob K. Noone, David C. Oncley, Steven P. Quelet, Paul T. Sandberg, Scott P. Schroeder, John L. Shaw, William J. Sparling, Lynn St Martin, Clara St Pe, Alexandra Strobach, Edward Tay, Ken Vanderwrwende, Brian J. Weickmann, Ann Wolfe, Daniel Worsnop, Rochelle TI ASSESSING STATE-OF-THE-ART CAPABILITIES FOR PROBING THE ATMOSPHERIC BOUNDARY LAYER The XPIA Field Campaign SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID WIND-TURBINE WAKES; LOW-LEVEL JET; DUAL-DOPPLER LIDAR; SCANNING LIDAR; TOWER SHADOW; TURBULENCE; PROFILER; DYNAMICS; DISSIPATION; ERROR C1 [Lundquist, Julie K.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Lundquist, Julie K.; Clifton, Andrew] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Wilczak, James M.; Brewer, W. Alan; Choukulkar, Aditya; McCaffrey, Katherine L.; Sandberg, Scott P.; Weickmann, Ann] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Ashton, Ryan; Debnath, Mithu; Hamidi, Armita; Iungo, Giacomo Valerio] Univ Texas Dallas, Dallas, TX USA. [Bianco, Laura; Wolfe, Daniel] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO USA. [Delgado, Ruben; Langan, Patrick; Lass, Adam; Lavin, Evan; Sparling, Lynn; St Pe, Alexandra; Strobach, Edward] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. [Friedrich, Katja; Kaushik, Aleya; Lee, Joseph C. -Y.; Quelet, Paul T.; St Martin, Clara; Tay, Ken; Vanderwrwende, Brian J.; Worsnop, Rochelle] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Gunter, Scott; Schroeder, John L.] Texas Tech Univ, Lubbock, TX 79409 USA. [Kosovic, Branko; Oncley, Steven P.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Newsom, Rob K.; Shaw, William J.] Pacific Northwest Natl Lab, Richland, WA USA. [Noone, David C.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA. RP Lundquist, JK (reprint author), Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA.; Lundquist, JK (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM julie.lundquist@colorado.edu FU UTD institutional funds; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Office; NOAA's Earth System Research Laboratory; NSF Climate and Large-Scale Dynamics, CAREER program [AGS-0955841]; National Research Council's Research Associateship Program; U.S. Department of Energy Wind and Water Power Technologies Office FX We express great appreciation to the numerous individuals and organizations that assisted with field deployments, including Bruce Bartram, Duane Hazen, Tom Ayers, Jesse Leach, Paul Johnston, the Lefthand Water District, Erie High School, and the St. Vrain School District. We express appreciation to the NOAA/Earth System Research Laboratory/Physical Science Division for supporting the deployment of XPIA instrumentation at the BAO facility and to the National Science Foundation for supporting the CABL deployments (www.eol.ucar.edu/field_projects/cabl). We also acknowledge Drs. Melissa Nigro and Derek Brown at the University of Colorado Boulder for incorporating XPIA/CABL data in their classrooms. We would like to acknowledge the operational, technical, and scientific support provided by NCAR's Earth Observing Laboratory, sponsored by the National Science Foundation. Partial support for the UMBC deployments was provided by the Maryland Energy Administration. Partial support for the UTD lidar and its deployment were provided by UTD institutional funds. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Funding for this work was provided by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Office, and by NOAA's Earth System Research Laboratory. Surface flux measurements were supported by NSF Climate and Large-Scale Dynamics (AGS-0955841) as part of the CAREER program. The NOAA dissipation work was funded by the National Research Council's Research Associateship Program. The TTU measurement and analysis effort was provided through a contract with Sandia National Laboratories with funding from the U.S. Department of Energy Wind and Water Power Technologies Office. NR 93 TC 6 Z9 6 U1 1 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD FEB PY 2017 VL 98 IS 2 BP 289 EP 314 DI 10.1175/BAMS-D-15-00151.1 PG 26 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EN2GA UT WOS:000395826700010 ER PT J AU Wang, GX Kang, HC Chen, M Yan, KP Hu, XS Cairns, EJ AF Wang, Guixin Kang, Hanchang Chen, Miao Yan, Kangping Hu, Xueshan Cairns, Elton J. TI Effects of Solvents on the Electrochemical Performance of LiFePO4/C Composite Electrodes SO CHEMELECTROCHEM LA English DT Article DE electrochemical performance; electrode kinetics; electrolyte; LiFePO4; C composite; solvent effect ID LITHIUM-ION BATTERIES; LOW-TEMPERATURE PERFORMANCE; P WASTE SLAG; RECHARGEABLE BATTERIES; CATHODE MATERIAL; ELECTROLYTES; BEHAVIOR; CARBONATE; CONDUCTIVITY; RESISTANCE AB The electrolyte, a key component for the successful operation of energy materials, is greatly affected by its solvents. The influence of solvents on the electrochemical performance of a LiFePO4/C composite cathode was investigated at various operating temperatures. The reaction kinetics of the LiFePO4/C composite electrode, including changes of rate capability, redox potential, polarization degree, electrode reaction process, exchange current densities, and activation energies, were evaluated using various techniques. The composition and volume ratio of solvents greatly affect the electrode kinetics. In the mixed solvents of ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC), EMC is beneficial for the room temperature performance, while the substitution of 20vol% of EMC by ethyl acetate (EA) is good for the low temperature performance. When 30vol% of DMC is substituted by 10vol% of EMC and 20vol% of EA, the exchange current density increases from 0.022 to 0.038mAcm(-2) at -20 degrees C, while the activation energy of the charge-transfer process decreases from 48.36 to 33.01kJmol(-1). Possible mechanisms for improving the electrochemical performance using different solvents have been analyzed. These results are significant for the exploration of appropriate electrolytes for the extensive applications of LiFePO4/C composite electrodes. C1 [Wang, Guixin; Kang, Hanchang; Chen, Miao; Yan, Kangping] Sichuan Univ, Coll Chem Engn, Chengdu 610065, Sichuan, Peoples R China. [Hu, Xueshan] BASF Battery Mat Suzhou Co Ltd, Suzhou Ind Pk, Suzhou, Jiangsu, Peoples R China. [Cairns, Elton J.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Cairns, Elton J.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Kang, Hanchang] Hongyunhonghe Grp Kunming Cigarette Factory, Kunming 650000, Yunnan, Peoples R China. RP Wang, GX (reprint author), Sichuan Univ, Coll Chem Engn, Chengdu 610065, Sichuan, Peoples R China. EM guixin66@scu.edu.cn FU National Science Foundation of China [21206099, 21576170] FX We gratefully acknowledge financial support from the National Science Foundation of China (Grant No. 21206099 and 21576170). NR 43 TC 0 Z9 0 U1 3 U2 3 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2196-0216 J9 CHEMELECTROCHEM JI ChemElectroChem PD FEB PY 2017 VL 4 IS 2 BP 376 EP 385 DI 10.1002/celc.201600525 PG 10 WC Electrochemistry SC Electrochemistry GA EL8YI UT WOS:000394905900021 ER PT J AU Zhang, PF Zhang, JS Dai, S AF Zhang, Pengfei Zhang, Jinshui Dai, Sheng TI Mesoporous Carbon Materials with Functional Compositions SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Review DE carbon nitride; functional carbon; mesoporous carbon; mesoporous materials; nitrogen-doping ID OXYGEN REDUCTION REACTION; NITROGEN-DOPED CARBON; HIGH ELECTROCATALYTIC ACTIVITY; CHEMICAL-VAPOR-DEPOSITION; ONE-POT SYNTHESIS; VISIBLE-LIGHT ILLUMINATION; PROTIC IONIC LIQUIDS; METAL-FREE; SELECTIVE OXIDATION; HYDROGEN EVOLUTION AB Since the 1990s, there has been rapidly expanding development of solid materials with mesoporous structure, of which mesoporous carbons are an important family. Toward the design of functional materials, mesoporous carbons with various compositions have been prepared for specific uses, such as catalysts, adsorbents, and electrode materials. Some of those novel materials indeed show promising performance in several fields, such as nitrogen-doped mesoporous carbon for oxygen reduction reactions in fuel cells and mesoporous carbon nitride for photocatalysis. This Mini-review summarizes recent advances in the design, synthesis, characterization, and application of mesoporous carbons with functional compositions and briefly discusses next-generation mesoporous carbons. C1 [Zhang, Pengfei; Zhang, Jinshui; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA.; Dai, S (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM dais@ornl.gov OI zhang, Jinshui/0000-0003-4649-6526 FU US-DOE Office of Science, Division of Chemical Sciences, Geosciences and Biosciences FX This work was supported by the US-DOE Office of Science, Division of Chemical Sciences, Geosciences and Biosciences. P.F. Zhang appreciates Ms. L.Jiao's contribution in the design of the cover picture. NR 162 TC 0 Z9 0 U1 24 U2 24 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD FEB PY 2017 VL 23 IS 9 BP 1986 EP 1998 DI 10.1002/chem.201602199 PG 14 WC Chemistry, Multidisciplinary SC Chemistry GA EN1FE UT WOS:000395755100001 PM 27483207 ER PT J AU Rubio, MA Gunduz, IE Groven, LJ Sippel, TR Han, CW Unocic, RR Ortalan, V Son, SF AF Rubio, Mario A. Gunduz, I. Emre Groven, Lori J. Sippel, Travis R. Han, Chang Wan Unocic, Raymond R. Ortalan, Volkan Son, Steven F. TI Microexplosions and ignition dynamics in engineered aluminum/polymer fuel particles SO COMBUSTION AND FLAME LA English DT Article DE Laser ignition; Mechanical activation; Aluminum; Polytetrafluoroethylene; Low-density polyethylene ID COMPOSITE SOLID-PROPELLANT; ROCKET PROPELLANTS; NANO-ALUMINUM; COMBUSTION; AGGLOMERATION; THERMITES; SIZE AB Aluminum particles are widely used as a metal fuel in solid propellants. However, poor combustion efficiencies and two-phase flow losses result due in part to particle agglomeration. Recently, engineered composite particles of aluminum (Al) with inclusions of polytetrafluoroethylene (PTFE) or low-density polyethylene (LDPE) have been shown to improve ignition and yield smaller agglomerates in solid propellants. Reductions in agglomeration were attributed to internal pressurization and fragmentation (microexplosions) of the composite particles at the propellant surface. Here, we explore the mechanisms responsible for microexplosions in order to better understand the combustion characteristics of composite fuel particles. Single composite particles of Al/PTFE and AI/LDPE with diameters between 100 and 1200 pm are ignited on a substrate to mimic a burning propellant surface in a controlled environment using a CO2 laser in the irradiance range of 78-7700 W/cm(2). The effects of particle size, milling time, and inclusion content on the resulting ignition delay, product particle size distributions, and microexplosion tendencies are reported. For example particles with higher PTFE content (30 wt%) had laser flux ignition thresholds as low as 77 W/cm(2), exhibiting more burning particle dispersion due to microexplosions compared to the other materials considered. Composite AI/LDPE particles exhibit relatively high ignition thresholds compared to Al/PTFE particles, and microexplosions were observed only with laser fluxes above 5500 W/cm(2) due to low LDPE reactivity with Al resulting in negligible particle self-heating. However, results show that microexplosions can occur for Al containing both low and high reactivity inclusions (LDPE and PTFE, respectively) and that polymer inclusions can be used to tailor the ignition threshold. This class of modified metal particles shows significant promise for application in many different energetic materials that use metal fuels. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Rubio, Mario A.; Gunduz, I. Emre; Son, Steven F.] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47906 USA. [Groven, Lori J.] South Dakota Sch Mines, Chem & Biol Engn, Rapid City, SD 57701 USA. [Sippel, Travis R.] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. [Han, Chang Wan; Ortalan, Volkan] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47906 USA. [Unocic, Raymond R.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Gunduz, IE (reprint author), Purdue Univ, Sch Mech Engn, W Lafayette, IN 47906 USA. EM igunduz@purdue.edu FU Air Force Office of Scientific Research MURI [FA9559-13-1-0004]; National GEM Consortium Fellowship; Delphi Corporation FX The authors would like to acknowledge the financial support of the Air Force Office of Scientific Research MURI under the supervision of Dr. Mitat Birkan (#FA9559-13-1-0004), the National GEM Consortium Fellowship and Delphi Corporation. NR 27 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD FEB PY 2017 VL 176 BP 162 EP 171 DI 10.1016/j.combustflame.2016.10.008 PG 10 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA EM7ND UT WOS:000395497700015 ER PT J AU Dasgupta, D Sun, WT Day, M Lieuwen, T AF Dasgupta, Debolina Sun, Wenting Day, Marc Lieuwen, Tim TI Effect of turbulence-chemistry interactions on chemical pathways for turbulent hydrogen-air premixed flames SO COMBUSTION AND FLAME LA English DT Article DE Premixed flames; Turbulent combustion; Turbulent-chemistry interactions ID STRAIN-RATE; COMBUSTION; CURVATURE AB This paper considers the kinetic pathways of hydrogen oxidation in turbulent, premixed H-2-air flames. It assesses the relative roles of different reaction steps in H-2 oxidation relative to laminar flames, and the degree to which turbulence-chemistry interactions alters the well understood oxidation pathway that exist in laminar flames. This is done by analyzing the turbulent, lean (phi = 0.4), H-2-air flame DNS database from Aspden et al. [17]. The relative roles of dominant reaction steps in heat release and radical formation/consumption are analyzed at different Karlovitz numbers and compared with laminar stretched flame calculations from counterflow flames and perfectly stirred reactors. It is found that both the progress variable conditioned and spatially integrated contributions of the dominant reactions remain qualitatively similar between a highly turbulent and a laminar unstretched flame. Larger changes, up to a factor of about two, occur in the relative roles of reactions with secondary influences on heat release and radical production consumption. These results suggest that the kinetic routes through which H2 is oxidized remain essentially constant between laminar, unstretched flames and high Karlovitz number flames. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Dasgupta, Debolina; Sun, Wenting; Lieuwen, Tim] Georgia Inst Technol, Sch Aerosp Engn, 270 Ferst Dr,Montgomery Knight Bldg 0150, Atlanta, GA 30332 USA. [Day, Marc] Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. RP Dasgupta, D (reprint author), Georgia Inst Technol, Sch Aerosp Engn, 270 Ferst Dr,Montgomery Knight Bldg 0150, Atlanta, GA 30332 USA. EM debolina.dasgupta@gatech.edu NR 23 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD FEB PY 2017 VL 176 BP 191 EP 201 DI 10.1016/j.combustflame.2016.09.029 PG 11 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA EM7ND UT WOS:000395497700018 ER PT J AU Kundu, P Echekki, T Pei, YJ Som, S AF Kundu, Prithwish Echekki, Tarek Pei, Yuanjiang Som, Sibendu TI An equivalent dissipation rate model for capturing history effects in non-premixed flames SO COMBUSTION AND FLAME LA English DT Article DE Flamelet history; Engine combustion network; Tabulation ID LARGE-EDDY SIMULATION; GENERATED MANIFOLDS; DIFFUSION FLAMES; TURBULENT COMBUSTION; VARIABLE MODEL; UNSTEADY; EXTINCTION; ENGINES AB The effects of strain rate history on turbulent flames have been studied in the. past decades with 1D counter flow diffusion flame (CFDF) configurations subjected to oscillating strain rates. In this work, these unsteady effects are studied for complex hydrocarbon fuel surrogates at engine relevant conditions with unsteady strain rates experienced by flamelets in a typical spray flame. Tabulated combustion models are based on a steady scalar dissipation rate (SDR) assumption and hence cannot capture these unsteady strain effects; even though they can capture the unsteady chemistry. In this work, 1D CFDF with varying strain rates are simulated using two different modeling approaches: steady SDR assumption and unsteady flamelet model. Comparative studies show that the history effects due to unsteady SDR are directly proportional to the temporal gradient of the SDR. A new equivalent SDR model based on the history of a flamelet is proposed. An averaging procedure is constructed such that the most recent histories are given higher weights. This equivalent SDR is then used with the steady SDR assumption in 1D flamelets. Results show a good agreement between tabulated flamelet solution and the unsteady flamelet results. This equivalent SDR concept is further implemented and compared against 3D spray flames (Engine Combustion Network Spray A). Tabulated models based on steady SDR assumption under-predict autoignition and flame lift-off when compared with an unsteady Representative Interactive Flamelet (RIF) model. However, equivalent SDR model coupled with the tabulated model predicted autoignition and flame lift-off very close to those reported by the RIF model. This model is further validated for a range of injection pressures for Spray A flames. The new modeling framework now enables tabulated models with significantly lower computational cost to account for unsteady history effects. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Kundu, Prithwish; Echekki, Tarek] North Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA. [Kundu, Prithwish; Pei, Yuanjiang; Som, Sibendu] Argonne Natl Lab, Div Energy Syst, Lemont, IL USA. RP Kundu, P (reprint author), Argonne Natl Lab, Div Energy Syst, Lemont, IL USA. EM pkundu@ncsu.edu FU U.S. Department of Energy Office of Science laboratory [DE-ACO2-06CH11357]; DOEs Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-ACO2-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The research was funded by DOEs Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC02-06CH11357. The authors wish to acknowledge the computational resources of 'Fusion' and 'Blues' clusters at Argonne National Laboratory. NR 42 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD FEB PY 2017 VL 176 BP 202 EP 212 DI 10.1016/j.combustflame.2016.10.001 PG 11 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA EM7ND UT WOS:000395497700019 ER PT J AU Klima, M Kucharik, M Shashkov, M AF Klima, Matej Kucharik, Milan Shashkov, Mikhail TI Local Error Analysis and Comparison of the Swept and Intersection-Based Remapping Methods SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS LA English DT Article DE Conservative interpolation; remapping; numerical error analysis; swept regions; polygon intersections ID LAGRANGIAN-EULERIAN METHODS; MULTIMATERIAL ALE; COMPUTING METHOD; FLOW SPEEDS; HYDRODYNAMICS; COMPUTATIONS; ALGORITHM; GRIDS AB In this paper, the numerical error of two widely used methods for remapping of discrete quantities from one computational mesh to another is investigated. We compare the intuitive, but resource intensive method utilizing intersections of computational cells with the faster and simpler swept-region-based method. Both algorithms are formally second order accurate, however, they are known to produce slightly different quantity profiles in practical applications. The second-order estimate of the error formula is constructed algebraically for both algorithms so that their local accuracy can be evaluated. This general estimate is then used to assess the dependence of the performance of both methods on parameters such as the second derivatives of the remapped distribution, mesh geometry or mesh movement. Due to the complexity of such analysis, it is performed on a set of simplified elementary mesh patterns such as cell corner expansion, rotation or shear. On selected numerical tests it is demonstrated that the swept-based method can distort a symmetric quantity distribution more substantially than the intersection-based approach when the computational mesh moves in an unsuitable direction. C1 [Klima, Matej; Kucharik, Milan] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague 1, Czech Republic. [Shashkov, Mikhail] Los Alamos Natl Lab, XCP Grp 4, MS F644, Los Alamos, NM 87545 USA. RP Kucharik, M (reprint author), Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague 1, Czech Republic. EM klimamat@fjfi.cvut.cz; kucharik@newton.fjfi.cvut.cz; shashkov@lanl.gov OI Klima, Matej/0000-0003-2496-7614 FU National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; DOE Advanced Simulation and Computing (ASC) program; DOE Office of Science ASCR Program; Czech Technical University [SGS16/247/OHK4/3T/14]; Czech Science Foundation [14-21318S]; Czech Ministry of Education [RVO 68407700] FX This work was performed under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 and supported by the DOE Advanced Simulation and Computing (ASC) program. The authors acknowledge the partial support of the DOE Office of Science ASCR Program. This work was partially supported by the Czech Technical University grant SGS16/247/OHK4/3T/14, the Czech Science Foundation project 14-21318S, and by the Czech Ministry of Education project RVO 68407700. NR 32 TC 0 Z9 0 U1 1 U2 1 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 1815-2406 EI 1991-7120 J9 COMMUN COMPUT PHYS JI Commun. Comput. Phys. PD FEB PY 2017 VL 21 IS 2 BP 526 EP 558 DI 10.4208/cicp.OA-2015-0021 PG 33 WC Physics, Mathematical SC Physics GA EM7YF UT WOS:000395527500009 ER PT J AU Zhong, RD Schneeloch, J Li, Q Ku, W Tranquada, J Gu, GD AF Zhong, Ruidan Schneeloch, John Li, Qiang Ku, Wei Tranquada, John Gu, Genda TI Indium Substitution Effect on the Topological Crystalline Insulator Family (Pb1-xSnx)(1-y)InyTe: Topological and Superconducting Properties SO CRYSTALS LA English DT Article DE topological crystalline insulator; crystal growth; superconductivity ID SINGLE DIRAC CONE; EXPERIMENTAL REALIZATION; SOLID-SOLUTIONS; SURFACE; SNTE; BI2SE3; SYSTEM; STATES; BI2TE3; PHASE AB Topological crystalline insulators (TCIs) have been of great interest in the area of condensed matter physics. We investigated the effect of indium substitution on the crystal structure and transport properties in the TCI system (Pb1-xSnx)(1-y)InyTe. For samples with a tin concentration x <= 50%, the low-temperature resisitivities show a dramatic variation as a function of indium concentration: with up to similar to 2% indium doping, the samples show weak-metallic behavior similar to their parent compounds; with similar to 6% indium doping, samples have true bulk-insulating resistivity and present evidence for nontrivial topological surface states; with higher indium doping levels, superconductivity was observed, with a transition temperature, T-c, positively correlated to the indium concentration and reaching as high as 4.7 K. We address this issue from the view of bulk electronic structure modified by the indium-induced impurity level that pins the Fermi level. The current work summarizes the indium substitution effect on (Pb,Sn)Te, and discusses the topological and superconducting aspects, which can be provide guidance for future studies on this and related systems. C1 [Zhong, Ruidan; Schneeloch, John; Li, Qiang; Ku, Wei; Tranquada, John; Gu, Genda] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Zhong, Ruidan] SUNY Stony Brook, Mat Sci & Engn Dept, Stony Brook, NY 11794 USA. [Schneeloch, John] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA. [Ku, Wei] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China. [Ku, Wei] Tsung Dao Lee Inst, Shanghai 200240, Peoples R China. RP Zhong, RD (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.; Zhong, RD (reprint author), SUNY Stony Brook, Mat Sci & Engn Dept, Stony Brook, NY 11794 USA. EM rzhong@bnl.gov; jschneeloch@bnl.gov; liqiang@bnl.gov; weiku@sjtu.edu.cn; jtran@bnl.gov; ggu@bnl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0012704]; Office of Basic Energy Sciences, Division of Scientific User Facilities; National Natural Science Foundation of China [11674220, 11447601]; Ministry of Science and Technology [2016YFA0300500, 2016YFA0300501] FX Work at Brookhaven National Laboratory is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-SC0012704; use of facilities at the Center for Functional Nanomaterials was supported by the Office of Basic Energy Sciences, Division of Scientific User Facilities. W.K. acknowledges support from National Natural Science Foundation of China #11674220 and 11447601, and Ministry of Science and Technology #2016YFA0300500 and 2016YFA0300501. NR 77 TC 0 Z9 0 U1 2 U2 2 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2073-4352 J9 CRYSTALS JI Crystals PD FEB PY 2017 VL 7 IS 2 AR 55 DI 10.3390/cryst7020055 PG 16 WC Crystallography; Materials Science, Multidisciplinary SC Crystallography; Materials Science GA EM7JH UT WOS:000395486800025 ER PT J AU Bingol, K Bruschweiler, R AF Bingol, Kerem Bruschweiler, Rafael TI Knowns and unknowns in metabolomics identified by multidimensional NMR and hybrid MS/NMR methods SO CURRENT OPINION IN BIOTECHNOLOGY LA English DT Review ID NUCLEAR-MAGNETIC-RESONANCE; METABOLITE IDENTIFICATION; COMPLEX-MIXTURES; CHEMICAL-SHIFTS; DATABASE; SPECTROSCOPY; MS; SPECTRA; H-1; STRATEGY AB Metabolomics continues to make rapid progress through the development of new and better methods and their applications to gain insight into the metabolism of a wide range of different biological systems from a systems biology perspective. Customization of NMR databases and search tools allows the faster and more accurate identification of known metabolites, whereas the identification of unknowns, without a need for extensive purification, requires new strategies to integrate NMR with mass spectrometry, cheminformatics,. and computational methods. For some applications, the use of covalent and non-covalent attachments in the form of labeled tags or nanoparticles can significantly reduce the complexity of these tasks. C1 [Bingol, Kerem] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Bruschweiler, Rafael] Ohio State Univ, Campus Chem Instrument Ctr, Columbus, OH 43210 USA. [Bruschweiler, Rafael] Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA. [Bruschweiler, Rafael] Ohio State Univ, Dept Biol Chem & Pharmacol, Columbus, OH 43210 USA. RP Bruschweiler, R (reprint author), Ohio State Univ, Campus Chem Instrument Ctr, Columbus, OH 43210 USA.; Bruschweiler, R (reprint author), Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA.; Bruschweiler, R (reprint author), Ohio State Univ, Dept Biol Chem & Pharmacol, Columbus, OH 43210 USA. EM bruschweiler.1@osu.edu FU National Institutes of Health [R01 GM 066041, U24 DK097209-01A1] FX We thank Mouzhe Xie for preparing Figure 4b. This work was supported by the National Institutes of Health (grant R01 GM 066041 and SECIM grant U24 DK097209-01A1). NR 50 TC 1 Z9 1 U1 7 U2 7 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0958-1669 EI 1879-0429 J9 CURR OPIN BIOTECH JI Curr. Opin. Biotechnol. PD FEB PY 2017 VL 43 BP 17 EP 24 DI 10.1016/j.copbio.2016.07.006 PG 8 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA EL9CN UT WOS:000394917100004 PM 27552705 ER PT J AU Rose, BC Weis, CD Tyryshkin, AM Schenkel, T Lyon, SA AF Rose, B. C. Weis, C. D. Tyryshkin, A. M. Schenkel, T. Lyon, S. A. TI Spin coherence and N-14 ESEEM effects of nitrogen-vacancy centers in diamond with X-band pulsed ESR SO DIAMOND AND RELATED MATERIALS LA English DT Article ID N-V CENTERS; MAGNETIC-RESONANCE; ELECTRON; RELAXATION; ECHO; MODULATION; DEFECTS; MEMORY AB Pulsed ESR experiments are reported for ensembles of negatively-charged nitrogen-vacancy centers (NV-) in diamonds at X-band magnetic fields (280-400 mT) and low temperatures (2-70 K). The NV- centers in synthetic type Ha diamonds (nitrogen impurity concentration < 1 ppm) are prepared with bulk concentrations of 2.10(13)cm(-3) to 4.10(14)cm(-3) by high-energy electron irradiation and subsequent annealing. We find that a proper post-radiation anneal (1000 degrees C for 60 min) is critically important to repair the radiation damage and to recover long electron spin coherence times for NV(-)s. After the annealing, spin coherence times of T-2 = 0.74ms at 5 K are achieved, being only limited by C-13 nuclear spectral diffusion in natural abundance diamonds. By measuring the temperature dependence of 12 in the under-annealed diamonds (900 degrees C) we directly extract the density (10(14-16)cm(-3)) and activation energy (2.5 meV) of unannealed defects responsible for the faster NV- decoherence. At X-band magnetic fields, strong electron spin echo envelope modulation (ESEEM) is observed originating from the central N-14 nucleus, and we extract accurate N-14 nuclear hypefine and quadrupole tensors. In addition, the ESEEM effects from two proximal C-13 sites (second-nearest neighbor and fourth-nearest neighbor) are resolved and the respective 13 C hyperfine coupling constants are extracted. (C) 2016 Elsevier B.V. All rights reserved. C1 [Rose, B. C.; Tyryshkin, A. M.; Lyon, S. A.] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. [Weis, C. D.; Schenkel, T.] Lawrence Berkeley Natl Lab, Div Accelerator & Fus Res, Berkeley, CA 94720 USA. [Weis, C. D.] Ilmenau Univ Technol, Dept Micro & Nanoelect Syst, D-98684 Ilmenau, Germany. RP Rose, BC (reprint author), Princeton Univ, B418 Equad Olden St, Princeton, NJ 08540 USA. FU NSF; EPSRC [DMR-1107606, EP/1035536/1, DMR-01420541]; ARO [W911NF-13-1-0179] FX This work was supported by the NSF and EPSRC through the Materials World Network and NSF MRSEC Programs (grant nos. DMR-1107606, EP/1035536/1, and DMR-01420541), and the ARO (grant no. W911NF-13-1-0179). NR 44 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-9635 EI 1879-0062 J9 DIAM RELAT MATER JI Diam. Relat. Mat. PD FEB PY 2017 VL 72 BP 32 EP 40 DI 10.1016/j.diamond.2016.12.009 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA EL2XX UT WOS:000394485100006 ER PT J AU Nowicki, SF Evans, LG Starr, RD Schweitzer, JS Karunatillake, S McClanahan, TP Moersch, JE Parsons, AM Tate, CG AF Nowicki, Suzanne F. Evans, Larry G. Starr, Richard D. Schweitzer, Jeffrey S. Karunatillake, Suniti McClanahan, Timothy P. Moersch, Jeffrey E. Parsons, Ann M. Tate, Christopher G. TI Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument SO EARTH AND SPACE SCIENCE LA English DT Article ID DYNAMIC ALBEDO; MARS; CHEMISTRY AB The Probing In situ with Neutron and Gamma ray (PING) instrument is an innovative application of active neutron-induced gamma ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. This manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. The modeled sensitivities show that in PING's active mode, where both a pulsed neutron generator (PNG) and a gamma ray spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe, and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1min that are sensitive to H and Cl. C1 [Nowicki, Suzanne F.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Evans, Larry G.] Comp Sci Corp, Lanham, MD USA. [Starr, Richard D.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Schweitzer, Jeffrey S.] Univ Connecticut, Dept Phys, Storrs, CT USA. [Karunatillake, Suniti] Louisiana State Univ, Dept Geol & Geophys, Baton Rouge, LA 70803 USA. [Karunatillake, Suniti] A&MC, Baton Rouge, LA USA. [McClanahan, Timothy P.; Parsons, Ann M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Moersch, Jeffrey E.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN USA. [Tate, Christopher G.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Nowicki, SF (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. EM snowicki@lanl.gov FU NASA/GSFC; NASA/JPL FX Funding for this work was provided by NASA/GSFC and NASA/JPL. NR 29 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2333-5084 J9 EARTH SPACE SCI JI Earth Space Sci. PD FEB PY 2017 VL 4 IS 2 BP 76 EP 90 DI 10.1002/2016EA000162 PG 15 WC Geosciences, Multidisciplinary SC Geology GA EN5CD UT WOS:000396022300002 ER PT J AU Vilarrasa, V Rutqvist, J AF Vilarrasa, Victor Rutqvist, Jonny TI Thermal effects on geologic carbon storage SO EARTH-SCIENCE REVIEWS LA English DT Review DE CO2 transport; Injection schemes; CO2 storage; Thermo-hydro-mechanical-chemical couplings; Induced microseismicity; Caprock integrity; Well integrity; CO2 leakage ID DEEP SALINE AQUIFERS; GEOTHERMAL-ENERGY PRODUCTION; TEMPERATURE WASTE HEAT; WABAMUN LAKE AREA; LNG COLD ENERGY; CO2 STORAGE; GAS-RESERVOIRS; FLUID-FLOW; INJECTION TEMPERATURE; NUMERICAL SIMULATIONS AB One of the most promising ways to significantly reduce greenhouse gases emissions, while carbon-free energy sources are developed, is Carbon Capture and Storage (CCS). Non-isothermal effects play a major role in all stages of CCS. In this paper, we review the literature on thermal effects related to CCS, which is receiving an increasing interest as a result of the awareness that the comprehension of non-isothermal processes is crucial for a successful deployment of CCS projects. We start by reviewing CO2 transport, which connects the regions where CO2 is captured with suitable geostorage sites. The optimal conditions for CO2 transport, both onshore (through pipelines) and offshore (through pipelines or ships), are such that CO2 stays in liquid state. To minimize costs, CO2 should ideally be injected at the wellhead in similar pressure and temperature conditions as it is delivered by transport. To optimize the injection conditions, coupled wellbore and reservoir simulators that solve the strongly non-linear problem of CO2 pressure, temperature and density within the wellbore and non-isothermal two-phase flow within the storage formation have been developed. CO2 in its way down the injection well heats up due to compression and friction at a lower rate than the geothermal gradient, and thus, reaches the storage formation at a lower temperature than that of the rock. Inside the storage formation, CO2 injection induces temperature changes due to the advection of the cool injected CO2, the Joule-Thomson cooling effect, endothermic water vaporization and exothermic CO2 dissolution. These thermal effects lead to thermo-hydro-mechanical-chemical coupled processes with non-trivial interpretations. These coupled processes also play a relevant role in "Utilization" options that may provide an added value to the injected CO2, such as Enhanced Oil Recovery (EOR), Enhanced Coal Bed Methane (ECBM) and geothermal energy extraction combined with CO2 storage. If the injected CO2 leaks through faults, the caprock or wellbores, strong cooling will occur due to the expansion of CO2 as pressure decreases with depth. Finally, we conclude by identifying research gaps and challenges of thermal effects related to CCS. (C) 2016 Elsevier B.V. All rights reserved. C1 [Vilarrasa, Victor] CSIC, Spanish Natl Res Council, Inst Environm Assessment & Water Res IDAEA, Jordi Girona 18-26, ES-08034 Barcelona, Spain. [Vilarrasa, Victor] CSIC, UPC, Hydrogeol Grp, Associated Unit, Barcelona, Spain. [Rutqvist, Jonny] LBNL, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Vilarrasa, V (reprint author), CSIC, Spanish Natl Res Council, Inst Environm Assessment & Water Res IDAEA, Jordi Girona 18-26, ES-08034 Barcelona, Spain. EM victor.vilarrasa@upc.edu FU European Commission [309607]; European Community [640979, H2020-EU.3.3.2.3]; U.S. Department of Energy [DEAC02-05CH11231] FX V.V. acknowledges financial support from the "TRUST" project (European Commission Seventh Framework Programme FP7/2007-2013 under grant agreement n 309607) and from "FracRisk" project (European Community's Horizon 2020 Framework Programme H2020-EU.3.3.2.3 under grant agreement n 640979). This work was funded in part by the Assistant Secretary for Fossil Energy, National Energy Technology Laboratory, National Risk Assessment Partnership, of the U.S. Department of Energy under Contract No. DEAC02-05CH11231. The authors would like to thank Patricia Lopez for drawing Fig. 1. NR 164 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-8252 EI 1872-6828 J9 EARTH-SCI REV JI Earth-Sci. Rev. PD FEB PY 2017 VL 165 BP 245 EP 256 DI 10.1016/j.earscirev.2016.12.011 PG 12 WC Geosciences, Multidisciplinary SC Geology GA EL1QJ UT WOS:000394395800009 ER PT J AU Li, L Maher, K Navarre-Sitchler, A Druhan, J Meile, C Lawrence, C Moore, J Perdrial, J Sullivan, P Thompson, A Jin, LX Bolton, EW Brantley, SL Dietrich, WE Mayer, KU Steefel, CI Valocchi, A Zachara, J Kocar, B Mcintosh, J Tutolo, BM Kumar, M Sonnenthal, E Bao, C Beisman, J AF Li, Li Maher, Kate Navarre-Sitchler, Alexis Druhan, Jenny Meile, Christof Lawrence, Corey Moore, Joel Perdrial, Julia Sullivan, Pamela Thompson, Aaron Jin, Lixin Bolton, Edward W. Brantley, Susan L. Dietrich, William E. Mayer, K. Ulrich Steefel, Carl I. Valocchi, Albert Zachara, John Kocar, Benjamin Mcintosh, Jennifer Tutolo, Benjamin M. Kumar, Mukesh Sonnenthal, Eric Bao, Chen Beisman, Joe TI Expanding the role of reactive transport models in critical zone processes SO EARTH-SCIENCE REVIEWS LA English DT Review DE Critical Zone Processes; Reactive transport models; Chemical weathering; Hydrological cycles; Biogeochemical processes; Spatial heterogeneity; Root zone; Isotopes ID SOIL ORGANIC-MATTER; IRON ISOTOPE FRACTIONATION; RUDIMENTARY MECHANISTIC MODEL; URANIUM BIOREDUCTION RATES; CHEMICAL-WEATHERING RATES; PORE-SCALE HETEROGENEITY; FUTURE CLIMATE-CHANGE; COUPLED LAND-SURFACE; POROUS-MEDIA; DISSOLUTION RATES AB Models test our understanding of processes and can reach beyond the spatial and temporal scales of measurements. Multi-component Reactive Transport Models (RTMs), initially developed more than three decades ago, have been used extensively to explore the interactions of geothermal, hydrologic, geochemical, and geobiological processes in subsurface systems. Driven by extensive data sets now available from intensive measurement efforts, there is a pressing need to couple RTMs with other community models to explore non-linear interactions among the atmosphere, hydrosphere, biosphere, and geosphere. Here we briefly review the history of RTM development, summarize the current state of RTM approaches, and identify new research directions, opportunities, and infrastructure needs to broaden the use of RTMs. In particular, we envision the expanded use of RTMs in advancing process understanding in the Critical Zone, the veneer of the Earth that extends from the top of vegetation to the bottom of groundwater. We argue that, although parsimonious models are essential at larger scales, process-based models offer tools to explore the highly nonlinear coupling that characterizes natural systems. We present seven testable hypotheses that emphasize the unique capabilities of process-based RTMs for (1) elucidating chemical weathering and its physical and biogeochemical drivers; (2) understanding the interactions among roots, micro-organisms, carbon, water, and minerals in the rhizosphere; (3) assessing the effects of heterogeneity across spatial and temporal scales; and (4) integrating the vast quantity of novel data, including "omics" data (genomics, transcriptomics, proteomics, metabolomics), elemental concentration and speciation data, and isotope data into our understanding of complex earth surface systems. With strong support from data-driven sciences, we are now in an exciting era where integration of RTM framework into other community models will facilitate process understanding across disciplines and across scales. (C) 2016 Elsevier B.V. All rights reserved. C1 [Li, Li; Bao, Chen] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA. [Maher, Kate] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [Navarre-Sitchler, Alexis; Beisman, Joe] Colorado Sch Mines, Dept Geol & Geol Engn, Golden, CO 80401 USA. [Druhan, Jenny] Univ Illinois, Dept Geol, Urbana, IL 61801 USA. [Meile, Christof] Univ Georgia, Dept Marine Sci, Athens, GA 30602 USA. [Lawrence, Corey] US Geol Survey, Fed Ctr, Denver, CO 80225 USA. [Moore, Joel] Towson Univ, Dept Phys Astron & Geosci, Towson, MD 21252 USA. [Perdrial, Julia] Univ Vermont, Dept Geol, Burlington, VT 05405 USA. [Sullivan, Pamela] Univ Kansas, Dept Geog, Lawrence, KS 66045 USA. [Thompson, Aaron] Univ Georgia, Dept Crop & Soil Sci, Athens, GA 30602 USA. [Jin, Lixin] Univ Texas El Paso, Dept Geol Sci, El Paso, TX 79968 USA. [Bolton, Edward W.] Yale Univ, Dept Geol & Geophys, New Haven, CT 06520 USA. [Brantley, Susan L.] Penn State Univ, Earth & Environm Syst Inst, Dept Geosci, University Pk, PA 16802 USA. [Dietrich, William E.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Mayer, K. Ulrich] Univ British Columbia, Dept Earth Ocean & Atmospher Sci, Vancouver, BC V6T 1Z4, Canada. [Steefel, Carl I.; Sonnenthal, Eric] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Valocchi, Albert] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Zachara, John] Pacific Northwest Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Kocar, Benjamin] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. [Mcintosh, Jennifer] Univ Arizona, Dept Hydrol & Atmospher Sci, Tucson, AZ 85716 USA. [Tutolo, Benjamin M.] Univ Oxford, Dept Earth Sci, Oxford OX1 3AN, England. [Kumar, Mukesh] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. RP Li, L (reprint author), Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA. EM lili@engr.psu.edu FU NSF Low Temperature Geochemistry and Geobiology [EAR 14-14558]; NASA Astrobiology Institute's Virtual Planetary Laboratory [NNA13AA93A]; DOE OBES [DE-FG02-OSER15675]; DOE SBR [DE-FOA-0000311] FX This paper grew out of the workshop "Expanding the role of reactive transport modeling in biogeochemical sciences", held in Alexandra, Virginia on April 13-15, 2014 (Li et al., 2014) with support from the NSF Low Temperature Geochemistry and Geobiology (EAR 14-14558). EWB received support from NASA Astrobiology Institute's Virtual Planetary Laboratory under Cooperative Agreement number NNA13AA93A. SLB acknowledges funding from DOE OBES DE-FG02-OSER15675. LL acknowledges funding from DOE SBR DE-FOA-0000311. We acknowledge insightful feedbacks and careful editing from Jon Chorover and David L. Parkhurst, as well as stimulating and constructive comments from Olaf Cirpka and two anonymous reviewers that have significantly improved this paper. We appreciate Dr. Joan-Albert Sanchez-Cabeza for handling this manuscript NR 453 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-8252 EI 1872-6828 J9 EARTH-SCI REV JI Earth-Sci. Rev. PD FEB PY 2017 VL 165 BP 280 EP 301 DI 10.1016/j.earscirev.2016.09.001 PG 22 WC Geosciences, Multidisciplinary SC Geology GA EL1QJ UT WOS:000394395800012 ER PT J AU McConnell, MD Monroe, AP Burger, LW Martin, JA AF McConnell, Mark D. Monroe, Adrian P. Burger, Loren Wes, Jr. Martin, James A. TI Timing of nest vegetation measurement may obscure adaptive significance of nest-site characteristics: A simulation study SO ECOLOGY AND EVOLUTION LA English DT Article DE grasslands; logistic exposure; measurement bias; nesting ecology; nest-site selection; simulation; vegetation structure ID SAGE-GROUSE NESTS; NORTHERN BOBWHITE; HABITAT SELECTION; POPULATION-DYNAMICS; SUCCESS; PREDATION; SURVIVAL; GROWTH; CONCEALMENT; BIRDS AB Advances in understanding avian nesting ecology are hindered by a prevalent lack of agreement between nest-site characteristics and fitness metrics such as nest success. We posit this is a result of inconsistent and improper timing of nest-site vegetation measurements. Therefore, we evaluated how the timing of nest vegetation measurement influences the estimated effects of vegetation structure on nest survival. We simulated phenological changes in nest-site vegetation growth over a typical nesting season and modeled how the timing of measuring that vegetation, relative to nest fate, creates bias in conclusions regarding its influence on nest survival. We modeled the bias associated with four methods of measuring nest-site vegetation: Method 1measuring at nest initiation, Method 2measuring at nest termination regardless of fate, Method 3measuring at nest termination for successful nests and at estimated completion for unsuccessful nests, and Method 4measuring at nest termination regardless of fate while also accounting for initiation date. We quantified and compared bias for each method for varying simulated effects, ranked models for each method using AIC, and calculated the proportion of simulations in which each model (measurement method) was selected as the best model. Our results indicate that the risk of drawing an erroneous or spurious conclusion was present in all methods but greater with Method 2 which is the most common method reported in the literature. Methods 1 and 3 were similarly less biased. Method 4 provided no additional value as bias was similar to Method 2 for all scenarios. While Method 1 is seldom practical to collect in the field, Method 3 is logistically practical and minimizes inherent bias. Implementation of Method 3 will facilitate estimating the effect of nest-site vegetation on survival, in the least biased way, and allow reliable conclusions to be drawn. C1 [McConnell, Mark D.; Monroe, Adrian P.] Mississippi State Univ, Coll Forest Resources, Dept Wildlife Fisheries & Aquaculture, Mississippi, MS USA. [Burger, Loren Wes, Jr.] Mississippi State Univ, Forest & Wildlife Res Ctr, Mississippi, MS USA. [Martin, James A.] Univ Georgia, Savannah River Ecol Lab, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA. RP McConnell, MD (reprint author), Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA. EM mdm@uga.edu FU Forest and Wildlife Research Center at Mississippi State University; Department of Wildlife, Fisheries, and Aquaculture at Mississippi State University; Warnell School of Forestry and Natural Resources FX This research was funded by the Forest and Wildlife Research Center and Department of Wildlife, Fisheries, and Aquaculture at Mississippi State University and the Warnell School of Forestry and Natural Resources. We thank K. O. Evans, R. Chandler, and C. Moore for providing reviews of this manuscript. We also thank landowners for providing access to field sites and M. Klinger for data collection. Multiple reviewers and editors helped improve this manuscript. NR 46 TC 1 Z9 1 U1 0 U2 0 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2045-7758 J9 ECOL EVOL JI Ecol. Evol. PD FEB PY 2017 VL 7 IS 4 BP 1259 EP 1270 DI 10.1002/ece3.2767 PG 12 WC Ecology; Evolutionary Biology SC Environmental Sciences & Ecology; Evolutionary Biology GA EL3EH UT WOS:000394501900021 PM 28303194 ER PT J AU Ruff, JS Cornwall, DH Morrison, LC Cauceglia, JW Nelson, AC Gaukler, SM Meagher, S Carroll, LS Potts, WK AF Ruff, James S. Cornwall, Douglas H. Morrison, Linda C. Cauceglia, Joseph W. Nelson, Adam C. Gaukler, Shannon M. Meagher, Shawn Carroll, Lara S. Potts, Wayne K. TI Sexual selection constrains the body mass of male but not female mice SO ECOLOGY AND EVOLUTION LA English DT Article DE fecundity; intrasexual selection; mammals; sexual selection; sexual size dimorphism; stabilizing selection ID WILD HOUSE MICE; SIZE DIMORPHISM; REPRODUCTION; EVOLUTION; FITNESS; WEIGHT AB Sexual size dimorphism results when female and male body size is influenced differently by natural and sexual selection. Typically, in polygynous species larger male body size is thought to be favored in competition for mates and constraints on maximal body size are due to countervailing natural selection on either sex; however, it has been postulated that sexual selection itself may result in stabilizing selection at an optimal mass. Here we test this hypothesis by retrospectively assessing the influence of body mass, one metric of body size, on the fitness of 113 wild-derived house mice (Mus musculus) residing within ten replicate semi-natural enclosures from previous studies conducted by our laboratory. Enclosures possess similar levels of sexual selection, but relaxed natural selection, relative to natural systems. Heavier females produced more offspring, while males of intermediate mass had the highest fitness. Female results suggest that some aspect of natural selection, absent from enclosures, acts to decrease their body mass, while the upper and lower boundaries of male mass are constrained by sexual selection. C1 [Ruff, James S.; Cornwall, Douglas H.; Morrison, Linda C.; Cauceglia, Joseph W.; Potts, Wayne K.] Univ Utah, Dept Biol, Salt Lake City, UT 84112 USA. [Nelson, Adam C.] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA. [Gaukler, Shannon M.] Los Alamos Natl Lab, Environm Stewardship Grp, Los Alamos, NM USA. [Meagher, Shawn] Western Illinois Univ, Dept Biol Sci, Macomb, IL 61455 USA. [Carroll, Lara S.] Univ Utah, Dept Ophthalmol & Visual Sci, Salt Lake City, UT USA. RP Ruff, JS (reprint author), Univ Utah, Dept Biol, Salt Lake City, UT 84112 USA. EM J.Ruff@utah.edu FU National Institute of General Medical Sciences [R01-GM109500] FX National Institute of General Medical Sciences, Grant/Award Number: R01-GM109500 NR 23 TC 1 Z9 1 U1 9 U2 9 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2045-7758 J9 ECOL EVOL JI Ecol. Evol. PD FEB PY 2017 VL 7 IS 4 BP 1271 EP 1275 DI 10.1002/ece3.2753 PG 5 WC Ecology; Evolutionary Biology SC Environmental Sciences & Ecology; Evolutionary Biology GA EL3EH UT WOS:000394501900022 PM 28303195 ER PT J AU Yeh, S Ghandi, A Scanlon, BR Brandt, AR Cai, H Wang, MQ Vafi, K Reedy, RC AF Yeh, Sonia Ghandi, Abbas Scanlon, Bridget R. Brandt, Adam R. Cai, Hao Wang, Michael Q. Vafi, Kourosh Reedy, Robert C. TI Energy Intensity and Greenhouse Gas Emissions from Oil Production in the Eagle Ford Shale SO ENERGY & FUELS LA English DT Article ID WATER-USE; TIGHT OIL; US; MODEL; FUELS AB A rapid increase in horizontal drilling and hydraulic fracturing in shale and "tight" formations that began around 2000 has resulted in record increases in oil and natural gas production in the U.S. This study examines energy consumption and greenhouse gas (GHG) emissions from crude oil and natural gas produced from similar to 8,200 wells in the Eagle Ford Shale in southern Texas from 2009 to 2013. Our system boundary includes processes from primary exploration wells to the refinery entrance gate (henceforth well-to-refinery or WTR). The Eagle Ford includes four distinct production zones black oil (BO), volatile oil (VO), condensate (C), and dry gas (G) zones with average monthly gas-to-liquids ratios (thousand cubic feet per barrel-Mcf/bbl) varying from 0.91 in the BO zone to 13.9 in the G zone. Total energy consumed in drilling, extracting, processing, and operating an Eagle Ford well is similar to 1.5% of the energy content of the produced crude and gas in the BO and VO zones, compared with 2.2% in the C and G zones. On average, the WTR GHG emissions of gasoline, diesel, and jet fuel derived from crude oil produced in the BO and VO zones in the Eagle Ford play are 4.3, 5.0, and 5.1 gCO(2)e/MJ, respectively. Comparing with other known conventional and unconventional crude production where upstream GHG emissions are in the range 5.9-30 gCO(2)e/MJ, oil production in the Eagle Ford has lower WTR GHG emissions. C1 [Yeh, Sonia; Ghandi, Abbas] Univ Calif Davis, Inst Transportat Studies, Davis, CA 95616 USA. [Yeh, Sonia] Chalmers, Environm & Energy Dept, S-41296 Gothenburg, Sweden. [Ghandi, Abbas] MIT, MIT Joint Program Sci & Policy Global Change, Cambridge, MA 02139 USA. [Scanlon, Bridget R.; Reedy, Robert C.] Univ Texas Austin, Jackson Sch Geosci, Bur Econ Geol, Austin, TX 78758 USA. [Brandt, Adam R.; Vafi, Kourosh] Stanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA. [Cai, Hao; Wang, Michael Q.] Argonne Natl Lab, Syst Assessment Grp, Argonne, IL 60439 USA. RP Yeh, S (reprint author), Univ Calif Davis, Inst Transportat Studies, Davis, CA 95616 USA.; Yeh, S (reprint author), Chalmers, Environm & Energy Dept, S-41296 Gothenburg, Sweden. EM sonia.yeh@chalmers.se OI Yeh, Sonia/0000-0002-4852-1177 FU Argonne National Laboratory [AF-30841] FX Funding for this work was provided to University of California, Davis by Argonne National Laboratory through Grant AF-30841. We thank IHS for access to their database through the University of Texas at Austin, Bureau of Economic Geology. NR 41 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2017 VL 31 IS 2 BP 1440 EP 1449 DI 10.1021/acs.energyfuels.6b02916 PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EL3ZY UT WOS:000394560900041 ER PT J AU Mukarakate, C Evans, RJ Deutch, S Evans, T Starace, AK ten Dam, J Watson, MJ Magrini, K AF Mukarakate, Calvin Evans, Robert J. Deutch, Steve Evans, Tabitha Starace, Anne K. ten Dam, Jeroen Watson, Michael J. Magrini, Kim TI Reforming Biomass Derived Pyrolysis Bio-oil Aqueous Phase to Fuels SO ENERGY & FUELS LA English DT Article ID CATALYTIC FAST PYROLYSIS; FLUIDIZED-BED REACTOR; HZSM-5 ZEOLITE; MOLECULAR CHARACTERIZATION; OXYGENATE COMPONENTS; CONVERSION; TRANSFORMATION; CHEMICALS; CELLULOSE; WATER AB Fast pyrolysis and catalytic fast pyrolysis (CFP) of biomass produce a liquid product stream comprised of various classes of organic compounds having different molecule size and polarity. This liquid, either spontaneously in the case of catalytic fast pyrolysis or by water addition for the noncatalytic process separates into a nonpolar organic-rich fraction and a highly polar water-rich fraction. The organic fraction can be used as a blendstock or feedstock for further processing in a refinery while, in the CFP process design, the aqueous phase is currently sent to wastewater treatment, which results in a loss of residual biogenic carbon present in this stream. This work focuses on the catalytic conversion of the biogenic carbon in pyrolysis aqueous phase streams to produce hydrocarbons using a vertical microreactor coupled to a molecular beam mass spectrometer (MBMS). The MBMS provides real-time analysis of products while also tracking catalyst deactivation. The catalyst used in this work was HZSM-5, which upgraded the oxygenated organics in the aqueous fraction from noncatalytic fast pyrolysis of oak wood to fuels comprising small olefins and aromatic hydrocarbons. During processing of the aqueous bio-oil fraction, the HZSM-5 catalyst exhibited higher activity and coke resistance than those observed in similar experiments using biomass or whole bio-oils. Reduced coking is likely due to ejection of coke precursors from the catalyst pores that was enhanced by excess process water available for steam stripping. The water reacted with coke precursors to form phenol, methylated phenols, naphthol, and methylated naphthols. Conversion data shows that up to 40 wt % of the carbon in the feed stream is recovered as hydrocarbons. C1 [Mukarakate, Calvin; Evans, Robert J.; Deutch, Steve; Evans, Tabitha; Starace, Anne K.; Magrini, Kim] Natl Bioenergy Ctr, Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. [ten Dam, Jeroen; Watson, Michael J.] Johnson Matthey Technol Ctr, POB 1,Belasis Ave, Billingham TS23 1LB, Cleveland, England. RP Mukarakate, C (reprint author), Natl Bioenergy Ctr, Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Calvin.Mukarakate@nrel.gov FU U.S. Department of Energy's Bioenergy Technologies [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX This work was performed in collaboration with the Chemical Catalysis for Bioenergy Consortium, an Energy Materials Network Consortium funded by the U.S. Department of Energy's Bioenergy Technologies Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory and Johnson Matthey. The authors thank Ben Haoxi and Matthew Yung for stimulating discussions. NR 51 TC 0 Z9 0 U1 7 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2017 VL 31 IS 2 BP 1600 EP 1607 DI 10.1021/acs.energyfuels.6b02463 PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EL3ZY UT WOS:000394560900058 ER PT J AU Groenewold, GS Johnson, KM Fox, SC Rae, C Zarzana, CA Kersten, BR Rowe, SM Westover, TL Gresham, GL Emerson, RM Hoover, AN AF Groenewold, Gary S. Johnson, Kristyn M. Fox, S. Carter Rae, Cathy Zarzana, Christopher A. Kersten, Bethany R. Rowe, Salene M. Westover, Tyler L. Gresham, Garold L. Emerson, Rachel M. Hoover, Amber N. TI Pyrolysis Two-Dimensional GC-MS of Miscanthus Biomass: Quantitative Measurement Using an Internal Standard Method SO ENERGY & FUELS LA English DT Article ID THERMAL-DEGRADATION PRODUCTS; FLIGHT MASS-SPECTROMETRY; LIGNIN DERIVED PRODUCTS; GAS-CHROMATOGRAPHY; BIO-OILS; PY-GC/MS; CHEMICAL-COMPOSITION; FESTUCA GRASSES; X GC; WOOD AB Accurate measurement of biomass pyrolysis products can provide valuable guidance for thermal processing. However, pyrolysis generates large numbers of compounds in varying concentrations, factors that can make compound identification and quantitation difficult. In this study, Miscanthus biomass samples were analyzed using pyrolysis/two-dimensional gas chromatography/mass spectrometry (Py-GCxGC-MS), which provided a more comprehensive chromatographic separation and mass spectral compound identification. Quantitative measurement was performed for 34 calibrated pyrolysis compounds using an internal standard method. Pyrolysis efficiency was measured as a function of sample mass, pyrolysis temperature, and pyrolysis temperature ramp rate. For most of the calibrated pyrolysis products, production efficiency decreased with sample mass, increased with pyrolysis temperature, and decreased with pyrolysis temperature ramp rate. Significantly, the temperature profiles of the different pyrolysis products were variable, notably acetic acid and the vinyl and formyl derivatives of phenol and guaiacol, which were produced at lower temperatures compared to other compounds such as the syringyl derivatives and levoglucosan. Lignol ratios were compared with those generated using H-1/C-13 heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance spectroscopy (NMR). Lower fractions of syringyl- and guaiacyl-lignols and higher fractions of the phenol-lignols were generated by Py-GCxGC-MS compared to HSQC-NMR. C1 [Groenewold, Gary S.; Johnson, Kristyn M.; Fox, S. Carter; Rae, Cathy; Zarzana, Christopher A.; Kersten, Bethany R.; Rowe, Salene M.; Westover, Tyler L.; Gresham, Garold L.; Emerson, Rachel M.; Hoover, Amber N.] Idaho Natl Lab, 3531 Univ Blvd, Idaho Falls, ID 83415 USA. RP Groenewold, GS (reprint author), Idaho Natl Lab, 3531 Univ Blvd, Idaho Falls, ID 83415 USA. EM gary.groenewold@inl.gov FU U.S. Department of Energy [DE-AC-07-05ID14517] FX This research was supported by the U.S. Department of Energy, under contract number DE-AC-07-05ID14517. NR 72 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2017 VL 31 IS 2 BP 1620 EP 1630 DI 10.1021/acs.energyfuels.6b02645 PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EL3ZY UT WOS:000394560900060 ER PT J AU Singh, E Badra, J Mehl, M Sarathy, SM AF Singh, Eshan Badra, Jihad Mehl, Marco Sarathy, S. Mani TI Chemical Kinetic Insights into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures SO ENERGY & FUELS LA English DT Article ID LOW-TEMPERATURE AUTOIGNITION; INTERNAL-COMBUSTION ENGINES; AUTO-IGNITION; BLENDING RULE; DELAY TIMES; N-HEPTANE; GAS-PHASE; FUELS; OXIDATION; CHEMISTRY AB Gasoline octane number is a significant empirical parameter for the optimization and development of internal combustion engines capable of resisting knock. Although extensive databases and blending rules to estimate the octane numbers of mixtures have been developed and the effects of molecular structure on autoignition properties are somewhat understood, a comprehensive theoretical chemistry-based foundation for blending effects of fuels on engine operations is still to be-developed. In this study, we present models that correlate the research octane number (RON) and motor octane number (MON) with simulated homogeneous gas-phase ignition delay tines of stoichioinetric fuel/air mixtures. These correlations attempt to bridge the gap between the fundamental autoignition behavior of the fuel (e.g., its chemistry and how reactivity changes with temperature and pressure) and engine properties such as its knocking behavior in a cooperative fuel's research (CFR) engine. The study encompasses a total of 79 hydrocarbon gasoline surrogate mixtures including 11 primary reference fuels (PRP), 43 toluene primary reference fuels (TPRF), and 19 multicomponent (MC) surrogate mixtures. In addition to TPRF mixture components of iso-octane/n-heptane/toluene, MC mixtures, including n-heptane, iso-octane, toluene, 1-hexene, and 1,2,4-trimethylbenzene, were blended and tested to mimic real gasoline sensitivity. ASTM testing protocols D-2699 and D-2700 were used to measure the RON and MON of the MC mixtures in a CFR engine, while the PRF and TPRF mixtures' octane ratings were obtained from the literature. The matures cover a RON range of 0-100, with the majority being in the 70=100 range. A parametric-simulation study across a temperature range of 650-950 K and pressure range, of 15-50 bar was carried out in a constant-volume homogeneous batch reactor to calculate chemical kinetic ignition delay times, Regression tools were utilized to find the conditions at which RON and MON best correlate with simulated ignition delay times. Furthermore) temperature and pressure dependences were investigated for fuels with varying octane sensitivity. This analysis led to the formulation of correlations useful to the definition of surrogates for modeling purposes and allowed one to identify conditions for a more in-depth understanding of the chemical phenomena controlling, the antiknock behavior of the fuels. C1 [Singh, Eshan; Sarathy, S. Mani] King Abdullah Univ Sci & Technol, Clean Combust Res Ctr, Thuwal 239556900, Saudi Arabia. [Badra, Jihad] Fuel Technol R&D Div, Saudi Aramco Res & Dev Ctr, Dhahran 31311, Saudi Arabia. [Mehl, Marco] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Singh, E; Sarathy, SM (reprint author), King Abdullah Univ Sci & Technol, Clean Combust Res Ctr, Thuwal 239556900, Saudi Arabia. EM eshan.singh@kaust.edu.sa; mani.sarathy@kaust.edu.sa FU Saudi Aramco RDC; Clean Combustion Research Center at King Abdullah University of Science and Technology (KAUST) under the FUELCOM Research Program; KAUST Visiting Student Research Program (VSRP); U.S. Department of Energy, Vehicle Technologies Office under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratories [DE-AC52-07NA27344] FX This work was supported by the Saudi Aramco R&DC and Clean Combustion Research Center at King Abdullah University of Science and Technology (KAUST) under the FUELCOM Research Program. We are thankful for Sherif Khalifa's contribution to this project during his internship sponsored by the KAUST Visiting Student Research Program (VSRP). The work at LLNL was supported by the U.S. Department of Energy, Vehicle Technologies Office, program managers Gurpreet Singh and Leo Breton and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratories under contract DE-AC52-07NA27344 NR 78 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2017 VL 31 IS 2 BP 1945 EP 1960 DI 10.1021/acs.energyfuels.6b02659 PG 16 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EL3ZY UT WOS:000394560900097 ER PT J AU DeSantis, D Mason, JA James, BD Houchins, C Long, JR Veenstra, M AF DeSantis, Daniel Mason, Jarad A. James, Brian D. Houchins, Cassidy Long, Jeffrey R. Veenstra, Mike TI Techno-economic Analysis of Metal-Organic Frameworks for Hydrogen and Natural Gas Storage SO ENERGY & FUELS LA English DT Article ID SURFACE-AREAS; MOF-74; YIELD; TIME AB A techno-economic analysis was conducted for metal organic framework (MOF) adsorbents, which are promising candidates for light-duty vehicle on-board natural gas and hydrogen storage. The goal of this analysis was to understand cost drivers for large-scale (2.5 Mkg/year) MOF synthesis and to identify potential pathways to achieving a production cost of less than $10/(kg of MOF). Four MOFs were analyzed with four different metal centers and three different linkers: Ni-2(dobdc) (dobde(4-) = 2,5-dioxido-1,4-benzenedicarboxylate; Ni-MOF-74), Mg-2(dobdc) (dobde(4-) = 2,5-dioxido-1,4-benzenedicarboxylate; Mg-MOF-74), Zn4O(bdc)(3) (bdc(2-) = 1,4-benzenedicarboxylate; MOF-5), and Cu-3(btc)(2) (btc(3-) = 1,3,5-benzenetricarboxylate; HKUST-1). Baseline costs are projected to range from $35/kg to $71/kg predicated on organic solvent (solvothermal) syntheses using an engineering scale-up of laboratory-demonstrated synthesis procedures and conditions. Two alternative processes were analyzed to evaluate the cost impact of reducing solvent usage: liquid assisted grinding (LAG) and aqueous synthesis. Cost projections from these alternative synthesis, approaches range from $13/kg to $36/kg (representing 34-83% reductions), demonstrating the large impact of solvent on the baseline analysis. Finally, sensitivity studies were conducted to identify additional opportunities for achieving MOF production costs of less than $10/kg. C1 [DeSantis, Daniel; James, Brian D.; Houchins, Cassidy] Strateg Anal Inc, Arlington, VA 22203 USA. [Mason, Jarad A.; Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Mason, Jarad A.; Long, Jeffrey R.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Veenstra, Mike] Ford Motor Co, Res & Adv Engn, Dearborn, MI 48121 USA. RP DeSantis, D (reprint author), 4075 Wilson Blvd,Suite 200, Arlington, VA 22203 USA. EM ddesantis@sainc.com FU Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy; Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office [DE-AC02-05CH11231] FX Natural gas storage research was funded by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, while hydrogen storage research in Berkeley was funded by the Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office (under Grant DE-AC02-05CH11231). NR 28 TC 0 Z9 0 U1 2 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2017 VL 31 IS 2 BP 2024 EP 2032 DI 10.1021/acs.energyfuels.6b02510 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EL3ZY UT WOS:000394560900104 ER PT J AU Tolbert, A Ragauskas, AJ AF Tolbert, Allison Ragauskas, Arthur J. TI Advances in understanding the surface chemistry of lignocellulosic biomass via time-of-flight secondary ion mass spectrometry SO ENERGY SCIENCE & ENGINEERING LA English DT Review DE Enzymatic hydrolysis; genetic modification; lignocellulosic biomass; pretreatment; secondary ions; time-of-flight secondary ion mass spectrometry ID ENHANCE ENZYMATIC-HYDROLYSIS; TOF-SIMS; CELLULOSE ACCESSIBILITY; LIGNIN POLYMER; DILUTE-ACID; DEPOLYMERIZED FRAGMENTS; CORN STOVER; WOOD; PRETREATMENT; FRACTIONATION AB Overcoming the natural recalcitrance of lignocellulosic biomass is necessary in order to efficiently convert biomass into biofuels or biomaterials and many times this requires some type of chemical pretreatment and/or biological treatment. While bulk chemical analysis is the traditional method of determining the impact a treatment has on biomass, the chemistry on the surface of the sample can differ from the bulk chemistry. Specifically, enzymes and microorganisms bind to the surface of the biomass and their efficiency could be greatly impacted by the chemistry of the surface. Therefore, it is important to study and understand the chemistry of the biomass at the surface. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a powerful tool that can spectrally and spatially analyze the surface chemistry of a sample. This review discusses the advances in understanding lignocellulosic biomass surface chemistry using the ToF-SIMS by addressing the instrument parameters, biomass sample preparation, and characteristic lignocellulosic ion fragmentation peaks along with their typical location in the plant cell wall. The use of the ToF-SIMS in detecting chemical changes due to chemical pretreatments, microbial treatments, and physical or genetic modifications is discussed along with possible future applications of the instrument in lignocellulosic biomass studies. C1 [Tolbert, Allison] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Tolbert, Allison] Georgia Inst Technol, Renewable Bioprod Inst, Atlanta, GA 30332 USA. [Tolbert, Allison; Ragauskas, Arthur J.] Oak Ridge Natl Lab, Biosci Div, BioEnergy Sci Ctr BESC, Oak Ridge, TN 37830 USA. [Ragauskas, Arthur J.] Oak Ridge Natl Lab, Joint Inst Biol Sci, Biosci Div, Oak Ridge, TN 37831 USA. [Ragauskas, Arthur J.] Univ Tennessee, Dept Forestry Wildlife & Fisheries, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Ragauskas, Arthur J.] Univ Tennessee, Ctr Renewable Carbon, Knoxville, TN 37996 USA. RP Ragauskas, AJ (reprint author), Oak Ridge Natl Lab, POB 2008 MS6341, Oak Ridge, TN 37831 USA. EM aragausk@utk.edu FU Paper Science & Engineering (PSE) fellowship program at the Renewable Bioproducts Institute at Georgia Institute of Technology FX Allison K. Tolbert is grateful for the financial support from the Paper Science & Engineering (PSE) fellowship program at the Renewable Bioproducts Institute at Georgia Institute of Technology. NR 44 TC 0 Z9 0 U1 5 U2 5 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2050-0505 J9 ENERGY SCI ENG JI Energy Sci. Eng. PD FEB PY 2017 VL 5 IS 1 BP 5 EP 20 DI 10.1002/ese3.144 PG 16 WC Energy & Fuels SC Energy & Fuels GA EL9AO UT WOS:000394911700002 ER PT J AU Wilfong, WC Kail, BW Howard, BH de Aquino, TF Estevam, ST Gray, ML AF Wilfong, Walter Christopher Kail, Brian W. Howard, Bret H. de Aquino, Thiago Fernandes Estevam, Sabrina Teixeira Gray, McMahan L. TI Robust Immobilized Amine CO2 Sorbent Pellets Utilizing a Poly(Chloroprene) Polymer Binder and Fly Ash Additive SO ENERGY TECHNOLOGY LA English DT Article DE amines; carbon dioxide capture; cycle stability; pellets; polymers ID CARBON-DIOXIDE CAPTURE; SILICA-SUPPORTED AMINE; HOLLOW-FIBER SORBENTS; MESOPOROUS SILICA; FLUIDIZED-BED; ADSORPTION; STABILITY AB Pelletization of ca. 50wt% amine/silica carbon dioxide sorbents was achieved with the novel combination of fly ash (FA) as a strength additive and hydrophobic poly(chloroprene) (PC) as a binder. The PC content and overall synthesis procedure of these materials were optimized to produce pellets, labeled as FA/E100-S_(20/80)_12.2, with the highest ball-mill attrition resistance (<0.5wt% by fines, 24h) and maximum CO2 capture capacity of 1.78mmol CO(2)g(-1). The strength of the pellets was attributed to hydrogen-bonding of the relatively homogeneous PC network with the interlocked FA and BIAS particles (DRIFTS, SEM-EDS). The low degradation of 3-4% in the pellet's CO2 capture capacity under both dry TGA (7.5h) and practical fixed-bed (6.5h dry; 4.5h humid,approximate to 5vol% H2O) CO2 adsorption-desorption conditions highlights the pellet's excellent cyclic stability. These robust pellet characteristics make PC/FA/sorbent materials promising for commercial scale, point-source CO2 capture. C1 [Wilfong, Walter Christopher] US DOE, ORISE, Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. [Kail, Brian W.] US DOE, AECOM, Natl Energy Technol Lab, Pittsburgh, PA USA. [Howard, Bret H.; Gray, McMahan L.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [de Aquino, Thiago Fernandes; Estevam, Sabrina Teixeira] Beneficent Assoc Santa Catarina Coal Ind SATC, Clean Coal Res Ctr, Criciuma, SC, Brazil. RP Wilfong, WC (reprint author), US DOE, ORISE, Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA.; Gray, ML (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM walter.wilfong@netl.doe.gov; mac.gray@netl.doe.gov FU Department of Energy, National Energy Technology Laboratory, an agency of the United States Government; AECOM; U.S. Department of Energy; Beneficent Association of the Santa Catarina Coal Industry (SATC) FX This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with AECOM. This research was supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy, administered by the Oak Ridge Institute for Science and Education, and funded by the Beneficent Association of the Santa Catarina Coal Industry (SATC). We thank Vyacheslav Romanov and Lei Hong for use of the IR. NR 33 TC 1 Z9 1 U1 2 U2 2 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2194-4288 EI 2194-4296 J9 ENERGY TECHNOL-GER JI Energy Technol. PD FEB PY 2017 VL 5 IS 2 BP 228 EP 233 DI 10.1002/ente.201600319 PG 6 WC Energy & Fuels SC Energy & Fuels GA EM0QO UT WOS:000395023000003 ER PT J AU Probst, AJ Castelle, CJ Singh, A Brown, CT Anantharaman, K Sharon, I Hug, LA Burstein, D Emerson, JB Thomas, BC Banfield, JF AF Probst, Alexander J. Castelle, Cindy J. Singh, Andrea Brown, Christopher T. Anantharaman, Karthik Sharon, Itai Hug, Laura A. Burstein, David Emerson, Joanne B. Thomas, Brian C. Banfield, Jillian F. TI Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrations SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID LONG-TERM EXPERIMENTS; IN-SITU CONDITIONS; PHYLOGENETIC DIVERSITY; CARBON FIXATION; ARCHAEA; BACTERIA; STORAGE; SEDIMENT; BIOLOGY; SULFUR AB As in many deep underground environments, the microbial communities in subsurface high-CO2 ecosystems remain relatively unexplored. Recent investigations based on single-gene assays revealed a remarkable variety of organisms from little studied phyla in Crystal Geyser (Utah, USA), a site where deeply sourced CO2-saturated fluids are erupted at the surface. To provide genomic resolution of the metabolisms of these organisms, we used a novel metagenomic approach to recover 227 high-quality genomes from 150 microbial species affiliated with 46 different phylum-level lineages. Bacteria from two novel phylum-level lineages have the capacity for CO2 fixation. Analyses of carbon fixation pathways in all studied organisms revealed that the Wood-Ljungdahl pathway and the Calvin-Benson-Bassham Cycle occurred with the highest frequency, whereas the reverse TCA cycle was little used. We infer that this, and selection for form II RuBisCOs, are adaptions to high CO2-concentrations. However, many autotrophs can also grow mixotrophically, a strategy that confers metabolic versatility. The assignment of 156 hydrogenases to 90 different organisms suggests that H-2 is an important inter-species energy currency even under gaseous CO2-saturation. Overall, metabolic analyses at the organism level provided insight into the biochemical cycles that support subsurface life under the extreme condition of CO2 saturation. C1 [Probst, Alexander J.; Castelle, Cindy J.; Singh, Andrea; Anantharaman, Karthik; Sharon, Itai; Hug, Laura A.; Burstein, David; Emerson, Joanne B.; Thomas, Brian C.; Banfield, Jillian F.] Univ Calif, Dept Earth & Planetary Sci, 307 McCone Hall, Berkeley, CA 94720 USA. [Brown, Christopher T.] Univ Calif, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Banfield, Jillian F.] Univ Calif, Dept Environm Sci Policy & Management, Berkeley, CA USA. [Banfield, Jillian F.] Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA USA. [Sharon, Itai; Hug, Laura A.; Banfield, Jillian F.] Migal Galilee Res Inst, South Ind Zone, IL-11016 Kiryat Shmona, Israel. [Sharon, Itai; Hug, Laura A.; Emerson, Joanne B.] Tel Hai Coll, IL-12210 Upper Galilee, Israel. Univ Waterloo, Dept Biol, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada. [Emerson, Joanne B.] Ohio State Univ, Dept Microbiol, 496 West 12th Ave, Columbus, OH 43210 USA. RP Banfield, JF (reprint author), Univ Calif, Dept Earth & Planetary Sci, 307 McCone Hall, Berkeley, CA 94720 USA.; Banfield, JF (reprint author), Univ Calif, Dept Environm Sci Policy & Management, Berkeley, CA USA.; Banfield, JF (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA USA. EM jbanfield@berkeley.edu FU Center for Nanoscale Controls on Geologic CO2 (NCGC), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC02-05CH11231]; DFG [PR 1603/1-1] FX JFB was supported as part of the Center for Nanoscale Controls on Geologic CO2 (NCGC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-AC02-05CH11231. AJP was supported by the DFG grant PR 1603/1-1. We thank M. Cathryn Ryan and Bethany Ladd for scientific discussions about the Crystal Geyser system, particularly its hydrogeology and geochemistry. We thank Alex Hernsdorf for providing genomes of lineage ACD39 to improve phylogenetic reconstruction. NR 74 TC 2 Z9 2 U1 7 U2 7 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD FEB PY 2017 VL 19 IS 2 BP 459 EP 474 DI 10.1111/1462-2920.13362 PG 16 WC Microbiology SC Microbiology GA EL9XI UT WOS:000394973000010 PM 27112493 ER PT J AU Stuart, RK Bundy, R Buck, K Ghassemain, M Barbeau, K Palenik, B AF Stuart, Rhona K. Bundy, Randelle Buck, Kristen Ghassemain, Majid Barbeau, Kathy Palenik, Brian TI Copper toxicity response influences mesotrophic Synechococcus community structure SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID MARINE SYNECHOCOCCUS; PACIFIC-OCEAN; SARGASSO-SEA; TRANSCRIPTIONAL RESPONSE; OXIDATIVE STRESS; GENE-EXPRESSION; PROTEIN COMPLEX; SURFACE WATERS; IRON; PROCHLOROCOCCUS AB Picocyanobacteria from the genus Synechococcus are ubiquitous in ocean waters. Their phylogenetic and genomic diversity suggests ecological niche differentiation, but the selective forces influencing this are not well defined. Marine picocyanobacteria are sensitive to Cu toxicity, so adaptations to this stress could represent a selective force within, and between, species', also known as clades. Here, we compared Cu stress responses in cultures and natural populations of marine Synechococcus from two co-occurring major mesotrophic clades (I and IV). Using custom microarrays and proteomics to characterize expression responses to Cu in the lab and field, we found evidence for a general stress regulon in marine Synechococcus. However, the two clades also exhibited distinct responses to copper. The Clade I representative induced expression of genomic island genes in cultures and Southern California Bight populations, while the Clade IV representative downregulated Fe-limitation proteins. Copper incubation experiments suggest that Clade IV populations may harbour stress-tolerant subgroups, and thus fitness tradeoffs may govern Cu-tolerant strain distributions. This work demonstrates that Synechococcus has distinct adaptive strategies to deal with Cu toxicity at both the clade and subclade level, implying that metal toxicity and stress response adaptations represent an important selective force for influencing diversity within marine Synechococcus populations. C1 [Stuart, Rhona K.; Buck, Kristen; Barbeau, Kathy; Palenik, Brian] Univ Calif San Diego, Scripps Inst Oceanog, San Diego, CA 92093 USA. [Bundy, Randelle; Ghassemain, Majid] Univ Calif San Diego, San Diego, CA 92093 USA. [Stuart, Rhona K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bundy, Randelle] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Buck, Kristen] Univ S Florida, Coll Marine Sci, St Petersburg, FL 33701 USA. RP Palenik, B (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, San Diego, CA 92093 USA. EM bpalenik@ucsd.edu OI Stuart, Rhona/0000-0001-5916-9693 FU National Science Foundation [MCB0744334, DEB-1233085]; NSF [OCE-0550302] FX National Science Foundation Grants (MCB0744334, DEB-1233085) supported this work. The R/V New Horizon cruise was funded by NSF OCE-0550302. Many thanks to the crew of the R/V New Horizon, and Kelly Roe for assistance with trace metal clean sampling. Also thanks to Shaukat Rangwala at MOGene, LLC. NR 68 TC 0 Z9 0 U1 2 U2 2 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD FEB PY 2017 VL 19 IS 2 BP 756 EP 769 DI 10.1111/1462-2920.13630 PG 14 WC Microbiology SC Microbiology GA EL9XI UT WOS:000394973000031 PM 27884049 ER PT J AU Holm, JA Van Bloem, SJ Larocque, GR Shugart, HH AF Holm, Jennifer A. Van Bloem, Skip J. Larocque, Guy R. Shugart, Herman H. TI Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE ZELIG-TROP; gap model; Puerto Rico; carbon budget; forest dynamics; resiliency; Guanica forest ID TROPICAL RAIN-FOREST; LUQUILLO EXPERIMENTAL FOREST; PUERTO-RICO; CLIMATE-CHANGE; GAP MODEL; NATURAL DISTURBANCE; ABOVEGROUND BIOMASS; WOODY DEBRIS; CARBON SINK; LAND-USE AB Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model-based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site-and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes, manipulated both hurricane return time (i. e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into the forest over the long-term. The carbon loss from each hurricane event, in all scenarios, always recovered over sufficient time. Our results suggest that subtropical dry forests will remain resilient to hurricane disturbance. However carbon stocks will decrease if future climates increase hurricane frequency by 50% or more. C1 [Holm, Jennifer A.] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA 94720 USA. [Van Bloem, Skip J.] Clemson Univ, Baruch Inst Coastal Ecol & Forest Sci, Georgetown, SC 29440 USA. [Van Bloem, Skip J.] Clemson Univ, Dept Forestry & Environm Conservat, Georgetown, SC 29440 USA. [Larocque, Guy R.] Nat Resources Canada, Laurentian Forestry Ctr, Canadian Forest Serv, 1055 PEPS,POB 10380, Stn St Foy, PQ G1V 4C7, Canada. [Shugart, Herman H.] Univ Virginia, Dept Environm Sci, 291 McCormick Rd, Charlottesville, VA 22902 USA. RP Holm, JA (reprint author), Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA 94720 USA. EM jaholm@lbl.gov FU Environmental Sciences Department at University of Virginia (Charlottesville, USA); U.S. National Aeronautics and Space Administration Experimental Project to Stimulate Competitive Research (NASA EPSCoR) [NNX09AV03A]; USDA Forest Service International Institute of Tropical Forestry; University of Puerto Rico at Rio Piedras and Mayaguez; Office of Biological and Environmental Research - U.S. Department of Energy, Office of Science [DE-AC02-05CH11231] FX Research was supported and funded by the Environmental Sciences Department at University of Virginia (Charlottesville, USA), and in part by the U.S. National Aeronautics and Space Administration Experimental Project to Stimulate Competitive Research (NASA EPSCoR, Grant No. NNX09AV03A), the USDA Forest Service International Institute of Tropical Forestry, and the University of Puerto Rico at Rio Piedras and Mayaguez. Technical Contribution No. 6486 of the Clemson University Experiment Station. During the final writing stage of this manuscript J A Holm was partially supported as part of the Next Generation Ecosystem Experiments-Tropics (NGEE-Tropics) and by the Accelerated Climate Modeling for Energy (ACME) project supported by the Office of Biological and Environmental Research, both, funded by the U.S. Department of Energy, Office of Science (Contract number: DE-AC02-05CH11231). We thank Ariel E Lugo, Miguel Velez Reyes, Howard Epstein, and Robert Davis for their guidance and comments on previous drafts of this manuscript. NR 78 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD FEB PY 2017 VL 12 IS 2 AR 025007 DI 10.1088/1748-9326/aa583c PG 13 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA EN1OR UT WOS:000395780200001 ER PT J AU Nguyen, BN Hou, ZS Bacon, DH White, MD AF Nguyen, Ba Nghiep Hou, Zhangshuan Bacon, Diana H. White, Mark D. TI A multiscale hydro-geochemical-mechanical approach to analyze faulted CO2 reservoirs SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Article DE CO2 reservoir; elastic modulus; fault; geochemistry; geomechanics; geomechanical modeling; homogenization; hydraulic fracture; mineralogy; reactive transport ID FLUID-FLOW; GEOLOGICAL SEQUESTRATION; STORAGE; INJECTION; EXTENSION; TRANSPORT; AQUIFER; STRESS; IMPACT; SCALE AB This paper applies a multiscale hydro-geochemical-mechanical approach to analyze faulted CO2 reservoirs using the STOMP-CO2-R code that is coupled to the ABAQUS((R)) finite element package. STOMP-CO2-R models the reactive transport of CO2 causing mineral composition changes that are captured by an Eshelby-Mori-Tanka model implemented in ABAQUS((R)). A three-dimensional (3D) STOMP-CO2-R model for a reservoir containing an inclined fault was built to analyze a formation containing a reaction network with five minerals: albite, anorthite, calcite, kaolinite, and quartz. A 3D finite element mesh that exactly maps the STOMP-CO2-R grid was developed for coupled analyses. The model contains alternating sandstone and shale layers. The impact of reactive transport of CO2 on the geomechanical properties of reservoir rocks are studied in terms of mineral composition changes that affect their geomechanical responses. Simulations assuming extensional and compressional stress regimes with and without coupled geochemistry are performed to study the stress regime effect on the risk of hydraulic fracture. The fault slip is examined as functions of stress regime, geomechanical, geochemical-mechanical effects, fault inclination, and position. The results show that mineralogical changes due to CO2 injection reduce the permeability and elastic modulus of the reservoir, leading to increased fluid pressure and risk of fracture in the injection location and the caprock seal. Shear failure in the fault leading to fault reactivation was not predicted to occur. However, stress regime, fault inclination, and fault position in light of the coupled hydro-geochemical-mechanical analysis have an important impact on the slip tendency factor and elastic fault slip. (c) 2016 Society of Chemical Industry and John Wiley & Sons, Ltd. C1 [Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.; White, Mark D.] Pacific Northwest Natl Lab, POB 999,MSIN J4-55, Richland, WA 99352 USA. RP Nguyen, BN (reprint author), Pacific Northwest Natl Lab, POB 999,MSIN J4-55, Richland, WA 99352 USA. EM ba.nguyen@pnnl.gov FU US Department of Energy (DOE) [DE-AC05-RL01830]; National Energy Technology Laboratory; US DOE, Office of Fossil Energy as part of the National Risk Assessment Partnership; US DOE Office of Vehicle Technologies FX This study was conducted at Pacific Northwest National Laboratory, operated by Battelle for the US Department of Energy (DOE) under Contract DE-AC05-RL01830. Funding for this project was provided by the National Energy Technology Laboratory and US DOE, Office of Fossil Energy as part of the National Risk Assessment Partnership. The initial EMTA development was funded by the US DOE Office of Vehicle Technologies. STOMP-CO2/ABAQUS (R) and STOMP-CO2-R/ABAQUS (R) analyses were performed using PNNL Institutional Computing at Pacific Northwest National Laboratory. NR 49 TC 0 Z9 0 U1 1 U2 1 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD FEB PY 2017 VL 7 IS 1 BP 106 EP 127 DI 10.1002/ghg.1616 PG 22 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA EL5PN UT WOS:000394673200010 ER PT J AU Gumaste, A Das, T Khandwala, K Monga, I AF Gumaste, Ashwin Das, Tamal Khandwala, Kandarp Monga, Inder TI Network Hardware Virtualization for Application Provisioning in Core Networks SO IEEE COMMUNICATIONS MAGAZINE LA English DT Article AB Service providers and vendors are moving toward a network virtualized core, whereby multiple applications would be treated on their own merit in programmable hardware. Such a network would have the advantage of being customized for user requirements and allow provisioning of next generation services that are built specifically to meet user needs. In this article, we articulate the impact of network virtualization on networks that provide customized services and how a provider's business can grow with network virtualization. We outline a decision map that allows mapping of applications with technology that is supported in network-virtualization--oriented equipment. Analogies to the world of virtual machines and generic virtualization show that hardware supporting network virtualization will facilitate new customer needs while optimizing the provider network from the cost and performance perspectives. A key conclusion of the article is that growth would yield sizable revenue when providers plan ahead in terms of supporting network-virtualization-oriented technology in their networks. To be precise, providers have to incorporate into their growth plans network elements capable of new service deployments while protecting network neutrality. A simulation study validates our NV-induced model. C1 [Gumaste, Ashwin; Das, Tamal] Indian Inst Technol, Bombay, Maharashtra, India. [Khandwala, Kandarp] Univ Calif San Diego, San Diego, CA 92103 USA. [Monga, Inder] Lawrence Berkeley Natl Lab, Sci Networking Div, Berkeley, CA USA. RP Gumaste, A (reprint author), Indian Inst Technol, Bombay, Maharashtra, India. NR 11 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0163-6804 EI 1558-1896 J9 IEEE COMMUN MAG JI IEEE Commun. Mag. PD FEB PY 2017 VL 55 IS 2 BP 152 EP 159 DI 10.1109/MCOM.2017.1500488CM PG 8 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA EM8QB UT WOS:000395574900025 ER PT J AU Chen, Y Guba, O Brooks, CF Roberts, CC Waanders, BGV Nemer, MB AF Chen, Yi Guba, Oksana Brooks, Carlton F. Roberts, Christine C. Waanders, Bart G. van Bloemen Nemer, Martin B. TI Remote Temperature Distribution Sensing Using Permanent Magnets SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article DE Design optimization; distributed multiple dipoles; magnetic field measurement; magnetic sensors; permanent magnets; temperature measurement ID SENSOR; FIELD; TRACKING; SYSTEM; MODEL AB Remote temperature sensing is essential for applications in enclosed vessels, where feedthroughs or optical access points are not possible. A unique sensing method for measuring the temperature of multiple closely spaced points is proposed using permanent magnets and several three-axis magnetic field sensors. The magnetic field theory for multiple magnets is discussed and a solution technique is presented. Experimental calibration procedures, solution inversion considerations, and methods for optimizing the magnet orientations are described in order to obtain low-noise temperature estimates. The experimental setup and the properties of permanent magnets are shown. Finally, experiments were conducted to determine the temperature of nine magnets in different configurations over a temperature range of 5 degrees C to 60 degrees C and for a sensor-to-magnet distance of up to 35 mm. To show the possible applications of this sensing system for measuring temperatures through metal walls, additional experiments were conducted inside an opaque 304 stainless steel cylinder. C1 [Chen, Yi; Guba, Oksana; Brooks, Carlton F.; Roberts, Christine C.; Waanders, Bart G. van Bloemen; Nemer, Martin B.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Chen, Y (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM yichen@sandia.gov OI /0000-0003-2314-3031 FU Laboratory Directed Research and Development program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. The authors would like to thank A. Dodd, E. K. Stirrup, S. S. Miller, H. Li, and J. Buttacci for their previous work and assistance with the project. NR 36 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 EI 1941-0069 J9 IEEE T MAGN JI IEEE Trans. Magn. PD FEB PY 2017 VL 53 IS 2 AR 6000113 DI 10.1109/TMAG.2016.2620964 PG 13 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA EM6VR UT WOS:000395451100028 ER PT J AU Carman, L Martinez, HP Voss, L Hunter, S Beck, P Zaitseva, N Payne, SA Irkhin, P Choi, HH Podzorov, V AF Carman, Leslie Martinez, H. Paul Voss, Lars Hunter, Steven Beck, Patrick Zaitseva, Natalia Payne, Stephen A. Irkhin, Pavel Choi, Hyun Ho Podzorov, Vitaly TI Solution-Grown Rubrene Crystals as Radiation Detecting Devices SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Alpha particle detector; organic crystals; radiation detector; rubrene; semiconductor; solution growth ID PHYSICAL VAPOR GROWTH; SINGLE-CRYSTALS; SCINTILLATION PROPERTIES; ORGANIC SEMICONDUCTORS; NEUTRON DETECTION; TRANSPORT AB There has been increased interest in organic semiconductors over the last decade because of their unique properties. Of these, 5, 6, 11, 12-tetraphenylnaphthacene (rubrene) has generated the most interest because of its high charge carrier mobility. In this work, large single crystals with a volume of similar to 1 cm(3) were grown from solution by a temperature reduction technique. The faceted crystals had flat surfaces and cm-scale, visually defect-free areas suitable for physical characterization. X-ray diffraction analysis indicates that solvent does not incorporate into the crystals and photoluminescence spectra are consistent with pristine, high-crystallinity rubrene. Furthermore, the response curve to pulsed optical illumination indicates that the solution grown crystals are of similar quality to those grown by physical vapor transport, albeit larger. The good quality of these crystals in combination with the improvement of electrical contacts by application of conductive polymer on the graphite electrodes have led to the clear observation of alpha particles with these rubrene detectors. Preliminary results with a Cf-252 source generate a small signal with the rubrene detector and may demonstrate that rubrene can also be used for detecting high-energy neutrons. C1 [Carman, Leslie; Martinez, H. Paul; Voss, Lars; Hunter, Steven; Beck, Patrick; Zaitseva, Natalia; Payne, Stephen A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Irkhin, Pavel; Choi, Hyun Ho; Podzorov, Vitaly] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Carman, L (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Defense Threat Reduction Agency (DTRA) [DTRA10027-14474] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was supported by the U.S. Defense Threat Reduction Agency (DTRA), under Interagency Agreement DTRA10027-14474. NR 36 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2017 VL 64 IS 2 BP 781 EP 788 DI 10.1109/TNS.2017.2652139 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA EO6OW UT WOS:000396813400003 ER PT J AU Zhao, ZX Huang, Q Gong, Z Su, ZH Moses, WW Xu, JF Peng, QY AF Zhao, Zhixiang Huang, Qiu Gong, Zheng Su, Zhihong Moses, William W. Xu, Jianfeng Peng, Qiyu TI A Novel Read-Out Electronics Design Based on 1-Bit Sigma-Delta Modulation SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Dark current; electronics; energy; PET ID SIPM GAIN; DETECTOR; ARRAYS; SYSTEM; PET AB The conventional front-end electronics for PET imaging consist of an energy circuit and a timing circuit. A single channel in front-end electronics typically requires several amplifiers, an ADC and a TDC. In this paper, we present a novel front-end electronic design using 1-bit sigma-delta (Sigma-Delta) modulation and an FPGA. The new design requires only one analog amplifier per channel. The output of the analog amplifier is read directly by the FPGA. Both the energy and timing calculation are implemented in FPGA firmware. The scope of this paper is to introduce the novel design in detail and to evaluate its performance in energy and dark current measurements. Simulink simulations were performed to validate the design with ideal components. A one-channel prototype circuit was built to assess the design with real components. The prototype circuit was tested with different input signals, including test pulses, pulse signals from a PMT detector, DC current signals and dark current signals from an SiPM sensor. Both the simulation and experimental results show that the method is inherently stable and has excellent accuracy and linearity in energy and dark current measurements. The prototype analog board was built with discrete components cost about $ 0.5 in total. The power consumption was about 20 mW. We conclude that the new method provides a cost-efficient and power-efficient way to accurately measure the energies of analog pulses and dark currents from detectors. The timing performance of this method is currently under evaluation. C1 [Zhao, Zhixiang; Huang, Qiu] Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China. [Gong, Zheng] Wuhan Univ Technol, Wuhan 430070, Peoples R China. [Su, Zhihong] Southern Med Univ, Wuhan 430074, Peoples R China. [Moses, William W.; Peng, Qiyu] Lawrence Berkeley Natl Lab, Dept Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA. [Xu, Jianfeng] Huazhong Univ Sci & Technol, Wuhan 430070, Peoples R China. RP Huang, Q (reprint author), Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China.; Peng, QY (reprint author), Lawrence Berkeley Natl Lab, Dept Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA.; Xu, JF (reprint author), Huazhong Univ Sci & Technol, Wuhan 430070, Peoples R China. EM qiuhuang@sjtu.edu.cn; qpeng@lbl.gov; jfxu@hust.edu.cn NR 16 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2017 VL 64 IS 2 BP 820 EP 828 DI 10.1109/TNS.2017.2648787 PG 9 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA EO6OW UT WOS:000396813400008 ER PT J AU Zhou, Y Dey, KC Chowdhury, M Wang, KC AF Zhou, Yan Dey, Kakan Chandra Chowdhury, Mashrur Wang, Kuang-Ching TI Process for evaluating the data transfer performance of wireless traffic sensors for real-time intelligent transportation systems applications SO IET INTELLIGENT TRANSPORT SYSTEMS LA English DT Article DE open systems; intelligent transportation systems; wireless LAN; data transfer performance; wireless traffic sensors; real-time intelligent transportation systems applications; wireless fidelity; worldwide interoperability; microwave access; wired communication; wireless technologies; roadside ITS devices; Wi-Fi technology; field tests; modulation rates; Wi-Fi connections; roadway conditions; adjacent nodes; wireless traffic sensor network; minimum network performance; transportation agencies; saturated throughput; delivery ratio; received signal strength; communication link; Wi-Fi wireless communication network; roadway network; ITS applications ID COMMUNICATION; NETWORK; INTEGRATION AB Different wireless communication technologies, such as wireless fidelity (Wi-Fi), 4G cellular technologies and worldwide interoperability for microwave access (WiMAX) have been used as alternatives or supplement to wired communication in intelligent transportation systems (ITS). Widespread deployment of wireless technologies in ITS require a comprehensive understanding of their performance, limitations and advantages in different field conditions. The authors evaluated performance of Wi-Fi wireless communication between adjacent roadside ITS devices (i.e., nodes) in different field conditions with varying characteristics of Wi-Fi technology. Field tests revealed that modulation rates, transmission power, line of sight, distance between nodes play critical roles in the performance of Wi-Fi communication in different roadway conditions. To achieve a desired level of performance requirements between adjacent nodes, minimum network performance thresholds must be realized in the field. Transportation agencies can identify the achievable performance, such as saturated throughput, delivery ratio and received signal strength at a particular location, by following the field test procedure developed in this research. The evaluation strategies and results presented in this study will contribute to the future planning and design of Wi-Fi communication for a roadway wireless sensor or device network considering corresponding communication performance requirements for specific ITS applications. C1 [Zhou, Yan] Argonne Natl Lab, Ctr Transportat Res, 9700 South Cass Ave,Bldg 362, Argonne, IL 60439 USA. [Dey, Kakan Chandra] W Virginia Univ, Dept Civil & Environm Engn, Morgantown, WV 26506 USA. [Chowdhury, Mashrur] Clemson Univ, Glenn Dept Civil Engn, 216 Lowry Hall, Clemson, SC 29634 USA. [Wang, Kuang-Ching] Clemson Univ, Dept Elect & Comp Engn, 308 Fluor Daniel Engn Innovat Bldg, Clemson, SC 29634 USA. RP Dey, KC (reprint author), W Virginia Univ, Dept Civil & Environm Engn, Morgantown, WV 26506 USA. EM kakan.dey@mail.wvu.edu FU South Carolina Department of Transportation (SCDOT) FX The authors acknowledge the South Carolina Department of Transportation (SCDOT), which provided funding for this research. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of SCDOT. NR 36 TC 0 Z9 0 U1 1 U2 1 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 1751-956X EI 1751-9578 J9 IET INTELL TRANSP SY JI IET Intell. Transp. Syst. PD FEB PY 2017 VL 11 IS 1 BP 18 EP 27 DI 10.1049/iet-its.2015.0250 PG 10 WC Transportation Science & Technology SC Transportation GA EM8IY UT WOS:000395556000003 ER PT J AU Wang, DL Yuan, FM Pei, Y Yao, C Hernandez, B Steed, C AF Wang, Dali Yuan, Fengming Pei, Yu Yao, Cindy Hernandez, Benjamin Steed, Chad TI Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations SO INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS LA English DT Article DE Earth System Modeling; Accelerated Climate Modeling for Energy; In-Situ Data Analytics; Virtual Observation System; Functional Unit Testing AB Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presented to demonstrate the implementation details and system innovations. C1 [Wang, Dali; Yuan, Fengming] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Pei, Yu; Yao, Cindy] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Hernandez, Benjamin] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Steed, Chad] Oak Ridge Natl Lab, Computat Sci Div, Oak Ridge, TN 37831 USA. RP Wang, DL (reprint author), Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. FU U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research (BER) program; Advanced Scientific Computing Research (ASCR) program; ORNL LDRD project [7409]; Department of Energy [DE-AC05-00OR22725] FX This research was funded by the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research (BER) program and Advanced Scientific Computing Research (ASCR) program, and by an ORNL LDRD project (#7409). This research used resources of the Oak Ridge Leadership Computing Facility, located in the National Center for Computational Sciences at Oak Ridge National Laboratory (ORNL), which is managed by UT-Battelle LLC for the Department of Energy under contract DE-AC05-00OR22725. NR 12 TC 0 Z9 0 U1 0 U2 0 PU SCIENCE & INFORMATION SAI ORGANIZATION LTD PI WEST YORKSHIRE PA 19 BOLLING RD, BRADFORD, WEST YORKSHIRE, 00000, ENGLAND SN 2158-107X EI 2156-5570 J9 INT J ADV COMPUT SC JI Int. J. Adv. Comput. Sci. Appl. PD FEB PY 2017 VL 8 IS 2 BP 171 EP 175 PG 5 WC Computer Science, Theory & Methods SC Computer Science GA EP5IB UT WOS:000397411100023 ER PT J AU Duke, DJ Matusik, KE Kastengren, AL Swantek, AB Sovis, N Payri, R Viera, JP Powell, CF AF Duke, Daniel J. Matusik, Katarzyna E. Kastengren, Alan L. Swantek, Andrew B. Sovis, Nicholas Payri, Raul Viera, Juan P. Powell, Christopher F. TI X-ray radiography of cavitation in a beryllium alloy nozzle SO INTERNATIONAL JOURNAL OF ENGINE RESEARCH LA English DT Article DE Cavitation; x-ray; radiography ID DIESEL INJECTOR NOZZLES; FLOW; BLENDS AB Making quantitative measurements of the vapor distribution in a cavitating nozzle is difficult, owing to the strong scattering of visible light at gas-liquid boundaries and wall boundaries, and the small lengths and time scales involved. The transparent models required for optical experiments are also limited in terms of maximum pressure and operating life. Over the past few years, x-ray radiography experiments at Argonne's Advanced Photon Source have demonstrated the ability to perform quantitative measurements of the line of sight projected vapor fraction in submerged, cavitating plastic nozzles. In this paper, we present the results of new radiography experiments performed on a submerged beryllium nozzle which is 520m in diameter, with a length/diameter ratio of 6. Beryllium is a light, hard metal that is very transparent to x-rays due to its low atomic number. We present quantitative measurements of cavitation vapor distribution conducted over a range of non-dimensional cavitation and Reynolds numbers, up to values typical of gasoline and diesel fuel injectors. A novel aspect of this work is the ability to quantitatively measure the area contraction along the nozzle with high spatial resolution. Analysis of the vapor distribution, area contraction and discharge coefficients are made between the beryllium nozzle and plastic nozzles of the same nominal geometry. When gas is dissolved in the fuel, the vapor distribution can be quite different from that found in plastic nozzles of the same dimensions, although the discharge coefficients are unaffected. In the beryllium nozzle, there were substantially fewer machining defects to act as nucleation sites for the precipitation of bubbles from dissolved gases in the fuel, and as such the effect on the vapor distribution was greatly reduced. C1 [Duke, Daniel J.; Matusik, Katarzyna E.; Swantek, Andrew B.; Sovis, Nicholas; Powell, Christopher F.] Argonne Natl Lab, Div Energy Syst, Lemont, IL 60439 USA. [Kastengren, Alan L.] Argonne Natl Lab, Xray Sci Div, Lemont, IL USA. [Payri, Raul; Viera, Juan P.] Univ Politecn Valencia, CMT Motores Termicos, Camino de Vera S-N, Valencia, Spain. RP Duke, DJ (reprint author), Argonne Natl Lab, Div Energy Syst, Lemont, IL 60439 USA. EM dduke@anl.gov FU US Department of Energy (DOE) [DE-AC02-06CH11357]; DOE Vehicle Technologies Program; Fulbright visiting scholar grant in collaboration with the Ministry of Education, Culture and Sports of Spain [PRX14/00331]; Spanish MINECO [EEBB-I-15-0976, TRA2012-36932] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was performed at the 7-BM beam line of the Advanced Photon Source (APS) at Argonne National Laboratory, IL. Use of the APS is supported by the US Department of Energy (DOE) (contract number DE-AC02-06CH11357). Argonne's x-ray fuel spray research is sponsored by the DOE Vehicle Technologies Program under the direction of Gurpreet Singh and Leo Breton.; Raul Payri was funded by a Fulbright visiting scholar grant in collaboration with the Ministry of Education, Culture and Sports of Spain (reference PRX14/00331) while performing this work. Juan P Viera was funded by the Spanish MINECO (grant EEBB-I-15-0976 under project TRA2012-36932). NR 40 TC 0 Z9 0 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1468-0874 EI 2041-3149 J9 INT J ENGINE RES JI Int. J. Engine Res. PD FEB PY 2017 VL 18 IS 1-2 BP 39 EP 50 DI 10.1177/1468087416685965 PG 12 WC Thermodynamics; Engineering, Mechanical; Transportation Science & Technology SC Thermodynamics; Engineering; Transportation GA EM5AD UT WOS:000395323400005 ER PT J AU Zeng, W Sjoberg, M AF Zeng, Wei Sjoeberg, Magnus TI Utilizing boost and double injections for enhanced stratified-charge direct-injection spark-ignition engine operation with gasoline and E30 fuels SO INTERNATIONAL JOURNAL OF ENGINE RESEARCH LA English DT Article DE Enhanced stratified direct-injection spark-ignition engine; intake boost; double injections; gasoline and E30 fuels; low NOx; soot emissions ID DISI ENGINE AB This study systematically explores the effects of injection strategy and exhaust-gas recirculation on boosted stratified-charge operation of a direct-injection spark-ignition engine using gasoline and E30 fuels at absolute intake pressures in the range of 100-160kPa. Nitrogen dilution is used to lower the intake mole fraction of oxygen to simulate the dilution effects of exhaust-gas recirculation. The engine is operated at 1000r/min with an gross indicated mean effective pressure range of 380-680kPa. In summary, significant reductions of engine-out NOx and soot emissions can be achieved for stratified operation while still maintaining stable combustion (similar to 2% gross indicated mean effective pressure variability) and high thermal efficiency (similar to 40%). Adding exhaust-gas recirculation significantly suppresses NOx emissions, not only by reducing flame temperatures but also by slowing down the combustion which effectively retards the combustion phasing. A well-designed closely spaced double-injection strategy is key to combustion stabilization and plays an important role to suppress soot emissions. Intake boost allows reaching higher loads with further reduced soot emissions. High-speed dual-camera flame imaging reveals key features of flame propagation for stratified operation with low NOx emissions at high exhaust-gas recirculation levels. Heat release rate-based conditional analysis of flame images shows that compared to single injection, the use of double injections creates a spark plasma that is more stretched out, correlating with a more stable early combustion. It also demonstrates that double injections produce more symmetric flame propagation with smaller soot-containing regions, indicating more favorable fuel distributions. Stratified operation with gasoline and E30 fuels demonstrates similar engine performance and emission levels for double injections. These observations suggest that E0 (gasoline)-E30 fuel blends can be compatible with highly efficient stratified-charge spark-ignited operation. However, for a 50/50 double-injection strategy, E30 showed elevated smoke emissions for operation without intake boost, indicating that certain operating strategies can be adversely affected by the ethanol content of E30 fuel blends. C1 [Zeng, Wei; Sjoeberg, Magnus] Sandia Natl Labs, MS 9053,POB 969, Livermore, CA 94551 USA. RP Zeng, W (reprint author), Sandia Natl Labs, MS 9053,POB 969, Livermore, CA 94551 USA. EM wei.zeng@gm.com FU U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies and Vehicle Technologies Offices; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was conducted as part of the Co-Optimization of Fuels & Engines (Co-Optima) project sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies and Vehicle Technologies Offices. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 31 TC 0 Z9 0 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1468-0874 EI 2041-3149 J9 INT J ENGINE RES JI Int. J. Engine Res. PD FEB PY 2017 VL 18 IS 1-2 BP 131 EP 142 DI 10.1177/1468087416685512 PG 12 WC Thermodynamics; Engineering, Mechanical; Transportation Science & Technology SC Thermodynamics; Engineering; Transportation GA EM5AD UT WOS:000395323400012 ER PT J AU Wissink, ML Splitter, DA Dempsey, AB Curran, SJ Kaul, BC Szybist, JP AF Wissink, Martin L. Splitter, Derek A. Dempsey, Adam B. Curran, Scott J. Kaul, Brian C. Szybist, Jim P. TI An assessment of thermodynamic merits for current and potential future engine operating strategies SO INTERNATIONAL JOURNAL OF ENGINE RESEARCH LA English DT Article DE Thermodynamics; Otto cycle; modeling; spark ignition; compression ignition; efficiency; cycle analysis ID SPARK-IGNITED COMBUSTION; HIGH-OCTANE BIOFUELS; HIGH-EFFICIENCY; FUEL; LOAD AB This work compares the fundamental thermodynamic underpinnings (i.e. working fluid properties and heat release profile) of various combustion strategies with engine measurements. The approach employs a model that separately tracks the impacts on efficiency due to differences in rate of heat addition, volume change, mass addition, and molecular weight change for a given combination of working fluid, heat release profile, and engine geometry. Comparative analysis between the measured and modeled efficiencies illustrates fundamental sources of efficiency reductions or opportunities inherent to various combustion regimes. Engine operating regimes chosen for analysis include stoichiometric spark-ignited combustion and lean compression-ignited combustion including homogeneous charge compression ignition, spark-assisted homogeneous charge compression ignition, and conventional diesel combustion. Within each combustion regime, the effects of engine load, combustion duration, combustion phasing, compression ratio, and charge dilution are explored. Model findings illustrate that even in the absence of losses such as heat transfer or incomplete combustion, the maximum possible thermal efficiency inherent to each operating strategy varies to a significant degree. Additionally, the experimentally measured losses are observed to be unique within a given operating strategy. The findings highlight the fact that to create a roadmap for future directions in internal combustion engine technologies, it is important to not only compare the absolute real-world efficiency of a given combustion strategy but also to examine the measured efficiency in context of what is thermodynamically possible with the working fluid and boundary conditions prescribed by a strategy. C1 [Wissink, Martin L.; Splitter, Derek A.; Dempsey, Adam B.; Curran, Scott J.; Kaul, Brian C.; Szybist, Jim P.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, POB 2008,MS6472, Oak Ridge, TN 37831 USA. RP Wissink, ML (reprint author), Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, POB 2008,MS6472, Oak Ridge, TN 37831 USA. EM wissinkml@ornl.gov FU US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This material is based on the work supported by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office via the Advanced Combustion Engine manager Gurpreet Singh. NR 32 TC 0 Z9 0 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1468-0874 EI 2041-3149 J9 INT J ENGINE RES JI Int. J. Engine Res. PD FEB PY 2017 VL 18 IS 1-2 BP 155 EP 169 DI 10.1177/1468087416686698 PG 15 WC Thermodynamics; Engineering, Mechanical; Transportation Science & Technology SC Thermodynamics; Engineering; Transportation GA EM5AD UT WOS:000395323400014 ER PT J AU Muratori, M Kheshgi, H Mignone, B Clarke, L McJeon, H Edmonds, J AF Muratori, Matteo Kheshgi, Haroon Mignone, Bryan Clarke, Leon McJeon, Haewon Edmonds, Jae TI Carbon capture and storage across fuels and sectors in energy system transformation pathways SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Carbon capture and storage; CCS; Biofuels; Climate change mitigation; Energy systems; Transformation pathways ID DIOXIDE CAPTURE; CO2; TECHNOLOGIES; EMISSIONS; SCENARIOS AB Carbon capture and storage (CCS) is broadly understood to be a key mitigation technology, yet modeling analyses provide different results regarding the applications in which it might be used most effectively. Here we use the Global Change Assessment Model (GCAM) to explore the sensitivity of CCS deployment across sectors and fuels to future technology cost assumptions. We find that CCS is deployed preferentially in electricity generation or in liquid fuels production, depending on CCS and biofuels production cost assumptions. We consistently find significant deployment across both sectors in all of the scenarios considered here, with bioenergy with CCS (BECCS) often the dominant application. As such, this study challenges the view that CCS will primarily be coupled with power plants and used mainly in conjunction with fossil fuels, and suggests greater focus on practical implications of significant CCS and BECCS deployment to inform energy system transformation scenarios over the 21st century. (C) 2016 The Authors. Published by Elsevier Ltd. All rights reserved. C1 [Muratori, Matteo; Clarke, Leon; McJeon, Haewon; Edmonds, Jae] Joint Global Change Res Inst, Pacific Northwest Natl Lab, 5825 Univ Res Court, College Pk, MD 20740 USA. [Kheshgi, Haroon; Mignone, Bryan] ExxonMobil Res & Engn Co, 1545 Route 22 East, Annandale, NJ 08801 USA. [Muratori, Matteo] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Muratori, M (reprint author), Joint Global Change Res Inst, Pacific Northwest Natl Lab, 5825 Univ Res Court, College Pk, MD 20740 USA.; Muratori, M (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM matteo.muratori@nrel.gov FU Battelle Memorial Institute [DE-AC05-76RL01830] FX The PNNL authors are grateful for research support provided by ExxonMobil Research and Engineering Company. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. The views and opinions expressed in this paper are those of the authors alone. NR 43 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD FEB PY 2017 VL 57 BP 34 EP 41 DI 10.1016/j.ijggc.2016.11.026 PG 8 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA EM5OH UT WOS:000395360700004 ER PT J AU Smith, MM Hao, Y Carroll, SA AF Smith, M. M. Hao, Y. Carroll, S. A. TI Development and calibration of a reactive transport model for carbonate reservoir porosity and permeability changes based on CO2 core-flood experiments SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 storage; Carbonate reservoirs; Kinetics; Reactive transport parameters ID GEOCHEMICAL SELF-ORGANIZATION; FLUID-ROCK INTERACTION; WORMHOLE PROPAGATION; POROUS-MEDIUM; PORE-SCALE; CO2-INDUCED DISSOLUTION; SIMULATION; ACIDIZATION; ACID AB Beneficial pore space and permeability enhancements are likely to occur as CO2-charged fluids partially dissolve carbonate minerals in carbonate reservoir formations used for geologic CO2 storage. The ability to forecast the extent and impact of changes in porosity and permeability will aid geologic CO2 storage operations and lower uncertainty in estimates of long-term storage capacity. Our work is directed toward developing calibrated reactive transport models that more accurately capture the chemical impacts of CO2-fluid-rock interactions and their effects on porosity and permeability by matching pressure, fluid chemistry, and dissolution features that developed as a result of reaction with CO2-acidified brines at representative reservoir conditions. We present new results from experiments conducted on seven core samples from the Arbuckle Dolostone (near Wellington, Kansas, USA, recovered as part of the South-Central Kansas CO2 Demonstration). Cores were obtained from both target reservoir and lower permeability baffle zones, and together these samples span over 3-4 orders of magnitude of permeability according to downhole measurements. Core samples were nondestructively imaged by X-ray computed tomography and the resulting characterization data were mapped onto a continuum domain to further develop a reactive transport model for a range of mineral and physical heterogeneity. We combine these new results with those from previous experimental studies (Smith et al., 2013; Hao et al., 2013) to more fully constrain the governing equations used in reactive transport models to better estimate the transition of enhanced oil recovery operations to long-term geology CO2 storage. Calcite and dolomite kinetic rate constants (mol m(-2) s(-1)) derived by fitting the results from core-flood experiments range from k(calcite,25c) = 10(-6.8) to 10(-4.6), and k(dolomite),(2SC) = 10(-7.5) to 10(-5.3). The power law-based porosity-permeability relationship is sensitive to the overall pore space heterogeneity of each core. Stable dissolution fronts observed in the more homogeneous dolostones could be accurately simulated using an exponential value of n = 3. Unstable dissolution fronts consisting of preferential flowpaths could be simulated using an exponential value of n = 3 for heterogeneous dolostones, and larger values (n = 6-8) for heterogeneous limestones. (C) 2017 The Authors. Published by Elsevier Ltd. C1 [Smith, M. M.; Hao, Y.; Carroll, S. A.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, 7000 East Ave L-231, Livermore, CA 94550 USA. RP Smith, MM (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, 7000 East Ave L-231, Livermore, CA 94550 USA. EM megan@llnl.gov; hao1@llnl.gov; carroll6@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; United States Department of Energy Fossil Energy/NETL Carbon Storage Program [LLNL-JRNL-713709] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was supported by the United States Department of Energy Fossil Energy/NETL Carbon Storage Program. LLNL-JRNL-713709. NR 47 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD FEB PY 2017 VL 57 BP 73 EP 88 DI 10.1016/j.ijggc.2016.12.004 PG 16 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA EM5OH UT WOS:000395360700008 ER PT J AU Namhata, A Small, MJ Dilmore, RM Nakles, DV King, S AF Namhata, Argha Small, Mitchell J. Dilmore, Robert M. Nakles, David V. King, Seth TI Bayesian inference for heterogeneous caprock permeability based on above zone pressure monitoring SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Geologic CO2 Storage; CCS; Risk assessment; Bayesian statistics; Pressure monitoring; Fractures; Caprock permeability ID CO2 LEAKAGE DETECTION; NETWORK DESIGN; OPTIMIZATION APPROACH; CONCEPTUAL-MODEL; ABANDONED WELLS; CARBON STORAGE; UNCERTAINTY; BRINE; SITE; INJECTION AB The presence of faults/fractures or highly permeable zones in the primary sealing caprock of a CO2 storage reservoir can result in leakage of CO2. Monitoring of leakage requires the capability to detect and resolve the onset, location, and volume of leakage in a systematic and timely manner. Pressure-based monitoring possesses such capabilities. This study demonstrates a basis for monitoring network design based on the characterization of CO2 leakage scenarios through an assessment of the integrity and permeability of the caprock inferred from above zone pressure measurements. Four representative heterogeneous fractured seal types are characterized to demonstrate seal permeability ranging from highly permeable to impermeable. Based on Bayesian classification theory, the probability of each fractured caprock scenario given above zone pressure measurements with measurement error is inferred. The sensitivity to injection rate and caprock thickness is also evaluated and the probability of proper classification is calculated. The time required to distinguish between above zone pressure outcomes and the associated leakage scenarios is also computed. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Namhata, Argha; Small, Mitchell J.; Nakles, David V.] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. [Namhata, Argha; Dilmore, Robert M.] US DOE, Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. [King, Seth] US DOE, Natl Energy Technol Lab, AECOM, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. RP Namhata, A (reprint author), Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. EM anamhata@andrew.cmu.edu FU U.S. Department of Energy's (DOE) Office of Fossil Energy's CCS and Crosscutting Research Programs; Department of Civil and Environmental Engineering; Bertucci fellowship program at Carnegie Mellon University; Oak Ridge Institute for Science & Education (ORISE) FX This work was completed as part of the National Risk Assessment Partnership (NRAP) project. Support for this project came from the U.S. Department of Energy's (DOE) Office of Fossil Energy's CCS and Crosscutting Research Programs, by the Department of Civil and Environmental Engineering and the Bertucci fellowship program at Carnegie Mellon University, and by training fellowship through the Oak Ridge Institute for Science & Education (ORISE). The authors would like to thank Grant Bromhal, Mark L. McKoy, Neal W. Sams, Evgeniy M. Myshakin, Traci Rodosta, Robert Romanosky, M. Kylee Rice, and Steven Seachman of NETL and Mark Ackwiecz and Regis Conrad of U.S. DOE, Fossil Energy for their technical direction and Programmatic guidance; Liwei Zhang, Zan Wang and Ya-Mei Yang of NETL/ORISE at NETL for their valuable technical comments. NR 41 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD FEB PY 2017 VL 57 BP 89 EP 101 DI 10.1016/j.ijggc.2016.12.007 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA EM5OH UT WOS:000395360700009 ER PT J AU Nelson, NC Boote, BW Naik, P Rossini, AJ Smith, EA Slowing, II AF Nelson, Nicholas C. Boote, Brett W. Naik, Pranjali Rossini, Aaron J. Smith, Emily A. Slowing, Igor I. TI Transfer hydrogenation over sodium-modified ceria: Enrichment of redox sites active for alcohol dehydrogenation SO JOURNAL OF CATALYSIS LA English DT Article DE Transfer hydrogenation; Ceria; Sodium; Alcohol dehydrogenation; Redox; Defect sites; Oxidation; Flow chemistry ID DEFINED SURFACE PLANES; RAY PHOTOELECTRON-SPECTROSCOPY; PROBING DEFECT SITES; CEO2 NANOCRYSTALS; X-RAY; SELECTIVE HYDROGENATION; ELECTRONIC-STRUCTURE; STRUCTURE DEPENDENCE; OXYGEN VACANCY; CO OXIDATION AB Ceria (CeO2) and sodium-modified ceria (Ce-Na) were prepared through combustion synthesis. Palladium was deposited onto the supports (Pd/CeO2 and Pd/Ce-Na) and their activity for the aqueous-phase transfer hydrogenation of phenol using 2-propanol under liquid flow conditions was studied. Pd/Ce-Na showed a marked increase (6x) in transfer hydrogenation activity over Pd/CeO2. Material characterization indicated that water-stable sodium species were not doped into the ceria lattice, but rather existed as subsurface carbonates. Modification of ceria by sodium provided more adsorption and redox active sites (i.e. defects) for 2-propanol dehydrogenation. This effect was an intrinsic property of the Ce-Na support and independent of Pd. The redox sites active for 2-propanol dehydrogenation were thermodynamically equivalent on both supports/catalysts. At high phenol concentrations, the reaction was limited by 2-propanol adsorption. Thus, the difference in catalytic activity was attributed to the different numbers of 2-propanol adsorption and redox active sites on each catalyst. Published by Elsevier Inc. C1 [Slowing, Igor I.] US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Slowing, II (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA.; Slowing, II (reprint author), Iowa State Univ, Ames, IA 50011 USA. EM islowing@iastate.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, through the Ames Laboratory Catalysis Science program; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX This research is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, through the Ames Laboratory Catalysis Science program. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 82 TC 1 Z9 1 U1 2 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD FEB PY 2017 VL 346 BP 180 EP 187 DI 10.1016/j.jcat.2016.12.018 PG 8 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA EK8SQ UT WOS:000394195100019 ER PT J AU Jonsson, EO Lehtola, S Puska, M Jonsson, H AF Jonsson, Elvar O. Lehtola, Susi Puska, Martti Jonsson, Hannes TI Theory and Applications of Generalized Pipek-Mezey Wannier Functions SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID LOCALIZED MOLECULAR-ORBITALS; HARTREE-FOCK ORBITALS; AUGMENTED-WAVE METHOD; ELECTRON CORRELATION; LINEAR COMBINATION; CHARGE-DENSITIES; ATOMIC ORBITALS; HIRSHFELD-I; LOCALIZABILITY; SYMMETRY AB The theory for the generation of Wannier functions within the generalized Pipek-Mezey approach (Lehtola, S.; Jonsson, H. J. Chem. Theory Comput. 2014, 10, 642) is presented and an implementation thereof is described. Results are shown for systems with periodicity in one, two, and three dimensions as well as isolated molecules. The generalized Pipek-Mezey Wannier functions (PMWF) are highly localized orbitals consistent with chemical intuition where a distinction is maintained between sigma- and pi-orbitals. The PMWF method is compared with the so-called maximally localized Wannier functions (MLWFs) that are frequently used for the analysis of condensed matter calculations. Whereas PMWFs maximize the localization criterion of Pipek and Mezey, MLWFs maximize that of Foster and Boys and have the disadvantage of mixing sigma- and pi-orbitals in many cases. The PMWF orbitals turn out to be as localized as the MLWF orbitals as evidenced by cross-comparison of the values of the PMWF and MLWF objective functions for the two types of orbitals. Our implementation in the atomic simulation environment (ASE) is compatible with various representations of the wave function, including real-space grids, plane waves, and linear combinations of atomic orbitals. The projector-augmented wave formalism for the representation of atomic core electrons is also supported. Results of calculations with the GPAW software are described here, but our implementation can also use output from other electronic structure software such as ABINIT, NWChem, and VASP. C1 [Jonsson, Elvar O.; Lehtola, Susi; Puska, Martti; Jonsson, Hannes] Aalto Univ, Sch Sci, COMP Ctr Excellence, POB 11100, FI-00076 Espoo, Finland. [Jonsson, Elvar O.; Lehtola, Susi; Puska, Martti; Jonsson, Hannes] Aalto Univ, Sch Sci, Dept Appl Phys, POB 11100, FI-00076 Espoo, Finland. [Lehtola, Susi] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Jonsson, Hannes] Univ Iceland, Fac Phys Sci, IS-107 Reykjavik, Iceland. RP Lehtola, S (reprint author), Aalto Univ, Sch Sci, COMP Ctr Excellence, POB 11100, FI-00076 Espoo, Finland.; Lehtola, S (reprint author), Aalto Univ, Sch Sci, Dept Appl Phys, POB 11100, FI-00076 Espoo, Finland.; Lehtola, S (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM susi.lehtola@alumni.helsinki.fi RI Puska, Martti/E-7362-2012; Jonsson, Hannes/G-2267-2013 OI Puska, Martti/0000-0002-8419-3289; Jonsson, Hannes/0000-0001-8285-5421 FU Academy of Finland trough its Centres of Excellence Programme [251748]; Academy of Finland trough its FiDiPro Programme [263294] FX Computational resources provided by CSC - IT Center for Science, Ltd. (Espoo, Finland) are gratefully acknowledged. This work was funded by the Academy of Finland trough its Centres of Excellence Programme (2012-2017) under Project No. 251748 and through its FiDiPro Programme under Project No. 263294. NR 83 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD FEB PY 2017 VL 13 IS 2 BP 460 EP 474 DI 10.1021/acs.jctc.6b00809 PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EL9EZ UT WOS:000394924000008 PM 28099002 ER PT J AU Lee, J Small, DW Epifanovsky, E Head-Gordon, M AF Lee, Joonho Small, David W. Epifanovsky, Evgeny Head-Gordon, Martin TI Coupled-Cluster Valence-Bond Singles and Doubles for Strongly Correlated Systems: Block-Tensor Based Implementation and Application to Oligoacenes SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID MATRIX RENORMALIZATION-GROUP; QUADRUPLY EXCITED CLUSTERS; INNER-PROJECTION TECHNIQUE; CYCLIC-POLYENE MODEL; NUDGED ELASTIC BAND; 2-DIMENSIONAL GRAPHENE NANORIBBONS; EFFICIENT COMPUTER IMPLEMENTATION; STATIC ELECTRONIC-PROPERTIES; WIGNER PERTURBATION-THEORY; CONSISTENT WAVE-FUNCTIONS AB We demonstrate a block-tensor based implementation of coupled-cluster valence-bond singles and doubles (CCVB-SD) [Small, D. W.; Head-Gordon M. J. Chem. Phys. 2012, 137, 114103] which is a simple modification to restricted CCSD (RCCSD) that provides a qualitatively correct description of valence correlations even in strongly correlated systems. We derive the Lambda-equation of CCVB-SD and the corresponding unrelaxed density matrices. The resulting production-level implementation is applied to oligoacenes, correlating up to 318 electrons in 318 orbitals. CCVB-SD shows a qualitative agreement with exact methods for short acenes and reaches the bulk limit of oligoacenes in terms of natural orbital occupation numbers, whereas RCCSD shows nonvariational behavior even for relatively short acenes. A significant reduction in polyradicaloid character is found when correlating all valence electrons instead of only the pi-electrons. C1 [Small, David W.; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Small, DW; Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dsmallchem@gmail.com; mhg@cchem.berkeley.edu FU ARO MURI Grant [W911NF-14-1-0359]; Scientific Discovery through Advanced Computing (SciDAC) program - U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences [W911NF-14-1-0359] FX J.L. thanks Martin Head-Gordon's group for stimulating discussions and Soojin Lee for enormous support. This work was supported by a subcontract from ARO MURI Grant W911NF-14-1-0359 with additional support from the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences. NR 183 TC 0 Z9 0 U1 2 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD FEB PY 2017 VL 13 IS 2 BP 602 EP 615 DI 10.1021/acs.jctc.6b01092 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EL9EZ UT WOS:000394924000019 PM 28072533 ER PT J AU Huang, J Mei, Y Konig, G Simmonett, AC Pickard, FC Wu, Q Wang, LP MacKerell, AD Brooks, BR Shao, YH AF Huang, Jing Mei, Ye Koenig, Gerhard Simmonett, Andrew C. Pickard, Frank C. Wu, Qin Wang, Lee-Ping MacKerell, Alexander D., Jr. Brooks, Bernard R. Shao, Yihan TI An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID INTERMOLECULAR POTENTIAL FUNCTION; FLUCTUATING CHARGE; DYNAMICS SIMULATIONS; ATOMIC CHARGES; ELECTROSTATIC POTENTIALS; LIQUID WATER; ELECTRONEGATIVITY EQUALIZATION; DISTRIBUTED POLARIZABILITIES; AQUEOUS-SOLUTION; ORBITAL METHODS AB In this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PAD energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R-2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other 11 solute molecules, while the PAD model has a much better performance with R-2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. This suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization. C1 [Huang, Jing; MacKerell, Alexander D., Jr.] Univ Maryland, Sch Pharm, Dept Pharmaceut Sci, 20 Penn St, Baltimore, MD 21201 USA. [Huang, Jing; Simmonett, Andrew C.; Pickard, Frank C.; Brooks, Bernard R.] NHLBI, Lab Computat Biol, NIH, 5635 Fishers Lane,T-900 Suite, Rockville, MD 20852 USA. [Mei, Ye] East China Normal Univ, Sch Phys & Mat Sci, State Key Lab Precis Spect, Shanghai 200062, Peoples R China. [Mei, Ye] NYU Shanghai, NYU ECNU Ctr Computat Chem, Shanghai 200062, Peoples R China. [Koenig, Gerhard] Max Planck Inst Kohlenforsch, D-45470 Mulheim, NRW, Germany. [Wu, Qin] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Wang, Lee-Ping] Univ Calif Davis, Dept Chem, 1 Shields Ave, Davis, CA 95616 USA. [Shao, Yihan] Q Chem Inc, 6601 Owens Dr,Suite 105, Pleasanton, CA 94588 USA. [Shao, Yihan] Univ Oklahoma, Dept Chem & Biochem, Norman, OK 73019 USA. RP Shao, YH (reprint author), Q Chem Inc, 6601 Owens Dr,Suite 105, Pleasanton, CA 94588 USA.; Shao, YH (reprint author), Univ Oklahoma, Dept Chem & Biochem, Norman, OK 73019 USA. EM yihan.shao@ou.edu RI Huang, Jing/G-5320-2011; MEI, Ye/C-5843-2009; OI Huang, Jing/0000-0001-9639-2907; MEI, Ye/0000-0002-3953-8508; MacKerell, Alex/0000-0001-8287-6804 FU NIH [GM096678-02, GM072558, GM051501]; DOE [DE-SC0011297]; University of Oklahoma; NIH, NHLBI; DOE Office of Science [DE-SC0012704] FX Y.S. acknowledges financial support by NIH Grant GM096678-02, DOE Grant No. DE-SC0011297, and the University of Oklahoma startup fund. A.D.M. acknowledges partial support from NIH Grants GM072558 and GM051501. J.H., G.K., A.C.S., F.C.P., and B.R.B. are supported by the Intramural Research Program of the NIH, NHLBI. Computational resources and services used in this work were provided by the LoBoS cluster of the National Institutes of Health, the OU Supercomputing Center for Education and Research, and the Center of Functional Nanomaterials at the Brookhaven National Laboratory supported by DOE Office of Science under Contract No. DE-SC0012704. NR 107 TC 0 Z9 0 U1 2 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD FEB PY 2017 VL 13 IS 2 BP 679 EP 695 DI 10.1021/acs.jctc.6b01125 PG 17 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EL9EZ UT WOS:000394924000026 PM 28081366 ER PT J AU Carrillo, JMY Katsaras, J Sumpter, BG Ashkar, R AF Carrillo, Jan -Michael Y. Katsaras, John Sumpter, Bobby G. Ashkar, Rana TI A Computational Approach for Modeling Neutron Scattering Data from Lipid Bilayers SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID X-RAY-SCATTERING; MOLECULAR-DYNAMICS; THICKNESS FLUCTUATIONS; UNILAMELLAR VESICLES; BENDING ELASTICITY; MEMBRANES; PHASE; UNDULATIONS; SIMULATIONS; CHOLESTEROL AB Biological cell membranes are responsible for a range of structural and dynamical phenomena crucial, which are crucial to a cell's well-being and its associated functions. Due to the complexity of cell membranes, lipid bilayer systems are often used as biomimetic models. These systems have led to significant insights into vital membrane phenomena such as domain formation, passive permeation, and protein insertion. Experimental observations of membrane structure and dynamics are, however, limited in resolution, both spatial and temporal. Importantly, computer simulations are starting to play a more prominent role in interpreting experimental results, enabling a molecular understanding of lipid membranes. In particular, the synergy between scattering experiments and simulations offers opportunities for new discoveries in membrane physics, as the length and time scales probed by molecular dynamics (MD) simulations parallel those of experiments. Here, we describe a coarse-grained MD simulation approach that mimics neutron scattering data from large unilamellar lipid vesicles over a range of bilayer rigidities. Specifically, we simulate vesicle form factors and membrane thickness fluctuations determined from small angle neutron scattering (SANS) and neutron spin echo (NSE) experiments, respectively. Our simulations accurately reproduce trends from experiments and lay the groundwork for studies of more complex membrane systems. C1 [Carrillo, Jan -Michael Y.; Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Carrillo, Jan -Michael Y.; Sumpter, Bobby G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Katsaras, John; Ashkar, Rana] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Katsaras, John; Ashkar, Rana] Oak Ridge Natl Lab, Shull Wollan Ctr, Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA. [Katsaras, John] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Carrillo, JMY (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.; Carrillo, JMY (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.; Ashkar, R (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA.; Ashkar, R (reprint author), Oak Ridge Natl Lab, Shull Wollan Ctr, Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA. EM carrillojy@ornl.gov; ashkarra@ornl.gov RI Sumpter, Bobby/C-9459-2013; OI Sumpter, Bobby/0000-0001-6341-0355; Carrillo, Jan Michael/0000-0001-8774-697X FU DOE's Scientific User Facilities Division; ORNL's Neutron Sciences Directorate Clifford G. Shull Fellowship; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX This work was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. J. K. is supported by DOE's Scientific User Facilities Division. R. A. acknowledges support from ORNL's Neutron Sciences Directorate Clifford G. Shull Fellowship. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 48 TC 0 Z9 0 U1 6 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD FEB PY 2017 VL 13 IS 2 BP 916 EP 925 DI 10.1021/acs.jctc.6b00968 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EL9EZ UT WOS:000394924000047 PM 28080059 ER PT J AU Ma, SM Zhou, TJ Stone, DA Polson, D Dai, AG Stott, PA von Storch, H Qian, Y Burke, C Wu, PL Zou, LW Ciavarella, A AF Ma, Shuangmei Zhou, Tianjun Stone, Daithi A. Polson, Debbie Dai, Aiguo Stott, Peter A. von Storch, Hans Qian, Yun Burke, Claire Wu, Peili Zou, Liwei Ciavarella, Andrew TI Detectable Anthropogenic Shift toward Heavy Precipitation over Eastern China SO JOURNAL OF CLIMATE LA English DT Article ID ASIAN SUMMER MONSOON; HYDROLOGICAL CYCLE; EXTREME PRECIPITATION; AEROSOLS; CLIMATE; TRENDS; RAINFALL; CONSTRAINT; EMISSIONS; RESPONSES AB Changes in precipitation characteristics directly affect society through their impacts on drought and floods, hydro-dams, and urban drainage systems. Global warming increases the water holding capacity of the atmosphere and thus the risk of heavy precipitation. Here, daily precipitation records fromover 700 Chinese stations from1956 to 2005 are analyzed. The results show a significant shift fromlight to heavy precipitation over eastern China. An optimal fingerprinting analysis of simulations from 11 climate models driven by different combinations of historical anthropogenic (greenhouse gases, aerosols, land use, and ozone) and natural (volcanic and solar) forcings indicates that anthropogenic forcing on climate, including increases in greenhouse gases (GHGs), has had a detectable contribution to the observed shift toward heavy precipitation. Some evidence is found that anthropogenic aerosols (AAs) partially offset the effect of the GHG forcing, resulting in a weaker shift toward heavy precipitation in simulations that include theAAforcing than in simulationswith only theGHGforcing. In addition to the thermodynamic mechanism, strengthened water vapor transport from the adjacent oceans and by midlatitude westerlies, resulting mainly from GHG-induced warming, also favors heavy precipitation over eastern China. Further GHG-induced warming is predicted to lead to an increasing shift toward heavy precipitation, leading to increased urban flooding and posing a significant challenge for mega-cities in China in the coming decades. Future reductions in AA emissions resulting from air pollution controls could exacerbate this tendency toward heavier precipitation. C1 [Ma, Shuangmei; Zou, Liwei] Chinese Acad Meteorol Sci, Inst Climate Syst, Beijing, Peoples R China. [Ma, Shuangmei; Zhou, Tianjun] Chinese Acad Sci, Inst Atmospher Phys, LASG, Beijing, Peoples R China. [Zhou, Tianjun] Joint Ctr Global Change Studies, Beijing, Peoples R China. [Stone, Daithi A.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Polson, Debbie] Univ Edinburgh, Grant Inst, Sch GeoSci, Edinburgh, Midlothian, Scotland. [Dai, Aiguo] SUNY Albany, Dept Atmospher & Environm Sci, Albany, NY 12222 USA. [Stott, Peter A.; Burke, Claire; Wu, Peili; Ciavarella, Andrew] Met Off Hadley Ctr, Exeter, Devon, England. [von Storch, Hans] Univ Hamburg, KlimaCampus, Hamburg, Germany. [Qian, Yun] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA USA. RP Zhou, TJ (reprint author), Chinese Acad Sci, Inst Atmospher Phys, LASG, Beijing, Peoples R China.; Zhou, TJ (reprint author), Joint Ctr Global Change Studies, Beijing, Peoples R China. EM zhoutj@lasg.iap.ac.cn RI qian, yun/E-1845-2011 FU National Natural Science Foundation of China [41420104006, 41330423]; China R&D Special Fund for Public Welfare Industry (meteorology) [GYHY201406020]; UK-China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund; U.S. National Science Foundation [AGS-1353740]; U.S. Department of Energy's Office of Science [DE-SC0012602]; National Oceanic and Atmospheric Administration [NA15OAR4310086]; ERC [EC-320691]; U.S. Department of Energy's Office of Science as part of the Earth System Modeling Program; Battelle Memorial Institute [DE-AC05-76RL01830] FX This work is supported by the National Natural Science Foundation of China (Grants 41420104006 and 41330423) and China R&D Special Fund for Public Welfare Industry (meteorology) (GYHY201406020). PAS, CB, and AC are supported by the UK-China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund. A. Dai is supported by the U.S. National Science Foundation (Grant AGS-1353740), the U.S. Department of Energy's Office of Science (Award DE-SC0012602), and the National Oceanic and Atmospheric Administration (Award NA15OAR4310086). D. Polson is supported by the ERC-funded project TITAN (EC-320691). Y. Qian is supported by the U.S. Department of Energy's Office of Science as part of the Earth System Modeling Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under Contract DE-AC05-76RL01830. NR 69 TC 1 Z9 1 U1 3 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD FEB PY 2017 VL 30 IS 4 BP 1381 EP 1396 DI 10.1175/JCLI-D-16-0311.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EM7WG UT WOS:000395522400013 ER PT J AU Bock, LR Whitledge, GW Pracheil, B Bailey, P AF Bock, L. R. Whitledge, G. W. Pracheil, B. Bailey, P. TI Relationships between water and paddlefish Polyodon spathula dentary elemental and stable-isotopic signatures: potential application for reconstructing environmental history SO JOURNAL OF FISH BIOLOGY LA English DT Article DE calcium; hydrogen; microchemistry; oxygen; stable isotopes; strontium ID MIDDLE MISSISSIPPI RIVER; FIN RAY MICROCHEMISTRY; OTOLITH TRACE-ELEMENT; LIFE-HISTORY; FRESH-WATER; FISH; MANAGEMENT; HATCHERY; HYDROGEN; STURGEON AB The objectives of this study were to characterize relationships between water and paddlefish Polyodon spathula dentary Sr:Ca, O-18 and stable hydrogen isotope ratio (D) to determine the accuracy with which individual P. spathula could be assigned to their collection locations using dentary-edge Sr:Ca, D and O-18. A laboratory experiment was also conducted to determine whether dentary Sr:Ca in age 0 year P. spathula would reflect shifts in water Sr:Ca to which fish were exposed. Significant linear relationships between water and dentary Sr:Ca, D and O-18 were observed, although the relationship between water and dentary O-18 was weaker than those for Sr:Ca and D. Classification success for individual fish to collection locations that differed in water Sr:Ca, D and O-18 ranged from 86 to 100% based on dentary-edge Sr:Ca, D and O-18. Dentary Sr:Ca increased significantly in laboratory-reared age 0 year P. spathula following 4 weeks of exposure to elevated water Sr:Ca; dentary Sr:Ca of fish held in water with elevated Sr:Ca was also significantly higher than that of control fish reared in ambient laboratory water. Results indicated that P. spathula dentaries reflect water signatures for commonly-applied natural chemical markers and strongly suggest that dentary microchemistry and stable-isotopic compositions will be applicable for reconstructing P. spathula environmental history in locations where sufficient spatial differences in water chemistry occur. C1 [Bock, L. R.; Whitledge, G. W.] Southern Illinois Univ, Ctr Fisheries Aquaculture & Aquat Sci, 1125 Lincoln Dr, Carbondale, IL 62901 USA. [Pracheil, B.] Oak Ridge Natl Lab, Div Environm Sci, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Bailey, P.] North Dakota Game & Fish Dept, 3001 Main Ave, Bismarck, ND 58501 USA. RP Whitledge, GW (reprint author), Southern Illinois Univ, Ctr Fisheries Aquaculture & Aquat Sci, 1125 Lincoln Dr, Carbondale, IL 62901 USA. EM gwhit@siu.edu FU Larimore student research grant from the Illinois Chapter of the American Fisheries Society FX We thank the Missouri Department of Conservation, L. Frankland (Illinois Department of Natural Resources), D. Scarnecchia (University of Idaho) and J. Norman (Southern Illinois University) for providing some of the dentaries used in this study and Kentucky State University for providing paddlefish fingerlings for the laboratory experiment. We also thank A. Shiller of the Center for Trace Analysis, University of Southern Mississippi for analysis of Sr and Ca concentrations in water and feed samples, the Environmental Analytical Facility at the University of Massachusetts-Boston for use of their IC-PMS for analysis of dentary bone Sr:Ca and M. Lefticariu from Southern Illinois University's mass spectrometry facility for stable hydrogen and oxygen isotope analyses of water and dentary samples. Partial support for this project to L.B. was provided by a Larimore student research grant from the Illinois Chapter of the American Fisheries Society. All work was conducted under Southern Illinois University Institutional Animal Care and Use Committee Protocol 10-014. NR 44 TC 1 Z9 1 U1 2 U2 2 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-1112 EI 1095-8649 J9 J FISH BIOL JI J. Fish Biol. PD FEB PY 2017 VL 90 IS 2 BP 595 EP 610 DI 10.1111/jfb.13047 PG 16 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA EM9LF UT WOS:000395632400008 PM 27457878 ER PT J AU Pouransari, H Kolla, H Chen, JH Mani, A AF Pouransari, H. Kolla, H. Chen, J. H. Mani, A. TI Spectral analysis of energy transfer in turbulent flows laden with heated particles SO JOURNAL OF FLUID MECHANICS LA English DT Article DE homogeneous turbulence; multiphase and particle-laden flows; turbulent flows ID HOMOGENEOUS ISOTROPIC TURBULENCE; PREFERENTIAL CONCENTRATION; SETTLING VELOCITY; HEAVY-PARTICLES; NUMERICAL SIMULATIONS; DROPLETS AB In this study we consider particle-laden turbulent flows with significant heat transfer between the two phases due to sustained heating of the particle phase. The sustained heat source can be due to particle heating via an external radiation source as in the particle-based solar receivers or an exothermic reaction in the particles. Our objective is to investigate the effects of fluid heating by a dispersed phase on the turbulence evolution. An important feature in such settings is the preferential clustering phenomenon which is responsible for non-uniform distribution of particles in the fluid medium. Particularly, when the ratio of particle inertial relaxation time to the turbulence time scale, namely the Stokes number, is of order unity, particle clustering is maximized, leading to thin regions of heat source similar to the flames in turbulent combustion. However, unlike turbulent combustion, a particle-laden system involves a wide range of clustering scales that is mainly controlled by particle Stokes number. To study these effects, we considered a decaying homogeneous isotropic turbulence laden with heated particles over a wide range of Stokes numbers. Using a low-Mach-number formulation for the fluid energy equation and a Lagrangian framework for particle tracking, we performed numerical simulations of this coupled system. We then applied a high-fidelity framework to perform spectral analysis of kinetic energy in a variable-density fluid. Our results indicate that particle heating can considerably influence the turbulence cascade. We show that the pressure-dilatation term introduces turbulent kinetic energy at a range of scales consistent with the scales observed in particle clusters. This energy is then transferred to high wavenumbers via the energy transfer term. For low and moderate levels of particle heating intensity, quantified by a parameter a defined as the ratio of eddy time to mean temperature increase time, turbulence modification occurs primarily in the dilatational modes of the velocity field. However, as the heating intensity is increased, the energy transfer term converts energy from dilatational modes to divergence-free modes. Interestingly, as the heating intensity is increased, the net modification of turbulence by heating is observed dominantly in divergence-free modes; the portion of turbulence modification in dilatational modes diminishes with higher heating. Moreover, we show that modification of divergence free modes is more pronounced at intermediate Stokes numbers corresponding to the maximum particle clustering. We also present the influence of heating intensity on the energy transfer term itself. This term crosses over from negative to positive values beyond a threshold wavenumber, showing the cascade of energy from large scales to small scales. The threshold is shown to shift to higher wavenumbers with increasing heating, indicating a growth in the total energy transfer from large scales to small scales. The fundamental energy transfer analysis presented in this paper provides insightful guidelines for subgrid-scale modelling and large-eddy simulation of heated particle-laden turbulence. C1 [Pouransari, H.; Mani, A.] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Kolla, H.; Chen, J. H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. RP Mani, A (reprint author), Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. EM alimani@stanford.edu FU US Department of Energy under the Predictive Science Academic Alliance Program 2 (PSAAP2) at Stanford University; Lockheed Martin Company, for the US Department of Energy [DE-AC04-94AL85000]; Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the US Department of Energy FX We would like to acknowledge the anonymous referee for comments regarding the effects of particle Stokes number on TKE modification. This work was supported by the US Department of Energy under the Predictive Science Academic Alliance Program 2 (PSAAP2) at Stanford University. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract DE-AC04-94AL85000. The work at Sandia National Laboratories was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the US Department of Energy. NR 31 TC 0 Z9 0 U1 1 U2 1 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD FEB PY 2017 VL 813 BP 1156 EP 1175 DI 10.1017/jfm.2017.2 PG 20 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA EL1JK UT WOS:000394376400047 ER PT J AU Bhatkar, H Snow, RJ Arenholz, E Idzerda, YU AF Bhatkar, H. Snow, R. J. Arenholz, E. Idzerda, Y. U. TI Elemental moment variation of bcc FexMn1-x on MgO(001) SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Bcc FeMn alloy; X-ray absorption spectroscopy; X-ray magnetic circular dichroism; Magnetic thin films ID FE-MN ALLOYS; AUGMENTED-WAVE METHOD; UNIDIRECTIONAL ANISOTROPY; ELECTRONIC-STRUCTURE; ROOM-TEMPERATURE; THIN-FILMS; MAGNETISM; IRON; MAGNETORESISTANCE; TRANSITION AB We report the growth, structural characterization, and electronic structure evolution of epitaxially grown bcc FexMn1-x on MgO(001). It is observed that the 20 nm thick FexMn(1-x) alloy films remained bcc from 0.65 <= x <= 1, much beyond the bulk stability range of 0.88 <= x <= 1. X-ray absorption spectroscopy and X-ray magnetic circular dichroism show that both the Fe and Mn L-3 binding energies slightly increase with Mn incorporation and that the elemental moment of Fe in the 20 nm crystalline bcc alloy film remain nearly constant, then shows a dramatic collapse near x similar to 0.84. The Mn MCD intensity is found to be small at all compositions that exhibit ferromagnetism. C1 [Bhatkar, H.; Snow, R. J.; Idzerda, Y. U.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. [Arenholz, E.] Lawrence Berkeley Natl Labs, Adv Light Source, Berkeley, CA 94720 USA. RP Idzerda, YU (reprint author), Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. EM idzerda@montana.edu FU National Science Foundation [ECCS-1542210]; Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231] FX One of us (HB) would like to thank Adam McClure for useful discussions. Calculations were performed on the Hyalite Research Cluster at Montana State University. This material is based upon work supported by the National Science Foundation under Grant ECCS-1542210. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 38 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 EI 1873-4766 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD FEB 1 PY 2017 VL 423 BP 46 EP 50 DI 10.1016/j.jmmm.2016.09.060 PG 5 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA EP2DI UT WOS:000397192800008 ER PT J AU Zhang, HH Malik, V Mallapragada, S Akinc, M AF Zhang, Honghu Malik, Vikash Mallapragada, Surya Akinc, Mufit TI Synthesis and characterization of Gd-doped magnetite nanoparticles SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Magnetite nanoparticles; Aqueous synthesis; Rare earth; Doping; Crystal size ID IRON-OXIDE NANOPARTICLES; SIZE; NANOCRYSTALS; PROTEIN; GADOLINIUM; GROWTH; SHAPE; MMS6; NANOMATERIALS; BIOMEDICINE AB Synthesis of magnetite nanoparticles has attracted increasing interest due to their importance in biomedical and technological applications. Tunable magnetic properties of magnetite nanoparticles to meet specific requirements will greatly expand the spectrum of applications. Tremendous efforts have been devoted to studying and controlling the size, shape and magnetic properties of magnetite nanoparticles. Here we investigate gadolinium (Gd) doping to influence the growth process as well as magnetic properties of magnetite nanocrystals via a simple co-precipitation method under mild conditions in aqueous media. Gd doping was found to affect the growth process leading to synthesis of controllable particle sizes under the conditions tested (0-10 at% Gd3+). Typically, undoped and 5 at% Gd-doped magnetite nanoparticles were found to have crystal sizes of about 18 and 44 nm, respectively, supported by X-ray diffraction and transmission electron microscopy. Our results showed that Gd-doped nanoparticles retained the magnetite crystal structure, with Gd3+ randomly incorporated in the crystal lattice, probably in the octahedral sites. The composition of 5 at% Gd-doped magnetite was Fe(3-x)GdxO4 (x=0.085 +/- 0.002), as determined by inductively coupled plasma mass spectrometry. 5 at% Gd-doped nanoparticles exhibited ferrimagnetic properties with small coercivity (similar to 65 Oe) and slightly decreased magnetization at 260 K in contrast to the undoped, superparamagnetic magnetite nanoparticles. Templation by the bacterial biomineralization protein Mms6 did not appear to affect the growth of the Gd-doped magnetite particles synthesized by this method. C1 [Zhang, Honghu; Malik, Vikash; Mallapragada, Surya; Akinc, Mufit] Ames Lab, S Dept Energy, Ames, IA 50011 USA. [Zhang, Honghu; Akinc, Mufit] Iowa State Univ, Dept Mat Sci Engn, Ames, IA 50011 USA. [Mallapragada, Surya] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA. RP Akinc, M (reprint author), Ames Lab, S Dept Energy, Ames, IA 50011 USA.; Akinc, M (reprint author), Iowa State Univ, Dept Mat Sci Engn, Ames, IA 50011 USA. EM makinc@iastate.edu FU U.S. Department of Energy, Office of Basic Energy Sciences; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX Thanks to Prof. Marit Nilsen-Hamilton's group from Iowa State University for providing the Mms6 protein and for useful discussions. We also thank Ms. Jonna Berry (Prof. Robert S. Houk's group) from Ames Laboratory for conducting ICP-MS measurements. Research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract no. DE-AC02-07CH11358. NR 58 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 EI 1873-4766 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD FEB 1 PY 2017 VL 423 BP 386 EP 394 DI 10.1016/j.jmmm.2016.10.005 PG 9 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA EP2DI UT WOS:000397192800059 ER PT J AU Pagano, JK Erickson, KA Scott, BL Morris, DE Waterman, R Kiplinger, JL AF Pagano, Justin K. Erickson, Karla A. Scott, Brian L. Morris, David E. Waterman, Rory Kiplinger, Jaqueline L. TI Synthesis and characterization of a new and electronically unusual uranium metallacyclocumulene, (C5Me5)(2)U(eta(4)-1,2,3,4-PhC4Ph) SO JOURNAL OF ORGANOMETALLIC CHEMISTRY LA English DT Article; Proceedings Paper CT 12th JOM Symposium of Organometallic Chemistry held at the 42nd International Conference on Coordination Chemistry (ICCC) CY JUL 03-08, 2016 CL Brest, FRANCE SP JOM DE Uranium; Pentamethylcyclopentadienyl; Metallacyclocumulene; Electronic spectroscopy; X-ray crystallography ID RAY-ABSORPTION SPECTROSCOPY; DENSITY-FUNCTIONAL THEORY; ORGANO-METALLIC COMPOUNDS; EARLY ACTINIDE COMPLEXES; METALLOCENE DICHLORIDES; NOBEL LECTURE; MULTIELECTRON REDUCTANTS; OLEFIN-METATHESIS; HYDRIDE COMPLEXES; REACTIVITY AB A new uranium metallacyclocumulene, (C5Me5)(2)U(eta(4)-1,2,3,4-PhC4Ph), was synthesized by both reaction of (C5Me5)(2)UCl2 with 1,4-diphenylbutadiyne in the presence of KC8 and by ligand exchange between (C5Me5)(2)U(eta(2)-Me3SiC2SiMe3) and 1,4-diphenylbutadiyne. Full characterization of (C5Me5)(2)U(eta(4)-1,2,3,4-PhC4Ph) is reported, including the solid-state structure. (C5Me5)(2)U(eta(4)-1,2,3,4-PhC4Ph) displays an unusually detailed UV visible spectrum, which is rare for uranium(IV) metallocene complexes. (C) 2016 Elsevier B.V. All rights reserved. C1 [Pagano, Justin K.; Erickson, Karla A.; Scott, Brian L.; Morris, David E.; Kiplinger, Jaqueline L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Pagano, Justin K.; Waterman, Rory] Univ Vermont, Dept Chem, Cook Phys Sci Bldg, Burlington, VT 05405 USA. RP Morris, DE; Kiplinger, JL (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.; Waterman, R (reprint author), Univ Vermont, Dept Chem, Cook Phys Sci Bldg, Burlington, VT 05405 USA. EM kiplinger@lanl.gov FU U.S. National Science Foundation [CHE-1265608, CHE-1565658]; DOE [DE-AC05-060R23100]; U.S. Department of Energy [DE-AC52-06NA25396] FX For financial support of this work, we acknowledge the U.S. Department of Energy through the Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program (GRA Fellowship to J.K.P.), the LANL LDRD Program, the LANL G. T. Seaborg Institute for Transactinium Science (Postdoctoral Fellowship to K.A.E.), and the Office of Basic Energy Sciences, Heavy Element Chemistry program (J.L.K., B.L.S., materials & supplies). We also acknowledge the U.S. National Science Foundation (grant CHE-1265608 and CHE-1565658 to R.W.). The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE (contract DE-AC05-060R23100). Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (contract DE-AC52-06NA25396). NR 44 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0022-328X EI 1872-8561 J9 J ORGANOMET CHEM JI J. Organomet. Chem. PD FEB 1 PY 2017 VL 829 SI SI BP 79 EP 84 DI 10.1016/j.jorganchem.2016.10.034 PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA EL2TL UT WOS:000394473000013 ER PT J AU Ringler, T Saenz, JA Wolfram, PJ Van Roekel, L AF Ringler, Todd Saenz, Juan A. Wolfram, Phillip J. Van Roekel, Luke TI A Thickness-Weighted Average Perspective of Force Balance in an Idealized Circumpolar Current SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article ID OVERTURNING CIRCULATION; OCEAN CIRCULATION; MODEL; PARAMETERIZATION; ENERGETICS; MOMENTUM; THEOREM; STRESS; EDDIES; FLOWS AB The exact, three-dimensional, thickness-weighted averaged (TWA) Boussinesq equations are used to diagnose eddy-mean flow interaction in an idealized circumpolar current (ICC). The force exerted by meso-scale eddies on the TWA velocity is expressed as the divergence of the Eliassen-Palm flux tensor. Consistent with previous findings, the analysis indicates that the dynamically relevant definition of the ocean surface layer is composed of the set of buoyancy coordinates that ever reside at the ocean surface at a given horizontal position. The surface layer is found to be a physically distinct object with a diabatic and force balance that is largely isolated from the underlying adiabatic region in the interior. Within the ICC surface layer, the TWA meridional velocity is southward/northward in the top/bottomhalf and has a value near zero at the bottom. In the top half of the surface layer, the zonal forces due to wind stress and meridional advection of potential vorticity act to accelerate the TWA zonal velocity; equilibrium is obtained by eddies decelerating the zonal flow via a downward flux of eastward momentum that increases with depth. In the bottom half of the surface layer, the accelerating force of the wind stress is balanced by the eddy force and meridional advection of potential vorticity. The bottom of the surface layer coincides with the location where the zonal eddy force, meridional advection of potential vorticity, and zonal wind stress force are all zero. The net meridional transport S-f within the surface layer is a small residual of its southward and northward TWA meridional flows. The mean meridional gradient of the surface layer buoyancy is advected by S-f to balance the surface buoyancy flux. C1 [Ringler, Todd; Saenz, Juan A.; Wolfram, Phillip J.; Van Roekel, Luke] Los Alamos Natl Lab, Fluid Dynam & Solid Mech, Los Alamos, NM 87544 USA. RP Ringler, T (reprint author), Los Alamos Natl Lab, Fluid Dynam & Solid Mech, Los Alamos, NM 87544 USA. EM ringler@lanl.gov FU U.S. Department of Energy's Office of Science program for Scientific Discovery through Advanced Computing (SciDAC) FX This work is part of the "Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System" project, supported by the U.S. Department of Energy's Office of Science program for Scientific Discovery through Advanced Computing (SciDAC). Code developments and simulations relied heavily on the work of the MPAS dynamical core development team at LANL and NCAR, and in particular the contributions from the MPAS-Ocean development team at LANL. The analysis presented above greatly benefited by comments from Andy Hogg and from two anonymous reviewers. NR 32 TC 0 Z9 0 U1 0 U2 0 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 EI 1520-0485 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD FEB PY 2017 VL 47 IS 2 BP 285 EP 302 DI 10.1175/JPO-D-16-0096.1 PG 18 WC Oceanography SC Oceanography GA EL3FP UT WOS:000394505300002 ER PT J AU Schoonover, J Dewar, WK Wienders, N Deremble, B AF Schoonover, Joseph Dewar, William K. Wienders, Nicolas Deremble, Bruno TI Local Sensitivities of the Gulf Stream Separation(a) SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article ID WESTERN-BOUNDARY-CURRENT; BOTTOM TOPOGRAPHY; MODEL; OCEAN; CIRCULATION; SYSTEM; LAYER; REPRESENTATION; RECIRCULATION; CURRENTS AB Robust and accurate Gulf Stream separation remains an unsolved problem in general circulation modeling whose resolution will positively impact the ocean and climate modeling communities. Oceanographic literature does not face a shortage of plausible hypotheses that attempt to explain the dynamics of the Gulf Stream separation, yet a single theory that the community agrees on is missing. In this paper, the authors investigate the impact of the deep western boundary current (DWBC), coastline curvature, and continental shelf steepening on the Gulf Stream separation within regional configurations of the Massachusetts Institute of Technology General Circulation Model. Artificial modifications to the regional bathymetry are introduced to investigate the sensitivity of the separation to each of these factors. Metrics for subsurface separation detection confirm the direct link between flow separation and the surface expression of the Gulf Stream in the Mid-Atlantic Bight. It is shown that the Gulf Stream separation and mean surface position are most sensitive to the continental slope steepening, consistent with a theory proposed by Melvin Stern in 1998. In contrast, the Gulf Stream separation exhibits minimal sensitivity to the presence of the DWBC and coastline curvature. The implications of these results to the development of a ``separation recipe'' for ocean modeling are discussed. This study concludes adequate topographic resolution is a necessary, but not sufficient, condition for proper Gulf Stream separation. C1 [Schoonover, Joseph] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA. [Dewar, William K.; Wienders, Nicolas; Deremble, Bruno] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA. RP Schoonover, J (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA. EM jschoonover@lanl.gov FU NSF [OCE-1049131]; U.S. Department of Energy through the LANL/LDRD Program; Center for Nonlinear Studies FX Funding for this research was provided by NSF under Award OCE-1049131. J. Schoonover gratefully acknowledges the support of the U.S. Department of Energy through the LANL/LDRD Program and the Center for Nonlinear Studies for this work. We thank David Marshall and an anonymous reviewer for their insightful remarks that improved this manuscript. NR 45 TC 0 Z9 0 U1 0 U2 0 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 EI 1520-0485 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD FEB PY 2017 VL 47 IS 2 BP 353 EP 373 DI 10.1175/JPO-D-16-0195.1 PG 21 WC Oceanography SC Oceanography GA EL3FP UT WOS:000394505300006 ER PT J AU Biswas, K Rose, J Eikevik, L Guerguis, M Enquist, P Lee, B Love, L Green, J Jackson, R AF Biswas, Kaushik Rose, James Eikevik, Leif Guerguis, Maged Enquist, Philip Lee, Brian Love, Lonnie Green, Johney Jackson, Roderick TI Additive Manufacturing Integrated Energy-Enabling Innovative Solutions for Buildings of the Future SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article DE 3D printing; additive manufacturing; future buildings; sustainable building environment ID PERFORMANCE AB The additive manufacturing integrated energy (AMIE) demonstration utilized three-dimensional (3D) printing as an enabling technology in the pursuit of construction methods that use less material, create less waste, and require less energy to build and operate. Developed by Oak Ridge National Laboratory (ORNL) in collaboration with the Governor's Chair for Energy and Urban-ism, a research partnership of the University of Tennessee (UT) and ORNL led by Skidmore, Owings & Merrill LLP (SOM), AMIE embodies a suite of innovations demonstrating a transformative future for designing, constructing, and operating buildings. Subsequent, independent UT College of Architecture and Design studios taught in collaboration with SOM professionals also explored forms and shapes based on biological systems that naturally integrate structure and enclosure. AMIE, a compact microdwelling developed by ORNL research scientists and SOM designers, incorporates next-generation modified atmosphere insulation (MAI), self-shading windows, and the ability to produce, store, and share solar power with a paired hybrid vehicle. It establishes for the first time, a platform for investigating solutions integrating the energy systems in buildings, vehicles, and the power grid. The project was built with broad-based support from local industry and national material suppliers. Designed and constructed in a span of only 9 months, AMIE 1.0 serves as an example of the rapid innovation that can be accomplished when research, design, academic, and industrial partners work in collaboration toward the common goal of a more sustainable and resilient built environment. C1 [Biswas, Kaushik; Love, Lonnie; Jackson, Roderick] Oak Ridge Natl Lab, Energy & Transportat Sci Div, One Bethel Valley Rd,Bldg 3147,POB 2008,MS 6070, Oak Ridge, TN 37831 USA. [Rose, James] Univ Tennessee, Coll Architecture & Design, Knoxville, TN 37996 USA. [Eikevik, Leif; Guerguis, Maged; Enquist, Philip; Lee, Brian] Skidmore Owings & Merrill LLP, Chicago, IL 60604 USA. [Enquist, Philip] Univ Tennessee, Energy & Urbanism, Knoxville, TN 37996 USA. [Green, Johney] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Biswas, K (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, One Bethel Valley Rd,Bldg 3147,POB 2008,MS 6070, Oak Ridge, TN 37831 USA. EM biswask@ornl.gov; jrose18@utk.edu; leif.eikevik@som.com; maged.guerguis@som.com; Philip.Enquist@som.com; Brian.Lee@som.com; lovelj@ornl.gov; Johney.Green@nrel.gov; jacksonrk@ornl.gov FU U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) [DE-AC05-00OR22725]; UT-Battelle, LLC FX The Advanced Manufacturing Integrated Energy (AMIE) demonstration project was supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. We acknowledge Dr. Martin Keller for his leadership provided from the original conception of this project through final completion. We also acknowledge Dr. Karma Sawyer of DOE for her support, feedback, and direction provided. We acknowledge the many contributors to the success of this demonstration project who range from industry, academia, and government research laboratories. NR 12 TC 0 Z9 0 U1 2 U2 2 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 EI 1528-8986 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD FEB PY 2017 VL 139 IS 1 SI SI AR 015001 DI 10.1115/1.4034980 PG 10 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA EK8DQ UT WOS:000394154500010 ER PT J AU Wang, N Phelan, P AF Wang, Nora Phelan, Patrick TI Special Issue on Buildings of the Future: Notes From Guest Editors SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Editorial Material C1 [Wang, Nora] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. [Phelan, Patrick] Arizona State Univ, Sch Engn Matter Transport & Energy, 501 E Tyler Mall,ECG 303, Tempe, AZ 85287 USA. [Phelan, Patrick] US DOE, Bldg Technol Off, Washington, DC USA. RP Wang, N (reprint author), Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. EM Na.Wang@pnnl.gov; phelan@asu.edu NR 0 TC 0 Z9 0 U1 1 U2 1 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 EI 1528-8986 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD FEB PY 2017 VL 139 IS 1 SI SI AR 010301 PG 1 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA EK8DQ UT WOS:000394154500001 ER PT J AU Lee, S VanderVeer, BJ Hrma, P Hilliard, ZJ Heilman-Moore, JS Bonham, CC Pokorny, R Dixon, DR Schweiger, MJ Kruger, AA AF Lee, SeungMin VanderVeer, Bradley J. Hrma, Pavel Hilliard, Zachary J. Heilman-Moore, Jayven S. Bonham, Charles C. Pokorny, Richard Dixon, Derek R. Schweiger, Michael J. Kruger, Albert A. TI Effects of heating rate, quartz particle size, viscosity, and form of glass additives on high-level waste melter feed volume expansion SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article DE cold cap; frit; glass-forming and -modifying chemicals; heating rate; high-level waste; quartz particle size; viscosity ID COLD-CAP REACTIONS; NUCLEAR-WASTE; MOLTEN GLASS; CONVERSION; VITRIFICATION; BATCH; TEMPERATURE; DISSOLUTION; SILICA; MODEL AB Nuclear waste can be vitrified by mixing it with glass-forming and -modifying additives. The resulting feed is charged into an electric glass melter. To comprehend melting behavior of a high-alumina melter feed, we monitored the volume expansion of pellets in response to heating at different heating rates. The feeds were prepared with different particle sizes of quartz (the major additive component) and with varied silica-to-fluxes ratio to investigate the glass melt viscosity effects. Also, we used additional melter feeds with additives premelted into glass frit. The volume of pellets was nearly constant at temperatures <600 degrees C. After a short period of volume shrinkage at similar to 600 degrees C-700 degrees C, foam generation produced massive volume expansion. The low heat conductivity of foam hinders the transfer of heat from molten glass to the reacting feed. The extent of foaming increased with faster heating and higher melt viscosity, and decreased with increasing size of quartz particles and fritting of the additives. Volume expansion data are needed for the mathematical modeling of the cold cap. C1 [Lee, SeungMin; VanderVeer, Bradley J.; Hrma, Pavel; Hilliard, Zachary J.; Heilman-Moore, Jayven S.; Bonham, Charles C.; Dixon, Derek R.; Schweiger, Michael J.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Pokorny, Richard] Joint Workplace Univ Chem & Technol, Lab Inorgan Mat, Prague 8, Czech Republic. [Pokorny, Richard] ASCR, Inst Rock Struct & Mech, Prague 8, Czech Republic. [Kruger, Albert A.] US DOE, Off River Protect, Richland, WA USA. RP VanderVeer, BJ (reprint author), Pacific Northwest Natl Lab, Richland, WA 99352 USA. EM seungmin.lee@pnnl.gov FU U.S. Department of Energy's Waste Treatment & Immobilization Plant Project of the Office of River Protection; Department of Energy by Battelle Memorial Institute [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy's Waste Treatment & Immobilization Plant Project of the Office of River Protection under the direction of Albert A. Kruger. The Pacific Northwest National Laboratory is operated for the Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830. NR 49 TC 1 Z9 1 U1 2 U2 2 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD FEB PY 2017 VL 100 IS 2 BP 583 EP 591 DI 10.1111/jace.14629 PG 9 WC Materials Science, Ceramics SC Materials Science GA EL3UX UT WOS:000394545900017 ER PT J AU Lee, E Kim, HW Seong, S Denlinger, JD Kwon, YS Kang, JS AF Lee, Eunsook Kim, Hyun Woo Seong, Seungho Denlinger, J. D. Kwon, Y. S. Kang, J. -S. TI Soft X-ray synchrotron radiation spectroscopy study of rare-earth chalcogenide charge-density wave compounds SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article DE Charge-Density Wave; ARPES; XAS; Electronic Structure ID TRANSITION-METAL COMPOUNDS; ELECTRONIC-STRUCTURE; FERMI-SURFACE; CETE2; ABSORPTION AB The electronic structures of the layered rare-earth chalcogenide compounds of CeTe2, PrTe2, and PrTe3, which have the charge-density wave (CDW) transition and possibly the chiral transition, have been investigated by employing soft X-ray absorption spectroscopy (XAS) and angle-resolved photoemission spectroscopy (ARPES). R 3d XAS measurements show that the valence states of Ce and Pr ions are nearly trivalent in all the compounds. Similar band dispersions are observed in their measured ARPES data, but with the band positions in PrTe3 being shifted up in energy compared to those in CeTe2 and PrTe2. These findings suggest that their Te 5p band structures are determined mainly by the 2D interactions in the Te(2)/Te(3) sheets, but with a larger number of holes in the Te 5p bands in PrTe3 than in CeTe2 and PrTe2. The measured constant energy maps of CeTe2, PrTe2, and PrTe3 for high binding energies are similar to one another, reflecting the Te 5p band structures of the Te(2)/Te(3) square nets. In contrast, the Fermi surfaces (FSs) of CeTe2 and PrTe3 exhibit extra features, different from the FS of the ideal Te(2)/Te(3) square nets, which arise from the CDW-induced FS reconstruction in the Te(2)/Te(3) sheets. C1 [Lee, Eunsook; Kim, Hyun Woo; Seong, Seungho; Kang, J. -S.] Catholic Univ Korea, Dept Phys, Bucheon 14662, South Korea. [Denlinger, J. D.] Lawrence Berkeley Natl Lab, ALS, Berkeley, CA 94720 USA. [Kwon, Y. S.] Daegu Gyeongbuk Inst Sci & Technol, Dept Emerging Mat Sci, Daegu 42988, South Korea. RP Kang, JS (reprint author), Catholic Univ Korea, Dept Phys, Bucheon 14662, South Korea. EM kangjs@catholic.ac.kr FU National Research Foundation of Korea (NRF) [2016R1D1A1B03932391]; Catholic University of Korea FX This work was supported by the National Research Foundation of Korea (NRF) under Contract No. 2016R1D1A1B03932391, and in part by the Research Fund 2016 of the Catholic University of Korea. Experiments at PLS were supported by MSIP and PAL. NR 26 TC 0 Z9 0 U1 2 U2 2 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 EI 1976-8524 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD FEB PY 2017 VL 70 IS 4 BP 389 EP 393 DI 10.3938/jkps.70.389 PG 5 WC Physics, Multidisciplinary SC Physics GA EN7UF UT WOS:000396207000010 ER PT J AU Mayhew, MB Iversen, ES Hartemink, AJ AF Mayhew, Michael B. Iversen, Edwin S. Hartemink, Alexander J. TI Characterization of dependencies between growth and division in budding yeast SO JOURNAL OF THE ROYAL SOCIETY INTERFACE LA English DT Article DE size control; Bayesian hierarchical modelling; cell growth; cell division; budding yeast; statistical dependencies ID CELL-SIZE CONTROL; SACCHAROMYCES-CEREVISIAE; CYCLE; MODEL; HOMEOSTASIS; COORDINATION; VARIABILITY; EXPRESSION; STRATEGY; BACTERIA AB Cell growth and division are processes vital to the proliferation and development of life. Coordination between these two processes has been recognized for decades in a variety of organisms. In the budding yeast Saccharomyces cerevisiae, this coordination or 'size control' appears as an inverse correlation between cell size and the rate of cell-cycle progression, routinely observed in G(1) prior to cell division commitment. Beyond this point, cells are presumed to complete S/G(2)/M at similar rates and in a size-independent manner. As such, studies of dependence between growth and division have focused on G(1). Moreover, in unicellular organisms, coordination between growth and division has commonly been analysed within the cycle of a single cell without accounting for correlations in growth and division characteristics between cycles of related cells. In a comprehensive analysis of three published time-lapsemicroscopy data-sets, we analyse both intra-and inter-cycle dependencies between growth and division, revisiting assumptions about the coordination between these two processes. Interestingly, we find evidence (i) that S/G(2)/M durations are systematically longer in daughters than inmothers, (ii) of dependencies between S/G(2)/M and size at budding that echo the classical G(1) dependencies, and (iii) in contrast with recent bacterial studies, of negative dependencies between size at birth and size accumulated during the cell cycle. In addition, we develop a novel hierarchical model to uncover inter-cycle dependencies, and we find evidence for such dependencies in cells growing in sugar-poor environments. Our analysis highlights the need for experimentalists and modellers to account for new sources of cell-to-cell variation in growth and division, and our model provides a formal statistical framework for the continued study of dependencies between biological processes. C1 [Mayhew, Michael B.] Lawrence Livermore Natl Lab, Computat Engn Div, Livermore, CA 94550 USA. [Mayhew, Michael B.; Iversen, Edwin S.; Hartemink, Alexander J.] Duke Univ, Program Computat Biol & Bioinformat, Durham, NC 27708 USA. [Iversen, Edwin S.; Hartemink, Alexander J.] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA. [Hartemink, Alexander J.] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA. [Hartemink, Alexander J.] Duke Univ, Dept Biol, Durham, NC 27708 USA. RP Mayhew, MB (reprint author), Lawrence Livermore Natl Lab, Computat Engn Div, Livermore, CA 94550 USA.; Mayhew, MB (reprint author), Duke Univ, Program Computat Biol & Bioinformat, Durham, NC 27708 USA. EM mayhew5@llnl.gov FU NIH [P50-GM081883-01, R01-GM118551-01]; DARPA [HR001109-1-0040]; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344 (LLNL-JRNL-702334)] FX This work was funded in part by grants from NIH (P50-GM081883-01 and R01-GM118551-01) and DARPA (HR001109-1-0040) and was performed in part under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 (LLNL-JRNL-702334). NR 40 TC 0 Z9 0 U1 0 U2 0 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1742-5689 EI 1742-5662 J9 J R SOC INTERFACE JI J. R. Soc. Interface PD FEB 1 PY 2017 VL 14 IS 127 AR 20160993 DI 10.1098/rsif.2016.0993 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EN4ZT UT WOS:000396016100028 ER PT J AU Ling, JL Ruiz, A Lacaze, G Oefelein, J AF Ling, Julia Ruiz, Anthony Lacaze, Guilhem Oefelein, Joseph TI Uncertainty Analysis and Data-Driven Model Advances for a Jet-in-Crossflow SO JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME LA English DT Article ID ALGEBRAIC FLUX MODELS; SIMULATION; TURBULENCE; SCALAR; DIFFUSIVITY; SYSTEMS; NUMBER; HEAT AB For film cooling of combustor linings and turbine blades, it is critical to be able to accurately model jets-in-crossflow. Current Reynolds-averaged Navier-Stokes (RANS) models often give unsatisfactory predictions in these flows, due in large part to model form error, which cannot be resolved through calibration or tuning of model coefficients. The Boussi-nesq hypothesis, upon which most two-equation RANS models rely, posits the existence of a non-negative scalar eddy viscosity, which gives a linear relation between the Reynolds stresses and the mean strain rate. This model is rigorously analyzed in the context of a jet-in-crossflow using the high-fidelity large eddy simulation data of Ruiz et al. (2015, "Flow Topologies and Turbulence Scales in a Jet-in-Cross-Flow," Phys. Fluids, 27(4), p. 045101), as well as RANS k-is an element of results for the same flow. It is shown that the RANS models fail to accurately represent the Reynolds stress anisotropy in the injection hole, along the wall, and on the lee side of the jet. Machine learning methods are developed to provide improved predictions of the Reynolds stress anisotropy in this flow. C1 [Ling, Julia] Sandia Natl Labs, Thermal Fluid Sci & Engn, Livermore, CA 94551 USA. [Ruiz, Anthony; Lacaze, Guilhem; Oefelein, Joseph] Sandia Natl Labs, Reacting Flow Res, Livermore, CA 94551 USA. [Ruiz, Anthony] Labs Ind Pichot, F-63880 Le Brugeron, France. RP Ling, JL (reprint author), Sandia Natl Labs, Thermal Fluid Sci & Engn, Livermore, CA 94551 USA. EM jling@sandia.gov FU Laboratory Directed Research and Development Program at the Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC0494AL85000, SAND2016-0250 C] FX This research was supported by the Laboratory Directed Research and Development Program at the Sandia National Laboratories, a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC0494AL85000. SAND2016-0250 C. NR 36 TC 1 Z9 1 U1 0 U2 0 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0889-504X EI 1528-8900 J9 J TURBOMACH JI J. Turbomach.-Trans. ASME PD FEB PY 2017 VL 139 IS 2 AR 021008 DI 10.1115/1.4034556 PG 9 WC Engineering, Mechanical SC Engineering GA EM7UX UT WOS:000395518900008 ER PT J AU Sharma, A Mori, T Mahnen, CJ Everson, HR Leslie, MT Nielsen, AD Lussier, L Zhu, CH Malcuit, C Hegmann, T McDonough, JA Freeman, EJ Korley, LTJ Clements, RJ Hegmann, E AF Sharma, Anshul Mori, Taizo Mahnen, Cory J. Everson, Heather R. Leslie, Michelle T. Nielsen, Alek D. Lussier, Laurent Zhu, Chenhui Malcuit, Christopher Hegmann, Torsten McDonough, Jennifer A. Freeman, Ernest J. Korley, LaShanda T. J. Clements, Robert J. Hegmann, Elda TI Effects of Structural Variations on the Cellular Response and Mechanical Properties of Biocompatible, Biodegradable, and Porous Smectic Liquid Crystal Elastomers SO MACROMOLECULAR BIOSCIENCE LA English DT Article DE 3D porous scaffolds; cell alignment; cell directionality; liquid crystal elastomers; mechanics ID DRUG-DELIVERY; TISSUE; BIOMATERIALS; SCAFFOLDS; MATRIX; SOFT; CHOLESTEROL; POLYMERS; ANISOTROPY; ADHESIONS AB The authors report on series of side-chain smectic liquid crystal elastomer (LCE) cell scaffolds based on star block-copolymers featuring 3-arm, 4-arm, and 6-arm central nodes. A particular focus of these studies is placed on the mechanical properties of these LCEs and their impact on cell response. The introduction of diverse central nodes allows to alter and custom-modify the mechanical properties of LCE scaffolds to values on the same order of magnitude of various tissues of interest. In addition, it is continued to vary the position of the LC pendant group. The central node and the position of cholesterol pendants in the backbone of epsilon-CL blocks (alpha and gamma series) affect the mechanical properties as well as cell proliferation and particularly cell alignment. Cell directionality tests are presented demonstrating that several LCE scaffolds show cell attachment, proliferation, narrow orientational dispersion of cells, and highly anisotropic cell growth on the as-synthesized LCE materials. C1 [Sharma, Anshul; Mori, Taizo; Mahnen, Cory J.; Nielsen, Alek D.; Hegmann, Torsten; Hegmann, Elda] Kent State Univ, Inst Liquid Crystal, Chem Phys Interdisciplinary Program, Kent, OH 44242 USA. [Mahnen, Cory J.; Everson, Heather R.; Nielsen, Alek D.; Malcuit, Christopher; McDonough, Jennifer A.; Freeman, Ernest J.; Clements, Robert J.; Hegmann, Elda] Kent State Univ, Dept Biol Sci, Kent, OH 44242 USA. [Leslie, Michelle T.; Korley, LaShanda T. J.] Case Western Reserve Univ, Macromol Sci & Engn Dept, Cleveland, OH 44106 USA. [Lussier, Laurent; Hegmann, Torsten; Hegmann, Elda] Kent State Univ, Dept Chem & Biochem, Kent, OH 44242 USA. [Zhu, Chenhui] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Sharma, Anshul] Univ Luxembourg, Phys & Mat Sci Res Unit, Campus Limpertsberg,162a Ave Faiencerie,BS 1-15c, L-1511 Luxembourg, Luxembourg. [Mori, Taizo] Natl Inst Mat Sci, World Premier Int, Res Ctr Mat Nanoarchitecton MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan. RP Hegmann, E (reprint author), Kent State Univ, Inst Liquid Crystal, Chem Phys Interdisciplinary Program, Kent, OH 44242 USA.; Clements, RJ; Hegmann, E (reprint author), Kent State Univ, Dept Biol Sci, Kent, OH 44242 USA.; Hegmann, E (reprint author), Kent State Univ, Dept Chem & Biochem, Kent, OH 44242 USA. EM rclement@kent.edu; ehegmann@kent.edu FU U.S. National Science Foundation (NSF) [CHE-1263087]; Ohio Third Frontier (OTF) Program for Ohio Research Scholars "Research Cluster on Surfaces in Advanced Materials"; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX T.M., C.J.M., and H.R.E. contributed equally to this work. A.S., T.M., and E.H. drafted the article with contribution from other authors. A.S. performed most synthesis, characterization, and testing of materials, C.J.M. and H.R.E. assisted with the synthesis of key intermediates, helped with characterization and cell culture. T.M. with assistance from A.D.N. and Jessica Krieger performed cell studies; with assistance of C.J.M. and R.J.C. performed all cell viability tests and confocal fluorescence microscopy studies. L.L. assisted with POM measurements and cell cultures. M.T.L. did the mechanical testing. The authors want to thank Alex M. Jordan and Symone L.M. Alexander for their help with SAXD measurements for unmodified elastomer samples at the Argonne National Laboratory. The authors also thank Alex M. Jordan for help with contact angle measurements at the Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland (Ohio). The authors are thankful to Dr. C. Zhu and Dr. E. Schaible for help with SAXD measurements at Advanced Light Source, Berkeley. The authors would like to thank dedicated undergraduates students Blake Kinsel, Sierra Crotty, Brandy Marks and Richard Cukelj who helped with the synthesis and cell culture. The authors would like to thank the U.S. National Science Foundation (NSF) for financial support (CHE-1263087). T.H. greatly appreciates financial support from the Ohio Third Frontier (OTF) Program for Ohio Research Scholars "Research Cluster on Surfaces in Advanced Materials", which also supports the Materials Characterization facility at Liquid Crystal Institute (LCI), where current SEM images were obtained. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Beamline 7.3.3 of the Advanced Light Source is supported by the Director of the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors declare no competing financial interest. NR 54 TC 1 Z9 1 U1 1 U2 1 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1616-5187 EI 1616-5195 J9 MACROMOL BIOSCI JI Macromol. Biosci. PD FEB PY 2017 VL 17 IS 2 AR UNSP 1600278 DI 10.1002/mabi.201600278 PG 14 WC Biochemistry & Molecular Biology; Materials Science, Biomaterials; Polymer Science SC Biochemistry & Molecular Biology; Materials Science; Polymer Science GA EL4LL UT WOS:000394592600016 ER PT J AU Bae, S Taylor, R Kilcoyne, D Moon, J Monteiro, PJM AF Bae, Sungchul Taylor, Rae Kilcoyne, David Moon, Juhyuk Monteiro, Paulo J. M. TI Effects of Incorporating High-Volume Fly Ash into Tricalcium Silicate on the Degree of Silicate Polymerization and Aluminum Substitution for Silicon in Calcium Silicate Hydrate SO MATERIALS LA English DT Article DE calcium silicate hydrate; tricalcium silicate; fly ash; hydration products; X-ray microscopy ID C-S-H; MAS NMR-SPECTROSCOPY; PORTLAND-CEMENT; EDGE XANES; SI-29; AL-27; PASTES; AL; PHASES; RATIO AB This study assesses the quantitative effects of incorporating high-volume fly ash (HVFA) into tricalcium silicate (C3S) paste on the hydration, degree of silicate polymerization, and Al substitution for Si in calcium silicate hydrate (C-S-H). Thermogravimetric analysis and isothermal conduction calorimetry showed that, although the induction period of C3S hydration was significantly extended, the degree of hydration of C3S after the deceleration period increased due to HVFA incorporation. Synchrotron-sourced soft X-ray spectromicroscopy further showed that most of the C3S in the C3S-HVFA paste was fully hydrated after 28 days of hydration, while that in the pure C3S paste was not. The chemical shifts of the Si K edge peaks in the near-edge X-ray fine structure of C-S-H in the C3S-HVFA paste directly indicate that Al substitutes for Si in C-S-H and that the additional silicate provided by the HVFA induces an enhanced degree of silicate polymerization. This new spectromicroscopic approach, supplemented with Al-27 and Si-29 magic-angle spinning nuclear magnetic resonance spectroscopy and transmission electron microscopy, turned out to be a powerful characterization tool for studying a local atomic binding structure of C-S-H in C3S-HVFA system and presented results consistent with previous literature. C1 [Bae, Sungchul] Hanyang Univ, Dept Architectural Engn, Seoul 04763, South Korea. [Taylor, Rae; Monteiro, Paulo J. M.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Kilcoyne, David] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Moon, Juhyuk] Natl Univ Singapore, Dept Civil & Environm Engn, 1 Engn Dr 2, Singapore 117576, Singapore. RP Bae, S (reprint author), Hanyang Univ, Dept Architectural Engn, Seoul 04763, South Korea. EM sbae@hanyang.ac.kr; raemorristaylor@gmail.com; alkilcoyne@lbl.gov; ceemjh@nus.edu.sg; monteiro@berkeley.edu FU Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT & Future Planning [NRF-2016R1C1B1014179]; Republic of Singapore's National Research Foundation; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1C1B1014179). This research was also funded by the Republic of Singapore's National Research Foundation through a grant to the Berkeley Education Alliance for Research in Singapore (BEARS) for the Singapore-Berkeley Building Efficiency and Sustainability in the Tropics (SinBerBEST) Program. BEARS was established by the University of California, Berkeley as a center for intellectual excellence in research and education in Singapore. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 60 TC 0 Z9 0 U1 2 U2 2 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1996-1944 J9 MATERIALS JI Materials PD FEB PY 2017 VL 10 IS 2 AR 131 DI 10.3390/ma10020131 PG 21 WC Materials Science, Multidisciplinary SC Materials Science GA EM6TT UT WOS:000395445800038 ER PT J AU Pint, BA Brese, RG Keiser, JR AF Pint, B. A. Brese, R. G. Keiser, J. R. TI Effect of pressure on supercritical CO2 compatibility of structural alloys at 750 degrees C SO MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION LA English DT Article DE ex situ tensile properties; high temperature oxidation; supercritical carbon dioxide ID CARBON-DIOXIDE; MATERIALS TECHNOLOGY; OXIDATION BEHAVIOR; HIGH-TEMPERATURE; CORROSION; CYCLES; STEELS; POWER; HEAT; CARBURIZATION AB Several power generation technologies have interest in employing a supercritical CO2 (sCO(2)) cycle but relatively little compatibility work has been conducted at the target pressure range of 200-300bar, particularly at 700 degrees C. With the goal of utilizing lower pressure data sets (especially with controlled O-2 and H2O contents), this initial assessment compared the effect of CO2 pressure at 1-300bar on the compatibility of potential Fe- and Ni-base structural alloys after 500h exposures at 750 degrees C. For highly-alloyed alumina- and chromia-forming alloys, a minimal effect of pressure was observed on the mass change and reaction products, which were similar to those observed in 1bar dry air, CO2, CO2-0.15%O-2 and CO2-10%H2O. After these relatively short exposures, there was no obvious indication of internal carburization and the Cr depletion in the precipitation strengthened Ni-base alloys (740 and 282) was minimal. In addition to coupons, 25mm long tensile specimens of alloy 740, 247, 310HCbN, and E-Brite (Fe-Cr) were exposed in each condition but did not show any detrimental effect of the high-purity CO2 environments on room temperature tensile properties. C1 [Pint, B. A.; Brese, R. G.; Keiser, J. R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Corros Sci & Technol Grp, ORNL 1 Bethel Valley Rd,MS 6156, Oak Ridge, TN 37831 USA. RP Pint, BA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Corros Sci & Technol Grp, ORNL 1 Bethel Valley Rd,MS 6156, Oak Ridge, TN 37831 USA. EM pintba@ornl.gov FU U. S. Department of Energy, Office of Fossil Energy, Office of Coal and Power RD FX The research shown was sponsored by the U. S. Department of Energy, Office of Fossil Energy, Office of Coal and Power R&D. M. Howell, M. Stephens, T. Lowe, T. Jordan, C. Stevens, and D. Leonard assisted with the experimental work. M. P. Brady and P. F. Tortorelli provided helpful comments on the manuscript. NR 39 TC 0 Z9 0 U1 0 U2 0 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0947-5117 EI 1521-4176 J9 MATER CORROS JI Mater. Corros. PD FEB PY 2017 VL 68 IS 2 BP 151 EP 158 DI 10.1002/maco.201508783 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EL5LW UT WOS:000394663600005 ER PT J AU Tenner, TJ Kimura, M Kita, NT AF Tenner, T. J. Kimura, M. Kita, N. T. TI Oxygen isotope characteristics of chondrules from the Yamato-82094 ungrouped carbonaceous chondrite: Further evidence for common O-isotope environments sampled among carbonaceous chondrites SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID EARLY SOLAR-SYSTEM; PORPHYRITIC PYROXENE CHONDRULES; DUST-ENRICHED SYSTEMS; AL-RICH INCLUSIONS; THERMAL HISTORIES; HIGH-TEMPERATURE; COOLING RATES; NEBULA SHOCKS; CR CHONDRITES; CO CHONDRITES AB High-precision secondary ion mass spectrometry (SIMS) was employed to investigate oxygen three isotopes of phenocrysts in 35 chondrules from the Yamato (Y) 82094 ungrouped 3.2 carbonaceous chondrite. Twenty-one of 21 chondrules have multiple homogeneous pyroxene data (Delta O-17 3SD analytical uncertainty: 0.7 parts per thousand); 17 of 17 chondrules have multiple homogeneous pyroxene and plagioclase data. Twenty-one of 25 chondrules have one or more olivine data matching coexisting pyroxene data. Such homogeneous phenocrysts (1) are interpreted to have crystallized from the final chondrule melt, defining host O-isotope ratios; and (2) suggest efficient O-isotope exchange between ambient gas and chondrule melt during formation. Host values plot within 0.7 parts per thousand of the primitive chondrule mineral (PCM) line. Seventeen chondrules have relict olivine and/or spinel, with some delta O-17 and delta O-17 values approaching similar to 40 parts per thousand, similar to CAI or AOA-like precursors. Regarding host chondrule data, 22 of 34 have Mg# s of 98.8-99.5 and Delta O-17 of similar to 3.9 parts per thousand to similar to 6.1 parts per thousand, consistent with most Acfer 094, CO, CR, and CV chondrite chondrules, and suggesting a common reduced O-isotope reservoir devoid of 16 O-poor H2O. Six Y-82094 chondrules have Delta O-17 near similar to 2.5 parts per thousand, with Mg# s of 64-97, consistent with lower Mg# chondrules from Acfer 094, CO, CR, and CV chondrites; their signatures suggest precursors consisting of those forming Mg# similar to 99, Delta O-17: similar to 5 parts per thousand similar to 1 parts per thousand chondrules plus 16 O-poor H2O, at high dust enrichments. Three type II chondrules plot slightly above the PCM line, near the terrestrial fractionation line ( Delta O-17: similar to 0.1 parts per thousand). Their O-isotopes and olivine chemistry are like LL3 type II chondrules, suggesting they sampled ordinary chondrite-like chondrule precursors. Finally, three Mg# > 99 chondrules have Delta O-17 of similar to 6.7 parts per thousand to similar to 8.1 parts per thousand, potentially due to 16 Orich refractory precursor components. The predominance of Mg# similar to 99, Delta O-17: similar to 5 parts per thousand similar to 1 parts per thousand chondrules and a high chondrule-to-matrix ratio suggests bulk Y-82094 characteristics are closely related to anhydrous dust sampled by most carbonaceous chondrite chondrules. C1 [Tenner, T. J.; Kita, N. T.] Univ Wisconsin, Dept Geosci, WiscSIMS, Madison, WI 53706 USA. [Kimura, M.] Ibaraki Univ, Fac Sci, Mito, Ibaraki 3108512, Japan. [Kimura, M.] Natl Inst Polar Res, Tokyo 1908518, Japan. [Tenner, T. J.] Los Alamos Natl Lab, Nucl & Radiochem, Div Chem, MSJ514, Los Alamos, NM 87545 USA. RP Tenner, TJ (reprint author), Univ Wisconsin, Dept Geosci, WiscSIMS, Madison, WI 53706 USA.; Tenner, TJ (reprint author), Los Alamos Natl Lab, Nucl & Radiochem, Div Chem, MSJ514, Los Alamos, NM 87545 USA. EM tenner@lanl.gov FU NASA Cosmochemistry program [NNX14AG29G]; NSF [EAR10-53466]; [22540488]; [26400510] FX We thank NIPR for approving the loan of thin sections studied here. Dr. A. Yamaguchi helped to analyze phases in NIPR. We thank Jim Kern for WiscSIMS technical assistance, associate editor Don Brownlee for his suggestions and handling of the manuscript. We are grateful for insightful comments from reviewer A. N. Krot and an anonymous reviewer. This work is supported by the NASA Cosmochemistry program (NNX14AG29G to N. K.) and Grants-in-aid of Monkashou, Japan, No. 22540488 and 26400510 to M. K. WiscSIMS is partially supported by NSF (EAR10-53466). NR 115 TC 0 Z9 0 U1 0 U2 0 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD FEB PY 2017 VL 52 IS 2 BP 268 EP 294 DI 10.1111/maps.12791 PG 27 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EO6SO UT WOS:000396823000005 ER PT J AU Lu, P Yuan, RL Zuo, JM AF Lu, Ping Yuan, Renliang Zuo, Jian Min TI Fast Atomic-Scale Elemental Mapping of Crystalline Materials by STEM Energy-Dispersive X-Ray Spectroscopy Achieved with Thin Specimens SO MICROSCOPY AND MICROANALYSIS LA English DT Article DE STEM-EDS; fast chemical imaging; atomic-scale; thin specimen; elemental mapping ID QUANTIFICATION; MICROSCOPY AB Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of similar to few 10 nm(2) with the acquisition time of similar to 2 s or less. Here we report the details of this method, and, in particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO3 in [001] projection for 200 keV electrons. C1 [Lu, Ping] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Yuan, Renliang; Zuo, Jian Min] Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. RP Lu, P (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM plu@sandia.gov FU Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 22 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 EI 1435-8115 J9 MICROSC MICROANAL JI Microsc. microanal. PD FEB PY 2017 VL 23 IS 1 BP 145 EP 154 DI 10.1017/S1431927617000113 PG 10 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA EM7BM UT WOS:000395466500014 PM 28228174 ER PT J AU Nunziata, SO Lance, SL Scott, DE Lemmon, EM Weisrock, DW AF Nunziata, Schyler O. Lance, Stacey L. Scott, David E. Lemmon, Emily Moriarty Weisrock, David W. TI Genomic data detect corresponding signatures of population size change on an ecological time scale in two salamander species SO MOLECULAR ECOLOGY LA English DT Article DE Ambystoma; amphibian decline; coalescent; demographic inference; genetic monitoring; temporal samples ID SAVANNA RIVER SITE; LINKAGE DISEQUILIBRIUM; DEMOGRAPHIC HISTORY; GENETIC DIVERSITY; AMBYSTOMA-OPACUM; N-E; CONSERVATION; SELECTION; BOTTLENECK; INFERENCE AB Understanding the demography of species over recent history (e.g. <100years) is critical in studies of ecology and evolution, but records of population history are rarely available. Surveying genetic variation is a potential alternative to census-based estimates of population size, and can yield insight into the demography of a population. However, to assess the performance of genetic methods, it is important to compare their estimates of population history to known demography. Here, we leveraged the exceptional resources from a wetland with 37years of amphibian mark-recapture data to study the utility of genetically based demographic inference on salamander species with documented population declines (Ambystoma talpoideum) and expansions (A.opacum), patterns that have been shown to be correlated with changes in wetland hydroperiod. We generated ddRAD data from two temporally sampled populations of A.opacum (1993, 2013) and A.talpoideum (1984, 2011) and used coalescent-based demographic inference to compare alternate evolutionary models. For both species, demographic model inference supported population size changes that corroborated mark-recapture data. Parameter estimation in A.talpoideum was robust to our variations in analytical approach, while estimates for A.opacum were highly inconsistent, tempering our confidence in detecting a demographic trend in this species. Overall, our robust results in A.talpoideum suggest that genome-based demographic inference has utility on an ecological scale, but researchers should also be cognizant that these methods may not work in all systems and evolutionary scenarios. Demographic inference may be an important tool for population monitoring and conservation management planning. C1 [Nunziata, Schyler O.; Weisrock, David W.] Univ Kentucky, Dept Biol, Lexington, KY 40506 USA. [Lance, Stacey L.; Scott, David E.] Univ Georgia, Savannah River Ecol Lab, PO Drawer E, Aiken, SC 29802 USA. [Lemmon, Emily Moriarty] Florida State Univ, Dept Biol, Tallahassee, FL 32306 USA. RP Nunziata, SO (reprint author), Univ Kentucky, Dept Biol, Lexington, KY 40506 USA. EM schyler.nunziata@uky.edu FU University of Kentucky (UKY) Department of Biology Mini-Ribble Grant; UKY College of Arts and Sciences Summer Research Fellowship; Kentucky NSF EPSCoR [3049024999]; SSAR Grants in Herpetology, Kentucky Academy of Sciences Marcia Athey Fund; U. S. Department of Energy under Financial Assistance [DE-FC09-07SR22506]; National Science Foundation [DEB-0949532, DEB-1355000] FX We thank the numerous people who have assisted with data collection, entry and management of the 37-yr Rainbow Bay study, especially J. Pechmann, B. Metts, A. Chazal, A. Dancewicz-Helmers, R. Estes, J. Greene, R. Semlitsch, J. McGregor-Morton, G. Moran and W. Gibbons. We thank the University of Kentucky Center for Computational Sciences and the Lipscomb High Performance Computing Cluster for access to computing resources. This research was supported by University of Kentucky (UKY) Department of Biology Mini-Ribble Grant, UKY College of Arts and Sciences Summer Research Fellowship, Kentucky NSF EPSCoR Award Number 3049024999, SSAR Grants in Herpetology, Kentucky Academy of Sciences Marcia Athey Fund, U. S. Department of Energy under Financial Assistance Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation, National Science Foundation Awards DEB-0949532 and DEB-1355000 (to DWW), and was also made possible by the Department of Energy's Set Aside Program and status of the Savannah River Site as a National Environmental Research Park. NR 63 TC 0 Z9 0 U1 2 U2 2 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0962-1083 EI 1365-294X J9 MOL ECOL JI Mol. Ecol. PD FEB PY 2017 VL 26 IS 4 BP 1060 EP 1074 DI 10.1111/mec.13988 PG 15 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA EM0HK UT WOS:000394999200009 PM 28026889 ER PT J AU Banik, N Widrow, LM Dodelson, S AF Banik, Nilanjan Widrow, Lawrence M. Dodelson, Scott TI Galactoseismology and the local density of dark matter SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE solar neighbourhood; galaxies: kinematics and dynamics; galaxies: structure; dark matter ID SURFACE MASS DENSITY; GALACTIC DISK; MILKY-WAY; GALAXY; SUN; OSCILLATION; KINEMATICS; HIPPARCOS; STARS; MODES AB We model vertical breathing mode perturbations in the Milky Way's stellar disc and study their effects on estimates of the local dark matter density, surface density, and vertical force. Evidence for these perturbations, which involve compression and expansion of the Galactic disc perpendicular to the mid-plane, comes from three different surveys of stellar kinematics within a few kiloparsecs of the Sun. We show that their existence may lead to systematic errors of 10 per cent or greater in the vertical force K-z(z) at vertical bar z vertical bar = 1.1 kpc. These errors translate to greater than or similar to 25 per cent errors in estimates of the local dark matter density. Using different mono-abundant subpopulations as tracers offers a way out: if the inferences from all tracers in the Gaia era agree, then the dark matter determination will be robust. Disagreement in the inferences from different tracers will signal the breakdown of the unperturbed model and perhaps provide the means for determining the nature of the perturbation. C1 [Banik, Nilanjan] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Banik, Nilanjan; Dodelson, Scott] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Widrow, Lawrence M.] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON K7L 3N6, Canada. [Dodelson, Scott] Univ Chicago, Enrico Fermi Inst, Kavli Inst Cosmol Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Dodelson, Scott] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. RP Banik, N (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA.; Banik, N (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.; Widrow, LM (reprint author), Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON K7L 3N6, Canada. EM banik@phys.ufl.edu; widrow@queensu.ca FU U.S. Department of Energy [DE-AC02-07CH11359]; Fermilab Graduate Student Research Program in Theoretical Physics; Natural Sciences and Engineering Research Council of Canada FX The authors are grateful to Brian Yanny, Alex Drlica-Wagner, Elise Jennings, and Jo Bovy for useful comments and discussions. Fermilab is operated by Fermi Research Alliance, LLC, under contract no. DE-AC02-07CH11359 with the U.S. Department of Energy. NB was supported by the Fermilab Graduate Student Research Program in Theoretical Physics. LMW was supported by a Discovery Grant with the Natural Sciences and Engineering Research Council of Canada. NR 39 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB PY 2017 VL 464 IS 4 BP 3775 EP 3783 DI 10.1093/mnras/stw2603 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EK2TV UT WOS:000393780500001 ER PT J AU Roberts, LF Lippuner, J Duez, MD Faber, JA Foucart, F Lombardi, JC Ning, S Ott, CD Ponce, M AF Roberts, Luke F. Lippuner, Jonas Duez, Matthew D. Faber, Joshua A. Foucart, Francois Lombardi, James C., Jr. Ning, Sandra Ott, Christian D. Ponce, Marcelo TI The influence of neutrinos on r-process nucleosynthesis in the ejecta of black hole-neutron star mergers SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE hydrodynamics; neutrinos; nuclear reactions, nucleosynthesis, abundances; stars: neutron ID METAL-POOR STARS; SMOOTHED PARTICLE HYDRODYNAMICS; CORE-COLLAPSE SUPERNOVAE; EQUATION-OF-STATE; MASS-DISTRIBUTION; DRIVEN WINDS; EARLY GALAXY; STELLAR COLLISIONS; DYNAMICAL EJECTA; ACCRETION DISKS AB During the merger of a black hole and a neutron star, baryonic mass can become unbound from the system. Because the ejected material is extremely neutron-rich, the r-process rapidly synthesizes heavy nuclides as the material expands and cools. In this work, we map general relativistic models of black hole-neutron star mergers into a Newtonian smoothed particle hydrodynamics (SPH) code and follow the evolution of the thermodynamics and morphology of the ejecta until the outflows become homologous. We investigate how the subsequent evolution depends on our mapping procedure and find that the results are robust. Using thermodynamic histories from the SPH particles, we then calculate the expected nucleosynthesis in these outflows while varying the level of neutrino irradiation coming from the post-merger accretion disc. We find that the ejected material robustly produces r-process nucleosynthesis even for unrealistically high neutrino luminosities, due to the rapid velocities of the outflow. None the less, we find that neutrinos can have an impact on the detailed pattern of the r-process nucleosynthesis. Electron neutrinos are captured by neutrons to produce protons while neutron capture is occurring. The produced protons rapidly form low-mass seed nuclei for the r-process. These low-mass seeds are eventually incorporated into the first r-process peak at A similar to 78. We consider the mechanism of this process in detail and discuss if it can impact galactic chemical evolution of the first peak r-process nuclei. C1 [Roberts, Luke F.; Lippuner, Jonas; Ning, Sandra; Ott, Christian D.] CALTECH, Walter Burke Inst Theoret Phys, TAPIR, MC 350-17, Pasadena, CA 91125 USA. [Duez, Matthew D.] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. [Faber, Joshua A.] Rochester Inst Technol, Ctr Computat Relat & Gravitat, Rochester, NY 14623 USA. [Faber, Joshua A.] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA. [Foucart, Francois] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Lombardi, James C., Jr.] Allegheny Coll, Dept Phys, Meadville, PA 16335 USA. [Ponce, Marcelo] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Ponce, Marcelo] Univ Toronto, SciNet HPC Consortium, Toronto, ON M5T 1W5, Canada. RP Roberts, LF (reprint author), CALTECH, Walter Burke Inst Theoret Phys, TAPIR, MC 350-17, Pasadena, CA 91125 USA. EM lroberts@tapir.caltech.edu OI Roberts, Luke/0000-0001-7364-7946 FU National Aeronautics and Space Administration (NASA)-Chandra X-ray Center [PF3-140114, PF4-150122]; National Science Foundation (NSF) [TCAN AST-1333520, CAREER PHY-1151197, AST-1205732]; Sherman Fairchild Foundation; NSF [AST-1313091, PHY-1402916, PHY-1430152]; NASA [NAS8-03060] FX Support for this work was provided by National Aeronautics and Space Administration (NASA) through Einstein Postdoctoral Fellowship grants numbered PF3-140114 (LFR) and PF4-150122 (FF) awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060. JL and CDO are partially supported by the National Science Foundation (NSF) under award nos. TCAN AST-1333520, CAREER PHY-1151197 and AST-1205732, and by the Sherman Fairchild Foundation. JCL is supported by NSF grant number AST-1313091. This work also benefitted from NSF support through award no. PHY-1430152 (Joint Institute for Nuclear Astrophysics Center for the Evolution of the Elements). MDD acknowledges support through NSF Grant PHY-1402916. NR 85 TC 1 Z9 1 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB PY 2017 VL 464 IS 4 BP 3907 EP 3919 DI 10.1093/mnras/stw2622 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EK2TV UT WOS:000393780500009 ER PT J AU Kwan, J Sanchez, C Clampitt, J Blazek, J Crocce, M Jain, B Zuntz, J Amara, A Becker, MR Bernstein, GM Bonnett, C DeRose, J Dodelson, S Eifler, TF Gaztanaga, E Giannantonio, T Gruen, D Hartley, WG Kacprzak, T Kirk, D Krause, E MacCrann, N Miquel, R Park, Y Ross, AJ Rozo, E Rykoff, ES Sheldon, E Troxel, MA Wechsler, RH Abbott, TMC Abdalla, FB Allam, S Benoit-Levy, A Brooks, D Burke, DL Rosell, AC Kind, MC Cunha, CE D'Andrea, CB da Costa, LN Desai, S Diehl, HT Dietrich, JP Doel, P Evrard, AE Fernandez, E Finley, DA Flaugher, B Fosalba, P Frieman, J Gerdes, DW Gruendl, RA Gutierrez, G Honscheid, K James, DJ Jarvis, M Kuehn, K Lahav, O Lima, M Maia, MAG Marshall, JL Martini, P Melchior, P Mohr, JJ Nichol, RC Nord, B Plazas, AA Reil, K Romer, AK Roodman, A Sanchez, E Scarpine, V Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Thomas, D Vikram, V Walker, AR AF Kwan, J. Sanchez, C. Clampitt, J. Blazek, J. Crocce, M. Jain, B. Zuntz, J. Amara, A. Becker, M. R. Bernstein, G. M. Bonnett, C. DeRose, J. Dodelson, S. Eifler, T. F. Gaztanaga, E. Giannantonio, T. Gruen, D. Hartley, W. G. Kacprzak, T. Kirk, D. Krause, E. MacCrann, N. Miquel, R. Park, Y. Ross, A. J. Rozo, E. Rykoff, E. S. Sheldon, E. Troxel, M. A. Wechsler, R. H. Abbott, T. M. C. Abdalla, F. B. Allam, S. Benoit-Levy, A. Brooks, D. Burke, D. L. Rosell, A. Carnero Kind, M. Carrasco Cunha, C. E. D'Andrea, C. B. da Costa, L. N. Desai, S. Diehl, H. T. Dietrich, J. P. Doel, P. Evrard, A. E. Fernandez, E. Finley, D. A. Flaugher, B. Fosalba, P. Frieman, J. Gerdes, D. W. Gruendl, R. A. Gutierrez, G. Honscheid, K. James, D. J. Jarvis, M. Kuehn, K. Lahav, O. Lima, M. Maia, M. A. G. Marshall, J. L. Martini, P. Melchior, P. Mohr, J. J. Nichol, R. C. Nord, B. Plazas, A. A. Reil, K. Romer, A. K. Roodman, A. Sanchez, E. Scarpine, V. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Thomas, D. Vikram, V. Walker, A. R. CA DES Collaboration TI Cosmology from large-scale galaxy clustering and galaxy-galaxy lensing with Dark Energy Survey Science Verification data SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing: weak; cosmological parameters; large-scale structure of Universe ID MATTER POWER SPECTRUM; BARYON ACOUSTIC-OSCILLATIONS; 100 SQUARE DEGREES; SDSS-III; PARAMETER CONSTRAINTS; PRECISION COSMOLOGY; SHEAR MEASUREMENT; WEAK; CFHTLENS; MODEL AB We present cosmological constraints from the Dark Energy Survey (DES) using a combined analysis of angular clustering of red galaxies and their cross-correlation with weak gravitational lensing of background galaxies. We use a 139 deg(2) contiguous patch of DES data from the Science Verification (SV) period of observations. Using large-scale measurements, we constrain the matter density of the Universe as Omega(m) = 0.31 +/- 0.09 and the clustering amplitude of the matter power spectrum as sigma(8) = 0.74 +/- 0.13 after marginalizing over seven nuisance parameters and three additional cosmological parameters. This translates into S-8 = sigma(8)(Omega(m)/0.3)(0.16) = 0.74 +/- 0.12 for our fiducial lens redshift bin at 0.35 < z < 0.5, while S-8 = 0.78 +/- 0.09 using two bins over the range 0.2 < z < 0.5. We study the robustness of the results under changes in the data vectors, modelling and systematics treatment, including photometric redshift and shear calibration uncertainties, and find consistency in the derived cosmological parameters. We show that our results are consistent with previous cosmological analyses from DES and other data sets and conclude with a joint analysis of DES angular clustering and galaxy-galaxy lensing with Planck Cosmic Microwave Background data, baryon accoustic oscillations and Supernova Type Ia measurements. C1 [Kwan, J.; Clampitt, J.; Jain, B.; Bernstein, G. M.; Jarvis, M.; Suchyta, E.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Sanchez, C.; Miquel, R.; Fernandez, E.; Fosalba, P.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Barcelona, Spain. [Blazek, J.; Ross, A. J.; Honscheid, K.; Martini, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Crocce, M.; Gaztanaga, E.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [Zuntz, J.; MacCrann, N.; Troxel, M. A.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. [Amara, A.; Hartley, W. G.; Kacprzak, T.] ETH, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland. [Becker, M. R.; DeRose, J.; Wechsler, R. H.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Becker, M. R.; DeRose, J.; Gruen, D.; Krause, E.; Rykoff, E. S.; Wechsler, R. H.; Cunha, C. E.; Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Dodelson, S.; Allam, S.; Diehl, H. T.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Nord, B.; Scarpine, V.; Soares-Santos, M.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Dodelson, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Dodelson, S.] Univ Chicago, Dept Phys, 5640 South Ellis Ave, Chicago, IL 60637 USA. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Giannantonio, T.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Giannantonio, T.] Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England. [Gruen, D.; Rykoff, E. S.; Wechsler, R. H.; Burke, D. L.; Reil, K.; Roodman, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Kirk, D.; Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Park, Y.; Rozo, E.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA. [Abbott, T. M. C.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Benoit-Levy, A.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Benoit-Levy, A.] UPMC Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Rosell, A. Carnero; da Costa, L. N.; Maia, M. A. G.; Sobreira, F.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Rosell, A. Carnero; da Costa, L. N.; Maia, M. A. G.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [D'Andrea, C. B.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [D'Andrea, C. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Desai, S.; Dietrich, J. P.; Mohr, J. J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.; Dietrich, J. P.; Mohr, J. J.] Ludwig Maximilians Univ Munchen, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Evrard, A. E.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Gerdes, D. W.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Honscheid, K.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Melchior, P.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Mohr, J. J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Sobreira, F.] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, Inst Fis Teor, BR-01140070 Sao Paulo, Brazil. [Suchyta, E.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. RP Kwan, J (reprint author), Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. EM kjuliana@physics.upenn.edu FU US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Center for Particle Cosmology at the University of Pennsylvania; Warren Center at the University of Pennsylvania; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia e Tecnologia; Deutsche Forschungsgemeinschaft; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Union; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; University of Chicago; University College London; DES-Brazil Consortium; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Edinburgh; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat; associated Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; University of Sussex; Texas AM University; SLAC National Accelerator Laboratory; Stanford University; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid FX Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Center for Particle Cosmology and the Warren Center at the University of Pennsylvania, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia e Tecnologia, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the DES.; The DES data management system is supported by the National Science Foundation under Grant no. AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234, some of which include ERDF funds from the European Union.; The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Edinburgh, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University. NR 100 TC 1 Z9 1 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB PY 2017 VL 464 IS 4 BP 4045 EP 4062 DI 10.1093/mnras/stw2464 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EK2TV UT WOS:000393780500021 ER PT J AU Gu, J Aguiar, JA Ferrere, S Steirer, KX Yan, Y Xiao, CX Young, JL Al-Jassim, M Neale, NR Turner, JA AF Gu, Jing Aguiar, Jeffery A. Ferrere, Suzanne Steirer, K. Xerxes Yan, Yong Xiao, Chuanxiao Young, James L. Al-Jassim, Mowafak Neale, Nathan R. Turner, John A. TI A graded catalytic-protective layer for an efficient and stable water-splitting photocathode SO NATURE ENERGY LA English DT Article ID HYDROGEN EVOLUTION REACTION; PHOTOELECTROCHEMICAL DEVICE; AQUEOUS-ELECTROLYTES; THIN-FILMS; TIO2; REDUCTION; CELLS; LIGHT; PHOTOANODES; PERFORMANCE AB Achieving solar-to-hydrogen efficiencies above 15% is key for the commercial success of photoelectrochemical water-splitting devices. While tandem cells can reach those efficiencies, increasing the catalytic activity and long-term stability remains a significant challenge. Here we show that annealing a bilayer of amorphous titanium dioxide (TiOx) and molybdenum sulfide (MoSx) deposited onto GaInP2 results in a photocathode with high catalytic activity (current density of 11mAcm(2) at 0V versus the reversible hydrogen electrode under 1 sun illumination) and stability (retention of 80% of initial photocurrent density over a 20 h durability test) for the hydrogen evolution reaction. Microscopy and spectroscopy reveal that annealing results in a graded MoSx/MoOx/TiO2 layer that retains much of the high catalytic activity of amorphous MoSx but with stability similar to crystalline MoS2. Our findings demonstrate the potential of utilizing a hybridized, heterogeneous surface layer as a cost-effiective catalytic and protective interface for solar hydrogen production. C1 [Gu, Jing; Ferrere, Suzanne; Xiao, Chuanxiao; Young, James L.; Al-Jassim, Mowafak; Neale, Nathan R.; Turner, John A.] Chem & Nanosci Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. [Gu, Jing] San Diego State Univ, Dept Chem & Biochem, 5500 Campanile Dr, San Diego, CA 92182 USA. [Aguiar, Jeffery A.] Idaho Natl Lab, Fuel Design & Dev, 2525 Fremont Ave, Idaho Falls, ID 83401 USA. [Steirer, K. Xerxes] Colorado Sch Mines, Dept Phys, 1500 Illinois St, Golden, CO 80401 USA. [Yan, Yong] New Jersey Inst Technol, Dept Chem & Environm Sci, 151 Tiernan Hall, Newark, NJ 07102 USA. RP Gu, J (reprint author), Chem & Nanosci Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA.; Gu, J (reprint author), San Diego State Univ, Dept Chem & Biochem, 5500 Campanile Dr, San Diego, CA 92182 USA. EM jgu@sdsu.edu; john.turner@nrel.gov FU US Department of Energy, Office of Science, Office of Basic Energy Sciences, Solar Photochemistry Program [DEAC36-08GO28308] FX This material is based on work supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Solar Photochemistry Program under contract number DEAC36-08GO28308. We gratefully acknowledge C. Antunes for ICP-MS measurement, A. Norman for the helpful discussions and plan-view TEM measurement for the PtRu-GaInP2 electrode. NR 41 TC 0 Z9 0 U1 4 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2058-7546 J9 NAT ENERGY JI Nat. Energy PD FEB PY 2017 VL 2 IS 2 AR 16192 DI 10.1038/nenergy.2016.192 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary SC Energy & Fuels; Materials Science GA EN9EO UT WOS:000396303700001 ER PT J AU Yang, Y Yang, MJ Moore, DT Yan, Y Miller, EM Zhu, K Beard, MC AF Yang, Ye Yang, Mengjin Moore, David T. Yan, Yong Miller, Elisa M. Zhu, Kai Beard, Matthew C. TI Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films SO NATURE ENERGY LA English DT Article ID ORGANOMETAL HALIDE PEROVSKITE; EXCITON BINDING-ENERGY; SOLAR-CELLS; SINGLE-CRYSTALS; RECOMBINATION VELOCITY; SLOW RECOMBINATION; CHARGE GENERATION; DYNAMICS; CH3NH3PBI3; DIFFUSION AB Carrier recombination at defects is detrimental to the performance of solar energy conversion systems, including solar cells and photoelectrochemical devices. Point defects are localized within the bulk crystal while extended defects occur at surfaces and grain boundaries. If not properly managed, surfaces can be a large source of carrier recombination. Separating surface carrier dynamics from bulk and/or grain-boundary recombination in thin films is challenging. Here, we employ transient reflection spectroscopy to measure the surface carrier dynamics in methylammonium lead iodide perovskite polycrystalline films. We find that surface recombination limits the total carrier lifetime in perovskite polycrystalline thin films, meaning that recombination inside grains and/or at grain boundaries is less important than top and bottom surface recombination. The surface recombination velocity in polycrystalline films is nearly an order of magnitude smaller than that in single crystals, possibly due to unintended surface passivation of the films during synthesis. C1 [Yang, Ye; Yang, Mengjin; Moore, David T.; Yan, Yong; Miller, Elisa M.; Zhu, Kai; Beard, Matthew C.] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. [Yan, Yong] New Jersey Inst Technol, Dept Chem & Environm Sci, Newark, NJ 07102 USA. RP Zhu, K (reprint author), Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. EM kai.zhu@nrel.gov; matt.beard@nrel.gov FU hybrid perovskite solar cell programme of the National Center for Photovoltaics - US Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office; National Renewable Energy Laboratory Director's Fellowship; Solar Photochemistry programme within the US. DOE, Office of Basic Sciences, Office of Science; NREL [DE-AC36-08G028308] FX K.Z. and M.Y. acknowledge the support by the hybrid perovskite solar cell programme of the National Center for Photovoltaics funded by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office. D.T.M. acknowledges the National Renewable Energy Laboratory Directors Fellowship. Y.Yang, E.M.M. and M.C.B. acknowledge support from the Solar Photochemistry programme within the US. DOE, Office of Basic Sciences, Office of Science. Work at NREL was conducted under contract number DE-AC36-08G028308. NR 53 TC 0 Z9 0 U1 6 U2 6 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2058-7546 J9 NAT ENERGY JI Nat. Energy PD FEB PY 2017 VL 2 IS 2 AR 16207 DI 10.1038/nenergy.2016.207 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary SC Energy & Fuels; Materials Science GA EN9EO UT WOS:000396303700004 ER PT J AU Onishi, S Jamei, M Zettl, A AF Onishi, Seita Jamei, Mehdi Zettl, Alex TI Narrowband noise study of sliding charge density waves in NbSe3 nanoribbons SO NEW JOURNAL OF PHYSICS LA English DT Article DE sliding charge density wave; niobium triselenide; nanoribbon; narrowband noise ID X-RAY-SCATTERING; ELECTRIC-FIELD; CURRENT CONVERSION; CONDUCTOR NBSE3; TAS3; CRYSTALS; TRANSPORT AB Transport properties (dc electrical resistivity, threshold electric field, and narrow-band noise) are reported for nanoribbon specimens of NbSe3 with thicknesses as low as 18 nm. As the sample thickness decreases, the resistive anomalies characteristic of the charge density wave (CDW) state are suppressed and the threshold fields for nonlinear CDW conduction apparently diverge. Narrow-band noise measurements allow determination of the concentration of carriers condensed in the CDW state n(c), reflective of the CDW order parameter.. Although the CDW transition temperatures are relatively independent of sample thickness, in the lower CDW state Delta decreases dramatically with decreasing sample thickness. C1 [Onishi, Seita; Jamei, Mehdi; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Onishi, Seita; Jamei, Mehdi; Zettl, Alex] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Onishi, Seita; Jamei, Mehdi; Zettl, Alex] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Onishi, Seita; Jamei, Mehdi; Zettl, Alex] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Zettl, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; Zettl, A (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Zettl, A (reprint author), Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.; Zettl, A (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM azettl@berkeley.edu FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy (DOE) [DE-AC02-05CH11231, KC2207]; LDRD grant; National Science Foundation [DMR-1206512]; EFRI-2DARE grant [1542741] FX Research supported in part by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy (DOE), under Contract DE-AC02-05CH11231 within the sp2-bonded Materials Program KC2207 (device fabrication); and under an LDRD grant (crystal characterization); by National Science Foundation under award# DMR-1206512 (transport), and EFRI-2DARE grant # 1542741 (synthesis). NR 27 TC 0 Z9 0 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 1 PY 2017 VL 19 AR 023001 DI 10.1088/1367-2630/aa5912 PG 7 WC Physics, Multidisciplinary SC Physics GA EN1KS UT WOS:000395769500001 ER PT J AU Hattori, K Huang, XG AF Hattori, Koichi Huang, Xu-Guang TI Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions SO NUCLEAR SCIENCE AND TECHNIQUES LA English DT Review DE Relativistic heavy-ion collisions; Strong magnetic fields; Anomalous transports; Quarkonium; Heavy quark diffusion dynamics ID ENERGY NUCLEAR COLLISIONS; DYNAMICAL SYMMETRY-BREAKING; WEINBERG-SALAM THEORY; AZIMUTHAL CORRELATIONS; DIMENSIONAL REDUCTION; VACUUM BIREFRINGENCE; FINITE-TEMPERATURE; RESONANCE PHYSICS; ELECTRIC-FIELDS; HIGH-DENSITY AB The relativistic heavy-ion collisions create both hot quark-gluon matter and strong magnetic fields, and provide an arena to study the interplay between quantum chromodynamics and quantum electrodynamics. In recent years, it has been shown that such an interplay can generate a number of interesting quantum phenomena in hadronic and quark-gluon matter. In this short review, we first discuss some properties of the magnetic fields in heavy-ion collisions and then give an overview of the magnetic field induced novel quantum effects. In particular, we focus on the magnetic effect on the heavy flavor mesons, the heavy quark transports, and the phenomena closely related to chiral anomaly. C1 [Hattori, Koichi; Huang, Xu-Guang] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Hattori, Koichi; Huang, Xu-Guang] Fudan Univ, Ctr Particle Phys & Field Theory, Shanghai 200433, Peoples R China. [Hattori, Koichi] RIKEN, Brookhaven Natl Lab, Res Ctr, Upton, NY 11973 USA. [Huang, Xu-Guang] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Huang, XG (reprint author), Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.; Huang, XG (reprint author), Fudan Univ, Ctr Particle Phys & Field Theory, Shanghai 200433, Peoples R China.; Huang, XG (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM huangxuguang@fudan.edu.cn FU Shanghai Natural Science Foundation [14ZR1403000]; 1000 Young Talents Program of China; National Natural Science Foundation of China [11535012]; China Postdoctoral Science Foundation [2016M590312]; RIKEN-BNL Research Center FX This work was supported by Shanghai Natural Science Foundation (No. 14ZR1403000), 1000 Young Talents Program of China, and the National Natural Science Foundation of China (No. 11535012). K.H. is also supported by China Postdoctoral Science Foundation under Grant No. 2016M590312 and is grateful to support from RIKEN-BNL Research Center. NR 241 TC 2 Z9 2 U1 5 U2 5 PU SPRINGER SINGAPORE PTE LTD PI SINGAPORE PA #04-01 CENCON I, 1 TANNERY RD, SINGAPORE 347719, SINGAPORE SN 1001-8042 EI 2210-3147 J9 NUCL SCI TECH JI Nucl. Sci. Tech. PD FEB PY 2017 VL 28 IS 2 AR 26 DI 10.1007/s41365-016-0178-3 PG 29 WC Nuclear Science & Technology; Physics, Nuclear SC Nuclear Science & Technology; Physics GA EN7LC UT WOS:000396183300001 ER PT J AU Ma, L Dong, X Qiu, H Margetis, S Ma, YG AF Ma, Long Dong, Xin Qiu, Hao Margetis, Spiros Ma, Yu-Gang TI Alignment calibration and performance study of the STAR PXL detector SO NUCLEAR SCIENCE AND TECHNIQUES LA English DT Article DE Alignment calibration; Heavy flavor tracker; STAR AB We report in this paper the alignment calibration of the STAR pixel detector (PXL) prototype for the RHIC 2013 run and performance study of the full PXL detector installed and commissioned in the RHIC 2014 run. PXL detector is the innermost two silicon layers of the STAR heavy flavor tracker aiming at high-precision reconstruction of secondary decay vertex of heavy flavor particles. To achieve the physics goals, the calibration work was done on the detector with high precision. A histogram-based method was successfully applied for the alignment calibration, and the detector efficiency after alignment was studied using both p + p collision data and cosmic ray data. C1 [Ma, Long; Ma, Yu-Gang] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Ma, Long] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Dong, Xin] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Qiu, Hao] Purdue Univ, W Lafayette, IN 47907 USA. [Margetis, Spiros] Kent State Univ, Kent, OH 44242 USA. [Ma, Yu-Gang] ShanghaiTech Univ, Shanghai 200031, Peoples R China. RP Ma, YG (reprint author), Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China.; Ma, YG (reprint author), ShanghaiTech Univ, Shanghai 200031, Peoples R China. EM ygma@sinap.ac.cn FU National Natural Science Foundation of China [11421505]; Major State Basic Research Development Program in China [2014CB845400] FX This work was supported in part by the National Natural Science Foundation of China (No. 11421505) and the Major State Basic Research Development Program in China (No. 2014CB845400). NR 18 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER SINGAPORE PTE LTD PI SINGAPORE PA #04-01 CENCON I, 1 TANNERY RD, SINGAPORE 347719, SINGAPORE SN 1001-8042 EI 2210-3147 J9 NUCL SCI TECH JI Nucl. Sci. Tech. PD FEB PY 2017 VL 28 IS 2 AR 25 DI 10.1007/s41365-016-0177-4 PG 9 WC Nuclear Science & Technology; Physics, Nuclear SC Nuclear Science & Technology; Physics GA EN7LC UT WOS:000396183300011 ER PT J AU Forsberg, CW Lam, S Carpenter, DM Whyte, DG Scarlat, R Contescu, C Wei, L Stempien, J Blandford, E AF Forsberg, Charles W. Lam, Stephen Carpenter, David M. Whyte, Dennis G. Scarlat, Raluca Contescu, Cristian Wei, Liu Stempien, John Blandford, Edward TI Tritium Control and Capture in Salt-Cooled Fission and Fusion Reactors: Status, Challenges, and Path Forward SO NUCLEAR TECHNOLOGY LA English DT Review DE Tritium; salt-cooled reactor; fission; fusion ID MOLTEN-SALT; ELEVATED-TEMPERATURES; HYDROGEN ADSORPTION; PYROLYTIC CARBON; ULTRAMICROPOROUS CARBON; THERMAL-DESORPTION; NUCLEAR GRAPHITE; FLUORIDE SALT; FUEL; PERMEATION AB Three advanced nuclear power systems use liquid salt coolants that generate tritium and thus face the common challenges of containing and capturing tritium to prevent its release to the environment. The fluoride salt-cooled high-temperature reactor (FHR) uses clean fluoride salt coolants and the same graphite-matrix coated-particle fuel as high-temperature gas-cooled reactors. Molten salt reactors (MSRs) dissolve the fuel in a fluoride or chloride salt with release of fission product tritium into the salt. In most FHR and MSR systems, the baseline salts contain lithium where isotopically separated Li-7 is proposed to minimize tritium production from neutron interactions with the salt. The Chinese Academy of Sciences plans to start operation of a 2-MW(thermal) molten salt test reactor by 2020. For high-magnetic-field fusion machines, the use of lithium enriched in Li-6 is proposed to maximize tritium generation-the fuel for a fusion machine. Advances in superconductors that enable higher power densities may require the use of molten lithium salts for fusion blankets and as coolants. Recent technical advances in these three reactor classes have resulted in increased government and private interest and the beginning of a coordinated effort to address the tritium control challenges in 700 degrees C liquid salt systems. We describe characteristics of salt-cooled fission and fusion machines, the basis for growing interest in these technologies, tritium generation in molten salts, the environment for tritium capture, models for high-temperature tritium transport in salt systems, alternative strategies for tritium control, and ongoing experimental work. Several methods to control tritium appear viable. Limited experimental data are the primary constraint for designing efficient cost-effective methods of tritium control. C1 [Forsberg, Charles W.; Lam, Stephen] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Carpenter, David M.] MIT, Nucl Reactor Lab, Cambridge, MA 02139 USA. [Whyte, Dennis G.] MIT, Ctr Plasma Fus, Cambridge, MA 02139 USA. [Scarlat, Raluca] Univ Wisconsin, Madison, WI 53706 USA. [Contescu, Cristian] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Wei, Liu] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Stempien, John] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Blandford, Edward] Univ New Mexico, Albuquerque, NM 87131 USA. RP Forsberg, CW (reprint author), MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM cforsber@mit.edu FU CAS; INL; ORNL; U.S. Department of Energy FX We would like to thank the CAS, INL, ORNL, and the U.S. Department of Energy for their support and assistance. We would also like to thank V. Ghetta and R. Moir for their input. NR 87 TC 0 Z9 0 U1 2 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD FEB PY 2017 VL 197 IS 2 BP 119 EP 139 DI 10.13182/NT16-101 PG 21 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EP2SE UT WOS:000397232700001 ER PT J AU Root, MA Menlove, HO Lanza, RC Rael, CD Miller, KA Marlow, JB AF Root, M. A. Menlove, H. O. Lanza, R. C. Rael, C. D. Miller, K. A. Marlow, J. B. TI Technical Basis for the Use of a Correlated Neutron Source in the Uranium Neutron Coincidence Collar SO NUCLEAR TECHNOLOGY LA English DT Article DE Safeguards; neutron interrogation source; active interrogation AB Active neutron coincidence systems are commonly used by international inspectorates to verify a material balance across the various stages of the nuclear fuel cycle. The Uranium Neutron Coincidence Collar (UNCL) is one such instrument; it is used to measure the linear density of U-235 (g U-235/cm of active length in assembly) in fresh light water reactor fuel in nuclear fuel fabrication facilities. The UNCL and other active neutron interrogation detectors have historically relied on americium lithium ((AmLi)-Am-241) sources to induce fission within the sample in question. Californium-252 is under consideration as a possible alternative to the traditional 241AmLi source. This work relied upon a combination of experiments and Monte Carlo simulations to demonstrate the technical basis for the replacement of 241AmLi sources with Cf-252 sources by evaluating the statistical uncertainty in the measurements incurred by each source and assessing the penetrability of neutrons from each source for the UNCL. C1 [Root, M. A.; Menlove, H. O.; Rael, C. D.; Miller, K. A.; Marlow, J. B.] Los Alamos Natl Lab, POB 1663,Mail Stop E-540, Los Alamos, NM 87545 USA. [Lanza, R. C.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Root, MA (reprint author), Los Alamos Natl Lab, POB 1663,Mail Stop E-540, Los Alamos, NM 87545 USA. EM margaret@lanl.gov NR 11 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD FEB PY 2017 VL 197 IS 2 BP 180 EP 190 DI 10.13182/NT16-50 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EP2SE UT WOS:000397232700005 ER PT J AU Armstrong, RT McClure, JE Berill, MA Rucker, M Schluter, S Berg, S AF Armstrong, R. T. McClure, J. E. Berill, M. A. Ruecker, M. Schlueter, S. Berg, S. TI Flow Regimes During Immiscible Displacement SO PETROPHYSICS LA English DT Article; Proceedings Paper CT SCA International Symposium CY AUG 21-26, 2016 CL Snowmass, CO SP SCA ID MULTIPHASE FLOW; POROUS-MEDIA; RELATIVE PERMEABILITY; CAPILLARY-PRESSURE; 2-PHASE FLOW; MECHANISMS AB Fractional flow of immiscible phases occurs at the pore scale where grain surfaces and phases interfaces obstruct phase mobility. However, the larger scale behavior is described by a saturation-dependent phenomenological relationship called relative permeability. As a consequence, pore-scale parameters, such as phase topology and/ or geometry, and details of the flow regime cannot be directly related to Darcy-scale flow parameters. It is well understood that relative permeability is not a unique relationship of wetting -phase saturation and rather depends on the experimental conditions at which it is measured. Herein we use fast X-ray microcomputed tomography to image pore-scale phase arrangements during fractional flow and then forward simulate the flow regimes using the lattice-Boltzmann method to better understand the underlying pore-scale flow regimes and their influence on Darcy-scale parameters. We find that relative permeability is highly dependent on capillary number and that the Corey model fits the observed trends. At the pore scale, while phase topologies are continuously changing on the scale of individual pores, the Euler characteristic of the nonwetting phase (NWP) averaged over a sufficiently large field of view can describe the bulk topological characteristics; the Euler characteristic decreases with increasing capillary number resulting in an increase in relative permeability. Lastly, we quantify the fraction of NWP that flows through disconnected ganglion dynamics and demonstrate that this can be a significant fraction of the NWP flux for intermediate wetting-phase saturation. Rate dependencies occur in our homogenous sample (without capillary end effect) and the underlying cause is attributed to ganglion flow that can significantly influence phase topology during the fractional flow of immiscible phases. C1 SCA Int Symposium, Snowmass, CO USA. [Armstrong, R. T.] Univ New South Wales, Sch Petr Engn, Sydney, NSW, Australia. [McClure, J. E.] Virginia Tech, Adv Res Comp, Blacksburg, VA USA. [Berill, M. A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Ruecker, M.] Imperial Coll London, London, England. [Schlueter, S.] UFZ Helmholtz Ctr Environm Res, Halle, Germany. [Ruecker, M.; Berg, S.] Shell Global Solut Int, NL-2288 GS Rijswijk, Netherlands. RP Armstrong, RT (reprint author), Univ New South Wales, Sch Petr Engn, Sydney, NSW, Australia. EM ryan.armstrong@unsw.edu.au; mcclurej@vt.edu; berrillma@onal.gov; Maja.Rucker@shell.com; steffen.schlueter@ufz.de; Steffen.Berg@shell.com FU UT-Battelle, LLC [DE-AC05-00OR22725]; U.S. Depaitment of Energy (DOE); DOE Office of Science User Facility [DE-AC05-00OR22725] FX X-ray microcomputed tomography was performed on the TOMCAT beamline at the Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland. An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research also used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.; This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Depaitment of Energy (DOE). The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. NR 33 TC 0 Z9 0 U1 3 U2 3 PU SOC PETROPHYSICISTS & WELL LOG ANALYSTS-SPWLA PI HOUSTON PA 8866 GULF FREEWAY, STE 320, HOUSTON, TX 77017 USA SN 1529-9074 J9 PETROPHYSICS JI Petrophysics PD FEB PY 2017 VL 58 IS 1 BP 10 EP 18 PG 9 WC Geochemistry & Geophysics; Engineering, Petroleum SC Geochemistry & Geophysics; Engineering GA EM5NB UT WOS:000395357200002 ER PT J AU Ristorcelli, JR AF Ristorcelli, J. R. TI Exact statistical results for binary mixing and reaction in variable density turbulence SO PHYSICS OF FLUIDS LA English DT Article ID MODEL; LAYER AB We report a number of rigorous statistical results on binary active scalar mixing in variable density turbulence. The study is motivated by mixing between pure fluids with very different densities and whose density intensity is of order unity. Our primary focus is the derivation of exact mathematical results for mixing in variable density turbulence and we do point out the potential fields of application of the results. A binary one step reaction is invoked to derive a metric to asses the state of mixing. The mean reaction rate in variable density turbulent mixing can be expressed, in closed form, using the first order Favre mean variables and the Reynolds averaged density variance, . We show that the normalized density variance, , reflects the reduction of the reaction due to mixing and is a mix metric. The result is mathematically rigorous. The result is the variable density analog, the normalized mass fraction variance < c(2)> used in constant density turbulent mixing. As a consequence, we demonstrate that use of the analogous normalized Favre variance of the mass fraction, (c ''(2)) over tilde, as a mix metric is not theoretically justified in variable density turbulence. We additionally derive expressions relating various second order moments of the mass fraction, specific volume, and density fields. The central role of the density specific volume covariance is highlighted; it is a key quantity with considerable dynamical significance linking various second order statistics. For laboratory experiments, we have developed exact relations between the Reynolds scalar variance < c(2)> its Favre analog (c ''(2)) over tilde, and various second moments including . For moment closure models that evolve and not , we provide a novel expression for in terms of a rational function of that avoids recourse to Taylor series methods (which do not converge for large density differences). We have derived analytic results relating several other second and third order moments and see coupling between odd and even order moments demonstrating a natural and inherent skewness in the mixing in variable density turbulence. The analytic results have applications in the areas of isothermal material mixing, isobaric thermal mixing, and simple chemical reaction (in progress variable formulation). Published by AIP Publishing. C1 [Ristorcelli, J. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ristorcelli, JR (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. FU U.S. DOE [DE-AC52-06NA25396] FX Chris Tomkins is thanked for comments on the manuscript relating to experimental measurements. John Schwarzkopf for advise and input on the manuscript. Nick Denissen for catching errors and insightful commentary. A reviewer for point out the relationship of the density fluctuations to variance of the molar fraction. This is work at the Los Alamos National Laboratory, through the ASC Program, was performed under the auspices of the U.S. DOE Contract No. DE-AC52-06NA25396. NR 24 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD FEB PY 2017 VL 29 IS 2 AR 020705 DI 10.1063/1.4974517 PG 12 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA EN3IK UT WOS:000395902000008 ER PT J AU Smol'nikov, AG Ogloblichev, VV Verkhovskii, SV Mikhalev, KN Yakubovskii, AY Furukawa, Y Piskunov, YV Sadykov, AF Barilo, SN Shiryaev, SV AF Smol'nikov, A. G. Ogloblichev, V. V. Verkhovskii, S. V. Mikhalev, K. N. Yakubovskii, A. Yu. Furukawa, Y. Piskunov, Yu. V. Sadykov, A. F. Barilo, S. N. Shiryaev, S. V. TI Specific features of magnetic order in a multiferroic compound CuCrO2 determined using NMR and NQR data for Cu-63,Cu- 65 nuclei SO PHYSICS OF METALS AND METALLOGRAPHY LA English DT Article DE nuclear magnetic resonance; multiferroic compounds; frustrated systems; helical magnetic structure ID TRIANGULAR LATTICE; RESONANCE AB Results of studying the paramagnetic and ordered phases of a CuCrO2 single crystal using nuclear magnetic and nuclear quadrupole resonances on Cu-63,Cu-65 nuclei are presented. The measurements have been carried out in wide ranges of temperature (T = 4.2-300 K) and magnetic-field strength (De = 0-94 kOe), with the magnetic fields being directed along a and c axes of the crystal. The components of the electric-field gradient tensor and the magnetic-shift tensor (K (a,c)) have been determined. The temperature dependences K (a)(H || a) and K (c)(H || c) for the paramagnetic phase are described by the Curie-Weiss law and reproduce the behavior of the magnetic susceptibility (chi(a,c)). The hyperfine field on a copper nucleus has been determined, which is equal to h (hf) (a,c) = 33 kOe/mu B. Below the temperature D cent (N) = 23.6 K, nuclear magnetic resonance and nuclear quadrupole resonance spectra for Cu-63,Cu-65 nuclei have been recorded typical of helical magnetic structures, which are incommensurable with the lattice period. C1 [Smol'nikov, A. G.; Ogloblichev, V. V.; Verkhovskii, S. V.; Mikhalev, K. N.; Piskunov, Yu. V.; Sadykov, A. F.] Russian Acad Sci, Inst Met Phys, Ural Branch, Ekaterinburg 620990, Russia. [Ogloblichev, V. V.; Furukawa, Y.] Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. [Yakubovskii, A. Yu.] Natl Res Ctr Kurchatov Inst, Pl Kurchatova 1, Moscow 123182, Russia. [Barilo, S. N.; Shiryaev, S. V.] Natl Acad Sci Belarus, Inst Solid State & Semicond Phys, Ul P Brovki 19, Minsk 220072, Byelarus. RP Smol'nikov, AG (reprint author), Russian Acad Sci, Inst Met Phys, Ural Branch, Ekaterinburg 620990, Russia. EM Smolnikov@imp.uran.ru FU Russian Science Foundation [16-12-10514] FX This work was supported by the Russian Science Foundation, project no. 16-12-10514. NR 22 TC 0 Z9 0 U1 3 U2 3 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0031-918X EI 1555-6190 J9 PHYS MET METALLOGR+ JI Phys. Metals Metallogr. PD FEB PY 2017 VL 118 IS 2 BP 134 EP 142 DI 10.1134/S0031918X17020120 PG 9 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA EN5VP UT WOS:000396074100004 ER PT J AU Chu, WT Kim, KJ AF Chu, William T. Kim, Kwang-Je TI Making a name with Chinese characters SO PHYSICS TODAY LA English DT Editorial Material C1 [Chu, William T.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chu, William T.] Argonne Natl Lab, Lemont, IL 60439 USA. [Kim, Kwang-Je] Univ Chicago, Chicago, IL 60637 USA. RP Chu, WT (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.; Chu, WT (reprint author), Argonne Natl Lab, Lemont, IL 60439 USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD FEB PY 2017 VL 70 IS 2 BP 15 EP 15 DI 10.1063/PT.3.3450 PG 1 WC Physics, Multidisciplinary SC Physics GA EM1FJ UT WOS:000395063200010 ER PT J AU Hodapp, T Woodle, KS AF Hodapp, Theodore Woodle, Kathryne Sparks TI A bridge between undergraduate and doctoral degrees SO PHYSICS TODAY LA English DT Article C1 [Hodapp, Theodore] APS, College Pk, MD 20740 USA. [Woodle, Kathryne Sparks] APS, Manages Educ & Div Programs, College Pk, MD USA. RP Hodapp, T (reprint author), APS, College Pk, MD 20740 USA. FU NSF FX This article is based on work supported by NSF. We would like to thank the many faculty throughout the country who have dedicated so many hours to ensuring the success of bridge students, and who are working collectively to improve diversity within the physics community. NR 7 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD FEB PY 2017 VL 70 IS 2 BP 50 EP 56 DI 10.1063/PT.3.3464 PG 7 WC Physics, Multidisciplinary SC Physics GA EM1FJ UT WOS:000395063200020 ER PT J AU Barletta, W Alonso, J AF Barletta, William Alonso, Jose TI Edward Joseph Lofgren OBITUARY SO PHYSICS TODAY LA English DT Biographical-Item C1 [Barletta, William] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Barletta, William] MIT, Cambridge, MA 02139 USA. [Alonso, Jose] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Barletta, W (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.; Barletta, W (reprint author), MIT, Cambridge, MA 02139 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD FEB PY 2017 VL 70 IS 2 BP 69 EP 69 DI 10.1063/PT.3.3473 PG 1 WC Physics, Multidisciplinary SC Physics GA EM1FJ UT WOS:000395063200023 ER PT J AU Meng, Z Ruberti, C Gong, ZZ Brandizzi, F AF Meng, Zhe Ruberti, Cristina Gong, Zhizhong Brandizzi, Federica TI CPR5 modulates salicylic acid and the unfolded protein response to manage tradeoffs between plant growth and stress responses SO PLANT JOURNAL LA English DT Article DE CPR5; ER stress response; plant defense tradeoffs; salicylic acid; unfolded protein response; Arabidopsis thaliana ID ENDOPLASMIC-RETICULUM; ER STRESS; ARABIDOPSIS-THALIANA; TRANSCRIPTION FACTOR; MESSENGER-RNA; CELL-DEATH; DEFENSE RESPONSES; BAX INHIBITOR-1; LEAF SENESCENCE; IRE1 AB Completion of a plant's life cycle depends on successful prioritization of signaling favoring either growth or defense. Although hormones are pivotal regulators of growth-defense tradeoffs, the underlying signaling mechanisms remain obscure. The unfolded protein response (UPR) is essential for physiological growth as well as management of endoplasmic reticulum (ER) stress in unfavorable growth conditions. The plant UPR transducers are the kinase and ribonuclease IRE1 and the transcription factors bZIP28 and bZIP60. We analyzed management of the tradeoff between growth and ER stress defense by the stress response hormone salicylic acid (SA) and the UPR, which is modulated by SA via unknown mechanisms. We show that the plant growth and stress regulator CPR5, which represses accumulation of SA, favors growth in physiological conditions through inhibition of the SA-dependent IRE1-bZIP60 arm that antagonizes organ growth; CPR5 also favors growth in stress conditions through repression of ER stress-induced bZIP28/IRE1-bZIP60 arms. By demonstrating a physical interaction of CPR5 with bZIP60 and bZIP28, we provide mechanistic insights into CPR5-mediated modulation of UPR signaling. These findings define a critical surveillance strategy for plant growth-ER stress defense tradeoffs based on CPR5 and SA-modulated UPR signaling, whereby CPR5 acts as a positive modulator of growth in physiological conditions and in stress by antagonizing SA-dependent growth inhibition through UPR modulation. C1 [Meng, Zhe; Ruberti, Cristina; Brandizzi, Federica] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Meng, Zhe; Ruberti, Cristina; Brandizzi, Federica] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Meng, Zhe; Gong, Zhizhong] China Agr Univ, State Key Lab Plant Physiol & Biochem, Coll Biol Sci, Beijing 100193, Peoples R China. RP Brandizzi, F (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA.; Brandizzi, F (reprint author), Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. EM fb@msu.edu FU National Institutes of Health [R01 GM101038]; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy [DE-FG02-91ER20021]; AgBioResearch FX We thank Drs Yuti Chen and ShengYang He (Michigan State University) for useful suggestions on this work and the gift of sid2-2 seeds. We thank Dr Shuhua Yang (China Agriculture University) for the gifts of snc1-1 and bon1-1 seeds. We thank Dr Michael F. Thomashow (Michigan State University) for helpful comments on the manuscript and for the gift of siz1 seeds. The authors declare that there are no conflicts of interest. This work was primarily supported by the National Institutes of Health (R01 GM101038) with contributing support from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy (award no. DE-FG02-91ER20021) and AgBioResearch. NR 59 TC 0 Z9 0 U1 2 U2 2 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 EI 1365-313X J9 PLANT J JI Plant J. PD FEB PY 2017 VL 89 IS 3 BP 486 EP 501 DI 10.1111/tpj.13397 PG 16 WC Plant Sciences SC Plant Sciences GA EN1XE UT WOS:000395802900005 PM 27747970 ER PT J AU Dash, M Yordanov, YS Georgieva, T Tschaplinski, TJ Yordanova, E Busov, V AF Dash, Madhumita Yordanov, Yordan S. Georgieva, Tatyana Tschaplinski, Timothy J. Yordanova, Elena Busov, Victor TI Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress SO PLANT JOURNAL LA English DT Article DE PtabZIP1-like; lateral root growth; Flavonol Synthases; flavonoid biosynthesis; (P)under-baropulus (t)under-barremula x P. (a)under-barlba; drought resistance ID WATER-USE EFFICIENCY; FLAVONOID ACCUMULATION PATTERNS; BZIP TRANSCRIPTION FACTORS; TRANSPARENT-TESTA MUTANTS; QUANTITATIVE TRAIT LOCI; AUXIN TRANSPORT; ARABIDOPSIS-THALIANA; AGROBACTERIUM-TUMEFACIENS; ARCHITECTURAL TRAITS; ABIOTIC STRESS AB Developing drought-resistance varieties is a major goal for bioenergy crops, such as poplar (Populus), which will be grown on marginal lands with little or no water input. Root architecture can affect drought resistance, but few genes that affect root architecture in relation to water availability have been identified. Here, using activation tagging in the prime bioenergy crop poplar, we have identified a mutant that overcomes the block of lateral root (LR) formation under osmotic stress. Positioning of the tag, validation of the activation and recapitulation showed that the phenotype is caused by the poplar PtabZIP1-like (PtabZIP1L) gene with highest homology to bZIP1 from Arabidopsis. PtabZIP1L is predominantly expressed in roots, particularly in zones where lateral root primordia (LRP) initiate and LR differentiate and emerge. Transgenics overexpressing PtabZIP1L showed precocious LRP and LR development, while PtabZIP1L suppression significantly delayed both LRP and LR formation. Transgenic overexpression and suppression of PtabZIP1L also resulted in modulation of key metabolites like proline, asparagine, valine and several flavonoids. Consistently, expression of both of the poplar Proline Dehydrogenase orthologs and two of the Flavonol Synthases genes was also increased and decreased in overexpressed and suppressed transgenics, respectively. These findings suggest that PtabZIP1L mediates LR development and drought resistance through modulation of multiple metabolic pathways. C1 [Dash, Madhumita; Yordanov, Yordan S.; Georgieva, Tatyana; Yordanova, Elena; Busov, Victor] Michigan Technol Univ, Forest Resources & Environm Sci, Houghton, MI 49931 USA. [Tschaplinski, Timothy J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Dash, Madhumita] Ctr Cellular & Mol Biol, Uppal Rd, Hyderabad 500007, Telangana, India. [Yordanov, Yordan S.] Eastern Illinois Univ, Dept Biol Sci, 600 Lincoln Ave, Charleston, IL 61920 USA. RP Busov, V (reprint author), Michigan Technol Univ, Forest Resources & Environm Sci, Houghton, MI 49931 USA. EM vbusov@mtu.edu FU USDA National Institute of Food Agriculture - Institute of Bioenergy, Climate and Environment [2009-65504-05767]; DOE Office of Science, Office of Biological and Environmental Research (BER) [DE-SC0008462]; Genomic Science Program (Science Focus Area 'Plant: Microbe Interfaces'), United States Department of Energy, Office of Science, Biological and Environmental Research [DE-AC05-00OR22725]; USDA National Institute of Food Agriculture [MICW-2011-04378] FX This research was supported by the USDA National Institute of Food Agriculture - Institute of Bioenergy, Climate and Environment (grant no. 2009-65504-05767) and by the DOE Office of Science, Office of Biological and Environmental Research (BER) (grant no. DE-SC0008462). This research was also sponsored, in part, by the Genomic Science Program (Science Focus Area 'Plant: Microbe Interfaces'), United States Department of Energy, Office of Science, Biological and Environmental Research under the contract DE-AC05-00OR22725, USDA National Institute of Food Agriculture (MICW-2011-04378). NR 86 TC 0 Z9 0 U1 1 U2 1 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 EI 1365-313X J9 PLANT J JI Plant J. PD FEB PY 2017 VL 89 IS 4 BP 692 EP 705 DI 10.1111/tpj.13413 PG 14 WC Plant Sciences SC Plant Sciences GA EN1XA UT WOS:000395802500004 PM 27813246 ER PT J AU Duenas, ME Klein, AT Alexander, LE Yandeau-Nelson, MD Nikolau, BJ Lee, YJ AF Duenas, Maria Emilia Klein, Adam T. Alexander, Liza E. Yandeau-Nelson, Marna D. Nikolau, Basil J. Lee, Young Jin TI High spatial resolution mass spectrometry imaging reveals the genetically programmed, developmental modification of the distribution of thylakoid membrane lipids among individual cells of maize leaf SO PLANT JOURNAL LA English DT Article DE mass spectrometry imaging; Kranz anatomy; Zea mays L.; bundle sheath; mesophyll; B73; Mo17; single cell ID BUNDLE-SHEATH CELLS; EVOLVING PHOTOSYSTEM-II; FATTY-ACID-COMPOSITION; C-4 PLANTS; COMPARATIVE PROTEOMICS; CHILLING SENSITIVITY; C4 PLANTS; ION-TRAP; IN-SITU; PHOSPHATIDYLGLYCEROL AB Metabolism in plants is compartmentalized among different tissues, cells and subcellular organelles. Mass spectrometry imaging (MSI) with matrix-assisted laser desorption ionization (MALDI) has recently advanced to allow for the visualization of metabolites at single-cell resolution. Here we applied 5- and 10m high spatial resolution MALDI-MSI to the asymmetric Kranz anatomy of Zea mays (maize) leaves to study the differential localization of two major anionic lipids in thylakoid membranes, sulfoquinovosyldiacylglycerols (SQDG) and phosphatidylglycerols (PG). The quantification and localization of SQDG and PG molecular species, among mesophyll (M) and bundle sheath (BS) cells, are compared across the leaf developmental gradient from four maize genotypes (the inbreds B73 and Mo17, and the reciprocal hybrids B73xMo17 and Mo17xB73). SQDG species are uniformly distributed in both photosynthetic cell types, regardless of leaf development or genotype; however, PG shows photosynthetic cell-specific differential localization depending on the genotype and the fatty acyl chain constituent. Overall, 16:1-containing PGs primarily contribute to the thylakoid membranes of M cells, whereas BS chloroplasts are mostly composed of 16:0-containing PGs. Furthermore, PG32:0 shows genotype-specific differences in cellular distribution, with preferential localization in BS cells for B73, but more uniform distribution between BS and M cells in Mo17. Maternal inheritance is exhibited within the hybrids, such that the localization of PG 32:0 in B73xMo17 is similar to the distribution in the B73 parental inbred, whereas that of Mo17xB73 resembles the Mo17 parent. This study demonstrates the power of MALDI-MSI to reveal unprecedented insights on metabolic outcomes in multicellular organisms at single-cell resolution. C1 [Duenas, Maria Emilia; Klein, Adam T.; Lee, Young Jin] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Duenas, Maria Emilia; Klein, Adam T.; Alexander, Liza E.; Nikolau, Basil J.; Lee, Young Jin] US DOE, Ames Lab, Ames, IA 50011 USA. [Alexander, Liza E.; Nikolau, Basil J.] Iowa State Univ, Roy J Carver Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA. [Yandeau-Nelson, Marna D.] Iowa State Univ, Dept Genet Dev & Cell Biol, Ames, IA 50011 USA. [Alexander, Liza E.; Yandeau-Nelson, Marna D.; Nikolau, Basil J.] Iowa State Univ, Ctr Metab Biol, Ames, IA 50011 USA. RP Lee, YJ (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA.; Lee, YJ (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM yjlee@iastate.edu FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; National Science Foundation [EEC-0813570, IOS-1354799]; Iowa State University under DOE [DE-AC02-07CH11358] FX This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDY-N and BJN acknowledge the support of the National Science Foundation under award no. EEC-0813570 and award no. IOS-1354799, which co-sponsored the development of the genetic stocks imaged in this study. The Ames Laboratory is operated by Iowa State University under DOE Contract DE-AC02-07CH11358. The authors declare no conflict of interest. NR 80 TC 1 Z9 1 U1 2 U2 2 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 EI 1365-313X J9 PLANT J JI Plant J. PD FEB PY 2017 VL 89 IS 4 BP 825 EP 838 DI 10.1111/tpj.13422 PG 14 WC Plant Sciences SC Plant Sciences GA EN1XA UT WOS:000395802500013 PM 27859865 ER PT J AU Eloy, NB Voorend, W Lan, W Saleme, MDS Cesarino, I Vanholme, R Smith, RA Goeminne, G Pallidis, A Morreel, K Nicomedes, J Ralph, J Boerjan, W AF Eloy, Nubia B. Voorend, Wannes Lan, Wu Saleme, Marina de Lyra Soriano Cesarino, Igor Vanholme, Ruben Smith, Rebecca A. Goeminne, Geert Pallidis, Andreas Morreel, Kris Nicomedes, Jose, Jr. Ralph, John Boerjan, Wout TI Silencing CHALCONE SYNTHASE in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content SO PLANT PHYSIOLOGY LA English DT Article ID CELL-WALL COMPOSITION; ZEA-MAYS L; CAFFEOYL SHIKIMATE ESTERASE; PHENYLALANINE-AMMONIA-LYASE; FERMENTABLE SUGAR YIELDS; ACID O-METHYLTRANSFERASE; PANICUM-VIRGATUM L.; COBRA-LIKE PROTEIN; ARABIDOPSIS-THALIANA; DOWN-REGULATION AB Lignin is a phenolic heteropolymer that is deposited in secondary-thickened cell walls, where it provides mechanical strength. A recent structural characterization of cell walls from monocot species showed that the flavone tricin is part of the native lignin polymer, where it is hypothesized to initiate lignin chains. In this study, we investigated the consequences of altered tricin levels on lignin structure and cell wall recalcitrance by phenolic profiling, nuclear magnetic resonance, and saccharification assays of the naturally silenced maize (Zea mays) C2-Idf (inhibitor diffuse) mutant, defective in the CHALCONE SYNTHASE Colorless2 (C2) gene. We show that the C2-Idf mutant produces highly reduced levels of apigenin-and tricin-related flavonoids, resulting in a strongly reduced incorporation of tricin into the lignin polymer. Moreover, the lignin was enriched in beta-beta and beta-5 units, lending support to the contention that tricin acts to initiate lignin chains and that, in the absence of tricin, more monolignol dimerization reactions occur. In addition, the C2-Idf mutation resulted in strikingly higher Klason lignin levels in the leaves. As a consequence, the leaves of C2-Idf mutants had significantly reduced saccharification efficiencies compared with those of control plants. These findings are instructive for lignin engineering strategies to improve biomass processing and biochemical production. C1 [Eloy, Nubia B.; Voorend, Wannes; Saleme, Marina de Lyra Soriano; Cesarino, Igor; Vanholme, Ruben; Goeminne, Geert; Pallidis, Andreas; Morreel, Kris; Nicomedes, Jose, Jr.; Boerjan, Wout] VIB, Ctr Plant Syst Biol, B-9052 Ghent, Belgium. [Eloy, Nubia B.; Voorend, Wannes; Saleme, Marina de Lyra Soriano; Cesarino, Igor; Vanholme, Ruben; Goeminne, Geert; Pallidis, Andreas; Morreel, Kris; Nicomedes, Jose, Jr.; Boerjan, Wout] Univ Ghent, Dept Plant Biotechnol & Bioinformat, B-9052 Ghent, Belgium. [Cesarino, Igor] Univ Sao Paulo, Inst Biosci, Dept Bot, BR-05508090 Sao Paulo, SP, Brazil. [Lan, Wu; Smith, Rebecca A.; Ralph, John] Univ Wisconsin, Wisconsin Energy Inst, Dept Energy, Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. [Lan, Wu; Ralph, John] Univ Wisconsin, Dept Biol Syst Engn, Madison, WI 53706 USA. [Smith, Rebecca A.; Ralph, John] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. RP Boerjan, W (reprint author), VIB, Ctr Plant Syst Biol, B-9052 Ghent, Belgium.; Boerjan, W (reprint author), Univ Ghent, Dept Plant Biotechnol & Bioinformat, B-9052 Ghent, Belgium. EM wout.boerjan@psb.vib-ugent.be FU Department of Energy Great Lakes Bioenergy Research Center [DE-FC02-07ER64494]; China Scholarship Council; Research Foundation Flanders; FAPESP [2015/02527-1]; Petrobras; Agency for Innovation by Science and Technology (IWT) through the IWT-SBO project BIOLEUM [130039]; Agency for Innovation by Science and Technology (IWT) through the IWT-FISCH-SBO project ARBOREF FX This work was supported by Petrobras and the Agency for Innovation by Science and Technology (IWT) through the IWT-SBO project BIOLEUM (grant no. 130039) and the IWT-FISCH-SBO project ARBOREF; by the Department of Energy Great Lakes Bioenergy Research Center (Office of Science grant no. DE-FC02-07ER64494 to W.L., R.A.S., and J.R.); by the China Scholarship Council (Ph.D. scholarship at the University of Wisconsin, Madison, to W.L.); by the Research Foundation Flanders (postdoctoral fellowship to R.V.); and by FAPESP (BIOEN Young Investigator Award grant no. 2015/02527-1 to I. C.). NR 133 TC 0 Z9 0 U1 5 U2 5 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 EI 1532-2548 J9 PLANT PHYSIOL JI Plant Physiol. PD FEB PY 2017 VL 173 IS 2 BP 998 EP 1016 DI 10.1104/pp.16.01108 PG 19 WC Plant Sciences SC Plant Sciences GA EK7YJ UT WOS:000394140800008 PM 27940492 ER PT J AU Gou, MY Hou, GC Yang, HJ Zhang, XB Cai, YH Kai, GY Liu, CJ AF Gou, Mingyue Hou, Guichuan Yang, Huijun Zhang, Xuebin Cai, Yuanheng Kai, Guoyin Liu, Chang-Jun TI The MYB107 Transcription Factor Positively Regulates Suberin Biosynthesis SO PLANT PHYSIOLOGY LA English DT Article ID ARABIDOPSIS-THALIANA; CUTICLE DEVELOPMENT; SEED COAT; LIPID POLYESTER; BRASSICA-NAPUS; FATTY ALCOHOLS; RNA-SEQ; GENE; CELL; WAX AB Suberin, a lipophilic polymer deposited in the outer integument of the Arabidopsis (Arabidopsis thaliana) seed coat, represents an essential sealing component controlling water and solute movement and protecting seed from pathogenic infection. Although many genes responsible for suberin synthesis are identified, the regulatory components controlling its biosynthesis have not been definitively determined. Here, we show that the Arabidopsis MYB107 transcription factor acts as a positive regulator controlling suberin biosynthetic gene expression in the seed coat. MYB107 coexpresses with suberin biosynthetic genes in a temporal manner during seed development. Disrupting MYB107 particularly suppresses the expression of genes involved in suberin but not cutin biosynthesis, lowers seed coat suberin accumulation, alters suberin lamellar structure, and consequently renders higher seed coat permeability and susceptibility to abiotic stresses. Furthermore, MYB107 directly binds to the promoters of suberin biosynthetic genes, verifying its primary role in regulating their expression. Identifying MYB107 as a positive regulator for seed coat suberin synthesis offers a basis for discovering the potential transcriptional network behind one of the most abundant lipid-based polymers in nature. C1 [Gou, Mingyue; Yang, Huijun; Zhang, Xuebin; Cai, Yuanheng; Kai, Guoyin; Liu, Chang-Jun] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Hou, Guichuan] Appalachian State Univ, Boone, NC 28608 USA. [Yang, Huijun] Cornell Univ, Dept Plant Pathol & Plant Microbe Biol, Ithaca, NY 14853 USA. [Kai, Guoyin] Shanghai Normal Univ, Coll Life & Environm Sci, Shanghai 200234, Peoples R China. RP Liu, CJ (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM cliu@bnl.gov OI Gou, Mingyue/0000-0001-8855-6617 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DEAC0298CH10886]; National Science Foundation [MCB-1051675] FX This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (grant no. DEAC0298CH10886 to C.-J.L.) and the National Science Foundation (grant no. MCB-1051675 to C.-J.L). NR 69 TC 0 Z9 0 U1 3 U2 3 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 EI 1532-2548 J9 PLANT PHYSIOL JI Plant Physiol. PD FEB PY 2017 VL 173 IS 2 BP 1045 EP 1058 DI 10.1104/pp.16.01614 PG 14 WC Plant Sciences SC Plant Sciences GA EK7YJ UT WOS:000394140800011 PM 27965303 ER PT J AU Novikov, VV Pilipenko, ES Bud'ko, SL AF Novikov, V. V. Pilipenko, E. S. Bud'ko, S. L. TI Crystal electric field effects and thermal expansion of rare-earth hexaborides SO SOLID STATE COMMUNICATIONS LA English DT Article DE Hexaborides; Thermal expansion; Crystal electric field; Low temperatures ID RANGE 5-300 K; HEAT-CAPACITY; NEODYMIUM HEXABORIDE; EUROPIUM HEXABORIDE; CEB6; COEFFICIENT; PRB6; EUB6 AB Anomalies in the magnetic contribution to the thermal expansion coefficients Delta beta(T)of the CeB6, PrB6, and NdB6 hexaborides in the range of 5-300 K were found by comparison with diamagnetic LaB6. The characteristic of the anomalies was the same in all the studied borides: a distinct peak at low temperatures, followed by a broad maximum at higher temperatures (50-100 K), then a decrease and transition to the region of negative values as the temperature increases further. The features of Delta beta(T) are explained by the effects of the magnetic order (sharp low temperature peaks) and the crystal electric field (CEF). The beta(CEF)(T) dependencies were calculated using Raman and neutron scattering data on the splitting of the rare-earth (RE) ions R3+ f-level by the CEF. A satisfactory consistency between the values of beta(CEF)(T) and Delta beta(T)was obtained for the studied hexaborides. Additionally, we determined the values of the Gruneisen parameter Y-i that correspond to the transition between the ground and excited multiplets of R3+ ions f-level splitting. C1 [Novikov, V. V.; Pilipenko, E. S.] Petrovsky Bryansk State Univ, Bryansk Phys Lab, Training Res Ctr, 14 Bezhitskaya St, Bryansk 241036, Russia. [Bud'ko, S. L.] US DOE, Ames Lab, Ames, IA 50011 USA. [Bud'ko, S. L.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Novikov, VV (reprint author), Petrovsky Bryansk State Univ, Bryansk Phys Lab, Training Res Ctr, 14 Bezhitskaya St, Bryansk 241036, Russia. EM vvnovikov@mail.ru FU Ministry of Education and Science of the Russian Federation [3.105.2014/K]; U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering [DE-AC02-07CH11358] FX The research was performed under the auspices of the Ministry of Education and Science of the Russian Federation (State assignment, project No. 3.105.2014/K). Work at the Ames Laboratory (S.L.B.) was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering under Contract no. DE-AC02-07CH11358. NR 30 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 EI 1879-2766 J9 SOLID STATE COMMUN JI Solid State Commun. PD FEB PY 2017 VL 252 BP 51 EP 53 DI 10.1016/j.ssc.2017.01.017 PG 3 WC Physics, Condensed Matter SC Physics GA EM3MT UT WOS:000395220000010 ER PT J AU Saillard, M Audin, L Rousset, B Avouac, JP Chlieh, M Hall, SR Husson, L Farber, DL AF Saillard, M. Audin, L. Rousset, B. Avouac, J. -P. Chlieh, M. Hall, S. R. Husson, L. Farber, D. L. TI From the seismic cycle to long-term deformation: linking seismic coupling and Quaternary coastal geomorphology along the Andean megathrust SO TECTONICS LA English DT Article ID CHILE SUBDUCTION ZONE; UPPER PLATE DEFORMATION; 2010 MAULE EARTHQUAKE; SEA-LEVEL CHANGES; FORE-ARC BASINS; NORTHERN CHILE; SOUTHERN PERU; GREAT EARTHQUAKES; MARINE TERRACES; HISTORICAL EARTHQUAKES AB Measurement of interseismic strain along subduction zones reveals the location of both locked asperities, which might rupture during megathrust earthquakes, and creeping zones, which tend to arrest such seismic ruptures. The heterogeneous pattern of interseismic coupling presumably relates to spatial variations of frictional properties along the subduction interface and may also show up in the fore-arc morphology. To investigate this hypothesis, we compiled information on the extent of earthquake ruptures for the last 500 years and uplift rates derived from dated marine terraces along the South American coastline from central Peru to southern Chile. We additionally calculated a new interseismic coupling model for that same area based on a compilation of GPS data. We show that the coastline geometry, characterized by the distance between the coast and the trench; the latitudinal variations of long-term uplift rates; and the spatial pattern of interseismic coupling are correlated. Zones of faster and long-term permanent coastal uplift, evidenced by uplifted marine terraces, coincide with peninsulas and also with areas of creep on the megathrust where slip is mostly aseismic and tend to arrest seismic ruptures. We conclude that spatial variations of frictional properties along the megathrust dictate the tectono-geomorphological evolution of the coastal zone and the extent of seismic ruptures along strike. C1 [Saillard, M.; Chlieh, M.] Univ Cote Azur, IRD, CNRS, Observ Cote Azur,Geoazur, Valbonne, France. [Audin, L.; Rousset, B.; Husson, L.] Univ Grenoble Alpes, CNRS, IRD, ISTerre, Grenoble, France. [Avouac, J. -P.] CALTECH, Div Geol & Planetary Sci, Tecton Observ, Pasadena, CA 91125 USA. [Hall, S. R.] Coll Atlantic, Dept Earth Sci, Bar Harbor, ME USA. [Farber, D. L.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Farber, D. L.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Saillard, M (reprint author), Univ Cote Azur, IRD, CNRS, Observ Cote Azur,Geoazur, Valbonne, France. EM marianne.saillard@ird.fr FU Institut de Recherche pour le Developpement FX This research project was led thanks to support of the Institut de Recherche pour le Developpement. We thank T. Schildgen and two anonymous reviewers for their constructive and critical comments of this manuscript. All data for this paper are properly cited and referred to in the reference list and available by contacting the corresponding author (marianne.saillard@ird.fr). We would like to dedicate this work to the memory of Luc Ortlieb. NR 135 TC 0 Z9 0 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0278-7407 EI 1944-9194 J9 TECTONICS JI Tectonics PD FEB PY 2017 VL 36 IS 2 BP 241 EP 256 DI 10.1002/2016TC004156 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EO6SK UT WOS:000396822600005 ER PT J AU Wittwehr, C Aladjov, H Ankley, G Byrne, HJ de Knecht, J Heinzle, E Klambauer, G Landesmann, B Luijten, M MacKay, C Maxwell, G Meek, ME Paini, A Perkins, E Sobanski, T Villeneuve, D Waters, KM Whelan, M AF Wittwehr, Clemens Aladjov, Hristo Ankley, Gerald Byrne, Hugh J. de Knecht, Joop Heinzle, Elmar Klambauer, Guenter Landesmann, Brigitte Luijten, Mirjam MacKay, Cameron Maxwell, Gavin Meek, M. E. (Bette) Paini, Alicia Perkins, Edward Sobanski, Tomasz Villeneuve, Dan Waters, Katrina M. Whelan, Maurice TI How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology SO TOXICOLOGICAL SCIENCES LA English DT Article DE Adverse Outcome Pathways; AOP; quantitative AOP; computational prediction model ID THYROID-HORMONE DISRUPTION; SPECIES TRANSLATION CHALLENGE; PITUITARY-GONADAL AXIS; RISK-ASSESSMENT; SKIN SENSITIZATION; SCIENTIFIC CONFIDENCE; COLLABORATIVE COMPETITION; POLYCHLORINATED-BIPHENYLS; ESTROGEN-RECEPTOR; CHEMICALS AB Efforts are underway to transform regulatory toxicology and chemical safety assessment from a largely empirical science based on direct observation of apical toxicity outcomes in whole organism toxicity tests to a predictive one in which outcomes and risk are inferred from accumulated mechanistic understanding. The adverse outcome pathway (AOP) framework provides a systematic approach for organizing knowledge that may support such inference. Likewise, computational models of biological systems at various scales provide another means and platform to integrate current biological understanding to facilitate inference and extrapolation. We argue that the systematic organization of knowledge into AOP frameworks can inform and help direct the design and development of computational prediction models that can further enhance the utility of mechanistic and in silico data for chemical safety assessment. This concept was explored as part of a workshop on AOP-Informed Predictive Modeling Approaches for Regulatory Toxicology held September 24-25, 2015. Examples of AOP-informed model development and its application to the assessment of chemicals for skin sensitization and multiple modes of endocrine disruption are provided. The role of problem formulation, not only as a critical phase of risk assessment, but also as guide for both AOP and complementary model development is described. Finally, a proposal for actively engaging the modeling community in AOP-informed computational model development is made. The contents serve as a vision for how AOPs can be leveraged to facilitate development of computational prediction models needed to support the next generation of chemical safety assessment. C1 [Wittwehr, Clemens; Landesmann, Brigitte; Whelan, Maurice] European Commiss, Joint Res Ctr, I-21027 Ispra, Italy. [Aladjov, Hristo] Bulgarian Acad Sci, Sofia 1113, Bulgaria. [Ankley, Gerald; Villeneuve, Dan] US Environm Protect Agcy, Duluth, MN 55804 USA. [Byrne, Hugh J.] FOCAS Res Inst, Dublin 8, Ireland. [de Knecht, Joop; Luijten, Mirjam] Natl Inst Publ Hlth & Environm RIVM, NL-3721 MA Bilthoven, Netherlands. [Heinzle, Elmar] Univ Saarland, D-66123 Saarbrucken, Germany. [Klambauer, Guenter] Johannes Kepler Univ Linz, A-4040 Linz, Austria. [MacKay, Cameron] Unilever Safety & Environmenta Assurance Ctr, Sharnbrook MK44 1LQ, Beds, England. [Perkins, Edward] US Army Engn Res, Vicksburg, MS 39180 USA. [Perkins, Edward] Dev Ctr Vicksburg, Vicksburg, MS 39180 USA. [Sobanski, Tomasz] ECHA, European Chem Agcy, Helsinki 00121, Finland. [Waters, Katrina M.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. RP Wittwehr, C (reprint author), European Commiss, Joint Res Ctr, I-21027 Ispra, Italy. EM clemens.wittwehr@ec.europa.eu FU European Commission's Joint Research Centre (JRC), Ispra, Italy. FX The AOP-informed Predictive Modeling Approaches for Regulatory Toxicology Workshop (24-25 September 2015) was funded by the European Commission's Joint Research Centre (JRC), Ispra, Italy. NR 72 TC 0 Z9 0 U1 2 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 EI 1096-0929 J9 TOXICOL SCI JI Toxicol. Sci. PD FEB PY 2017 VL 155 IS 2 BP 326 EP 336 DI 10.1093/toxsci/kfw207 PG 11 WC Toxicology SC Toxicology GA EO9YO UT WOS:000397044200005 PM 27994170 ER PT J AU Schiener, A Schmidt, E Bergmann, C Seifert, S Zahn, D Krach, A Weihrich, R Magerl, A AF Schiener, Andreas Schmidt, Ella Bergmann, Christoph Seifert, Soenke Zahn, Dirk Krach, Alexander Weihrich, Richard Magerl, Andreas TI The formation of CdS quantum dots and Au nanoparticles SO ZEITSCHRIFT FUR KRISTALLOGRAPHIE-CRYSTALLINE MATERIALS LA English DT Article DE Au nanoparticles; CdS quantum dots; containment-free; in-situ SAXS; nucleation and growth ID GOLD NANOPARTICLES; NUCLEATION; GROWTH; NANOCRYSTALS; MECHANISMS; RADIATION; CLUSTERS; DYNAMICS AB We report on microsecond-resolved in-situ SAXS experiments of the early nucleation and growth behavior of both cadmium sulfide (CdS) quantum dots in aqueous solution including the temperature dependence and of gold (Au) nanoparticles. A novel free-jet setup was developped to access reaction times as early as 20 mu s. As the signal in particular in the beginning of the reaction is weak the containment-free nature of this sample environment prooved crucial. The SAXS data reveal a two-step pathway with a surprising stability of a structurally relaxed cluster with a diameter of about 2 nm. While these develop rapidly by ionic assembly, a further slower growth is attributed to cluster attachment. WAXS diffraction confirms, that the particles at this early stage are not yet crystalline. This growth mode is confirmed for a temperature range from 25 degrees C to 45 degrees C. An energy barrier for the diffusion of primary clusters in water of 0.60 eV was experimentally observed in agreement with molecular simulations. To access reaction times beyond 100 ms, a stopped-drop setup -again contaiment-free is introduced. SAXS experiments on the growth of Au nanoparticles on an extended time scale provide a much slower growth with one population only. Further, the influence of ionizing X-ray radiation on the Au particle fromation and growth is discussed. C1 [Zahn, Dirk] Friedrich Alexander Univ, Theoret Chem & Computer Chem Ctr, Nagelsbachstr 25, D-91052 Erlangen, Germany. [Schiener, Andreas; Schmidt, Ella; Bergmann, Christoph] Friedrich Alexander Univ Erlangen Nurnberg, Crystallog & Struct Phys, Staudtstr 3, D-91058 Erlangen, Germany. [Seifert, Soenke] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. [Krach, Alexander; Weihrich, Richard] Univ Regensburg, Inorgan Chem, Univ Str 31, D-93053 Regensburg, Germany. [Weihrich, Richard] Univ Augsburg, Inst Mat Resource Management, Univ Str 1, D-86135 Augsburg, Germany. [Magerl, Andreas] Friedrich Alexander Univ Erlangen Nurnberg, Biophys Goup, Ctr Med Phys & Technol, Henkestr 91, D-91052 Erlangen, Germany. RP Zahn, D (reprint author), Friedrich Alexander Univ, Theoret Chem & Computer Chem Ctr, Nagelsbachstr 25, D-91052 Erlangen, Germany. EM dirk.zahn@fau.de FU German Research Foundation (DFG) through Priority Program [SPP1415]; Graduate School GRK; U.S. Department of Energy (DOE) Office of Science User Facility [DE-AC0206CH11357]; APS 12-ID FX We gratefully acknowledge funding by the German Research Foundation (DFG) through Priority Program SPP1415 and support by the Graduate School GRK 1896. We furthermore acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and we would like to thank Pawel Kwasniewski for assistance in using beamline ID 02. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC0206CH11357. We furthermore acknowledge the support by the APS 12-ID beamline staff. NR 29 TC 0 Z9 0 U1 0 U2 0 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 2194-4946 EI 2196-7105 J9 Z KRIST-CRYST MATER JI Z. Krist.-Cryst. Mater. PD FEB PY 2017 VL 232 IS 1-3 BP 39 EP 46 DI 10.1515/zkri-2016-1978 PG 8 WC Crystallography SC Crystallography GA EK9KQ UT WOS:000394243800005 ER PT J AU Rudiger, C Favaro, M Valero-Vidal, C Calvillo, L Bozzolo, N Jacomet, S Hein, J Gregoratti, L Agnoli, S Granozzi, G Kunze-Liebhauser, J AF Ruediger, Celine Favaro, Marco Valero-Vidal, Carlos Calvillo, Laura Bozzolo, Nathalie Jacomet, Suzanne Hein, Jennifer Gregoratti, Luca Agnoli, Stefano Granozzi, Gaetano Kunze-Liebhaeuser, Julia TI Substrate Grain-Dependent Chemistry of Carburized Planar Anodic TiO2 on Polycrystalline Ti SO ACS OMEGA LA English DT Article ID TITANIUM CARBIDE; FUEL-CELLS; CRYSTALLOGRAPHIC ORIENTATION; PHOTOEMISSION-SPECTROSCOPY; ELECTROCATALYST SUPPORTS; OXYGEN REDUCTION; METAL CARBIDES; RAMAN-SPECTRUM; CARBON; SURFACE AB Mixtures or composites of titania and carbon have gained considerable research interest as innovative catalyst supports for low-and intermediate-temperature proton-exchange membrane fuel cells. For applications in electro-catalysis, variations in the local physicochemical properties of the employed materials can have significant effects on their behavior as catalyst supports. To assess microscopic hetero-geneities in composition, structure, and morphology, a microscopic multitechnique approach is required. In this work, compact anodic TiO2 films on planar polycrystalline Ti substrates are converted into carbon/titania composites or multiphase titanium oxycarbides through carbothermal treatment in an acetylene/argon atmosphere in a flow reactor. The local chemical composition, structure, and morphology of the converted films are studied with scanning photoelectron microscopy, micro-Raman spectroscopy, and scanning electron microscopy and are related with the crystallographic orientations of the Ti substrate grains by means of electron backscatter diffraction. Different annealing temperatures, ranging from 550 to 850 degrees C, are found to yield different substrate grain-dependent chemical compositions, structures, and morphologies. The present study reveals individual time scales for the carbothermal conversion and subsequent surface re-oxidation on substrate grains of a given orientation. Furthermore, it demonstrates the power of a microscopic multitechnique approach for studying polycrystalline heterogeneous materials for electrocatalytic applications. C1 [Ruediger, Celine] Tech Univ Munich, Dept Phys, James Franck Str 1, D-85748 Garching, Germany. [Favaro, Marco; Calvillo, Laura; Agnoli, Stefano; Granozzi, Gaetano] Univ Padua, Dipartimento Sci Chim, Via Marzolo 1, I-35131 Padua, Italy. [Valero-Vidal, Carlos; Kunze-Liebhaeuser, Julia] Leopold Franzens Univ Innsbruck, Inst Chim Phys, Innrain 52c, A-6020 Innsbruck, Austria. [Bozzolo, Nathalie; Jacomet, Suzanne] PSL Res Univ, CNRS UMR 7635, MINES ParisTech, CEMEF Ctr Mise Forme Mat, CS 10207 Rue Claude Daunesse, F-06904 Sophia Antipolis, France. [Hein, Jennifer] Tech Univ Munich, Lehrstuhl Tech Chem 2, Lichtenbergstr 4, D-85748 Garching, Germany. [Gregoratti, Luca] Elettra Sincrotrone Trieste SCpA, SS14-Km163-5 Area Sci Pk, I-34149 Trieste, Italy. [Favaro, Marco] Helmholtz Zentrum Berlin, Inst Solar Fuels, Hahn Meitner Pl 1, D-14109 Berlin, Germany. [Valero-Vidal, Carlos] Lawrence Berkeley Natl Lab, ALS, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Valero-Vidal, Carlos] Lawrence Berkeley Natl Lab, JCESR, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Hein, Jennifer] Shell Global Solut Int BV, POB 38000, NL-1030 BN Amsterdam, Netherlands. RP Rudiger, C (reprint author), Tech Univ Munich, Dept Phys, James Franck Str 1, D-85748 Garching, Germany.; Kunze-Liebhauser, J (reprint author), Leopold Franzens Univ Innsbruck, Inst Chim Phys, Innrain 52c, A-6020 Innsbruck, Austria. EM celine.ruediger@tum.de; Julia.Kunze@uibk.ac.at RI Bozzolo, Nathalie/B-2870-2008; OI Bozzolo, Nathalie/0000-0002-8963-977X; AGNOLI, STEFANO/0000-0001-5204-5460 FU EU [309741]; Fondazione Cariparo FX This research was mainly supported by funds of the EU RTD Framework Program FP7 (FP7-NMP-2012-SMALL-6, project title DECORE, project number 309741). Marco Favaro obtained financial support from Fondazione Cariparo. NR 45 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2470-1343 J9 ACS OMEGA JI ACS Omega PD FEB PY 2017 VL 2 IS 2 BP 631 EP 640 DI 10.1021/acsomega.6b00472 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA EN2TO UT WOS:000395863300031 ER PT J AU O'Dell, WB Swartz, PD Weiss, KL Meilleur, F AF O'Dell, William B. Swartz, Paul D. Weiss, Kevin L. Meilleur, Flora TI Crystallization of a fungal lytic polysaccharide monooxygenase expressed from glycoengineered Pichia pastoris for X-ray and neutron diffraction SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS LA English DT Article DE lytic polysaccharide monooxygenases; Pichia pastoris; glycoengineering; neutron proteincrystallography ID PROTEIN-STRUCTURE; STRUCTURE REFINEMENT; RECOMBINANT PROTEIN; CRYSTALLOGRAPHY; FERMENTATION; DEGRADATION; OXYGENASES; CELLULOSE; SOFTWARE; INSIGHTS AB Lytic polysaccharide monooxygenases (LPMOs) are carbohydrate-disrupting enzymes secreted by bacteria and fungi that break glycosidic bonds via an oxidative mechanism. Fungal LPMOs typically act on cellulose and can enhance the efficiency of cellulose-hydrolyzing enzymes that release soluble sugars for bioethanol production or other industrial uses. The enzyme PMO-2 from Neurospora crassa (NcPMO-2) was heterologously expressed in Pichia pastoris to facilitate crystallographic studies of the fungal LPMO mechanism. Diffraction resolution and crystal morphology were improved by expressing NcPMO-2 from a glycoengineered strain of P. pastoris and by the use of crystal seeding methods, respectively. These improvements resulted in high-resolution (1.20 angstrom) X-ray diffraction data collection at 100 K and the production of a large NcPMO-2 crystal suitable for room-temperature neutron diffraction data collection to 2.12 angstrom resolution. C1 [O'Dell, William B.; Swartz, Paul D.; Meilleur, Flora] North Carolina State Univ, Dept Mol & Struct Biochem, Campus Box 7622, Raleigh, NC 27695 USA. [O'Dell, William B.; Weiss, Kevin L.; Meilleur, Flora] Oak Ridge Natl Lab, Biol & Soft Matter Div, POB 2008, Oak Ridge, TN 37831 USA. RP Meilleur, F (reprint author), North Carolina State Univ, Dept Mol & Struct Biochem, Campus Box 7622, Raleigh, NC 27695 USA.; Meilleur, F (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, POB 2008, Oak Ridge, TN 37831 USA. EM fmeille@ncsu.edu OI O'Dell, William/0000-0002-8063-5190 FU NSF Integrative Graduate Education and Research Training program [1069091]; USDA National Insitute of Food and Agriculture Hatch Award [211001] FX Protein expression and purification experiments were conducted at the Center for Structural Molecular Biology, a DOE Office of Biological and Environmental Research User Facility. Diffraction data were collected on the Southeast Regional Collaborative Access Team 22-BM and 22-ID beamlines at the Advanced Photon Source and on the CG-4D IMAGINE beamline at the High Flux Isotope Reactor, DOE Office of Science User Facilities. Student support was provided by the ORNL Graduate Opportunities (GO!) Program and by NSF Integrative Graduate Education and Research Training program award 1069091. The authors acknowledge M.B. Goshe for useful discussions during manuscript preparation. FM acknowledges support from USDA National Insitute of Food and Agriculture Hatch Award 211001. NR 39 TC 0 Z9 0 U1 6 U2 6 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2053-230X J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Commun. PD FEB PY 2017 VL 73 BP 70 EP 78 DI 10.1107/S2053230X16020318 PN 2 PG 9 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA EO8BZ UT WOS:000396915200002 PM 28177316 ER PT J AU Gonzalez, JM Marti-Arbona, R Chen, JCH Unkefer, CJ AF Gonzalez, Javier M. Marti-Arbona, Ricardo Chen, Julian C. -H. Unkefer, Clifford J. TI Structure of Methylobacterium extorquens malyl-CoA lyase: CoA-substrate binding correlates with domain shift SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS LA English DT Article DE biofuels; metabolic engineering; methanol; malyl-CoA lyase; Methylobacterium extorquens ID COENZYME-A LYASE; CHLOROFLEXUS-AURANTIACUS; RHODOBACTER-SPHAEROIDES; CRYSTAL-STRUCTURES; AM1; ENZYMES; REFINEMENT; FIXATION; SYNTHASE; FEATURES AB Malyl-CoA lyase (MCL) is an Mg2+-dependent enzyme that catalyzes the reversible cleavage of (2S)-4-malyl-CoA to yield acetyl-CoA and glyoxylate. MCL enzymes, which are found in a variety of bacteria, are members of the citrate lyase-like family and are involved in the assimilation of one- and two-carbon compounds. Here, the 1.56 angstrom resolution X-ray crystal structure of MCL from Methylobacterium extorquens AM1 with bound Mg2+ is presented. Structural alignment with the closely related Rhodobacter sphaeroides malyl-CoA lyase complexed with Mg2+, oxalate and CoA allows a detailed analysis of the domain motion of the enzyme caused by substrate binding. Alignment of the structures shows that a simple hinge motion centered on the conserved residues Phe268 and Thr269 moves the C-terminal domain by about 30 degrees relative to the rest of the molecule. This domain motion positions a conserved aspartate residue located in the C-terminal domain in the active site of the adjacent monomer, which may serve as a general acid/base in the catalytic mechanism. C1 [Gonzalez, Javier M.; Marti-Arbona, Ricardo; Chen, Julian C. -H.; Unkefer, Clifford J.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Gonzalez, Javier M.] Univ Nacl Santiago del Estero, CONICET, Inst Bionanotecnol NOA, G4206XCP, Santiago Del Estero, Argentina. RP Marti-Arbona, R; Unkefer, CJ (reprint author), Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. EM rm-a@lanl.gov; unkeferc@gmail.com OI Gonzalez, Javier M./0000-0002-3298-2235 FU Department of Energy, Office of Biological and Environmental Research and by NIH; National Center for Research Resources; National Institute of General Medical Sciences; LANL Director's Postdoctoral Fellowship [DOE-LDRD 20120776PRD4]; Los Alamos National Laboratory [20130091DR] FX Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory (SSRL), a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research and by the NIH, National Center for Research Resources, Biomedical Technology Program and the National Institute of General Medical Sciences. We thank Virginia Unkefer for editing of the manuscript. JMG is the recipient of an LANL Director's Postdoctoral Fellowship (grant DOE-LDRD 20120776PRD4).; Funding for this research was provided by: Los Alamos National Laboratory (award No. 20130091DR). NR 27 TC 0 Z9 0 U1 0 U2 0 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2053-230X J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Commun. PD FEB PY 2017 VL 73 BP 79 EP 85 DI 10.1107/S2053230X17001029 PN 2 PG 7 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA EO8BZ UT WOS:000396915200003 PM 28177317 ER PT J AU Hernandez, F Oldenkamp, RE Webster, S Beasley, JC Farina, LL Wisely, SM AF Hernandez, Felipe Oldenkamp, Ricki E. Webster, Sarah Beasley, James C. Farina, Lisa L. Wisely, Samantha M. TI Raccoons (Procyon lotor) as Sentinels of Trace Element Contamination and Physiological Effects of Exposure to Coal Fly Ash SO ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY LA English DT Article ID SOUTH-CAROLINA; METAL ACCUMULATION; VULPES-VULPES; UNITED-STATES; RED FOX; PARASITES; HEALTH; WILDLIFE; INDICATORS; POLLUTION AB Anthropogenic pollutants disrupt global biodiversity, and terrestrial sentinels of pollution can provide a warning system for ecosystem-wide contamination. This study sought to assess whether raccoons (Procyon lotor) are sentinels of local exposure to trace element contaminants at a coal fly ash site and whether exposure resulted in health impairment or changes in the intestinal helminth communities. We compared trace element accumulation and the impact on health responses and intestinal helminth communities of raccoons inhabiting contaminated and reference sites of the U. S. Department of Energy's Savannah River Site (South Carolina, USA). Data on morphometry, hematology, histopathology, helminth community and abundance, and liver trace element burdens were collected from 15 raccoons captured adjacent to a coal fly ash basin and 11 raccoons from a comparable uncontaminated site nearby. Of eight trace elements analyzed, Cu, As, Se, and Pb were elevated in raccoons from the contaminated site. Raccoons from the contaminated site harbored higher helminth abundance than animals from the reference site and that abundance was positively associated with increased Cu concentrations. While we found changes in hematology associated with increased Se exposure, we did not find physiological or histological changes associated with higher levels of contaminants. Our results suggest that raccoons and their intestinal helminths act as sentinels of trace elements in the environment associated with coal fly ash contamination. C1 [Hernandez, Felipe; Wisely, Samantha M.] Univ Florida, Sch Nat Resources & Environm, 103 Black Hall, POB 116455, Gainesville, FL 32611 USA. [Hernandez, Felipe; Wisely, Samantha M.] Univ Florida, Dept Wildlife Ecol & Conservat, 110 Newins Ziegler Hall, POB110430, Gainesville, FL 32611 USA. [Oldenkamp, Ricki E.; Webster, Sarah; Beasley, James C.] Univ Georgia, Savannah River Ecol Lab, PO Drawer E, Aiken, SC 29802 USA. [Oldenkamp, Ricki E.; Webster, Sarah; Beasley, James C.] Univ Georgia, Warnell Sch Forestry & Nat Resources, 180 E Green St, Athens, GA 30602 USA. [Farina, Lisa L.] Univ Florida, Coll Vet Med, Dept Infect Dis & Pathol, 2015 SW 16th Ave, Gainesville, FL 32608 USA. RP Wisely, SM (reprint author), Univ Florida, Sch Nat Resources & Environm, 103 Black Hall, POB 116455, Gainesville, FL 32611 USA.; Wisely, SM (reprint author), Univ Florida, Dept Wildlife Ecol & Conservat, 110 Newins Ziegler Hall, POB110430, Gainesville, FL 32611 USA. EM wisely@ufl.edu FU Department of Wildlife Ecology and Conservation, University of Florida; U.S. Department of Energy [DE-FC09-07SR22506]; Comision Nacional de Ciencia y Tecnologia de Chile (CONICYT-Chile) FX The authors are grateful to Gary Mills and Angela Lindell for their assistance with the Mercury Analyzer and John Seaman for the support received in the trace element analysis and data interpretation. We also thank Zach Smith and Andrew Satterlee for their assistance in the field work, Michael Yabsley for assistance in identifying parasites, and John Blake, Mauricio Nunez-Regueiro, and Claudia Ganser for their valuable advice with the statistical analyses. Funding to support contributions by FH, LLF, and SMW was provided by the Department of Wildlife Ecology and Conservation, University of Florida. Funding to support contributions by JCB, SW, and RO was provided by the U.S. Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. FH was supported by the Comision Nacional de Ciencia y Tecnologia de Chile (CONICYT-Chile). NR 63 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0090-4341 EI 1432-0703 J9 ARCH ENVIRON CON TOX JI Arch. Environ. Contam. Toxicol. PD FEB PY 2017 VL 72 IS 2 BP 235 EP 246 DI 10.1007/s00244-016-0340-2 PG 12 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA EP3QG UT WOS:000397296200006 PM 27933359 ER PT J AU Beacom, JF Chen, SM Cheng, JP Doustimotlagh, SN Gao, YN Gong, GH Gong, H Guo, L Han, R He, HJ Huang, XT Li, JM Li, J Li, MH Li, XG Liao, W Lin, GL Liu, ZW McDonough, W Sramek, O Tang, J Wan, LY Wang, YQ Wang, Z Wang, ZY Wei, HY Xi, YF Xu, Y Xu, XJ Yang, ZW Yao, CF Yeh, MF Yue, Q Zhang, LM Zhang, Y Zhao, ZH Zheng, YH Zhou, X Zhu, XL Zuber, K AF Beacom, John F. Chen, Shaomin Cheng, Jianping Doustimotlagh, Sayed N. Gao, Yuanning Gong, Guanghua Gong, Hui Guo, Lei Han, Ran He, Hong-Jian Huang, Xingtao Li, Jianmin Li, Jin Li, Mohan Li, Xuegian Liao, Wei Lin, Guey-Lin Liu, Zuowei McDonough, William Sramek, Ondrej Tang, Jian Wan, Linyan Wang, Yuanqing Wang, Zhe Wang, Zongyi Wei, Hanyu Xi, Yufei Xu, Ye Xu, Xun-Jie Yang, Zhenwei Yao, Chunfa Yeh, Minfang Yue, Qian Zhang, Liming Zhang, Yang Zhao, Zhihong Zheng, Yangheng Zhou, Xiang Zhu, Xianglei Zuber, Kai TI Physics prospects of the Jinping neutrino experiment SO CHINESE PHYSICS C LA English DT Article DE CJPL; Jinping neutrino experiment; solar neutrino; geo-neutrino; supernova neutrino ID DARK-MATTER CANDIDATES; STANDARD SOLAR MODELS; SUPER-KAMIOKANDE; GEO-NEUTRINOS; EARTHS MANTLE; GRAN SASSO; SEARCH; SUN; OSCILLATIONS; CONSTRAINTS AB The China Jinping Underground Laboratory (CJPL), which has the lowest cosmic-ray muon flux and the lowest reactor neutrino flux of any laboratory, is ideal to carry out low-energy neutrino experiments. With two detectors and a total fiducial mass of 2000 tons for solar neutrino physics (equivalently, 3000 tons for geo-neutrino and supernova neutrino physics), the Jinping neutrino experiment will have the potential to identify the neutrinos from the CNO fusion cycles of the Sun, to cover the transition phase for the solar neutrino oscillation from vacuum to matter mixing, and to measure the geo-neutrino flux, including the Th/U ratio. These goals can be fulfilled with mature existing techniques. Efforts on increasing the target mass with multi-modular neutrino detectors and on developing the slow liquid scintillator will increase the Jinping discovery potential in the study of solar neutrinos, geo-neutrinos, supernova neutrinos, and dark matter. C1 [Chen, Shaomin; Sramek, Ondrej] Ohio State Univ, Dept Phys, Dept Astron, & CCAPP, Columbus, OH 43210 USA. [Chen, Shaomin] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Cheng, Jianping; Guo, Lei; Han, Ran] Beijing Inst Spacecraft Environm Engn, Sci & Technol Reliabil & Environm Engn Lab, Beijing 100094, Peoples R China. [Cheng, Jianping; Li, Jin; Liao, Wei] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. [Guo, Lei; Huang, Xingtao; Li, Xuegian] Nankai Univ, Sch Phys, Tianjin 300371, Peoples R China. [Huang, Xingtao; Lin, Guey-Lin] East China Univ Sci & Technol, Inst Modern Phys, Shanghai 200237, Peoples R China. [Gong, Hui; He, Hong-Jian] East China Univ Sci & Technol, Inst Modern Phys, Shanghai 200237, Peoples R China. [Gong, Hui; Han, Ran] Natl Chiao Tung Univ, Inst Phys, Hsinchu, Taiwan. [Sramek, Ondrej] Univ Maryland, College Pk, MD 20742 USA. [Li, Jianmin; Li, Jin] Charles Univ Prague, Dept Geophys, Fac Math & Phys, Prague, Czech Republic. [Li, Mohan] Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Guangdong, Peoples R China. [Guo, Lei; Wang, Zhe] Tsinghua Univ, Dept Civil Engn, Beijing 100084, Peoples R China. [Li, Jianmin] Chinese Acad Geol Sci, Inst Hydrogeol & Environm Geol, Shijiazhuang 050061, Peoples R China. [Gong, Hui] Fujian Univ Technol, Fujian 350118, Peoples R China. [Li, Jianmin] China Iron Steel Res Inst Grp 100081, Dept Struct Steels, Beijing 100081, Peoples R China. [Han, Ran] Brookhaven Natl Lab, Upton, NY 11973 USA. [Han, Ran] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China. [Wang, Yuanqing] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China. [Wang, Yuanqing] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01069 Dresden, Germany. RP Chen, SM (reprint author), Ohio State Univ, Dept Phys, Dept Astron, & CCAPP, Columbus, OH 43210 USA.; Chen, SM (reprint author), Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. EM chenshaomin@tsinghua.edu.cn; wangzhe-hep@tsinghua.edu.cn OI Wei, Hanyu/0000-0003-1973-4912 FU National Natural Science Foundation of China [11235006, 11475093, 11135009, 11375065, 11505301, 11620101004]; Tsinghua University Initiative Scientific Research Program [20121088035, 20131089288, 20151080432]; Key Laboratory of Particle & Radiation Imaging (Tsinghua University); CAS Center for Excellence in Particle Physics (CCEPP); U.S. National Science Foundation [PHY-1404311]; U.S. Department of Energy [DE-AC02-98CH10886] FX Supported by the National Natural Science Foundation of China (11235006, 11475093, 11135009, 11375065, 11505301, and 11620101004), the Tsinghua University Initiative Scientific Research Program (20121088035, 20131089288, and 20151080432), the Key Laboratory of Particle & Radiation Imaging (Tsinghua University), the CAS Center for Excellence in Particle Physics (CCEPP), U.S. National Science Foundation Grant PHY-1404311 (Beacom), and U.S. Department of Energy under contract DE-AC02-98CH10886 (Yeh). NR 169 TC 1 Z9 1 U1 1 U2 1 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD FEB PY 2017 VL 41 IS 2 AR 023002 DI 10.1088/1674-1137/41/2/023002 PG 24 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA EO4CE UT WOS:000396641300002 ER PT J AU Liu, HB Chen, HC Chen, K Kierstead, J Lanni, F Takai, H Jin, G AF Liu, Hong-Bin Chen, Hu-Cheng Chen, Kai Kierstead, James Lanni, Francesco Takai, Helio Jin, Ge TI Development of an ADC radiation tolerance characterization system for the upgrade of the ATLAS LAr calorimeter SO CHINESE PHYSICS C LA English DT Article DE radiation tolerance characterization; high-speed multi-channel ADC; total ionization dose; single event effect AB ATLAS LAr calorimeter will undergo its Phase-I upgrade during the long shutdown (LS2) in 2018, and a new LAr Trigger Digitizer Board (LTDB) will be designed and installed. Several commercial-off-the-shelf (COTS) multi-channel high-speed ADCs have been selected as possible backups of the radiation tolerant ADC ASICs for the LTDB. To evaluate the radiation tolerance of these backup commercial ADCs, we developed an ADC radiation tolerance characterization system, which includes the ADC boards, data acquisition (DAQ) board, signal generator, external power supplies and a host computer. The ADC board is custom designed for different ADCs, with ADC drivers and clock distribution circuits integrated on board. The Xilinx ZC706 FPGA development board is used as a DAQ board. The data from the ADC are routed to the FPGA through the FMC (FPGA Mezzanine Card) connector, de-serialized and monitored by the FPGA, and then transmitted to the host computer through the Gigabit Ethernet. A software program has been developed with Python, and all the commands are sent to the DAQ board through Gigabit Ethernet by this program. Two ADC boards have been designed for the ADC, ADS52J90 from Texas Instruments and AD9249 from Analog Devices respectively. TID tests for both ADCs have been performed at BNL, and an SEE test for the ADS52J90 has been performed at Massachusetts General Hospital (MGH). Test results have been analyzed and presented. The test results demonstrate that this test system is very versatile, and works well for the radiation tolerance characterization of commercial multi-channel high-speed ADCs for the upgrade of the ATLAS LAr calorimeter. It is applicable to other collider physics experiments where radiation tolerance is required as well. C1 [Liu, Hong-Bin; Jin, Ge] Univ Sci & Technol China, State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China. [Liu, Hong-Bin; Jin, Ge] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China. [Liu, Hong-Bin; Chen, Hu-Cheng; Chen, Kai; Kierstead, James; Lanni, Francesco; Takai, Helio] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Liu, HB (reprint author), Univ Sci & Technol China, State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China.; Liu, HB (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China.; Liu, HB (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM hliu2@bnl.gov FU U.S. Department of Energy [DE-SC001270] FX Supported by the U.S. Department of Energy (DE-SC001270) NR 8 TC 0 Z9 0 U1 0 U2 0 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD FEB PY 2017 VL 41 IS 2 AR 026101 DI 10.1088/1674-1137/41/2/026101 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA EO4CE UT WOS:000396641300018 ER PT J AU Gunzelmann, G Lyon, DR AF Gunzelmann, Glenn Lyon, Don R. TI Constructing representations of spatial location from briefly presented displays SO COGNITIVE PROCESSING LA English DT Article DE Spatial attention; Frame of reference; Spatial encoding; Spatial cognition; Learning ID ORIENTATION TASKS; INTRINSIC FRAMES; MEMORY; MODEL; PERFORMANCE; PERCEPTION; BOUNDARIES; LANDMARKS; ATTENTION; BRAIN AB Spatial memory and reasoning rely heavily on allocentric (often map-like) representations of spatial knowledge. While research has documented many ways in which spatial information can be represented in allocentric form, less is known about how such representations are constructed. For example: Are the very early, pre-attentive parts of the process hard-wired, or can they be altered by experience? We addressed this issue by presenting sub-saccadic (53 ms) masked stimuli consisting of a target among one to three reference features. We then shifted the location of the feature array, and asked participants to identify the target's new relative location. Experience altered feature processing even when the display duration was too short to allow attention re-allocation. The results demonstrate the importance of early perceptual processes in the creation of representations of spatial location, and the malleability of those processes based on experience and expectations. C1 [Gunzelmann, Glenn] Air Force Res Lab, Cognit Models & Agents Branch, 2620 Q St Bldg 852, Dayton, OH 45433 USA. [Lyon, Don R.] Oak Ridge Inst Sci & Educ, Wright Patterson AFB, OH USA. RP Gunzelmann, G (reprint author), Air Force Res Lab, Cognit Models & Agents Branch, 2620 Q St Bldg 852, Dayton, OH 45433 USA. EM glenn.gunzelmann@us.af.mil FU Air Force Research Laboratory's (AFRL) Warfighter Readiness Research Division; Air Force Office of Scientific Research (AFOSR) [10RH06COR] FX The views expressed in this paper are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government. This research was sponsored by the Air Force Research Laboratory's (AFRL) Warfighter Readiness Research Division and by grant 10RH06COR from the Air Force Office of Scientific Research (AFOSR). We thank Rayka Mohebbi for experiment software development and data collection. Portions of this research were presented at the Association for Psychological Science 22nd Annual Convention NR 29 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1612-4782 EI 1612-4790 J9 COGN PROCESS JI Cogn. Process. PD FEB PY 2017 VL 18 IS 1 BP 81 EP 85 DI 10.1007/s10339-016-0775-4 PG 5 WC Psychology, Experimental SC Psychology GA EP2FS UT WOS:000397199200009 PM 27465806 ER PT J AU DeBenedictis, EP AF DeBenedictis, Erik P. TI It's Time to Redefine Moore's Law Again SO COMPUTER LA English DT Article DE history of computing; Rebooting Computing; computing; Moore's law; International Technology Roadmap for Semiconductors; ITRS; Intel Xeon Phi; IBM TrueNorth; scaling; transistor; integrated circuit; Dennard scaling C1 [DeBenedictis, Erik P.] Sandia Natl Labs, Ctr Comp Res, Livermore, CA 94550 USA. RP DeBenedictis, EP (reprint author), Sandia Natl Labs, Ctr Comp Res, Livermore, CA 94550 USA. EM epdeben@sandia.gov FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 8 TC 0 Z9 0 U1 3 U2 3 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 EI 1558-0814 J9 COMPUTER JI Computer PD FEB PY 2017 VL 50 IS 2 BP 72 EP 75 DI 10.1109/MC.2017.34 PG 4 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA EM9LU UT WOS:000395633900012 ER PT J AU Liu, J Ye, JS Ou, HS Lin, JL AF Liu, Juan Ye, Jin-shao Ou, Hua-se Lin, Jialing TI Effectiveness and intermediates of microcystin-LR degradation by UV/ H2O2 via 265 nm ultraviolet light-emitting diodes SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Photocatalysis; Cyanotoxin; Hydroxyl radical; Drinking water treatment; Organic matter; Toxicology ID PHOTOCATALYTIC DEGRADATION; MASS-SPECTROMETRY; HYDROGEN-PEROXIDE; BY-PRODUCTS; CYANOBACTERIA; DECOMPOSITION; MECHANISM; TOXICITY; UV/H2O2 AB Although the degradation of cyanotoxins by 254 nm UV/H2O2 has been well elucidated, the efficiency and mechanism involved are not necessarily true for other UV wavelengths. The degradation of microcystin-LR (MCLR), a representative cyanotoxin, was explored by UV/H2O2 using 265 nm ultraviolet light-emitting diode (UV-LED). The results indicated that 265 nm UV/H2O2 treatment had a high removal efficiency of MC-LR ([ MC-LR] = 0.1 mu M, apparent rate constants reached 0.2077 min(-1), half-time at 3.3 min). The qualitative analyses demonstrated that three novel intermediates, C48H74N10O15 (molecular weight = 1030.5335), C36H58N10O14 (854.4134), and C33H54N10O14 (814.3821), were generated in 265 nm UV/H2O2. Five published intermediates were also confirmed. The generative pathway of these products mainly involved free hydroxyl radical oxidation, resulting in consecutive hydroxyl substitutions and hydroxyl additions of unsaturated bonds in MC-LR. The toxicity of MC-LR was weaken with a relative low mineralization. The electrical energy per order values were calculated to be in the range of 0.00447 to 0.00612 kWh m(-3) order(-1) for 100-5000 mu g L-1 MC-LR. Overall, 265 nm UV-LED/H2O2 can be used as an alternative effective technology to improve the removal efficiency of MC-LR in water. C1 [Liu, Juan; Ye, Jin-shao; Ou, Hua-se; Lin, Jialing] Jinan Univ, Sch Environm, Guangzhou Key Lab Environm Exposure & Hlth, Guangzhou 510632, Guangdong, Peoples R China. [Liu, Juan; Ye, Jin-shao; Ou, Hua-se; Lin, Jialing] Jinan Univ, Guangdong Key Lab Environm Pollut & Hlth, Guangzhou 510632, Guangdong, Peoples R China. [Ye, Jin-shao] Joint Genome Inst, Lawrence Berkeley Natl Lab, Walnut Creek, CA 94598 USA. RP Ou, HS (reprint author), Jinan Univ, Sch Environm, Guangzhou Key Lab Environm Exposure & Hlth, Guangzhou 510632, Guangdong, Peoples R China.; Ou, HS (reprint author), Jinan Univ, Guangdong Key Lab Environm Pollut & Hlth, Guangzhou 510632, Guangdong, Peoples R China. EM touhuase@jnu.edu.cn FU Science and Technology Planning Project of Guangdong Province, China [2014A020216014]; National Natural Science Foundation of China [51308224, 21577049] FX This project was supported by the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2014A020216014) and the National Natural Science Foundation of China (Grant Nos. 51308224, 21577049). NR 33 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD FEB PY 2017 VL 24 IS 5 BP 4676 EP 4684 DI 10.1007/s11356-016-8148-1 PG 9 WC Environmental Sciences SC Environmental Sciences & Ecology GA EO9KI UT WOS:000397007200037 PM 27975200 ER PT J AU Beskardes, GD Weiss, CJ Everett, ME AF Beskardes, G. D. Weiss, C. J. Everett, M. E. TI Estimating the power-law distribution of Earth electrical conductivity from low-frequency, controlled-source electromagnetic responses SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Numerical approximations and analysis; Electrical properties; Electromagnetic theory ID FRACTIONAL DIFFUSION ANALYSIS; LLANO UPLIFT; FRACTURED MEDIA; FRACTAL NATURE; CENTRAL TEXAS; MOTIONS; NOISES; MODEL; ROCKS; FIELD AB Electromagnetic responses reflect the interaction between applied electromagnetic fields and heterogeneous geoelectrical structures. Quantifying the relationship between multiscale electrical properties and the observed electromagnetic response is therefore important for meaningful geologic interpretation. We present here examples of near-surface electromagnetic responses whose spatial fluctuations appear on all length scales, are repeatable and fractally distributed, supporting the notion of a 'rough geology' exhibiting multiscale hierarchical structure. Bounded by end member cases from homogenized isotropic and anisotropic media, we present numerical modelling results of the electromagnetic responses of textured and spatially correlated, stochastic geologic media, demonstrating that the electromagnetic response is a power law distribution, rather than a smooth response polluted with random, incoherent noise as commonly assumed. Our modelling results show that these electromagnetic responses due to spatially correlated geologic textures are examples of fractional Brownian motion. Furthermore, our results suggest that the fractal behaviour of the electromagnetic responses is correlated with degree of the spatial correlation, the contrasts in ground conductivity, and the preferred orientation of small-scale heterogeneity. In addition, the EM responses acquired across a fault zone comprising different lithological units and varying wavelengths of geologic heterogeneity also support our inferences from numerical modelling. C1 [Beskardes, G. D.] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. [Weiss, C. J.] Sandia Natl Labs, Dept Geophys, Albuquerque, NM 87123 USA. [Weiss, C. J.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Everett, M. E.] Texas A&M Univ, Dept Geol & Geophys, College Stn, TX 77843 USA. RP Beskardes, GD (reprint author), Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. EM didem@vt.edu FU United States National Science Foundation, Hydrologic Sciences Program [EAR-1519221, EAR-0943598]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank Mark Mitchell of MMWMA for his ongoing support of our field research efforts and Mike Heaney for help with interpreting the geologic structure. The authors are thankful to Emin Ulugergerli for beneficial comments during the manuscript preparation. The authors also would like to thank Ute Weckmann, Niclas Linde and an anonymous reviewer for their constructive and insightful comments that contributed greatly to enrich this manuscript. This work was supported by the United States National Science Foundation, Hydrologic Sciences Program under awards EAR-1519221 and EAR-0943598. Portions of this work were conducted at Sandia National Laboratories. Sandia National Laboratories is a multimission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 40 TC 0 Z9 0 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X EI 1365-246X J9 GEOPHYS J INT JI Geophys. J. Int. PD FEB PY 2017 VL 208 IS 2 BP 639 EP 651 DI 10.1093/gji/ggw375 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EO6QM UT WOS:000396817600003 ER PT J AU Lindsey, NJ Kaven, JO Davatzes, N Newman, GA AF Lindsey, Nathaniel J. Kaven, Joern Ole Davatzes, Nicholas Newman, Gregory A. TI Compartmentalization of the Coso East Flank geothermal field imaged by 3-D full-tensor MT inversion SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Inverse theory; Magnetotellurics; Hydrothermal systems ID TAUPO VOLCANIC ZONE; MAGNETOTELLURIC DATA; ELECTROMAGNETIC METHODS; NEW-ZEALAND; CALIFORNIA; RESISTIVITY; BENEATH; SYSTEM; RANGE; MODEL AB Previous magnetotelluric (MT) studies of the high-temperature Coso geothermal system in California identified a subvertical feature of low resistivity (2-5Ohmm) and appreciable lateral extent (>1 km) in the producing zone of the East Flank field. However, these models could not reproduce gross 3-D effects in the recorded data. We perform 3-D full-tensor inversion and retrieve a resistivity model that out-performs previous 2-D and 3-D off-diagonal models in terms of its fit to the complete 3-D MT data set as well as the degree of modelling bias. Inclusion of secondary Z(xx) and Z(yy) data components leads to a robust east-dip (60 degrees) to the previously identified conductive East Flank reservoir feature, which correlates strongly with recently mapped surface faults, downhole well temperatures, 3-D seismic reflection data, and local microseismicity. We perform synthetic forward modelling to test the best-fit dip of this conductor using the response at a nearby MT station. We interpret the dipping conductor as a fractured and fluidized compartment, which is structurally controlled by an unmapped blind East Flank fault zone. C1 [Lindsey, Nathaniel J.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Lindsey, Nathaniel J.; Newman, Gregory A.] Lawrence Berkeley Natl Lab, Energy Geosci Div, Berkeley, CA 94720 USA. [Kaven, Joern Ole] US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. [Davatzes, Nicholas] Temple Univ, Dept Earth & Environm Sci, Philadelphia, PA 19122 USA. RP Lindsey, NJ (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.; Lindsey, NJ (reprint author), Lawrence Berkeley Natl Lab, Energy Geosci Div, Berkeley, CA 94720 USA. EM natelindsey@berkeley.edu FU Department of Energy Geothermal Program Office [GT-480010-19823-10]; Office of Basic Energy Sciences [DE-AC02-05CH11231] FX The authors would like to thank Kelly Blake, Andy Sabin, and the Navy Geothermal Program Office for access to Coso well temperature data. The authors are grateful to Phil Wannamaker and Jeffrey Unruh for technical feedback during this study, and to Jared Peacock and two anonymous reviewers for their constructive comments. 3-D visualization was done with VisIt (https://wci.llnl.gov/simulation/computer-codes/visit), and figures were made using the MTpy library (https://github.com/geophysics/mtpy) and the Generic Mapping Tools (gmt.soest.hawaii.edu). Coso MT data are available upon request. This work was carried out at Lawrence Berkeley National Laboratory with funding provided by the Department of Energy Geothermal Program Office under contract GT-480010-19823-10, and Office of Basic Energy Sciences under contract DE-AC02-05CH11231. NR 59 TC 0 Z9 0 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X EI 1365-246X J9 GEOPHYS J INT JI Geophys. J. Int. PD FEB PY 2017 VL 208 IS 2 BP 652 EP 662 DI 10.1093/gji/ggw408 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EO6QM UT WOS:000396817600004 ER PT J AU Vitharana, UWA Mishra, U Jastrow, JD Matamala, R Fan, Z AF Vitharana, U. W. A. Mishra, U. Jastrow, J. D. Matamala, R. Fan, Z. TI Observational needs for estimating Alaskan soil carbon stocks under current and future climate SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID ORGANIC-CARBON; PERMAFROST CARBON; SPATIAL VARIABILITY; ARCTIC TUNDRA; RELEASE; STORAGE AB Representing land surface spatial heterogeneity when designing observation networks is a critical scientific challenge. Here we present a geospatial approach that utilizes the multivariate spatial heterogeneity of soil-forming factors-namely, climate, topography, land cover types, and surficial geology-to identify observation sites to improve soil organic carbon (SOC)stock estimates across the State of Alaska, USA. Standard deviations in existing SOC samples indicated that 657, 870, and 906 randomly distributed pedons would be required to quantify the average SOC stocks for 0-1 m, 0-2 m, and whole-profile depths, respectively, at a confidence interval of 5 kg Cm-2. Using the spatial correlation range of existing SOC samples, we identified that 309, 446, and 484 new observation sites are needed to estimate current SOC stocks to 1 m, 2 m, and whole-profile depths, respectively. We also investigated whether the identified sites might change under future climate by using eight decadal(2020-2099) projections of precipitation, temperature, and length of growing season for three representative concentration pathway (RCP 4.5, 6.0, and 8.5) scenarios of the Intergovernmental Panel on Climate Change. These analyses determined that 12 to 41 additional sites ( 906 + 12 to 41; depending upon the emission scenarios) would be needed to capture the impact of future climate on Alaskan whole-profile SOC stocks by 2100. The identified observation sites represent spatially distributed locations across Alaska that captures the multivariate heterogeneity of soil-forming factors under current and future climatic conditions. This information is needed for designing monitoring networks and benchmarking of Earth system model results. C1 [Vitharana, U. W. A.] Univ Peradeniya, Dept Soil Sci, Peradeniya, Sri Lanka. [Mishra, U.; Jastrow, J. D.; Matamala, R.; Fan, Z.] Argonne Natl Lab, Div Environm Sci, Argonne, IL USA. [Fan, Z.] USDA ARS Jornada Expt Range, Las Cruces, NM USA. RP Mishra, U (reprint author), Argonne Natl Lab, Div Environm Sci, Argonne, IL USA. EM umishra@anl.gov FU U.S. Department of Energy, Office of Science; Office of Biological and Environmental Research; Climate and Environmental Science Division [DE-AC0206CH11357] FX U.W.A. Vitharana and U. Mishra contributed equally to study design, analysis, and interpretation as well as manuscript preparation. The other authors made important contributions to the content. This study was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Science Division under contract DE-AC0206CH11357 to Argonne National Laboratory. The SOC data used in this study are provided in the supporting information NR 54 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD FEB PY 2017 VL 122 IS 2 BP 415 EP 429 DI 10.1002/2016JG003421 PG 15 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA EN6RF UT WOS:000396130400010 ER PT J AU Xia, JY McGuire, AD Lawrence, D Burke, E Chen, GS Chen, XD Delire, C Koven, C MacDougall, A Peng, SS Rinke, A Saito, K Zhang, WX Alkama, R Bohn, TJ Ciais, P Decharme, B Gouttevin, I Hajima, T Hayes, DJ Huang, K Ji, DY Krinner, G Lettenmaier, DP Miller, PA Moore, JC Smith, B Sueyoshi, T Shi, Z Yan, LM Liang, JY Jiang, LF Zhang, Q Luo, YQ AF Xia, Jianyang McGuire, A. David Lawrence, David Burke, Eleanor Chen, Guangsheng Chen, Xiaodong Delire, Christine Koven, Charles MacDougall, Andrew Peng, Shushi Rinke, Annette Saito, Kazuyuki Zhang, Wenxin Alkama, Ramdane Bohn, Theodore J. Ciais, Philippe Decharme, Bertrand Gouttevin, Isabelle Hajima, Tomohiro Hayes, Daniel J. Huang, Kun Ji, Duoying Krinner, Gerhard Lettenmaier, Dennis P. Miller, Paul A. Moore, John C. Smith, Benjamin Sueyoshi, Tetsuo Shi, Zheng Yan, Liming Liang, Junyi Jiang, Lifen Zhang, Qian Luo, Yiqi TI Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID CARBON-USE EFFICIENCY; EARTH SYSTEM MODELS; NET PRIMARY PRODUCTIVITY; PROGRESSIVE NITROGEN LIMITATION; ELEVATED ATMOSPHERIC CO2; GROSS PRIMARY PRODUCTION; GLOBAL VEGETATION MODEL; SOIL THERMAL DYNAMICS; NPP-GPP RATIO; FOREST PRODUCTIVITY AB Realistic projection of future climate-carbon (C) cycle feedbacks requires better understanding and an improved representation of the C cycle in permafrost regions in the current generation of Earth system models. Here we evaluated 10 terrestrial ecosystem models for their estimates of net primary productivity (NPP) and responses to historical climate change in permafrost regions in the Northern Hemisphere. In comparison with the satellite estimate from the Moderate Resolution Imaging Spectroradiometer (MODIS; 246 +/- 6gCm(-2) yr (-1)), most models produced higher NPP (309 +/- 12 g Cm-2 yr(-1)) over the permafrost region during 2000-2009. By comparing the simulated gross primary productivity (GPP) with a flux tower-based database, we found that although mean GPP among the models was only overestimated by 10% over 1982-2009, there was a twofold discrepancy among models (380 to 800 g Cm-2 yr(-1)), which mainly resulted from differences in simulated maximum monthly GPP (GPP(max)). Most models overestimated C use efficiency (CUE) as compared to observations at both regional and site levels. Further analysis shows that model variability of GPP and CUE are nonlinearly correlated to variability in specific leaf area and the maximum rate of carboxylation by the enzyme Rubisco at 25 degrees C (V-cmax_(25)), respectively. Themodels also varied in their sensitivities of NPP, GPP, and CUE to historical changes in climate and atmospheric CO2 concentration. These results indicate that model predictive ability of the C cycle in permafrost regions can be improved by better representation of the processes controlling CUE and GPP(max) as well as their sensitivity to climate change. C1 [Xia, Jianyang] East China Normal Univ, Sch Ecol & Environm Sci, Res Ctr Global Change & Ecol Forecasting, Shanghai, Peoples R China. [Xia, Jianyang] East China Normal Univ, Sch Ecol & Environm Sci, Tiantong Natl Field Observat Stn Forest Ecosyst, Shanghai, Peoples R China. [McGuire, A. David] Univ Alaska Fairbanks, US Geol Survey, Alaska Cooperat Fish & Wildlife Res Unit, Fairbanks, AK USA. [Lawrence, David] Natl Ctr Atmospher Res, Boulder, CO USA. [Burke, Eleanor] Met Off Hadley Ctr, Exeter, Devon, England. [Chen, Guangsheng] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN USA. [Chen, Xiaodong; Bohn, Theodore J.] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. [Delire, Christine; Alkama, Ramdane; Decharme, Bertrand] CNRM, CNRS Meteo France, Unitemixte Rech, UMR 3589, Toulouse, France. [Koven, Charles] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [MacDougall, Andrew; Ciais, Philippe] Univ Victoria, Sch Earth & Ocean Sci, Victoria, BC, Canada. [Peng, Shushi] CNRS, CEA, UVSQ, Lab Sci Climat & Environm, Gif Sur Yvette, France. [Peng, Shushi; Gouttevin, Isabelle; Smith, Benjamin] CNRS, LGGE, Grenoble, France. [Peng, Shushi; Gouttevin, Isabelle; Krinner, Gerhard] Univ Grenoble Alpes, Grenoble, France. [Peng, Shushi; Gouttevin, Isabelle; Krinner, Gerhard] LGGE, Grenoble, France. [Rinke, Annette; Ji, Duoying; Moore, John C.; Zhang, Qian] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing, Peoples R China. [Rinke, Annette] Alfred Wegener Inst Helmholtz Ctr Polar & Marine, Potsdam, Germany. [Saito, Kazuyuki; Hajima, Tomohiro] Japan Agcy Marine Earth, Dept Integrated Climate Change Project Re, Yokohama, Japan. [Zhang, Wenxin] Univ Copenhagen, Ctr Permafrost CENPERM, Dept Geosci & Nat Resource Management, Copenhagen, Denmark. [Gouttevin, Isabelle] Irstea, UR HHLY, Villeurbanne, France. [Hayes, Daniel J.] Univ Maine, Sch Forest Resources, Orono, ME USA. [Miller, Paul A.; Smith, Benjamin] Lund Univ, Dept Phys Geog & Ecosystem Sci, Lund, Sweden. [Sueyoshi, Tetsuo] Natl Inst Polar Res, Tachikawa, Tokyo, Japan. [Shi, Zheng] Japan Agcy Marine Earth Sci & Technol, Project Team Risk Informat Climate Change, Yokohama, Japan. [Shi, Zheng; Liang, Junyi; Jiang, Lifen; Luo, Yiqi] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK USA. [Luo, Yiqi] Tsinghua Univ, Dept Earth Syst Sci, Beijing, Peoples R China. RP Xia, JY (reprint author), East China Normal Univ, Sch Ecol & Environm Sci, Res Ctr Global Change & Ecol Forecasting, Shanghai, Peoples R China.; Xia, JY (reprint author), East China Normal Univ, Sch Ecol & Environm Sci, Tiantong Natl Field Observat Stn Forest Ecosyst, Shanghai, Peoples R China. EM jyxia@des.ecnu.edu.cn; yluo@ou.edu OI Lawrence, David/0000-0002-2968-3023; chen, guangsheng/0000-0001-6544-5287 FU National Science Foundation; U.S. Geological Survey; U.S. Department of Energy [DE SC0008270, DE-SC00114085]; U.S. National Science Foundation (NSF) [EF 1137293, OIA-1301789]; National 1000 Young Talents Program of China; European Union Seventh Framework Programme [GA282700] FX The authors thank John Kimball for his constructive suggestions on the earlier version of this manuscript. This study was developed as part of the modeling integration team of the Permafrost Carbon Network (PCN, www.permafrostcarbon.org) funded by the National Science Foundation and the U.S. Geological Survey. Research in Y. L. Ecolab was financially supported by the U.S. Department of Energy (DE SC0008270 and DE-SC00114085) and the U.S. National Science Foundation (NSF) grants EF 1137293 and OIA-1301789. J.X. was also supported by the National 1000 Young Talents Program of China. E.B., S.P., P.C., I.G., and G.K. acknowledge financial support by the European Union Seventh Framework Programme (FP7/2007-2013) project PAGE21, under GA282700. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The simulation data analyzed in this manuscript are available through the National Snow and Ice Data Center through e-mail request to Kevin Schaefer (kevin.schaefer@nsidc.org). NR 128 TC 0 Z9 0 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD FEB PY 2017 VL 122 IS 2 BP 430 EP 446 DI 10.1002/2016JG003384 PG 17 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA EN6RF UT WOS:000396130400011 ER PT J AU Li, J Bortnik, J Li, W Ma, Q Thorne, RM Kletzing, CA Kurth, WS Hospodarsky, GB Wygant, J Breneman, A Thaller, S Funsten, HO Mitchell, DG Manweiler, JW Torbert, RB Le Contel, O Ergun, RE Lindqvist, PA Torkar, K Nakamura, R Andriopoulou, M Russell, CT AF Li, J. Bortnik, J. Li, W. Ma, Q. Thorne, R. M. Kletzing, C. A. Kurth, W. S. Hospodarsky, G. B. Wygant, J. Breneman, A. Thaller, S. Funsten, H. O. Mitchell, D. G. Manweiler, J. W. Torbert, R. B. Le Contel, O. Ergun, R. E. Lindqvist, P. -A. Torkar, K. Nakamura, R. Andriopoulou, M. Russell, C. T. TI Zipper-like" periodic magnetosonic waves: Van Allen Probes, THEMIS, and magnetospheric multiscale observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ELECTRON BUTTERFLY DISTRIBUTIONS; EQUATORIAL NOISE; FIELD INSTRUMENT; RING DISTRIBUTIONS; ACTIVE CONTROL; VLF EMISSIONS; SPACECRAFT; CLUSTER; PROPAGATION; MODULATION AB An interesting form of "zipper-like" magnetosonic waves consisting of two bands of interleaved periodic rising-tone spectra was newly observed by the Van Allen Probes, the Time History of Events and Macroscale Interactions during Substorms (THEMIS), and the Magnetospheric Multiscale (MMS) missions. The two discrete bands are distinct in frequency and intensity; however, they maintain the same periodicity which varies in space and time, suggesting that they possibly originate from one single source intrinsically. In one event, the zipper-like magnetosonic waves exhibit the same periodicity as a constant-frequency magnetosonic wave and an electrostatic emission, but the modulation comes from neither density fluctuations nor ULF waves. A statistical survey based on 3.5 years of multisatellite observations shows that zipper-like magnetosonic waves mainly occur on the dawnside to noonside, in a frequency range between 10 f(cp) and f(LHR). The zipper-like magnetosonic waves may provide a new clue to nonlinear excitation or modulation process, while its cause still remains to be fully understood. C1 [Li, J.; Bortnik, J.; Li, W.; Ma, Q.; Thorne, R. M.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Li, W.] Boston Univ, Ctr Space Phys, Boston, MA USA. [Kurth, W. S.; Hospodarsky, G. B.; Wygant, J.] Univ Iowa, Dept Phys & Astron, Iowa City, IA USA. [Wygant, J.; Breneman, A.; Thaller, S.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM USA. [Mitchell, D. G.] Johns Hopkins Univ Appl Phys Lab, Dept Space, Laurel, MD USA. [Manweiler, J. W.] Fundamental Technol LLC, Lawrence, KS USA. [Torbert, R. B.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH USA. [Le Contel, O.] Univ Paris Sud 11, CNRS, Ecole Polytech, UPMC UMR7648 Lab Phys Plasmas, F-91128 Palaiseau, France. [Ergun, R. E.] Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO USA. [Lindqvist, P. -A.] Royal Inst Technol, Stockholm, Sweden. [Torkar, K.; Nakamura, R.; Andriopoulou, M.] Austrian Acad Sci, Inst Space Res, Graz, Austria. [Russell, C. T.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA USA. RP Li, J (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. EM jli@atmos.ucla.edu OI Ma, Qianli/0000-0001-5452-4756; Kurth, William/0000-0002-5471-6202; Li, Jinxing/0000-0003-0500-1056; Hospodarsky, George/0000-0001-9200-9878 FU NASA [NNX13AI61G, NNX14AN85G, 922613]; EMFISIS [1001057397:01]; ECT [13041]; NSF Geospace Environment Modeling [AGS-1405054]; JHU/APL [967399, 921647, 937836, NAS5-01072]; JHU/APL under NASA's [NAS5-01072]; New Jersey Institute of Technology under NASA prime [NAS501072] FX J.L. and J.B. would like to acknowledge NASA grants NNX13AI61G and NNX14AN85G. W.L., Q.M., and R.M.T. acknowledge EMFISIS subaward 1001057397:01, the ECT subaward 13041, and NSF Geospace Environment Modeling grant AGS-1405054. This work is also supported by JHU/APL contracts 967399 and 921647 under NASA's prime contract NAS5-01072. The RBSPICE instrument is supported by JHU/APL subcontract 937836 to the New Jersey Institute of Technology under NASA prime contract NAS501072. The work at the University of Minnesota was supported by JHU/APL contract UMN 922613 under NASA contract JHU/APL NAS5-01072. We thank the entire MMS team and instrument leads for data access and support. The French involvement (SCM instruments) on THEMIS and MMS is supported by CNES, CNRS-INSIS, and CNRS-INSU. We acknowledge the Van Allen Probes data from the EMFISIS instrument obtained from https:// emfisis. physics. uiowa. edu/ data/index, the EFW instrument data obtained from http:// www. space. umn. edu/missions/ rbspefwhome- university-of-minnesota/, the ECT instrument data obtained from https:// www. rbsp-ect. lanl. gov/, and the RBSPICE data obtained from http:// rbspice. ftecs. com/. We acknowledge the MMS data obtained from https:// lasp. colorado. edu/mms/sdc/public/ and the THEMIS data obtained from http://themis.ssl.berkeley. edu/ index. shtml. We also thank the World Data Center for Geomagnetism, Kyoto for providing SYM-H and AE indexes (http://wdc.kugi.kyoto-u.ac.jp/aeasy/ index.html). We thank V. Angelopoulos (University of California, Los Angeles), S. Wellenzohn (Space Research Institute, Austrian Academy of Sciences), and L. J. Lanzerotti ( New Jersey Institute of Technology) for their great contributions. NR 59 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2017 VL 122 IS 2 BP 1600 EP 1610 DI 10.1002/2016JA023536 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EO9QJ UT WOS:000397022900013 ER PT J AU Ma, YJ Russell, CT Fang, X Dong, CF Nagy, AF Toth, G Halekas, JS Connerney, JEP Espley, JR Mahaffy, PR Benna, M McFadden, J Mitchell, DL Andersson, L Jakosky, BM AF Ma, Y. J. Russell, C. T. Fang, X. Dong, C. F. Nagy, A. F. Toth, G. Halekas, J. S. Connerney, J. E. P. Espley, J. R. Mahaffy, P. R. Benna, M. McFadden, J. Mitchell, D. L. Andersson, L. Jakosky, B. M. TI Variations of the Martian plasma environment during the ICME passage on 8 March 2015: A time-dependent MHD study SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID CORONAL MASS EJECTIONS; SOLAR-WIND INTERACTION; GEOMAGNETIC STORMS; UPPER-ATMOSPHERE; MULTIFLUID MHD; IONOSPHERE; EXPRESS; MODEL AB The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft observed astrong interplanetary coronal mass ejection (ICME) impacting Mars on 8 March 2015. We use a time-dependent global MHD model to investigate the response of the Martian ionosphere and induced magnetosphere to the large solar wind disturbance associated with the ICME. Taking observed upstream solar wind conditions from MAVEN as inputs to the MHD model, the variations of the Martian plasma environments are simulated realistically in a time period from 2.5 h prior to the arrival of the ICME shock to about 12 h after the impact. Detailed comparisons between the model results and the relevant MAVEN plasma measurements are presented, which clearly show that the time-dependent multispecies single-fluid MHD model is able to reproduce the main features observed by the spacecraft during the ICME passage. Model results suggest that the induced magnetosphere responds to solar wind variation on a very short time scale (approximately minutes). The variations of the plasma boundaries' distances from the planet along the subsolar line are examined in detail, which show a clear anticorrelation with the magnetosonic Mach number. Plasma properties in the ionosphere (especially the induced magnetic field) varied rapidly with solar wind changes. Model results also show that ion escape rates could be enhanced by an order of magnitude in response to the high solar wind dynamic pressure during the ICME event. C1 [Ma, Y. J.; Russell, C. T.] UCLA, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA. [Fang, X.; Andersson, L.] Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Dong, C. F.; Jakosky, B. M.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Nagy, A. F.; Toth, G.] Univ Michigan, Climate & Space Sci & Engn Dept, Ann Arbor, MI 48109 USA. [Halekas, J. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA USA. [Connerney, J. E. P.; Espley, J. R.; Mahaffy, P. R.; Benna, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [McFadden, J.; Mitchell, D. L.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Ma, YJ (reprint author), UCLA, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA. EM yingjuan@igpp.ucla.edu OI FANG, XIAOHUA/0000-0002-6584-2837; Russell, Christopher/0000-0003-1639-8298; Dong, Chuanfei/0000-0002-8990-094X; Halekas, Jasper/0000-0001-5258-6128 FU NASA [NNX13AO31G]; NASA; Star Jack Eddy Postdoctoral Fellowship Program; NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center FX The work presented here was supported by NASA grant NNX13AO31G. C.F. Dong is supported by the NASA Living with a Star Jack Eddy Postdoctoral Fellowship Program, administered by the University Corporation for Atmospheric Research. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. The MAVEN observational data used in the study were obtained from the NASA Planetary Data System (PDS). The Space Weather Modeling Framework that contains the BATS-R-US code used in this study is publicly available from http://csem.engin.umich.edu/tools/swmf. For the distribution of the model results used in this study, please contact the corresponding author. NR 44 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2017 VL 122 IS 2 BP 1714 EP 1730 DI 10.1002/2016JA023402 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EO9QJ UT WOS:000397022900021 ER PT J AU Denton, MH Reeves, GD Larsen, BA Friedel, RFW Thomsen, MF Fernandes, PA Skoug, RM Funsten, HO Sarno-Smith, LK AF Denton, M. H. Reeves, G. D. Larsen, B. A. Friedel, R. F. W. Thomsen, M. F. Fernandes, P. A. Skoug, R. M. Funsten, H. O. Sarno-Smith, L. K. TI On the origin of low-energy electrons in the inner magnetosphere: Fluxes and pitch-angle distributions SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PLASMA SHEET ACCESS; SUPERPOSED EPOCH ANALYSIS; HIDDEN ION POPULATION; VAN ALLEN PROBES; GEOSYNCHRONOUS ORBIT; REFLECTED WHISTLERS; EMPIRICAL-MODEL; SPACECRAFT; SATELLITE; DYNAMICS AB Accurate knowledge of the plasma fluxes in the inner magnetosphere is essential for both scientific and programmatic applications. Knowledge of the low-energy electrons (approximately tens to hundreds of eV) in the inner magnetosphere is particularly important since these electrons are acted upon by various physical processes, accelerating the electrons to higher energies, and also causing their loss. However, measurements of low-energy electrons are challenging, and as a result, this population has been somewhat neglected previously. This study concerns observations of low-energy electrons made by the Helium Oxygen Proton Electron instrument on board the Van Allen Probes satellites and also observations from geosynchronous orbit made by the Magnetospheric Plasma Analyzer on board Los Alamos National Laboratory satellites. The fluxes of electrons from similar to 30 eV to 1 keV are quantified as a function of pitch-angle, McIlwain L parameter, and local time for both quiet and active periods. Results indicate two sources for low-energy electrons in this energy range: the low-energy tail of the electron plasma sheet and the high-energy tail of the dayside ionosphere. These populations are identified primarily as a result of their different pitch-angle distributions. Field-aligned outflows from the dayside ionosphere are observed at all L shells during quiet and active periods. Our results also demonstrate that the dayside electron field-aligned fluxes at similar to 30 eV are particularly strong between L values of 6 and 7, indicating an enhanced source within the polar ionosphere. C1 [Denton, M. H.; Reeves, G. D.; Larsen, B. A.; Friedel, R. F. W.] New Mexico Consortium, Los Alamos, NM 87544 USA. [Denton, M. H.] Space Sci Inst, Ctr Space Plasma Phys, Boulder, CO 80301 USA. [Reeves, G. D.; Larsen, B. A.; Friedel, R. F. W.; Fernandes, P. A.; Skoug, R. M.; Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM USA. [Thomsen, M. F.] Planetary Sci Inst, Tucson, AZ USA. [Sarno-Smith, L. K.] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. RP Denton, MH (reprint author), New Mexico Consortium, Los Alamos, NM 87544 USA. EM mdenton@spacescience.org OI Reeves, Geoffrey/0000-0002-7985-8098 FU RBSP Energetic Particle, Composition; Thermal Plasma funding under NASA's Prime [NAS5-01072] FX The authors gratefully acknowledge the OMNI database for the solar wind and geophysical parameters used in this study. M.H.D. would like to thank Joe Borovsky, Lauren Blum, Jacob Bortnik, Stephen Fuselier, and Lynn Wilson III for helpful discussions. Data from the RBSP-ECT instrument suite used in this study are available at http://www.rbspect.lanl.gov/.LANL/MPA data are available by contacting the instrument principal investigator (mghenderson@lanl.gov). This work was supported at New Mexico Consortium by RBSP Energetic Particle, Composition, and Thermal Plasma funding under NASA's Prime contract NAS5-01072. NR 59 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2017 VL 122 IS 2 BP 1789 EP 1802 DI 10.1002/2016JA023648 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EO9QJ UT WOS:000397022900026 ER PT J AU Saito, Y Yokota, S Asamura, K Krieger, A AF Saito, Yoshifumi Yokota, Shoichiro Asamura, Kazushi Krieger, Amanda TI High-speed MCP anodes for high time resolution low-energy charged particle spectrometers SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SPECTRUM ANALYZER MSA; SCIENTIFIC OBJECTIVES; ONBOARD; DETECTOR; MISSION; MMO; SELENE; PHOTON; REGION; SPACE AB The time resolution of low-energy charged particle measurements is becoming higher and higher. In order to realize high time resolution measurements, a 1-D circular delay line anode has been developed as a high-speed microchannel plate (MCP) anode. The maximum count rate of the 1-D circular delay line anode is around 1x10(7)/s/360 degrees, which is much higher than the widely used resistive anode, whose maximum count rate is around 1 x 10(6)/s/360 degrees. In order to achieve much higher speeds, an MCP anode with application-specific integrated circuit (ASIC) has been developed. We have decided to adopt an anode configuration in which a discrete anode is formed on a ceramic substrate, and a bare ASIC chip is installed on the back of the ceramic. It has been found that the anode can detect at a high count rate of 2 x 10(8)/s/360 degrees. Developments in both delay line and discrete anodes, as well as readout electronics, will be reviewed. C1 [Saito, Yoshifumi; Yokota, Shoichiro; Asamura, Kazushi] Japan Aerospace Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. [Krieger, Amanda] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Saito, Y (reprint author), Japan Aerospace Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. EM saito@stp.isas.jaxa.jp FU JSPS [21340143, 26287121] FX The authors wish to express their sincere thanks to H.V.D. Lippe and P. Denes at the Lawrence Berkeley National Laboratory for the development of HERMES64. The authors also wish to express their grateful thanks to the manufacturers of the MCP anodes, MCP assemblies, and low-energy particle spectrometers: Chukoh Chemical Industries, Ltd., COSMOTEC Corporation, DIAX Inc., KYOCERA Corporation, Hamamatsu Photonics K.K., Mitaka Kohki Co., Ltd., YSdesign Co., Ltd., Meisei Electric Co., Ltd., Parylene Japan/Specialty Coating Systems, Inc., and Mitsuya Co., Ltd. The data used are listed in the references, tables, and figures. This work was partly supported by JSPS Grant-in-Aid for Scientific Research (B) 21340143 and by JSPS Grant-in-Aid for Scientific Research (B) 26287121. NR 32 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2017 VL 122 IS 2 BP 1816 EP 1830 DI 10.1002/2016JA023157 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EO9QJ UT WOS:000397022900028 ER PT J AU Chakrabarty, D Hui, D Rout, D Sekar, R Bhattacharyya, A Reeves, GD Ruohoniemi, JM AF Chakrabarty, D. Hui, Debrup Rout, Diptiranjan Sekar, R. Bhattacharyya, Archana Reeves, G. D. Ruohoniemi, J. M. TI Role of IMF B-y in the prompt electric field disturbances over equatorial ionosphere during a space weather event SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INTERPLANETARY MAGNETIC-FIELD; NUMERICAL-ANALYSIS; LOW-LATITUDE; F-REGION; CONVECTION; ENHANCEMENT; SYSTEM; DRIFTS AB On 7 January 2005 (A(p) = 40) prompt penetration electric field perturbations of opposite polarities were observed over Thumba and Jicamarca on a few occasions during 13: 45-16: 30 UT. However, the electric field was found to be eastward during 14: 45-15: 30 UT over both Thumba and Jicamarca contrary to the general expectation wherein opposite polarities are expected at nearly antipodal points. On closer scrutiny, three important observational features are noticed during 14: 10-15: 15 UT. First, during 14: 10-14: 45 UT, despite increasing southward interplanetary magnetic field (IMF) B-z condition, the already westward electric field over Thumba weakened (less westward) while the eastward electric field over Jicamarca intensified (more eastward). Second, the electric field not only became anomalously eastward over Thumba but also got intensified further during 14: 45-15: 00 UT similar to Jicamarca. Third, during 15: 00-15: 15 UT, despite IMF Bz remaining steadily southward, the eastward electric field continued to intensify over Thumba but weakened over Jicamarca. It is suggested that the changes in IMF By component under southward IMF Bz condition are responsible for skewing the ionospheric equipotential patterns over the dip equator in such a way that Thumba came into the same DP2 cell as that of Jicamarca leading to anomalous electric field variations. Magnetic field measurements along the Indian and Jicamarca longitude sectors and changes in high-latitude ionospheric convection patterns provide credence to this proposition. Thus, the present investigation shows that the variations in IMF By are fundamentally important to understand the prompt penetration effects over low latitudes. C1 [Chakrabarty, D.; Hui, Debrup; Rout, Diptiranjan; Sekar, R.] Phys Res Lab, Ahmadabad, Gujarat, India. [Bhattacharyya, Archana] Indian Inst Geomagnetism, Mumbai, Maharashtra, India. [Reeves, G. D.] Los Alamos Natl Lab, Los Alamos, NM USA. [Ruohoniemi, J. M.] Virginia Polytech Inst & State Univ, Bradley Dept Elect & Comp Engn, Blacksburg, VA USA. RP Chakrabarty, D (reprint author), Phys Res Lab, Ahmadabad, Gujarat, India. EM dipu@prl.res.in OI Reeves, Geoffrey/0000-0002-7985-8098; Bhattacharyya, Archana/0000-0001-9762-3025 FU NSFAGS through Cornell University [1433968]; National institutes; national scientific funding agency of Australia; national scientific funding agency of Canada; national scientific funding agency of China; national scientific funding agency of France; national scientific funding agency of Japan; national scientific funding agency of South Africa; national scientific funding agency of United Kingdom; national scientific funding agency of United States of America; SERB, Government of India; Department of Space, Government of India FX The geomagnetic indices and solar wind data are taken from NASA GSFC CDAweb (http://cdaweb.gsfc.nasa.gov/). The JULIA drift and magnetometer data from the Peruvian sectors (Jicamarca and Piura) are taken from http://jro.igp.gob.pe/english/. The Jicamarca Radio Observatory is a facility of the Instituto Geofisico del Peru operated with support from the NSFAGS-1433968 through Cornell University. The geosynchronous particle flux data are obtained from Los Alamos National Laboratory, USA. The magnetic data used in this work are obtained from the SuperMAG network (http://supermag.jhuapl.edu). D.C. thanks the PIs of the magnetic observatories and the National institutes that support the observatories. SuperDARN is a collection of radars funded by national scientific funding agencies of Australia, Canada, China, France, Japan, South Africa, United Kingdom, and United States of America, and the data are available from the Virginia Tech SuperDARN website (http://vt.superdarn.org/). A. B. acknowledges support from SERB, Government of India, in the form of a J. C. Bose National Fellowship. This work is supported by the Department of Space, Government of India. NR 39 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2017 VL 122 IS 2 BP 2574 EP 2588 DI 10.1002/2016JA022781 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EO9QJ UT WOS:000397022900078 ER PT J AU Bai, Y Zhou, XZ Zhan, C Ma, L Yuan, YF Wu, C Chen, MZ Chen, GH Ni, Q Wu, F Shahbazian-Yassar, R Wu, TP Lu, J Amine, K AF Bai, Ying Zhou, Xingzhen Zhan, Chun Ma, Lu Yuan, Yifei Wu, Chuan Chen, Mizi Chen, Guanghai Ni, Qiao Wu, Feng Shahbazian-Yassar, Reza Wu, Tianpin Lu, Jun Amine, Khalil TI 3D Hierarchical nano-flake/micro-flower iron fluoride with hydration water induced tunnels for secondary lithium battery cathodes SO NANO ENERGY LA English DT Article DE Lithium ion batteries; Cathode materials; Iron fluoride; Liquid precipitation; Hydration water ID LI-ION BATTERIES; EXCELLENT CYCLE PERFORMANCE; HIGH-CAPACITY; ELECTROCHEMICAL-BEHAVIOR; POSITIVE ELECTRODES; FACILE PREPARATION; FEF3 NANOCRYSTALS; METAL FLUORIDES; THIN-FILMS; NANOCOMPOSITES AB As a potential multi-electron electrode material for next generation lithium ion batteries, iron fluoride (FeF3) and its analogues are attracting much more attentions. Their microstructures are the key to achieve good electrochemical performances. In this work, FeF3 center dot 3H(2)O nano-flakes precursor with high crystallinity and flower-like morphology is synthesized successfully, by a liquid precipitation method using Fe(NO3)(3)center dot 9H(2)O and NH4HF2 as raw materials. The formation and the crystal growth mechanisms of the FeF3 center dot 3H(2)O precursors are investigated and discussed. After different temperature heat-treatment and followed by ball-milling with Super P, the as-prepared FeF3.0 center dot 33H(2)O/C and FeF3/C nanocomposites are used as cathode materials for lithium ion batteries. The FeF3.0 center dot 33H(2)O/C nanocomposite exhibits a noticeable initial specific capacity of 187.1 mAh g(-1) and reversible specific capacity of 172.3 mAh g(-1) at .1 C within a potential range of 2.0-4.5 V. The capacity retention is as high as 97.33% after 50 cycles. Combined with HRTEM test, it confirms that the hydration water is not harmful but useful, namely, the tunnel phase formed with the hydration water is crucial to unobstructed Li+ diffusion, and therefore leading to excellent electrochemical performances. C1 [Bai, Ying; Zhou, Xingzhen; Wu, Chuan; Chen, Mizi; Chen, Guanghai; Ni, Qiao; Wu, Feng] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China. [Zhan, Chun; Yuan, Yifei; Lu, Jun; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, 9700 South,Cass Ave, Lemont, IL 60439 USA. [Ma, Lu] Ohio State Univ, Dept Chem & Biochem, 100 West 18th Ave, Columbus, OH 43210 USA. [Yuan, Yifei; Shahbazian-Yassar, Reza] Univ Illinois, Dept Mech & Ind Engn, 845 West Taylor St, Chicago, IL 60607 USA. [Wu, Chuan; Wu, Feng] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China. [Wu, Tianpin] Argonne Natl Lab, Xray Sci Div, 9700 South Cass Ave, Argonne, IL 60439 USA. RP Bai, Y (reprint author), Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China.; Lu, J; Amine, K (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 South,Cass Ave, Lemont, IL 60439 USA. EM membrane@bit.edu.cn; junlu@anl.gov; amine@anl.gov RI wu, chuan/A-1447-2009 FU National 973 project of China [2015CB251100]; Program for New Century Excellent Talents in University [NCET-12-0033]; U.S. Department of Energy [DEAC0206CH11357]; Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE); U.S. Department of Energy under U.S.-China Clean Energy Research Center for Clean Vehicles (CERC-CVC); U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The present work was supported by the National 973 project of China (No. 2015CB251100), the Program for New Century Excellent Talents in University (Grant NCET-12-0033). This work was also supported by the U.S. Department of Energy under Contract DEAC0206CH11357 with the main support provided by the Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). Financial support was also partially provided by the U.S. Department of Energy under U.S.-China Clean Energy Research Center for Clean Vehicles (CERC-CVC). Use of the Advanced Photon Source (9-BM) was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357. NR 56 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD FEB PY 2017 VL 32 BP 10 EP 18 DI 10.1016/j.nanoen.2016.12.017 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EO9IZ UT WOS:000397003700002 ER PT J AU Jang, GG Song, B Li, LY Keum, JK Jiang, YD Hunt, A Moon, KS Wong, CP Hu, MZ AF Jang, Gyoung Gug Song, Bo Li, Liyi Keum, Jong Kahk Jiang, Yongdong Hunt, Andrew Moon, Kyoung-sik Wong, Ching-Ping Hu, Michael Z. TI Microscopic vertical orientation of nano-interspaced graphene architectures in deposit films as electrodes for enhanced supercapacitor performance SO NANO ENERGY LA English DT Article DE Graphene film deposits; Supercapacitor; Vertically oriented graphene; Functionalized graphene; Graphene interspacing ID OXYGEN REDUCTION; OXIDE; NANOPARTICLES; ENERGY AB This work reported a novel two-step process to fabricate high-performance supercapacitor films that contain microscale domains of nano-interspaced, re-stacked graphene sheets oriented perpendicular to the surface of current collector substrate, i.e., carbon fiber paper. In the two-step process, we first used ligand molecules to modify the surface of graphene oxide (GO) sheets and manipulate the interspacing between the re-stacked GO sheets. The ligand-modified GOs, i.e., m-GOs, were then reduced to obtain more conductive graphene (m-rGO), where X-ray diffraction measurement results indicated well-controlled interlayer spacing between the restacked m-rGO sheets up to 1 nm. The typical lateral dimension of the restacked m-rGO sheets were similar to 40 mu m. Then, electrical field was introduced during m-rGO slurry deposition process to induce the vertical orientation of the m-rGO sheets/stacks in the film deposit. The direct current electrical field induced the orientation of the domains of m-rGO stacks along the direction perpendicular to the surface of deposit film, i.e., direction of electric field. Also, the applied electric field increased the interlayer spacing further, which should enhance the diffusion and accessibility of electrolyte ions. As compared with the traditionally deposited "control" films, the field-processed film deposits that contain oriented structure of graphene sheets/stacks have shown up to similar to 1.6 times higher values in capacitance (430 F/g at 0.5 A/g) and similar to 67% reduction in equivalent series resistance. The approach of using electric field to tailor the microscopic architecture of graphene-based deposit films is effective to fabricate film electrodes for high performance supercapacitors. C1 [Jang, Gyoung Gug; Hu, Michael Z.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. [Song, Bo; Li, Liyi; Moon, Kyoung-sik; Wong, Ching-Ping] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Keum, Jong Kahk] ORNL, Ctr Nanophase Mat Sci, Chem & Engn Mat Div, Oak Ridge, TN USA. [Jiang, Yongdong; Hunt, Andrew] nGimat Co, Norcross, GA 30093 USA. RP Hu, MZ (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. EM hum1@ornl.gov FU Advanced Research Project Agency-Energy (ARPA- E) [DE-AR0000303]; ORNL Scientific User Facilities Division; DOE Office of Basic Research Sciences; Center for Nanophase Materials Sciences; Spallation Neutron Source; Scientific User Facilities Divisions; Office of Basic Energy Science; U. S. Department of Energy; DOE/ BETO FX This research work was supported by the Advanced Research Project Agency-Energy (ARPA- E) Program # DE-AR0000303. Part of the materials characterization (including XRD and SEM) was conducted at the Center for Nanophase Materials Sciences, which is sponsored by the ORNL Scientific User Facilities Division and DOE Office of Basic Research Sciences. We also acknowledge the financial support of the Center for Nanophase Materials Sciences and the Spallation Neutron Source, which are sponsored by the Scientific User Facilities Divisions, Office of Basic Energy Science, U. S. Department of Energy. The development of graphene coating deposition method was also partially sponsored by the DOE/ BETO program due to interest in graphene coated membrane development and applications. NR 25 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD FEB PY 2017 VL 32 BP 88 EP 95 DI 10.1016/j.nanoen.2016.12.016 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EO9IZ UT WOS:000397003700012 ER PT J AU Gao, P Zhang, YY Wang, LP Chen, SL Huang, Y Ma, XM Liu, KH Yu, DP AF Gao, Peng Zhang, Yu-Yang Wang, Liping Chen, Shulin Huang, Yuan Ma, Xiumei Liu, Kaihui Yu, Dapeng TI In situ atomic-scale observation of reversible sodium ions migration in layered metal dichalcogenide SnS2 nanostructures SO NANO ENERGY LA English DT Article DE Sodium ion battery; In situ TEM; Structure ordering; Ion migration; Layered metal dichalcogenide ID GRAPHITE-INTERCALATION COMPOUNDS; CONVERSION ELECTRODE MATERIALS; ELECTROCHEMICAL LITHIATION; ENERGY-STORAGE; PHASE-TRANSFORMATIONS; LITHIUM INSERTION; HIGH-CAPACITY; BATTERIES; HYSTERESIS; MOS2 AB Ion migration in solids provides basis for a wide range of technique applications including alkali-metal ion batteries. Understanding the ion migration dynamics and kinetics is critical to bring benefits to the industry. Here, we directly track the Na ions insertion and extraction in van der Waals interactions dominated layered structure SnS2 at atomic-scale by in situ transmission electron microscopy technique. Insertion of sodium in SnS2 forms highly defective and expanded NaxSnS(2) with volume expansion of (similar to 5%) via a two-phase reaction while sodium extraction involves a solid solution behavior with formation of nano-sized intermediate superstructure Na0.5SnS2, of which the atomic structure has been identified to be row ordering in the (001) planes. The reaction behaviors of sodiation are also compared with lithiation in SnS2 nanostructures. Unlike the conversion and ionic bonded intercalation-type electrode materials, in this van der Waals material SnS2 the sodiation and lithiation reactions share great similarities in the dynamics (e.g. asymmetric reaction pathways). However, the high density of defects that are generated at the reaction front during sodiation, was not captured during lithiation probably due to the larger radius and heavy mass for Na ions. These findings provide valuable insights into understanding the underlying ion migration mechanism in the layered transition metal dichalcogenide. The asymmetric sodium insertion and extraction pathways may help us to elucidate the origins of voltage hysteresis and energy efficiency in alkali-metal ion batteries. C1 [Gao, Peng; Chen, Shulin; Ma, Xiumei] Peking Univ, Sch Phys, Electron Microscopy Lab, Beijing 100871, Peoples R China. [Gao, Peng; Liu, Kaihui; Yu, Dapeng] Peking Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China. [Zhang, Yu-Yang] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 10049, Peoples R China. [Zhang, Yu-Yang] Univ Chinese Acad Sci, CAS Key Lab Vacuum Phys, Beijing 10049, Peoples R China. [Wang, Liping] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China. [Huang, Yuan] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Liu, Kaihui; Yu, Dapeng] Peking Univ, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China. RP Gao, P (reprint author), Peking Univ, Sch Phys, Electron Microscopy Lab, Beijing 100871, Peoples R China. EM p-gao@pku.edu.cn RI Liu, Kaihui/A-9938-2014 FU National Key Research and Developement Program of China [2016YFA0300903, 2016YFA0300804]; National Natural Science Foundation of China [51502007, 51672007, 51502032]; Recruitment Program for Young Professionals of China; Peking-Tsinghua-IOP Collaborative Innovation Center of Quantum Matter FX This work was supported by the National Key Research and Developement Program of China (2016YFA0300903, 2016YFA0300804), National Natural Science Foundation of China (51502007, 51672007, 51502032), the Recruitment Program for Young Professionals of China, and " 2011 Program" Peking-Tsinghua-IOP Collaborative Innovation Center of Quantum Matter. NR 44 TC 0 Z9 0 U1 7 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD FEB PY 2017 VL 32 BP 302 EP 309 DI 10.1016/j.nanoen.2016.12.051 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EO9IZ UT WOS:000397003700037 ER PT J AU West, BM Stuckelberger, M Guthrey, H Chen, L Lai, B Maser, J Rose, V Shafarman, W Al-Jassim, M Bertoni, MI AF West, Bradley M. Stuckelberger, Michael Guthrey, Harvey Chen, Lei Lai, Barry Maser, Jorg Rose, Volker Shafarman, William Al-Jassim, Mowafak Bertoni, Mariana I. TI Grain engineering: How nanoscale inhomogeneities can control charge collection in solar cells SO NANO ENERGY LA English DT Article DE CIGS; Grain boundaries; Solar Cells; Synchrotron; XRF; XBIC ID CUINSE2; CU(IN,GA)SE-2; BOUNDARIES; DEFECTS AB Statistical and correlative analysis are increasingly important in the design and study of new materials, from semiconductors to metals. Non-destructive measurement techniques, with high spatial resolution, capable of correlating composition and/or structure with device properties, are few and far between. For the case of polycrystalline and inhomogeneous materials, the added challenge is that nanoscale resolution is in general not compatible with the large sampling areas necessary to have a statistical representation of the specimen under study. For the study of grain cores and grain boundaries in polycrystalline solar absorbers this is of particular importance since their dissimilar behavior and variability throughout the samples makes it difficult to draw conclusions and ultimately optimize the material. In this study, we present a nanoscale in-operando approach based on the multimodal utilization of synchrotron nano x-ray fluorescence and x-ray beam induced current collected for grain core and grain boundary areas and correlated pixel-by-pixel in fully operational Cu(In(1-x)Gax)Se-2 solar cells. We observe that low gallium cells have grain boundaries that over perform compared to the grain cores and high gallium cells have boundaries that under perform. These results demonstrate how nanoscale correlative X-ray microscopy can guide research pathways towards grain engineering low cost, high efficiency solar cells. C1 [West, Bradley M.; Stuckelberger, Michael; Bertoni, Mariana I.] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA. [Guthrey, Harvey; Al-Jassim, Mowafak] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Chen, Lei] Univ Delaware, Inst Energy Convers, Newark, DE 19716 USA. [Lai, Barry; Maser, Jorg; Rose, Volker] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. [Rose, Volker] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA. [Bertoni, Mariana I.] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. RP Bertoni, MI (reprint author), Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA. EM bertoni@asu.edu FU U.S. Department of Energy [DE-EE0005848]; National Renewable Energy Laboratory as a part of the Non-Proprietary Partnering Program [DE-AC36-08-GO28308]; U.S. Department of Energy; IGERT-SUN fellowship - National Science Foundation [1144616]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We would like to thank Sebastian Husein for the ample amount of time and effort he put in helping us collect the data for this experiment. We acknowledge funding from the U.S. Department of Energy under contract DE-EE0005848. This work was supported by the National Renewable Energy Laboratory as a part of the Non-Proprietary Partnering Program under Contract no. DE-AC36-08-GO28308 with the U.S. Department of Energy. Bradley West was supported by an IGERT-SUN fellowship funded by the National Science Foundation (Award 1144616). Work at the Advanced Photon Source and the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-06CH11357. NR 37 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD FEB PY 2017 VL 32 BP 488 EP 493 DI 10.1016/j.nanoen.2016.12.011 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EO9IZ UT WOS:000397003700060 ER PT J AU Brewer, TE Handley, KM Carini, P Gilbert, JA Fierer, N AF Brewer, Tess E. Handley, Kim M. Carini, Paul Gilbert, Jack A. Fierer, Noah TI Genome reduction in an abundant and ubiquitous soil bacterium 'Candidatus Udaeobacter copiosus' SO NATURE MICROBIOLOGY LA English DT Article ID 16S RIBOSOMAL-RNA; MICROBIAL COMMUNITIES; PHYLUM VERRUCOMICROBIA; SEQUENCING DATA; CROSS-BIOME; SIZE; DIVERSITY; IDENTIFICATION; DATABASE; ECOLOGY AB Although bacteria within the Verrucomicrobia phylum are pervasive in soils around the world, they are under-represented in both isolate collections and genomic databases. Here, we describe a single verrucomicrobial group within the class Spartobacteria that is not closely related to any previously described taxa. We examined more than 1,000 soils and found this spartobacterial phylotype to be ubiquitous and consistently one of the most abundant soil bacterial phylotypes, particularly in grasslands, where it was typically the most abundant. We reconstructed a nearly complete genome of this phylotype from a soil metagenome for which we propose the provisional name 'Candidatus Udaeobacter copiosus'. The Ca. U. copiosus genome is unusually small for a cosmopolitan soil bacterium, estimated by one measure to be only 2.81 Mbp, compared to the predicted effective mean genome size of 4.74 Mbp for soil bacteria. Metabolic reconstruction suggests that Ca. U. copiosus is an aerobic heterotroph with numerous putative amino acid and vitamin auxotrophies. The large population size, relatively small genome and multiple putative auxotrophies characteristic of Ca. U. copiosus suggest that it may be undergoing streamlining selection to minimize cellular architecture, a phenomenon previously thought to be restricted to aquatic bacteria. Although many soil bacteria need relatively large, complex genomes to be successful in soil, Ca. U. copiosus appears to use an alternative strategy, sacrificing metabolic versatility for efficiency to become dominant in the soil environment. C1 [Brewer, Tess E.; Carini, Paul; Fierer, Noah] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Brewer, Tess E.] Univ Colorado, Dept Mol Cellular & Dev Biol, Boulder, CO 80309 USA. [Handley, Kim M.] Univ Auckland, Sch Biol Sci, Auckland 1142, New Zealand. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Gilbert, Jack A.] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60439 USA. [Fierer, Noah] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA. RP Fierer, N (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.; Fierer, N (reprint author), Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA. EM noah.fierer@colorado.edu FU National Science Foundation [DEB0953331, EAR1331828]; Cooperative Institute for Research in Environmental Sciences; Alfred P Sloan Foundation FX Funding to support this work was provided by grants from the National Science Foundation to N.F. (DEB0953331, EAR1331828), a Visiting Postdoctoral Fellowship award to P.C. from the Cooperative Institute for Research in Environmental Sciences and an Alfred P Sloan Foundation grant to J.G. The authors acknowledge infrastructural support provided by the University of Chicago Research Computing Center and University of Colorado Next Generation Sequencing Facility. NR 66 TC 1 Z9 1 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2058-5276 J9 NAT MICROBIOL JI NAT. MICROBIOL PD FEB PY 2017 VL 2 IS 2 AR 16198 DI 10.1038/nmicrobiol.2016.198 PG 7 WC Microbiology SC Microbiology GA EP0VN UT WOS:000397104900004 PM 27798560 ER PT J AU Snijders, AM Langley, SA Kim, YM Brislawn, CJ Noecker, C Zink, EM Fansler, SJ Casey, CP Miller, DR Huang, YR Karpen, GH Celniker, SE Brown, JB Borenstein, E Jansson, JK Metz, TO Mao, JH AF Snijders, Antoine M. Langley, Sasha A. Kim, Young-Mo Brislawn, Colin J. Noecker, Cecilia Zink, Erika M. Fansler, Sarah J. Casey, Cameron P. Miller, Darla R. Huang, Yurong Karpen, Gary H. Celniker, Susan E. Brown, James B. Borenstein, Elhanan Jansson, Janet K. Metz, Thomas O. Mao, Jian-Hua TI Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome SO NATURE MICROBIOLOGY LA English DT Article ID COLLABORATIVE CROSS; SYSTEMS GENETICS; COMMUNITIES; RESOURCE; IDENTIFICATION; EXPRESSION; SEQUENCES; DISEASE; GENES; MICE AB Although the gut microbiome plays important roles in host physiology, health and disease(1), we lack understanding of the complex interplay between host genetics and early life environment on the microbial and metabolic composition of the gut. We used the genetically diverse Collaborative Cross mouse system(2) to discover that early life history impacts themicrobiome composition, whereas dietary changes have only a moderate effect. By contrast, the gut metabolome was shaped mostly by diet, with specific non-dietary metabolites explained by microbial metabolism. Quantitative trait analysis identified mouse genetic trait loci (QTL) that impact the abundances of specific microbes. Human orthologues of genes in the mouse QTL are implicated in gastrointestinal cancer. Additionally, genes located in mouse QTL for Lactobacillales abundance are implicated in arthritis, rheumatic disease and diabetes. Furthermore, Lactobacillales abundance was predictive of higher host T-helper cell counts, suggesting an important link between Lactobacillales and host adaptive immunity. C1 [Snijders, Antoine M.; Langley, Sasha A.; Huang, Yurong; Karpen, Gary H.; Mao, Jian-Hua] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA. [Kim, Young-Mo; Brislawn, Colin J.; Zink, Erika M.; Fansler, Sarah J.; Casey, Cameron P.; Jansson, Janet K.; Metz, Thomas O.] Pacif Northwest Natl Lab, Earth & Biol Sci Directorate, Washington, DC 99352 USA. [Noecker, Cecilia; Borenstein, Elhanan] Univ Washington, Dept Genome Sci, Seattle, WA 98105 USA. [Miller, Darla R.] Univ North Carolina Chapel Hill, Dept Genet, Systs Genet Core Facil, Chapel Hill, NC 27599 USA. [Karpen, Gary H.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Celniker, Susan E.; Brown, James B.] Lawrence Berkeley Natl Lab, Environm Genom & Syst Biol Div, Berkeley, CA 94720 USA. [Borenstein, Elhanan] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA. [Borenstein, Elhanan] Santa Fe Inst, Santa Fe, NM 87501 USA. RP Mao, JH (reprint author), Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA.; Jansson, JK; Metz, TO (reprint author), Pacif Northwest Natl Lab, Earth & Biol Sci Directorate, Washington, DC 99352 USA. EM janet.jansson@pnnl.gov; thomas.metz@pnnl.gov; jhmao@lbl.gov FU Office of Naval Research under ONR [N0001415IP00021]; Low Dose Scientific Focus Area, Office of Biological and Environmental Research, US Department of Energy; Lawrence Berkeley National Laboratory Directed Research and Development (LDRD); NSF IGERT [DGE-1258485]; New Innovator Award [DP2 AT007802-01]; Microbiomes in Transition (MinT) Initiative, Laboratory Directed Research and Development Program at PNNL; DOE [DE-AC05-76RLO 1830, DE AC02-05CH11231]; US DOE OBER FX The authors thank S.E. Cates, N.N. Robinson and G.D. Shaw in the Systems Genetics Core at UNC for technical assistance and M.H. Stoiber for helpful discussions, especially regarding statistical analysis. This work was primarily supported by funding from the Office of Naval Research under ONR contract N0001415IP00021 (J.J., J.H.M. and A.M.S.). Additional support was provided by the Low Dose Scientific Focus Area, Office of Biological and Environmental Research, US Department of Energy (G.K., J.H.M. and A.M.S.) and the Lawrence Berkeley National Laboratory Directed Research and Development (LDRD) program funding under the Microbes to Biomes (M2B) initiative (S.C., B.B., G.K., J.H.M. and A.M.S.). C.N. was supported by an NSF IGERT DGE-1258485 fellowship and in part by New Innovator Award DP2 AT007802-01 to E.B. Partial support was also provided under the Microbiomes in Transition (MinT) Initiative as part of the Laboratory Directed Research and Development Program at PNNL. Metabolomic measurements were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US DOE OBER and located at PNNL in Richland, Washington. PNNL and LBNL are multi-program national laboratories operated by Battelle for the DOE under contract DE-AC05-76RLO 1830 and the University of California for the DOE under contract DE AC02-05CH11231, respectively. NR 52 TC 0 Z9 0 U1 2 U2 2 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2058-5276 J9 NAT MICROBIOL JI NAT. MICROBIOL PD FEB PY 2017 VL 2 IS 2 AR 16221 DI 10.1038/nmicrobiol.2016.221 PG 8 WC Microbiology SC Microbiology GA EP0VN UT WOS:000397104900016 PM 27892936 ER PT J AU Martin, LW Rappe, AM AF Martin, Lane W. Rappe, Andrew M. TI Thin-film ferroelectric materials and their applications SO NATURE REVIEWS MATERIALS LA English DT Review ID EPITAXIAL BATIO3/SRTIO3 SUPERLATTICES; MORPHOTROPIC PHASE-BOUNDARY; DOMAIN-WALL MOTION; ROOM-TEMPERATURE; BIFEO3 FILMS; NEGATIVE CAPACITANCE; TUNNEL-JUNCTIONS; NANOSCALE CONTROL; POLARIZATION ENHANCEMENT; ELECTROCALORIC MATERIALS AB Ferroelectric materials, because of their robust spontaneous electrical polarization, are widely used in various applications. Recent advances in modelling, synthesis and characterization techniques are spurring unprecedented advances in the study of these materials. In this Review, we focus on thin-film ferroelectric materials and, in particular, on the possibility of controlling their properties through the application of strain engineering in conventional and unconventional ways. We explore how the study of ferroelectric materials has expanded our understanding of fundamental effects, enabled the discovery of novel phases and physics, and allowed unprecedented control of materials properties. We discuss several exciting possibilities for the development of new devices, including those in electronic, thermal and photovoltaic applications, and transduction sensors and actuators. We conclude with a brief survey of the different directions that the field may expand to over the coming years. C1 [Martin, Lane W.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Martin, Lane W.] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Rappe, Andrew M.] Univ Penn, Dept Chem, Makineni Theoret Labs, Philadelphia, PA 19104 USA. RP Martin, LW (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.; Martin, LW (reprint author), Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. EM lwmartin@berkeley.edu FU Army Research Office [W911NF-14-1-0104]; US Department of Energy (DOE) [DE-SC0012375]; Gordon and Betty Moore Foundation's EPiQS Initiative [GBMF5307]; National Science Foundation [DMR-1124696, DMR-1149062, ENG-1434147, DMR-1120901, CBET-1159736, NSF DMR-1124696, CMMI-1334241]; Office of Naval Research [N00014-10-1-0525, N00014-11-1-0664, N00014-12-1-1033, N00014-14-1-0761]; DOE [DE-FG02-07ER46431, DE-FG02-07ER15920] FX L.W.M. acknowledges support from the Army Research Office under grant W911NF-14-1-0104, the US Department of Energy (DOE) under grant DE-SC0012375, the Gordon and Betty Moore Foundation's EPiQS Initiative, under grant GBMF5307, the National Science Foundation under grants DMR-1124696, DMR-1149062 and ENG-1434147, and the Office of Naval Research under grant N00014-10-1-0525. A.M.R. acknowledges support from the DOE under grants DE-FG02-07ER46431 and DE-FG02-07ER15920, the National Science Foundation under grants DMR-1120901, CBET-1159736, NSF DMR-1124696 and CMMI-1334241, and the Office of Naval Research under grants N00014-11-1-0664, N00014-12-1-1033 and N00014-14-1-0761. A.M.R. and his group thank the High-Performance Computing Modernization Office of the Department of Defense and the National Energy Research Scientific Computing program. Both authors have benefited from collaborations within programs at the University of California, Berkeley, the University of Illinois, Urbana-Champaign, and the University of Pennsylvania, as well as other valued collaborators around the world. NR 270 TC 1 Z9 1 U1 12 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2058-8437 J9 NAT REV MATER JI Nat. Rev. Mater. PD FEB PY 2017 VL 2 IS 2 DI 10.1038/natrevmats.2016.87 PG 14 WC Materials Science, Multidisciplinary SC Materials Science GA EO9XY UT WOS:000397042600001 ER PT J AU No, HC Merzari, E AF No, Hee Cheon Merzari, Elia TI Special issue on the 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics Foreword SO NUCLEAR ENGINEERING AND DESIGN LA English DT Editorial Material C1 [No, Hee Cheon] Korea Adv Inst Sci & Technol, Daejeon, South Korea. [Merzari, Elia] Argonne Natl Lab, Argonne, IL 60439 USA. RP Merzari, E (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. EM emerzari@anl.gov NR 0 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD FEB PY 2017 VL 312 BP 1 EP 1 DI 10.1016/j.nucengdes.2017.01.031 PG 1 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EO9ML UT WOS:000397012700001 ER PT J AU Gerardi, C Bremer, N Lisowski, D Lomperski, S AF Gerardi, Craig Bremer, Nathan Lisowski, Darius Lomperski, Stephen TI Distributed temperature sensor testing in liquid sodium SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID LEVEL AB Rayleigh-backscatter-based distributed fiber optic sensors were immersed in sodium to obtain high-resolution liquid-sodium temperature measurements. Distributed temperature sensors (DTSs) functioned well up to 400 degrees C in a liquid sodium environment. The DTSs measured sodium column temperature and the temperature of a complex geometrical pattern that leveraged the flexibility of fiber optics. A single circle divide 360 mu m OD sensor registered dozens of temperatures along a length of over one meter at 100 Hz. We also demonstrated the capability to use a single DTS to simultaneously detect thermal interfaces (e.g. sodium level) and measure temperature. Published by Elsevier B.V. C1 [Gerardi, Craig; Bremer, Nathan; Lisowski, Darius; Lomperski, Stephen] Argonne Natl Lab, 9700 S Cass Ave,B206, Argonne, IL 60439 USA. RP Gerardi, C (reprint author), Argonne Natl Lab, 9700 S Cass Ave,B206, Argonne, IL 60439 USA. EM cgerardi@anl.gov FU U.S. Department of Energy, Office of Nuclear Energy [DE-AC02-06CH11357] FX The authors are grateful to Gary Rochau (SNL), Bob Hill (ANL/NE), the National Technical Director, Brian Robinson, Headquarters Brayton Cycle Lead, and Carl Sink, the Headquarters Program Manager for the ART Program. Also, they are extremely grateful for the design and assembly support of Mitch Farmer, Robert Aeschlimann, and Dennis Kilsdonk at Argonne National Laboratory. Argonne National Laboratory's work was supported by the U.S. Department of Energy, Office of Nuclear Energy under contract DE-AC02-06CH11357. NR 18 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD FEB PY 2017 VL 312 BP 59 EP 65 DI 10.1016/j.nucengdes.2016.06.017 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EO9ML UT WOS:000397012700007 ER PT J AU Merzari, E Obabko, A Fischer, P Halford, N Walker, J Siegel, A Yu, YQ AF Merzari, Elia Obabko, Aleks Fischer, Paul Halford, Noah Walker, Justin Siegel, Andrew Yu, Yiqi TI Large-scale large eddy simulation of nuclear reactor flows: Issues and perspectives SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB Numerical simulation has been an intrinsic part of nuclear engineering research since its inception. In recent years a transition is occurring toward predictive, first-principle-based tools such as computational fluid dynamics. Even with the advent of petascale computing, however, such tools still have significant limitations. In the present work some of these issues, and in particular the presence of massive multiscale separation, are discussed, as well as some of the research conducted to mitigate them. Petascale simulations at high fidelity (large eddy simulation/direct numerical simulation) were conducted with the massively parallel spectral element code Nek5000 on a series of representative problems. These simulations shed light on the requirements of several types of simulation: (1) axial flow around fuel rods, with particular attention to wall effects; (2) natural convection in the primary vessel; and (3) flow in a rod bundle in the presence of spacing devices. The focus of the work presented here is on the lessons learned and the requirements to perform these simulations at exascale. Additional physical insight gained from these simulations is also emphasized. (C) 2016 Elsevier B.V. All rights reserved. C1 [Merzari, Elia; Obabko, Aleks; Fischer, Paul; Halford, Noah; Walker, Justin; Siegel, Andrew] Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Yu, Yiqi] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Merzari, E (reprint author), Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM emerzari@anl.gov; obabko@mcs.anl.gov; fischer@mcs.anl.gov; siegel@mcs.anl.gov; yyu@anl.gov FU U.S. Department of Energy, Office of Science as part of the CESAR program [DE-AC02-06CH11357]; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX This material was based upon work performed at the DOE Office of Science User Facility ALCF (Argonne Leadership Computing Facility) and funded by the U.S. Department of Energy, Office of Science, under contract DE-AC02-06CH11357, as part of the CESAR program.; The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 30 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD FEB PY 2017 VL 312 BP 86 EP 98 DI 10.1016/j.nucengdes.2016.09.028 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EO9ML UT WOS:000397012700010 ER PT J AU Yu, YQ Merzari, E Thomas, JW Obabko, A Aithal, SM AF Yu, Y. Q. Merzari, E. Thomas, J. W. Obabko, A. Aithal, S. M. TI Steady and unsteady calculations on thermal striping phenomena in triple-parallel jet SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID TURBULENCE MODELS AB The phenomenon of thermal striping is encountered in liquid metal cooled fast reactors (LMFR), in which temperature fluctuation due to convective mixing between hot and cold fluids can lead to a possibility of crack initiation and propagation in the structure due to high cycle thermal fatigue. Using sodium experiments of parallel triple jets configuration performed by Japan Atomic Energy Agency (JAEA) as benchmark, numerical simulations were carried out to evaluate the temperature fluctuation characteristics in fluid and the transfer characteristics of temperature fluctuation from fluid to structure, which is important to assess the potential thermal fatigue damage. In this study, both steady (RANS) and unsteady (URANS, LES) methods were applied to predict the temperature fluctuations of thermal striping. The parametric studies on the effects of mesh density and boundary conditions on the accuracy of the overall solutions were also conducted. The velocity, temperature and temperature fluctuation intensity distribution were compared with the experimental data. As expected, steady calculation has limited success in predicting the thermal-hydraulic characteristics of the thermal striping, highlighting the limitations of the RANS approach in unsteady heat transfer simulations. The unsteady results exhibited reasonably good agreement with experimental results for temperature fluctuation intensity, as well as the average temperature and velocity components at the measurement locations. (C) 2016 Elsevier B.V. All rights reserved. C1 [Yu, Y. Q.; Merzari, E.; Thomas, J. W.] Argonne Natl Lab, Nucl Engn Div, Lemont, IL 60439 USA. [Obabko, A.] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL 60439 USA. [Aithal, S. M.] Argonne Natl Lab, Comp Environm & Life Sci Directorate, Lemont, IL 60439 USA. RP Yu, YQ (reprint author), Argonne Natl Lab, Nucl Engn Div, Lemont, IL 60439 USA. EM yyu@anl.gov FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; US DOE Office of Nuclear Energy [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivate works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. Argonne National Laboratory's work was supported by the US DOE Office of Nuclear Energy under contract number DE-AC02-06CH11357. NR 22 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD FEB PY 2017 VL 312 BP 429 EP 437 DI 10.1016/j.nucengdes.2016.06.015 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EO9ML UT WOS:000397012700042 ER PT J AU Stimpson, S Collins, B Downar, T AF Stimpson, Shane Collins, Benjamin Downar, Thomas TI A 2-D/1-D Transverse Leakage Approximation Based on Azimuthal, Fourier Moments SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article DE Azimuthal; Fourier; transverse leakage ID TRANSPORT AB The MPACT code being developed collaboratively by Oak Ridge National Laboratory and the University of Michigan is the primary deterministic neutron transport solver within the Virtual Environment for Reactor Applications Core Simulator (VERA-CS). In MPACT, the two-dimensional (2-D)/onedimensional (1-D) scheme is the most commonly used method for solving neutron transport-based threedimensional nuclear reactor core physics problems. Several axial solvers in this scheme assume isotropic transverse leakages, but work with the axial SN solver has extended these leakages to include both polar and azimuthal dependence. However, explicit angular representation can be burdensome for run-time and memory requirements. The work here alleviates this burden by assuming that the azimuthal dependence of the angular flux and transverse leakages are represented by a Fourier series expansion. At the heart of this is a new axial SN solver that takes in a Fourier expanded radial transverse leakage and generates the angular fluxes used to construct the axial transverse leakages used in the 2-D-Method of Characteristics calculations. These new capabilities are demonstrated for the rodded Takeda light water reactor benchmark problem and the extended C5G7 benchmark suite. Results with heterogeneous pins, as in the C5G7 benchmark, indicate that cancelation of error between the angular and spatial representation of the transverse leakages may be a factor in the results obtained. To test this, an alternative C5G7 problem has been formulated using homogenized pin cells to reduce the errors introduced by assuming that the axial transverse leakage is spatially flat. In both the Takeda and C5G7 problems with homogeneous pins, excellent agreement is observed at a fraction of the run time and with notable reductions in memory footprint. C1 [Stimpson, Shane; Downar, Thomas] Univ Michigan, Dept Nucl Engn & Radiol Sci, 1901 Cooley Bldg,2355 Bonisteel Blvd, Ann Arbor, MI 48109 USA. [Stimpson, Shane; Collins, Benjamin] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Stimpson, S (reprint author), Univ Michigan, Dept Nucl Engn & Radiol Sci, 1901 Cooley Bldg,2355 Bonisteel Blvd, Ann Arbor, MI 48109 USA.; Stimpson, S (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM sgstim@umich.edu FU CASL, an Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy (DOE) [DE-AC05-00OR22725]; Office of Science of DOE [DE-AC05-00OR22725]; DOE [DE-AC05-00OR22725] FX The authors wish to express gratitude to the developers of Shift, which was used to generate reference solutions in this work. This research was supported by CASL (www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy (DOE) contract DE-AC05-00OR22725. This research also made use of resources of the Oak Ridge Leadership Computing Facility at ORNL, which is supported by the Office of Science of DOE under contract DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with DOE. NR 30 TC 0 Z9 0 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD FEB PY 2017 VL 185 IS 2 BP 243 EP 262 DI 10.1080/00295639.2016.1272360 PG 20 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EP2DW UT WOS:000397194200001 ER PT J AU Laboure, VM McClarren, RG Wang, YQ AF Laboure, Vincent M. McClarren, Ryan G. Wang, Yaqi TI Globally Conservative, Hybrid Self-Adjoint Angular Flux and Least-Squares Method Compatible with Voids SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article DE Globally conservative; void compatible; second-order form transport ID TRANSPORT-EQUATION; SCHEMES; THICK AB In this paper, we derive a method for the second-order form of the transport equation that is both globally conservative and compatible with voids using the continuous finite element method. The main idea is to use the least-squares (LS) form of the transport equation in the void regions and the self-adjoint angular flux (SAAF) form elsewhere. While the SAAF formulation is globally conservative, the LS formulation needs correction in voids. The price to pay for this fix is the loss of symmetry of the bilinear form. We first derive this conservative LS (CLS) formulation in a void. Second, we combine the SAAF and CLS forms and end up with an hybrid SAAF-CLS method having the desired properties. We show that extending the theory to near-void regions is a minor complication and can be done without affecting the global conservation of the scheme. Being angular discretization-agnostic, this method can be applied to both discrete ordinates (SN) and spherical harmonics (PN) methods. However, since a globally conservative and void-compatible second-order form already exists for SN [Wang et al., Nucl. Sci. Eng., Vol. 176, p. 201 (2014)] but not for PN, we focus most of our attention on the latter angular discretization. We implement and test our method in Rattlesnake within the Multiphysics Object Oriented Simulation Environment (MOOSE) framework. The results are also compared to those of other methods. C1 [Laboure, Vincent M.; McClarren, Ryan G.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Wang, Yaqi] Idaho Natl Lab, Reactor Phys & Anal, Idaho Falls, ID 83415 USA. RP Laboure, VM (reprint author), Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. EM vincent.laboure@tamu.edu FU National Science Foundation [1217170]; U.S. Department of Energy under Department of Energy Idaho Operations Office [DE-AC07-05ID14517] FX This material is based, in part, upon work supported by the National Science Foundation under grant 1217170. The research of the third author is sponsored by the U.S. Department of Energy, under the Department of Energy Idaho Operations Office contract DE-AC07-05ID14517. NR 24 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD FEB PY 2017 VL 185 IS 2 BP 294 EP 306 DI 10.1080/00295639.2016.1272374 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EP2DW UT WOS:000397194200004 ER PT J AU Morel, JE Warsa, JS Franke, BC Prinja, AK AF Morel, Jim E. Warsa, James S. Franke, Brian C. Prinja, Anil K. TI Comparison of Two Galerkin Quadrature Methods SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article DE S-N; Galerkin quadratures; anisotropic scattering ID FOKKER-PLANCK; TRANSPORT; EQUATIONS AB We compare two methods for generating Galerkin quadratures. In method 1, the standard S-N method is used to generate the moment-to-discrete matrix and the discrete-to-moment matrix is generated by inverting the moment-to-discrete matrix. This is a particular form of the original Galerkin quadrature method. In method 2, which we introduce here, the standard S-N method is used to generate the discreteto- moment matrix and the moment-to-discrete matrix is generated by inverting the discrete-to-moment matrix. With an N-point quadrature, method 1 has the advantage that it preserves N eigenvalues and N eigenvectors of the scattering operator in a pointwise sense. With an N-point quadrature, method 2 has the advantage that it generates consistent angular moment equations from the corresponding S-N equations while preserving N eigenvalues of the scattering operator. Our computational results indicate that these two methods are quite comparable for the test problem considered. C1 [Morel, Jim E.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Warsa, James S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Franke, Brian C.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Prinja, Anil K.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. RP Morel, JE (reprint author), Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. EM morel@tamu.edu FU U.S. Department of Energy [DE-AC52-06NA25396]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This information has been authored by employees of the Los Alamos National Security, LLC, operator of Los Alamos National Laboratory under contract DE-AC52-06NA25396 with the U.S. Department of Energy. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 8 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD FEB PY 2017 VL 185 IS 2 BP 325 EP 334 DI 10.1080/00295639.2016.1272383 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EP2DW UT WOS:000397194200006 ER PT J AU Cagas, P Hakim, A Juno, J Srinivasan, B AF Cagas, P. Hakim, A. Juno, J. Srinivasan, B. TI Continuum kinetic and multi-fluid simulations of classical sheaths SO PHYSICS OF PLASMAS LA English DT Article ID SECONDARY-ELECTRON EMISSION; WEIBEL INSTABILITY; SPACE-CHARGE; PLASMA; CRITERION; EQUATIONS AB The kinetic study of plasma sheaths is critical, among other things, to understand the deposition of heat on walls, the effect of sputtering, and contamination of the plasma with detrimental impurities. The plasma sheath also provides a boundary condition and can often have a significant global impact on the bulk plasma. In this paper, kinetic studies of classical sheaths are performed with the continuum kinetic code, Gkeyll, which directly solves the Vlasov-Maxwell equations. The code uses a novel version of the finite-element discontinuous Galerkin scheme that conserves energy in the continuous-time limit. The fields are computed using Maxwell equations. Ionization and scattering collisions are included; however, surface effects are neglected. The aim of this work is to introduce the continuum kinetic method and compare its results with those obtained from an already established finite-volume multi-fluid model also implemented in Gkeyll. Novel boundary conditions on the fluids allow the sheath to form without specifying wall fluxes, so the fluids and fields adjust self-consistently at the wall. The work presented here demonstrates that the kinetic and fluid results are in agreement for the momentum flux, showing that in certain regimes, a multifluid model can be a useful approximation for simulating the plasma boundary. There are differences in the electrostatic potential between the fluid and kinetic results. Further, the direct solutions of the distribution function presented here highlight the non-Maxwellian distribution of electrons in the sheath, emphasizing the need for a kinetic model. The densities, velocities, and the potential show a good agreement between the kinetic and fluid results. However, kinetic physics is highlighted through higher moments such as parallel and perpendicular temperatures which provide significant differences from the fluid results in which the temperature is assumed to be isotropic. Besides decompression cooling, the heat flux is shown to play a role in the temperature differences that are observed, especially inside the collisionless sheath. Published by AIP Publishing. C1 [Cagas, P.; Srinivasan, B.] Virginia Tech, Dept Aerosp & Ocean Engn, Blacksburg, VA 24060 USA. [Hakim, A.] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08544 USA. [Juno, J.] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. RP Srinivasan, B (reprint author), Virginia Tech, Dept Aerosp & Ocean Engn, Blacksburg, VA 24060 USA. EM srinbhu@vt.edu FU Air Force Office of Scientific Research [FA9550-15-1-0193]; U.S. Department of Energy through the Max-Planck/Princeton Center for Plasma Physics; SciDAC Center for the Study of Plasma Microturbulence; Laboratory Directed Research and Development funding, at the Princeton Plasma Physics Laboratory [DE-AC02-09CH11466]; National Science Foundation SHINE award [AGS-1622306] FX This research was partly supported by the Air Force Office of Scientific Research under Grant No. FA9550-15-1-0193. The work of A. Hakim was supported by the U.S. Department of Energy through the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and Laboratory Directed Research and Development funding, at the Princeton Plasma Physics Laboratory under Contract No. DE-AC02-09CH11466. The work of J. Juno was supported by the National Science Foundation SHINE award No. AGS-1622306. NR 45 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2017 VL 24 IS 2 AR 022118 DI 10.1063/1.4976544 PG 11 WC Physics, Fluids & Plasmas SC Physics GA EN4YN UT WOS:000396012900024 ER PT J AU Huang, CK Molvig, K Albright, BJ Dodd, ES Vold, EL Kagan, G Hoffman, NM AF Huang, C. -K. Molvig, K. Albright, B. J. Dodd, E. S. Vold, E. L. Kagan, G. Hoffman, N. M. TI Study of the ion kinetic effects in ICF run-away burn using a quasi-1D hybrid model SO PHYSICS OF PLASMAS LA English DT Article ID DEUTERIUM-TRITIUM MICROSPHERES; FOKKER-PLANCK EQUATION; IMPLICIT; PLASMA AB The loss of fuel ions in the Gamow peak and other kinetic effects related to the a particles during ignition, run-away burn, and disassembly stages of an inertial confinement fusion D-T capsule are investigated with a quasi-1D hybrid volume ignition model that includes kinetic ions, fluid electrons, Planckian radiation photons, and a metallic pusher. The fuel ion loss due to the Knudsen effect at the fuel-pusher interface is accounted for by a local-loss model by Molvig et al. [Phys. Rev. Lett. 109, 095001 (2012)] with an albedo model for ions returning from the pusher wall. The tail refilling and relaxation of the fuel ion distribution are captured with a nonlinear Fokker-Planck solver. Alpha heating of the fuel ions is modeled kinetically while simple models for finite alpha range and electron heating are used. This dynamical model is benchmarked with a 3 T hydrodynamic burn model employing similar assumptions. For an energetic pusher (similar to 40 kJ) that compresses the fuel to an areal density of similar to 1.07g/cm(2) at ignition, the simulation shows that the Knudsen effect can substantially limit ion temperature rise in runaway burn. While the final yield decreases modestly from kinetic effects of the a particles, large reduction of the fuel reactivity during ignition and runaway burn may require a higher Knudsen loss rate compared to the rise time of the temperatures above similar to 25 keV when the broad D-T Gamow peak merges into the bulk Maxwellian distribution. C1 [Huang, C. -K.; Molvig, K.; Albright, B. J.; Dodd, E. S.; Vold, E. L.; Kagan, G.; Hoffman, N. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Huang, CK (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. FU U.S. DOE by the LANS, LLC, Los Alamos National Laboratory [DE-AC52-06NA25396]; ASC Thermonuclear Burn Initiative project at Los Alamos National Laboratory FX We thank D. Michta, F.R. Graziani, and G. Zimmerman for useful discussion and the help to start the work on this topic. We also acknowledge the valuable comments from C.J. McDevitt and J. Johnson. This work was performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC5206NA25396 and supported by the ASC Thermonuclear Burn Initiative project at Los Alamos National Laboratory. NR 21 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2017 VL 24 IS 2 AR 022704 DI 10.1063/1.4976323 PG 14 WC Physics, Fluids & Plasmas SC Physics GA EN4YN UT WOS:000396012900058 ER PT J AU Martin, ME London, RA Goluoglu, S Whitley, HD AF Martin, M. E. London, R. A. Goluoglu, S. Whitley, H. D. TI Computational design of short pulse laser driven iron opacity experiments SO PHYSICS OF PLASMAS LA English DT Article ID EQUATION-OF-STATE; FAST-ELECTRON TRANSPORT; PLASMA INTERACTIONS; SOLID TARGETS; ABSORPTION-MEASUREMENTS; COOLING INSTABILITIES; SHELL SPECTROSCOPY; SOLAR ABUNDANCES; DENSE ALUMINUM; HOT-ELECTRONS AB The resolution of current disagreements between solar parameters calculated from models and observations would benefit from the experimental validation of theoretical opacity models. Iron's complex ionic structure and large contribution to the opacity in the radiative zone of the sun make iron a good candidate for validation. Short pulse lasers can be used to heat buried layer targets to plasma conditions comparable to the radiative zone of the sun, and the frequency dependent opacity can be inferred from the target's measured x-ray emission. Target and laser parameters must be optimized to reach specific plasma conditions and meet x-ray emission requirements. The HYDRA radiation hydrodynamics code is used to investigate the effects of modifying laser irradiance and target dimensions on the plasma conditions, x-ray emission, and inferred opacity of iron and ironmagnesium buried layer targets. It was determined that plasma conditions are dominantly controlled by the laser energy and the tamper thickness. The accuracy of the inferred opacity is sensitive to tamper emission and optical depth effects. Experiments at conditions relevant to the radiative zone of the sun would investigate the validity of opacity theories important to resolving disagreements between solar parameters calculated from models and observations. C1 [Martin, M. E.; London, R. A.; Whitley, H. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Martin, M. E.; Goluoglu, S.] Univ Florida, Dept Mat Sci & Engn, Nucl Engn Program, Gainesville, FL 32611 USA. RP Martin, ME (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.; Martin, ME (reprint author), Univ Florida, Dept Mat Sci & Engn, Nucl Engn Program, Gainesville, FL 32611 USA. EM memartin@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors thank M. Marinak and M. Patel for support with using HYDRA; D. Munro for support with using Yorick; H. Scott, C. Iglesias, B. Wilson, C. Mauche, and J. Castor for discussions of theoretical opacities; P. Sterne for discussions of equation of state; J. Nilsen, R. Shepherd, A. Steel, E. Marley, M. Schneider, K. Widmann, D. Froula, P. Nilson, S. Ivancic, and C. Stillman for discussions of short pulse laser heated emission measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. NR 89 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2017 VL 24 IS 2 AR 022705 DI 10.1063/1.4976710 PG 15 WC Physics, Fluids & Plasmas SC Physics GA EN4YN UT WOS:000396012900059 ER PT J AU Shin, YM AF Shin, Young-Min TI Plasmon-driven acceleration in a photo-excited nanotube SO PHYSICS OF PLASMAS LA English DT Article ID COMPOSITES AB A plasmon-assisted channeling acceleration can be realized with a large channel, possibly at the nanometer scale. Carbon nanotubes (CNTs) are the most typical example of nano-channels that can confine a large number of channeled particles in a photon-plasmon coupling condition. This paper presents a theoretical and numerical study on the concept of high-field charge acceleration driven by photo-excited Luttinger-liquid plasmons in a nanotube [Z. Shi et al., Nat. Photonics 9, 515 (2015)]. An analytic description of the plasmon-assisted laser acceleration is detailed with practical acceleration parameters, in particular, with the specifications of a typical tabletop femtosecond laser system. The maximally achievable acceleration gradients and energy gains within dephasing lengths and CNT lengths are discussed with respect to laser-incident angles and CNT-filling ratios. C1 [Shin, Young-Min] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Shin, Young-Min] Fermilab Natl Accelerator Lab, APC, POB 500, Batavia, IL 60510 USA. RP Shin, YM (reprint author), Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.; Shin, YM (reprint author), Fermilab Natl Accelerator Lab, APC, POB 500, Batavia, IL 60510 USA. EM yshin@niu.edu FU DOE [DEAC02-07CH11359] FX This work was supported by the DOE Contract No. DEAC02-07CH11359 to the Fermi Research Alliance LLC. NR 19 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2017 VL 24 IS 2 AR 023115 DI 10.1063/1.4976546 PG 7 WC Physics, Fluids & Plasmas SC Physics GA EN4YN UT WOS:000396012900079 ER PT J AU Stanier, A Daughton, W Simakov, AN Chacon, L Le, A Karimabadi, H Ng, J Bhattacharjee, A AF Stanier, A. Daughton, W. Simakov, Andrei N. Chacon, L. Le, A. Karimabadi, H. Ng, Jonathan Bhattacharjee, A. TI The role of guide field in magnetic reconnection driven by island coalescence SO PHYSICS OF PLASMAS LA English DT Article ID CURRENT SHEETS; KINETIC SIMULATIONS; PLASMA; INSTABILITY; HYBRID AB A number of studies have considered how the rate of magnetic reconnection scales in large and weakly collisional systems by the modelling of long reconnecting current sheets. However, this setup neglects both the formation of the current sheet and the coupling between the diffusion region and a larger system that supplies the magnetic flux. Recent studies of magnetic island merging, which naturally include these features, have found that ion kinetic physics is crucial to describe the reconnection rate and global evolution of such systems. In this paper, the effect of a guide field on reconnection during island merging is considered. In contrast to the earlier current sheet studies, we identify a limited range of guide fields for which the reconnection rate, outflow velocity, and pile-up magnetic field increase in magnitude as the guide field increases. The Hall-MHD fluid model is found to reproduce kinetic reconnection rates only for a sufficiently strong guide field, for which ion inertia breaks the frozen-in condition and the outflow becomes Alfvenic in the kinetic system. The merging of large islands occurs on a longer timescale in the zero guide field limit, which may in part be due to a mirror-like instability that occurs upstream of the reconnection region. Published by AIP Publishing. C1 [Stanier, A.; Daughton, W.; Simakov, Andrei N.; Chacon, L.; Le, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Karimabadi, H.] 12837 Caminito del Canto, Del Mar, CA 92014 USA. [Ng, Jonathan; Bhattacharjee, A.] Princeton Plasma Phys Lab, Ctr Heliophys, Princeton, NJ 08540 USA. RP Stanier, A (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM stanier@lanl.gov FU U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences, Office of Applied Scientific Computing Research; Collaborative Space Weather Modeling Program through NSF Grant [AGS-1338944]; Collaborative Space Weather Modeling Program through NASA Grant [NNH13AW51I]; U.S. Department of Energy National Nuclear Security Administration [DE-AC52-06NA25396] FX This work is supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences, Office of Applied Scientific Computing Research, and by the Collaborative Space Weather Modeling Program through NSF Grant No. AGS-1338944 and NASA Grant No. NNH13AW51I. The work used resources provided by the Los Alamos National Laboratory Institutional Computing Program, which is supported by the U.S. Department of Energy National Nuclear Security Administration under Contract No. DE-AC52-06NA25396. NR 66 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2017 VL 24 IS 2 AR 022124 DI 10.1063/1.4976712 PG 11 WC Physics, Fluids & Plasmas SC Physics GA EN4YN UT WOS:000396012900030 ER PT J AU Wilson, DC Cassata, WB Sepke, SM Velsko, CA Huang, H Yeamans, CB Kline, JL Yi, A Simakov, AN Haan, SW Batha, SH Dewald, EL Rygg, JR Tommasini, R Xu, H Kong, C Bae, J Rice, N AF Wilson, D. C. Cassata, W. B. Sepke, S. M. Velsko, C. A. Huang, H. Yeamans, C. B. Kline, J. L. Yi, A. Simakov, A. N. Haan, S. W. Batha, S. H. Dewald, E. L. Rygg, J. R. Tommasini, R. Xu, H. Kong, C. Bae, J. Rice, N. TI Use of (41) Ar production to measure ablator areal density in NIF beryllium implosions SO PHYSICS OF PLASMAS LA English DT Article ID NATIONAL-IGNITION-FACILITY; RADIOGRAPHY; DOPANT AB For the first time, Ar-41 produced by the ( n,gamma) reaction from Ar-40 in the beryllium shell of a DT filled Inertial Confinement Fusion capsule has been measured. Ar is co-deposited with beryllium in the sputter deposition of the capsule shell. Combined with a measurement of the neutron yield, the radioactive (41) Ar then quantifies the areal density of beryllium during the DT neutron production. The measured 1.15 +/- 0.17 x 10 (vertical bar) (8) atoms of (41) Ar are 2.5 times that from the best post-shot calculation, suggesting that the Ar and Be areal densities are correspondingly higher than those calculated. Possible explanations are that (1) the beryllium shell is compressed more than calculated, (2) beryllium has mixed into the cold DT ice, or more likely (3) less beryllium is ablated than calculated. Since only one DT filled beryllium capsule has been fielded at NIF, these results can be confirmed and expanded in the future. VC 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license. C1 [Wilson, D. C.; Kline, J. L.; Yi, A.; Simakov, A. N.; Batha, S. H.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Cassata, W. B.; Sepke, S. M.; Velsko, C. A.; Yeamans, C. B.; Haan, S. W.; Dewald, E. L.; Rygg, J. R.; Tommasini, R.] Lawrence Livermore Natl Lab, Livermore, CA 90550 USA. [Huang, H.; Xu, H.; Kong, C.; Bae, J.; Rice, N.] Gen Atom, San Diego, CA 92186 USA. RP Wilson, DC (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. EM dcw@lanl.gov RI Tommasini, Riccardo/A-8214-2009 OI Tommasini, Riccardo/0000-0002-1070-3565 FU U.S. Department of Energy at Los Alamos and Lawrence Livermore National Laboratories; U.S. Department of Energy at General Atomics Fusion [DE-NA00001808] FX This work was funded by the U.S. Department of Energy at Los Alamos and Lawrence Livermore National Laboratories, and at General Atomics Fusion under Contract No. DE-NA00001808. NR 24 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2017 VL 24 IS 2 AR 022701 DI 10.1063/1.4975187 PG 4 WC Physics, Fluids & Plasmas SC Physics GA EN4YN UT WOS:000396012900055 ER PT J AU Zhu, HX Qin, H AF Zhu, Hongxuan Qin, Hong TI On the correspondence between classical geometric phase of gyro-motion and quantum Berry phase SO PHYSICS OF PLASMAS LA English DT Article ID UNIFORM MAGNETIC-FIELD; COHERENT STATES; CHARGED-PARTICLE; DIAMAGNETISM; HOLONOMY; ANGLE AB We show that the geometric phase of the gyro-motion of a classical charged particle in a uniform time-dependent magnetic field described by Newton's equation can be derived from a coherent Berry phase for the coherent states of the Schrodinger equation or the Dirac equation. This correspondence is established by constructing coherent states for a particle using the energy eigenstates on the Landau levels and proving that the coherent states can maintain their status of coherent states during the slow varying of the magnetic field. It is discovered that the orbital Berry phases of the eigenstates interfere coherently to produce an observable effect (which we termed "coherent Berry phase"), which is exactly the geometric phase of the classical gyro-motion. This technique works for the particles with and without spin. For particles with spin, on each of the eigenstates that make up the coherent states, the Berry phase consists of two parts that can be identified as those due to the orbital and the spin motion. It is the orbital Berry phases that interfere coherently to produce a coherent Berry phase corresponding to the classical geometric phase of the gyromotion. The spin Berry phases of the eigenstates, on the other hand, remain to be quantum phase factors for the coherent states and have no classical counterpart. Published by AIP Publishing. C1 [Zhu, Hongxuan; Qin, Hong] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Qin, Hong] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China. [Qin, Hong] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. RP Zhu, HX (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. OI Zhu, Hongxuan/0000-0001-9844-6972 FU U.S. Department of Energy [DE-AC02-09CH11466] FX We thank Junyi Zhang and Jian Liu for fruitful discussion. This research was supported by the U.S. Department of Energy (DE-AC02-09CH11466). NR 35 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2017 VL 24 IS 2 AR 022121 DI 10.1063/1.4976996 PG 9 WC Physics, Fluids & Plasmas SC Physics GA EN4YN UT WOS:000396012900027 ER PT J AU Zhu, P Bhattacharjee, A Sangari, A Wang, ZC Bonofiglo, P AF Zhu, Ping Bhattacharjee, Amitava Sangari, Arash Wang, Zechen Bonofiglo, Phillip TI Three-dimensional geometry of magnetic reconnection induced by ballooning instability in a generalized Harris sheet SO PHYSICS OF PLASMAS LA English DT Article ID SUBSTORM ONSET; SOLAR-FLARES; MAGNETOTAIL; TAIL AB We report for the first time the intrinsically three-dimensional (3D) geometry of the magnetic reconnection process induced by ballooning instability in a generalized Harris sheet. The spatial distribution and the structure of the quasi-separatrix layers, as well as their temporal emergence and evolution, indicate that the associated magnetic reconnection can only occur in a 3D geometry, which is irreducible to that of any two-dimensional reconnection process. Such a finding provides a new perspective to the long-standing controversy over the substorm onset problem and elucidates the combined roles of reconnection and ballooning instabilities. It also connects to the universal presence of 3D reconnection processes previously discovered in various natural and laboratory C1 [Zhu, Ping; Wang, Zechen] Univ Sci & Technol China, CAS Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China. [Zhu, Ping; Wang, Zechen] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Zhu, Ping; Sangari, Arash; Bonofiglo, Phillip] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Bhattacharjee, Amitava] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Zhu, P (reprint author), Univ Sci & Technol China, CAS Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China.; Zhu, P (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.; Zhu, P (reprint author), Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. FU Natural Science Foundation of China [41474143]; U.S. NSF [AGS-0902360, ACI-1053575, AGS-1338944, AGS-1460169]; 100 Talent Program of Chinese Academy of Sciences; U.S. DOE [DE-FG02-86ER53218, DE-FC02-08ER54975, DE-AC02-05CH11231]; TACC [TG-ATM070010] FX This research was supported by the Natural Science Foundation of China Grant No. 41474143, the U.S. NSF Grant No. AGS-0902360, the 100 Talent Program of Chinese Academy of Sciences, and the U.S. DOE Grant Nos. DE-FG02-86ER53218 and DE-FC02-08ER54975. The computational work used the XSEDE resources (U.S. NSF Grant No. ACI-1053575) provided by TACC under Grant No. TG-ATM070010, and the resources of NERSC, which is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231. A.B. would like to acknowledge the U.S. NSF Grant Nos. AGS-1338944 and AGS-1460169. NR 25 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2017 VL 24 IS 2 AR 024503 DI 10.1063/1.4976994 PG 6 WC Physics, Fluids & Plasmas SC Physics GA EN4YN UT WOS:000396012900103 ER PT J AU Gouw, AM Efe, G Barakat, R Preecha, A Mehdizadeh, M Garan, SA Brooks, GA AF Gouw, Arvin M. Efe, Gizem Barakat, Rita Preecha, Andrew Mehdizadeh, Morvarid Garan, Steven A. Brooks, George A. TI Roles of estrogen receptor-alpha in mediating life span: the hypothalamic deregulation hypothesis SO PHYSIOLOGICAL GENOMICS LA English DT Review DE estrogen receptor; hypothalamus; HPG axis; sexual dimorphism; sexual behavior; stress response; circadian rhythms; limbic system; caloric restriction; longevity ID CORTICOTROPIN-RELEASING HORMONE; CALORIC RESTRICTION; PREOPTIC AREA; SUPRACHIASMATIC NUCLEUS; FEMALE MICE; MITOCHONDRIAL BIOGENESIS; PARAVENTRICULAR NUCLEUS; BETA IMMUNOREACTIVITY; VENTROMEDIAL NUCLEUS; GLUCOSE-METABOLISM AB In several species caloric restriction (CR) extends life span. In this paper we integrate data from studies on CR and other sources to articulate the hypothalamic deregulation hypothesis by which estrogen receptor-alpha (ER-alpha) signaling in the hypothalamus and limbic system affects life span under the stress of CR in mammals. ER-alpha is one of two principal estrogen-binding receptors differentially expressed in the amygdala, hippocampus, and several key hypothalamic nuclei: the arcuate nucleus (ARN), preoptic area (POA), ventromedial nucleus (VMN), antero ventral periventricular nucleus (AVPV), paraventricular nucleus (PVN), supraoptic nucleus (SON), and suprachiasmatic nucleus (SCN). Estradiol signaling via ER-alpha is essential in basal level functioning of reproductive cycle, sexually receptive behaviors, physiological stress responses, as well as sleep cycle, and other nonsexual behaviors. When an organism is placed under long-term CR, which introduces an external stress to this ER-alpha signaling, the reduction of ER-alpha expression is attenuated over time in the hypothalamus. This review paper seeks to characterize the downstream effects of ER-alpha in the hypothalamus and limbic system that affect normal endocrine functioning. C1 [Gouw, Arvin M.; Efe, Gizem; Barakat, Rita; Preecha, Andrew; Mehdizadeh, Morvarid; Garan, Steven A.] Lawrence Berkeley Natl Labs, Berkeley, CA USA. [Gouw, Arvin M.; Efe, Gizem; Barakat, Rita; Preecha, Andrew; Mehdizadeh, Morvarid; Garan, Steven A.; Brooks, George A.] Univ Calif Berkeley, Lawrence Berkeley Natl Labs, Ctr Res & Educ Aging, Berkeley, CA 94720 USA. [Gouw, Arvin M.; Brooks, George A.] Univ Calif Berkeley, Dept Integrat Biol, 5101 Valley Life Sci Bldg, Berkeley, CA 94720 USA. RP Brooks, GA (reprint author), Univ Calif Berkeley, Dept Integrat Biol, 5101 Valley Life Sci Bldg, Berkeley, CA 94720 USA. EM gbrooks@berkeley.edu FU BioTime, Inc. FX We are grateful for the support that Center for Research on Education and Aging (CREA) has received from BioTime, Inc. NR 58 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 1094-8341 EI 1531-2267 J9 PHYSIOL GENOMICS JI Physiol. Genomics PD FEB PY 2017 VL 49 IS 2 BP 88 EP 95 DI 10.1152/physiolgenomics.00073.2016 PG 8 WC Cell Biology; Genetics & Heredity; Physiology SC Cell Biology; Genetics & Heredity; Physiology GA EN1TI UT WOS:000395792600003 PM 28011880 ER PT J AU Huang, D Liu, S Zeljkovic, I Mitchell, JF Hoffman, JE AF Huang, Dennis Liu, Stephen Zeljkovic, Ilija Mitchell, J. F. Hoffman, Jennifer E. TI Etching of Cr tips for scanning tunneling microscopy of cleavable oxides SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MAGNETORESISTIVE OXIDES; LAYERED MANGANITES; SPIN; FABRICATION; ANISOTROPY; POLARONS; SURFACE; MOTION; STATES; SCALE AB We report a detailed three-step roadmap for the fabrication and characterization of bulk Cr tips for spin-polarized scanning tunneling microscopy. Our strategy uniquely circumvents the need for ultra-high vacuum preparation of clean surfaces or films. First, we demonstrate the role of ex situ electrochemical etch parameters on Cr tip apex geometry, using scanning electron micrographs of over 70 etched tips. Second, we describe the suitability of the in situ cleaved surface of the layered antiferromagnet La1.4Sr1.6Mn2O7 to evaluate the spin characteristics of the Cr tip, replacing the ultra-high vacuum-prepared test samples that have been used in prior studies. Third, we outline a statistical algorithm that can effectively delineate closely spaced or irregular cleaved step edges, to maximize the accuracy of step height and spin-polarization measurements. Published by AIP Publishing. C1 [Huang, Dennis; Liu, Stephen; Zeljkovic, Ilija; Hoffman, Jennifer E.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Zeljkovic, Ilija] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. RP Hoffman, JE (reprint author), Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. EM jhoffman@physics.harvard.edu OI Hoffman, Jennifer/0000-0003-2752-5379 FU National Science Foundation [DMR0847433]; NSERC PGS-D fellowship; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division FX We thank Genda Gu for providing the Bi2Sr2CaCu2O8+delta sample imaged in this work. Work at Harvard was supported by the National Science Foundation under Grant No. DMR0847433. D.H. acknowledges support from an NSERC PGS-D fellowship. Work at Argonne National Laboratory (crystal growth and characterization) is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. NR 38 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2017 VL 88 IS 2 AR 023705 DI 10.1063/1.4976567 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EN3IR UT WOS:000395902700029 PM 28249529 ER PT J AU Jiang, CY Tong, X Brown, DR Glavic, A Ambaye, H Goyette, R Hoffmann, M Parizzi, AA Robertson, L Lauter, V AF Jiang, C. Y. Tong, X. Brown, D. R. Glavic, A. Ambaye, H. Goyette, R. Hoffmann, M. Parizzi, A. A. Robertson, L. Lauter, V. TI New generation high performance in situ polarized He-3 system for time-of-flight beam at spallation sources SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SPIN FILTERS; NEUTRON REFLECTOMETRY; MULTILAYERS; REFLECTION; SCATTERING AB Modern spallation neutron sources generate high intensity neutron beams with a broad wavelength band applied to exploring new nano- and meso-scale materials from a few atomic monolayers thick to complicated prototype device-like systems with multiple buried interfaces. The availability of high performance neutron polarizers and analyzers in neutron scattering experiments is vital for understanding magnetism in systems with novel functionalities. We report the development of a new generation of the in situ polarized He-3 neutron polarization analyzer for the Magnetism Reflectometer at the Spallation Neutron Source at Oak Ridge National Laboratory. With a new optical layout and laser system, the He-3 polarization reached and maintained 84% as compared to 76% in the first-generation system. The polarization improvement allows achieving the transmission function varying from 50% to 15% for the polarized neutron beam with the wavelength band of 2-9 Angstroms. This achievement brings a new class of experiments with optimal performance in sensitivity to very small magnetic moments in nano systems and opens up the horizon for its applications. C1 [Jiang, C. Y.; Tong, X.; Brown, D. R.; Ambaye, H.; Goyette, R.; Hoffmann, M.; Parizzi, A. A.; Lauter, V.] Oak Ridge Natl Lab, Instrument & Source Div, Neutron Sci Directorate, POB 2008, Oak Ridge, TN 37831 USA. [Glavic, A.; Lauter, V.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Glavic, A.] Paul Scherrer Inst PSI, Lab Neutron Scattering & Imaging, Villigen, Switzerland. RP Tong, X (reprint author), Oak Ridge Natl Lab, Instrument & Source Div, Neutron Sci Directorate, POB 2008, Oak Ridge, TN 37831 USA. EM tongx@ornl.gov OI Glavic, Artur/0000-0003-4951-235X FU Facilities Division, Office of Basic Energy Sciences; UT-Battelle, LLC [DE-AC05-00OR22725]; U.S. Department of Energy; DOE FX Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, and U.S. Department of Energy.; This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doepublic-access-plan). NR 34 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2017 VL 88 IS 2 AR 025111 DI 10.1063/1.4975991 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EN3IR UT WOS:000395902700066 PM 28249509 ER PT J AU Lee, SH Yang, BX Collins, JT Ramanathan, M AF Lee, S. H. Yang, B. X. Collins, J. T. Ramanathan, M. TI Thermal management and prototype testing of Compton scattering X-ray beam position monitor for the Advanced Photon Source Upgrade SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID LASER FLASH METHOD; INTERFACE MATERIALS; GRAPHENE; DIAMOND; FOAM AB Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (< 10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from a diamond placed edge-on to the x-ray beam. Because of the high peak power density of the x-ray beams, this diamond experiences high temperatures and has to be clamped to a water-cooled heat spreader using thermal interface materials (TIMs), which play a key role in reducing the temperature of the diamond. To evaluate temperature changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This paper presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology. Published by AIP Publishing. C1 [Lee, S. H.; Yang, B. X.; Collins, J. T.; Ramanathan, M.] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Lee, SH (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shlee@aps.anl.gov FU U.S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. NR 33 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2017 VL 88 IS 2 AR 023106 DI 10.1063/1.4975201 PG 12 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EN3IR UT WOS:000395902700006 PM 28249483 ER PT J AU Specht, PE Jilek, BA AF Specht, Paul E. Jilek, Brook A. TI Electro-optic modulation of a laser at microwave frequencies for interferometric purposes SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID REGRESSION RATES; DETONATION; SYSTEM; COHERENT; SENSORS AB A multi-point microwave interferometer (MPMI) concept was previously proposed by the authors for spatially-resolved, non-invasive tracking of a shock, reaction, or detonation front in energetic media [P. Specht et al., AIP Conf. Proc. 1793, 160010 (2017)]. The advantage of the MPMI concept over current microwave interferometry techniques is its detection of Doppler shifted microwave signals through electro-optic (EO) modulation of a laser. Since EO modulation preserves spatial variations in the Doppler shift, collecting the EO modulated laser light into a fiber array for recording with an optical heterodyne interferometer yields spatially-resolved velocity information. This work demonstrates the underlying physical principle of the MPMI diagnostic: the monitoring of a microwave signal with nanosecond temporal resolution using an optical heterodyne interferometer. For this purpose, the MPMI concept was simplified to a single-point construction using two tunable 1550 nm lasers and a 35.2 GHz microwave source. A (110) ZnTe crystal imparted the microwave frequency onto a laser, which was combined with a reference laser for determination of the microwave frequency in an optical heterodyne interferometer. A single, characteristic frequency associated with the microwave source was identified in all experiments, providing a means to monitor a microwave signal on nanosecond time scales. Lastly, areas for improving the frequency resolution of this technique are discussed, focusing on increasing the phase-modulated signal strength. Published by AIP Publishing. C1 [Specht, Paul E.; Jilek, Brook A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Specht, PE (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. EM pespech@sandia.gov FU Early Career Laboratory Directed Research and Development (EC LDRD) program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Thanks is due to Daniel Dolan for providing invaluable insight about heterodyne interferometry methods and Fourier transform analysis. The project is also indebted to Sheri Payne and Richard Hacking of National Security Technologies (NSTec) for providing advice and several optical components. Funding for this projectwas provided through the Early Career Laboratory Directed Research and Development (EC LDRD) program. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 41 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2017 VL 88 IS 2 AR 023902 DI 10.1063/1.4975016 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EN3IR UT WOS:000395902700032 PM 28249505 ER PT J AU Kaiser, A Snezhko, A Aranson, IS AF Kaiser, Andreas Snezhko, Alexey Aranson, Igor S. TI Flocking ferromagnetic colloids SO SCIENCE ADVANCES LA English DT Article ID SYNCHRONIZATION; PARTICLES; CRYSTALS; MOTION; OSCILLATORS; POPULATIONS; EMERGENCE; BOUNDARY; PATTERNS; SYSTEM AB Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. Although colloidal systems are relatively simple, understanding their collective response, especially under out-of-equilibrium conditions, remains elusive. We report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms, leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clockwise/counterclockwise particle rotation, collisional alignment of particle velocities, and random particle reorientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, and biopolymers) and living (suspensions of bacteria, cell colonies, and bird flocks). C1 [Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S.] Argonne Natl Lab, Div Mat Sci, 9700 South Cass Ave, Argonne, IL 60439 USA. [Aranson, Igor S.] Northwestern Univ, Dept Engn Sci & Appl Math, 2145 Sheridan Rd, Evanston, IL 60202 USA. RP Aranson, IS (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 South Cass Ave, Argonne, IL 60439 USA.; Aranson, IS (reprint author), Northwestern Univ, Dept Engn Sci & Appl Math, 2145 Sheridan Rd, Evanston, IL 60202 USA. EM aronson@anl.gov FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Science and Engineering; Deutsche Forschungsgemeinschaft (DFG) [KA 4255/1-1] FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Science and Engineering. A.K. was supported through a Postdoctoral Research Fellowship (KA 4255/1-1) from the Deutsche Forschungsgemeinschaft (DFG). NR 42 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 2375-2548 J9 SCI ADV JI Sci. Adv. PD FEB PY 2017 VL 3 IS 2 AR e1601469 DI 10.1126/sciadv.1601469 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EO9WT UT WOS:000397039500025 ER PT J AU Liu, XL Wei, ZH Balla, I Mannix, AJ Guisinger, NP Luijten, E Hersam, MC AF Liu, Xiaolong Wei, Zonghui Balla, Itamar Mannix, Andrew J. Guisinger, Nathan P. Luijten, Erik Hersam, Mark C. TI Self-assembly of electronically abrupt borophene/organic lateral heterostructures SO SCIENCE ADVANCES LA English DT Article ID SCANNING-TUNNELING-MICROSCOPE; FIELD-EFFECT TRANSISTORS; 2-DIMENSIONAL BORON; EPITAXIAL GRAPHENE; GRAIN-BOUNDARIES; GROWTH; SURFACES; MOS2; HETEROJUNCTIONS; SPECTROSCOPY AB Two-dimensional boron sheets (that is, borophene) have recently been realized experimentally and found to have promising electronic properties. Because electronic devices and systems require the integration of multiple materials with well-defined interfaces, it is of high interest to identify chemical methods for forming atomically abrupt heterostructures between borophene and electronically distinct materials. Toward this end, we demonstrate the self-assembly of lateral heterostructures between borophene and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). These lateral heterostructures spontaneously form upon deposition of PTCDA onto submonolayer borophene on Ag(111) substrates as a result of the higher adsorption enthalpy of PTCDAon Ag(111) and lateral hydrogen bonding among PTCDA molecules, as demonstrated by molecular dynamics simulations. In situ x-ray photoelectron spectroscopy confirms the weak chemical interaction between borophene and PTCDA, while molecular-resolution ultrahigh-vacuum scanning tunneling microscopy and spectroscopy reveal an electronically abrupt interface at the borophene/PTCDA lateral heterostructure interface. As the first demonstration of a borophene-based heterostructure, this work will inform emerging efforts to integrate borophene into nanoelectronic applications. C1 [Liu, Xiaolong; Wei, Zonghui; Luijten, Erik; Hersam, Mark C.] Northwestern Univ, Appl Phys Grad Program, Evanston, IL 60208 USA. [Balla, Itamar; Mannix, Andrew J.; Luijten, Erik; Hersam, Mark C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Mannix, Andrew J.; Guisinger, Nathan P.] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. [Luijten, Erik] Northwestern Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA. [Luijten, Erik] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Hersam, Mark C.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Hersam, Mark C.] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA. RP Hersam, MC (reprint author), Northwestern Univ, Appl Phys Grad Program, Evanston, IL 60208 USA.; Hersam, MC (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.; Hersam, MC (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.; Hersam, MC (reprint author), Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA. EM m-hersam@northwestern.edu OI Balla, Itamar/0000-0002-9358-5743 FU Office of Naval Research [ONR N00014-14-1-0669]; Northwestern University Materials Research Science and Engineering Center [NSF DMR-1121262] FX This work was supported by the Office of Naval Research (ONR N00014-14-1-0669) and the Northwestern University Materials Research Science and Engineering Center (NSF DMR-1121262). MD simulations were conducted on computing facilities provided through the User Nanoscience Research Program at the Center for Nanophase Materials Sciences, which is a U.S. Department of Energy Office of Science User Facility. NR 51 TC 0 Z9 0 U1 2 U2 2 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 2375-2548 J9 SCI ADV JI Sci. Adv. PD FEB PY 2017 VL 3 IS 2 AR e1602356 DI 10.1126/sciadv.1602356 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EO9WT UT WOS:000397039500039 ER PT J AU Morley, SK Sullivan, JP Carver, MR Kippen, RM Friedel, RHW Reeves, GD Henderson, MG AF Morley, S. K. Sullivan, J. P. Carver, M. R. Kippen, R. M. Friedel, R. H. W. Reeves, G. D. Henderson, M. G. TI Energetic Particle Data From the Global Positioning System Constellation SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID ELECTRON-RADIATION BELT; SPACE WEATHER STRATEGY; ACTION PLAN; STORM; DYNAMICS; DROPOUTS AB Since 2000, Los Alamos National Laboratory (LANL) Combined X-ray and Dosimeter (CXD) and Burst Detector Dosimeter for Block II-R (BDD-IIR) instruments have been fielded on Global Positioning System (GPS) satellites. Today, 21 of the 31 operational GPS satellites are equipped with a CXD detector and a further 2 carry a BDD-IIR. Each of these instruments measures a wide range of energetic electrons and protons. These data have now been publicly released under the terms of the Executive Order for Coordinating Efforts to Prepare the Nation for Space Weather Events. The specific goal of releasing space weather data from the GPS satellites is to enable broad scientific community engagement in enhancing space weather model validation and improvements in space weather forecasting and situational awareness. The time period covered by this data release is approximately 16 years, which corresponds to more than 167 satellite years of data. The large number of GPS satellites, distributed over six orbital planes, will provide important context for ongoing and historical science missions, as well as enabling new types of research not previously possible. C1 [Morley, S. K.; Sullivan, J. P.; Carver, M. R.; Kippen, R. M.; Reeves, G. D.; Henderson, M. G.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Friedel, R. H. W.] Los Alamos Natl Lab, Ctr Space & Earth Sci, Los Alamos, NM USA. RP Morley, SK (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. EM smorley@lanl.gov OI Morley, Steven/0000-0001-8520-0199; Reeves, Geoffrey/0000-0002-7985-8098 FU U.S. Department of Energy; Laboratory Directed Research and Development (LDRD) program [20150127ER] FX We gratefully acknowledge the CXD team at Los Alamos National Laboratory, which designed and built the CXD and BDD-IIR instruments discussed in this article over the course of the past > 20 years. This work was performed under the auspices of the U.S. Department of Energy. S.K.M. was funded by the Laboratory Directed Research and Development (LDRD) program, project 20150127ER. Analysis and plotting used the publicly available ROOT, LANLGeoMag, and SpacePy libraries. SpacePy is available from http://sourceforge.net/p/spacepy, and AutoPlot is available from http://autoplot.org. Sunspot data are from the World Data Center (WDC-SILSO), Royal Observatory of Belgium, Brussels (http://www.sidc.be/silso/datafiles). The LANL-GPS particle data are publicly available, hosted by NOAA NCEI, and can be found through the data. gov website, or directly at http://www.ngdc.noaa.gov/stp/space-weather/satellite-data/satellite-syst ems/gps/. GOES integral proton fluxes were obtained from http://omniweb.gsfc.nasa.gov. NR 36 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD FEB PY 2017 VL 15 IS 2 BP 283 EP 289 DI 10.1002/2017SW001604 PG 7 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA EO9GN UT WOS:000396997300004 ER PT J AU Pollastrini, M Nogales, AG Benavides, R Bonal, D Finer, L Fotelli, M Gessler, A Grossiord, C Radoglou, K Strasser, RJ Bussotti, F AF Pollastrini, Martina Nogales, Ana Garcia Benavides, Raquel Bonal, Damien Finer, Leena Fotelli, Mariangela Gessler, Arthur Grossiord, Charlotte Radoglou, Kalliopi Strasser, Reto J. Bussotti, Filippo TI Tree diversity affects chlorophyll a fluorescence and other leaf traits of tree species in a boreal forest SO TREE PHYSIOLOGY LA English DT Article DE FunDivEUROPE; mixed forest; species composition; species richness ID PINUS-SYLVESTRIS L.; FAGUS-SYLVATICA L.; SCOTS PINE; PHOTOSYNTHETIC ACCLIMATION; ISOTOPE COMPOSITION; ELECTRON-TRANSPORT; WATER AVAILABILITY; EUROPEAN FORESTS; DROUGHT STRESS; JUVENILE BEECH AB An assemblage of tree species with different crown properties creates heterogeneous environments at the canopy level. Changes of functional leaf traits are expected, especially those related to light interception and photosynthesis. Chlorophyll a fluorescence (ChlF) properties in dark-adapted leaves, specific leaf area, leaf nitrogen content (N) and carbon isotope composition (delta C-13) were measured on Picea abies (L.) H. Karst., Pinus sylvestris L. and Betula pendula Roth. in monospecific and mixed boreal forests in Europe, in order to test whether they were affected by stand species richness and composition. Photosynthetic efficiency, assessed by induced emission of leaf ChlF, was positively influenced in B. pendula by species richness, whereas P. abies showed higher photosynthetic efficiency in monospecific stands. Pinus sylvestris had different responses when it coexisted with P. abies or B. pendula. The presence of B. pendula, but not of P. abies, in the forest had a positive effect on the efficiency of photosynthetic electron transport and N in P. sylvestris needles, and the photosynthetic responses were positively correlated with an increase of leaf d 13C. These effects on P. sylvestris may be related to high light availability at the canopy level due to the less dense canopy of B. pendula. The different light requirements of coexisting species was the most important factor affecting the distribution of foliage in the canopy, driving the physiological responses of the mixed species. Future research directions claim to enhance the informative potential of the methods to analyse the responses of pure and mixed forests to environmental factors, including a broader set of plant species' functional traits and physiological responses. C1 [Pollastrini, Martina; Bussotti, Filippo] Univ Florence, Dept Agri Food Prod & Environm Sci, Piazzale Cascine 28, I-50144 Florence, Italy. [Nogales, Ana Garcia] Univ Pablo de Olavide, Dept Phys Chem & Nat Syst, Carretera Utrera,Km 1, Seville 41013, Spain. [Benavides, Raquel] Albert Ludwings Univ Freiburg, Schanzlestr 1, D-79104 Freiburg, Germany. [Bonal, Damien] INRA, Ecol & Ecophysiol Forestisres, UMR 1137, F-54280 Champenoux, France. [Finer, Leena] Finnish Forest Res Inst, POB 68,Yliopistokatu 6, Joensuu 80101, Finland. [Fotelli, Mariangela; Radoglou, Kalliopi] Forest Res Inst, Thessaloniki 57006, Greece. [Fotelli, Mariangela; Radoglou, Kalliopi] Democritus Univ Thrace, Dept Forestry & Management Environm & Nat Resourc, Pantazodou 193, Orestiada 68300, Greece. [Gessler, Arthur] Swiss Fed Res Inst WSL, Forest Dynam, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland. [Grossiord, Charlotte] Earth & Environm Sci Div, Los Alamos Natl Lab, MS J495, Los Alamos, NM 87545 USA. [Strasser, Reto J.] North West Univ South Africa, Unit Environm Sci & Management, Potchefstroom Campus, ZA-2520 Potchefstroom, South Africa. RP Pollastrini, M (reprint author), Univ Florence, Dept Agri Food Prod & Environm Sci, Piazzale Cascine 28, I-50144 Florence, Italy. EM martpollas@gmail.com OI Pollastrini, Martina/0000-0003-0959-9489 FU European Union Seventh Framework Programme (FP7) [265171]; Marie Curie IEF fellowship (FP7-PEOPLE-IEF) FX The research leading to these results received funding from the European Union Seventh Framework Programme (FP7 2007-2013) under grant agreement no. 265171. R.B. was funded by a Marie Curie IEF fellowship (FP7-PEOPLE-2011-IEF). NR 71 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0829-318X EI 1758-4469 J9 TREE PHYSIOL JI Tree Physiol. PD FEB PY 2017 VL 37 IS 2 BP 199 EP 208 DI 10.1093/treephys/tpw132 PG 10 WC Forestry SC Forestry GA EP0BR UT WOS:000397052300006 ER PT J AU Mulumba-Mfumu, LK Achenbach, JE Mauldin, MR Dixon, LK Tshilenge, CG Thiry, E Moreno, N Blanco, E Saegerman, C Lamien, CE Diallo, A AF Mulumba-Mfumu, Leopold K. Achenbach, Jenna E. Mauldin, Matthew R. Dixon, Linda K. Tshilenge, Cure Georges Thiry, Etienne Moreno, Noelia Blanco, Esther Saegerman, Claude Lamien, Charles E. Diallo, Adama TI Genetic Assessment of African Swine Fever Isolates Involved in Outbreaks in the Democratic Republic of Congo between 2005 and 2012 Reveals Co-Circulation of p72 Genotypes I, IX and XIV, Including 19 Variants SO VIRUSES-BASEL LA English DT Article DE African swine fever virus; outbreaks; Democratic Republic of Congo; swine; genotypes; molecular epidemiology; p72 gene; p54 gene; CVR ID CENTRAL VARIABLE REGION; MOLECULAR EPIDEMIOLOGY; VIRUS; TANZANIA; STRAINS; PIGS; DNA AB African swine fever (ASF) is a devastating disease of domestic pigs. It is a socioeconomically important disease, initially described from Kenya, but subsequently reported in most Sub-Saharan countries. ASF spread to Europe, South America and the Caribbean through multiple introductions which were initially eradicated-except for Sardinia-followed by re-introduction into Europe in 2007. In this study of ASF within the Democratic Republic of the Congo, 62 domestic pig samples, collected between 2005-2012, were examined for viral DNA and sequencing at multiple loci: C-terminus of the B646L gene (p72 protein), central hypervariable region (CVR) of the B602L gene, and the E183L gene (p54 protein). Phylogenetic analyses identified three circulating genotypes: I (64.5% of samples), IX (32.3%), and XIV (3.2%). This is the first evidence of genotypes IX and XIV within this country. Examination of the CVR revealed high levels of intra-genotypic variation, with 19 identified variants. C1 [Mulumba-Mfumu, Leopold K.; Tshilenge, Cure Georges] Cent Vet Lab, Ave Wangata,POB 8842, Kinshasa I, DEM REP CONGO. [Mulumba-Mfumu, Leopold K.; Thiry, Etienne; Saegerman, Claude] Univ Liege, Fac Vet Med, Res Unit Epidemiol & Risk Anal Appl Vet UREAR Ulg, Fundamental & Appl Res Animals & Hlth, B-4000 Liege, Belgium. [Achenbach, Jenna E.; Lamien, Charles E.; Diallo, Adama] IAEA, Anim Prod & Hlth Lab, Wagramer Str 5,POB 100, A-1400 Vienna, Austria. [Mauldin, Matthew R.] Ctr Dis Control & Prevent, Atlanta, GA 30333 USA. [Dixon, Linda K.] Pirbright Inst, Ash Rd, Woking GU24 0NF, Surrey, England. [Moreno, Noelia; Blanco, Esther] CISA, INIA, Madrid 28130, Spain. [Mauldin, Matthew R.] Oak Ridge Inst Sci & Educ, CDC Fellowship Program, Oak Ridge, TN 37830 USA. RP Achenbach, JE (reprint author), IAEA, Anim Prod & Hlth Lab, Wagramer Str 5,POB 100, A-1400 Vienna, Austria. EM labovetkin@yahoo.fr; achenbach@battelle.org; MMauldin@cdc.gov; linda.dixon@pirbright.ac.uk; george.tshilenge@sacids.org; etienne.thiry@ulg.ac.be; moreno.noelia@inia.es; blanco@inia.es; claude.saegerman@ulg.ac.be; c.lamien@iaea.org; adama.diallo@cirad.fr RI Institute, Pirbright/K-4476-2014 FU International Atomic Energy Agency (IAEA) project "Improvement of Veterinary Laboratory Capacities in Sub-Saharan African Countries"; Wellcome Trust (WT) [WT075813/C/04/Z, WT087546MA] FX This work was supported by the International Atomic Energy Agency (IAEA) project "Improvement of Veterinary Laboratory Capacities in Sub-Saharan African Countries". We pay gratitude to the Wellcome Trust (WT) for its support of this research through two grants, WT075813/C/04/Z and, WT087546MAthat allowed advanced field investigations. NR 44 TC 0 Z9 0 U1 3 U2 3 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1999-4915 J9 VIRUSES-BASEL JI Viruses-Basel PD FEB PY 2017 VL 9 IS 2 AR 31 DI 10.3390/v9020031 PG 15 WC Virology SC Virology GA EP2ZA UT WOS:000397251000002 ER PT J AU Larmat, C Rougier, E Patton, HJ AF Larmat, Carene Rougier, Esteban Patton, Howard J. TI Apparent Explosion Moments from Rg Waves Recorded on SPE SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID DISTANCES AB Seismic moments for the first four chemical tests making up phase I of the Source Physics Experiments (SPE) are estimated from 6-Hz Rg waves recorded along a single radial line of geophones under the assumption that the tests are pure explosions. These apparent explosion moments are compared with moments determined from the reduced displacement potential method applied to free-field data. Light detection and ranging (lidar) observations, strong ground motions on the free surface in the vicinity of ground zero, and moment tensor inversion results are evidence that the fourth test SPE-4P is a pure explosion, and the moments show good agreement, 8 x 10(10) N.m for free-field data versus 9 x 1010 N.m for Rg waves. In stark contrast, apparent moments for the first three tests are smaller than near-field moments by factors of 3-4. Relative amplitudes for the three tests determined from Rg interferometry using SPE-4P as an empirical Green's function indicate that radiation patterns are cylindrically symmetric within a factor of 1.25 (25%). This fact assures that the apparent moments are reliable even though they were measured on just one azimuth. Spallation occurred on the first three tests, and ground-based lidar detected permanent deformations. As such, the source medium suffered late-time damage. Destructive interference between Rg waves radiated by explosion and damage sources will reduce amplitudes and explain why apparent moments are smaller than near-field moments based on compressional energy emitted directly from the source. C1 [Larmat, Carene; Rougier, Esteban; Patton, Howard J.] Los Alamos Natl Lab, EES 17, POB 1663,Bikini Atoll Rd,MS D452, Los Alamos, NM 87545 USA. RP Larmat, C (reprint author), Los Alamos Natl Lab, EES 17, POB 1663,Bikini Atoll Rd,MS D452, Los Alamos, NM 87545 USA. EM carene@lanl.gov FU LANL [DE-AC52-06NA25946] FX We thank Margaret Townsend and Dawn Reed of NSTec for providing the geologic map with geophone stations used in Figure 1, and Xiaoning (David) Yang of Los Alamos National Laboratory(LANL) for providing the synthetics shown in Figure 2. The Source Physics Experiments(SPE) would not have been possible without the support of many people from several organizations. The authors wish to express their gratitude to the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development(DNN R&D), and the SPE working group, a multi-institutional and interdisciplinary group of scientists and engineers. This work was conducted at the LANL under Award Number DE-AC52-06NA25946. This article has a LANL Unlimited Release Number LA-UR-16-23616. NR 11 TC 0 Z9 0 U1 0 U2 0 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0037-1106 EI 1943-3573 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD FEB PY 2017 VL 107 IS 1 BP 43 EP 50 DI 10.1785/0120160163 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EK5ZO UT WOS:000394004900004 ER PT J AU Demaria, M O'Leary, MN Chang, JH Shao, LJ Liu, S Alimirah, F Koenig, K Le, C Mitin, N Deal, AM Alston, S Academia, EC Kilmarx, S Valdovinos, A Wang, BS de Bruin, A Kennedy, BK Melov, S Zhou, DH Sharpless, NE Muss, H Campisi, J AF Demaria, Marco O'Leary, Monique N. Chang, Jianhui Shao, Lijian Liu, Su Alimirah, Fatouma Koenig, Kristin Le, Catherine Mitin, Natalia Deal, Allison M. Alston, Shani Academia, Emmeline C. Kilmarx, Sumner Valdovinos, Alexis Wang, Boshi de Bruin, Alain Kennedy, Brian K. Melov, Simon Zhou, Daohong Sharpless, Norman E. Muss, Hyman Campisi, Judith TI Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse SO CANCER DISCOVERY LA English DT Article ID IN-VIVO; THERAPY; CELLS; BIOMARKER; P16(INK4A); EXPRESSION; DOXORUBICIN; CLEARANCE; SECRETION; FATIGUE AB Cellular senescence suppresses cancer by irreversibly arresting cell proliferation. Senescent cells acquire a proinfl ammatory senescence-associated secretory phenotype. Many genotoxic chemotherapies target proliferating cells nonspecifi cally, often with adverse reactions. In accord with prior work, we show that several chemotherapeutic drugs induce senescence of primary murine and human cells. Using a transgenic mouse that permits tracking and eliminating senescent cells, we show that therapy-induced senescent (TIS) cells persist and contribute to local and systemic infl ammation. Eliminating TIS cells reduced several short-and long-term effects of the drugs, including bone marrow suppression, cardiac dysfunction, cancer recurrence, and physical activity and strength. Consistent with our fi ndings in mice, the risk of chemotherapy-induced fatigue was signifi cantly greater in humans with increased expression of a senescence marker in T cells prior to chemotherapy. These fi ndings suggest that senescent cells can cause certain chemotherapy side effects, providing a new target to reduce the toxicity of anticancer treatments. SIGNIFICANCE: Many genotoxic chemotherapies have debilitating side effects and also induce cellular senescence in normal tissues. The senescent cells remain chronically present where they can promote local and systemic infl ammation that causes or exacerbates many side effects of the chemotherapy. (C) 2017 AACR. C1 [Demaria, Marco; O'Leary, Monique N.; Liu, Su; Alimirah, Fatouma; Koenig, Kristin; Le, Catherine; Academia, Emmeline C.; Kilmarx, Sumner; Valdovinos, Alexis; Kennedy, Brian K.; Melov, Simon; Campisi, Judith] Buck Inst Res Aging, 8001 Redwood Blvd, Novato, CA 94945 USA. [Demaria, Marco; Wang, Boshi] Univ Groningen, Univ Med Ctr Groningen, European Res Inst Biol Ageing, Antonius Deusinglaan 1, NL-9713 AV Groningen, Netherlands. [Chang, Jianhui; Shao, Lijian; Zhou, Daohong] Univ Arkansas Med Sci, Dept Pharmaceut Sci, Little Rock, AR 72205 USA. [Mitin, Natalia] HealthSpan Diagnost, Res Triangle Pk, NC USA. [Deal, Allison M.; Alston, Shani; Sharpless, Norman E.; Muss, Hyman] Univ N Carolina, Sch Med, Lineberger Comprehens Canc Ctr, Chapel Hill, NC USA. [Deal, Allison M.; Alston, Shani; Sharpless, Norman E.; Muss, Hyman] Univ N Carolina, Sch Med, Dept Med, Chapel Hill, NC USA. [de Bruin, Alain] Univ Utrecht, Dept Pathobiol, Utrecht, Netherlands. [de Bruin, Alain] Univ Groningen, Univ Med Ctr Groningen, Dept Pediat, Groningen, Netherlands. [Campisi, Judith] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. RP Campisi, J (reprint author), Buck Inst Res Aging, 8001 Redwood Blvd, Novato, CA 94945 USA.; Demaria, M (reprint author), Univ Groningen, Univ Med Ctr Groningen, European Res Inst Biol Ageing, Antonius Deusinglaan 1, NL-9713 AV Groningen, Netherlands. EM m.demaria@umcg.nl; jcampisi@buckinstitute.org FU American Italian Cancer Foundation; NIH [AG009909, AG017242, AG041122, CA122023, P20GM109005] FX This work was supported by grants from the American Italian Cancer Foundation (M.Demaria) and the NIH (AG009909, AG017242, AG041122, CA122023, and P20GM109005; J. Campisi and D. Zhou). NR 33 TC 0 Z9 0 U1 2 U2 2 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 2159-8274 EI 2159-8290 J9 CANCER DISCOV JI Cancer Discov. PD FEB PY 2017 VL 7 IS 2 BP 165 EP 176 DI 10.1158/2159-8290.CD-16-0241 PG 12 WC Oncology SC Oncology GA EN5AM UT WOS:000396018000023 PM 27979832 ER PT J AU Dou, J Tang, Y Nguyen, L Tong, X Thapa, PS Tao, FF AF Dou, Jian Tang, Yu Luan Nguyen Tong, Xiao Thapa, Prem S. Tao, Franklin Feng TI Oxidation of Cyclohexene Catalyzed by Nanoporous Au(Ag) in Liquid Phase SO CATALYSIS LETTERS LA English DT Article DE Oxidation processes and reactions; Cyclohexene; Catalysis; Gold; Liquid phase ID TEMPERATURE CO OXIDATION; GOLD CATALYSTS; SELECTIVE OXIDATION; HYDROGEN-PEROXIDE; AU NANOPARTICLES; HETEROGENEOUS CATALYSIS; HYDROCARBON OXIDATION; AEROBIC EPOXIDATION; ALLYLIC OXIDATION; MILD CONDITIONS AB Nanoporous gold with minor silver content has been identified as a new type of gold based catalyst for selective oxidation of cyclohexene with molecular oxygen in liquid. By oxidation of the leached nanoporous gold foils in ozone, the minor silver content was oxidized to form silver oxide nanoclusters on the surface of nanoporous gold. With further treatment in methanol, the surface silver oxide was reduced and surface alloy was formed on gold ligaments. Both nanoporous gold treated with ozone only and the one with ozone and then methanol are very active for selective oxidation of cyclohexene with molecular oxygen in liquid of cyclohexene with a turn-over-frequency (TOF) of 0.55-0.99 molecules per surface Au atom per second under a solvent-free and initiator- free condition. The total selectivity for production of 2-cyclohexene-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide was increased from 57.5 % to 80.8 % by an additional treatment of nanoporous gold in methanol after activation in zone. The correlation of catalytic selectivity for the production of the three products and corresponding surface chemistry of ligament suggests that (1) the formed Au-Ag alloy surface is favorable for the formation of 2-cyclohexen-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide and (2) the surface silver oxide is favorable for the production of cyclohexenyl hydroperoxide. [GRAPHICS] . C1 [Dou, Jian; Tang, Yu; Luan Nguyen; Tao, Franklin Feng] Univ Kansas, Dept Chem & Petr Engn, Lawrence, KS 66045 USA. [Tong, Xiao] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11978 USA. [Thapa, Prem S.] Univ Kansas, Microscopy & Analyt Imaging Lab, Lawrence, KS 66045 USA. [Tao, Franklin Feng] Univ Kansas, Dept Chem, Lawrence, KS 66045 USA. RP Tao, FF (reprint author), Univ Kansas, Dept Chem & Petr Engn, Lawrence, KS 66045 USA.; Tao, FF (reprint author), Univ Kansas, Dept Chem, Lawrence, KS 66045 USA. EM franklin.feng.tao@ku.edu FU Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC), Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012573] FX The authors gratefully acknowledge the financial support provided by the Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC), Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award No. DE-SC0012573. JD appreciates the help from B. Zugic and M. Personick in preparing the nanoporous Au-Ag samples. NR 66 TC 0 Z9 0 U1 5 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X EI 1572-879X J9 CATAL LETT JI Catal. Lett. PD FEB PY 2017 VL 147 IS 2 BP 442 EP 452 DI 10.1007/s10562-016-1883-6 PG 11 WC Chemistry, Physical SC Chemistry GA EL1DB UT WOS:000394359600015 ER PT J AU Chen, J Rabiti, C AF Chen, Jun Rabiti, Cristian TI Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems SO ENERGY LA English DT Article DE Hybrid energy systems; Renewable energy integration; Synthetic data generation; Autoregressive moving average ID DYNAMIC PERFORMANCE ANALYSIS; ELECTRICITY MARKET; POWER-GENERATION; COMBINED HEAT; MICRO-GRIDS; PREDICTION; OPTIMIZATION; STORAGE; MANAGEMENT; OPERATION AB Hybrid energy systems consisting of multiple energy inputs and multiple energy outputs have been proposed to be an effective element to enable ever increasing penetration of clean energy. In order to better understand the dynamic and probabilistic behavior of hybrid energy systems, this paper proposes a model combining Fourier series and autoregressive moving average (ARMA) to characterize historical weather measurements and to generate synthetic weather (e.g., wind speed) data. In particular, Fourier series is used to characterize the seasonal trend in historical data, while ARMA is applied to capture the autocorrelation in residue time series (e.g., measurements with seasonal trends subtracted). The generated synthetic wind speed data is then utilized to perform probabilistic analysis of a particular hybrid energy system configuration, which consists of nuclear power plant, wind farm, battery storage, natural gas boiler, and chemical plant. Requirements on component ramping rate, economic and environmental impacts of hybrid energy systems, and the effects of deploying different sizes of batteries in smoothing renewable variability, are all investigated. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Chen, Jun; Rabiti, Cristian] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Chen, J (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM jun.chen@inl.gov FU Energy Security Initiative; N-R HES (Nuclear-Renewable Hybrid Energy Systems) Program at INL (Idaho National Laboratory) under the U.S. Department of Energy [DE-AC07-05ID14517] FX This research is supported by the Energy Security Initiative and the N-R HES (Nuclear-Renewable Hybrid Energy Systems) Program at INL (Idaho National Laboratory) under the U.S. Department of Energy contract DE-AC07-05ID14517. NR 68 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD FEB 1 PY 2017 VL 120 BP 507 EP 517 DI 10.1016/j.energy.2016.11.103 PG 11 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA EN4BQ UT WOS:000395953000044 ER PT J AU Chen, HM Johnston, RC Mann, BF Chu, RK Tolic, N Parks, JM Gu, BH AF Chen, Hongmei Johnston, Ryne C. Mann, Benjamin F. Chu, Rosalie K. Tolic, Nikola Parks, Jerry M. Gu, Baohua TI Identification of Mercury and Dissolved Organic Matter Complexes Using Ultrahigh Resolution Mass Spectrometry SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS LA English DT Article ID ION-CYCLOTRON RESONANCE; MOLECULAR CHARACTERIZATION; ANOXIC ENVIRONMENTS; BINDING CONSTANTS; FULVIC-ACID; HUMIC ACIDS; METAL-IONS; ELECTROSPRAY; SULFUR; HG(II) AB The chemical speciation and bioavailability of mercury (Hg) is markedly influenced by its complexation with naturally dissolved organic matter (DOM) in aquatic environments. To date, however, analytical methodologies capable of identifying such complexes are scarce. Here, we utilize ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) coupled with electrospray ionization to identify individual Hg-DOM complexes. The measurements were performed by direct infusion of DOM in a 1:1 methanol:water solution at a Hg to dissolved organic carbon (DOC) molar ratio of 3 x 10(-4). Heteroatomic molecules, especially those containing multiple S and N atoms, were found to be among the most important in forming strong complexes with Hg. Major Hg-DOM complexes of C10H21N2S4Hg+ and C8H17N2S4Hg+ were identified based on both the exact molecular mass and patterns of Hg stable isotope distributions detected by FTICR-MS. Density functional theory was used to predict the solution-phase structures of candidate molecules. These findings represent the first step to unambiguously identify specific DOM molecules in Hg binding, although future studies are warranted to further optimize and validate the methodology so as to explore detailed molecular compositions and structures of Hg-DOM complexes that affect biological uptake and transformation of Hg in the environment. C1 [Chen, Hongmei; Mann, Benjamin F.; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. [Johnston, Ryne C.; Parks, Jerry M.] Oak Ridge Natl Lab, Biosci Div, UT ORNL Ctr Mol Biophys, Oak Ridge, TN 37831 USA. [Chu, Rosalie K.; Tolic, Nikola] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. RP Gu, BH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM gub1@ornl.gov FU Office of Biological and Environmental Research (BER), Office of Science, U.S. Department of Energy (DOE), Mercury Science Focus Area at Oak Ridge National Laboratory (ORNL); DOE [DE-AC05-00OR22725]; BER at Pacific Northwest National Laboratory FX This research was sponsored by the Office of Biological and Environmental Research (BER), Office of Science, U.S. Department of Energy (DOE) as part of the Mercury Science Focus Area at Oak Ridge National Laboratory (ORNL), which is managed by UT-Battelle LLC for the DOE under Contract DE-AC05-00OR22725. The FTICR-MS analysis was performed at EMSL, a DOE Office of Science User Facility sponsored by BER at Pacific Northwest National Laboratory. DFT calculations were performed at ORNL Compute and Data Environment for Science (CADES). NR 57 TC 0 Z9 0 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2328-8930 J9 ENVIRON SCI TECH LET JI Environ. Sci. Technol. Lett. PD FEB PY 2017 VL 4 IS 2 BP 59 EP 65 DI 10.1021/acs.esilett.6b00460 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA EL1WO UT WOS:000394412300006 ER PT J AU Kamps, JT Palmer, WE Terhune, TM Hagan, G Martin, JA AF Kamps, Jesse T. Palmer, William E. Terhune, Theron M. Hagan, Greg Martin, James A. TI Effects of fire management on northern bobwhite brood ecology SO EUROPEAN JOURNAL OF WILDLIFE RESEARCH LA English DT Article DE Northern bobwhite; Prescribed fire; Landscape complementation; Interspersion and juxtaposition index ID GROUSE CHICKS; GROWTH-RATES; BODY-SIZE; SURVIVAL; HABITAT; VEGETATION; SELECTION; SUCCESS; CONSERVATION; POPULATIONS AB Northern Bobwhite Colinus virginianus chicks require ample invertebrates for growth and feather development. Early successional or resprouting vegetation provides invertebrates for chicks but may not provide other resources such as roosting and loafing cover that is typically provided by later successional stages. Thus, management for bobwhites provides multiple seral stages in close proximity but the effects of landscape interspersion have not been tested for bobwhite broods. During a 2-year study, we explored the effects of landscape complementation and food availability on growth and survival of bobwhite chicks. We found growth of chicks to be negatively related to home range size which was negatively correlated to the amount of area burned. We also found survival of chicks to be positively related to the amount of burned area (i.e., foraging area) within brood home ranges. To maximize the growth and survival of bobwhite chicks, it would be necessary to increase access to foraging areas while decreasing the size of brood home ranges. Access to foraging areas can be created through frequent prescribed fire at small spatial scales. C1 [Kamps, Jesse T.] Mississippi State Univ, Coll Forest Resources, Forest & Wildlife Res Ctr, Box 9680, Mississippi, MS 39762 USA. [Palmer, William E.; Terhune, Theron M.] Tall Timbers Res Stn & Land Conservancy, 13093 Henry Beadel Dr, Tallahassee, FL 32312 USA. [Hagan, Greg] Florida Fish & Wildlife Conservat Commiss, 13093 Henry Beadel Dr, Tallahassee, FL 32312 USA. [Martin, James A.] Univ Georgia, Savannah River Ecol Lab, Warnell Sch Forestry & Nat Resources, Forestry 3-320, Athens, GA 30602 USA. RP Kamps, JT (reprint author), Mississippi State Univ, Coll Forest Resources, Forest & Wildlife Res Ctr, Box 9680, Mississippi, MS 39762 USA. EM jtkamps@gmail.com NR 63 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1612-4642 EI 1439-0574 J9 EUR J WILDLIFE RES JI Eur. J. Wildl. Res. PD FEB PY 2017 VL 63 IS 1 AR 27 DI 10.1007/s10344-017-1078-5 PG 10 WC Ecology; Zoology SC Environmental Sciences & Ecology; Zoology GA EK8YR UT WOS:000394211100027 ER PT J AU Wang, H Yu, LF Zhang, ZH Liu, W Chen, LT Cao, GM Yue, HW Zhou, JZ Yang, YF Tang, YH He, JS AF Wang, Hao Yu, Lingfei Zhang, Zhenhua Liu, Wei Chen, Litong Cao, Guangmin Yue, Haowei Zhou, Jizhong Yang, Yunfeng Tang, Yanhong He, Jin-Sheng TI Molecular mechanisms of water table lowering and nitrogen deposition in affecting greenhouse gas emissions from a Tibetan alpine wetland SO GLOBAL CHANGE BIOLOGY LA English DT Article DE carbon cycle; climate warming; methane; microbial functional gene; nitrous oxide; the Tibetan Plateau ID METHANE EMISSIONS; NATURAL WETLANDS; ALTITUDE PEATLAND; NUTRIENT ADDITION; OMBROTROPHIC BOG; NORTHEAST CHINA; CLIMATE-CHANGE; CH4 EMISSIONS; CARBON FLUXES; N2O EMISSIONS AB Rapid climate change and intensified human activities have resulted in water table lowering (WTL) and enhanced nitrogen (N) deposition in Tibetan alpine wetlands. These changes may alter the magnitude and direction of greenhouse gas (GHG) emissions, affecting the climate impact of these fragile ecosystems. We conducted a mesocosm experiment combined with a metagenomics approach (GeoChip 5.0) to elucidate the effects of WTL (-20cm relative to control) and N deposition (30kg N ha(-1)yr(-1)) on carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes as well as the underlying mechanisms. Our results showed that WTL reduced CH4 emissions by 57.4% averaged over three growing seasons compared with no-WTL plots, but had no significant effect on net CO2 uptake or N2O flux. N deposition increased net CO2 uptake by 25.2% in comparison with no-N deposition plots and turned the mesocosms from N2O sinks to N2O sources, but had little influence on CH4 emissions. The interactions between WTL and N deposition were not detected in all GHG emissions. As a result, WTL and N deposition both reduced the global warming potential (GWP) of growing season GHG budgets on a 100-year time horizon, but via different mechanisms. WTL reduced GWP from 337.3 to -480.1g CO2-eq m(-2) mostly because of decreased CH4 emissions, while N deposition reduced GWP from 21.0 to -163.8g CO2-eq m(-2), mainly owing to increased net CO2 uptake. GeoChip analysis revealed that decreased CH4 production potential, rather than increased CH4 oxidation potential, may lead to the reduction in net CH4 emissions, and decreased nitrification potential and increased denitrification potential affected N2O fluxes under WTL conditions. Our study highlights the importance of microbial mechanisms in regulating ecosystem-scale GHG responses to environmental changes. C1 [Wang, Hao; Tang, Yanhong; He, Jin-Sheng] Peking Univ, Minist Educ, Coll Urban & Environm Sci, Dept Ecol, 5 Yiheyuan Rd, Beijing 100871, Peoples R China. [Wang, Hao; Tang, Yanhong; He, Jin-Sheng] Peking Univ, Minist Educ, Key Lab Earth Surface Proc, 5 Yiheyuan Rd, Beijing 100871, Peoples R China. [Wang, Hao; Zhang, Zhenhua; Liu, Wei; Chen, Litong; Cao, Guangmin; He, Jin-Sheng] Chinese Acad Sci, Northwest Inst Plateau Biol, Key Lab Adaptat & Evolut Plateau Biota, 23 Xining Rd, Xining 810008, Peoples R China. [Yu, Lingfei] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, 20 Nanxincun, Beijing 100093, Peoples R China. [Yue, Haowei; Zhou, Jizhong; Yang, Yunfeng] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, 1 Tsinghua Garden Rd, Beijing 100084, Peoples R China. [Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Zhou, Jizhong] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP He, JS (reprint author), Peking Univ, Minist Educ, Coll Urban & Environm Sci, Dept Ecol, 5 Yiheyuan Rd, Beijing 100871, Peoples R China.; He, JS (reprint author), Peking Univ, Minist Educ, Key Lab Earth Surface Proc, 5 Yiheyuan Rd, Beijing 100871, Peoples R China.; He, JS (reprint author), Chinese Acad Sci, Northwest Inst Plateau Biol, Key Lab Adaptat & Evolut Plateau Biota, 23 Xining Rd, Xining 810008, Peoples R China. EM jshe@pku.edu.cn FU National Program on Key Basic Research Project [2014CB954004]; National Natural Science Foundation of China [31270481, 31321061]; Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University FX We thank Weimin Song and Biao Zhu for helpful suggestions on the manuscript, Li Li for assistance with the field measurements and Peter Schmid for language editing. This project was supported by the National Program on Key Basic Research Project (Grant No. 2014CB954004), National Natural Science Foundation of China (Grant No. 31270481 and 31321061) and the Programs of open ends funds from Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University. This collaboration is part of the '111 project' of China. NR 70 TC 0 Z9 0 U1 16 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD FEB PY 2017 VL 23 IS 2 BP 815 EP 829 DI 10.1111/gcb.13467 PG 15 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA EL0WU UT WOS:000394343300031 PM 27536811 ER PT J AU Meredith, LK Commane, R Keenan, TF Klosterman, ST Munger, JW Templer, PH Tang, JW Wofsy, SC Prinn, RG AF Meredith, Laura K. Commane, Roisin Keenan, Trevor F. Klosterman, Stephen T. Munger, J. William Templer, Pamela H. Tang, Jianwu Wofsy, Steven C. Prinn, Ronald G. TI Ecosystem fluxes of hydrogen in a mid-latitude forest driven by soil microorganisms and plants SO GLOBAL CHANGE BIOLOGY LA English DT Article DE atmosphere; carbon cycle; flux; hydrogen; microbe; phenology; snow; soil ID AFFINITY H-2-OXIDIZING BACTERIA; ATMOSPHERIC MOLECULAR-HYDROGEN; STREPTOMYCES SP PCB7; CARBON-MONOXIDE; COMMUNITY COMPOSITION; GLOBAL DISTRIBUTION; NITROGEN-FIXATION; DECIDUOUS FOREST; TROPOSPHERIC H-2; HIGH-FREQUENCY AB Molecular hydrogen (H-2) is an atmospheric trace gas with a large microbe-mediated soil sink, yet cycling of this compound throughout ecosystems is poorly understood. Measurements of the sources and sinks of H-2 in various ecosystems are sparse, resulting in large uncertainties in the global H-2 budget. Constraining the H-2 cycle is critical to understanding its role in atmospheric chemistry and climate. We measured H-2 fluxes at high frequency in a temperate mixed deciduous forest for 15months using a tower-based flux-gradient approach to determine both the soil-atmosphere and the net ecosystem flux of H-2. We found that Harvard Forest is a net H-2 sink (-1.4 +/- 1.1kg H(2)ha(-1)) with soils as the dominant H-2 sink (-2.0 +/- 1.0kg H(2)ha(-1)) and aboveground canopy emissions as the dominant H-2 source (+0.6 +/- 0.8kg H(2)ha(-1)). Aboveground emissions of H-2 were an unexpected and substantial component of the ecosystem H-2 flux, reducing net ecosystem uptake by 30% of that calculated from soil uptake alone. Soil uptake was highly seasonal (July maximum, February minimum), positively correlated with soil temperature and negatively correlated with environmental variables relevant to diffusion into soils (i.e., soil moisture, snow depth, snow density). Soil microbial H-2 uptake was correlated with rhizosphere respiration rates (r=0.8, P<0.001), and H-2 metabolism yielded up to 2% of the energy gleaned by microbes from carbon substrate respiration. Here, we elucidate key processes controlling the biosphere-atmosphere exchange of H-2 and raise new questions regarding the role of aboveground biomass as a source of atmospheric H-2 and mechanisms linking soil H-2 and carbon cycling. Results from this study should be incorporated into modeling efforts to predict the response of the H-2 soil sink to changes in anthropogenic H-2 emissions and shifting soil conditions with climate and land-use change. C1 [Meredith, Laura K.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. [Meredith, Laura K.; Prinn, Ronald G.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Commane, Roisin; Munger, J. William; Wofsy, Steven C.] Harvard Univ, Dept Earth & Planetary Sci, Sch Engn & Appl Sci, 20 Oxford St, Cambridge, MA 02138 USA. [Keenan, Trevor F.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. [Klosterman, Stephen T.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. [Templer, Pamela H.] Boston Univ, Dept Biol, 5 Cummington St, Boston, MA 02215 USA. [Tang, Jianwu] Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA. RP Meredith, LK (reprint author), Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA.; Meredith, LK (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. EM laurameredith@email.arizona.edu RI Tang, Jianwu/K-6798-2014; OI Tang, Jianwu/0000-0003-2498-9012; Munger, J William/0000-0002-1042-8452 FU NSF Graduate Research Fellowship; NASA; MIT Center for Global Change Science; MIT Joint Program on the Science and Policy of Global Change; MIT Martin Family Society of Fellows for Sustainability; MIT Ally of Nature Research Fund; MIT William Otis Crosby Lectureship; MIT Warren Klein Fund; NSF [1331214]; Office of Science (BER); U. S. Dept. of Energy [DE-SC0004985]; National Science Foundation; National Science Foundation, through the Macrosystems Biology [EF-1065029, DEB-1237491]; Charles Bullard Fellowship at Harvard University; National Science Foundation [NSF DEB-1149929, DBI-959333, AGS-1005663]; Northeastern States Research Cooperative through USDA Forest Service; U.S. Department of Energy Office of Biological and Environmental Research [DE-SC0006951] FX We thank Kathleen Savage and Josh McLaren for help with respiration and snow data. LKM was supported by the following funding sources: NSF Graduate Research Fellowship, grants from NASA to MIT for the Advanced Global Atmospheric Gases Experiment (AGAGE), MIT Center for Global Change Science, MIT Joint Program on the Science and Policy of Global Change, MIT Martin Family Society of Fellows for Sustainability, MIT Ally of Nature Research Fund, MIT William Otis Crosby Lectureship, and MIT Warren Klein Fund, and NSF Postdoctoral Fellowship 1331214. Operation of the EMS flux tower was supported by the Office of Science (BER), U. S. Dept. of Energy (DE-SC0004985) and is a component of the Harvard Forest LTER supported by National Science Foundation. We acknowledge support for the PhenoCams at Harvard Forest from the National Science Foundation, through the Macrosystems Biology (EF-1065029) and LTER (DEB-1237491) programs. PHT was supported by a Charles Bullard Fellowship at Harvard University while writing this manuscript. We acknowledge support from the National Science Foundation (NSF DEB-1149929) and the Northeastern States Research Cooperative through funding by the USDA Forest Service to PT for measurements of sap flow. JT was partially supported by the U.S. Department of Energy Office of Biological and Environmental Research grant DE-SC0006951 and the National Science Foundation grants DBI-959333 and AGS-1005663. NR 80 TC 0 Z9 0 U1 7 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD FEB PY 2017 VL 23 IS 2 BP 906 EP 919 DI 10.1111/gcb.13463 PG 14 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA EL0WU UT WOS:000394343300038 PM 27514856 ER PT J AU Chen, CF Brennecka, GL King, G Tegtmeier, EL Holesinger, T Ivy, J Yang, P AF Chen, Ching-Fong Brennecka, Geoff L. King, Graham Tegtmeier, Eric L. Holesinger, Terry Ivy, Jacob Yang, Pin TI Processing of crack-free high density polycrystalline LiTaO3 ceramics SO JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS LA English DT Article ID LEAD-FREE PIEZOCERAMICS; FERROELECTRIC LITAO3; LITHIUM TANTALATE; POWDER SYNTHESIS; SOLID-SOLUTIONS AB This work has successfully achieved high density (99.9%) polycrystalline LiTaO3. The keys to the high density without cracking were the use of LiF-assisted densification to maintain fine grain size as well as the presence of secondary lithium aluminate phases as grain growth inhibitors. The average grain size of the hot pressed polycrystalline LiTaO3 is less than 5 mu m, limiting residual stresses caused by the anisotropic thermal expansion. Dilatometry results clearly indicate liquid phase sintering via the added LiF sintering aid. Efficient liquid phase sintering allows densification during low temperature hot pressing. Electron microscopy confirmed the high-density microstructure. Rietveld analysis of neutron diffraction data revealed the presence of LiAlO2 and LiAl5O8 minority phases and negligible substitutional defect incorporation in LiTaO3. C1 [Chen, Ching-Fong; King, Graham; Tegtmeier, Eric L.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Brennecka, Geoff L.; Ivy, Jacob] Colorado Sch Mines, Met & Mat Engn, Golden, CO 80401 USA. [Holesinger, Terry] Los Alamos Natl Lab, Mat Synth & Integrated Devices Div, Los Alamos, NM 87545 USA. [Yang, Pin] Sandia Natl Labs, Mat Sci & Engn Ctr, Albuquerque, NM 87185 USA. RP Chen, CF (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. EM cchen@lanl.gov RI Brennecka, Geoff/J-9367-2012 OI Brennecka, Geoff/0000-0002-4476-7655 FU LANL ADX Office C3 Science Campaign; DOE [DE-AC52-06NA25396]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank Robert Reinovsky, program manager of LANL ADX Office C3 Science Campaign, for the funding support. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 22 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0957-4522 EI 1573-482X J9 J MATER SCI-MATER EL JI J. Mater. Sci.-Mater. Electron. PD FEB PY 2017 VL 28 IS 4 BP 3725 EP 3732 DI 10.1007/s10854-016-5980-5 PG 8 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA EL1AJ UT WOS:000394352600075 ER PT J AU Sever, G Lin, YL AF Sever, Gokhan Lin, Yuh-Lang TI Dynamical and Physical Processes Associated with Orographic Precipitation in a Conditionally Unstable Uniform Flow: Variation in Basic Wind Speed SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID MOUNTAIN RIDGE; SIMULATION; MODEL AB A series of systematic two- and three-dimensional (2D and 3D, respectively) idealized numerical experiments were conducted to investigate the combined effects of dynamical and physical processes on orographic precipitation with varying incoming basic-flow speed U in a conditionally unstable uniform flow. In addition to the three moist flow regimes found in Chu and Lin at lower wind speeds, a new flow regime, regime IV, is found for higher wind speeds (U > 36 m s(-1)) and is characterized by gravity waves and heavy precipitation and lack of upper-level wave breaking and turbulence over the lee slope. The transition from regime III to regime IV at 36 m s(-1) is explained by the transition from upward-propagating gravity waves to evanescent flow, which can be predicted with a modified mountain wave theory. Although the basic features are captured well in low grid resolution (Delta x = 1 km), high-resolution (Delta x = 100 m) 2D and 3D simulations are required to resolve precipitation distribution and intensity at higher basic winds (U > 30 m s(-1)). Based on 3D simulations, gravity wave-induced severe downslope winds and turbulent mixing within hydraulic jump reduce orographic precipitation in regime III. A preliminary budget analysis indicated that, in regime IV, orographic precipitation further increases as a result of enhanced rain processes when the blocking effect of wave breaking vanishes. C1 [Sever, Gokhan; Lin, Yuh-Lang] North Carolina Agr & Tech State Univ, Dept Energy & Environm Syst, Greensboro, NC 27401 USA. [Sever, Gokhan] Argonne Natl Lab, Div Environm Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Lin, Yuh-Lang] North Carolina Agr & Tech State Univ, Dept Phys, Greensboro, NC 27401 USA. RP Lin, YL (reprint author), North Carolina Agr & Tech State Univ, Dept Energy & Environm Syst, Greensboro, NC 27401 USA.; Lin, YL (reprint author), North Carolina Agr & Tech State Univ, Dept Phys, Greensboro, NC 27401 USA. EM ylin@ncat.edu FU National Science Foundation [AGS-1265783, HRD-1036563, OCI-1126543, CNS-1429464] FX Discussion with Dr. Richard Rotunno, proofreading by Megan L. Jordano, and comments made by the anonymous reviewers are highly appreciated. This research was supported by the National Science Foundation Awards AGS-1265783, HRD-1036563, OCI-1126543, and CNS-1429464. NR 28 TC 0 Z9 0 U1 2 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD FEB PY 2017 VL 74 IS 2 DI 10.1175/JAS-D-16-0077.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EL0VY UT WOS:000394341100009 ER PT J AU Zhukov, VP Rubenchik, AM Fedoruk, MP Bulgakova, NM AF Zhukov, Vladimir P. Rubenchik, Alexander M. Fedoruk, Mikhail P. Bulgakova, Nadezhda M. TI Interaction of doughnut-shaped laser pulses with glasses SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS LA English DT Article ID FEMTOSECOND-LASER; TRANSPARENT MATERIALS; WAVE-GUIDES; PHOTONIC DEVICES; FUSED-SILICA; DIELECTRICS; MEDIA; FILAMENTATION; FABRICATION; IONIZATION AB Non-Gaussian laser beams can open new opportunities for microfabrication, including ultrashort laser direct writing. Using a model based on Maxwell's equations, we have investigated the dynamics of doughnut-shaped laser beams focused inside fused silica glass, in comparison with Gaussian pulses of the same energy. The laser propagation dynamics reveals intriguing features of beam splitting and sudden collapse toward the beam axis, overcoming the intensity clamping effect. The resulting structure of light absorption represents a very hot, hollow nanocylinder, which can lead to an implosion process that brings matter to extreme thermodynamic states. Monitoring the simulations of the laser beam scattering has shown a considerable difference in both the blueshift and the angular distribution of scattered light for different laser energies, suggesting that investigations of the spectra of scattered radiation can be used as a diagnostic of laser-produced electron plasmas in transparent materials. (C) 2017 Optical Society of America C1 [Zhukov, Vladimir P.; Fedoruk, Mikhail P.] Novosibirsk State Univ, 2 Pirogova Str, Novosibirsk 630090, Russia. [Zhukov, Vladimir P.; Fedoruk, Mikhail P.] RAS, Inst Computat Technol, SB, 6 Lavrentyev Ave, Novosibirsk 630090, Russia. [Zhukov, Vladimir P.] Novosibirsk State Tech Univ, 20 Karl Marx Ave, Novosibirsk 630073, Russia. [Rubenchik, Alexander M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bulgakova, Nadezhda M.] HiLASE Ctr, Inst Phys ASCR, Za Radnici 828, Dolni Brezany 25241, Czech Republic. [Bulgakova, Nadezhda M.] RAS, Inst Thermophys, SB, 1 Lavrentyev Ave, Novosibirsk 630090, Russia. RP Zhukov, VP (reprint author), Novosibirsk State Univ, 2 Pirogova Str, Novosibirsk 630090, Russia.; Zhukov, VP (reprint author), RAS, Inst Computat Technol, SB, 6 Lavrentyev Ave, Novosibirsk 630090, Russia.; Zhukov, VP (reprint author), Novosibirsk State Tech Univ, 20 Karl Marx Ave, Novosibirsk 630073, Russia. EM zukov@ict.nsc.ru FU Russian Foundation for Basic Research (RFBR) [15-01-02432-a, 15-51-46007-CT_a]; Russian Science Foundation (RSF) [14-21-00110]; European Regional Development Fund (ERDF); State Budget of the Czech Republic [BIATRI: CZ.02.1.01/0.0/0.0/15_003/0000445]; Ministry of Education, Youth and Sports of the Czech Republic [NPU I LO1602, LM2015086]; U.S. Department of Energy (DOE) Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344] FX Russian Foundation for Basic Research (RFBR) (15-01-02432-a, 15-51-46007-CT_a); Russian Science Foundation (RSF) (14-21-00110); European Regional Development Fund (ERDF) and the State Budget of the Czech Republic (BIATRI: CZ.02.1.01/0.0/0.0/15_003/0000445); Ministry of Education, Youth and Sports of the Czech Republic (NPU I LO1602, Large Research Infrasturcture LM2015086); U.S. Department of Energy (DOE) Lawrence Livermore National Laboratory (LLNL) (DE-AC52-07NA27344). NR 46 TC 0 Z9 0 U1 3 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0740-3224 EI 1520-8540 J9 J OPT SOC AM B JI J. Opt. Soc. Am. B-Opt. Phys. PD FEB 1 PY 2017 VL 34 IS 2 BP 463 EP 471 DI 10.1364/JOSAB.34.000463 PG 9 WC Optics SC Optics GA EK6IN UT WOS:000394028400032 ER PT J AU Deibler, L Brown, A Puskar, J AF Deibler, Lisa Brown, Arthur Puskar, Joe TI Experiments and Modeling to Characterize Microstructure and Hardness in 304L SO METALLOGRAPHY MICROSTRUCTURE AND ANALYSIS LA English DT Article DE Recrystallization; Stainless steel; Microstructure; Modeling ID AUSTENITIC STAINLESS-STEELS; RECRYSTALLIZATION; REVERSION AB Drawn 304L stainless steel tubing was subjected to 42 different annealing heat treatments with the goal of initializing a microstructural model to select a heat treatment to soften the tubing from a hardness of 305 Knoop to 225-275 Knoop. The amount of recrystallization and grain size caused by 18 heat treatments were analyzed via optical microscopy and image analysis, revealing the full range of recrystallization from 0 to 100%. The formation of carbides during the longer duration and higher-temperature heat treatments was monitored via transmission electron microscope evaluation. The experimental results informed a model which includes recovery, recrystallization, and grain growth to predict microstructure and hardness. After initialization of the model, it was able to predict hardness with a R (2) value of 0.95 and recrystallization with an R (2) value of 0.99. The model was then utilized in the design and testing of a heat treatment to soften the tubing. C1 [Deibler, Lisa] Sandia Natl Labs, POB 5800,Mail Stop 0886, Albuquerque, NM 87185 USA. [Brown, Arthur] Sandia Natl Labs, POB 696,Mail Stop 9042, Livermore, CA 94551 USA. [Puskar, Joe] Sandia Natl Labs, POB 8500,Mail Stop 0678, Livermore, CA 94551 USA. RP Deibler, L (reprint author), Sandia Natl Labs, POB 5800,Mail Stop 0886, Albuquerque, NM 87185 USA. EM ldeible@sandia.gov; aabrown@sandia.gov; jdpuska@sandia.gov FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to acknowledge Alice Kilgo, Peter Duran, Joe Michael, Bonnie McKenzie, Marty Cunningham, Paul Kotula, Garry Bryant, and Michael Rye for help with experiments and Dorian Balch and Chris San Marchi for useful discussions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 18 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 2192-9262 EI 2192-9270 J9 METALLOGR MICROSTRUC JI Metallogr. Microstruct. Anal. PD FEB PY 2017 VL 6 IS 1 BP 3 EP 11 DI 10.1007/s13632-017-0335-z PG 9 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA EK7EZ UT WOS:000394090200002 ER PT J AU Shi, K Carpenter, MA Banerjee, S Shaban, NM Kurahashi, K Salamango, DJ McCann, JL Starrett, GJ Duffy, JV Demir, O Amaro, RE Harki, DA Harris, RS Aihara, H AF Shi, Ke Carpenter, Michael A. Banerjee, Surajit Shaban, Nadine M. Kurahashi, Kayo Salamango, Daniel J. McCann, Jennifer L. Starrett, Gabriel J. Duffy, Justin V. Demir, Ozlem Amaro, Rommie E. Harki, Daniel A. Harris, Reuben S. Aihara, Hideki TI Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID RESTRICTION FACTOR APOBEC3G; HIV-1 VIF-BINDING; CRYSTAL-STRUCTURE; CYTIDINE DEAMINASE; CATALYTIC DOMAIN; BREAST-CANCER; SOMATIC HYPERMUTATION; AID/APOBEC FAMILY; SUBSTRATE-BINDING; LUNG-CANCER AB APOBEC-catalyzed cytosine-to-uracil deamination of single-stranded DNA (ssDNA) has beneficial functions in immunity and detrimental effects in cancer. APOBEC enzymes have intrinsic dinucleotide specificities that impart hallmark mutation signatures. Although numerous structures have been solved, mechanisms for global ssDNA recognition and local target-sequence selection remain unclear. Here we report crystal structures of human APOBEC3A and a chimera of human APOBEC3B and APOBEC3A bound to ssDNA at 3.1-angstrom and 1.7-angstrom resolution, respectively. These structures reveal a U-shaped DNA conformation, with the specificity-conferring -1 thymine flipped out and the target cytosine inserted deep into the zinc-coordinating active site pocket. The -1 thymine base fits into a groove between flexible loops and makes direct hydrogen bonds with the protein, accounting for the strong 5'-TC preference. These findings explain both conserved and unique properties among APOBEC family members, and they provide a basis for the rational design of inhibitors to impede the evolvability of viruses and tumors. C1 [Shi, Ke; Carpenter, Michael A.; Shaban, Nadine M.; Kurahashi, Kayo; Salamango, Daniel J.; McCann, Jennifer L.; Starrett, Gabriel J.; Duffy, Justin V.; Harris, Reuben S.; Aihara, Hideki] Univ Minnesota, Dept Biochem Mol Biol & Biophys, Minneapolis, MN 55455 USA. [Shi, Ke; Carpenter, Michael A.; Shaban, Nadine M.; Kurahashi, Kayo; Salamango, Daniel J.; McCann, Jennifer L.; Starrett, Gabriel J.; Duffy, Justin V.; Harki, Daniel A.; Harris, Reuben S.; Aihara, Hideki] Univ Minnesota, Masonic Canc Ctr, Minneapolis, MN 55455 USA. [Shi, Ke; Carpenter, Michael A.; Shaban, Nadine M.; Kurahashi, Kayo; Salamango, Daniel J.; McCann, Jennifer L.; Starrett, Gabriel J.; Duffy, Justin V.; Harris, Reuben S.; Aihara, Hideki] Univ Minnesota, Inst Mol Virol, Minneapolis, MN 55455 USA. [Carpenter, Michael A.; Shaban, Nadine M.; Salamango, Daniel J.; McCann, Jennifer L.; Starrett, Gabriel J.; Harris, Reuben S.] Univ Minnesota, Ctr Genome Engn, Minneapolis, MN 55455 USA. [Carpenter, Michael A.; Harris, Reuben S.] Univ Minnesota, Howard Hughes Med Inst, Minneapolis, MN 55455 USA. [Banerjee, Surajit] Cornell Univ, Adv Photon Source, Northeastern Collaborat Access Team, Lemont, IL USA. [Demir, Ozlem; Amaro, Rommie E.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Harki, Daniel A.] Univ Minnesota, Dept Med Chem, Minneapolis, MN 55455 USA. RP Harris, RS; Aihara, H (reprint author), Univ Minnesota, Dept Biochem Mol Biol & Biophys, Minneapolis, MN 55455 USA.; Harris, RS; Aihara, H (reprint author), Univ Minnesota, Masonic Canc Ctr, Minneapolis, MN 55455 USA.; Harris, RS; Aihara, H (reprint author), Univ Minnesota, Inst Mol Virol, Minneapolis, MN 55455 USA.; Harris, RS (reprint author), Univ Minnesota, Ctr Genome Engn, Minneapolis, MN 55455 USA.; Harris, RS (reprint author), Univ Minnesota, Howard Hughes Med Inst, Minneapolis, MN 55455 USA. EM rsh@umn.edu; aihar001@umn.edu FU US National Institutes of Health [NIGMS R01-GM118000, NIGMS R35-GM118047, NIGMS R01-GM110129, NCI R21-CA206309, DP2-OD007237, NIGMS P41-GM103426]; NSF [CHE060073N]; Prospect Creek Foundation; University of Minnesota Masonic Cancer Center; US National Institutes of Health (NIGMS) [P41-GM103403]; NIH-ORIP HEI grant [S10 RR029205]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; Margaret Harvey Schering Land Grant Chair for Cancer Research; Investigator of the Howard Hughes Medical Institute FX We thank D. Largaespada and D. Yee for insightful comments, R. Moorthy for oligonucleotide sample preparations, and J. Stivers (Pharmacology and Molecular Sciences Department, Johns Hopkins University, Baltimore, Maryland, USA) for providing the human UNG2 expression construct and purification protocol. This work was supported by grants from the US National Institutes of Health (NIGMS R01-GM118000 to R.S.H. and H.A., NIGMS R35-GM118047 to H.A., NIGMS R01-GM110129 to D.A.H., NCI R21-CA206309 to R.S.H., and DP2-OD007237 and NIGMS P41-GM103426 to R.E.A.), the NSF (CHE060073N to R.E.A.), the Prospect Creek Foundation (R.S.H. and D.A.H.), and the University of Minnesota Masonic Cancer Center (Spore-Program-Project-Planning Seed Grant to R.S.H.). This work is based upon research conducted at the Northeastern Collaborative Access Team beamlines, which are funded by the US National Institutes of Health (NIGMS P41-GM103403). The Pilatus 6M detector on the 24-ID-C beamline is funded by an NIH-ORIP HEI grant (S10 RR029205). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. R.S.H. is supported as the Margaret Harvey Schering Land Grant Chair for Cancer Research and as an Investigator of the Howard Hughes Medical Institute. NR 76 TC 1 Z9 1 U1 1 U2 1 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1545-9993 EI 1545-9985 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD FEB PY 2017 VL 24 IS 2 BP 131 EP + DI 10.1038/nsmb.3344 PG 11 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA EL0JW UT WOS:000394309700006 PM 27991903 ER PT J AU Liang, S Esswein, SR Ochi, T Wu, Q Ascher, DB Chirgadze, D Sibanda, BL Blundell, TL AF Liang, S. Esswein, S. R. Ochi, T. Wu, Q. Ascher, D. B. Chirgadze, D. Sibanda, B. L. Blundell, T. L. TI Achieving selectivity in space and time with DNA double-strand-break response and repair: molecular stages and scaffolds come with strings attached SO STRUCTURAL CHEMISTRY LA English DT Review DE Non-homologous end joining; DNA repair; DNA-PKcs; XRCC4; Artemis; Protein-protein interactions ID PROTEIN-PROTEIN INTERACTIONS; CELL-REGULATORY SYSTEMS; LIGASE-IV COMPLEX; CRYSTAL-STRUCTURE; DAMAGE RESPONSE; APLF C2ORF13; DEPENDENT PHOSPHORYLATION; MAMMALIAN-CELLS; KINASE COMPLEX; XRCC4 PROTEIN AB When double-strand breaks (DSBs) in DNA remain unrepaired, catastrophic loss of genes occurs, leading to translocations, mutations and carcinogenesis. If a sister chromatid is not available at the DNA DSB, non-homologous end joining (NHEJ) is used to join broken ends. The NHEJ pathway comprises synapsis, end processing and ligation. Here, we ask how DSBs in DNA are repaired efficiently. We suggest that colocation of proteins is achieved over time by the following components: stages, where the main actors are assembled, scaffolds that are erected quickly around broken parts to give access, and strings that tether proteins together. In NHEJ, a stage is provided by the Ku heterodimer interacting with DSBs and several other proteins including DNA-PKcs, APLF, BRCA1 and PAXX. A further stage, DNA-PKcs, links the kinase with DNA, Ku, PARP1, BRCA1 and Artemis. A temporary scaffold facilitates repair and is constructed from XRCC4/XLF filaments that bridge Ku bound at DSB ends. LigIV bound to XRCC4 C-termini likely terminates the scaffold, bringing LigIV close to the DNA broken ends. A string, provided by the Artemis C-terminal region, is intrinsically disordered but includes short linear "epitopes" that recognise DNA-PKcs, LigIV and PTIP, so keeping these components nearby. We show that these stages, scaffolds and strings facilitate colocation and efficient DSB repair. Understanding these processes provides insight into the biology of DNA repair and possible therapeutic intervention in cancer and other diseases. C1 [Liang, S.; Esswein, S. R.; Ochi, T.; Wu, Q.; Ascher, D. B.; Chirgadze, D.; Sibanda, B. L.; Blundell, T. L.] Univ Cambridge, Dept Biochem Sanger Bldg, 80 Tennis Court Rd, Cambridge CB2 1GA, England. [Esswein, S. R.] Univ Calif Los Angeles, Dept Biol Chem, US DOE, Inst Genom & Prote, Los Angeles, CA 90095 USA. [Esswein, S. R.] Univ Calif Los Angeles, Dept Chem & Biochem, US DOE, Inst Genom & Prote, Los Angeles, CA 90095 USA. [Ochi, T.] MRC, Mol Biol Lab, Cambridge CB2 0QH, England. RP Blundell, TL (reprint author), Univ Cambridge, Dept Biochem Sanger Bldg, 80 Tennis Court Rd, Cambridge CB2 1GA, England. EM tlb20@cam.ac.uk OI Ascher, David/0000-0003-2948-2413 FU Wellcome Trust [093167/Z/ 10/Z]; C. J. Martin Research Fellowship from National Health and Medical Research Council of Australia [APP1072476]; Gates Cambridge Scholarship FX T.O, Q.W, B.L.S, D.C and D.A were supported by a Wellcome Trust Programme Grant (application No. 093167/Z/ 10/Z. D.B.A received a C. J. Martin Research Fellowship from the National Health and Medical Research Council of Australia (APP1072476), and S.R.E was supported by a Gates Cambridge Scholarship. NR 77 TC 0 Z9 0 U1 3 U2 3 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1040-0400 EI 1572-9001 J9 STRUCT CHEM JI Struct. Chem. PD FEB PY 2017 VL 28 IS 1 SI SI BP 161 EP 171 DI 10.1007/s11224-016-0841-7 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Crystallography SC Chemistry; Crystallography GA EL0WB UT WOS:000394341400021 ER PT J AU Bernstein, HC Brislawn, C Renslow, RS Dana, K Morton, B Lindemann, SR Song, HS Atci, E Beyenal, H Fredrickson, JK Jansson, JK Moran, JJ AF Bernstein, Hans C. Brislawn, Colin Renslow, Ryan S. Dana, Karl Morton, Beau Lindemann, Stephen R. Song, Hyun-Seob Atci, Erhan Beyenal, Haluk Fredrickson, James K. Jansson, Janet K. Moran, James J. TI Trade-offs between microbiome diversity and productivity in a stratified microbial mat SO ISME JOURNAL LA English DT Article ID PHOTOSYNTHESIS-COUPLED RESPIRATION; RATIO MASS-SPECTROMETRY; SPECIES-ENERGY THEORY; BACTERIAL COMMUNITIES; RICHNESS; BIOFILMS; OXYGEN; SENSITIVITY; SEDIMENTS; ECOLOGY AB Productivity is a major determinant of ecosystem diversity. Microbial ecosystems are the most diverse on the planet yet very few relationships between diversity and productivity have been reported as compared with macro-ecological studies. Here we evaluated the spatial relationships of productivity and microbiome diversity in a laboratory-cultivated photosynthetic mat. The goal was to determine how spatial diversification of microorganisms drives localized carbon and energy acquisition rates. We measured sub-millimeter depth profiles of net primary productivity and gross oxygenic photosynthesis in the context of the localized microenvironment and community structure, and observed negative correlations between species richness and productivity within the energy-replete, photic zone. Variations between localized community structures were associated with distinct taxa as well as environmental profiles describing a continuum of biological niches. Spatial regions in the photic zone corresponding to high primary productivity and photosynthesis rates had relatively low-species richness and high evenness. Hence, this system exhibited negative species-productivity and species-energy relationships. These negative relationships may be indicative of stratified, light-driven microbial ecosystems that are able to be the most productive with a relatively smaller, even distributions of species that specialize within photic zones. C1 [Bernstein, Hans C.; Dana, Karl; Moran, James J.] Pacific Northwest Natl Lab, Chem & Biol Signature Sci, POB 999,MS IN P7-50, Richland, WA 99352 USA. [Bernstein, Hans C.; Brislawn, Colin; Renslow, Ryan S.; Morton, Beau; Lindemann, Stephen R.; Song, Hyun-Seob; Fredrickson, James K.; Jansson, Janet K.] Pacific Northwest Natl Lab, Div Biol Sci, Richland, WA USA. [Bernstein, Hans C.; Renslow, Ryan S.; Atci, Erhan; Beyenal, Haluk] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. RP Bernstein, HC (reprint author), Pacific Northwest Natl Lab, Chem & Biol Signature Sci, POB 999,MS IN P7-50, Richland, WA 99352 USA. EM Hans.Bernstein@pnnl.gov; James.Moran@pnnl.gov FU US Department of Energy Office of Biological and Environmental Research (BER) Genomic Science Program; Office of Science of the U.S. DOE [DE-AC0205CH11231]; Community Sequencing Project [701]; Linus Pauling Distinguished Post-doctoral Fellowship; Laboratory Directed Research program at PNNL; DOE [DE-AC05-76RLO 1830] FX This research was supported by the US Department of Energy Office of Biological and Environmental Research (BER) Genomic Science Program and is a contribution of the Fundamental Scientific Focus Area. The work conducted by the U.S. DOE Joint Genome Institute was supported by the Office of Science of the U.S. DOE under contract No. DE-AC0205CH11231 and Community Sequencing Project 701. HCB and RSR are grateful for support given by the Linus Pauling Distinguished Post-doctoral Fellowship, a Laboratory Directed Research program at PNNL. We wish to acknowledge William P. Inskeep, William C. Nelson, James C. Stegen and Jennifer M. Mobberley for helpful discussions and critical review of this study. PNNL is operated for the DOE by Battelle Memorial Institute under Contract DE-AC05-76RLO 1830. NR 52 TC 0 Z9 0 U1 1 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD FEB PY 2017 VL 11 IS 2 BP 405 EP 414 DI 10.1038/ismej.2016.133 PG 10 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA EL3TF UT WOS:000394541500010 PM 27801910 ER PT J AU Martiny, JBH Martiny, AC Weihe, C Lu, Y Berlemont, R Brodie, EL Goulden, ML Treseder, KK Allison, SD AF Martiny, Jennifer B. H. Martiny, Adam C. Weihe, Claudia Lu, Ying Berlemont, Renaud Brodie, Eoin L. Goulden, Michael L. Treseder, Kathleen K. Allison, Steven D. TI Microbial legacies alter decomposition in response to simulated global change SO ISME JOURNAL LA English DT Article ID RNA GENE DATABASE; COMMUNITY COMPOSITION; LITTER DECOMPOSITION; ENVIRONMENTAL-CHANGE; CLIMATE-CHANGE; RESILIENCE; DROUGHT; ECOSYSTEMS; RESISTANCE; GRASSLAND AB Terrestrial ecosystem models assume that microbial communities respond instantaneously, or are immediately resilient, to environmental change. Here we tested this assumption by quantifying the resilience of a leaf litter community to changes in precipitation or nitrogen availability. By manipulating composition within a global change experiment, we decoupled the legacies of abiotic parameters versus that of the microbial community itself. After one rainy season, more variation in fungal composition could be explained by the original microbial inoculum than the litterbag environment (18% versus 5.5% of total variation). This compositional legacy persisted for 3 years, when 6% of the variability in fungal composition was still explained by the microbial origin. In contrast, bacterial composition was generally more resilient than fungal composition. Microbial functioning (measured as decomposition rate) was not immediately resilient to the global change manipulations; decomposition depended on both the contemporary environment and rainfall the year prior. Finally, using metagenomic sequencing, we showed that changes in precipitation, but not nitrogen availability, altered the potential for bacterial carbohydrate degradation, suggesting why the functional consequences of the two experiments may have differed. Predictions of how terrestrial ecosystem processes respond to environmental change may thus be improved by considering the legacies of microbial communities. C1 [Martiny, Jennifer B. H.; Martiny, Adam C.; Weihe, Claudia; Lu, Ying; Treseder, Kathleen K.; Allison, Steven D.] Univ Calif Irvine, Dept Ecol & Evolutionary Biol, 321 Steinhaus Hall, Irvine, CA 92697 USA. [Martiny, Adam C.; Berlemont, Renaud; Goulden, Michael L.; Allison, Steven D.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Berlemont, Renaud] Calif State Univ Long Beach, Dept Biol, Long Beach, CA 90840 USA. [Brodie, Eoin L.] Lawrence Berkeley Natl Lab, Earth & Environm Sci, Ecol Dept, Berkeley, CA USA. [Brodie, Eoin L.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. RP Martiny, JBH (reprint author), Univ Calif Irvine, Dept Ecol & Evolutionary Biol, 321 Steinhaus Hall, Irvine, CA 92697 USA. EM jmartiny@uci.edu RI Allison, Steven/E-2978-2010 OI Allison, Steven/0000-0003-4629-7842 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research (BER) [DE-PS02-09ER09-25]; NSF Major Research Instrumentation program FX We thank J Brown, A Chase, B Khalili, M Nelson and R Puxty for comments on earlier versions of the manuscript and K Matulich for technical and statistical assistance. This work was supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research (BER), under Award Number DE-PS02-09ER09-25 and the NSF Major Research Instrumentation program. NR 51 TC 0 Z9 0 U1 6 U2 6 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD FEB PY 2017 VL 11 IS 2 BP 490 EP 499 DI 10.1038/ismej.2016.122 PG 10 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA EL3TF UT WOS:000394541500017 PM 27740610 ER PT J AU Zimmermann, M Wang, SS Zhang, HY Lin, TY Malfatti, M Haack, K Ognibene, T Yang, HY Airhart, S Turteltaub, KW Cimino, GD Tepper, CG Drakaki, A Chamie, K White, RD Pan, CX Henderson, PT AF Zimmermann, Maike Wang, Si-Si Zhang, Hongyong Lin, Tzu-yin Malfatti, Michael Haack, Kurt Ognibene, Ted Yang, Hongyuan Airhart, Susan Turteltaub, Kenneth W. Cimino, George D. Tepper, Clifford G. Drakaki, Alexandra Chamie, Karim White, Ralph de Vere Pan, Chong-xian Henderson, Paul T. TI Microdose-Induced Drug-DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice SO MOLECULAR CANCER THERAPEUTICS LA English DT Article ID CELL LUNG-CANCER; ACCELERATOR MASS-SPECTROMETRY; PLATINUM-BASED CHEMOTHERAPY; BLADDER-CANCER; DICARBOXYLATE PLATINUM(II); CLINICAL PHARMACOKINETICS; NEOADJUVANT CHEMOTHERAPY; PERIPHERAL-BLOOD; ERCC1 EXPRESSION; TUMOR RESPONSE AB We report progress on predicting tumor response to platinum-based chemotherapy with a novel mass spectrometry approach. Fourteen bladder cancer patients were administered one diagnostic microdose each of [14C] carboplatin (1% of the therapeutic dose). Carboplatin-DNA adducts were quantified by accelerator mass spectrometry in blood and tumor samples collected within 24 hours, and compared with subsequent chemotherapy response. Patients with the highest adduct levels were responders, but not all responders had high adduct levels. Four patient-derived bladder cancer xeno-graft mouse models were used to test the possibility that another drug in the regimen could cause a response. The mice were dosed with [14C] carboplatin or [14C] gemcitabine and the resulting drug-DNA adduct levels were compared with tumor response to chemotherapy. At least one of the drugs had to induce high drug-DNA adduct levels or create a synergistic increase in overall adducts to prompt a corresponding therapeutic response, demonstrating proof-ofprinciple for drug-DNA adducts as predictive biomarkers. C1 [Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong; Lin, Tzu-yin; Pan, Chong-xian; Henderson, Paul T.] Univ Calif Davis, Dept Internal Med, Div Hematol & Oncol, Sacramento, CA 95817 USA. [Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong; Lin, Tzu-yin; Pan, Chong-xian; Henderson, Paul T.] Univ Calif Davis, Ctr Comprehens Canc, Sacramento, CA 95817 USA. [Zimmermann, Maike; Cimino, George D.; Henderson, Paul T.] Accelerated Med Diagnost Inc, Berkeley, CA USA. [Malfatti, Michael; Haack, Kurt; Ognibene, Ted; Turteltaub, Kenneth W.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Yang, Hongyuan; Airhart, Susan] Jackson Lab, Sacramento, CA USA. [Tepper, Clifford G.] Univ Calif Davis, Sch Med, Dept Biochem & Mol Med, Davis, CA USA. [Drakaki, Alexandra] Univ Calif Los Angeles, Med Ctr, Div Hematol & Oncol, Los Angeles, CA 90024 USA. [Chamie, Karim] Univ Calif Los Angeles, Med Ctr, Dept Urol, Los Angeles, CA 90024 USA. [White, Ralph de Vere; Pan, Chong-xian] Univ Calif Davis, Dept Urol, Sacramento, CA 95817 USA. [Pan, Chong-xian] VA Northern Calif Hlth Care Syst, Mather, CA USA. [Wang, Si-Si] Jilin Univ, Hosp 1, Translat Med Res Inst, Changchun, Peoples R China. RP Pan, CX (reprint author), Univ Calif Davis, Dept Internal Med, Div Hematol & Oncol, Sacramento, CA 95817 USA.; Pan, CX (reprint author), Univ Calif Davis, Dept Urol, Sacramento, CA 95817 USA.; Pan, CX (reprint author), VA Northern Calif Hlth Care Syst, Mather, CA USA.; Henderson, PT (reprint author), Univ Calif Davis, Sch Med, 4501 X St,Room 3016, Sacramento, CA 95718 USA. EM cxpan@ucdavis.edu; phenderson@ucdavis.edu FU NIH [CA93373]; SBIR [HHSN261201000133C, HHSN261201200048C]; LLNL [LDRD 08-LW-100]; NIH/NIGMS [P41 RR13461]; American Cancer Society; Knapp Family Fund; VA Career Development Award-2; U.S. Department of Energy [DE-AC52-07NA27344]; National Institutes of Health, National Center for Research Resources, Biomedical Technology Program [P41 RR13461]; NCI [P30CA093373] FX This work was funded by NIH grants CA93373 (R. de Vere White), SBIR contracts to AMD Phase I HHSN261201000133C (P.T. Henderson), Phase II HHSN261201200048C (P.T. Henderson), LLNL grants LDRD 08-LW-100 (P.T. Henderson and M. Malfatti), NIH/NIGMS P41 RR13461 (K.W. Turteltaub), American Cancer Society (C.-X. Pan), the Knapp Family Fund (P.T. Henderson), and VA Career Development Award-2 (C.-X. Pan). This work was performed (partially) at the Research Resource for Biomedical AMS, which is operated at LLNL under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344. The Research Resource is supported by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program grant P41 RR13461. The UC Davis Comprehensive Cancer Center Genomics Shared Resource is supported by Cancer Center Support Grant P30CA093373 from the NCI. NR 53 TC 1 Z9 1 U1 1 U2 1 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1535-7163 EI 1538-8514 J9 MOL CANCER THER JI Mol. Cancer Ther. PD FEB PY 2017 VL 16 IS 2 BP 376 EP 387 DI 10.1158/1535-7163.MCT-16-0381 PG 12 WC Oncology SC Oncology GA EM8LV UT WOS:000395563700012 PM 27903751 ER PT J AU Lee, YCG Leek, C Levine, MT AF Lee, Yuh Chwen G. Leek, Courtney Levine, Mia T. TI Recurrent Innovation at Genes Required for Telomere Integrity in Drosophila SO MOLECULAR BIOLOGY AND EVOLUTION LA English DT Article DE telomere; Drosophila; positive selection; gene turnover; transposable element; terminin ID ADAPTIVE PROTEIN EVOLUTION; MOLECULAR POPULATION-GENETICS; CENTROMERE-SPECIFIC HISTONE; TRANSPOSABLE ELEMENTS; MEIOTIC DRIVE; HET-A; HETEROCHROMATIN PROTEIN-1; POSITIVE SELECTION; FISSION YEAST; GAG PROTEINS AB Telomeres are nucleoprotein complexes at the ends of linear chromosomes. These specialized structures ensure genome integrity and faithful chromosome inheritance. Recurrent addition of repetitive, telomere-specific DNA elements to chromosome ends combats end-attrition, while specialized telomere-associated proteins protect naked, double-stranded chromosome ends from promiscuous repair into end-to-end fusions. Although telomere length homeostasis and end-protection are ubiquitous across eukaryotes, there is sporadic but building evidence that the molecular machinery supporting these essential processes evolves rapidly. Nevertheless, no global analysis of the evolutionary forces that shape these fast-evolving proteins has been performed on any eukaryote. The abundant population and comparative genomic resources of Drosophila melanogaster and its close relatives offer us a unique opportunity to fill this gap. Here we leverage population genetics, molecular evolution, and phylogenomics to define the scope and evolutionary mechanisms driving fast evolution of genes required for telomere integrity. We uncover evidence of pervasive positive selection across multiple evolutionary timescales. We also document prolific expansion, turnover, and expression evolution in gene families founded by telomeric proteins. Motivated by the mutant phenotypes and molecular roles of these fast-evolving genes, we put forward four alternative, but not mutually exclusive, models of intra-genomic conflict that may play out at very termini of eukaryotic chromosomes. Our findings set the stage for investigating both the genetic causes and functional consequences of telomere protein evolution in Drosophila and beyond. C1 [Lee, Yuh Chwen G.] Univ Chicago, Dept Ecol & Evolut, 940 E 57Th St, Chicago, IL 60637 USA. [Leek, Courtney; Levine, Mia T.] Univ Penn, Dept Biol, Sch Arts & Sci, Philadelphia, PA 19104 USA. [Levine, Mia T.] Univ Penn, Perelman Sch Med, Epigenet Program, Philadelphia, PA 19104 USA. [Lee, Yuh Chwen G.] Lawrence Berkeley Natl Lab, Dept Genome Biol, Berkeley, CA USA. RP Levine, MT (reprint author), Univ Penn, Dept Biol, Sch Arts & Sci, Philadelphia, PA 19104 USA.; Levine, MT (reprint author), Univ Penn, Perelman Sch Med, Epigenet Program, Philadelphia, PA 19104 USA. EM m.levine@sas.upenn.edu FU NIH NRSA [GM109676]; NIH K99/R00 Pathway to Independence Fellowship [GM107351] FX The authors thank members of the Levine Lab for valuable discussions and two anonymous reviewers for their spot-on suggestions. We are also grateful for A. Kern for many insightful comments. This work was supported by an NIH NRSA GM109676 to YCGL and an NIH K99/R00 Pathway to Independence Fellowship GM107351 to MTL. NR 132 TC 0 Z9 0 U1 4 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0737-4038 EI 1537-1719 J9 MOL BIOL EVOL JI Mol. Biol. Evol. PD FEB PY 2017 VL 34 IS 2 BP 467 EP 482 DI 10.1093/molbev/msw248 PG 16 WC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity GA EO6BD UT WOS:000396775800002 PM 27836984 ER PT J AU Buss, HG Chan, SY Lynd, NA McCloskey, BD AF Buss, Hilda G. Chan, Sophia Y. Lynd, Nathaniel A. McCloskey, Bryan D. TI Nonaqueous Polyelectrolyte Solutions as Liquid Electrolytes with High Lithium Ion Transference Number and Conductivity SO ACS ENERGY LETTERS LA English DT Article ID BLOCK-COPOLYMER ELECTROLYTES; POLYMER ELECTROLYTES; SALT CONCENTRATION; TRANSPORT-PROPERTIES; MOLECULAR-WEIGHT; BATTERIES; FRICTION; TEMPERATURE; CHALLENGES; CONDUCTORS AB Although the small-molecule lithium salt solutions currently employed in lithium-ion batteries display high ionic conductivity, sigma, most of the initial current is carried by the electrochemically inactive anion, resulting in concentration polarization of the salt during cycling. Liquid electrolytes with high Li+ transference number, t(+)., and high sigma could improve battery performance by limiting these concentration gradients. We propose lithium-neutralized polyanions in solution as an intriguing strategy to attain both high t(+),. and high sigma at room temperature and validate the approach using a model system. Pulsed field gradient nuclear magnetic resonance spectroscopy (PFG-NMR) is used to attain self diffusion coefficients of the ions and hence t(+).. Conductivity calculated from PFG-NMR showed good agreement with conductivity measured using a conductivity meter. Although the polyelectrolyte solutions exhibit maxima in conductivity at around 0.5 M Li+ (1.5 mS/cm), t(+), continuously increases with concentration, achieving 0.98 at 1.0 M Li+ in solutions containing the highest molecular weight polyanion studied. C1 [Buss, Hilda G.; Chan, Sophia Y.; McCloskey, Bryan D.] Univ Calif Berkeley, Dept Biomol & Chem Engn, Berkeley, CA 94720 USA. [Buss, Hilda G.; McCloskey, Bryan D.] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. [Lynd, Nathaniel A.] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA. RP McCloskey, BD (reprint author), Univ Calif Berkeley, Dept Biomol & Chem Engn, Berkeley, CA 94720 USA.; McCloskey, BD (reprint author), Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. FU National Science Foundation Graduate Research Fellowship; Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technologies Office, of the U.S. Department of Energy [DE-AC02-05CH11231]; Welch Foundation [F-1904]; Office of Science of the U.S. Department of Energy [DE-SC0004993] FX H.G.B. acknowledges support from the National Science Foundation Graduate Research Fellowship. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technologies Office, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, under the Advanced Battery Materials Research (BMR) Program. N.A.L. would like to acknowledge support through the Welch Foundation (Grant No.: F-1904). We are grateful for access to synthesis and NMR facilities at the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. We thank Ksenia Timachova and Jonathan P. King for helpful discussion of PFG-NMR instrumentation and theory. NR 41 TC 0 Z9 0 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2380-8195 J9 ACS ENERGY LETT JI ACS Energy Lett. PD FEB PY 2017 VL 2 IS 2 BP 481 EP 487 DI 10.1021/acsenergylett.6b00724 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Science & Technology - Other Topics; Materials Science GA EK7BH UT WOS:000394080000029 ER PT J AU Segal-Peretz, T Ren, JX Xiong, SS Khaira, G Bowen, A Ocola, LE Divan, R Doxastakis, M Ferrier, NJ de Pablo, J Nealey, PF AF Segal-Peretz, Tamar Ren, Jiaxing Xiong, Shisheng Khaira, Gurdaman Bowen, Alec Ocola, Leonidas E. Divan, Ralu Doxastakis, Manolis Ferrier, Nicola J. de Pablo, Juan Nealey, Paul F. TI Quantitative Three-Dimensional Characterization of Block Copolymer Directed Self-Assembly on Combined Chemical and Topographical Prepatterned Templates SO ACS NANO LA English DT Article DE block copolymer; directed self-assembly; TEM tomography; fluctuations; defects; P2VP-b-PS-b-P2VP ID DIBLOCK COPOLYMERS; TRIBLOCK COPOLYMER; THIN-FILMS; SOLVENT; PATTERNS; NANOFABRICATION; LITHOGRAPHY; TOMOGRAPHY; BEHAVIOR; DEFECTS AB Characterization of the three-dimensional (3D) structure in directed self-assembly (DSA) of block copolymers is crucial for understanding the complex relationships between the guiding template and the resulting polymer structure so DSA could be successfully implemented for advanced lithography applications. Here, we combined scanning transmission electron microscopy (STEM) tomography and coarse-grain simulations to probe the 3D structure of P2VP-b-PS-b-P2VP assembled on prepatterned templates using solvent vapor annealing. The templates consisted of nonpreferential background and raised guiding stripes that had PS-preferential top surfaces and P2VP-preferential sidewalls. The full 3D characterization allowed us to quantify the shape of the polymer domains and the interface between domains as a function of depth in the film and template geometry and offered important insights that were not accessible with 2D metrology. Sidewall guiding was advantageous in promoting the alignment and lowering the roughness of the P2VP domains over the sidewalls, but incommensurate confinement from the increased topography could cause roughness and intermittent dislocations in domains over the background region at the bottom of the film. The 3D characterization of bridge structures between domains over the background and breaks within domains on guiding lines sheds light on possible origins of common DSA defects. The positional fluctuations of the PS/P2VP interface between domains showed a depth-dependent behavior, with high levels of fluctuations near both the free surface of the film and the substrate and lower fluctuation levels in the middle of the film. This research demonstrates how 3D characterization offers a better understanding of DSA processes, leading to better design and fabrication of directing templates. C1 [Segal-Peretz, Tamar; Ren, Jiaxing; Xiong, Shisheng; Khaira, Gurdaman; Bowen, Alec; Doxastakis, Manolis; Ferrier, Nicola J.; de Pablo, Juan; Nealey, Paul F.] Univ Chicago, Inst Mol Engn, 5640 South Ellis Ave, Chicago, IL 60637 USA. [Segal-Peretz, Tamar; Ren, Jiaxing; de Pablo, Juan; Nealey, Paul F.] Argonne Natl Lab, Div Mat Sci, 9700 South Cass Ave, Lemont, IL 60439 USA. [Ocola, Leonidas E.; Divan, Ralu] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 South Cass Ave, Lemont, IL 60439 USA. [Ferrier, Nicola J.] Argonne Natl Lab, Math & Comp Sci Div, 9700 South Cass Ave, Lemont, IL 60439 USA. [Segal-Peretz, Tamar] Technion Israel Inst Technol, Dept Chem Engn, IL-3200003 Haifa, Israel. RP Nealey, PF (reprint author), Univ Chicago, Inst Mol Engn, 5640 South Ellis Ave, Chicago, IL 60637 USA.; Nealey, PF (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 South Cass Ave, Lemont, IL 60439 USA. EM nealey@uchicago.edu OI Ocola, Leonidas/0000-0003-4990-1064 FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design [70NHNB14H012]; [DE-AC02-06CH11357] FX This work was primarily supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. The development of membrane sample fabrication was partly supported by the U.S. Department of Commerce, National Institute of Standards and Technology under the award 70NHNB14H012 as part of the Center for Hierarchical Materials Design. This research used the clean room and microscopy resources at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science user facility operated by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Computational resources for molecular simulation were provided by the Midway computing cluster at the University of Chicago. NR 52 TC 0 Z9 0 U1 15 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2017 VL 11 IS 2 BP 1307 EP 1319 DI 10.1021/acsnano.6b05657 PG 13 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EM5NC UT WOS:000395357300022 PM 28005329 ER PT J AU Talirz, L Sode, H Dumslaff, T Wang, SY Sanchez-Valencia, JR Liu, J Shinde, P Pignedoli, CA Liang, LB Meunier, V Plumb, NC Shi, M Feng, XL Narita, A Mullen, K Fasel, R Ruffieux, P AF Talirz, Leopold Sode, Hajo Dumslaff, Tim Wang, Shiyong Sanchez-Valencia, Juan Ramon Liu, Jia Shinde, Prashant Pignedoli, Carlo A. Liang, Liangbo Meunier, Vincent Plumb, Nicholas C. Shi, Ming Feng, Xinliang Narita, Akimitsu Muellen, Klaus Fasel, Roman Ruffieux, Pascal TI On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons SO ACS NANO LA English DT Article DE graphene nanoribbons; bottom-up synthesis; Scanning tunneling spectroscopy; Raman spectroscopy; on-surface chemistry ID SCANNING TUNNELING MICROSCOPE; ATOMIC-FORCE MICROSCOPY; QUASI-PARTICLE; TRANSISTORS; POLYMERIZATION; SEMICONDUCTORS; STATE; EDGE AB The bottom-up approach to synthesize graphene nanoribbons strives not only to introduce a band gap into the electronic structure of graphene but also to accurately tune its value by designing both the width and edge structure of the ribbons with atomic precision. We report the synthesis of an armchair graphene nanoribbon with a width of nine carbon atoms on Au(111) through surface-assisted aryl aryl coupling and subsequent cyclodehydrogenation of a properly chosen molecular precursor. By combining high-resolution atomic force microscopy, scanning tunneling microscopy, and Raman spectroscopy, we demonstrate that the atomic structure of the fabricated ribbons is exactly as designed. Angle-resolved photoemission spectroscopy and Fourier-transformed scanning tunneling spectroscopy reveal an electronic band gap of 1.4 eV and effective masses of approximate to 0.1 m(e) for both electrons and holes, constituting a substantial improvement over previous efforts toward the development of transistor applications. We use ab initio calculations to gain insight into the dependence of the Raman spectra on excitation wavelength as well as to rationalize the symmetry-dependent contribution of the ribbons' electronic states to the tunneling current. We propose a simple rule for the visibility of frontier electronic bands of armchair graphene nanoribbons in scanning tunneling spectroscopy. C1 [Talirz, Leopold; Sode, Hajo; Wang, Shiyong; Sanchez-Valencia, Juan Ramon; Liu, Jia; Shinde, Prashant; Pignedoli, Carlo A.; Fasel, Roman; Ruffieux, Pascal] Swiss Fed Labs Mat Sci & Technol Empa, Nanotech Surfaces Lab, CH-8600 Dubendorf, Switzerland. [Pignedoli, Carlo A.] Swiss Fed Labs Mat Sci & Technol Empa, NCCR MARVEL, CH-8600 Dubendorf, Switzerland. [Dumslaff, Tim; Narita, Akimitsu; Muellen, Klaus] Max Planck Inst Polymer Res, D-55128 Mainz, Germany. [Liang, Liangbo; Meunier, Vincent] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Liang, Liangbo] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Plumb, Nicholas C.; Shi, Ming] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Feng, Xinliang] Tech Univ Dresden, Ctr Adv Elect Dresden, D-01062 Dresden, Germany. [Feng, Xinliang] Tech Univ Dresden, Dept Chem & Food Chem, D-01062 Dresden, Germany. [Fasel, Roman] Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland. [Talirz, Leopold] Univ York, Dept Phys, Heslington YO10 5DD, England. RP Ruffieux, P (reprint author), Swiss Fed Labs Mat Sci & Technol Empa, Nanotech Surfaces Lab, CH-8600 Dubendorf, Switzerland. EM pascal.ruffieux@empa.ch RI Ruffieux, Pascal/E-8227-2010 OI Ruffieux, Pascal/0000-0001-5729-5354 FU Swiss National Science Foundation (SNSF); Office of Naval Research BRC Program; European Science Foundation (ESF); European Commission Graphene Flagship; State Secretariat for Education, Research and Innovation via the COST Action [MP0901 NanoTP]; Eugene P. Wigner Fellowship at Oak Ridge National Laboratory; Swiss National Supercomputing Centre (CSCS) [s670] FX This work was supported by the Swiss National Science Foundation (SNSF), the Office of Naval Research BRC Program, the European Science Foundation (ESF) under the EUROCORES Programme EuroGRAPHENE, the European Commission Graphene Flagship, and by the State Secretariat for Education, Research and Innovation via the COST Action MP0901 NanoTP. L.L. was supported by a Eugene P. Wigner Fellowship at Oak Ridge National Laboratory. Computational resources were provided by the Swiss National Supercomputing Centre (CSCS) under project ID s670 and the Center for Computational Innovation at Rensselaer Polytechnic Institute. We thank Aliaksandr Yakutovich for helpful advice concerning AFM simulations. NR 50 TC 1 Z9 1 U1 15 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2017 VL 11 IS 2 BP 1380 EP 1388 DI 10.1021/acsnano.6b06405 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EM5NC UT WOS:000395357300029 PM 28129507 ER PT J AU Szwejkowski, CJ Giri, A Warzoha, R Donovan, BF Kaehr, B Hopkins, PE AF Szwejkowski, Chester J. Giri, Ashutosh Warzoha, Ronald Donovan, Brian F. Kaehr, Bryan Hopkins, Patrick E. TI Molecular Tuning of the Vibrational Thermal Transport Mechanisms in Fullerene Derivative Solutions SO ACS NANO LA English DT Article DE functionalized fullerene derivatives; thermal boundary conductance; molecule/liquid interfaces; vibrational bridging; time domain thermotransmittance ID HETEROJUNCTION SOLAR-CELLS; THERMOELECTRIC-POWER; HEAT-TRANSPORT; C-60; DYNAMICS; BULK; CONDUCTIVITY; POLYMER; C-70; FEMTOSECOND AB Control over the thermal conductance from excited molecules into an external environment is essential for the development of customized photothermal therapies and chemical processes. This control could be achieved through molecule tuning of the chemical moieties in fullerene derivatives. For example, the thermal transport properties in the fullerene derivatives indene-C-60 monoadduct (ICMA), indene-C-60 bisadduct (ICBA), [6,6]-phenyl C-61 butyric acid methyl ester (PCBM), [6,6]-phenyl C-61 butyric acid butyl ester (PCBB), and [6,6]-phenyl C-61 butyric acid octyl ester (PCBO) could be tuned by choosing a functional group such that its intrinsic vibrational density of states bridge that of the parent molecule and a liquid. However, this effect has never been experimentally realized for molecular interfaces in liquid suspensions. Using the pump probe technique time domain thermotransmittance, we measure the vibrational relaxation times of photoexcited fullerene derivatives in solutions and calculate an effective thermal boundary conductance from the opto-thermally excited molecule into the liquid. We relate the thermal boundary conductance to the vibrational modes of the functional groups using density of states calculations from molecular dynamics. Our findings indicate that the attachment of an ester group to a C-60 molecule, such as in PCBM, PCBB, and PCBO, provides low-frequency modes which facilitate thermal coupling with the liquid. This offers a channel for heat flow in addition to direct coupling between the buckyball and the liquid. In contrast, the attachment of indene rings to C-60 does not supply the same low-frequency modes and, thus, does not generate the same enhancement in thermal boundary conductance. Understanding how chemical functionalization of C-60 affects the vibrational thermal transport in molecule/liquid systems allows the thermal boundary conductance to be manipulated and adapted for medical and chemical applications. C1 [Szwejkowski, Chester J.; Giri, Ashutosh; Hopkins, Patrick E.] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. [Donovan, Brian F.] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. [Warzoha, Ronald] US Naval Acad, Dept Mech Engn, Annapolis, MD 21402 USA. [Kaehr, Bryan] Sandia Natl Labs, Adv Mat Lab, POB 5800, Albuquerque, NM 87185 USA. [Kaehr, Bryan] Univ New Mexico, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA. [Donovan, Brian F.] US Naval Acad, Dept Phys, Annapolis, MD 21402 USA. RP Hopkins, PE (reprint author), Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. EM phopkins@virginia.edu FU Office of Naval Research [N00014-15-12769]; Army Research Office [W911NF-16-1-0320]; Laboratory Directed Research and Development program at Sandia National Laboratories, a multimission laboratory [DE-AC04-94AL85000] FX We appreciate support from the Office of Naval Research (N00014-15-12769), and the Army Research Office (W911NF-16-1-0320). B.K. gratefully acknowledges support from the Laboratory Directed Research and Development program at Sandia National Laboratories, a multimission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 88 TC 0 Z9 0 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2017 VL 11 IS 2 BP 1389 EP 1396 DI 10.1021/acsnano.6b06499 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EM5NC UT WOS:000395357300030 PM 28112951 ER PT J AU Bhaway, SM Qiang, Z Xia, YF Xia, XH Lee, B Yager, KG Zhang, LH Kisslinger, K Chen, YM Liu, KW Zhu, Y Vogt, BD AF Bhaway, Sarang M. Qiang, Zhe Xia, Yanfeng Xia, Xuhui Lee, Byeongdu Yager, Kevin G. Zhang, Lihua Kisslinger, Kim Chen, Yu-Ming Liu, Kewei Zhu, Yu Vogt, Bryan D. TI Operando Grazing Incidence Small-Angle X-ray Scattering/X-ray Diffraction of Model Ordered Mesoporous Lithium-Ion Battery Anodes SO ACS NANO LA English DT Article DE cooperative assembly; nanoporous; metal oxide anode ID TRANSMISSION ELECTRON-MICROSCOPY; IN-SITU; METAL-OXIDES; THIN-FILMS; ELECTROCHEMICAL PERFORMANCE; ELLIPSOMETRIC POROSIMETRY; NEGATIVE-ELECTRODE; BLOCK-COPOLYMERS; CHARGE STORAGE; POROUS CO3O4 AB Emergent lithium-ion (Li+) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li+ ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li+, but in many cases these nanostructures evolve during electrochemical charging discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporous NiCo2O4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (approximate to 9 nm), the ordered nanostructure collapses during the first two charge discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIRD and irreversible capacity loss. Conversely, anodes with larger ordered mesopores (17-28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. This preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; however, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge discharge cycles leads to capacity decay in battery performance. These multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) are translated to the nanostructure during battery operation. Moreover, small changes in the nanostructure can build up to significant morphological transformations that adversely impact battery performance through multiple charge discharge cycles. C1 [Bhaway, Sarang M.; Qiang, Zhe; Xia, Xuhui; Vogt, Bryan D.] Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA. [Xia, Yanfeng; Chen, Yu-Ming; Liu, Kewei; Zhu, Yu] Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. [Lee, Byeongdu] Argonne Natl Lab, Adv Photon Source, Ctr Nanoscale Mat, Xray Sci Div, Argonne, IL 60439 USA. [Yager, Kevin G.; Zhang, Lihua; Kisslinger, Kim] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Vogt, BD (reprint author), Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA. EM vogt@uakron.edu RI Vogt, Bryan/H-1986-2012; OI Vogt, Bryan/0000-0003-1916-7145; Lee, Byeongdu/0000-0003-2514-8805 FU National Science Foundation [CBET-1336057]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; DOE Office of Science [DE-AC02-06CH11357]; [DE-SC0012704] FX This work has been partially supported by the National Science Foundation under grant CBET-1336057. The authors express their gratitude to Dr. Min Gao at Kent State University for assistance with obtaining TEM images of the initial (uncycled) samples. The TEM data were obtained at the (cryo)TEM facility at the Liquid Crystal Institute, Kent State University, supported by the Ohio Research Scholars Program Research Cluster on Surfaces in Advanced Materials. The authors thank Dr. Pattarasai Tangvijitsakul and Dr. Mark Soucek for their synthesis and characterization of the PMPEGMA-b-PBA block copolymer template. This research used JEOL2100F HRTEM and Hitachi2700C STEM of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under contract no. DE-SC0012704. Preliminary GISAXS measurements were performed using X9 beamline of National Synchrotron Light Source, Brookhaven National Laboratory, supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-98CH10886. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by the Argonne National Laboratory under contract no. DE-AC02-06CH11357. NR 62 TC 0 Z9 0 U1 15 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2017 VL 11 IS 2 BP 1443 EP 1454 DI 10.1021/acsnano.6b06708 PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EM5NC UT WOS:000395357300035 PM 28145689 ER PT J AU Xu, CQ Lee, MS Wang, YG Cantu, DC Li, J Glezakou, VA Rousseau, R AF Xu, Cong-Qiao Lee, Mal-Soon Wang, Yang-Gang Cantu, David C. Li, Jun Glezakou, Vassiliki-Alexandra Rousseau, Roger TI Structural Rearrangement of Au-Pd Nanoparticles under Reaction Conditions: An ab Initio Molecular Dynamics Study SO ACS NANO LA English DT Article DE Au-Pd nanoalloy; TiO2; ab initio molecular dynamics; redox property; charge transfer ID CORE-SHELL NANOPARTICLES; LIQUID-PHASE HYDROGENATION; SOLVENT-FREE OXIDATION; AU-PD/TIO2 CATALYSTS; PALLADIUM-GOLD; BIMETALLIC CATALYSTS; ALLOY NANOPARTICLES; AG NANOPARTICLES; CARBON-MONOXIDE; WORK FUNCTION AB The structure, composition, and atomic distribution of nanoalloys under operating conditions are of significant importance for their catalytic activity. In the present work, we use ab initio molecular dynamics simulations to understand the structural behavior of Au-Pd nanoalloys supported on rutile TiO2 under different conditions. We find that the Au-Pd structure is strongly dependent on the redox properties of the support, originating from strong metal support interactions. Under reducing conditions, Pd atoms are inclined to move toward the metal/oxide interface, as indicated by a significant increase of Pd-Ti bonds. This could be attributed to the charge localization at the interface that leads to Coulomb attractions to positively charged Pd atoms. In contrast, under oxidizing conditions, Pd atoms would rather stay inside or on the exterior of the nanoparticle. Moreover, Pd atoms on the alloy surface can be stabilized by hydrogen adsorption, forming Pd-H bonds, which are stronger than Au-H bonds. Our work offers critical insights into the structure and redox properties of Au-Pd nanoalloy catalysts under working conditions. C1 [Xu, Cong-Qiao; Li, Jun] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. [Xu, Cong-Qiao; Lee, Mal-Soon; Wang, Yang-Gang; Cantu, David C.; Glezakou, Vassiliki-Alexandra; Rousseau, Roger] Pacific Northwest Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Li, Jun] Pacific Northwest Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Wang, Yang-Gang] Fritz Haber Inst Max Planck Gesell, D-14195 Berlin, Germany. RP Li, J (reprint author), Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China.; Lee, MS; Wang, YG (reprint author), Pacific Northwest Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA.; Li, J (reprint author), Pacific Northwest Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA.; Wang, YG (reprint author), Fritz Haber Inst Max Planck Gesell, D-14195 Berlin, Germany. EM malsoon.lee@pnnl.gov; wangygtccl@gmail.com; junli@tsinghua.edu.cn RI Rousseau, Roger/C-3703-2014; OI Xu, Cong-Qiao/0000-0003-4593-3288 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, Biosciences; NSFC [21521091]; NKBRSF of China [2013CB834603]; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory; PNNL Institutional Computing (PIC) program at Pacific Northwest National Laboratory FX The authors M.S.L., Y.G.W., D.C.C., V.A.G., and R.R. were supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, & Biosciences. All the calculations were performed at the Pacific Northwest National Laboratory (PNNL), which is operated by Battelle for the DOE. The authors C.QX. and J.L. were financially sponsored by NSFC (21521091) and NKBRSF (2013CB834603) of China. Computational resources were provided by the W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research, and PNNL Institutional Computing (PIC) program, both located at Pacific Northwest National Laboratory. NR 124 TC 1 Z9 1 U1 12 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2017 VL 11 IS 2 BP 1649 EP 1658 DI 10.1021/acsnano.6b07409 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EM5NC UT WOS:000395357300056 PM 28121422 ER PT J AU Jalilov, AS Nilewski, LG Berka, V Zhang, CH Yakovenko, AA Wu, G Kent, TA Tsai, AL Tour, JM AF Jalilov, Almaz S. Nilewski, Lizanne G. Berka, Vladimir Zhang, Chenhao Yakovenko, Andrey A. Wu, Gang Kent, Thomas A. Tsai, Ah-Lim Tour, James M. TI Perylene Diimide as a Precise Graphene-like Superoxide Dismutase Mimetic SO ACS NANO LA English DT Article DE superoxide dismutase; reactive oxygen species; radical anion; electron paramagnetic resonance; perylene diimide ID WALLED CARBON NANOTUBES; OXYGEN REDUCTION REACTION; COUPLED ELECTRON-TRANSFER; TRANSFER MECHANISMS; IRON PORPHYRINS; DRUG-DELIVERY; O-2 REDUCTION; ACTIVE-SITES; PI-DIMERS; IN-VIVO AB Here we show that the active portion of a graphitic nanoparticle can be mimicked by a perylene diimide (PDI) to explain the otherwise elusive biological and electrocatalytic activity of the nanoparticle construct. Development of molecular that mimic the antioxidant properties of oxidized graphenes, in this case the poly(ethylene glycolated) hydrophilic carbon clusters (PEG-HCCs), will afford important insights into the highly efficient activity of PEG-HCCs and their graphitic analogues. PEGylated perylene diimides (PEG(n)-PDI) serve as well-defined molecular analogues of PEG-HCCs and oxidized graphenes in general, and their antioxidant and superoxide dismutase-like (SOD-like) properties were studied. PEG(n)-PDIs have two reversible reduction peaks, which are more positive than the oxidation peak of superoxide (O-2(center dot-) This is similar to the reduction peak of the HCCs. Thus, as with PEG-HCCs, PEG(n)-PDIs are also strong single-electron oxidants of O-2(center dot-). Furthermore, reduced PEG(n)-PDI, PEG(n)-PDI center dot-, in the presence of protons, was shown to reduce O-2(center dot-) to H2O2 to complete the catalytic cycle in this SOD analogue. The kinetics of the conversion of O-2(center dot-) to O-2 and H2O2 by PEG(8)-PDI was measured using freeze-trap EPR experiments to provide a turnover number of 133 s(-1); the similarity in kinetics further supports that PEG(8)-PDI is a true SOD mimetic. Finally, PDIs can be used as catalysts in the electrochemical oxygen reduction reaction in water, which proceeds by a two electron process with the production of H2O2, mimicking graphene oxide nanoparticles that are otherwise difficult to study spectroscopically. C1 [Jalilov, Almaz S.; Nilewski, Lizanne G.; Zhang, Chenhao; Tour, James M.] Rice Univ, Dept Chem, 6100 Main St, Houston, TX 77005 USA. [Tour, James M.] Rice Univ, NanoCarbon Ctr, 6100 Main St, Houston, TX 77005 USA. [Tour, James M.] Rice Univ, Dept Mat Sci & NanoEngn, 6100 Main St, Houston, TX 77005 USA. [Kent, Thomas A.] Baylor Coll Med, Dept Neurol, Houston, TX 77030 USA. [Kent, Thomas A.] Michel E DeBakey VA Med Ctr, Ctr Translat Res Inflammatory Dis, Houston, TX 77030 USA. [Berka, Vladimir; Tsai, Ah-Lim] Univ Texas Houston Med Sch, Internal Med, Hematol, Houston, TX 77030 USA. [Yakovenko, Andrey A.] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Tour, JM (reprint author), Rice Univ, Dept Chem, 6100 Main St, Houston, TX 77005 USA.; Tour, JM (reprint author), Rice Univ, NanoCarbon Ctr, 6100 Main St, Houston, TX 77005 USA.; Tour, JM (reprint author), Rice Univ, Dept Mat Sci & NanoEngn, 6100 Main St, Houston, TX 77005 USA.; Tsai, AL (reprint author), Univ Texas Houston Med Sch, Internal Med, Hematol, Houston, TX 77030 USA. EM ah-lim.tsai@uth.tmc.edu; tour@rice.edu OI Tour, James/0000-0002-8479-9328; Nilewski, Lizanne/0000-0003-0949-9170 FU NIH [R01-N5094535]; Dunn Foundation FX We thank the NIH (R01-N5094535) and the Dunn Foundation for financial support. NR 54 TC 0 Z9 0 U1 20 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2017 VL 11 IS 2 BP 2024 EP 2032 DI 10.1021/acsnano.6b08211 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EM5NC UT WOS:000395357300097 PM 28112896 ER PT J AU Ye, HH Yang, KK Tao, J Liu, YJ Zhang, Q Habibi, S Nie, ZH Xia, XH AF Ye, Haihang Yang, Kuikun Tao, Jing Liu, Yijing Zhang, Qian Habibi, Sanaz Nie, Zhihong Xia, Xiaohu TI An Enzyme-Free Signal Amplification Technique for Ultrasensitive Colorimetric Assay of Disease Biomarkers SO ACS NANO LA English DT Article DE iridium nanoparticles; gold vesicle; enzyme mimic; detection; biomarker ID LINKED-IMMUNOSORBENT-ASSAY; PROSTATE-SPECIFIC ANTIGEN; METAL NANOPARTICLES; GOLD NANOPARTICLES; CANCER BIOMARKER; ELISA; VESICLES; NANOCRYSTALS; DISSOCIATION; IMMUNOSENSOR AB Enzyme-based colorimetric assays have been widely used in research laboratories and clinical diagnosis for decades. Nevertheless, as constrained by the performance of enzymes, their detection sensitivity has not been substantially improved in recent years, which inhibits many critical applications such as early detection of cancers. In this work, we demonstrate an enzyme-free signal amplification technique, based on gold vesicles encapsulated with Pd-Ir nanoparticles as peroxidase mimics, for colorimetric assay of disease biomarkers with significantly enhanced sensitivity. This technique overcomes the intrinsic limitations of enzymes, thanks to the superior catalytic efficiency of peroxidase mimics and the efficient loading and release of these mimics. Using human prostate surface antigen as a model biomarker, we demonstrated that the enzyme-free assay could reach a limit of detection at the femtogram/mL level, which is over 10(3)-fold lower than that of conventional enzyme-based assay when the same antibodies and similar procedure were used. C1 [Ye, Haihang; Xia, Xiaohu] Michigan Technol Univ, Dept Chem, Houghton, MI 49931 USA. [Yang, Kuikun; Liu, Yijing; Zhang, Qian; Nie, Zhihong] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20892 USA. [Tao, Jing; Habibi, Sanaz] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Habibi, Sanaz] Michigan Technol Univ, Dept Chem Engn, Houghton, MI 49931 USA. RP Xia, XH (reprint author), Michigan Technol Univ, Dept Chem, Houghton, MI 49931 USA.; Nie, ZH (reprint author), Univ Maryland, Dept Chem & Biochem, College Pk, MD 20892 USA. EM znie@umd.edu; xiaxh@mtu.edu FU National Science Foundation (NSF) Career Award [CHE-1651307]; Michigan Technological University (MTU); NSF Career Award [DMR-1255377]; U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering [DE-AC02-98CH10886] FX This work was supported in part by the National Science Foundation (NSF) Career Award (CHE-1651307) and the startup funds from Michigan Technological University (MTU). Z. Nie gratefully acknowledges the financial support of the NSF Career Award (DMR-1255377). Part of the electron microscopy work at BNL was supported by the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering, under Contract no. DE-AC02-98CH10886. The authors are grateful to Prof. Adrienne Minerick of Department of Chemical Engineering, MTU for her guidance in testing human plasma samples. NR 48 TC 0 Z9 0 U1 17 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2017 VL 11 IS 2 BP 2052 EP 2059 DI 10.1021/acsnano.6b08232 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EM5NC UT WOS:000395357300100 PM 28135070 ER PT J AU Koc, MA Raja, SN Hanson, LA Nguyen, SC Borys, NJ Powers, AS Wu, SV Takano, K Swabeck, JK Olshansky, JH Lin, LW Ritchie, RO Alivisatos, AP AF Koc, Matthew A. Raja, Shilpa N. Hanson, Lindsey A. Nguyen, Son C. Borys, Nicholas J. Powers, Alexander S. Wu, Siva Takano, Kaori Swabeck, Joseph K. Olshansky, Jacob H. Lin, Liwei Ritchie, Robert O. Alivisatos, A. Paul TI Characterizing Photon Reabsorption in Quantum Dot-Polymer Composites for Use as Displacement Sensors SO ACS NANO LA English DT Article DE quantum dots; inner filter effect; nanocomposite; photon recycling; sensor; photoluminescence; fluorescence ID LIGHT-EMITTING-DIODES; COLLECTIVE CELL-MIGRATION; TETRAPOD NANOCRYSTALS; SEEDED GROWTH; FLUORESCENCE; NANOCOMPOSITES; EMISSION; SPECTROSCOPY; CONCENTRATOR; LINEWIDTHS AB The reabsorption of photoluminescence within a medium, an effect known as the inner filter effect (IFE), has been well studied in solutions, but has garnered less attention in regards to solid-state nanocomposites. Photoluminescence from a quantum dot (QD) can selectively excite larger QDs around it resulting in a net red-shift in the reemitted photon. In CdSe/CdS core/shell QD-polymer nanocomposites, we observe a large spectral red-shift of over a third of the line width of the photoluminescence of the nanocomposites over a distance of 100 gm resulting from the IFE. Unlike fluorescent dyes, which do not show a large IFE red-shift, QDs have a component of inhomogeneous broadening that originates from their size distribution and quantum confinement. By controlling the photoluminescence broadening as well as the sample dispersion and concentration, we show that the magnitude of the IFE within the nanocomposite can be tuned. We further demonstrate that this shift can be exploited in order to spectroscopically monitor the vertical displacement of a nanocomposite in a fluorescence microscope. Large energetic shifts in the measured emission with displacement can be maximized, resulting in a displacement sensor with submicrometer resolution. We further show that the composite can be easily attached to biological samples and is able to measure deformations with high temporal and spatial precision. C1 [Koc, Matthew A.; Hanson, Lindsey A.; Nguyen, Son C.; Powers, Alexander S.; Takano, Kaori; Swabeck, Joseph K.; Olshansky, Jacob H.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Koc, Matthew A.; Raja, Shilpa N.; Hanson, Lindsey A.; Borys, Nicholas J.; Takano, Kaori; Swabeck, Joseph K.; Olshansky, Jacob H.; Ritchie, Robert O.; Alivisatos, A. Paul] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Raja, Shilpa N.; Ritchie, Robert O.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Nguyen, Son C.] Univ Hamburg, Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany. [Borys, Nicholas J.] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Wu, Siva] Lawrence Berkeley Natl Lab, Biol Sci Div, Berkeley, CA 94720 USA. [Takano, Kaori] JX Nippon Oil & Energy Corp, Naka Ku, 8 Chidori Cho, Yokohama, Kanagawa 2310815, Japan. [Lin, Liwei; Ritchie, Robert O.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. Tokyo Inst Technol, Sch Mat & Chem Technol, Midori Ku, 4259 Nagatsuta Cho, Yokohama, Kanagawa 2268503, Japan. [Wu, Siva; Takano, Kaori] Viral Forens LLC, Albany, CA 94710 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Alivisatos, AP (reprint author), Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA.; Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.; Alivisatos, AP (reprint author), Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. EM paul.alivisatos@berkeley.edu RI Ritchie, Robert/A-8066-2008 OI Ritchie, Robert/0000-0002-0501-6998 FU Self-Assembly of Organic/Inorganic Nanocomposite Materials Program [KC3104]; Engineering and Technology Program, Office of Basic Energy Sciences of the United States Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Self-Assembly of Organic/Inorganic Nanocomposite Materials Program, KC3104, Engineering and Technology Program, Office of Basic Energy Sciences of the United States Department of Energy, under contract number DE-AC02-05CH11231. The authors thank Dr. Noah Bronstein, Handong Ling, Christina Hyland, Turner Anderson and Michael Chen for experimental assistance. We greatly thank Eric Hughes of FLIR corporation for lending us a high-resolution thermal camera for local temperature measurements. NR 53 TC 0 Z9 0 U1 9 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2017 VL 11 IS 2 BP 2075 EP 2084 DI 10.1021/acsnano.6b08277 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EM5NC UT WOS:000395357300103 PM 28110520 ER PT J AU Borys, NJ Barnard, ES Gao, SY Yao, KY Bao, W Buyanin, A Zhang, YJ Tongay, S Ko, CY Suh, J Weber-Bargioni, A Wu, JQ Yang, L Schuck, PJ AF Borys, Nicholas J. Barnard, Edward S. Gao, Shiyuan Yao, Kaiyuan Bao, Wei Buyanin, Alexander Zhang, Yingjie Tongay, Sefaattin Ko, Changhyun Suh, Joonki Weber-Bargioni, Alexander Wu, Junqiao Yang, Li Schuck, P. James TI Anomalous Above-Gap Photoexcitations and Optical Signatures of Localized Charge Puddles in Monolayer Molybdenum Disulfide SO ACS NANO LA English DT Article DE transition metal dichalcogenides; monolayer molybdenum disulfide; broadband optical properties; exciton Stokes shift; localized carrier density; charge puddles ID SINGLE-LAYER MOS2; TRANSITION-METAL DICHALCOGENIDES; 2-DIMENSIONAL SEMICONDUCTORS; QUASI-PARTICLE; GRAIN-BOUNDARIES; STOKES SHIFT; PHOTOLUMINESCENCE; STRAIN; STATES; SPECTROSCOPY AB Broadband optoelectronics such as artificial light harvesting technologies necessitate efficient and, ideally, tunable coupling of excited states over a wide range of energies. In monolayer MoS2, a prototypical two-dimensional layered semiconductor, the excited state manifold spans the visible electromagnetic spectrum and is comprised of an interconnected network of excitonic and free-carrier excitations. Here, photoluminescence excitation spectroscopy is used to reveal the energetic and spatial dependence of broadband excited state coupling to the ground-state luminescent excitons of monolayer MoS2. Photoexcitation of the direct band gap excitons is found to strengthen with increasing energy, demonstrating that interexcitonic coupling across the Brillouin zone is more efficient than previously reported, and thus bolstering the import and appeal of these materials for broadband optoelectronic applications. Narrow excitation resonances that are superimposed on the broadband photoexcitation spectrum are identified and coincide with the energetic positions of the higher-energy excitons and the electronic band gap as predicted by first-principles calculations. Identification of such features outlines a facile route to measure the optical and electronic band gaps and thus the exciton binding energy in the more sophisticated device architectures that are necessary for untangling the rich many-body phenomena and complex photophysics of these layered semiconductors. In as-grown materials, the excited states exhibit microscopic spatial variations that are characteristic of local carrier density fluctuations, similar to charge puddling phenomena in graphene. Such variations likely arise from substrate inhomogeneity and demonstrate the possibility to use substrate patterning to tune local carrier density and dynamically control excited states for designer optoelectronics. C1 [Borys, Nicholas J.; Barnard, Edward S.; Yao, Kaiyuan; Bao, Wei; Weber-Bargioni, Alexander; Schuck, P. James] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Borys, Nicholas J.; Barnard, Edward S.; Bao, Wei; Buyanin, Alexander; Zhang, Yingjie; Weber-Bargioni, Alexander; Wu, Junqiao; Schuck, P. James] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Gao, Shiyuan; Yang, Li] Washington Univ St Louis, Dept Phys, St Louis, MO 63130 USA. [Bao, Wei; Tongay, Sefaattin; Ko, Changhyun; Suh, Joonki; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Tongay, Sefaattin] Arizona State Univ, Dept Mat Sci & Engn, Tempe, AZ 85287 USA. RP Borys, NJ; Schuck, PJ (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.; Borys, NJ; Schuck, PJ (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM njborys@lbl.gov; pjschuck@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF CAREER Award [DMR-1055938]; NSF [DMR-1552220] FX The authors thank Ed Wong for technical support, as well as our colleagues at the Molecular Foundry for stimulating discussion and assistance. Work at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Material growth and preparation were supported by a NSF CAREER Award under Grant DMR-1055938. S. T. gratefully acknowledges funding from NSF DMR-1552220. NR 53 TC 0 Z9 0 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2017 VL 11 IS 2 BP 2115 EP 2123 DI 10.1021/acsnano.6b08278 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EM5NC UT WOS:000395357300107 PM 28117983 ER PT J AU Lawrinenko, M Wang, ZJ Horton, R Mendivelso-Perez, D Smith, EA Webster, TE Laird, DA van Leeuwen, JH AF Lawrinenko, Michael Wang, Zhuangji Horton, Robert Mendivelso-Perez, Deyny Smith, Emily A. Webster, Terry E. Laird, David A. van Leeuwen, J. Hans TI Macroporous Carbon Supported Zerovalent Iron for Remediation of Trichloroethylene SO ACS SUSTAINABLE CHEMISTRY & ENGINEERING LA English DT Article DE Trichloroethylene; Biochar; Zerovalent iron; Macroporous carbon; Permeable reactive barrier ID ZERO-VALENT IRON; PERMEABLE REACTIVE BARRIERS; HIGH-TEMPERATURE; BIOCHAR; PYROLYSIS; REMOVAL; TRANSFORMATION; DIOXIDE; ENERGY; OXIDES AB Groundwater contamination with chlorinated hydrocarbons has become a widespread problem that threatens water quality and human health. Permeable reactive barriers (PRBs), which employ zerovalent iron, are effective for remediation; however, a need exists to reduce the economic and environmental costs associated with constructing PRBs. We present a method to produce zerovalent iron supported on macroporous carbon using only lignin and magnetite. Biochar-ZVI (BC-ZVI) produced by this method exhibits a broad pore size distribution with micrometer sized ZVI phases dispersed throughout a carbon matrix. X-ray diffraction revealed that pyrolysis at 900 degrees C of a 50/50 lignin-magnetite mixture resulted in almost complete reduction of magnetite to ZVI and that compression molding promotes iron reduction in pyrolysis due to mixing of starting materials. High temperature pyrolysis of lignin yields some graphite in BC-ZVI due to reduction of carbonaceous gases on iron oxides. TCE was removed from water as it passed through a column packed with BC-ZVI at flow rates representative of average and high groundwater flow. One-dimensional convection-dispersion modeling revealed that adsorption by biochar influences TCE transport and that BC-ZVI facilitated removal of TCE from contaminated water by both adsorption and degradation. C1 [Lawrinenko, Michael; Wang, Zhuangji; Horton, Robert; Laird, David A.] Iowa State Univ, Dept Agron, 2505 Agron,716 Farm House Lane, Ames, IA 50011 USA. [Mendivelso-Perez, Deyny; Smith, Emily A.] Iowa State Univ, US Dept Energy, Ames Lab, 0706 Gilman Hall,2415 Osborn Dr, Ames, IA 50011 USA. [Mendivelso-Perez, Deyny; Smith, Emily A.] Iowa State Univ, Dept Chem, 0706 Gilman Hall,2415 Osborn Dr, Ames, IA 50011 USA. [Webster, Terry E.] Des Moines Water Works, 2201 George Flagg Pkwy, Des Moines, IA 50321 USA. [van Leeuwen, J. Hans] Iowa State Univ, Dept Civil Construct & Environm Engn, 476 Town Engn,813 Bissell Rd, Ames, IA 50011 USA. [van Leeuwen, J. Hans] Iowa State Univ, Dept Ag & Biosyst Engn, 476 Town Engn,813 Bissell Rd, Ames, IA 50011 USA. [van Leeuwen, J. Hans] Iowa State Univ, Dept Food Sci & Human Nutr, 476 Town Engn,813 Bissell Rd, Ames, IA 50011 USA. RP van Leeuwen, JH (reprint author), Iowa State Univ, Dept Civil Construct & Environm Engn, 476 Town Engn,813 Bissell Rd, Ames, IA 50011 USA.; van Leeuwen, JH (reprint author), Iowa State Univ, Dept Ag & Biosyst Engn, 476 Town Engn,813 Bissell Rd, Ames, IA 50011 USA.; van Leeuwen, JH (reprint author), Iowa State Univ, Dept Food Sci & Human Nutr, 476 Town Engn,813 Bissell Rd, Ames, IA 50011 USA. EM leeuwen@iastate.edu FU Agriculture and Food Research Initiative Competitive Grant from USDA National Institute of Food and Agriculture [2011-68005-30411403]; Global Climate and Energy Project, Stanford [404, 60413992-112883-A]; National Science Foundation [EPS-1101284]; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX Funding for this research was provided by the Agriculture and Food Research Initiative Competitive Grant no. 2011-68005-30411403 from the USDA National Institute of Food and Agriculture, by the Global Climate and Energy Project, Stanford Subaward Agreement 404 No. 60413992-112883-A, and by the National Science Foundation under Grant Number EPS-1101284. We also extend appreciation to Des Moines Water Works, Des Moines, IA for providing material and analytical support for this research, ADM for the lignin, and Peter T. Clevenstine of the Division of Lands & Minerals, Minnesota Department of Natural Resources for supplying the magnetite. The Raman measurements were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 33 TC 0 Z9 0 U1 8 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2168-0485 J9 ACS SUSTAIN CHEM ENG JI ACS Sustain. Chem. Eng. PD FEB PY 2017 VL 5 IS 2 BP 1586 EP 1593 DI 10.1021/acssuschemeng.6b02375 PG 8 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Chemical SC Chemistry; Science & Technology - Other Topics; Engineering GA EK0RK UT WOS:000393634600040 ER PT J AU Wang, HL Ben, HX Ruan, H Zhang, LB Pu, YQ Feng, MQ Ragauskas, AJ Yang, B AF Wang, Hongliang Ben, Haoxi Ruan, Hao Zhang, Libing Pu, Yunqiao Feng, Maoqi Ragauskas, Arthur J. Yang, Bin TI Effects of Lignin Structure on Hydrodeoxygenation Reactivity of Pine Wood Lignin to Valuable Chemicals SO ACS SUSTAINABLE CHEMISTRY & ENGINEERING LA English DT Article DE Lignin reactivity; Softwood lignin; Condensed lignin; Hydrodeoxygenation; Biofuel ID BIOMASS-DERIVED LIGNIN; CATALYSTS; PRETREATMENT; DEPOLYMERIZATION; HYDROCONVERSION; HYDROGENOLYSIS; HYDROCARBONS; CONVERSION; PRODUCTS; SOFTWOOD AB Hydrodeoxygenation (HDO) of two dilute acid flowthrough pretreated softwood lignin samples, including residual lignin in pretreated solid residues (ReL) and recovered insoluble lignin in pretreated liquid (RISL), with apparent different physical and chemical structures, was comprehensively studied. A combination of catalysts (HY zeolite and Ru/Al2O3) was employed to investigate the effects of lignin structures, especially condensed structures, on the HDO upgrading process. Results indicated that the condensed structure and short side chains in lignin hindered its HDO conversion under different reaction conditions, including catalyst loading and composition, hydrogen pressure, and reaction time. In addition to lignin structure, HY zeolite was found crucial for lignin depolymerization, while Ru/Al2O3 and relatively high hydrogen pressure (4 MPa) were necessary for upgrading unstable oxy-compounds to cyclohexanes at high selectivity (>95 wt %). Since the lignin structure essentially affects its reactivity during HDO conversion, the yield and selectivity of HDO products can be predicted by detailed characterization of the lignin structure. The insights gained from this study in the fundamental reaction mechanisms based on the lignin structure will facilitate upgrading of lignin to high-value products for applications in the production of both fuels and chemicals. C1 [Wang, Hongliang; Ben, Haoxi; Ruan, Hao; Zhang, Libing; Yang, Bin] Washington State Univ, Dept Biol Syst Engn, 2710 Crimson Way, Richland, WA 99354 USA. [Pu, Yunqiao; Ragauskas, Arthur J.] Oak Ridge Natl Lab, Biosci Div, POB 2008,MS6341, Oak Ridge, TN 37831 USA. [Ragauskas, Arthur J.] Univ Tennessee, Dept Forestry Wildlife & Fisheries, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Ragauskas, Arthur J.] Univ Tennessee, Ctr Renewable Carbon, Knoxville, TN 37996 USA. [Feng, Maoqi] Southwest Res Inst, Chem & Chem Engn Div, 6220 Culebra Rd, San Antonio, TX 78238 USA. [Ben, Haoxi] Southeast Univ, Sch Energy & Environm, Key Lab Energy Thermal Convers & Control, Minist Educ, Nanjing 210096, Jiangsu, Peoples R China. RP Yang, B (reprint author), Washington State Univ, Dept Biol Syst Engn, 2710 Crimson Way, Richland, WA 99354 USA. EM binyang@tricity.wsu.edu OI Ragauskas, Arthur/0000-0002-3536-554X; yang, bin/0000-0003-1686-8800 FU Sun Grant-DOT Award [T0013G-A-Task 8]; Seattle-based Joint Center for Aerospace Technology Innovation; Department of Energy's Office of Biological and Environmental Research (BER); U.S. Department of Energy [DE-AC05-00OR22725] FX We are grateful to the Sun Grant-DOT Award No. T0013G-A-Task 8 and the Seattle-based Joint Center for Aerospace Technology Innovation for funding this research. We acknowledge the Bioproducts, Sciences and Engineering Laboratory, Department of Biosystems Engineering at Washington State University and The Boeing Company. Part of this work was conducted at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility located at the Pacific Northwest National Laboratory (PNNL) and sponsored by the Department of Energy's Office of Biological and Environmental Research (BER). Oak Ridge National Laboratory (ORNL) is managed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. We also thank Dr. Langli Luo and Dr. Chongmin Wang for their assistance on STEM testing and Dr. Yuling Qin and Ms. Marie S. Swita for insightful discussions. NR 36 TC 0 Z9 0 U1 9 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2168-0485 J9 ACS SUSTAIN CHEM ENG JI ACS Sustain. Chem. Eng. PD FEB PY 2017 VL 5 IS 2 BP 1824 EP 1830 DI 10.1021/acssuschemeng.6b02563 PG 7 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Chemical SC Chemistry; Science & Technology - Other Topics; Engineering GA EK0RK UT WOS:000393634600067 ER PT J AU Chen, XZ Hoop, M Shamsudhin, N Huang, TY Ozkale, B Li, Q Siringil, E Mushtaq, F Di Tizio, L Nelson, BJ Pane, S AF Chen, Xiang-Zhong Hoop, Marcus Shamsudhin, Naveen Huang, Tianyun Ozkale, Berna Li, Qian Siringil, Erdem Mushtaq, Fajer Di Tizio, Luca Nelson, Bradley J. Pane, Salvador TI Hybrid Magnetoelectric Nanowires for Nanorobotic Applications: Fabrication, Magnetoelectric Coupling, and Magnetically Assisted In Vitro Targeted Drug Delivery SO ADVANCED MATERIALS LA English DT Article DE FeGa; ferroelectrics; magnetoelectrics; nanorobotics; P(VDF-TrFE) ID PIEZORESPONSE FORCE MICROSCOPY; CORE-SHELL NANOFIBERS; FERROELECTRIC POLYMER; CONTROLLED-RELEASE; CANCER-CELLS; ON-DEMAND; NANOPARTICLES; MICROROBOTS; NANOTUBES; CRYSTALLIZATION C1 [Chen, Xiang-Zhong; Hoop, Marcus; Shamsudhin, Naveen; Huang, Tianyun; Ozkale, Berna; Siringil, Erdem; Mushtaq, Fajer; Di Tizio, Luca; Nelson, Bradley J.; Pane, Salvador] Swiss Fed Inst Technol, IRIS, MSRL, CH-8092 Zurich, Switzerland. [Li, Qian] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Li, Qian] Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA. [Huang, Tianyun] Peking Univ, State Key Lab Turbulence & Complex Syst, Beijing Innovat Ctr Engn Sci & Adv Technol BIC ES, Coll Engn, Beijing 100871, Peoples R China. RP Pane, S (reprint author), Swiss Fed Inst Technol, IRIS, MSRL, CH-8092 Zurich, Switzerland. EM vidalp@ethz.ch FU European Research Council Starting Grant "Magnetoelectric Chemonanorobotics for Chemical and Biomedical Applications (ELECTROCHEMBOTS) [336456]; ETH Career Seed Grant [SEED-14 16-1] FX X.C. and S.P. conceived the idea. X.C. fabricated the nanowires. X.C., N.S., and Q.L. did the PFM measurements. M.H. and L.D.T. did the drug delivery experiments. N.S. and E.S. built the magnetic field generator and cell incubation system. T.H. did the magnetic manipulation of nanowires using orthogonal and conical rotating magnetic fields. B.O. took the TEM images and the SAED patterns. B.O. and F.M. deposited carbon using Focused Ion Beam (FIB). All of the authors contributed to writing the manuscript. This work was financed by the European Research Council Starting Grant "Magnetoelectric Chemonanorobotics for Chemical and Biomedical Applications (ELECTROCHEMBOTS) under the grant no. 336456. X.C. would like to acknowledge the ETH Career Seed Grant (No. SEED-14 16-1). T.H. would like to acknowledge China Scholarship Council and China Postdoctoral Science Foundation (No. 2016M600861). The authors would like to acknowledge Joel Vermeulen and Viktor Jooss for their help in designing the magnetic field generator, Lydia Zehnder from Institute fur Geochemie und Petrologie of ETH for her kind support on XRD measurements, Dr. Zhongshu Li at Department of Chemistry and Applied Biosciences for his help on IR measurements, the Scientific Center for Optical and Electron Microscopy (ScopeM) of ETH and the FIRST laboratory for their technical support. NR 65 TC 1 Z9 1 U1 10 U2 10 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD FEB PY 2017 VL 29 IS 8 AR UNSP 1605458 DI 10.1002/adma.201605458 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EM3AW UT WOS:000395187900024 ER PT J AU Sun, Z Tian, Y Hom, WL Gang, O Bhatia, SR Grubbs, RB AF Sun, Zhe Tian, Ye Hom, Wendy L. Gang, Oleg Bhatia, Surita R. Grubbs, Robert B. TI Translating Thermal Response of Triblock Copolymer Assemblies in Dilute Solution to Macroscopic Gelation and Phase Separation SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE block copolymers; gels; micelles; nanostructures; self-assembly ID TO-VESICLE TRANSITION; BLOCK-COPOLYMERS; RAFT POLYMERIZATION; MULTIPLE MORPHOLOGIES; WORMLIKE MICELLES; TEMPERATURE; DESIGN; GELS; NANOPARTICLES; WATER AB The thermal response of semi-dilute solutions (5 w/w%) of two amphiphilic thermoresponsive poly(ethylene oxide)-b-poly(N,N-diethylacrylamide)-b-poly(N,N-dibutylacrylamide) (PEO45-PDEAmx-PDBAm12) triblock copolymers, which differ only in the size of the central responsive block, in water was examined. Aqueous PEO45-PDEAm41-PDBAm12 solutions, which undergo a thermally induced sphere-to-worm transition in dilute solution, were found to reversibly form soft (G approximate to 10Pa) free-standing physical gels after 10min at 55 degrees C. PEO45-PDEAm89-PDBAm12 copolymer solutions, which undergo a thermally induced transition from spheres to large compound micelles (LCM) in dilute solution, underwent phase separation after heating at 55 degrees C for 10min owing to sedimentation of LCMs. The reversibility of LCM formation was investigated as a non-specific method for removal of a water-soluble dye from aqueous solution. The composition and size of the central responsive block in these polymers dictate the microscopic and macroscopic response of the polymer solutions as well as the rates of transition between assemblies. C1 [Sun, Zhe; Hom, Wendy L.; Bhatia, Surita R.; Grubbs, Robert B.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11764 USA. [Tian, Ye; Gang, Oleg] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11974 USA. [Gang, Oleg] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. [Gang, Oleg] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Grubbs, RB (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11764 USA. EM robert.grubbs@stonybrook.edu FU National Science Foundation [DMR-1105622, CBET-1335787]; Center for Functional Nanomaterials, a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704] FX This research was supported by the National Science Foundation (R.B.G.: DMR-1105622; S.R.B.: CBET-1335787) and was partially carried out at the Center for Functional Nanomaterials, a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. NR 39 TC 0 Z9 0 U1 15 U2 15 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD FEB 1 PY 2017 VL 56 IS 6 BP 1491 EP 1494 DI 10.1002/anie.201609360 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA EM0HB UT WOS:000394998300005 PM 28029204 ER PT J AU Doris, SE Ward, AL Baskin, A Frischmann, PD Gavvalapalli, N Chenard, E Sevov, CS Prendergast, D Moore, JS Helms, BA AF Doris, Sean E. Ward, Ashleigh L. Baskin, Artem Frischmann, Peter D. Gavvalapalli, Nagarjuna Chenard, Etienne Sevov, Christo S. Prendergast, David Moore, Jeffrey S. Helms, Brett A. TI Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE energy storage; macromolecular chemistry; membranes; polymers; redox-flow batteries ID INTRINSIC MICROPOROSITY PIMS; ENERGY-STORAGE; MOLECULAR-WEIGHT; POLYMER; SEPARATORS; IMPACT; TRANSPORT; MEMBRANES AB Intermittent energy sources, including solar and wind, require scalable, low-cost, multi-hour energy storage solutions in order to be effectively incorporated into the grid. All-Organic non-aqueous redox-flow batteries offer a solution, but suffer from rapid capacity fade and low Coulombic efficiency due to the high permeability of redox-active species across the battery's membrane. Here we show that active-species crossover is arrested by scaling the membrane's pore size to molecular dimensions and in turn increasing the size of the active material above the membrane's pore-size exclusion limit. When oligomeric redox-active organics (RAOs) were paired with microporous polymer membranes, the rate of active-material crossover was reduced more than 9000-fold compared to traditional separators at minimal cost to ionic conductivity. This corresponds to an absolute rate of RAO crossover of less than 3molcm(-2)day(-1) (for a 1.0m concentration gradient), which exceeds performance targets recently set forth by the battery industry. This strategy was generalizable to both high and low-potential RAOs in a variety of non-aqueous electrolytes, highlighting the versatility of macromolecular design in implementing next-generation redox-flow batteries. C1 [Doris, Sean E.] Univ Calif Berkeley, Dept Chem, 419 Latimer Hall, Berkeley, CA 94720 USA. [Ward, Ashleigh L.; Baskin, Artem; Frischmann, Peter D.; Prendergast, David; Helms, Brett A.] Lawrence Berkeley Natl Lab, Joint Ctr Energy Storage Res, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Gavvalapalli, Nagarjuna; Chenard, Etienne; Moore, Jeffrey S.] Univ Illinois, Joint Ctr Energy Storage Res, 505 South Matthews Ave, Urbana, IL 61801 USA. [Sevov, Christo S.] Univ Michigan, Joint Ctr Energy Storage Res, 930 North Univ Ave, Ann Arbor, MI 48109 USA. [Prendergast, David; Helms, Brett A.] Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Helms, BA (reprint author), Lawrence Berkeley Natl Lab, Joint Ctr Energy Storage Res, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Helms, BA (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM bahelms@lbl.gov OI Helms, Brett/0000-0003-3925-4174 FU Joint Center for Energy Storage Research; Energy Innovation Hub - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Department of Defense through the National Defense Science and Engineering Graduate Fellowship program; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Molecular Foundry; Office of Science of the U.S. Department of Energy FX We thank C. Li and L. Maserati for samples of PIM-1 and D. Loudermilk (UIUC School of Chemical Sciences Graphic Services Facility) for assistance in the preparation of Figure 1. A.L.W., A.B., P.D.F., N.G., E.C., C.S.S., D.P., J.S.M., and B.A.H. were supported by the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. S.E.D. was supported by the Department of Defense through the National Defense Science and Engineering Graduate Fellowship program. Portions of this work, including polymer synthesis and characterization, crossover measurements, and electrochemical experiments were carried out as user projects at the Molecular Foundry, which is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. The computational portion of this work was supported by a user project at the Molecular Foundry and its computer cluster (Vulcan), managed by the High Performance Computing Services Group at Lawrence Berkeley National Laboratory (LBNL), and by the computing resources of the National Energy Research Scientific Computing Center, LBNL, both of which are supported by the Office of Science of the U.S. Department of Energy under the same contract. NR 29 TC 0 Z9 0 U1 14 U2 14 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD FEB 1 PY 2017 VL 56 IS 6 BP 1595 EP 1599 DI 10.1002/anie.201610582 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA EM0HB UT WOS:000394998300027 PM 28071835 ER PT J AU Cassells, B Karhumaa, K Nogue, VSI Liden, G AF Cassells, B. Karhumaa, K. Sanchez i Nogue, V. Liden, G. TI Hybrid SSF/SHF Processing of SO2 Pretreated Wheat Straw-Tuning Co-fermentation by Yeast Inoculum Size and Hydrolysis Time SO APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY LA English DT Article DE Bioethanol; Xylose fermentation; SSF; Yeast inoculum size; In situ detoxification ID ANAEROBIC BATCH FERMENTATION; SACCHAROMYCES-CEREVISIAE; BIOETHANOL PRODUCTION; STEAM PRETREATMENT; ETHANOL-PRODUCTION; CONVERSION; GLUCOSE; OPTIMIZATION; REDUCTION; TOLERANCE AB Wheat straw is one of the main agricultural residues of interest for bioethanol production. This work examines conversion of steam-pretreated wheat straw (using SO2 as a catalyst) in a hybrid process consisting of a short enzymatic prehydrolysis step and a subsequent simultaneous saccharification and fermentation (SSF) step with a xylose-fermenting strain of Saccharomyces cerevisiae. A successful process requires a balanced design of reaction time and temperature in the prehydrolysis step and yeast inoculum size and temperature in the SSF step. The pretreated material obtained after steam pretreatment at 210 A degrees C for 5 min using 2.5 % SO2 (based on moisture content) showed a very good enzymatic digestibility at 45 A degrees C but clearly lower at 30 A degrees C. Furthermore, the pretreatment liquid was found to be rather inhibitory to the yeast, partly due to a furfural content of more than 3 g/L. The effect of varying the yeast inoculum size in this medium was assessed, and at a yeast inoculum size of 4 g/L, a complete conversion of glucose and a 90 % conversion of xylose were obtained within 50 h. An ethanol yield (based on the glucan and xylan in the pretreated material) of 0.39 g/g was achieved for a process with this yeast inoculum size in a hybrid process (10 % water-insoluble solid (WIS)) with 4 h prehydrolysis time and a total process time of 96 h. The obtained xylose conversion was 95 %. A longer prehydrolysis time or a lower yeast inoculum size resulted in incomplete xylose conversion. C1 [Cassells, B.; Liden, G.] Lund Univ, Dept Chem Engn, Box 124, S-22100 Lund, SE, Sweden. [Cassells, B.] Novozymes AS, Krogshoejvej 36, DK-2880 Bagsvaerd, SE, Denmark. [Karhumaa, K.; Sanchez i Nogue, V.] C5 Ligno Technol Lund AB, POB 124, S-22100 Lund, SE, Sweden. [Karhumaa, K.] Hansa Med AB, POB 785, S-22007 Lund, SE, Sweden. [Sanchez i Nogue, V.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Liden, G (reprint author), Lund Univ, Dept Chem Engn, Box 124, S-22100 Lund, SE, Sweden. EM gunnar.liden@chemeng.lth.se FU Swedish Energy Agency [35353-1] FX This work was supported by financial support from The Swedish Energy Agency grant number 35353-1. The authors are grateful to Prof. Barbel Hahn-Hagerdal for valuable comments on the manuscript. NR 35 TC 0 Z9 0 U1 4 U2 4 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 0273-2289 EI 1559-0291 J9 APPL BIOCHEM BIOTECH JI Appl. Biochem. Biotechnol. PD FEB PY 2017 VL 181 IS 2 BP 536 EP 547 DI 10.1007/s12010-016-2229-y PG 12 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA EK9BP UT WOS:000394219200005 PM 27631121 ER PT J AU Wang, Y Villalta, PW Peng, LJ Dingley, K Malfatti, MA Turteltaub, KW Turesky, RJ AF Wang, Yi Villalta, Peter W. Peng, Lijuan Dingley, Karen Malfatti, Michael A. Turteltaub, K. W. Turesky, Robert J. TI Mass Spectrometric Characterization of an Acid-Labile Adduct Formed with 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and Albumin in Humans SO CHEMICAL RESEARCH IN TOXICOLOGY LA English DT Article ID HETEROCYCLIC AROMATIC-AMINES; N-OXIDIZED METABOLITES; HUMAN SERUM-ALBUMIN; CREATING CONTEXT; PROTEIN ADDUCTS; COOKED MEAT; CARCINOGEN; PHIP; HEMOGLOBIN; BIOMARKERS AB 2-Amino-1-methyl-6-phenylimidazo [4,5-b]-pyridine (PhIP) is a carcinogenic heterocyclic aromatic amine formed during the high-temperature cooking of meats. The cytochrome P450-mediated N-hydroxylation of the exocyclic amine group of PhIP produces 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine, an electrophilic metabolite that forms adducts with DNA and proteins. Previous studies conducted by our laboratory showed that the reaction of N-oxidized PhIP metabolites with human albumin in vitro primarily occurs at the Cys(34) residue, to produce an acid labile linked sulfinamide adduct. On the basis of these findings, we developed a sensitive ultraperformance liquid chromatography-mass spectrometry method to measure acid-labile albumin- PhIP adducts in human volunteers administered a dietary-relevant dose of C-14-labeled PhIP [Dingley, K. H., et al. (1999) Cancer Epidemiol., Biomarkers Prey. 8, 507-512]. Mild acid treatment of albumin (0.1 N HCI, 37 degrees C for 1 h) or proteolytic digestion with Pronase [50 mM ammonium bicarbonate buffer (pH 8.5) at 37 degrees C for 18 h] released similar amounts of covalently bound PhIP, which was characterized by multistage scanning and quantified by Orbitrap mass spectrometry. The amount of [C-14]PhIP recovered by acid treatment of albumin 24 h following dosing accounted for 7.2-21.3% of the [C-14]PhIP bound to albumin based on accelerator mass spectrometry measurements. 2-Amino-1-methyl-6(5-hydroxy)phenylimidazo[4,5-b]pyridine, a hydrolysis product of the Cys(34) S-N linked sulfenamide adduct of PhIP, was not detected in either acid-treated or protease treated samples. These findings suggest that a portion of the PhIP bound to albumin in vivo probably occurs as an acid-labile sulfinamide adduct formed at the Cys(34) residue. C1 [Wang, Yi; Villalta, Peter W.; Turesky, Robert J.] Univ Minnesota, Masonic Canc Ctr, Canc & Cardiovasc Res Bldg,2231 6th St, Minneapolis, MN 55455 USA. [Wang, Yi; Turesky, Robert J.] Univ Minnesota, Dept Med Chem, Canc & Cardiovasc Res Bldg,2231 6th St, Minneapolis, MN 55455 USA. [Peng, Lijuan] Wuhan Polytech Univ, Sch Food Sci & Engn, Wuhan 430023, Peoples R China. [Dingley, Karen; Malfatti, Michael A.; Turteltaub, K. W.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Biosci & Biotechnol Div, Livermore, CA 94550 USA. RP Turesky, RJ (reprint author), Univ Minnesota, Masonic Canc Ctr, Canc & Cardiovasc Res Bldg,2231 6th St, Minneapolis, MN 55455 USA.; Turesky, RJ (reprint author), Univ Minnesota, Dept Med Chem, Canc & Cardiovasc Res Bldg,2231 6th St, Minneapolis, MN 55455 USA. OI Turesky, Robert/0000-0001-7355-9903 FU Cancer Center Support Grant [CA-077598]; [2R01CA122320] FX This research was supported by Grant 2R01CA122320 (R.J.T.). Mass spectrometry was performed in the Analytical Biochemistry Shared Resource of the Masonic Cancer Center, University of Minnesota, funded in part by Cancer Center Support Grant CA-077598. NR 35 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0893-228X EI 1520-5010 J9 CHEM RES TOXICOL JI Chem. Res. Toxicol. PD FEB PY 2017 VL 30 IS 2 BP 705 EP 714 DI 10.1021/acs.chemrestox.6b00426 PG 10 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Toxicology SC Pharmacology & Pharmacy; Chemistry; Toxicology GA EL6MK UT WOS:000394736500023 PM 27984695 ER PT J AU Liu, FK Luo, YY Lu, J Wan, XQ AF Liu, Fukai Luo, Yiyong Lu, Jian Wan, Xiuquan TI Response of the tropical Pacific Ocean to El Nino versus global warming SO CLIMATE DYNAMICS LA English DT Article DE Tropical Pacific Ocean; Global warming; El Nino; El Nino-like response ID SEA-SURFACE TEMPERATURE; EQUATORIAL PACIFIC; SOUTHERN-OSCILLATION; COLD-TONGUE; LA-NINA; RECHARGE PARADIGM; CONCEPTUAL-MODEL; CLIMATE RESPONSE; INDIAN-OCEAN; HEAT-BUDGET AB Climate models project an El Nio-like SST response in the tropical Pacific Ocean to global warming (GW). By employing the Community Earth System Model and applying an overriding technique to its ocean component, Parallel Ocean Program version 2, this study investigates the similarity and difference of formation mechanism for the changes in the tropical Pacific Ocean under El Nio and GW. Results show that, despite sharing some similarities between the two scenarios, there are many significant distinctions between GW and El Nio: (1) the phase locking of the seasonal cycle reduction is more notable under GW compared with El Nio, implying more extreme El Nio events in the future; (2) in contrast to the penetration of the equatorial subsurface temperature anomaly that appears to propagate in the form of an oceanic equatorial upwelling Kelvin wave during El Nio, the GW-induced subsurface temperature anomaly manifest in the form of off-equatorial upwelling Rossby waves; (3) while significant across-equator northward heat transport (NHT) is induced by the wind stress anomalies associated with El Nio, little NHT is found at the equator due to a symmetric change in the shallow meridional overturning circulation that appears to be weakened in both North and South Pacific under GW; and (4) heat budget analysis shows that the maintaining mechanisms for the eastern equatorial Pacific warming are also substantially different. C1 [Liu, Fukai; Luo, Yiyong; Wan, Xiuquan] Ocean Univ China, Phys Oceanog Lab, 238 Songling Rd, Qingdao 266100, Peoples R China. [Lu, Jian] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA USA. RP Luo, YY (reprint author), Ocean Univ China, Phys Oceanog Lab, 238 Songling Rd, Qingdao 266100, Peoples R China. EM yiyongluo@ouc.edu.cn FU NSFC [41376009, 41221063]; NSF [AGS-1249173, AGS-1249145]; Joint Program of Shandong Province [U1406401]; National Natural Science Foundation of China [U1406401]; Zhufeng Project of the Ocean University of China; Taishan Project of the Ocean University of China; Office of Science of the U.S. Department of Energy as part of Regional and Global Climate Modeling program FX This work is supported by NSFC (41376009 & 41221063), NSF (AGS-1249173 & AGS-1249145), and the Joint Program of Shandong Province and National Natural Science Foundation of China (Grant No. U1406401). Y. Luo would also like to acknowledge the support from the Zhufeng and Taishan Projects of the Ocean University of China. J. Lu is supported by the Office of Science of the U.S. Department of Energy as part of Regional and Global Climate Modeling program. NR 63 TC 0 Z9 0 U1 7 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD FEB PY 2017 VL 48 IS 3-4 BP 935 EP 956 DI 10.1007/s00382-016-3119-2 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EK8CC UT WOS:000394150500013 ER PT J AU Pachepsky, Y Stocker, M Saldana, MO Shelton, D AF Pachepsky, Yakov Stocker, Matthew Saldana, Manuel Olmeda Shelton, Daniel TI Enrichment of stream water with fecal indicator organisms during baseflow periods SO ENVIRONMENTAL MONITORING AND ASSESSMENT LA English DT Article DE Microbial water quality; Escherichia coli; Enterococci; Streambed sediment; Release rate ID ESCHERICHIA-COLI; FRESH-WATER; SEDIMENTS; SURVIVAL; COLIFORMS; TRANSPORT; BACTERIA; ENTEROCOCCI; MICROORGANISMS; TEMPERATURE AB Fecal indicator organisms (FIOs) are generally believed to be present in surface waters due solely to direct deposition of feces or through transport in runoff. However, emerging evidence points toward hyporheic exchange between sediment pore water and the overlying water column during baseflow periods as a source of FIOs is surface waters. The objective of this work was to (a) propose a mass balance-based technique for estimating changes of FIO concentrations in the same volume of water (or "slug") from the inlet to outlet of stream reaches in baseflow conditions and (b) to use such enumeration to estimate rate of the FIO release to stream water column. Concentrations of Escherichia coli (E. coli) and enterococci were measured in the slug while simultaneously monitoring the movement of a conservative tracer, Br that labeled the slug. Concentrations of E. coli in the slug were significantly larger (P = 0.035, P = 0.001, and P = 0.001, respectively) at the outlet reach in all three replications, while enterococci concentrations were significantly larger in two of three replications (P = 0.001, P < 0.001, and P = 0.602). When estimated without accounting for die-off in water column, FIO net release rates across replications ranged from 36 to 57 cells m(-2) s(-1) and 43 to 87 cells m(-2) s(-1) for E. coli and enterococci, respectively. These release rates were 5 to 20% higher when the die-off in water column was taken into account. No diurnal trends were observed in indicator concentrations. No FIO sources other than bottom sediment have been observed during the baseflow period. FIOs are released into stream water column through hyporheic exchange during baseflow periods. C1 [Pachepsky, Yakov; Stocker, Matthew; Shelton, Daniel] USDA ARS, Environm Microbial & Food Safety Lab, Beltsville, MD 20705 USA. [Stocker, Matthew] ORISE, Oak Ridge, TN USA. [Saldana, Manuel Olmeda] Univ Puerto Rico Rio Piedras, Dept Environm Sci, San Juan, PR 00931 USA. RP Pachepsky, Y (reprint author), USDA ARS, Environm Microbial & Food Safety Lab, Beltsville, MD 20705 USA. EM Yakov.Pachepsky@ars.usda.gov FU USDA Natural Resource Career Tracks Puerto Rico FX We are thankful for the support from the USDA Natural Resource Career Tracks Puerto Rico extended to Manuel Olmeda Saldana. NR 38 TC 0 Z9 0 U1 3 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-6369 EI 1573-2959 J9 ENVIRON MONIT ASSESS JI Environ. Monit. Assess. PD FEB PY 2017 VL 189 IS 2 AR 51 DI 10.1007/s10661-016-5763-8 PG 10 WC Environmental Sciences SC Environmental Sciences & Ecology GA EK0VS UT WOS:000393645800006 PM 28063117 ER PT J AU Panda, PP Busari, O Lucht, RP Laster, WR AF Panda, Pratikash P. Busari, Oluwatobi Lucht, Robert P. Laster, Walter R. TI Effect of the nature of vitiated crossflow on the flow-field of a transverse reacting jet SO EXPERIMENTS IN FLUIDS LA English DT Article ID PROPER ORTHOGONAL DECOMPOSITION; DIRECT NUMERICAL-SIMULATION; TURBULENT JET; FLAME STABILIZATION; COHERENT STRUCTURES; PASSIVE SCALAR; FUEL JET; INTERMITTENCY; STABILITY; WAKE AB The effect of the nature of vitiated crossflow on the structure and dynamics of non-reacting/reacting transverse jets is investigated. In this study, the vitiated crossflow is produced either by a low-swirl burner (LSB) that adds a swirling component to the crossflow or a bluff-body burner (BBB) that produces a uniform crossflow. The jet fluid is injected through a contoured injector, which provides a top-hat velocity profile. The swirling crossflow exhibits considerable swirl at the point of injection of the transverse jet. Two component high-repetition-rate PIV measurements demonstrate the influence of a vitiated crossflow generated by a low-swirl/bluff-body burner on the near-wake flow-field of the jet. Measurements at a plane below the injection location of the jet indicate that there is a continuous entrainment of PIV particles in case of swirling crossflow. The time-averaged flow-field shows that the velocity field for reacting/non-reacting jets in the LSB crossflow exhibits higher velocity gradients, in the measurement plane along jet cross section, as compared to BBB crossflow. It is found that the vorticity magnitude is lower in case of jets in the BBB crossflow and there is a delay in the formation of the wake vortex structure. The conditional turbulent statistics of the jet flow-field in the two crossflows shows that there is a higher degree of intermittency related to the wake vortex structure in case of a BBB crossflow, which results in a non-Gaussian distribution of the turbulent statistics. The wake Strouhal number calculation shows the influence of the nature of crossflow on the rate of wake vortex shedding. The wake Strouhal number for the jets in BBB crossflow is found to be lower than for the LSB crossflow. A decrease in the wake Strouhal number is observed with an increase in the nozzle separation distance. There is an increase in the dilatation rate owing to heat release which results in higher wake Strouhal number for reacting jets as compared to non-reacting jets. The POD analysis of the reacting and non-reacting jets shows the wake vortex structures to be the dominant flow structures in this study. There is a redistribution of turbulent kinetic energy from the shear layer to the coherent wake vortex structure with an increase in the nozzle separation distance. The wake structures in the near-wake region of jets in LSB crossflow are found to have a larger contribution to the kinetic energy as compared to jets in BBB crossflow. C1 [Panda, Pratikash P.] Sandia Natl Labs, Combust Res Facil, MS 9052,7011 East Ave, Livermore, CA 94550 USA. [Busari, Oluwatobi; Lucht, Robert P.] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. [Laster, Walter R.] Siemens Energy, Orlando, FL USA. RP Panda, PP (reprint author), Sandia Natl Labs, Combust Res Facil, MS 9052,7011 East Ave, Livermore, CA 94550 USA. EM pppanda@sandia.gov FU United States Department of Energy under the University Turbine Systems Research (UTSR) Program [DE-FE0007099]; United States Department of Energy, Advanced Hydrogen Turbine Development Program [DE-FC26-05NT42644] FX The authors would like to thank Prof. Ann Karagozian for sharing the design details of the contoured injector. This work was supported by the United States Department of Energy under the University Turbine Systems Research (UTSR) Program, Grant Number DE-FE0007099, and by a subcontract through Siemens Energy on a prime contract from the United States Department of Energy, Advanced Hydrogen Turbine Development Program, Award Number DE-FC26-05NT42644. NR 40 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0723-4864 EI 1432-1114 J9 EXP FLUIDS JI Exp. Fluids PD FEB PY 2017 VL 58 IS 2 AR 9 DI 10.1007/s00348-016-2288-4 PG 16 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA EK9QE UT WOS:000394258200001 ER PT J AU Ziegler, D Meyer, TR Amrein, A Bertozzi, AL Ashby, PD AF Ziegler, Dominik Meyer, Travis R. Amrein, Andreas Bertozzi, Andrea L. Ashby, Paul D. TI Ideal Scan Path for High-Speed Atomic Force Microscopy SO IEEE-ASME TRANSACTIONS ON MECHATRONICS LA English DT Article DE Actuators; atomic forcemicroscopy (AFM); motion control ID DESIGN AB We propose a new scan waveform ideally suited for high-speed atomic force microscopy. It is an optimization of the Archimedean spiral scan path with respect to the X, Y scanner bandwidth and scan speed. The resulting waveform uses a constant angular velocity spiral in the center and transitions to constant linear velocity toward the periphery of the scan. We compare it with other scan paths and demonstrate that our novel spiral best satisfies the requirements of high-speed atomic forcemicroscopy by utilizing the scan time most efficiently with excellent data density and data distribution. For accurate X, Y, and Z positioning our proposed scan pattern has low angular frequency and low linear velocities that respect the instrument's mechanical limits. Using Sensor Inpainting we show artifact-free high-resolution images taken at two frames per second with a 2.2 mu m scan size on a moderately large scanner capable of 40 mu m scans. C1 [Ziegler, Dominik; Amrein, Andreas; Ashby, Paul D.] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Ziegler, Dominik] Scuba Probe Technol LLC, Alameda, CA 94501 USA. [Meyer, Travis R.; Bertozzi, Andrea L.] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA. RP Ziegler, D (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM dziegler@lbl.gov; euphopiab@gmail.com; andi.amrein@gmail.com; bertozzi@math.ucla.edu; pdashby@lbl.gov FU National Science Foundation [DMS-1118971, 1556128]; Office of Naval Research [N00014-16-1-2119]; Small Business Innovation Research Phase I and II Grants [DE-SC 0013212]; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by the National Science Foundation under Grant DMS-1118971, in part by the Office of Naval Research under Grant N00014-16-1-2119, in part by the Small Business Innovation Research Phase I and II Grants under Award DE-SC 0013212, and in part by the National Science Foundation under Award 1556128. The work at Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 43 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1083-4435 EI 1941-014X J9 IEEE-ASME T MECH JI IEEE-ASME Trans. Mechatron. PD FEB PY 2017 VL 22 IS 1 BP 381 EP 391 DI 10.1109/TMECH.2016.2615327 PG 11 WC Automation & Control Systems; Engineering, Manufacturing; Engineering, Electrical & Electronic; Engineering, Mechanical SC Automation & Control Systems; Engineering GA EN1DG UT WOS:000395750100039 ER PT J AU Shin, J Huang, LJ AF Shin, Junseob Huang, Lianjie TI Spatial Prediction Filtering of Acoustic Clutter and Random Noise in Medical Ultrasound Imaging SO IEEE TRANSACTIONS ON MEDICAL IMAGING LA English DT Article DE Autoregressive filtering; beamforming; clutter suppression; image contrast enhancement; random noise; spatial prediction filtering ID CROSS-CORRELATION; PHASE ABERRATION; DUAL APODIZATION; DECOMPOSITION; ATTENUATION; SONOGRAPHY AB One of the major challenges in array-based medical ultrasound imaging is the image quality degradation caused by sidelobes and off-axis clutter, which is an inherent limitation of the conventional delay-and-sum (DAS) beamforming operating on a finite aperture. Ultrasound image quality is further degraded in imaging applications involving strong tissue attenuation and/or low transmit power. In order to effectively suppress acoustic clutter from off-axis targets and random noise in a robust manner, we introduce in this paper a new adaptive filtering technique called frequency-space (F-X) prediction filtering or FXPF, which was first developed in seismic imaging for random noise attenuation. Seismologists developed FXPF based on the fact that linear and quasilinear events or wavefronts in the time-space (T-X) domain are manifested as a superposition of harmonics in the frequency-space (F-X) domain, which can be predicted using an auto-regressive (AR) model. We describe the FXPF technique as a spectral estimation or a direction-of-arrivalproblem, and explainwhy adaptation of this technique into medical ultrasound imaging is beneficial. We apply our new technique to simulated and tissue-mimicking phantom data. Our results demonstrate that FXPF achieves CNR improvements of 26% in simulated noise-free anechoic cyst, 109% in simulated anechoic cyst contaminated with random noise of 15 dB SNR, and 93% for experimental anechoic cyst from a custommade tissue-mimicking phantom. Our findings suggest that FXPF is an effective technique to enhance ultrasound image contrast and has potential to improve the visualization of clinically important anatomical structures and diagnosis of diseased conditions. C1 [Shin, Junseob; Huang, Lianjie] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Shin, Junseob; Huang, Lianjie] Philips Res North Amer, Cambridge, MA 02141 USA. RP Shin, J (reprint author), Philips Res North Amer, Cambridge, MA 02141 USA. EM jss003@gmail.com; ljh@lanl.gov FU Breast Cancer Research Program of U.S. DoD Congressionally Directed Medical Research Programs FX This work was supported by the Breast Cancer Research Program of U.S. DoD Congressionally Directed Medical Research Programs. Asterisk indicates corresponding author. NR 38 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0278-0062 EI 1558-254X J9 IEEE T MED IMAGING JI IEEE Trans. Med. Imaging PD FEB PY 2017 VL 36 IS 2 BP 396 EP 406 DI 10.1109/TMI.2016.2610758 PG 11 WC Computer Science, Interdisciplinary Applications; Engineering, Biomedical; Engineering, Electrical & Electronic; Imaging Science & Photographic Technology; Radiology, Nuclear Medicine & Medical Imaging SC Computer Science; Engineering; Imaging Science & Photographic Technology; Radiology, Nuclear Medicine & Medical Imaging GA EN6LP UT WOS:000396115800005 ER PT J AU Wang, TX Peng, YJ Jiang, W Huang, YM Rahman, BMF Divan, R Rosenmann, D Wang, GA AF Wang, Tengxing Peng, Yujia Jiang, Wei Huang, Yong Mao Rahman, B. M. Farid Divan, Ralu Rosenmann, Daniel Wang, Guoan TI Integrating Nanopatterned Ferromagnetic and Ferroelectric Thin Films for Electrically Tunable RF Applications SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES LA English DT Article DE Electrically tunable; ferroelectric thin film; ferromagnetic thin film; nanopatterns; radio-frequency (RF) components ID HIGH-FREQUENCY APPLICATIONS; MAGNETIC-FILMS; SPIRAL INDUCTORS; PHASE-SHIFTER; COMPACT; DESIGN AB Tunable radio-frequency (RF) components are pivotal elements in frequency-agile and multifunctional systems. However, there is a technical barrier to achieve miniaturized fully electrically tunable RF components. This paper provides and demonstrates the efficacy of a first unique design methodology in developing fully electrically tunable RF components by integrating ferromagnetic [e.g., permalloy (Py)] and ferroelectric (e.g., lead zirconate titanate) thin-film patterns. Py thin film has been patterned in nanometer scale to improve its ferromagnetic resonance frequency for RF applications. Tunable inductors are developed with the utilization of different thicknesses of Py thin film, which show over 50% increment in inductance and over 4% in tunability with dc current. More tunability can be achieved with multiple layers of Py thin film and optimized thickness. A fully electrically tunable slow-wave RF transmission line with simultaneously variable inductance and capacitance density has been implemented and thoroughly investigated for the first time. The measured results show that a fixed phase shift of 90 degrees can be achieved from 1.5 to 1.85 GHz continuously by applying external dc current from 0 to 200 mA and external dc voltage from 0 to 15 V, respectively. C1 [Wang, Tengxing; Peng, Yujia; Jiang, Wei; Huang, Yong Mao; Rahman, B. M. Farid; Wang, Guoan] Univ South Carolina, Dept Elect Engn, Smart Microwave & RF Technol Lab, Columbia, SC 29208 USA. [Divan, Ralu; Rosenmann, Daniel] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA. RP Wang, TX (reprint author), Univ South Carolina, Dept Elect Engn, Smart Microwave & RF Technol Lab, Columbia, SC 29208 USA. EM wangtengxing@hotmail.com; gwang@cec.sc.edu OI Wang, Tengxing/0000-0003-0738-7634 FU National Science Foundation [ECCS-1253929, CNS-1513107]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the National Science Foundation under Award ECCS-1253929 and Award CNS-1513107. Fabrication was performed at the Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 44 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9480 EI 1557-9670 J9 IEEE T MICROW THEORY JI IEEE Trans. Microw. Theory Tech. PD FEB PY 2017 VL 65 IS 2 BP 504 EP 512 DI 10.1109/TMTT.2016.2616869 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA EM9KX UT WOS:000395631600018 ER PT J AU Olsen, RG Li, Z AF Olsen, R. G. Li, Zhi TI A Proposal for a High-Voltage Transmission Line Directional Coupler SO IEEE TRANSACTIONS ON POWER DELIVERY LA English DT Article DE Power transmission lines; wave propagation; directional coupler AB Directional couplers are devices generally used in high-frequency transmission lines and waveguides that respond to forward and reverse traveling waves separately. Hence they can be used to either measure standing-wave ratio in the steady state or to determine the direction of a propagating transient wave. Here, a design is proposed for a directional coupler to be used on multimode high-voltage transmission lines. Its performance is analyzed and several suggestions are made to improve its design. C1 [Olsen, R. G.] Washington State Univ, Sch Elect Engn & Comp Sci, Pullman, WA 99164 USA. [Li, Zhi] Oak Ridge Natl Lab, Elect & Elect Syst Res Div, Oak Ridge, TN 37831 USA. RP Olsen, RG (reprint author), Washington State Univ, Sch Elect Engn & Comp Sci, Pullman, WA 99164 USA. EM bgolsen@wsu.edu; liz2@ornl.gov NR 6 TC 0 Z9 0 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8977 EI 1937-4208 J9 IEEE T POWER DELIVER JI IEEE Trans. Power Deliv. PD FEB PY 2017 VL 32 IS 1 BP 272 EP 278 DI 10.1109/TPWRD.2016.2569120 PG 7 WC Engineering, Electrical & Electronic SC Engineering GA EL3SJ UT WOS:000394539200030 ER PT J AU Meliopoulos, APS Cokkinides, GJ Myrda, P Liu, Y Fan, R Sun, LY Huang, RK Tan, ZY AF Meliopoulos, A. P. Sakis Cokkinides, George J. Myrda, Paul Liu, Yu Fan, Rui Sun, Liangyi Huang, Renke Tan, Zhenyu TI Dynamic State Estimation-Based Protection: Status and Promise SO IEEE TRANSACTIONS ON POWER DELIVERY LA English DT Article DE Power system protective relaying; dynamic state estimation; zone protection; hidden failures ID POWER TRANSFORMER PROTECTION; DIFFERENTIAL RELAY AB The introduction of the microprocessor-based numerical relay in the 1980s resulted in multifunctional, multidimensional, communications-enabled complex protection systems for zone and system protection. The increasing capabilities of this technology created new unintended challenges: 1) complexity has increased and selecting coordinated settings is a challenge leading to occasional miscoordination; 2) protection functions still rely on a small number of measurements (typically three voltages and three currents) limiting the ability of protection functions to dependably identify the type of fault conditions; and 3) present approaches are incapable of dealing with hidden failures in the protection system. Statistically, 10% of protection operations are misoperations. This paper presents a new approach to protection that promises to eliminate the majority of the problems that lead to misoperations. The approach is described, demonstrated in the laboratory, compared to traditional protection functions and its application to a substation coordinated protection system capable of detecting and dealing with hidden failures is described. This paper also discusses the planned field testing of the approach. C1 [Meliopoulos, A. P. Sakis; Liu, Yu; Fan, Rui; Sun, Liangyi; Tan, Zhenyu] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30339 USA. [Cokkinides, George J.] Univ South Carolina, Columbia, SC 29208 USA. [Myrda, Paul] Elect Power Res Inst, Orland Pk, IL 60467 USA. [Huang, Renke] Pacific Northwest Natl Lab, Richland, WA 99354 USA. RP Liu, Y (reprint author), Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30339 USA. EM sakis.m@gatech.edu; cokkinides@comcast.net; pmyrda@epri.com; yliu400@gatech.edu; rfan7@gatech.edu; lsun30@gatech.edu; huangrenke@gmail.com; zytan07@gmail.com NR 17 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8977 EI 1937-4208 J9 IEEE T POWER DELIVER JI IEEE Trans. Power Deliv. PD FEB PY 2017 VL 32 IS 1 BP 320 EP 330 DI 10.1109/TPWRD.2016.2613411 PG 11 WC Engineering, Electrical & Electronic SC Engineering GA EL3SJ UT WOS:000394539200036 ER PT J AU Routtenberg, T Concepcion, R Tong, L AF Routtenberg, Tirza Concepcion, Ricky Tong, Lang TI PMU-Based Detection of Voltage Imbalances with Tolerance Constraints SO IEEE TRANSACTIONS ON POWER DELIVERY LA English DT Article DE Phasor measurement unit (PMU); microgrids; off-nominal frequencies; power system monitoring; unbalanced power system; symmetrical components; state estimation; generalized locally most powerful (GLMP) test ID STATE ESTIMATION; POWER-SYSTEMS; DISTRIBUTION NETWORKS; UNBALANCED VOLTAGE; INDUCTION-MOTOR; FREQUENCY; PERFORMANCE; PARAMETERS; TESTS AB The problem of voltage imbalance detection in a three-phase power system using phasor measurement unit (PMU) data is considered within a hypothesis testing framework. Ageneral model for the PMU output with a downsampled negative sequence is presented. The new formulation takes into account computation complexity and tolerance of imbalance. A new monitoring tool, referred to as a generalized locally most powerful (GLMP) test, is proposed for detection in the presence of nuisance parameters. A closed-form expression of the GLMP test is developed for the detection of an imbalance problem, based on a single PMU's measurements. Numerical simulations show improved performance over benchmark techniques. C1 [Routtenberg, Tirza] Ben Gurion Univ Negev, Dept Elect & Comp Engn, IL-84105 Beer Sheva, Israel. [Concepcion, Ricky] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Tong, Lang] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA. RP Routtenberg, T (reprint author), Ben Gurion Univ Negev, Dept Elect & Comp Engn, IL-84105 Beer Sheva, Israel. EM tirzar@bgu.ac.il; rjc286@cornell.edu; lt35@cornell.edu FU National Science Foundation [CNS-1135844] FX This work was supported in part by the National Science Foundation under Grant CNS-1135844. Paper no. TPWRD-01023-2015. R1. NR 52 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8977 EI 1937-4208 J9 IEEE T POWER DELIVER JI IEEE Trans. Power Deliv. PD FEB PY 2017 VL 32 IS 1 BP 484 EP 494 DI 10.1109/TPWRD.2016.2591727 PG 11 WC Engineering, Electrical & Electronic SC Engineering GA EL3SJ UT WOS:000394539200053 ER PT J AU Malakar, P Vishwanath, V AF Malakar, Preeti Vishwanath, Venkatram TI Hierarchical Read-Write Optimizations for Scientific Applications with Multi-variable Structured Datasets SO INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING LA English DT Article DE Read; Write; Multi-variable dataset; Scientific applications AB Large-scale scientific applications spend a significant amount of time in reading and writing data. These simulations run on supercomputers which are architected with high-bandwidth, low-latency, and complex topology interconnects. Yet, few efforts exist that fully exploit the interconnect features for I/O. MPI-IO optimizations suffer from significant network contention at large core counts making I/O a critical bottleneck at extreme scales. We propose HieRO, which leverages the fast interconnect and performs hierarchical optimizations for I/O in scientific applications with structured datasets. HieRO performs reads/writes in multiple stages using carefully chosen leader processes who invoke the MPI-IO calls. Additionally, HieRO considers the application's domain decomposition and access patterns and fully utilizes the on-chip interconnect at each multicore node. We evaluate the efficacy of our optimizations with two scientific applications, WRF and S3D, with I/O access patterns commonly used in a wide gamut of applications. We evaluate our approaches on two supercomputers, the Edison Cray XC30 and the Mira Blue Gene/Q, representing systems with diverse interconnects and parallel filesystems. We demonstrate that algorithmic changes can lead to significant improvements in parallel read/write. HieRO is able to achieve more than read time improvements for WRF and achieve up to read and write time improvements for S3D on 524288 cores. C1 [Malakar, Preeti; Vishwanath, Venkatram] Argonne Natl Lab, Lemont, IL 60439 USA. RP Malakar, P (reprint author), Argonne Natl Lab, Lemont, IL 60439 USA. EM pmalakar@anl.gov; venkat@anl.gov FU Office of Science of the U.S. Department of Energy [DE-AC02-06CH11357] FX This research has been funded in part and used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. NR 27 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0885-7458 EI 1573-7640 J9 INT J PARALLEL PROG JI Int. J. Parallel Program. PD FEB PY 2017 VL 45 IS 1 SI SI BP 94 EP 108 DI 10.1007/s10766-015-0388-z PG 15 WC Computer Science, Theory & Methods SC Computer Science GA EK8ZQ UT WOS:000394213900008 ER PT J AU Montmayeur, AM Ng, TFF Schmidt, A Zhao, K Magana, L Iber, J Castro, CJ Chen, Q Henderson, E Ramos, E Shaw, J Tatusov, RL Dybdahl-Sissoko, N Endegue-Zanga, MC Adeniji, JA Oberste, MS Burns, CC AF Montmayeur, Anna M. Ng, Terry Fei Fan Schmidt, Alexander Zhao, Kun Magana, Laura Iber, Jane Castro, Christina J. Chen, Qi Henderson, Elizabeth Ramos, Edward Shaw, Jing Tatusov, Roman L. Dybdahl-Sissoko, Naomi Endegue-Zanga, Marie Claire Adeniji, Johnson A. Oberste, M. Steven Burns, Cara C. TI High-Throughput Next-Generation Sequencing of Polioviruses SO JOURNAL OF CLINICAL MICROBIOLOGY LA English DT Article DE FTA cards; cell culture; metagenomics; next-generation sequencing; picornavirus; poliovirus ID GLOBAL POLIO ERADICATION; GENOMES; IDENTIFICATION; METAGENOMICS; SURVEILLANCE AB The poliovirus (PV) is currently targeted for worldwide eradication and containment. Sanger-based sequencing of the viral protein 1 (VP1) capsid region is currently the standard method for PV surveillance. However, the whole-genome sequence is sometimes needed for higher resolution global surveillance. In this study, we optimized whole-genome sequencing protocols for poliovirus isolates and FTA cards using next-generation sequencing (NGS), aiming for high sequence coverage, efficiency, and throughput. We found that DNase treatment of poliovirus RNA followed by random reverse transcription (RT), amplification, and the use of the Nextera XT DNA library preparation kit produced significantly better results than other preparations. The average viral reads per total reads, a measurement of efficiency, was as high as 84.2% +/- 15.6%. PV genomes covering >99 to 100% of the reference length were obtained and validated with Sanger sequencing. A total of 52 PV genomes were generated, multiplexing as many as 64 samples in a single Illumina MiSeq run. This high-throughput, sequence-independent NGS approach facilitated the detection of a diverse range of PVs, especially for those in vaccine-derived polioviruses (VDPV), circulating VDPV, or immunodeficiency-related VDPV. In contrast to results from previous studies on other viruses, our results showed that filtration and nuclease treatment did not discernibly increase the sequencing efficiency of PV isolates. However, DNase treatment after nucleic acid extraction to remove host DNA significantly improved the sequencing results. This NGS method has been successfully implemented to generate PV genomes for molecular epidemiology of the most recent PV isolates. Additionally, the ability to obtain full PV genomes from FTA cards will aid in facilitating global poliovirus surveillance. C1 [Montmayeur, Anna M.; Ramos, Edward; Tatusov, Roman L.] CSRA Int, Atlanta, GA USA. [Ng, Terry Fei Fan; Zhao, Kun; Iber, Jane; Chen, Qi; Henderson, Elizabeth; Shaw, Jing; Dybdahl-Sissoko, Naomi; Oberste, M. Steven; Burns, Cara C.] Ctr Dis Control & Prevent, Div Viral Dis, Atlanta, GA 30333 USA. [Schmidt, Alexander] IHRC, Atlanta, GA USA. [Magana, Laura; Castro, Christina J.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Endegue-Zanga, Marie Claire] Ctr Pasteur Cameroon, Yaounde, Cameroon. [Adeniji, Johnson A.] Univ Ibadan, Dept Virol, Coll Med, Ibadan, Nigeria. RP Ng, TFF (reprint author), Ctr Dis Control & Prevent, Div Viral Dis, Atlanta, GA 30333 USA. EM ylz9@cdc.gov OI Ng, Terry Fei Fan/0000-0002-4815-8697 FU Advanced Molecular Detection (AMD) program; CDC FX This work was supported by the Advanced Molecular Detection (AMD) program and the Polio Eradication line items at the CDC. NR 26 TC 0 Z9 0 U1 2 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0095-1137 EI 1098-660X J9 J CLIN MICROBIOL JI J. Clin. Microbiol. PD FEB PY 2017 VL 55 IS 2 BP 606 EP 615 DI 10.1128/JCM.02121-16 PG 10 WC Microbiology SC Microbiology GA EK0LF UT WOS:000393617300031 PM 27927929 ER PT J AU Fernandez, N Katipamula, S Underhill, RM AF Fernandez, Nick Katipamula, Srinivas Underhill, Ronald M. TI Optimizing Control of Dedicated Outdoor Air Systems with Energy Recovery in Commercial Buildings SO JOURNAL OF ENERGY ENGINEERING LA English DT Article AB Dedicated outdoor air systems (DOASs) with energy recovery ventilators (ERVs) are increasingly popular in new buildings and have the potential to greatly reduce building energy consumption through elimination of zone-level summer reheat and free preconditioning of outdoor ventilation air through energy recovery with building exhaust air, often using an enthalpy wheel heat exchanger. In practice, many of these systems, however, are run suboptimally or are designed with complex and counterintuitive configurations that require detailed engineering analysis to understand optimal control sequences. Three real-world case studies from commercial building retuning are presented where control deficiencies in DOASs with ERVs led to excess energy consumption. An analysis of the potential energy savings from correcting these deficiencies as well as a discussion of how each analysis was performed during the retuning audit is included. Energy savings can vary significantly based on the climate and the baseline system's specific suboptimal operation; however, opportunities for saving energy have been documented in these case studies. (C) 2016 American Society of Civil Engineers. C1 [Fernandez, Nick; Katipamula, Srinivas; Underhill, Ronald M.] Pacific Northwest Natl Lab, POB 999 K9-14, Richland, WA 99352 USA. RP Katipamula, S (reprint author), Pacific Northwest Natl Lab, POB 999 K9-14, Richland, WA 99352 USA. EM nick.fernandez@pnnl.gov; srinivas.katipamula@pnnl.gov; ronald.underhill@pnnl.gov FU Washington State Attorney General's Office; Buildings Technologies Program of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy FX The authors would like to acknowledge the Washington State Attorney General's Office and the Buildings Technologies Program of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy for supporting the research and development effort. The authors would also like to thank Sue Arey for editorial support in preparing this document. NR 10 TC 0 Z9 0 U1 3 U2 3 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9402 EI 1943-7897 J9 J ENERG ENG JI J. Energy Eng.-ASCE PD FEB PY 2017 VL 143 IS 1 DI 10.1061/(ASCE)EY.1943-7897.0000368 PG 9 WC Energy & Fuels; Engineering, Civil SC Energy & Fuels; Engineering GA EK9PU UT WOS:000394257200006 ER PT J AU Chakraborty, N Karpyn, ZT Liu, S Yoon, H AF Chakraborty, N. Karpyn, Z. T. Liu, S. Yoon, H. TI Permeability evolution of shale during spontaneous imbibition SO JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING LA English DT Article DE Shale; Gas permeability; Fractures; Tomography; Imbibition ID TIGHT ROCKS; WATER AB Shales have small pore and throat sizes ranging from nano to micron scales, low porosity and limited permeability. The poor permeability and complex pore connectivity of shales pose technical challenges to (a) understanding flow and transport mechanisms in such systems and, (b) in predicting permeability changes under dynamic saturation conditions. This study presents quantitative experimental evidence of the migration of water through a generic shale core plug using micro CT imaging. In addition, in-situ measurements of gas permeability were performed during counter-current spontaneous imbibition of water in nano-darcy permeability Marcellus and Haynesville core plugs. It was seen that water blocks severely reduced the effective permeability of the core plugs, leading to losses of up to 99.5% of the initial permeability in experiments lasting 30 days. There was also evidence of clay swelling which further hindered gas flow. When results from this study were compared with similar counter-current gas permeability experiments reported in the literature, the initial (base) permeability of the rock was found to be a key factor in determining the time evolution of effective gas permeability during spontaneous imbibition. With time, a recovery of effective permeability was seen in the higher permeability rocks, while becoming progressively detrimental and irreversible in tighter rocks. These results suggest that matrix permeability of ultra-tight rocks is susceptible to water damage following hydraulic fracturing stimulation and, while shut-in/soaking time helps clearing-up fractures from resident fluid, its effect on the adjacent matrix permeability could be detrimental. (C) 2017 Elsevier B.V. All rights reserved. C1 [Chakraborty, N.; Karpyn, Z. T.; Liu, S.] Penn State Univ, John & Willie Leone Family Dept Energy, Mineral Engn & EMS Energy Inst, University Pk, PA 16802 USA. [Yoon, H.] Sandia Natl Labs, Geosci Res & Applicat, POB 5800, Albuquerque, NM 87185 USA. RP Karpyn, ZT (reprint author), Penn State Univ, John & Willie Leone Family Dept Energy, Mineral Engn & EMS Energy Inst, University Pk, PA 16802 USA. EM zkarpyn@psu.edu FU U.S. Department of Energy, the Office of Science, Basic Energy Sciences program [DE-SC0006883]; Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration [DE-AC04 94AL85000] FX This work received funding support from the U.S. Department of Energy, the Office of Science, Basic Energy Sciences program under Award Number DE-SC0006883. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04 94AL85000. We also thank Tim Beattie from Shell Appalachia, and the Unconventional Natural Resources Consortium (UNRC), for facilitating Marcellus shale samples for this study. NR 19 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1875-5100 EI 2212-3865 J9 J NAT GAS SCI ENG JI J. Nat. Gas Sci. Eng. PD FEB PY 2017 VL 38 BP 590 EP 596 DI 10.1016/j.jngse.2016.12.031 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EK6UT UT WOS:000394062000045 ER PT J AU Schwantes, JM Marsden, O Pellegrini, KL AF Schwantes, Jon M. Marsden, Oliva Pellegrini, Kristi L. TI State of practice and emerging application of analytical techniques of nuclear forensic analysis: highlights from the 4th Collaborative Materials Exercise of the Nuclear Forensics International Technical Working Group (ITWG) SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article; Proceedings Paper CT 1st International Conference on Radioanalytical and Nuclear Chemistry (RANC) CY APR 10-15, 2016 CL Budapest, HUNGARY DE Nuclear forensics; Nuclear Forensics International Technical Working Group (ITWG); Collaborative Materials Exercise (CMX) AB The Nuclear Forensics International Technical Working Group (ITWG) recently completed its fourth Collaborative Materials Exercise (CMX-4) in the 21 year history of the Group. This was also the largest materials exercise to date, with participating laboratories from 16 countries or international organizations. Exercise samples (including three separate samples of low enriched uranium oxide) were shipped as part of an illicit trafficking scenario, for which each laboratory was asked to conduct nuclear forensic analyses in support of a fictitious criminal investigation. In all, over 30 analytical techniques were applied to characterize exercise materials, for which ten of those techniques were applied to ITWG exercises for the first time. An objective review of the state of practice and emerging application of analytical techniques of nuclear forensic analysis based upon the outcome of this most recent exercise is provided. C1 [Schwantes, Jon M.; Pellegrini, Kristi L.] Pacific Northwest Natl Lab, 209 Battelle Blvd, Richland, WA 99354 USA. [Marsden, Oliva] AWE, Reading RG7 4PR, Berks, England. RP Schwantes, JM (reprint author), Pacific Northwest Natl Lab, 209 Battelle Blvd, Richland, WA 99354 USA. EM jon.schwantes@pnnl.gov NR 8 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD FEB PY 2017 VL 311 IS 2 BP 1441 EP 1452 DI 10.1007/s10967-016-5037-5 PG 12 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA EL0WT UT WOS:000394343200059 ER PT J AU Borgardt, J Canaday, J Chamberlain, D AF Borgardt, James Canaday, Jodi Chamberlain, David TI Results from the second Galaxy Serpent web-based table top exercise utilizing the concept of nuclear forensics libraries SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article; Proceedings Paper CT 1st International Conference on Radioanalytical and Nuclear Chemistry (RANC) CY APR 10-15, 2016 CL Budapest, HUNGARY DE Sealed radioactive source; Nuclear forensics; National Nuclear Forensics Library; Galaxy Serpent; Database AB Galaxy Serpent is a unique, virtual, web-based international tabletop series of exercises designed to mature the concept of National Nuclear Forensics Libraries (NNFLs). Teams participating in the second version of the exercise were provided synthetic sealed radioactive source data used to compile a model NNFL which then served as a comparative instrument in hypothetical scenarios involving sources out of regulatory control, allowing teams to successfully down-select and determine whether investigated sources were consistent with holdings in their model library. The methodologies utilized and aggregate results of the exercise will be presented, along with challenges encountered and benefits realized. C1 [Borgardt, James] US Dept State, Off Weap Mass Destruct Terrorism, Washington, DC 20520 USA. [Borgardt, James] Juniata Coll, Huntingdon, PA 16652 USA. [Canaday, Jodi; Chamberlain, David] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Borgardt, J (reprint author), US Dept State, Off Weap Mass Destruct Terrorism, Washington, DC 20520 USA.; Borgardt, J (reprint author), Juniata Coll, Huntingdon, PA 16652 USA. EM borgardt@juniata.edu NR 9 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD FEB PY 2017 VL 311 IS 2 BP 1517 EP 1524 DI 10.1007/s10967-016-5069-x PG 8 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA EL0WT UT WOS:000394343200069 ER PT J AU Zoubchenok, D Veillette, M Prevost, J Sanders-Buell, E Wagh, K Korber, B Chenine, AL Finzi, A AF Zoubchenok, Daria Veillette, Maxime Prevost, Jeremie Sanders-Buell, Eric Wagh, Kshitij Korber, Bette Chenine, Agnes L. Finzi, Andres TI Histidine 375 Modulates CD4 Binding in HIV-1 CRF01_AE Envelope Glycoproteins SO JOURNAL OF VIROLOGY LA English DT Article DE HIV-1; CRF01_AE; Env; gp120; Phe43 cavity; CD4; inner domain layers ID HUMAN-IMMUNODEFICIENCY-VIRUS; GP120 INNER DOMAIN; LINEAGE-SPECIFIC DIFFERENCES; REVERSE-TRANSCRIPTASE; CONFORMATIONAL TRANSITIONS; TRANSMEMBRANE GLYCOPROTEIN; NATURAL-HISTORY; IN-VIVO; TYPE-1; INFECTION AB The envelope glycoproteins (Envs) from human immunodeficiency virus type 1 (HIV-1) mediate viral entry. The binding of the HIV-1 gp120 glycoprotein to CD4 triggers conformational changes in gp120 that allow high-affinity binding to its coreceptors. In contrast to all other Envs from the same phylogenetic group, M, which possess a serine (S) at position 375, those from CRF01_AE strains possess a histidine (H) at this location. This residue is part of the Phe43 cavity, where residue 43 of CD4 (a phenylalanine) engages with gp120. Here we evaluated the functional consequences of replacing this residue in two CRF01_AE Envs (CM244 and 92TH023) by a serine. We observed that reversion of amino acid 375 to a serine (H375S) resulted in a loss of functionality of both CRF01_AE Envs as measured by a dramatic loss in infectivity and ability to mediate cell-to-cell fusion. While no effects on processing or trimer stability of these variants were observed, decreased functionality could be linked to a major defect in CD4 binding induced by the replacement of H375 by a serine. Importantly, mutations of residues 61 (layer 1), 105 and 108 (layer 2), and 474 to 476 (layer 3) of the CRF01_AE gp120 inner domain layers to the consensus residues present in group M restored CD4 binding and wild-type levels of infectivity and cell-to-cell fusion. These results suggest a functional coevolution between the Phe43 cavity and the gp120 inner domain layers. Altogether, our observations describe the functional importance of amino acid 375H in CRF01_AE envelopes. IMPORTANCE A highly conserved serine located at position 375 in group M is replaced by a histidine in CRF01_AE Envs. Here we show that H375 is required for efficient CRF01_AE Env binding to CD4. Moreover, this work suggests that specific residues of the gp120 inner domain layers have coevolved with H375 in order to maintain its ability to mediate viral entry. C1 [Zoubchenok, Daria; Veillette, Maxime; Prevost, Jeremie; Finzi, Andres] Univ Montreal, CHUM, Ctr Rech, Montreal, PQ, Canada. [Zoubchenok, Daria; Veillette, Maxime; Prevost, Jeremie; Finzi, Andres] Univ Montreal, Dept Microbiol Infect & Immunol, Montreal, PQ, Canada. [Sanders-Buell, Eric] US Mil, Walter Reed Army Inst Res, HIV Res Program, Silver Spring, MD USA. [Sanders-Buell, Eric; Chenine, Agnes L.] Henry M Jackson Fdn Adv Mil Med Inc, Bethesda, MD USA. [Wagh, Kshitij; Korber, Bette] Los Alamos Natl Lab, Los Alamos, NM USA. [Finzi, Andres] McGill Univ, Dept Microbiol & Immunol, Montreal, PQ, Canada. RP Finzi, A (reprint author), Univ Montreal, CHUM, Ctr Rech, Montreal, PQ, Canada.; Finzi, A (reprint author), Univ Montreal, Dept Microbiol Infect & Immunol, Montreal, PQ, Canada.; Finzi, A (reprint author), McGill Univ, Dept Microbiol & Immunol, Montreal, PQ, Canada. EM andres.finzi@umontreal.ca FU CIHR foundation grant [352417]; Canada Research Chair on Retroviral Entry; FRQS master award [30888]; CIHR Doctoral Research Award [291485]; Duke Center for HIV/AIDS Vaccine Immunology and Immunogen Design (CHAVI-ID) [AI100645] FX This work was supported by CIHR foundation grant 352417 to A.F. A.F. is the recipient of a Canada Research Chair on Retroviral Entry. D.Z. is the recipient of FRQS master award 30888. M.V. is the recipient of CIHR Doctoral Research Award 291485. K.W. and B.K. were supported by grant AI100645 from the Duke Center for HIV/AIDS Vaccine Immunology and Immunogen Design (CHAVI-ID). Our funding sources had no role in data collection, analysis, or interpretation and were not involved in the writing of the manuscript. We have no conflicts of interest to report. NR 60 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X EI 1098-5514 J9 J VIROL JI J. Virol. PD FEB PY 2017 VL 91 IS 4 AR UNSP e02151 DI 10.1128/JVI.02151-16 PG 14 WC Virology SC Virology GA EK4FU UT WOS:000393883300028 ER PT J AU MacCready, JS Schossau, J Osteryoung, KW Ducat, DC AF MacCready, Joshua S. Schossau, Jory Osteryoung, Katherine W. Ducat, Daniel C. TI Robust Min-system oscillation in the presence of internal photosynthetic membranes in cyanobacteria SO MOLECULAR MICROBIOLOGY LA English DT Article ID BACTERIAL-CELL DIVISION; ESCHERICHIA-COLI; CHLOROPLAST DIVISION; THYLAKOID MEMBRANES; BACILLUS-SUBTILIS; IN-VITRO; Z-RING; SYNECHOCOCCUS-ELONGATUS; PROTEOMIC ANALYSIS; PLASTID DIVISION AB The oscillatory Min system of Escherichia coli defines the cell division plane by regulating the site of FtsZ-ring formation and represents one of the best-understood examples of emergent protein self-organization in nature. The oscillatory patterns of the Min-system proteins MinC, MinD and MinE (MinCDE) are strongly dependent on the geometry of membranes they bind. Complex internal membranes within cyanobacteria could disrupt this self-organization by sterically occluding or sequestering MinCDE from the plasma membrane. Here, it was shown that the Min system in the cyanobacterium Synechococcus elongatus PCC 7942 oscillates from pole-to-pole despite the potential spatial constraints imposed by their extensive thylakoid network. Moreover, reaction-diffusion simulations predict robust oscillations in modeled cyanobacterial cells provided that thylakoid network permeability is maintained to facilitate diffusion, and suggest that Min proteins require preferential affinity for the plasma membrane over thylakoids to correctly position the FtsZ ring. Interestingly, in addition to oscillating, MinC exhibits a midcell localization dependent on MinD and the DivIVA-like protein Cdv3, indicating that two distinct pools of MinC are coordinated in S. elongatus. Our results provide the first direct evidence for Min oscillation outside of E. coli and have broader implications for Min-system function in bacteria and organelles with internal membrane systems. C1 [MacCready, Joshua S.] Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI 48824 USA. [Schossau, Jory] Michigan State Univ, Dept Comp Sci, E Lansing, MI 48824 USA. [Osteryoung, Katherine W.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Ducat, Daniel C.] Michigan State Univ, Dept Biochem, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. RP Osteryoung, KW (reprint author), Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA.; Ducat, DC (reprint author), Michigan State Univ, Dept Biochem, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. EM osteryou@msu.edu; ducatdan@msu.edu FU National Science Foundation [1517241] FX This work was supported by the National Science Foundation Award Number 1517241. The authors would like to thank Alicia Withrow and the Michigan State University Center for Advanced Microscopy for assistance with electron microscopy. We thank Chris Adami for his support for the computational modelling, the Michigan State University High Performance Computer Center (HPCC) at the Institute for Cyber-Enabled Research (iCER) for providing the equipment to perform the computational modelling, and Eric Young for discussions on image processing. NR 89 TC 0 Z9 0 U1 4 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0950-382X EI 1365-2958 J9 MOL MICROBIOL JI Mol. Microbiol. PD FEB PY 2017 VL 103 IS 3 BP 483 EP 503 DI 10.1111/mmi.13571 PG 21 WC Biochemistry & Molecular Biology; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA EL5XH UT WOS:000394694300008 PM 27891682 ER PT J AU Takanashi, N Doi, M Yasuda, N Kuncarayakti, H Konishi, K Schneider, DP Cinabro, D Marriner, J AF Takanashi, N. Doi, M. Yasuda, N. Kuncarayakti, H. Konishi, K. Schneider, D. P. Cinabro, D. Marriner, J. TI Photometric properties of intermediate-redshift Type Ia supernovae observed by the Sloan Digital Sky Survey-II Supernova Survey SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE supernovae: general; dust, extinction; galaxies: ISM ID LIGHT-CURVE SHAPES; HOST-GALAXY; CIRCUMSTELLAR MATERIAL; HUBBLE CONSTANT; STAR-FORMATION; K-CORRECTIONS; ULTRAVIOLET-SPECTRA; INFRARED-EMISSION; EJECTA VELOCITY; MILKY-WAY AB We have analysed multiband light curves of 328 intermediate-redshift (0.05 <= z < 0.24) Type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey. The multiband light curves were parametrized by using the multiband stretch method, which can simply parametrize light-curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia that appeared in red host galaxies (u - r > 2.5) do not have a broad light-curve width and the SNe Ia that appeared in blue host galaxies (u - r < 2.0) have a variety of light-curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appearing in red/blue host galaxies is different (a significance level of 99.9 per cent). We also investigate the extinction law of host galaxy dust. As a result, we find that the value of R-v derived from SNe Ia with medium light-curve widths is consistent with the standard Galactic value, whereas the value of R-v derived from SNe Ia that appear in red host galaxies becomes significantly smaller. These results indicate that there may be two types of SNe Ia with different intrinsic colours, and that they are obscured by host galaxy dust with two different properties. C1 [Takanashi, N.] Univ Tokyo, Execut Management Program, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138654, Japan. [Doi, M.] Univ Tokyo, Inst Astron, Grad Sch Sci, 2-21-1 Osawa, Mitaka, Tokyo 1810015, Japan. [Doi, M.; Yasuda, N.] Univ Tokyo, Kavli Inst Phys & Math Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778568, Japan. [Doi, M.] Univ Tokyo, Grad Sch Sci, Res Ctr Early Universe, Bunkyo Ku, Tokyo 1130033, Japan. [Kuncarayakti, H.] Millennium Inst Astrophys, Santiago, Chile. [Kuncarayakti, H.] Univ Chile, Dept Astron, Casilla 36-D, Santiago, Chile. [Konishi, K.] Nikon Inc, Sakae Ku, 471 Nagaodai Cho, Yokohama, Kanagawa 2448533, Japan. [Schneider, D. P.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Schneider, D. P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Cinabro, D.] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48202 USA. [Marriner, J.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. RP Takanashi, N (reprint author), Univ Tokyo, Execut Management Program, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138654, Japan.; Doi, M (reprint author), Univ Tokyo, Inst Astron, Grad Sch Sci, 2-21-1 Osawa, Mitaka, Tokyo 1810015, Japan.; Doi, M; Yasuda, N (reprint author), Univ Tokyo, Kavli Inst Phys & Math Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778568, Japan.; Doi, M (reprint author), Univ Tokyo, Grad Sch Sci, Res Ctr Early Universe, Bunkyo Ku, Tokyo 1130033, Japan. EM naohiro.takanashi@emp.u-tokyo.ac.jp; doi@ioa.s.u-tokyo.ac.jp; yasuda@icrr.u-tokyo.ac.jp FU Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; Japan Society for the Promotion of Science (JSPS); JSPS; CONICYT through FONDECYT [3140563]; 'Millennium Institute of Astrophysics (MAS)' of the Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y Turismo de Chile [IC120009]; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; Cambridge University; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPA); Max-Planck-Institute for Astrophysics (MPiA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; W. M. Keck Foundation FX Funding for the creation and distribution of the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England. The SDSS web site is http://www.sdss.org/. This work was also supported in part by a Japan Society for the Promotion of Science (JSPS) core-to-core programme, 'International Research Network for Dark Energy', and by a JSPS research grant. We also acknowledge support by CONICYT through FONDECYT grant 3140563, and by Project IC120009 'Millennium Institute of Astrophysics (MAS)' of the Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y Turismo de Chile.; The SDSS is managed by theAstrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, Cambridge University, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPA), the Max-Planck-Institute for Astrophysics (MPiA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory and the University of Washington.; This work is based in part on observations made at the following telescopes. The Hobby-Eberly Telescope (HET) is a joint project of the University of Texas at Austin, Pennsylvania State University, Stanford University, Ludwig-Maximillians-Universit at Munchen and Georg-August-Universitat Gottingen. The HET is named in honour of its principal benefactors, William P. Hobby and Robert E. Eberly. The Marcario Low-Resolution Spectrograph is named for Mike Marcario of High Lonesome Optics, who fabricated several optical elements for the instrument but died before its completion; it is a joint project of the HET partnership and the Instituto de Astronomia de la Universidad Nacional Autonoma de Mexico. The Apache Point Observatory 3.5-m telescope is owned and operated by the Astrophysical Research Consortium. We thank the observatory director, Suzanne Hawley, and site manager, Bruce Gillespie, for their support of this project. The Subaru Telescope is operated by the National Astronomical Observatory of Japan. The William Herschel Telescope is operated by the Isaac Newton Group on the island of La Palma in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. NR 101 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB PY 2017 VL 465 IS 2 BP 1274 EP 1288 DI 10.1093/mnras/stw2730 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EK2VT UT WOS:000393785500002 ER PT J AU Gil-Marin, H Percival, WJ Verde, L Brownstein, JR Chuang, CH Kitaura, FS Rodriguez-Torres, SA Olmstead, MD AF Gil-Marin, Hector Percival, Will J. Verde, Licia Brownstein, Joel R. Chuang, Chia-Hsun Kitaura, Francisco-Shu Rodriguez-Torres, Sergio A. Olmstead, Matthew D. TI The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the power spectrum and bispectrum of the DR12 BOSS galaxies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE cosmological parameters; large-scale structure of Universe ID DIGITAL SKY SURVEY; LARGE-SCALE STRUCTURE; 3-POINT CORRELATION-FUNCTION; GAUSSIAN INITIAL CONDITIONS; REDSHIFT SPACE DISTORTIONS; PRIMORDIAL NON-GAUSSIANITY; SHANE-WIRTANEN CATALOG; N-BODY SIMULATIONS; GROWTH-RATE; PERTURBATION-THEORY AB We measure and analyse the bispectrum of the final data release 12 (DR12), galaxy sample provided by the Baryon Oscillation Spectroscopic Survey, splitting by selection algorithm into LOWZ and CMASS galaxies. The LOWZ sample contains 361 762 galaxies with an effective redshift of z(LOWZ) = 0.32, and the CMASS sample contains 777 202 galaxies with an effective redshift of z(CMASS) = 0.57. Combining the power spectrum, measured relative to the line of sight, with the spherically averaged bispectrum, we are able to constrain the product of the growth of structure parameter, f, and the amplitude of dark matter density fluctuations, sigma(8), along with the geometric Alcock-Paczynski parameters, the product of the Hubble constant and the comoving sound horizon at the baryon drag epoch, H(z) rs(z(d)), and the angular distance parameter divided by the sound horizon, D-A(z)/r(s)(zd). After combining pre-reconstruction RSD analyses of the power spectrum monopole, quadrupole and bispectrum monopole with post-reconstruction analysis of the BAO power spectrum monopole and quadrupole, we find f(z(LOWZ))sigma(8)(z(LOWZ)) = 0.427 +/- 0.056, D-A(z(LOWZ))/r(s)(z(d)) = 6.60 +/- 0.13, H(z(LOWZ))r(s)(z(d)) = (11.55 +/- 0.38) 103 km s(-1) for the LOWZ sample, and f(z(CMASS))sigma(8)(z(CMASS)) = 0.426 +/- 0.029, D-A(z(CMASS))/r(s)(z(d)) = 9.39 +/- 0.10, H(z(CMASS))r(s)(z(d)) = (14.02 +/- 0.22) 103 km s-1 for the CMASS sample. We find general agreement with previous Baryon Oscillation Spectroscopic Survey DR11 and DR12 measurements. Combining our data set with Planck15 we perform a null test of General Relativity through the gamma-parametrization finding gamma = 0.733(-0.069)(+0.068), which is similar to 2.7 sigma away from the General Relativity predictions. C1 [Gil-Marin, Hector] Sorbonne Univ, Inst Lagrange Paris, 98 Bis Blvd Arago, F-75014 Paris, France. [Gil-Marin, Hector] Univ Paris 06, Lab Phys Nucl & Hautes Energies, 4 Pl Jussieu, F-75005 Paris, France. [Gil-Marin, Hector; Percival, Will J.] Univ Portsmouth, Inst Cosmol & Gravitat, Dennis Sciama Bldg, Portsmouth PO1 3FX, Hants, England. [Verde, Licia] Univ Barcelona, IEEC UB, ICREA, Marti i Franques 1, E-08028 Barcelona, Spain. [Verde, Licia] Univ Barcelona, IEEC UB, Inst Ciencies Cosmos, Marti i Franques 1, E-08028 Barcelona, Spain. [Verde, Licia] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Verde, Licia] Harvard Univ, Radcliffe Inst Adv Study, Cambridge, MA 02138 USA. [Brownstein, Joel R.] Univ Utah, Dept Phys & Astron, 115 S 1400 E, Salt Lake City, UT 84112 USA. [Chuang, Chia-Hsun; Rodriguez-Torres, Sergio A.] Univ Autonoma Madrid, Inst Fis Teor, CSIC, E-28049 Madrid, Spain. [Chuang, Chia-Hsun; Kitaura, Francisco-Shu] Leibniz Inst Astrophys Potsdam AIP, Sternwarte 16, D-14482 Potsdam, Germany. [Kitaura, Francisco-Shu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kitaura, Francisco-Shu] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. [Rodriguez-Torres, Sergio A.] UAM, Campus Int Excellence UAM CSIC, E-28049 Madrid, Spain. [Rodriguez-Torres, Sergio A.] UAM, Dept Fis Teor, E-28049 Madrid, Spain. [Olmstead, Matthew D.] Kings Coll, Dept Chem & Phys, 133 North River St, Wilkes Barre, PA 18711 USA. RP Gil-Marin, H (reprint author), Sorbonne Univ, Inst Lagrange Paris, 98 Bis Blvd Arago, F-75014 Paris, France.; Gil-Marin, H (reprint author), Univ Paris 06, Lab Phys Nucl & Hautes Energies, 4 Pl Jussieu, F-75005 Paris, France.; Gil-Marin, H; Percival, WJ (reprint author), Univ Portsmouth, Inst Cosmol & Gravitat, Dennis Sciama Bldg, Portsmouth PO1 3FX, Hants, England.; Verde, L (reprint author), Univ Barcelona, IEEC UB, ICREA, Marti i Franques 1, E-08028 Barcelona, Spain.; Verde, L (reprint author), Univ Barcelona, IEEC UB, Inst Ciencies Cosmos, Marti i Franques 1, E-08028 Barcelona, Spain.; Verde, L (reprint author), Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway.; Verde, L (reprint author), Harvard Univ, Radcliffe Inst Adv Study, Cambridge, MA 02138 USA. EM Hector.Gil@port.ac.uk; will.percival@port.ac.uk; liciaverde@icc.ub.edu FU Agence Nationale de la Recherche, as part of the programme Investissements d'avenir [ANR-11-IDEX-0004-02]; UK Science and Technology Facilities Research Council [ST/M001709/1, ST/N000668/1]; European Research Council [614030]; UK Space Agency [ST/N00180X/1]; ICCUB (Unidad de Excelencia Maria de Maeztu) [FPA2014-57816-P, MDM-2014-0369]; Spanish MICINNs Consolider-Ingenio Programme [MultiDark CSD2009-00064, AYA2010-21231-C02-01]; Comunidad de Madrid [HEPHACOS S2009/ESP-1473]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; University of Cambridge; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; ICG; SEP-Net FX This work has been done within the Labex ILP (reference ANR-10-LABX-63) part of the Idex SUPER, and received financial state aid managed by the Agence Nationale de la Recherche, as part of the programme Investissements d'avenir under the reference ANR-11-IDEX-0004-02.; WJP is grateful for support from the UK Science and Technology Facilities Research Council through grants ST/M001709/1 and ST/N000668/1. WJP is also grateful for support from the European Research Council through grant 614030 Darksurvey, and support from the UK Space Agency through grant ST/N00180X/1.; LV acknowledges support of FPA2014-57816-P and MDM-2014-0369 of ICCUB (Unidad de Excelencia Maria de Maeztu).; CC acknowledges support from the Spanish MICINNs Consolider-Ingenio 2010 Programme under grant MultiDark CSD2009-00064 and AYA2010-21231-C02-01 grant. CC was also supported by the Comunidad de Madrid under grant HEPHACOS S2009/ESP-1473. CC was supported as a MultiDark fellow.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.; Numerical computations were done on the Sciama High Performance Compute (HPC) cluster which is supported by the ICG, SEP-Net and the University of Portsmouth. The simulations for N-body haloes were performed at the National Energy Research Scientific Computing Center, the Shared Research Computing Services Pilot of the University of California and the Laboratory Research Computing project at Lawrence Berkeley National Laboratory. NR 110 TC 1 Z9 1 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB PY 2017 VL 465 IS 2 BP 1757 EP 1788 DI 10.1093/mnras/stw2679 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EK2VT UT WOS:000393785500036 ER PT J AU Ross, JS Rivera, P Schaibley, J Lee-Wong, E Yu, HY Taniguchi, T Watanabe, K Yan, JQ Mandrus, D Cobden, D Yao, W Xu, XD AF Ross, Jason S. Rivera, Pasqual Schaibley, John Lee-Wong, Eric Yu, Hongyi Taniguchi, Takashi Watanabe, Kenji Yan, Jiaqiang Mandrus, David Cobden, David Yao, Wang Xu, Xiaodong TI Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction SO NANO LETTERS LA English DT Article DE van der Waals heterostructure; optoelectronics; interlayer exciton; transition metal dichalcogenides; p-n junction ID DER-WAALS HETEROSTRUCTURE; LIGHT-EMITTING-DIODES; DIRAC FERMIONS; MONOLAYER WSE2; HETEROJUNCTION; GENERATION; MOS2; ELECTROLUMINESCENCE; SEMICONDUCTOR; SUPERLATTICES AB Semiconductor heterostructures are backbones for solid-state-based optoelectronic devices. Recent advances in assembly techniques for van der Waals heterostructures have enabled the band engineering of semiconductor heterojunctions for atomically thin optoelectronic devices. In two-dimensional heterostructures with type II band alignment, interlayer excitons, where Coulomb bound electrons and holes are confined to opposite layers, have shown promising properties for novel excitonic devices, including a large binding energy, micron-scale in-plane drift-diffusion, and a long population and valley polarization lifetime. Here, we demonstrate interlayer exciton optoelectronics based on electrostatically defined lateral p-n junctions in a MoSe2-WSe2 heterobilayer. Applying a forward bias enables the first observation of electroluminescence from interlayer excitons. At zero bias, the p-n junction functions as a highly sensitive photodetector, Where the wavelength-dependent photocurrent measurement allows the direct observation of resonant optical excitation of the interlayer exciton. The resulting photocurrent amplitude from the interlayer exciton is about 200 times smaller than the resonant excitation of intralayer exciton. This implies that the interlayer exciton oscillator strength is 2 orders of magnitude smaller than that of the intralayer exciton due to the spatial separation of electron and hole to the opposite layers. These results lay the foundation for exploiting the interlayer exciton in future 2D heterostructure optoelectronic devices. C1 [Ross, Jason S.; Xu, Xiaodong] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [Rivera, Pasqual; Schaibley, John; Lee-Wong, Eric; Cobden, David; Xu, Xiaodong] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Yu, Hongyi; Yao, Wang] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Yu, Hongyi; Yao, Wang] Univ Hong Kong, Ctr Theoret & Computat Phys, Hong Kong, Hong Kong, Peoples R China. [Taniguchi, Takashi; Watanabe, Kenji] Natl Inst Mat Sci, Adv Mat Lab, Tsukuba, Ibaraki 3050044, Japan. [Yan, Jiaqiang; Mandrus, David] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Yan, Jiaqiang; Mandrus, David] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Mandrus, David] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Xu, XD (reprint author), Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA.; Xu, XD (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. EM xuxd@uw.edu RI Yao, Wang/C-1353-2008; OI Yao, Wang/0000-0003-2883-4528; Watanabe, Kenji/0000-0003-3701-8119 FU AFOSR [FA9550-14-1-0277]; NSF [EFRI-1433496]; Elemental Strategy Initiative; Japan Society for the Promotion of Science; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; Croucher Foundation (Croucher Innovation Award); Research Grants Council of Hong Kong [HKU17305914P, HKU9/CRF/13G, AoE/P-04/08]; State of Washington - Clean Energy Institute; University Grants Committee of Hong Kong [HKU17305914P, HKU9/CRF/13G, AoE/P-04/08] FX This work is supported by AFOSR (FA9550-14-1-0277) and NSF EFRI-1433496. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, and a Grant-in-Aid for Scientific Research on Innovative Areas "Science of Atomic Layers" from the Japan Society for the Promotion of Science. J.Y. and D.M. were supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. H.Y. and W.Y. were supported by the Croucher Foundation (Croucher Innovation Award) and the Research Grants Council and University Grants Committee of Hong Kong (HKU17305914P, HKU9/CRF/13G, AoE/P-04/08). X.X. acknowledges a Cottrell Scholar Award, a Boeing Distinguished Professorship in Physics, and support from the State of Washington funded Clean Energy Institute. NR 40 TC 0 Z9 0 U1 34 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2017 VL 17 IS 2 BP 638 EP 643 DI 10.1021/acs.nanolett.6b03398 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EK3SW UT WOS:000393848800006 PM 28006106 ER PT J AU Wang, WS Feng, J Ye, YF Lyu, FL Liu, YS Guo, JH Yin, YD AF Wang, Wenshou Feng, Ji Ye, Yifan Lyu, Fenglei Liu, Yi-Sheng Guo, Jinghua Yin, Yadong TI Photocatalytic Color Switching of Transition Metal Hexacyanometalate Nanoparticles for High-Performance Light-Printable Rewritable Paper SO NANO LETTERS LA English DT Article DE Prussian blue; Prussian blue analogues; titania; nanoparticles; photoreversible color switching rewritable paper ID SODIUM-ION BATTERIES; PRUSSIAN-BLUE; MOLECULAR-CRYSTALS; REDOX DYES; ELECTRODES; FILMS; PHOTORESPONSE; PHOTOCHROMISM; NANOCRYSTALS; SPECTROSCOPY AB Developing efficient photoreversible color switching systems for constructing rewritable paper is of significant practical interest owing to the potential environmental benefits including forest conservation, pollution reduction, and resource sustainability. Here we report that the color change associated with the redox chemistry of nanopartides of Prussian blue and its analogues could be integrated with the photocatalytic activity of TiO2 nanop articles to construct a class of new photoreversible color switching systems, which can be conveniently utilized for fabricating ink-free, light printable rewritable paper with various working colors. The current system also addresses the phase separation issue of the previous organic dye-based color switching system so that it can be conveniently applied to the surface of conventional paper to produce an ink-free light printable rewritable paper that has the same feel and appearance as the conventional paper. With its additional advantages such as excellent scalability and outstanding rewriting performance (reversibility >80 times, legible time >5 days, and resolution >5 mu m), this novel system can serve as an eco-friendly alternative to regular paper in meeting the increasing global needs for environment protection and resource sustainability. C1 [Wang, Wenshou] Shandong Univ, Natl Engn Res Ctr Colloidal Mat, Jinan 250100, Peoples R China. [Wang, Wenshou] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China. [Wang, Wenshou; Feng, Ji; Lyu, Fenglei; Yin, Yadong] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. [Wang, Wenshou; Feng, Ji; Lyu, Fenglei; Yin, Yadong] Univ Calif Riverside, UCR Ctr Catalysis, Riverside, CA 92521 USA. [Ye, Yifan; Liu, Yi-Sheng; Guo, Jinghua] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Wang, WS (reprint author), Shandong Univ, Natl Engn Res Ctr Colloidal Mat, Jinan 250100, Peoples R China.; Wang, WS (reprint author), Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China.; Wang, WS; Yin, YD (reprint author), Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA.; Wang, WS; Yin, YD (reprint author), Univ Calif Riverside, UCR Ctr Catalysis, Riverside, CA 92521 USA. EM wangws@sdu.edu.cn; yadong.yin@ucr.edu OI Yin, Yadong/0000-0003-0218-3042 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, & Biosciences (CSGB) Division [DE-SC0002247]; National Natural Science Foundation of China [21671120]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC032-05CH11231] FX Y.Y. is grateful for the support from the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, & Biosciences (CSGB) Division, under Award No. DE-SC0002247. Acknowledgment is also made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. W.W. is thankful for the financial support from the National Natural Science Foundation of China (No. 21671120). The work performed on BL8.0.1.3, 6.3.1.2, and 10.3.2 at the Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC032-05CH11231. We thank Matthew Marcus, Sirine Fakra, and Josep Roque-Rosell for the technical support at the ALS beamlines. NR 46 TC 0 Z9 0 U1 21 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2017 VL 17 IS 2 BP 755 EP 761 DI 10.1021/acs.nanolett.6b03909 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EK3SW UT WOS:000393848800023 PM 28094525 ER PT J AU Park, SD Baranov, D Ryu, J Cho, B Halder, A Seifert, S Vajda, S Jonas, DM AF Park, Samuel D. Baranov, Dmitry Ryu, Jisu Cho, Byungmoon Halder, Avik Seifert, Sonke Vajda, Stefan Jonas, David M. TI Bandgap Inhomogeneity of a PbSe Quantum Dot Ensemble from Two-Dimensional Spectroscopy and Comparison to Size Inhomogeneity from Electron Microscopy SO NANO LETTERS LA English DT Article DE Quantum dots; inhomogeneity; size dispersion; shape dispersion; 2D spectroscopy; line width ID DIRECT PROPYLENE EPOXIDATION; EXCITON FINE-STRUCTURE; SEMICONDUCTOR NANOCRYSTALS; CHARGE-TRANSPORT; CHALCOGENIDE NANOCRYSTALS; FEMTOSECOND SPECTROSCOPY; EXTINCTION COEFFICIENT; SAGNAC INTERFEROMETER; SPECTRAL LINEWIDTHS; MOLECULAR-DYNAMICS AB Femtosecond two-dimensional Fourier transform spectroscopy is used to determine the static bandgap inhomogeneity of a colloidal quantum dot ensemble. The excited states of quantum dots absorb light, so their absorptive two-dimensional (2D) spectra will typically have positive and negative peaks. It is shown that the absorption bandgap inhomogeneity is robustly determined by the slope of the nodal line separating positive and negative peaks in the 2D spectrum around the bandgap transition; this nodal line slope is independent of excited state parameters not known from the absorption and emission spectra. The absorption bandgap inhomogeneity is compared to a size and shape distribution determined by electron microscopy. The electron microscopy images are analyzed using new 2D histograms that correlate major and minor image projections to reveal elongated nanocrystals, a conclusion supported by grazing incidence small-angle X-ray scattering and high-resolution transmission electron microscopy. The absorption bandgap inhomogeneity quantitatively agrees with the bandgap variations calculated from the size and shape distribution, placing upper bounds on any surface contributions. C1 [Park, Samuel D.; Baranov, Dmitry; Ryu, Jisu; Cho, Byungmoon; Jonas, David M.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Park, Samuel D.; Baranov, Dmitry; Ryu, Jisu; Cho, Byungmoon; Jonas, David M.] Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA. [Halder, Avik; Vajda, Stefan] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Seifert, Sonke] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Park, Samuel D.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Jonas, DM (reprint author), Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA.; Jonas, DM (reprint author), Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA. EM david.jonas@colorado.edu FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-FG02-07ER15912]; U.S. Department of Energy, Basic Energy Sciences, Materials Science and Engineering [DE-AC-02-06CH11357]; UChicago Argonne, LLC; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX This material is based upon work of S.D.P., D.B., TR., B.C., and D.M.J. supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Award Number DE-FG02-07ER15912. A.H. and S.V. acknowledge the support by the U.S. Department of Energy, Basic Energy Sciences, Materials Science and Engineering, under Contract DE-AC-02-06CH11357, with UChicago Argonne, LLC, the operator of Argonne National Laboratory. This research used resources of the Advanced Photon Source (12-ID-C beamline), a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We thank James McBride (Vanderbilt) for helpful discussion of TEM measurements and Justin C. Johnson (NREL) for measuring the photoluminescence spectrum and helpful discussions. NR 75 TC 0 Z9 0 U1 5 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2017 VL 17 IS 2 BP 762 EP 771 DI 10.1021/acs.nanolett6b03874 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EK3SW UT WOS:000393848800024 PM 28045274 ER PT J AU Chandrasena, RU Yang, WB Lei, QY Delgado-Jaime, MU Wijesekara, KD Golalikhani, M Davidson, BA Arenholz, E Kobayashi, K Kobata, M de Groot, FMF Aschauer, U Spaldin, NA Xi, XX Gray, AX AF Chandrasena, Ravini U. Yang, Weibing Lei, Qingyu Delgado-Jaime, Mario U. Wijesekara, Kanishka D. Golalikhani, Maryam Davidson, Bruce A. Arenholz, Elke Kobayashi, Keisuke Kobata, Masaaki de Groot, Frank M. F. Aschauer, Ulrich Spaldin, Nicola A. Xi, Xiaoxing Gray, Alexander X. TI Strain-Engineered Oxygen Vacancies in CaMnO3 Thin Films SO NANO LETTERS LA English DT Article DE Strongly correlated oxides; strain engineering; oxygen vacancies; X-ray spectroscopy ID X-RAY-ABSORPTION; METAL-INSULATOR-TRANSITION; PHOTOELECTRON-SPECTROSCOPY; MANGANESE OXIDES; CHARGE-TRANSFER; EDGE STRUCTURES; FERROELECTRICITY; VALENCE; STATES; MN AB We demonstrate a novel pathway to control and stabilize oxygen vacancies in complex transition-metal oxide thin films. Using atomic layer-by-layer pulsed laser deposition (PLD) from two separate targets, we synthesize high-quality single-crystalline CaMnO3 films with systematically varying oxygen vacancy defect formation energies as controlled by coherent tensile strain. The systematic increase of the oxygen vacancy content in CaMnO3 as a function of applied in-plane strain is observed and confirmed experimentally using high-resolution soft X-ray absorption spectroscopy (XAS) in conjunction with bulk-sensitive hard X-ray photoemission spectroscopy (HAXPES). The relevant defect states in the densities of states are identified and the vacancy content in the films quantified using the combination of first-principles theory and corehole multiplet calculations with holistic fitting. Our findings open up a promising avenue for designing and controlling new ionically active properties and functionalities of complex transition-metal oxides via strain-induced oxygen-vacancy formation and ordering. C1 [Chandrasena, Ravini U.; Yang, Weibing; Lei, Qingyu; Wijesekara, Kanishka D.; Golalikhani, Maryam; Davidson, Bruce A.; Xi, Xiaoxing; Gray, Alexander X.] Temple Univ, Dept Phys, 1925 North 12th St, Philadelphia, PA 19122 USA. [Chandrasena, Ravini U.; Yang, Weibing; Lei, Qingyu; Wijesekara, Kanishka D.; Golalikhani, Maryam; Xi, Xiaoxing; Gray, Alexander X.] Temple Univ, Temple Mat Inst, 1925 North 12th St, Philadelphia, PA 19122 USA. [Delgado-Jaime, Mario U.; de Groot, Frank M. F.] Univ Utrecht, Debye Inst Nanomat Sci, Inorgan Chem & Catalysis, Univ Weg 99, NL-3584 CG Utrecht, Netherlands. [Arenholz, Elke] Lawrence Berkeley Natl Lab, Adv Light Source, One Cyclotron Rd, Berkeley, CA 94720 USA. [Kobayashi, Keisuke; Kobata, Masaaki] Japan Atom Energy Agcy, Mat Sci Res Ctr, 1-1-1 Kouto, Sayo, Hyogo 6795148, Japan. [Aschauer, Ulrich; Spaldin, Nicola A.] Swiss Fed Inst Technol, Mat Theory, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Aschauer, Ulrich] Univ Bern, Dept Chem & Biochem, Freiestr 3, CH-3012 Bern, Switzerland. RP Gray, AX (reprint author), Temple Univ, Dept Phys, 1925 North 12th St, Philadelphia, PA 19122 USA.; Gray, AX (reprint author), Temple Univ, Temple Mat Inst, 1925 North 12th St, Philadelphia, PA 19122 USA. EM axgray@temple.edu FU U.S. Army Research Office [W911NF-15-1-0181]; U.S. Department of Energy, Office of Science [DE-SC0004764]; ETH Zurich; ERG Advanced Grant program [291151]; European research Council (ERG) [340279]; Office of Science, Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05CH11231]; Swiss Supercomputing Center (CSCS) [s624] FX A.X.G., R.U.C., and W.Y. acknowledge support from the U.S. Army Research Office, under Grant No. W911NF-15-1-0181. The sample preparation by atomic layer-by-layer PLD was supported by the U.S. Department of Energy, Office of Science, under Grant No. DE-SC0004764 (Q.Y.L. and X.X.X.). Part of this work was financially supported by the ETH Zurich and by the ERG Advanced Grant program, No. 291151. Computer resources were provided by the ETH Ziirich (Euler cluster) and the Swiss Supercomputing Center (CSCS) under project s624. M.U.DJ. and F.M.F.d.G. are thankful to the European research Council (ERG) for their support under advanced grant XRAYonACTIVE (No. 340279). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy under Contract No. DE-AC02-05CH11231. NR 46 TC 0 Z9 0 U1 16 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2017 VL 17 IS 2 BP 794 EP 799 DI 10.1021/acs.nanolett.6b03986 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EK3SW UT WOS:000393848800028 PM 28103040 ER PT J AU Xu, GL Sheng, T Chong, LN Ma, TY Sun, CJ Zuo, XB Liu, DJ Ren, Y Zhang, XY Liu, YZ Heald, SM Sun, SG Chen, ZH Amine, K AF Xu, Gui-Liang Sheng, Tian Chong, Lina Ma, Tianyuan Sun, Cheng-Jun Zuo, Xiaobing Liu, Di-Jia Ren, Yang Zhang, Xiaoyi Liu, Yuzi Heald, Steve M. Sun, Shi-Gang Chen, Zonghai Amine, Khalil TI Insights into the Distinct Lithiation/Sodiation of Porous Cobalt Oxide by in Operando Synchrotron X-ray Techniques and Ab Initio Molecular Dynamics Simulations SO NANO LETTERS LA English DT Article DE Lithiation; sodiation; cobalt oxide; batteries; in operando X-ray; ab initio molecular dynamic simulation ID SODIUM-ION BATTERIES; EXCELLENT ELECTROCHEMICAL PERFORMANCE; LITHIUM-STORAGE PROPERTIES; PYRITE FES2 NANOCRYSTALS; ANODE MATERIAL; HIGH-CAPACITY; FACILE SYNTHESIS; RECHARGEABLE BATTERIES; ELECTRODE MATERIALS; NEGATIVE-ELECTRODE AB Sodium-ion batteries (SIBs) have been considered as one of the promising power source candidates for the stationary storage industries owing to the much lower cost of sodium than lithium. It is well-known that the electrode materials largely determine the energy density of the battery systems. However, recent discoveries on the electrode materials showed that most of them present distinct lithium and sodium storage performance, which is not yet well understood. In this work, we performed a comparative understanding on the structural changes of porous cobalt oxide during its electrochemical lithiation and sodiation process by in operando synchrotron small angel X-ray scattering, X-ray diffraction, and X-ray absorption spectroscopy. It was found that compared to the lithiation process, the porous cobalt oxide undergoes less pore structure changes, oxidation state, and local structure changes as well as crystal structure evolution during its sodiation process, which is attributed to the intrinsic low sodiation activity of cobalt oxide as evidenced by ab initio molecular dynamics simulations. Moreover, it was indicated that the sodiation activity of metal sulfides is higher than that of metal oxides, indicating a better candidate for SIBs. Such understanding is crucial for future design and improvement of high-performance electrode materials for SIBs. C1 [Xu, Gui-Liang; Chong, Lina; Liu, Di-Jia; Chen, Zonghai; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA. [Sheng, Tian; Sun, Shi-Gang] Xiamen Univ, Dept Chem, State Key Lab Phys Chem Solid Surfaces, Collaborat Innovat Ctr Chem Energy Mat, Xiamen 361005, Peoples R China. [Ma, Tianyuan] Univ Rochester, Mat Sci Program, Rochester, NY 14627 USA. [Sun, Cheng-Jun; Zuo, Xiaobing; Ren, Yang; Zhang, Xiaoyi] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 South Cass Ave, Argonne, IL 60439 USA. [Liu, Yuzi] Argonne Natl Lab, Nanosci & Technol Div, 9700 South Cass Ave, Argonne, IL 60439 USA. RP Chen, ZH; Amine, K (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA. EM zonghai.chen@anl.gov; amine@anl.gov RI XU, GUILIANG/F-3804-2017 FU U.S. DOE [DE-AC02-06CH11357]; U.S. Department of Energy Basic Energy Sciences; Canadian Light Source; University of Washington; Advanced Photon Source; National Natural Science Foundation of China [21321062]; U.S. Department of Energy, Vehicle Technologies Office FX Research at the Argonne National Laboratory was funded by U.S. Department of Energy, Vehicle Technologies Office. Support from Tien Duong of the U.S. DOE's Office of Vehicle Technologies Program is gratefully acknowledged. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. Sector 20 facilities at the Advanced Photon Source and research at these facilities are supported by the U.S. Department of Energy Basic Energy Sciences, the Canadian Light Source and its funding partners, the University of Washington, and the Advanced Photon Source. Research at State Key lab of Xiamen University was funded by National Natural Science Foundation of China (Grant 21321062). NR 47 TC 0 Z9 0 U1 9 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2017 VL 17 IS 2 BP 953 EP 962 DI 10.1021/acs.nanolett.6b04294 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EK3SW UT WOS:000393848800050 PM 28072542 ER PT J AU Shao, YM Post, KW Wu, JS Dai, SY Frenzel, AJ Richardella, AR Lee, JS Sarnarth, N Fogler, MM Balatsky, AV Kharzeev, DE Basov, DN AF Shao, Yinming Post, Kirk W. Wu, Jhih-Sheng Dai, Siyuan Frenzel, Alex J. Richardella, Anthony R. Lee, Joon Sue Sarnarth, Nitin Fogler, Michael M. Balatsky, Alexander V. Kharzeev, Dmitri E. Basov, D. N. TI Faraday Rotation Due to Surface States in the Topological Insulator (Bi1-xSbx)(2)Te-3 SO NANO LETTERS LA English DT Article DE Bismuth antimony telluride; topological insulators; cyclotron resonance; Faraday rotation; topological surface states ID KERR ROTATIONS; ELECTRODYNAMICS; SUPERCONDUCTORS; BAND AB Using magneto-infrared spectroscopy, we have explored the charge dynamics of (Bi,Sb)(2)Te-3 thin films on InP substrates. From the magneto-transmission data we extracted three distinct cyclotron resonance (CR) energies that are all apparent in the broad band Faraday rotation (FR) spectra. This comprehensive FR-CR data set has allowed us to isolate the response of the bulk states from the intrinsic surface states associated with both the top and bottom surfaces of the film. The FR data uncovered that electron- and hole-type Dirac Fermions reside on opposite surfaces of our films, which paves the way for observing many exotic quantum phenomena in topological insulators. C1 [Shao, Yinming; Basov, D. N.] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. [Post, Kirk W.; Wu, Jhih-Sheng; Dai, Siyuan; Frenzel, Alex J.; Fogler, Michael M.; Basov, D. N.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Richardella, Anthony R.; Lee, Joon Sue; Sarnarth, Nitin] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. [Balatsky, Alexander V.] KTH Royal Inst Technol, NORDITA, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden. [Balatsky, Alexander V.] Stockholm Univ, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden. [Balatsky, Alexander V.] Los Alamos Natl Lab, Inst Mat Sci, Los Alamos, NM 87545 USA. [Kharzeev, Dmitri E.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kharzeev, Dmitri E.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Kharzeev, Dmitri E.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Shao, YM (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. EM shaoyinming@gmail.com FU DOE [DE-FG02-00ER45799, DE-FG-88ER40388, DE-SC-0012704]; ONR [N00014-15-1-2370]; ARO-MURI [W911NF-12-1-0461]; EPIQS Initiative Grant [GBMF4533] FX This work is supported by DOE Grant No. DE-FG02-00ER45799. Sample growth and characterization at Penn State was supported by ONR (Grant No. N00014-15-1-2370) and ARO-MURI (Grant No. W911NF-12-1-0461). D.K. is supported by DOE Grants No. DE-FG-88ER40388 and DE-SC-0012704. D.N.B. is the Moore Foundation Investigator, EPIQS Initiative Grant GBMF4533. NR 40 TC 0 Z9 0 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2017 VL 17 IS 2 BP 980 EP 984 DI 10.1021/acs.nanolett.6b04313 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EK3SW UT WOS:000393848800053 PM 28030948 ER PT J AU Crisp, RW Pach, GF Kurley, JM France, RM Reese, MO Nanayakkara, SU MacLeod, BA Talapin, DV Beard, MC Luther, JM AF Crisp, Ryan W. Pach, Gregory F. Kurley, J. Matthew France, Ryan M. Reese, Matthew O. Nanayakkara, Sanjini U. MacLeod, Bradley A. Talapin, Dmitri V. Beard, Matthew C. Luther, Joseph M. TI Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe-ZnO Tunnel Junction SO NANO LETTERS LA English DT Article DE Multifunction; photovoltaics; tandem; solar cell; quantum dots; nanoaystals ID EFFICIENCIES EXCEEDING 120-PERCENT; PHOTOVOLTAICS; NANOCRYSTALS; GENERATION; PROGRESS; LAYER AB We developed a monolithic CdTe-PbS tandem solar cell architecture in which both the CdTe and PbS absorber layers are solution-processed from nanocrystal inks. Due to their tunable nature, PbS quantum dots (QDs), with a controllable band gap between 0.4 and similar to 1.6 eV, are a promising candidate for a bottom absorber layer in tandem photovoltaics. In the detailed balance limit, the ideal configuration of a CdTe (E-g = 1.5 eV)-PbS tandem structure assumes infinite thickness of the absorber layers and requires the PbS band gap to be 0.75 eV to theoretically achieve a power conversion efficiency (PCE) of 45%. However, modeling shows that by allow-Rig the thickness of the CdTe layer to vary, a tandem with efficiency over 40% is achievable using bottom cell band gaps ranging from 0.68 and 1.16 eV. In a first step toward developing this technology, we explore CdTe-PbS tandem devices by developing a ZnTe-ZnO tunnel junction, which appropriately combines the two subcells in series. We examine the basic characteristics of the solar cells as a function of layer thickness and bottom-cell band gap and demonstrate open-circuit voltages in excess of 1.1 V with matched short circuit current density of 10 mA/cm(2) in prototype devices. C1 [Crisp, Ryan W.; Pach, Gregory F.; France, Ryan M.; Reese, Matthew O.; Nanayakkara, Sanjini U.; MacLeod, Bradley A.; Beard, Matthew C.; Luther, Joseph M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Crisp, Ryan W.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Pach, Gregory F.] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA. [Kurley, J. Matthew; Talapin, Dmitri V.] Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. [Kurley, J. Matthew; Talapin, Dmitri V.] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Talapin, Dmitri V.] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Luther, JM (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Joey.Luther@nrel.gov OI Kurley, James/0000-0003-0592-0714 FU Department of Energy (DOE) SunShot program [DE-EE0005312]; Center for Advanced Solar Photophysics, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Department of Defense (DOD) Office of Naval Research [N00014-13-1-0490]; II-VI Foundation; KIAT [1415134409]; MOTIF; NSF MRSEC Program [DMR-14-20703] FX The authors thank Bobby To for SEM imaging, Al Hicks for aid with graphics, and Reuben Collins and Ashley Marshall for valuable discussions. The solution-processed CdTe technology and recombination layers were supported by the Department of Energy (DOE) SunShot program under award no. DE-EE0005312. The PbS QD devices, characterization, and modeling were supported by the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. J.M.K. and D.V.T. also acknowledge the Department of Defense (DOD) Office of Naval Research under grant no. N00014-13-1-0490 and by the II-VI Foundation. G.F.P. and M.C.B. acknowledge support from the Global R&D program (grant no. 1415134409) funded by KIAT and MOTIF. The work used facilities supported by the NSF MRSEC Program under award no. DMR-14-20703. NR 37 TC 0 Z9 0 U1 15 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2017 VL 17 IS 2 BP 1020 EP 1027 DI 10.1021/acs.nanolett.6b04423 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EK3SW UT WOS:000393848800059 PM 28068765 ER PT J AU Bischak, CG Hetherington, CL Wu, H Aloni, S Ogletree, DF Limmer, DT Ginsberg, NS AF Bischak, Connor G. Hetherington, Craig L. Wu, Hao Aloni, Shaul Ogletree, D. Frank Limmer, David T. Ginsberg, Naomi S. TI Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites SO NANO LETTERS LA English DT Article DE Photoinduced phase transition; hybrid mixed halide perovskite; multiscale simulations; cathodoluminescence imaging; polaron ID TANDEM SOLAR-CELLS; HALIDE PEROVSKITE; OPTICAL-PROPERTIES; THIN-FILMS; METHYLAMMONIUM; DIFFUSION; EFFICIENT; ABSORBER; RECOMBINATION; PHOTOVOLTAICS AB The distinct physical properties of hybrid organic inorganic materials can lead to unexpected non equilibrium phenomena that are difficult to characterize due to the broad range of length and time scales involved. For instance, mixed halide hybrid perovskites are promising materials for optoelectronics, yet bulk measurements suggest the halides reversibly phase separate upon photoexcitation. By combining nanoscale imaging and multiscale modeling, we find that the nature of halide demixing in these materials is distinct from macroscopic phase separation. We propose that the localized strain induced by a single photoexcited charge interacting with the soft, ionic lattice is sufficient to promote halide phase separation and nucleate a light-stabilized, low-bandgap, similar to 8 mm iodide-rich cluster. The limited extent of this polaron is essential to promote demixing because by contrast bulk strain would simply be relaxed. Photoinduced phase separation is therefore a consequence of the unique electromechanical properties of this hybrid class of materials. Exploiting photoinduced phase separation and other nonequilibrium phenomena in hybrid materials more generally could expand applications in sensing, switching, memory, and energy storage. C1 [Bischak, Connor G.; Hetherington, Craig L.; Wu, Hao; Limmer, David T.; Ginsberg, Naomi S.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Hetherington, Craig L.; Ginsberg, Naomi S.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrat Bioimaging Div, Berkeley, CA 94720 USA. [Aloni, Shaul; Ogletree, D. Frank; Limmer, David T.; Ginsberg, Naomi S.] Lawrence Berkeley Natl Lab, Dept Mat Sci, Berkeley, CA 94720 USA. [Aloni, Shaul; Ogletree, D. Frank] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Limmer, David T.; Ginsberg, Naomi S.] Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Ginsberg, Naomi S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Ginsberg, NS (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Ginsberg, NS (reprint author), Lawrence Berkeley Natl Lab, Mol Biophys & Integrat Bioimaging Div, Berkeley, CA 94720 USA.; Ginsberg, NS (reprint author), Lawrence Berkeley Natl Lab, Dept Mat Sci, Berkeley, CA 94720 USA.; Ginsberg, NS (reprint author), Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.; Ginsberg, NS (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM nsginsberg@berkeley.edu FU David and Lucile Packard Fellowship for Science and Engineering; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF Graduate Research Fellowship [DGE 1106400]; Alfred P. Sloan Research Fellowship; Camille Dreyfus Teacher-Scholar Award; Princeton Center of Theoretical Science FX CL characterization was supported by a David and Lucile Packard Fellowship for Science and Engineering to N.S.G. CL and PL at the Lawrence Berkeley Lab Molecular Foundry were performed as part of the Molecular Foundry user program, supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. C.G.B. acknowledges an NSF Graduate Research Fellowship (DGE 1106400) and N.S.G. acknowledges an Alfred P. Sloan Research Fellowship and a Camille Dreyfus Teacher-Scholar Award. We thank Z. Luo for assistance with film deposition. D.T.L was supported initially through the Princeton Center of Theoretical Science. NR 41 TC 0 Z9 0 U1 11 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2017 VL 17 IS 2 BP 1028 EP 1033 DI 10.1021/acs.nanolett.6b04453 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EK3SW UT WOS:000393848800060 PM 28134530 ER PT J AU Li, CY Wright, JB Liu, S Lu, P Figiel, JJ Leung, B Chow, WW Brener, I Koleske, DD Luk, TS Feezell, DF Brueck, SRJ Wang, GT AF Li, Changyi Wright, Jeremy B. Liu, Sheng Lu, Ping Figiel, Jeffrey J. Leung, Benjamin Chow, Weng W. Brener, Igal Koleske, Daniel D. Luk, Ting-Shan Feezell, Daniel F. Brueck, S. R. J. Wang, George T. TI Nonpolar InGaN/GaN Core-Shell Single Nanowire Lasers SO NANO LETTERS LA English DT Article DE Nonpolar; core-shell; nanowire; laser; InGaN; GaN ID LIGHT-EMITTING-DIODES; CHEMICAL-VAPOR-DEPOSITION; MOLECULAR-BEAM EPITAXY; MULTIPLE-QUANTUM-WELLS; GAN NANOWIRES; POLARIZATION CONTROL; NANOROD ARRAYS; 001 SILICON; ABSORPTION; GAIN AB We report lasing from nonpolar p-i-n InGaN/GaN multi-quantum well core-shell single-nanowire lasers by optical pumping at room temperature. The nanowire lasers were fabricated using a hybrid approach consisting of a top-down two-step etch process followed by a bottom-up regrowth process, enabling precise geometrical control and high material gain and optical confinement. The modal gain spectra and the gain curves of the core-shell nanowire lasers were measured using micro-photoluminescence and analyzed using the Hakki-Paoli method. Significantly lower lasing thresholds due to high optical gain were measured compared to previously reported semipolar InGaN/GaN core-shell nanowires, despite significantly shorter cavity lengths and reduced active region volume. Mode simulations show that due to the core-shell architecture, annular shaped modes have higher optical confinement than solid transverse modes. The results show the viability of this p-i-n nonpolar core-shell nanowire architecture, previously investigated for next-generation light-emitting diodes, as low-threshold, coherent UV-visible nanoscale light emitters, and open a route toward monolithic, integrable, electrically injected single-nanowire lasers operating at room temperature. C1 [Li, Changyi; Feezell, Daniel F.; Brueck, S. R. J.] Univ New Mexico, Ctr High Technol Mat, 1313 Goddard St SE, Albuquerque, NM 87106 USA. [Wright, Jeremy B.; Liu, Sheng; Lu, Ping; Figiel, Jeffrey J.; Leung, Benjamin; Chow, Weng W.; Brener, Igal; Koleske, Daniel D.; Luk, Ting-Shan; Wang, George T.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Liu, Sheng; Brener, Igal; Luk, Ting-Shan] Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. RP Wang, GT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM gtwang@sandia.gov FU Sandia's Laboratory Directed Research and Development program; Sandia's Solid-State-Lighting Science Energy Frontier Research Center; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences FX This work was supported by Sandia's Laboratory Directed Research and Development program. C.L. and S.RJ.B. acknowledge funding from Sandia's Solid-State-Lighting Science Energy Frontier Research Center, funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. This work was performed in part at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 72 TC 0 Z9 0 U1 13 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2017 VL 17 IS 2 BP 1049 EP 1055 DI 10.1021/acs.nanolett.6b04483 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EK3SW UT WOS:000393848800063 PM 28118019 ER PT J AU Lorenzon, M Pinchetti, V Bruni, F Bae, WK Meinardi, F Kimov, VI Brovelli, S AF Lorenzon, Monica Pinchetti, Valerio Bruni, Francesco Bae, Wan Ki Meinardi, Francesco Kimov, Victor I. Brovelli, Sergio TI Single-Particle Ratiometric Pressure Sensing Based on "Double-Sensor" Colloidal Nanocrystals SO NANO LETTERS LA English DT Article DE Ratiometric oxygen sensing; pressure sensitive paints; dot-in-bulk nanocrystals; core/shell; dual color emission; photocharging ID IN-BULK NANOCRYSTALS; CDTE QUANTUM DOTS; SENSITIVE PAINT; ELECTROCHEMICAL CONTROL; OPTICAL GAIN; OXYGEN; TEMPERATURE; LUMINESCENCE; INTERFACE; EMISSION AB Ratiometric pressure sensitive paints (r-PSPs) are all-optical probes for monitoring oxygen flows in the vicinity of complex or miniaturized surfaces. They typically consist of a porous binder embedding mixtures of a reference and a sensor chromophore exhibiting oxygen-insensitive and oxygen-responsive luminescence, respectively. Here, we demonstrate the first example of an r-PSP based on a single two-color emitter that removes limitations of r-PSPs based on chromophore mixtures such as different temperature dependencies of the two chromophores, cross-readout between the reference and sensor signals and phase segregation. In our approach, we utilize a novel "double-sensor" r-PSP that features two spectrally separated emission bands with opposite responses to the O-2 pressure, which boosts the sensitivity with respect to traditional reference-sensor pairs. Specifically, we use two-color-emitting dot-in-bulk CdSe/CdS core/shell nanocrystals, exhibiting red and green emission bands from their core and shell states, whose intensities are respectively enhanced and quenched in response to the increased oxygen partial pressure that effectively tunes the position of the nanocrystal's Fermi energy. This leads to a strong and reversible ratiometric response at the single particle level and an over 100% enhancement in the pressure sensitivity. Our proof-of-concept r-PSPs further exhibit suppressed cross-readout thanks to zero spectral overlap between the core and shell luminescence bands and a temperature-independent ratiometric response between 0 and 70 degrees C. C1 [Lorenzon, Monica; Pinchetti, Valerio; Bruni, Francesco; Meinardi, Francesco; Brovelli, Sergio] Univ Milano Bicocca, Dipartimento Sci Mat, Via Cozzi 55, I-20125 Milan, Italy. [Bae, Wan Ki; Kimov, Victor I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Bae, Wan Ki; Kimov, Victor I.] Los Alamos Natl Lab, Ctr Adv Solar Photophys, Los Alamos, NM 87545 USA. RP Brovelli, S (reprint author), Univ Milano Bicocca, Dipartimento Sci Mat, Via Cozzi 55, I-20125 Milan, Italy.; Kimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.; Kimov, VI (reprint author), Los Alamos Natl Lab, Ctr Adv Solar Photophys, Los Alamos, NM 87545 USA. EM klimov@lanl.gov; sergio.brovelli@unimib.it FU Fondazione Cariplo [2012-0844]; Fondazione Cassa di Risparmio di Tortona; Chemical Sciences, Biosciences, and Geosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy; European Community [324603] FX Financial support from Fondazione Cariplo is acknowledged by S.B. and F.M. through Grant 2012-0844. M.L. thanks the Fondazione Cassa di Risparmio di Tortona for support. V.I.K. and W.K.B. were supported by the Chemical Sciences, Biosciences, and Geosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. S.B. wishes to thank the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement 324603 for financial support (EDONHIST). NR 76 TC 0 Z9 0 U1 8 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2017 VL 17 IS 2 BP 1071 EP 1081 DI 10.1021/acs.nanolett.6b04577 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EK3SW UT WOS:000393848800066 PM 28032501 ER PT J AU Cherukara, MJ Sasikumar, K Cha, W Narayanan, B Leake, SJ Dufresne, EM Peterka, T McNulty, I Wen, HD Sankaranarayanan, SKRS Harder, RJ AF Cherukara, Mathew J. Sasikumar, Kiran Cha, Wonsuk Narayanan, Badri Leake, Steven J. Dufresne, Eric M. Peterka, Tom McNulty, Ian Wen, Haidan Sankaranarayanan, Subramanian K. R. S. Harder, Ross J. TI Ultrafast Three-Dimensional X-ray Imaging of Deformation Modes in ZnO Nanocrystals SO NANO LETTERS LA English DT Article DE integrated imaging; ultrafast X-ray; ZnO; nanocrystal; power generation ID NANOSTRUCTURES; GROWTH; NANOGENERATORS; NANOSCALE; TRANSIENT; BEHAVIOR; ARRAYS; ENERGY; STRAIN; RODS AB Imaging the dynamical response of materials following ultrafast excitation can reveal energy transduction mechanisms and their dissipation pathways, as well as material stability under conditions far from equilibrium. Such dynamical behavior is challenging to characterize, especially operand at nanoscopic spatiotemporal scales. In this letter, we use X-ray coherent diffractive imaging to show that ultrafast laser excitation of a ZnO nanocrystal induces a rich set of deformation dynamics including characteristic "hard" or inhomogeneous and "soft" or homogeneous modes at different time scales, corresponding respectively to the propagation of acoustic phonons and resonant oscillation of the crystal. By integrating the 3D nanocrystal structure obtained from the ultrafast X-ray measurements with a continuum thermo-electro-mechanical finite element model, we elucidate the deformation mechanisms following laser excitation, in particular, a torsional mode that generates a 50% greater electric potential gradient than that resulting from the flexural mode. Understanding of the time-dependence of these mechanisms on ultrafast scales has significant implications for development of new materials for nanoscale power generation. C1 [Cherukara, Mathew J.; Cha, Wonsuk; Dufresne, Eric M.; Wen, Haidan; Harder, Ross J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Sasikumar, Kiran; Narayanan, Badri; McNulty, Ian; Sankaranarayanan, Subramanian K. R. S.] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. [Leake, Steven J.] ESRF European Synchrotron, 71 Ave Martyrs, F-38000 Grenoble, France. [Peterka, Tom] Argonne Natl Lab, Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Harder, RJ (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.; Sankaranarayanan, SKRS (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ssankaranarayanan@anl.gov; rharder@aps.anl.gov FU Argonne LDRD [2015-149-R1]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; EPSRC [EP/D052939/1]; Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program FX This work was supported by Argonne LDRD 2015-149-R1 (Integrated Imaging, Modeling, and Analysis of Ultrafast Energy Transport in Nanomaterials). An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. Use of the Advanced Photon Source, the Center for Nanoscale Materials and the resources of the Argonne Leadership Computing Facility was also supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Sample preparation was supported by EPSRC Grant No. EP/D052939/1. NR 30 TC 0 Z9 0 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2017 VL 17 IS 2 BP 1102 EP 1108 DI 10.1021/acs.nanolett.6b04652 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EK3SW UT WOS:000393848800070 PM 28026962 ER PT J AU Chow, CM Yu, HY Jones, AM Yan, JQ Mandrus, DG Taniguchi, T Watanabe, K Yao, W Xu, XD AF Chow, Colin M. Yu, Hongyi Jones, Aaron M. Yan, Jiaqiang Mandrus, David G. Taniguchi, Takashi Watanabe, Kenji Yao, Wang Xu, Xiaodong TI Unusual Exciton-Phonon Interactions at van der Waals Engineered Interfaces SO NANO LETTERS LA English DT Article DE WSe2; hexagonal boron nitride; exciton-phonon interaction; van der Waals interface ID BORON-NITRIDE; HETEROSTRUCTURE; WSE2 AB Raman scattering is a ubiquitous phenomenon in light matter interactions, which reveals a material's electronic, structural, and thermal properties. Controlling this process would enable new ways of studying and manipulating fundamental material properties. Here, we report a novel Raman scattering process at the interface between different van der Waals (vdW) materials as well as between a monolayer semiconductor and 3D crystalline substrates. We find that interfacing a WSe2 monolayer with materials such as SiO2, sapphire, and hexagonal boron nitride (hBN) enables Raman transitions with phonons that are either traditionally inactive or weak. This Raman scattering can be amplified by nearly 2 orders of magnitude when a foreign phonon mode is resonantly coupled to the A exciton in WSe2 directly or via an A(1)', optical phonon from WSe2. We further showed that the interfacial Raman scattering is distinct between hBN-encapsulated and hBN-sandwiched WSe2 sample geometries. This cross-platform electron phonon coupling, as well as the sensitivity of 2D excitons to their phononic environments, will prove important in the understanding and engineering of optoelectronic devices based on vdW heterostructures. C1 [Chow, Colin M.; Jones, Aaron M.; Xu, Xiaodong] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Yu, Hongyi; Yao, Wang] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Yu, Hongyi; Yao, Wang] Univ Hong Kong, Ctr Theoret & Computat Phys, Hong Kong, Hong Kong, Peoples R China. [Yan, Jiaqiang; Mandrus, David G.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Mandrus, David G.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Taniguchi, Takashi; Watanabe, Kenji] Natl Inst Mat Sci, Adv Mat Lab, Tsukuba, Ibaraki, Japan. [Xu, Xiaodong] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. RP Xu, XD (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA.; Yao, W (reprint author), Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.; Yao, W (reprint author), Univ Hong Kong, Ctr Theoret & Computat Phys, Hong Kong, Hong Kong, Peoples R China.; Xu, XD (reprint author), Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. EM wangyao@hku.hk; xuxd@uw.edu RI Yao, Wang/C-1353-2008; OI Yao, Wang/0000-0003-2883-4528; Watanabe, Kenji/0000-0003-3701-8119 FU Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-SC0008145, SC0012309]; Croucher Foundation; RGC and UGC of Hong Kong [HKU17305914P, HKU9/CRF/13G, AoE/P-04/08]; US DoE, BES, Materials Sciences and Engineering Division; State of Washington; Boeing Distinguished Professorship FX The authors acknowledge Robert Merlin for helpful discussion. This work is mainly supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (DE-SC0008145 and SC0012309). H.Y. and W.Y. are supported by the Croucher Foundation (Croucher Innovation Award) and the RGC and UGC of Hong Kong (HKU17305914P, HKU9/CRF/13G, AoE/P-04/08). J.Y. and D.G.M. are supported by US DoE, BES, Materials Sciences and Engineering Division. X.X. acknowledges a Cottrell Scholar Award, support from the State of Washington funded Clean Energy Institute, and Boeing Distinguished Professorship. NR 25 TC 0 Z9 0 U1 9 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2017 VL 17 IS 2 BP 1194 EP 1199 DI 10.1021/acs.nanolett.6b04944 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EK3SW UT WOS:000393848800084 PM 28084744 ER PT J AU Yang, GW Wu, GP Chen, XX Xiong, SS Arges, CG Ji, SX Nealey, PF Lu, XB Darensbourg, DJ Xu, ZK AF Yang, Guan-Wen Wu, Guang-Peng Chen, Xuanxuan Xiong, Shisheng Arges, Christopher G. Ji, Shengxiang Nealey, Paul F. Lu, Xiao-Bing Darensbourg, Donald J. Xu, Zhi-Kang TI Directed Self-Assembly of Polystyrene-b-poly(propylene carbonate) on Chemical Patterns via Thermal Annealing for Next Generation Lithography SO NANO LETTERS LA English DT Article DE Directed self-assembly; block copolymer; lithography; thermal annealing; chemical pattern; sub-10 nm ID COPOLYMER THIN-FILMS; RING-OPENING POLYMERIZATION; FORMING BLOCK-COPOLYMERS; TRIBLOCK COPOLYMER; CO2/EPOXIDE COPOLYMERIZATION; STEREOCHEMISTRY CONTROL; DENSITY MULTIPLICATION; ORIENTATION CONTROL; ONE-POT; POLYMERS AB Directed self-assembly (DSA) of block copolymers (BCPs) combines advantages of conventional photolithography and polymeric materials and shows competence in semiconductors and data storage applications. Driven by the more integrated, much smaller and higher performance of the electronics, however, the industry standard polystyrene-block-poly(methyl methacrylate) (PS-b-PMM.A) in DSA strategy cannot meet the rapid development of lithography technology because its intrinsic limited Flory-Huggins interaction parameter (chi). Despite hundreds of block copolymers have been developed, these BCPs systems are usually subject to a trade-off between high chi and thermal treatment, resulting in incompatibility with the current nanomanufacturing fab processes. Here we discover that polystyrene-b-poly(propylene carbonate) (PS-b-PPC) is well qualified to fill key positions on DSA strategy for the next-generation lithography. The estimated chi-value for PS-b-PPC is 0.079, that is, two times greater than PS-b-PMMA (chi = 0.029 at 150 degrees C), while processing the ability to form perpendicular sub-10 nm morphologies (cylinder and lamellae) via the industry preferred thermal-treatment. DSA of lamellae forming PS-b-PPC on chemoepitaxial density multiplication demonstrates successful sub-10 nm long-range order features on large-area patterning for nanofabrication. Pattern transfer to the silicon substrate through industrial sequential infiltration synthesis is also implemented successfully. Compared with the previously reported methods to orientation control BCPs with high chi-value (including solvent annealing, neutral top-coats, and chemical modification), the easy preparation, high chi value, and etch selectivity while enduring thermal treatment demonstrates PS-b-PPC as a rare and valuable candidate for advancing the field of nanolithography. C1 [Yang, Guan-Wen; Wu, Guang-Peng; Xu, Zhi-Kang] Zhejiang Univ, Dept Polymer Sci & Engn, MOE Lab Macromol Synth & Functionalizat Adsorpt, Hangzhou 310027, Zhejiang, Peoples R China. [Chen, Xuanxuan; Xiong, Shisheng; Nealey, Paul F.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Arges, Christopher G.] Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70803 USA. [Xiong, Shisheng; Nealey, Paul F.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Ji, Shengxiang] Chinese Acad Sci, Key Lab Polymer Ecomat, Changchun Inst Appl Chem, 5625 Renmin St, Changchun 130022, Peoples R China. [Lu, Xiao-Bing] Dalian Univ Technol, State Key Lab Fine Chem, Dalian 116024, Peoples R China. [Darensbourg, Donald J.] Texas A&M Univ, Dept Chem, 3255 TAMU, College Stn, TX 77843 USA. RP Wu, GP; Xu, ZK (reprint author), Zhejiang Univ, Dept Polymer Sci & Engn, MOE Lab Macromol Synth & Functionalizat Adsorpt, Hangzhou 310027, Zhejiang, Peoples R China.; Nealey, PF (reprint author), Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA.; Nealey, PF (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gpwu@zju.edu.cn; nealey@uchicago.edu; xuzk@zju.edu.cn RI Ji, Shengxiang/A-7567-2015 OI Ji, Shengxiang/0000-0003-0336-0530 FU National Science Foundation [1344891]; National Natural Science Foundation of China [21674090]; U.S. DOE Office of Science by Argonne National Laboratory by the U.S. DOE [DE-AC02-06CH11357]; "Hundred Talents Program" of Zhejiang University FX The authors acknowledge support from the National Science Foundation (Award Number: 1344891). Financial support is also acknowledged to National Natural Science Foundation of China (Grant 21674090). Use of the Center for Nanoscale Materials (CNM) and Advanced Photon Source (APS), an Office of Science User Facility operated for the U.S. DOE Office of Science by Argonne National Laboratory, is supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. G.-P.W gratefully acknowledges the support of "Hundred Talents Program" of Zhejiang University. NR 52 TC 1 Z9 1 U1 27 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2017 VL 17 IS 2 BP 1233 EP 1239 DI 10.1021/acs.nanolett.6b05059 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EK3SW UT WOS:000393848800090 PM 28068100 ER PT J AU Li, YF Cui, F Ross, MB Kim, D Sun, Y Yang, PD AF Li, Yifan Cui, Fan Ross, Michael B. Kim, Dohyung Sun, Yuchun Yang, Peidong TI Structure-Sensitive CO2 Electroreduction to Hydrocarbons on Ultrathin 5-fold Twinned Copper Nanowires SO NANO LETTERS LA English DT Article DE 5-fold twinned nanowires; carbon dioxide reduction; electrocatalysis; selectivity; graphene oxide; morphological evolution ID CARBON-DIOXIDE REDUCTION; SELECTIVE ELECTROCHEMICAL REDUCTION; CU NANOPARTICLES; TRANSPARENT CONDUCTORS; OXIDE; CONVERSION; CATALYSTS; ETHYLENE; NANOCRYSTALS; ELECTRODES AB Copper is uniquely active for the electrocatalytic reduction of carbon dioxide (CO2) to products beyond carbon monoxide, such as methane (CH4) and ethylene (C2H4). Therefore, understanding selectivity trends for CO2, electrocatalysis on copper surfaces is critical for developing more efficient catalysts for CO2, conversion to higher order products. Herein, we investigate the electrocatalytic activity of ultrathin (diameter similar to 20 nm) 5-fold twinned copper nanowires (Cu NWs) for CO2, reduction. These Cu NW catalysts were found to exhibit high CH4 selectivity over other carbon products, reaching 55% Faradaic efficiency (FE) at -1.25 V versus reversible hydrogen electrode while other products were produced with less than 5% FE. This selectivity was found to be sensitive to morphological changes in the nanowire catalyst observed over the course of electrolysis. Wrapping the wires with graphene oxide was found to be a successful strategy for preserving both the morphology and reaction selectivity of the Cu NW's. These results suggest that product selectivity on Cu NWs is highly dependent on morphological features and that hydrocarbon selectivity can be manipulated by structural evolution or the prevention thereof. C1 [Li, Yifan; Cui, Fan; Ross, Michael B.; Sun, Yuchun; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kim, Dohyung; Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Li, Yifan; Cui, Fan; Yang, Peidong] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Yang, Peidong] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kim, Dohyung; Yang, Peidong] Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu FU Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, of the U.S. Department of Energy [DE-AC02-05CH11231, CH030201]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Canadian Institute for Advanced Research; Samsung Scholarship FX This work was supported by Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, FWP No. CH030201 (Catalysis Research Program). We thank the imaging facilities at the National Center for Electron Microscopy (NCEM) at the Molecular Foundry and the NMR facility of the College of Chemistry, University of California, Berkeley. Work at the NCEM was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. M.B.R. gratefully acknowledges the Canadian Institute for Advanced Research for funding. D.K. acknowledges support from the Samsung Scholarship. NR 33 TC 0 Z9 0 U1 58 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2017 VL 17 IS 2 BP 1312 EP 1317 DI 10.1021/acs.nanolett.6b05287 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EK3SW UT WOS:000393848800101 PM 28094953 ER PT J AU Niu, TC AF Niu, Tianchao TI New properties with old materials: Layered black phosphorous SO NANO TODAY LA English DT Article DE Phosphorous; Wafer scale growth; Surface protection; Heterostructures ID EPITAXIAL-GROWTH; TRANSISTORS; CHEMISTRY AB Layered black phosphorous (BP), its tunable direct bandgap, higher carrier mobility and unique in-plane anisotropy, enables it to a promising candidate in design and optimization of electronics and optoelectronic devices with excellent performance. Although recent studies and perspectives aim at bringing this material to a level of maturity, the lack of wafer scale production and the surface reactivity of BP hindered a fully industrial processes. Here, we addressed the probable solutions to overcome these challenges black phosphorous was facing. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Niu, Tianchao] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, 865 Changning Rd, Shanghai 200050, Peoples R China. [Niu, Tianchao] Brookhaven Natl Lab, Nanomat, Upton, NY 11973 USA. RP Niu, TC (reprint author), Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, 865 Changning Rd, Shanghai 200050, Peoples R China.; Niu, TC (reprint author), Brookhaven Natl Lab, Nanomat, Upton, NY 11973 USA. EM tcniu@mail.sim.ac.cn FU Natural Science Foundation of China [11227902, 21403282]; Strategic Priority Research Program (B) of the Chinese Academy of Sciences [XDB04040300] FX The author would like to thank the support from Natural Science Foundation of China under contract Nos.. 11227902, 21403282, and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences, Grant No. XDB04040300. The author thanks Dr. Miao Zhou for helpful discussion. NR 26 TC 0 Z9 0 U1 7 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1748-0132 EI 1878-044X J9 NANO TODAY JI Nano Today PD FEB PY 2017 VL 12 BP 7 EP 9 DI 10.1016/j.nantod.2016.08.013 PG 3 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EM3LD UT WOS:000395215500006 ER PT J AU Matsubu, JC Zhang, SY DeRita, L Marinkovic, NS Chen, JGG Graham, GW Pan, XQ Christopher, P AF Matsubu, John C. Zhang, Shuyi DeRita, Leo Marinkovic, Nebojsa S. Chen, Jingguang G. Graham, George W. Pan, Xiaoqing Christopher, Phillip TI Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts SO NATURE CHEMISTRY LA English DT Article ID ELECTRON-MICROSCOPY; METHANOL SYNTHESIS; RH/TIO2 CATALYSTS; TIO2(110) SURFACE; CO2 HYDROGENATION; INTERACTION STATE; REDUCIBLE OXIDES; CARBON-DIOXIDE; FORMIC-ACID; ACTIVE-SITE AB The optimization of supported metal catalysts predominantly focuses on engineering the metal site, for which physical insights based on extensive theoretical and experimental contributions have enabled the rational design of active sites. Although it is well known that supports can influence the catalytic properties of metals, insights into how metal-support interactions can be exploited to optimize metal active-site properties are lacking. Here we utilize in situ spectroscopy and microscopy to identify and characterize a support effect in oxide-supported heterogeneous Rh catalysts. This effect is characterized by strongly bound adsorbates (HCOx) on reducible oxide supports (TiO2 and Nb2O5) that induce oxygen-vacancy formation in the support and cause HCOx-functionalized encapsulation of Rh nanoparticles by the support. The encapsulation layer is permeable to reactants, stable under the reaction conditions and strongly influences the catalytic properties of Rh, which enables rational and dynamic tuning of CO2-reduction selectivity. C1 [Matsubu, John C.; DeRita, Leo; Christopher, Phillip] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA. [Zhang, Shuyi; Graham, George W.; Pan, Xiaoqing] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA. [Zhang, Shuyi; Graham, George W.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Marinkovic, Nebojsa S.; Chen, Jingguang G.] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. [Chen, Jingguang G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Pan, Xiaoqing] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Christopher, Phillip] Univ Calif Riverside, Program Mat Sci, Riverside, CA 92521 USA. [Christopher, Phillip] Univ Calif Riverside, Ctr Catalysis, Riverside, CA 92521 USA. RP Christopher, P (reprint author), Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA.; Christopher, P (reprint author), Univ Calif Riverside, Program Mat Sci, Riverside, CA 92521 USA.; Christopher, P (reprint author), Univ Calif Riverside, Ctr Catalysis, Riverside, CA 92521 USA. EM christopher@engr.ucr.edu FU University of California, Riverside; National Science Foundation (NSF) [CHE-1301019]; NSF [CBET-1159240, DMR-0723032]; Synchrotron Catalysis Consortium, US Department of Energy Grant [DE-SC0012335] FX P.C. acknowledges funding from the University of California, Riverside, and the National Science Foundation (NSF), Grant No. CHE-1301019. G.W.G. and X.P. acknowledge the NSF, Grants No. CBET-1159240 and No. DMR-0723032. XAS measurements were performed on Beamline 2-2, which was supported in part by the Synchrotron Catalysis Consortium, US Department of Energy Grant No. DE-SC0012335. A. V. Dudchenko is acknowledged for his efforts in Arduino automation of the packed-bed reactor experimental apparatus. NR 53 TC 1 Z9 1 U1 21 U2 21 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1755-4330 EI 1755-4349 J9 NAT CHEM JI Nat. Chem. PD FEB PY 2017 VL 9 IS 2 BP 120 EP 127 DI 10.1038/NCHEM.2607 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA EL3TJ UT WOS:000394541900007 PM 28282057 ER PT J AU Jiang, XF Huang, H Chai, YF Lohr, TL Yu, SY Lai, WZ Pan, YJ Delferro, M Marks, TJ AF Jiang, Xuan-Feng Huang, Hui Chai, Yun-Feng Lohr, Tracy Lynn Yu, Shu-Yan Lai, Wenzhen Pan, Yuan-Jiang Delferro, Massimiliano Marks, Tobin J. TI Hydrolytic cleavage of both CS2 carbon-sulfur bonds by multinuclear Pd(II) complexes at room temperature SO NATURE CHEMISTRY LA English DT Article ID BRIDGING SULFIDE LIGANDS; CRYSTAL-STRUCTURE; DISULFIDE; COS; OXYGEN; METALLOMACROCYCLES; REACTIVITIES; COMBUSTION; ABSORPTION; ACTIVATION AB Developing homogeneous catalysts that convert CS2 and COS pollutants into environmentally benign products is important for both fundamental catalytic research and applied environmental science. Here we report a series of air-stable dimeric Pd complexes that mediate the facile hydrolytic cleavage of both CS2 carbon-sulfur bonds at 25 degrees C to produce CO2 and trimeric Pd complexes. Oxidation of the trimeric complexes with HNO3 regenerates the dimeric starting complexes with the release of SO2 and NO2. Isotopic labelling confirms that the carbon and oxygen atoms of CO2 originate from CS2 and H2O, respectively, and reaction intermediates were observed by gas-phase and electrospray ionization mass spectrometry, as well as by Fourier transform infrared spectroscopy. We also propose a plausible mechanistic scenario based on the experimentally observed intermediates. The mechanism involves intramolecular attack by a nucleophilic Pd-OH moiety on the carbon atom of coordinated mu-OCS2, which on deprotonation cleaves one C-S bond and simultaneously forms a C-O bond. Coupled C-S cleavage and CO2 release to yield [(bpy)(3)Pd-3(mu(3)-S)(2)](NO3)(2) (bpy, 2,2'-bipyridine) provides the thermodynamic driving force for the reaction. C1 [Jiang, Xuan-Feng; Yu, Shu-Yan] Beijing Univ Technol, Dept Chem & Chem Ind, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat,Lab Sel, Beijing 100124, Peoples R China. [Jiang, Xuan-Feng; Huang, Hui] Univ Chinese Acad Sci, Coll Mat Sci Optoelect Technol, Beijing 100049, Peoples R China. [Jiang, Xuan-Feng; Huang, Hui] Univ Chinese Acad Sci, Key Lab Vacuum Phys, Beijing 100049, Peoples R China. [Chai, Yun-Feng; Pan, Yuan-Jiang] Zhejiang Univ, Dept Chem, Hangzhou 310027, Zhejiang, Peoples R China. [Lohr, Tracy Lynn; Delferro, Massimiliano; Marks, Tobin J.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Lohr, Tracy Lynn; Delferro, Massimiliano; Marks, Tobin J.] Northwestern Univ, Ctr Surface Sci & Catalysis, Evanston, IL 60208 USA. [Lai, Wenzhen] Renmin Univ China, Dept Chem, Beijing 100872, Peoples R China. [Delferro, Massimiliano] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. RP Huang, H (reprint author), Univ Chinese Acad Sci, Coll Mat Sci Optoelect Technol, Beijing 100049, Peoples R China.; Huang, H (reprint author), Univ Chinese Acad Sci, Key Lab Vacuum Phys, Beijing 100049, Peoples R China. EM huihuang@ucas.ac.cn; selfassembly@bjut.edu.cn; panyuanjiang@zju.edu.cn; delferro@anl.gov; t-marks@northwestern.edu FU National Natural Science Foundation of China [21471011, 21574135, 91127039, 51303180, 21203245, 21532005, 21327010]; Beijing Natural Science Foundation [2162043]; One Hundred Talents Program; Chinese Academy of Sciences; Importation and Development of High-Caliber Talents Project of the Beijing Municipal Institution; Beijing Postdoctoral Research Foundation [2015M570017]; US National Science Foundation [CHE-1464488]; US Department of Energy [DE-FG02-03ER15457] FX This research was supported by National Natural Science Foundation of China (Grant numbers 21471011, 21574135, 91127039, 51303180, 21203245, 21532005, 21327010), the Beijing Natural Science Foundation (Grant 2162043), the One Hundred Talents Program, the Chinese Academy of Sciences, the Importation and Development of High-Caliber Talents Project of the Beijing Municipal Institution and Beijing Postdoctoral Research Foundation (Grant 2015M570017) and the Beijing Synchrotron Radiation Facility for crystal structure determination using synchrotron radiation X-ray diffraction analysis. We also thank H. Ma (Beijing Institute of Technology) for the X-ray crystallography. Research at Northwestern University is supported by the US National Science Foundation under grant CHE-1464488. The Northwestern CleanCatCore Facility acknowledges funding from the US Department of Energy (Grant DE-FG02-03ER15457) used for the purchase of the portable universal gas analyser. We thank N. M. Schweitzer for supporting the mass spectroscopy. NR 42 TC 1 Z9 1 U1 8 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1755-4330 EI 1755-4349 J9 NAT CHEM JI Nat. Chem. PD FEB PY 2017 VL 9 IS 2 BP 188 EP 193 DI 10.1038/NCHEM.2637 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA EL3TJ UT WOS:000394541900017 PM 28282048 ER PT J AU Li, MM Gao, K Wan, XJ Zhang, Q Kan, B Xia, RX Liu, F Yang, X Feng, HR Ni, W Wang, YC Peng, JJ Zhang, HT Liang, ZQ Yip, HL Peng, XB Cao, Y Chen, YS AF Li, Miaomiao Gao, Ke Wan, Xiangjian Zhang, Qian Kan, Bin Xia, Ruoxi Liu, Feng Yang, Xuan Feng, Huanran Ni, Wang Wang, Yunchuang Peng, Jiajun Zhang, Hongtao Liang, Ziqi Yip, Hin-Lap Peng, Xiaobin Cao, Yong Chen, Yongsheng TI Solution-processed organic tandem solar cells with power conversion efficiencies >12% SO NATURE PHOTONICS LA English DT Article ID SMALL MOLECULES; POLYMER; 10-PERCENT; DESIGN; SERIES; LAYER AB An effective way to improve the power conversion efficiency of organic solar cells is to use a tandem architecture consisting of two subcells, so that a broader part of the solar spectrum can be used and the thermalization loss of photon energy can be minimized(1). For a tandem cell to work well, it is important for the subcells to have complementary absorption characteristics and generate high and balanced (matched) currents. This requires a rather challenging effort to design and select suitable active materials for use in the subcells. Heke, we report a high-performance solution-processed, tandem solar cell based on the small molecules DR3TSBDT and DPPEZnP-TBO, which offer efficient, complementary absorption when used as electron donor materials in the front and rear subcells, respectively. Optimized devices achieve a power conversion efficiency of 12.50% (verified 12.70%), which represents a new level of capability for solution-processed, organic solar cells. C1 [Li, Miaomiao; Wan, Xiangjian; Zhang, Qian; Kan, Bin; Yang, Xuan; Feng, Huanran; Ni, Wang; Wang, Yunchuang; Zhang, Hongtao; Chen, Yongsheng] Nankai Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Coll Chem, Ctr Nanoscale Sci & Technol, Tianjin 300071, Peoples R China. [Li, Miaomiao; Wan, Xiangjian; Zhang, Qian; Kan, Bin; Yang, Xuan; Feng, Huanran; Ni, Wang; Wang, Yunchuang; Zhang, Hongtao; Chen, Yongsheng] Nankai Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Coll Chem, Key Lab Funct Polymer Mat,State Key Lab, Tianjin 300071, Peoples R China. [Li, Miaomiao; Wan, Xiangjian; Zhang, Qian; Kan, Bin; Yang, Xuan; Feng, Huanran; Ni, Wang; Wang, Yunchuang; Zhang, Hongtao; Chen, Yongsheng] Nankai Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Coll Chem, Inst Elementoorgan Chem, Tianjin 300071, Peoples R China. [Li, Miaomiao; Wan, Xiangjian; Zhang, Qian; Kan, Bin; Yang, Xuan; Feng, Huanran; Ni, Wang; Wang, Yunchuang; Zhang, Hongtao; Chen, Yongsheng] Nankai Univ, Natl Inst Adv Mat, Sch Mat Sci & Engn, Tianjin 300071, Peoples R China. [Gao, Ke; Xia, Ruoxi; Yip, Hin-Lap; Peng, Xiaobin; Cao, Yong] South China Univ Technol, Inst Polymer Optoelect Mat & Devices, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China. [Liu, Feng] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Peng, Jiajun; Liang, Ziqi] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China. RP Wan, XJ; Chen, YS (reprint author), Nankai Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Coll Chem, Ctr Nanoscale Sci & Technol, Tianjin 300071, Peoples R China.; Wan, XJ; Chen, YS (reprint author), Nankai Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Coll Chem, Key Lab Funct Polymer Mat,State Key Lab, Tianjin 300071, Peoples R China.; Wan, XJ; Chen, YS (reprint author), Nankai Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Coll Chem, Inst Elementoorgan Chem, Tianjin 300071, Peoples R China.; Wan, XJ; Chen, YS (reprint author), Nankai Univ, Natl Inst Adv Mat, Sch Mat Sci & Engn, Tianjin 300071, Peoples R China.; Peng, XB (reprint author), South China Univ Technol, Inst Polymer Optoelect Mat & Devices, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China. EM xjwan@nankai.edu.cn; chxbpeng@scut.edu.cn; yschen99@nankai.edu.cn FU MoST [2014CB643502, 2016YFA0200200]; NSFC [51373078, 51422304, 91433101, 51323003, 51473053]; International Science and Technology Cooperation Program of China [2013DFG52740] FX The authors acknowledge financial support from MoST (2014CB643502, 2016YFA0200200), NSFC (51373078, 51422304, 91433101, 51323003, 51473053) and the International Science and Technology Cooperation Program of China (2013DFG52740). NR 30 TC 3 Z9 3 U1 22 U2 22 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 EI 1749-4893 J9 NAT PHOTONICS JI Nat. Photonics PD FEB PY 2017 VL 11 IS 2 BP 85 EP 90 DI 10.1038/NPHOTON.2016.240 PG 6 WC Optics; Physics, Applied SC Optics; Physics GA EK2BB UT WOS:000393731000010 ER PT J AU Chen, G AF Chen, Gong TI Skyrmion Hall effect SO NATURE PHYSICS LA English DT News Item ID MAGNETIC SKYRMIONS C1 [Chen, Gong] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Chen, G (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM gchenncem@gmail.com NR 10 TC 0 Z9 0 U1 6 U2 6 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD FEB PY 2017 VL 13 IS 2 BP 112 EP 113 PG 2 WC Physics, Multidisciplinary SC Physics GA EK6XX UT WOS:000394070700011 ER PT J AU Kalinin, SV AF Kalinin, Seirgei V. TI Making a point of coitrol SO NATURE PHYSICS LA English DT News Item ID BIFEO3 C1 [Kalinin, Seirgei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov NR 12 TC 0 Z9 0 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD FEB PY 2017 VL 13 IS 2 BP 115 EP 116 PG 2 WC Physics, Multidisciplinary SC Physics GA EK6XX UT WOS:000394070700013 ER PT J AU Paddison, JAM Daum, M Dun, ZL Ehlers, G Liu, YH Stone, MB Zhou, HD Mourigal, M AF Paddison, Joseph A. M. Daum, Marcus Dun, Zhiling Ehlers, Georg Liu, Yaohua Stone, Matthew B. Zhou, Haidong Mourigal, Martin TI Continuous excitations of the triangular-lattice quantum spin liquid YbiVigGao(4) SO NATURE PHYSICS LA English DT Article ID ANTIFERROMAGNETIC CHAIN; GROUND-STATE; MAGNET; PHASES AB A quantum spin liquid (QSL) is an exotic state of matter in which electrons' spins are quantum entangled over long distances, but do not show magnetic order in the zero-temperature limit'. The observation of QSL states is a central aim of experimental physics, because they host collective excitations that transcend our knowledge of quantum matter; however, examples in real materials are scarce(2). Here, we report neutron-scattering experiments on YbMgGao(4) a QSL candidate in which Yh(3+) ions with effective spin-1/2 occupy a triangular lattice(3-6). Our measurements reveal a continuum of magnetic excitations the essential experimental hallmark of a QS12 at very low temperature (0.06 K). The origin of this peculiar excitation spectrum is a crucial question, because isotropic nearest neighbour interactions do not yield a QSL ground state on the triangular lattice(8). Using measurements in the field-polarized state, we identify antiferromagnetic next-nearest-neighbour interactionss(9-12), spin-space anisotropies(4,10,13,14), and chemical disorder's between the magnetic layers as key ingredients in YbMgGao(4). C1 [Paddison, Joseph A. M.; Daum, Marcus; Mourigal, Martin] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Dun, Zhiling; Zhou, Haidong] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Ehlers, Georg; Liu, Yaohua; Stone, Matthew B.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Mourigal, M (reprint author), Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. EM mourigal@gatech.edu RI Stone, Matthew/G-3275-2011 OI Stone, Matthew/0000-0001-7884-9715 FU National Science Foundation [DMR-1350002]; US Department of Energy, Office of Basic Energy Sciences, Scientific User Facilities Division; College of Sciences; Executive Vice-President for Research FX We are very grateful to L. Ge for his help with heat-capacity measurements and J. Carruth, S. Elorfi, M. Everett and C. Fletcher for sample environment and instrument support dating our neutron-scattering experiments. It is our pleasure to thank S. Chernyshev, R. Coldea, K. Ross, M. Waterbury, Y. Wan and M. Zhitomirslcy for insightful discussions. The work and equipment at the Georgia Institute of Technology (J.A.M.R, M.D. and UM.) was supported by the College of Sciences and the Executive Vice-President for Research. The work at the University of Tennessee (Z.D. and HZ.) was supported by the National Science Foundation through award DMR-1350002. The research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the US Department of Energy, Office of Basic Energy Sciences, Scientific User Facilities Division. NR 35 TC 3 Z9 3 U1 6 U2 6 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD FEB PY 2017 VL 13 IS 2 BP 117 EP 122 DI 10.1038/NPHYS3971 PG 6 WC Physics, Multidisciplinary SC Physics GA EK6XX UT WOS:000394070700014 ER PT J AU Jin, CH Kim, J Suh, J Shi, ZW Chen, B Fan, X Kam, M Watanabe, K Taniguchi, T Tongay, S Zettl, A Wu, JQ Wang, F AF Jin, Chenhao Kim, Jonghwan Suh, Joonki Shi, Zhiwen Chen, Bin Fan, Xi Kam, Matthew Watanabe, Kenji Taniguchi, Takashi Tongay, Sefaattin Zettl, Alex Wu, Junqiao Wang, Feng TI Interlayer electron-phonon coupling in WSe2/hBN heterostructures SO NATURE PHYSICS LA English DT Article ID HEXAGONAL BORON-NITRIDE; MOIRE SUPERLATTICES; DIRAC FERMIONS; FESE FILMS; GRAPHENE; SUPERCONDUCTIVITY; SRTIO3; MOS2 AB Engineering layer-layer interactions provides a powerful way to realize novel and designable quantum phenomena in van der Waals heterostructures(1-6). Interlayer electron-electron interactions, for example, have enabled fascinating physics that is difficult to achieve in a single material, such as the Hofstadter's butterfly in graphene/boron nitride (hBN) heterostructures(5-10). In addition to electron-electron interactions, interlayer electron-phonon interactions allow for further control of the physical properties of van der Waals heterostructures. Here we report an interlayer electron-phonon interaction in WSe2/hBN heterostructures, where optically silent hBN phonons emerge in Raman spectra with strong intensities through resonant coupling to WSe2 electronic transitions. Excitation spectroscopy reveals the double-resonance nature of such enhancement, and identifies the two resonant states to be the A exciton transition of monolayer WSe2 and a new hybrid state present only in WSe2/hBN heterostructures. The observation of an interlayer electron-phonon interaction could open up new ways to engineer electrons and phonons for device applications. C1 [Jin, Chenhao; Kim, Jonghwan; Shi, Zhiwen; Kam, Matthew; Zettl, Alex; Wang, Feng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Suh, Joonki; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Chen, Bin; Fan, Xi; Tongay, Sefaattin] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. [Watanabe, Kenji; Taniguchi, Takashi] Natl Inst Mat Sci, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan. [Zettl, Alex; Wu, Junqiao; Wang, Feng] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zettl, Alex; Wang, Feng] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Zettl, Alex; Wang, Feng] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Wang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; Wang, F (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Wang, F (reprint author), Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.; Wang, F (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM fengwang76@berkeley.edu FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy [DE-AC02-05-CH11231, KCWF16]; US Department of Energy [DE-AC02-05CH11231]; David and Lucile Packard fellowship; NSF CAREER award [DMR 1552220]; MEXT, Japan; JSPS FX We thank S. Kahn for technical suggestions on heterostructure preparation and J. Yak for fruitful discussions on sample characterization. This work was primarily supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy under Contract No. DE-AC02-05-CH11231 (van der Waals heterostructures program, KCWF16), and was supported in part by previous breakthroughs obtained through the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under US Department of Energy Contract No. DE-AC02-05CH11231. F.W also acknowledges support from a David and Lucile Packard fellowship. S.T. acknowledges support from NSF CAREER award DMR 1552220. Growth of hexagonal boron nitride crystals was supported by the Elemental Strategy Initiative conducted by the MEXT, Japan and a Grant-in-Aid for Scientific Research on Innovative Areas 'Science of Atomic Layers' from JSPS. NR 31 TC 0 Z9 0 U1 10 U2 10 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD FEB PY 2017 VL 13 IS 2 BP 127 EP 131 DI 10.1038/NPHYS39280 PG 5 WC Physics, Multidisciplinary SC Physics GA EK6XX UT WOS:000394070700016 ER PT J AU Jiang, WJ Zhang, XC Yu, GQ Zhang, W Wang, X Jungfleisch, MB Pearson, JE Cheng, XM Heinonen, O Wang, KL Zhou, Y Hoffmann, A te Velthuis, SGE AF Jiang, Wanjun Zhang, Xichao Yu, Guoqiang Zhang, Wei Wang, Xiao Jungfleisch, M. Benjamin Pearson, John E. Cheng, Xuemei Heinonen, Olle Wang, Kang L. Zhou, Yan Hoffmann, Axel te Velthuis, Suzanne G. E. TI Direct observation of the skyrmion Hall effect SO NATURE PHYSICS LA English DT Article ID CURRENT-DRIVEN DYNAMICS; MAGNETIC SKYRMIONS; DOMAIN-WALLS; NANOSTRUCTURES; BUBBLES; TORQUES; LATTICE; MOTION; FILMS AB The well-known Hall effect describes the transverse deflection of charged particles (electrons/holes) as a result of the Lorentz force. Similarly, it is intriguing to examine if quasi-particles without an electric charge, but with a topological charge, show related transverse motion. Magnetic skyrmions with a well-defined spin texture with a unit topological charge serve as good candidates to test this hypothesis. In spite of the recent progress made on investigating magnetic skyrmions, direct observation of the skyrmion Hall effect has remained elusive. Here, by using a current-induced spin Hall spin torque, we experimentally demonstrate the skyrmion Hall effect, and the resultant skyrmion accumulation, by driving skyrmions from the creep-motion regime (where their dynamics are influenced by pinning defects) into the steady-flow-motion regime. The experimental observation of transverse transport of skyrmions due to topological charge may potentially create many exciting opportunities, such as topological selection. C1 [Jiang, Wanjun; Zhang, Wei; Jungfleisch, M. Benjamin; Pearson, John E.; Heinonen, Olle; Hoffmann, Axel; te Velthuis, Suzanne G. E.] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. [Jiang, Wanjun] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China. [Jiang, Wanjun] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Jiang, Wanjun] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China. [Zhang, Xichao; Zhou, Yan] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Peoples R China. [Yu, Guoqiang; Wang, Kang L.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Zhang, Wei] Oakland Univ, Dept Phys, Rochester, MI 48309 USA. [Wang, Xiao; Cheng, Xuemei] Bryn Mawr Coll, Dept Phys, Bryn Mawr, PA 19010 USA. [Heinonen, Olle] Northwestern Univ, Northwestern Argonne Inst Sci & Engn, Evanston, IL 60208 USA. RP Jiang, WJ; Hoffmann, A; te Velthuis, SGE (reprint author), Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA.; Jiang, WJ (reprint author), Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China.; Jiang, WJ (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China.; Jiang, WJ (reprint author), Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China. EM jiang_lab@tsinghua.edu.cn; hoffmann@anl.gov; tevelthui@anl.gov RI Zhang, Xichao/L-4924-2013; te Velthuis, Suzanne/I-6735-2013 OI Zhang, Xichao/0000-0001-9656-9696; te Velthuis, Suzanne/0000-0002-1023-8384 FU US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; DOE, Office of Science, Basic Energy Sciences [DE-AC02-06CH11357]; 1000-Youth Talent Program of China; National Key Research Plan of China [2016YFA0302300]; NSF Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems (TANMS); National Natural Science Foundation of China [1157040329]; Shenzhen Fundamental Research Fund [JCYJ20160331164412545]; JSPS RONPAKU Program; NSF CAREER [1053854] FX Work carried out at the Argonne National Laboratory including lithographic processing and MOKE imaging was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Lithography was carried out at the Center for Nanoscale Materials, which is supported by the DOE, Office of Science, Basic Energy Sciences under Contract No. DE-AC02-06CH11357. WI. was partially supported by the 1000-Youth Talent Program of China, and National Key Research Plan of China under contract number 2016YFA0302300. Thin film growth performed at UCLA was partially supported by the NSF Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems (TANMS). Y.Z. acknowledges support by the National Natural Science Foundation of China (Project No. 1157040329), Shenzhen Fundamental Research Fund under Grant No. JCYJ20160331164412545. X.Z. was supported by JSPS RONPAKU (Dissertation Ph.D.) Program. Work at Bryn Mawr College is supported by NSF CAREER award (No. 1053854). The authors wish to thank C. Reichhardt for insightful discussions. NR 47 TC 6 Z9 6 U1 11 U2 11 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD FEB PY 2017 VL 13 IS 2 BP 162 EP 169 DI 10.1038/NPHYS3883 PG 8 WC Physics, Multidisciplinary SC Physics GA EK6XX UT WOS:000394070700023 ER PT J AU Tayebjee, MJY Sanders, SN Kumarasamy, E Campos, LM Sfeir, MY McCamey, DR AF Tayebjee, Murad J. Y. Sanders, Samuel N. Kumarasamy, Elango Campos, Luis M. Sfeir, Matthew Y. McCamey, Dane R. TI Quintet multiexciton dynamics in singlet fission SO NATURE PHYSICS LA English DT Article ID EXCITON-FISSION; CRYSTALLINE TETRACENE; PENTACENE DIMERS; MAGNETIC-FIELD; TRIPLET-STATES; FUSION; FLUORESCENCE; EFFICIENCY; NANOPARTICLES; DESIGN AB Singlet fission, in which two triplet excitons are generated from a single absorbed photon, is a key third -generation solar cell concept. Conservation of angular momentum requires that singlet fission populates correlated multiexciton states, which can subsequently dissociate to generate free triplets. However, little is known about electronic and spin correlations in these systems since, due to its typically short lifetime, the multiexciton state is challenging to isolate and study. Here, we use bridged pentacene dimers, which undergo intramolecular singlet fission while isolated in solution and in solid matrices, as a unimolecular model system that can trap long-lived multiexciton states. We combine transient absorption and time resolved electron spin resonance spectroscopies to show that spin correlations in the multiexciton state persist for hundreds of nanoseconds. Furthermore, we confirm long-standing predictions that singlet fission produces triplet pair states of quintet character. We compare two different pentacene-bridge-pentacene chromophores, systematically tuning the coupling between the pentacenes to understand how differences in molecular structure affect the population and dissociation of multiexciton quintet states. C1 [Tayebjee, Murad J. Y.] Univ New South Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia. [Sanders, Samuel N.; Kumarasamy, Elango; Campos, Luis M.] Columbia Univ, Dept Chem, New York, NY 10027 USA. [Sfeir, Matthew Y.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [McCamey, Dane R.] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia. RP Tayebjee, MJY (reprint author), Univ New South Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia.; McCamey, DR (reprint author), Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia. EM m.tayebjee@unsw.edu.au; dane.mccamey@unsw.edu.au OI Kumarasamy, Elango/0000-0002-7995-6894 FU Australian Research Council [DP160103008, LE130100146]; ARENA Fellowship; CASS Foundation; ARC Future Fellowship [FT130100214]; Office of Naval Research [N00014-15-1-2532]; US DOE Office of Science [DE-SC0012704] FX This work was supported by the Australian Research Council (DP160103008 and LE130100146). M.J.Y.T. acknowledges receipt of an ARENA Fellowship and a Travel Award from the CASS Foundation. M.J.Y.T. thanks J. Behrends, R. Bittl and the Berlin Joint EPR Lab (BeJEL) for useful discussions. D.R.M. acknowledges an ARC Future Fellowship (FT130100214). L.M.C. acknowledges support from the Office of Naval Research Young Investigator Program (Award N00014-15-1-2532) and Cottrell Scholar Award. S.N.S. thanks the NSF for GRFP (DGE 11-44155). This research used resources of the Center for Functional Nanomaterials, which is a US DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. We thank J. Guse for technical assistance. NR 59 TC 2 Z9 2 U1 7 U2 7 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD FEB PY 2017 VL 13 IS 2 BP 182 EP 188 DI 10.1038/NPHYS3909 PG 7 WC Physics, Multidisciplinary SC Physics GA EK6XX UT WOS:000394070700026 ER PT J AU Wang, H Prentice, IC Davis, TW Keenan, TF Wright, IJ Peng, CH AF Wang, Han Prentice, I. Colin Davis, Tyler W. Keenan, Trevor F. Wright, Ian J. Peng, Changhui TI Photosynthetic responses to altitude: an explanation based on optimality principles SO NEW PHYTOLOGIST LA English DT Letter DE atmospheric pressure; attitude; leaf temperature; leaf-internal to ambient CO2 partial pressures ratio (c(i):c(a)); optimality; photosynthetic capacity; theory ID CARBON-ISOTOPE DISCRIMINATION; STOMATAL CONDUCTANCE; METROSIDEROS-POLYMORPHA; ALPINE POPULATIONS; NITROGEN-CONTENT; USE EFFICIENCY; OXYRIA-DIGYNA; LEAF NITROGEN; TEMPERATURE; PLANTS C1 [Wang, Han; Prentice, I. Colin; Peng, Changhui] Northwest A&F Univ, State Key Lab Soil Eros & Dryland Farming Loess P, Coll Forestry, Yangling 712100, Peoples R China. [Wang, Han; Prentice, I. Colin; Keenan, Trevor F.; Wright, Ian J.] Macquarie Univ, Dept Biol Sci, N Ryde, NSW 2109, Australia. [Prentice, I. Colin; Davis, Tyler W.] Imperial Coll London, Dept Life Sci, AXA Chair Programme Biosphere & Climate Impacts, Silwood Pk Campus,Buckhurst Rd, Ascot SL5 7PY, Berks, England. [Davis, Tyler W.] ARS, USDA, Robert W Holley Ctr Agr & Hlth, Ithaca, NY 14853 USA. [Keenan, Trevor F.] Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Peng, Changhui] Univ Quebec, Dept Biol Sci, Inst Environm Sci, CP 8888,Succ Ctr Ville, Montreal, PQ H3C 3P8, Canada. RP Wang, H; Peng, CH (reprint author), Northwest A&F Univ, State Key Lab Soil Eros & Dryland Farming Loess P, Coll Forestry, Yangling 712100, Peoples R China.; Wang, H (reprint author), Macquarie Univ, Dept Biol Sci, N Ryde, NSW 2109, Australia.; Peng, CH (reprint author), Univ Quebec, Dept Biol Sci, Inst Environm Sci, CP 8888,Succ Ctr Ville, Montreal, PQ H3C 3P8, Canada. EM wanghan_sci@yahoo.com; peng.changhui@uqam.ca FU National Natural Science Foundation of China [31600388]; Australian Research Council Discovery grant [DP120103600]; Laboratory Directed Research and Development Programme of Lawrence Berkeley National Laboratory under US Department of Energy [DE-AC02-05CH11231]; Macquarie University research fellowship FX authors thank Vincent Maire for discussions. This research was supported by the National Natural Science Foundation of China (Grant no. 31600388) to H.W. and by an Australian Research Council Discovery grant (DP120103600) to I.C.P. and I.J.W. It represents a contribution to the AXA Chair Programme in Biosphere and Climate Impacts and the Imperial College initiative on Grand Challenges in Ecosystems and the Environment. T.F.K. was supported in part by the Laboratory Directed Research and Development Programme of Lawrence Berkeley National Laboratory under US Department of Energy (Contract no. DE-AC02-05CH11231), and by a Macquarie University research fellowship. NR 58 TC 0 Z9 0 U1 6 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X EI 1469-8137 J9 NEW PHYTOL JI New Phytol. PD FEB PY 2017 VL 213 IS 3 BP 976 EP 982 DI 10.1111/nph.14332 PG 7 WC Plant Sciences SC Plant Sciences GA EK4CT UT WOS:000393875400003 PM 27859388 ER PT J AU Holm, JA Kueppers, LM Chambers, JQ AF Holm, Jennifer A. Kueppers, Lara M. Chambers, Jeffrey Q. TI Novel tropical forests: response to global change SO NEW PHYTOLOGIST LA English DT Editorial Material DE Amazon; climate; drought stress; Earth System Model; global change; tropical forests ID EXPERIMENTAL DROUGHT; CENTRAL AMAZON; CLIMATE-CHANGE; RAIN-FOREST; CARBON SINK; TREES; TEMPERATURE; PREDICTIONS; MORTALITY; DYNAMICS C1 [Holm, Jennifer A.; Kueppers, Lara M.; Chambers, Jeffrey Q.] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA 94720 USA. RP Holm, JA (reprint author), Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA 94720 USA. EM jaholm@lbl.gov NR 37 TC 0 Z9 0 U1 9 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X EI 1469-8137 J9 NEW PHYTOL JI New Phytol. PD FEB PY 2017 VL 213 IS 3 BP 988 EP 992 DI 10.1111/nph.14407 PG 5 WC Plant Sciences SC Plant Sciences GA EK4CT UT WOS:000393875400005 PM 28079931 ER PT J AU Huang, CW Domec, JC Ward, EJ Duman, T Manoli, G Parolari, AJ Katul, GG AF Huang, Cheng-Wei Domec, Jean-Christophe Ward, Eric J. Duman, Tomer Manoli, Gabriele Parolari, Anthony J. Katul, Gabriel G. TI The effect of plant water storage on water fluxes within the coupled soil-plant system SO NEW PHYTOLOGIST LA English DT Article DE drought resilience; hydraulic redistribution; leaf-level gas exchange; nocturnal transpiration; plant water storage; root water uptake ID MAXIMUM CARBON GAIN; HYDRAULIC REDISTRIBUTION; STOMATAL CONDUCTANCE; NIGHTTIME TRANSPIRATION; PACIFIC-NORTHWEST; XYLEM CAVITATION; ROOT DYNAMICS; WOODY-PLANTS; SAP FLOW; MODEL AB In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil-plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. The model numerically resolves soil-plant hydrodynamics by coupling them to leaf-level gas exchange and soil-root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (Fe,night) on hydraulic redistribution (HR) in the soil. The model results suggest that daytime PWS usage and Fe,night generate a residual water potential gradient (p,night) along the plant vascular system overnight. This p,night represents a non-negligible competing sink strength that diminishes the significance of HR. Considering the co-occurrence of PWS usage and HR during a single extended dry-down, a wide range of plant attributes and environmental/soil conditions selected to enhance or suppress plant drought resilience is discussed. When compared with HR, model calculations suggest that increased root water influx into plant conducting-tissues overnight maintains a more favorable water status at the leaf, thereby delaying the onset of drought stress. C1 [Huang, Cheng-Wei; Domec, Jean-Christophe; Manoli, Gabriele; Katul, Gabriel G.] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. [Domec, Jean-Christophe] UMR 1391 INRA ISPA, Bordeaux Sci Agro, F-33175 Bordeaux, France. [Ward, Eric J.] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. [Duman, Tomer] Rutgers State Univ, Dept Biol Sci, Newark, NJ 07102 USA. [Parolari, Anthony J.] Marquette Univ, Dept Civil Construct & Environm Engn, Milwaukee, WI 53233 USA. [Katul, Gabriel G.] Duke Univ, Dept Civil & Environm Engn, Durham, NC 27708 USA. RP Huang, CW (reprint author), Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. EM cheng.wei.huang@duke.edu FU National Science Foundation [NSF-CBET-103347, NSF-EAR-1344703, NSF-DGE-1068871]; US Department of Energy (DOE) through the Office of Biological and Environmental Research (BER) Terrestrial Carbon Processes (TCP) program [DE-SC0006967, DE-SC0011461]; Nicholas School of the Environment at Duke University Seed Grant Initiative FX Support from the National Science Foundation (NSF-CBET-103347, NSF-EAR-1344703 and NSF-DGE-1068871), the US Department of Energy (DOE) through the Office of Biological and Environmental Research (BER) Terrestrial Carbon Processes (TCP) program (DE-SC0006967 and DE-SC0011461), and the Nicholas School of the Environment at Duke University Seed Grant Initiative is acknowledged. NR 81 TC 0 Z9 0 U1 6 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X EI 1469-8137 J9 NEW PHYTOL JI New Phytol. PD FEB PY 2017 VL 213 IS 3 BP 1093 EP 1106 DI 10.1111/nph.14273 PG 14 WC Plant Sciences SC Plant Sciences GA EK4CT UT WOS:000393875400015 PM 27870064 ER PT J AU Adolphi, C Aghasyan, M Akhunzyanov, R Alexeev, MG Alexeev, GD Amoroso, A Andrieux, V Anfimov, NV Anosov, V Augustyniak, W Austregesilo, A Azevedo, CDR Badelek, B Balestra, F Barth, J Beck, R Bedfer, Y Bernhard, J Bicker, K Bielert, ER Birsa, R Bisplinghoff, J Bodlak, M Boer, M Bordalo, P Bradamante, F Braun, C Bressan, A Buchele, M Chang, WC Chatterjee, C Chiosso, M Choia, I Chung, SU Cicuttin, A Crespo, ML Curiel, Q Dalla Torre, S Dasgupta, SS Dasgupta, S Denisov, OY Dhara, L Donskov, SV Doshita, N Duic, V Dunnweber, W Dziewiecki, M Efremov, A Eversheim, PD Eyrich, W Faessler, M Ferrero, A Finger, M Finger, M Fischer, H Franco, C von Hoheneschen, ND Friedrich, JM Frolov, V Fuchey, E Gautheron, F Gavrichtchouk, OP Gerassimov, S Giordano, F Gnesi, I Gorzellik, M Grabmuller, S Grasso, A Perdekamp, MG Grube, B Grussenmeyer, T Guskov, A Haas, F Hahne, D von Harrach, D Hashimoto, R Heinsius, FH Heitz, R Herrmann, F Hinterberger, F Horikawa, N d'Hosev, N Hsieh, CY Huber, S Ishimoto, S Ivanov, A Ivanshin, Y Iwata, T Jahn, R Jary, V Joosten, R Jorgj, P Kabuss, E Ketzer, B Khaustov, GV Khokhlov, YA Kisselev, Y Klein, F Klimaszewski, K Koivuniemi, JH Kolosov, VN Kondo, K Konigsmann, K Konorov, I Konstantinov, VF Kotzinian, AM Kouznetsov, OM Kramer, M Kremserj, P Krinner, F Kroumchtein, ZV Kulinich, Y Kunne, F Kurek, K Kurjata, RP Lednev, AA Lehmann, A Levillain, M Levorato, S Lian, YS Lichtenstadt, J Longo, R Maggiora, A Magnon, A Makins, N Makke, N Mallot, GK Marchand, C Marianski, B Martin, A Marzec, J Matousek, J Matsuda, H Matsuda, T Meshcheryakov, GV Meyer, M Meyer, W Michigami, T Mikhailov, YV Mikhasenko, M Mitrofanov, E Mitrofanov, N Miyachi, Y Montuenga, P Nagaytsev, A Nerling, F Neyret, D Nikolaenko, VI Novy, J Nowak, WD Nukazuka, G Nunes, AS Olshevsky, AG Orlov, I Ostrick, M Panzieri, D Parsamyan, B Paul, S Peng, JC Pereira, F Pesek, M Peshekhonov, DV Pierre, N Platchkov, S Pochodzalla, J Polyakov, VA Pretz, J Quaresma, M Quintans, C Ramos, S Regali, C Reicherz, G Riedl, C Roskot, M Ryabchikov, DI Rybnikov, A Rychter, A Salac, R Samoylenko, VD Sandacz, A Santos, C Sarkar, S Savin, IA Sawada, T Sbrizzai, G Schiavon, P Schmidt, K Schmieden, H Schonning, K Schopferer, S Seder, E Selyunin, A Shevchenko, OY Silva, L Sinha, L Sirtl, S Slunecka, M Smolik, J Sozzi, F Srnka, A Steffen, D Stolarski, M Sulc, M Suzuki, H Szabelski, A Szameitat, T Sznajder, P Takekawa, S Tasevsky, M Tessaro, S Tessarotto, F Thibaud, F Tosello, F Tskhay, V Uhl, S Veloso, J Virius, M Vondra, J Wallner, S Weisrock, T Wilfert, M ter Wolbeek, J Zaremba, K Zavada, P Zavertyaev, M Zemlyanichkina, E Ziembicki, M Zink, A AF Adolphi, C. Aghasyan, M. Akhunzyanov, R. Alexeev, M. G. Alexeev, G. D. Amoroso, A. Andrieux, V. Anfimov, N. V. Anosov, V. Augustyniak, W. Austregesilo, A. Azevedo, C. D. R. Badelek, B. Balestra, F. Barth, J. Beck, R. Bedfer, Y. Bernhard, J. Bicker, K. Bielert, E. R. Birsa, R. Bisplinghoff, J. Bodlak, M. Boer, M. Bordalo, P. Bradamante, F. Braun, C. Bressan, A. Buechele, M. Chang, W. -C. Chatterjee, C. Chiosso, M. Choia, I. Chung, S. -U. Cicuttin, A. Crespo, M. L. Curiel, Q. Dalla Torre, S. Dasgupta, S. S. Dasgupta, S. Denisov, O. Yu. Dhara, L. Donskov, S. V. Doshita, N. Duic, V. Duennweber, W. Dziewiecki, M. Efremov, A. Eversheim, P. D. Eyrich, W. Faessler, M. Ferrero, A. Finger, M. Finger, M., Jr. Fischer, H. Franco, C. von Hoheneschen, N. du Fresne Friedrich, J. M. Frolov, V. Fuchey, E. Gautheron, F. Gavrichtchouk, O. P. Gerassimov, S. Giordano, F. Gnesi, I. Gorzellik, M. Grabmueller, S. Grasso, A. Perdekamp, M. Grosse Grube, B. Grussenmeyer, T. Guskov, A. Haas, F. Hahne, D. von Harrach, D. Hashimoto, R. Heinsius, F. H. Heitz, R. Herrmann, F. Hinterberger, F. Horikawa, N. d'Hosev, N. Hsieh, C. -Y. Huber, S. Ishimoto, S. Ivanov, A. Ivanshin, Yu. Iwata, T. Jahn, R. Jary, V. Joosten, R. Joergj, P. Kabuss, E. Ketzer, B. Khaustov, G. V. Khokhlov, Yu. A. Kisselev, Yu. Klein, F. Klimaszewski, K. Koivuniemi, J. H. Kolosov, V. N. Kondo, K. Koenigsmann, K. Konorov, I. Konstantinov, V. F. Kotzinian, A. M. Kouznetsov, O. M. Kraemer, M. Kremserj, P. Krinner, F. Kroumchtein, Z. V. Kulinich, Y. Kunne, F. Kurek, K. Kurjata, R. P. Lednev, A. A. Lehmann, A. Levillain, M. Levorato, S. Lian, Y. -S. Lichtenstadt, J. Longo, R. Maggiora, A. Magnon, A. Makins, N. Makke, N. Mallot, G. K. Marchand, C. Marianski, B. Martin, A. Marzec, J. Matousek, J. Matsuda, H. Matsuda, T. Meshcheryakov, G. V. Meyer, M. Meyer, W. Michigami, T. Mikhailov, Yu. V. Mikhasenko, M. Mitrofanov, E. Mitrofanov, N. Miyachi, Y. Montuenga, P. Nagaytsev, A. Nerling, F. Neyret, D. Nikolaenko, V. I. Novy, J. Nowak, W. -D. Nukazuka, G. Nunes, A. S. Olshevsky, A. G. Orlov, I. Ostrick, M. Panzieri, D. Parsamyan, B. Paul, S. Peng, J. -C. Pereira, F. Pesek, M. Peshekhonov, D. V. Pierre, N. Platchkov, S. Pochodzalla, J. Polyakov, V. A. Pretz, J. Quaresma, M. Quintans, C. Ramos, S. Regali, C. Reicherz, G. Riedl, C. Roskot, M. Ryabchikov, D. I. Rybnikov, A. Rychter, A. Salac, R. Samoylenko, V. D. Sandacz, A. Santos, C. Sarkar, S. Savin, I. A. Sawada, T. Sbrizzai, G. Schiavon, P. Schmidt, K. Schmieden, H. Schonning, K. Schopferer, S. Seder, E. Selyunin, A. Shevchenko, O. Yu. Silva, L. Sinha, L. Sirtl, S. Slunecka, M. Smolik, J. Sozzi, F. Srnka, A. Steffen, D. Stolarski, M. Sulc, M. Suzuki, H. Szabelski, A. Szameitat, T. Sznajder, P. Takekawa, S. Tasevsky, M. Tessaro, S. Tessarotto, F. Thibaud, F. Tosello, F. Tskhay, V. Uhl, S. Veloso, J. Virius, M. Vondra, J. Wallner, S. Weisrock, T. Wilfert, M. ter Wolbeek, J. Zaremba, K. Zavada, P. Zavertyaev, M. Zemlyanichkina, E. Ziembicki, M. Zink, A. TI Exclusive omega meson muoproduction on transversely polarised protons SO NUCLEAR PHYSICS B LA English DT Article ID GENERALIZED PARTON DISTRIBUTIONS; ELECTROPRODUCTION; SPIN; SCATTERING; QCD; LEPTOPRODUCTION; ASYMMETRY AB Exclusive production of omega mesons was studied at the COMPASS experiment by scattering 160GeV/c muons off transversely polarised protons. Five single-spin and three double-spin azimuthal asymmetries were measured in the range of photon virtuality 1(GeV/c)(2) < Q(2) < 10(GeV/c)(2), Bjorken scaling variable 0.003 < xBj < 0.3 and transverse momentum squared of the omega meson 0.05(GeV/c)(2) < p(T)(2) < 0.5(GeV/c)(2). The measured asymmetries are sensitive to the nucleon helicity-flip Generalised Parton Distributions (GPD) Et hat are related to the orbital angular momentum of quarks, the chiral-odd GPDs H-T that are related to the transversity Parton Distribution Functions, and the sign of the pi omega transition form factor. The results are compared to recent calculations of a GPD-based model. (C) 2016 The Author(s). Published by Elsevier B.V. C1 [Panzieri, D.] Univ Piemonte Orientale, I-15100 Alessandria, Italy. [Azevedo, C. D. R.; Pereira, F.; Veloso, J.] Univ Aveiro, Dept Phys, P-3810193 Aveiro, Portugal. [Gautheron, F.; Koivuniemi, J. H.; Meyer, W.; Reicherz, G.] Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Beck, R.; Bisplinghoff, J.; Eversheim, P. D.; Hinterberger, F.; Jahn, R.; Joosten, R.; Ketzer, B.; Mikhasenko, M.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany. [Barth, J.; Hahne, D.; Klein, F.; Pretz, J.; Schmieden, H.] Univ Bonn, Phys Inst, D-53115 Bonn, Germany. [Srnka, A.] AS CR, Inst Sci Instruments, Brno 61264, Czech Republic. [Chatterjee, C.; Dasgupta, S. S.; Dhara, L.; Sarkar, S.; Sinha, L.] Matrivani Inst Expt Res & Educ, Kolkata 700030, W Bengal, India. [Akhunzyanov, R.; Alexeev, G. D.; Anfimov, N. V.; Anosov, V.; Efremov, A.; Frolov, V.; Gavrichtchouk, O. P.; Guskov, A.; Ivanshin, Yu.; Kisselev, Yu.; Kouznetsov, O. M.; Kroumchtein, Z. V.; Meshcheryakov, G. V.; Mitrofanov, E.; Mitrofanov, N.; Nagaytsev, A.; Olshevsky, A. G.; Orlov, I.; Peshekhonov, D. V.; Rybnikov, A.; Savin, I. A.; Selyunin, A.; Shevchenko, O. Yu.; Slunecka, M.; Smolik, J.; Tasevsky, M.; Zavada, P.; Zemlyanichkina, E.] Joint Inst Nucl Res, Dubna, Moscow Region, Russia. [Adolphi, C.; Bordalo, P.; Braun, C.; Eyrich, W.; Lehmann, A.; Zink, A.] Univ Erlangen Nurnberg, Phys Inst, D-91054 Erlangen, Germany. [Buechele, M.; Fischer, H.; Gorzellik, M.; Grussenmeyer, T.; Heinsius, F. H.; Herrmann, F.; Joergj, P.; Koenigsmann, K.; Kremserj, P.; Regali, C.; Schmidt, K.; Schopferer, S.; Sirtl, S.; Szameitat, T.; ter Wolbeek, J.] Univ Freiburg, Phys Inst, D-79104 Freiburg, Germany. [Bernhard, J.; Bicker, K.; Bielert, E. R.; Frolov, V.; Mallot, G. K.; Novy, J.; Schonning, K.; Steffen, D.] CERN, CH-1211 Geneva 23, Switzerland. [Sulc, M.] Tech Univ Liberec, Liberec 46117, Czech Republic. [Amoroso, A.; Bordalo, P.; Franco, C.; Nunes, A. S.; Quaresma, M.; Quintans, C.; Ramos, S.; Silva, L.; Stolarski, M.] LIP, P-1000149 Lisbon, Portugal. [Bernhard, J.; von Hoheneschen, N. du Fresne; von Harrach, D.; Kabuss, E.; Nerling, F.; Nowak, W. -D.; Ostrick, M.; Pierre, N.; Pochodzalla, J.; Weisrock, T.; Wilfert, M.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Matsuda, T.] Miyazaki Univ, Miyazaki 8892192, Japan. [Gerassimov, S.; Konorov, I.; Tskhay, V.; Zavertyaev, M.] Lebedev Phys Inst, Moscow 119991, Russia. [Austregesilo, A.; Bicker, K.; Chung, S. -U.; Friedrich, J. M.; Gerassimov, S.; Grabmueller, S.; Grube, B.; Haas, F.; Huber, S.; Konorov, I.; Kraemer, M.; Krinner, F.; Paul, S.; Steffen, D.; Uhl, S.; Wallner, S.] Tech Univ Munich, Phys Dept, D-85748 Garching, Germany. [Horikawa, N.] Nagoya Univ, Nagoya, Aichi 464, Japan. [Bodlak, M.; Finger, M.; Finger, M., Jr.; Matousek, J.; Pesek, M.; Roskot, M.] Charles Univ Prague, Fac Math & Phys, Prague 18000, Czech Republic. [Jary, V.; Novy, J.; Salac, R.; Virius, M.; Vondra, J.] Czech Tech Univ, Prague 16636, Czech Republic. [Donskov, S. V.; Khaustov, G. V.; Khokhlov, Yu. A.; Kolosov, V. N.; Konstantinov, V. F.; Lednev, A. A.; Mikhailov, Yu. V.; Nikolaenko, V. I.; Polyakov, V. A.; Ryabchikov, D. I.; Samoylenko, V. D.] Kurchatov Inst, Natl Res Ctr, State Sci Ctr, Inst High Energy Phys, Protvino 142281, Russia. [Andrieux, V.; Bedfer, Y.; Boer, M.; Curiel, Q.; Ferrero, A.; Fuchey, E.; d'Hosev, N.; Kunne, F.; Levillain, M.; Marchand, C.; Meyer, M.; Neyret, D.; Pierre, N.; Platchkov, S.; Seder, E.; Thibaud, F.] Univ Paris Saclay, CEA, IRFU, F-91191 Gif Sur Yvette, France. [Chang, W. -C.; Hsieh, C. -Y.; Lian, Y. -S.; Sawada, T.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Lichtenstadt, J.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bradamante, F.; Bressan, A.; Dasgupta, S.; Duic, V.; Makke, N.; Martin, A.; Sbrizzai, G.; Schiavon, P.] Univ Trieste, Dept Phys, I-34127 Trieste, Italy. [Aghasyan, M.; Birsa, R.; Bradamante, F.; Bressan, A.; Cicuttin, A.; Crespo, M. L.; Dalla Torre, S.; Dasgupta, S.; Levorato, S.; Makke, N.; Martin, A.; Matousek, J.; Santos, C.; Sbrizzai, G.; Schiavon, P.; Sozzi, F.; Tessaro, S.; Tessarotto, F.] Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy. [Cicuttin, A.; Crespo, M. L.] Abdus Salam Int Ctr Theoret Phys, I-34151 Trieste, Italy. [Alexeev, M. G.; Amoroso, A.; Balestra, F.; Chiosso, M.; Gnesi, I.; Grasso, A.; Ivanov, A.; Kotzinian, A. M.; Longo, R.; Parsamyan, B.; Suzuki, H.; Takekawa, S.] Univ Turin, Dept Phys, I-10125 Turin, Italy. [Amoroso, A.; Balestra, F.; Chiosso, M.; Denisov, O. Yu.; Gnesi, I.; Grasso, A.; Ivanov, A.; Kotzinian, A. M.; Longo, R.; Maggiora, A.; Panzieri, D.; Parsamyan, B.; Takekawa, S.; Tosello, F.] Ist Nazl Fis Nucl, Torino Sect, I-10125 Turin, Italy. [Choia, I.; Giordano, F.; Perdekamp, M. Grosse; Heitz, R.; Koivuniemi, J. H.; Kulinich, Y.; Magnon, A.; Makins, N.; Meyer, M.; Montuenga, P.; Peng, J. -C.; Riedl, C.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Augustyniak, W.; Klimaszewski, K.; Kurek, K.; Marianski, B.; Sandacz, A.; Szabelski, A.; Sznajder, P.] Natl Ctr Nucl Res, PL-00681 Warsaw, Poland. [Badelek, B.] Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland. [Dziewiecki, M.; Kurjata, R. P.; Marzec, J.; Rychter, A.; Zaremba, K.; Ziembicki, M.] Warsaw Univ Technol, Inst Radioelect, PL-00665 Warsaw, Poland. [Doshita, N.; Hashimoto, R.; Ishimoto, S.; Iwata, T.; Kondo, K.; Matsuda, H.; Michigami, T.; Miyachi, Y.; Nukazuka, G.] Yamagata Univ, Yamagata 9928510, Japan. [Ramos, S.] Univ Lisbon, Inst Super Tecn, Lisbon, Portugal. [Chung, S. -U.] Pusan Natl Univ, Dept Phys, Busan 609735, South Korea. [Chung, S. -U.; Lednev, A. A.; Shevchenko, O. Yu.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Horikawa, N.; Suzuki, H.] Chubu Univ, Kasugai, Aichi 4878501, Japan. [Hsieh, C. -Y.] Natl Cent Univ, Dept Phys, 300 Jhongda Rd, Jhongli 32001, Taiwan. [Ishimoto, S.] KEK, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan. [Khokhlov, Yu. A.] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia. [Lian, Y. -S.] Natl Kaohsiung Normal Univ, Dept Phys, Kaohsiung 824, Kaohsiung Count, Taiwan. [Pretz, J.] Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany. [Schonning, K.] Uppsala Univ, Box 516, S-75120 Uppsala, Sweden. RP Mallot, GK (reprint author), CERN, CH-1211 Geneva 23, Switzerland.; Denisov, OY (reprint author), Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy.; Sznajder, P (reprint author), Natl Ctr Nucl Res, PL-00681 Warsaw, Poland. EM oleg.denisov@cern.ch; gerhard.mallot@cern.ch; pawel.sznajder@fuw.edu.pl RI Srnka, A/E-2441-2012; Tskhay, Vladimir/N-1711-2015 NR 37 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD FEB PY 2017 VL 915 BP 454 EP 475 DI 10.1016/j.nuclphysb.2016.12.015 PG 22 WC Physics, Particles & Fields SC Physics GA EK1RG UT WOS:000393702800024 ER PT J AU Lim, SH Kim, Y AF Lim, Seung-Hwan Kim, Youngjae TI A quantitative model of application slow-down in multi-resource shared systems SO PERFORMANCE EVALUATION LA English DT Article DE Modeling technique; Performance of systems; Measurement AB Scheduling multiple jobs onto a platform enhances system utilization by sharing resources. The benefits from higher resource utilization include reduced cost to construct, operate, and maintain a system, which often include energy consumption. Maximizing these benefits comes at a price-resource contention among jobs increases job completion time. In this paper, we analyze slow-downs of jobs due to contention for multiple resources in a system; referred to as dilation factor. We observe that multiple-resource contention creates non-linear dilation factors of jobs. From this observation, we establish a general quantitative model for dilation factors of jobs in multi-resource systems. A job is characterized by a vector-valued loading statistics and dilation factors of a job set are given by a quadratic function of their loading vectors. We demonstrate how to systematically characterize a job, maintain the data structure to calculate the dilation factor (loading matrix), and calculate the dilation factor of each job. We validate the accuracy of the model with multiple processes running on a native Linux server, virtualized servers, and with multiple MapReduce workloads co-scheduled in a cluster. Evaluation with measured data shows that the D-factor model has an error margin of less than 16%. We extended the D-factor model to capture the slow-down of applications when multiple identical resources exist such as multi-core environments and multi-disks environments. Validation results of the extended D-factor model with HPC checkpoint applications on the parallel file systems show that D-factor accurately captures the slow down of concurrent applications in such environments. (C) 2016 Elsevier B.V. All rights reserved. C1 [Lim, Seung-Hwan] Oak Ridge Natl Lab, Computat Data Analyt Grp, Oak Ridge, TN 37831 USA. [Kim, Youngjae] Sogang Univ, Dept Comp Sci & Engn, 35 Baekbeom Ro, Seoul, South Korea. RP Kim, Y (reprint author), Sogang Univ, Dept Comp Sci & Engn, 35 Baekbeom Ro, Seoul, South Korea. EM lims1@ornl.gov; youkim@sogang.ac.kr FU Institute for Information & communications Technology Promotion(IITP) grant - Korea Government (MSIP) [R0190-15-2012]; National Research Foundation of Korea (NRF) grant - Korea Government (MISP) [2015R1C1A1A0152105]; US DOE [DE-AC05-00OR22725] FX We would like to thank the anonymous reviewers for their detailed comments, which helped us improve the quality of this paper. This work was supported in part by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea Government (MSIP) (No. R0190-15-2012) and by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MISP) (No. 2015R1C1A1A0152105). The work was also supported by, and used the resources of, the Oak Ridge Leadership Computing Facility, located in the National Center for Computational Sciences at ORNL, which is managed by UT Battelle, LLC for the US DOE (under the contract No. DE-AC05-00OR22725). NR 34 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-5316 EI 1872-745X J9 PERFORM EVALUATION JI Perform. Eval. PD FEB PY 2017 VL 108 BP 32 EP 47 DI 10.1016/j.peva.2016.10.004 PG 16 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods SC Computer Science GA EK6VM UT WOS:000394064100003 ER PT J AU Williams, BP Sadlier, RJ Humble, TS AF Williams, Brian P. Sadlier, Ronald J. Humble, Travis S. TI Superdense Coding over Optical Fiber Links with Complete Bell-State Measurements SO PHYSICAL REVIEW LETTERS LA English DT Article ID TELEPORTATION; TIME AB Adopting quantum communication to modern networking requires transmitting quantum information through a fiber-based infrastructure. We report the first demonstration of superdense coding over optical fiber links, taking advantage of a complete Bell-state measurement enabled by time-polarization hyperentanglement, linear optics, and common single-photon detectors. We demonstrate the highest single-qubit channel capacity to date utilizing linear optics, 1.665 +/- 0.018, and we provide a full experimental implementation of a hybrid, quantum-classical communication protocol for image transfer. C1 [Williams, Brian P.; Sadlier, Ronald J.; Humble, Travis S.] Oak Ridge Natl Lab, Quantum Comp Inst, Oak Ridge, TN 37831 USA. RP Williams, BP (reprint author), Oak Ridge Natl Lab, Quantum Comp Inst, Oak Ridge, TN 37831 USA. EM williamsbp@ornl.gov; sadlierrj@ornl.gov; humblets@ornl.gov FU United States Army Research Laboratory; U.S. Department of Energy [DE-AC05-00OR22725]; Department of Energy FX This work was supported by the United States Army Research Laboratory. This Letter has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. NR 25 TC 0 Z9 0 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 1 PY 2017 VL 118 IS 5 AR 050501 DI 10.1103/PhysRevLett.118.050501 PG 5 WC Physics, Multidisciplinary SC Physics GA EO0UW UT WOS:000396414800001 PM 28211745 ER PT J AU Xu, HW Guo, XF Bai, JM AF Xu, Hongwu Guo, Xiaofeng Bai, Jianming TI Thermal behavior of polyhalite: a high-temperature synchrotron XRD study SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE Polyhalite; Thermal decomposition; Anhydrite; Langbeinite; Crystal structure; Thermal expansion; Synchrotron X-ray diffraction; Salt repository ID PHASE-TRANSITIONS; ANHYDRITE; LANGBEINITES; K2MG2(SO4)3; REFINEMENT; SALTS AB As an accessory mineral in marine evaporites, polyhalite, K2MgCa2(SO4)(4)center dot 2H(2)O, coexists with halite (NaCl) in salt formations, which have been considered as potential repositories for permanent storage of high-level nuclear wastes. However, because of the heat generated by radioactive decays in the wastes, polyhalite may dehydrate, and the released water will dissolve its neighboring salt, potentially affecting the repository integrity. Thus, studying the thermal behavior of polyhalite is important. In this work, a polyhalite sample containing a small amount of halite was collected from the Salado formation at the WIPP site in Carlsbad, New Mexico. To determine its thermal behavior, in situ high-temperature synchrotron X-ray diffraction was conducted from room temperature to 1066 K with the sample powders sealed in a silica-glass capillary. At about 506 K, polyhalite started to decompose into water vapor, anhydrite (CaSO4) and two langbeinite-type phases, K2Ca (x) Mg2-x (SO4)(3), with different Ca/Mg ratios. XRD peaks of the minor halite disappeared, presumably due to its dissolution by water vapor. With further increasing temperature, the two langbeinite solid solution phases displayed complex variations in crystallinity, composition and their molar ratio and then were combined into the single-phase triple salt, K2CaMg(SO4)(3), at similar to 919 K. Rietveld analyses of the XRD data allowed determination of structural parameters of polyhalite and its decomposed anhydrite and langbeinite phases as a function of temperature. From the results, the thermal expansion coefficients of these phases have been derived, and the structural mechanisms of their thermal behavior been discussed. C1 [Xu, Hongwu; Guo, Xiaofeng] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. [Bai, Jianming] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. RP Xu, HW (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. EM hxu@lanl.gov FU University of California Lab Fees Research Program [237546]; U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; DOE [DE-AC52-06NA25396] FX This work was supported by the University of California Lab Fees Research Program (Grant #237546). Use of the National Synchrotron Light Source at Brookhaven National Laboratory was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. Los Alamos National Laboratory is operated by Los Alamos National Security LLC, under DOE Contract DE-AC52-06NA25396. We thank the two anonymous reviewers for their helpful comments. NR 28 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0342-1791 EI 1432-2021 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD FEB PY 2017 VL 44 IS 2 BP 125 EP 135 DI 10.1007/s00269-016-0842-5 PG 11 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA EK9WX UT WOS:000394275700004 ER PT J AU Leigh, A Sevanto, S Close, JD Nicotra, AB AF Leigh, A. Sevanto, S. Close, J. D. Nicotra, A. B. TI The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions? SO PLANT CELL AND ENVIRONMENT LA English DT Article DE boundary layer; cooling time constant; effective leaf width; infrared imagery; leaf dissection; leaf shape; leaf size; leaf temperature; thermal dynamics ID BOUNDARY-LAYER CONDUCTANCE; STOMATAL CONDUCTANCE; WATER RELATIONS; DESERT PLANTS; SUPPORT COSTS; HEAT-TRANSFER; BROAD LEAVES; TEMPERATURE; TRANSPIRATION; HUMIDITY AB Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. We used thermal imagery under field conditions to measure the leaf thermal time constant (tau) in summer and the leaf-to-air temperature difference (Delta T) and temperature range across laminae (T-range) during winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (w(e)), the latter being amore direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but w(e) strongly predicted tau and Delta T, whereas leaf area influenced T-range. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically w(e), has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection. C1 [Leigh, A.] Univ Technol Sydney, Sch Life Sci, Sydney, NSW 2007, Australia. [Sevanto, S.] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. [Close, J. D.] Australian Natl Univ, Res Sch Phys & Engn, Dept Quantum Sci, Canberra, ACT 2601, Australia. [Nicotra, A. B.] Australian Natl Univ, Res Sch Biol, Canberra, ACT 2601, Australia. RP Leigh, A (reprint author), Univ Technol Sydney, Sch Life Sci, Sydney, NSW 2007, Australia. EM andrea.leigh@uts.edu.au RI Leigh, Andy/F-2043-2017 OI Leigh, Andy/0000-0003-3568-2606 FU Australian Geographic research grant; Australian Postgraduate Award; Australian Research Council [A00103546] FX The authors thank Cathy Offord and the Royal Botanic Gardens and Domain Trust, Australian Botanic Garden, Mount Annan, New South Wales, for allowing access to the plants used for this research. We are grateful to Marilyn Ball for advice and the use of the thermal camera, to Greg Jordan and Emlyn Williams for helpful advice and discussion and Meredith Cosgrove for field assistance. We also thank the two anonymous reviewers of an earlier version of this manuscript for their very helpful comments and suggestions. This work was supported by an Australian Geographic research grant and an Australian Postgraduate Award to A. Leigh; and by an Australian Research Council grant A00103546 to A.B. Nicotra. NR 69 TC 0 Z9 0 U1 7 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0140-7791 EI 1365-3040 J9 PLANT CELL ENVIRON JI Plant Cell Environ. PD FEB PY 2017 VL 40 IS 2 BP 237 EP 248 DI 10.1111/pce.12857 PG 12 WC Plant Sciences SC Plant Sciences GA EK2WV UT WOS:000393788500007 PM 28026874 ER PT J AU Mencuccini, M Salmon, Y Mitchell, P Holtta, T Choat, B Meir, P O'Grady, A Tissue, D Zweifel, R Sevanto, S Pfautsch, S AF Mencuccini, Maurizio Salmon, Yann Mitchell, Patrick Holtta, Teemu Choat, Brendan Meir, Patrick O'Grady, Anthony Tissue, David Zweifel, Roman Sevanto, Sanna Pfautsch, Sebastian TI An empirical method that separates irreversible stem radial growth from bark water content changes in trees: theory and case studies SO PLANT CELL AND ENVIRONMENT LA English DT Article DE hydraulic capacitance; bark water use; plant water potential; stem dendrometry ID DIAMETER VARIATIONS; SCOTS PINE; SAP FLOW; DIFFERENTIAL EVOLUTION; SHOOT ELONGATION; WOODY-PLANTS; XYLEM; DROUGHT; CARBON; MODEL AB Substantial uncertainty surrounds our knowledge of tree stem growth, with some of the most basic questions, such as when stem radial growth occurs through the daily cycle, still unanswered. We employed high-resolution point dendrometers, sap flow sensors, and developed theory and statistical approaches, to devise a novel method separating irreversible radial growth from elastic tension-driven and elastic osmotically driven changes in bark water content. We tested this method using data from five case study species. Experimental manipulations, namely a field irrigation experiment on Scots pine and a stem girdling experiment on red forest gum trees, were used to validate the theory. Time courses of stem radial growth following irrigation and stem girdling were consistent with a-priori predictions. Patterns of stem radial growth varied across case studies, with growth occurring during the day and/or night, consistent with the available literature. Importantly, our approach provides a valuable alternative to existing methods, as it can be approximated by a simple empirical interpolation routine that derives irreversible radial growth using standard regression techniques. Our novel method provides an improved understanding of the relative source-sink carbon dynamics of tree stems at a sub-daily time scale. C1 [Mencuccini, Maurizio; Meir, Patrick] Univ Edinburgh, Sch GeoSci, Edinburgh EH9 3JN, Midlothian, Scotland. [Mencuccini, Maurizio] CREAF, Barcelona 08193, Spain. [Mencuccini, Maurizio] Pg Lluis Co 23, ICREA, Barcelona 08010, Spain. [Salmon, Yann] Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland. [Mitchell, Patrick; O'Grady, Anthony] CSIRO Land & Water, Hobart, Tas, Australia. [Holtta, Teemu] Univ Helsinki, Dept Forest Sci, FIN-00014 Helsinki, Finland. [Choat, Brendan; Tissue, David; Pfautsch, Sebastian] Univ Western Sydney, Hawkesbury Inst Environm, Richmond, NSW 2753, Australia. [Meir, Patrick] Australian Natl Univ, Res Sch Biol, Canberra, ACT 2601, Australia. [Zweifel, Roman] Swiss Fed Inst Forest Snow & Landscape Res WSL, CH-8903 Birmensdorf, Switzerland. [Sevanto, Sanna] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. RP Mencuccini, M (reprint author), Univ Edinburgh, Sch GeoSci, Edinburgh EH9 3JN, Midlothian, Scotland.; Mencuccini, M (reprint author), CREAF, Barcelona 08193, Spain.; Mencuccini, M (reprint author), Pg Lluis Co 23, ICREA, Barcelona 08010, Spain. EM m.mencuccini@ed.ac.uk RI Pfautsch, Sebastian/J-8676-2012; O'Grady, Anthony/B-8148-2011; Zweifel, Roman/C-2852-2009; OI Pfautsch, Sebastian/0000-0002-4390-4195; Salmon, Yann/0000-0003-4433-4021 FU Natural Environment Research Council (NERC) [NE/I011749/1]; Western Sydney University Eminent Research Visitor grant [11/022839]; CSIRO President visiting fellowship; ARC [FT110100457] FX Evaluations were based on data from the long-term irrigation experiment Pfynwald, which is part of the Swiss Long-term Forest Ecosystem Research programme LWF (www.lwf.ch) and the Swiss drought and growth indicator network TreeNet (www.treenet.info). We are in particular grateful to Marcus Schaub, Andreas Rigling and Peter Bleuler for giving access to the experimental site and relevant data in Pfynwald. This research was funded by the Natural Environment Research Council (NERC) grant NE/I011749/1 to MM and PM. MM was also supported by a Western Sydney University Eminent Research Visitor grant (11/022839) and a CSIRO President visiting fellowship. PM was supported by ARC grant FT110100457. There are no conflicts of interest for this paper. We thank two anonymous reviewers for their helpful contributions in clarifying the text. NR 58 TC 0 Z9 0 U1 9 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0140-7791 EI 1365-3040 J9 PLANT CELL ENVIRON JI Plant Cell Environ. PD FEB PY 2017 VL 40 IS 2 BP 290 EP 303 DI 10.1111/pce.12863 PG 14 WC Plant Sciences SC Plant Sciences GA EK2WV UT WOS:000393788500011 PM 27861997 ER PT J AU Hausammann, L Churchill, RM Shi, L AF Hausammann, L. Churchill, R. M. Shi, L. TI Synthetic diagnostic for the beam emission spectroscopy diagnostic using a full optical integration SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE synthetic diagnostic; beam emission spectroscopy; XGC1 ID DIII-D; H-MODE AB The beam emission spectroscopy (BES) diagnostic is used to measure fluctuations of electron density in the edge and core of fusion plasmas, and is a key in understanding turbulence in a plasma reactor. A synthetic BES diagnostic for the turbulence simulation code XGC1 has been developed using a realistic neutral beam model and an optical system easily adaptable to different kinds of tokamaks. The beam is modeled using multiple beam energy components, each one with a fraction of the total energy and their own mass and energy (mono-energetic components). The optical system consists of a lens focusing a bundle of optical fibers and resulting in a 2D measurement. The synthetic diagnostic gives similar correlation functions and behaviour of the turbulences than the usual methods that do not take into account the full 3D optical effects. The results, based on a simulation of XGC1, contain an analysis of the correlation (in space and time), a comparison of different approximations possible and their importance in accurately modeling the BES diagnostic. C1 [Hausammann, L.; Churchill, R. M.; Shi, L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Hausammann, L.] Ecole Polytech Fed Lausanne, Lausanne, Switzerland. RP Churchill, RM (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. EM loic.hausammann@protonmail.com; rchurchi@pppl.gov OI Churchill, Randy/0000-0001-5711-746X FU PPPL; SciDac-3 fund from ASCR office, U S DoE; SciDac-3 fund from FES office, U S DoE; ALCC program FX I wish to thank the PPPL for their hospitality and funding (especially C S Chang), and A Diallo for his helpful discussions I would like to thank S Brunner too without whom this opportunity at the PPPL would not have been possible. Work supported by the SciDac-3 fund from ASCR and FES offices, U S DoE. OLCF computing resources have been used, supported by the ALCC program. NR 17 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD FEB PY 2017 VL 59 IS 2 AR 025017 DI 10.1088/1361-6587/aa5234 PG 6 WC Physics, Fluids & Plasmas SC Physics GA EK5UY UT WOS:000393992700002 ER PT J AU Theiler, C Terry, JL Edlund, E Cziegler, I Churchill, RM Hughes, JW LaBombard, B Golfinopoulos, T AF Theiler, C. Terry, J. L. Edlund, E. Cziegler, I. Churchill, R. M. Hughes, J. W. LaBombard, B. Golfinopoulos, T. CA Alcator C-Mod Team TI Radial localization of edge modes in Alcator C-Mod pedestals using optical diagnostics SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE edge transport barrier; plasma instabilities; H-mode; I-mode; optical plasma diagnostics; gas puff imaging ID TURBULENCE; TOKAMAK; SPECTROSCOPY; CONFINEMENT; SIMULATIONS; NSTX AB Dedicated experiments in ion cyclotron range heated enhanced D-alpha (EDA) H-mode and I-mode plasmas have been performed on Alcator C-Mod to identify the location of edge fluctuations inside the pedestal and to determine their plasma frame phase velocity. For this purpose, measurements from gas puff imaging (GPI) and gas puff charge exchange recombination spectroscopy (GP-CXRS) have been collected using the same optical views. The data suggest that the EDA H-mode-specific quasi-coherent mode (QCM) is centered near the radial electric field (E-r) well minimum and propagates along the ion diamagnetic drift direction in the plasma frame. The weakly coherent mode (WCM) and the geodesic acoustic mode observed in I-mode, on the other hand, are found to be located around the outer shear layer of the E-r well. This results in a weak plasma frame phase velocity mostly along the electron diamagnetic drift direction for the WCM. The findings in these EDA H-mode plasmas differ from probe measurements in ohmic EDA H-mode (LaBombard et al 2014 Phys. Plasmas 21 056108), where the QCM was identified as an electron drift-wave located several mm outside the E-r well minimum in a region of positive E-r. To explore if instrumental effects of the optical diagnostics could be the cause of the difference, a synthetic diagnostic for GPI is introduced. This diagnostic reproduces amplitude ratios and relative radial shifts of the mode profiles determined from poloidally and toroidally oriented optics and, if instrumental effects related to GP-CXRS are also included, indicates that the measured location of the QCM and WCM relative to the E-r well reported here is only weakly affected by instrumental effects. C1 [Theiler, C.] Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland. [Terry, J. L.; Hughes, J. W.; LaBombard, B.; Golfinopoulos, T.] MIT, PSFC, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Edlund, E.; Churchill, R. M.] PPPL, Princeton, NJ 08543 USA. [Cziegler, I.] Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England. RP Theiler, C (reprint author), Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland. EM christian.theiler@epfl.ch OI Churchill, Randy/0000-0001-5711-746X; Terry, James/0000-0003-4255-5509 FU US DOE Coop. Agreement [DE-FC02-99ER54512]; Euratom research and training programme [633053]; EUROfusion Researcher Fellowship programme [WP14-FRF-EPFL/Theiler] FX We would like to thank the entire Alcator C-Mod team for making these experiments possible and acknowledge support by US DOE Coop. Agreement No DE-FC02-99ER54512. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Support from the EUROfusion Researcher Fellowship programme under grant number WP14-FRF-EPFL/Theiler is acknowledged. NR 44 TC 1 Z9 1 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD FEB PY 2017 VL 59 IS 2 AR 025016 DI 10.1088/1361-6587/aa52e5 PG 15 WC Physics, Fluids & Plasmas SC Physics GA EK5UY UT WOS:000393992700001 ER PT J AU Sachleben, JR Adhikari, AN Gawlak, G Hoey, RJ Liu, GH Joachimiak, A Montelione, GT Sosnick, TR Koide, S AF Sachleben, Joseph R. Adhikari, Aashish N. Gawlak, Grzegorz Hoey, Robert J. Liu, Gaohua Joachimiak, Andrzej Montelione, Gaetano T. Sosnick, Tobin R. Koide, Shohei TI Aromatic claw: A new fold with high aromatic content that evades structural prediction SO PROTEIN SCIENCE LA English DT Article DE Aquifex aeolicus; Aq1974; protein structure; NMR; aromatic claw; protein folding; CASP ID STANDARD ATOMIC VOLUMES; PROTEIN-STRUCTURE; STRUCTURE GENERATION; THERMAL-STABILITY; CHEMICAL-SHIFTS; HYDROGEN-BONDS; WEB SERVER; RESIDUES; PACKING; SURFACE AB We determined the NMR structure of a highly aromatic (13%) protein of unknown function, Aq1974 from Aquifex aeolicus (PDB ID: 5SYQ). The unusual sequence of this protein has a tryptophan content five times the normal (six tryptophan residues of 114 or 5.2% while the average tryptophan content is 1.0%) with the tryptophans occurring in a WXW motif. It has no detectable sequence homology with known protein structures. Although its NMR spectrum suggested that the protein was rich in -sheet, upon resonance assignment and solution structure determination, the protein was found to be primarily -helical with a small two-stranded -sheet with a novel fold that we have termed an Aromatic Claw. As this fold was previously unknown and the sequence unique, we submitted the sequence to CASP10 as a target for blind structural prediction. At the end of the competition, the sequence was classified a hard template based model; the structural relationship between the template and the experimental structure was small and the predictions all failed to predict the structure. CSRosetta was found to predict the secondary structure and its packing; however, it was found that there was little correlation between CSRosetta score and the RMSD between the CSRosetta structure and the NMR determined one. This work demonstrates that even in relatively small proteins, we do not yet have the capacity to accurately predict the fold for all primary sequences. The experimental discovery of new folds helps guide the improvement of structural prediction methods. PDB Code(s): ; C1 [Sachleben, Joseph R.] Univ Chicago, Biomol NMR Core Facil, Chicago, IL 60637 USA. [Adhikari, Aashish N.] Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. [Gawlak, Grzegorz; Hoey, Robert J.; Joachimiak, Andrzej; Sosnick, Tobin R.; Koide, Shohei] Univ Chicago, Dept Biochem & Mol Biol, 920 E 58Th St, Chicago, IL 60637 USA. [Liu, Gaohua; Montelione, Gaetano T.] Rutgers State Univ, Sch Arts & Sci, Dept Mol Biol & Biochem, Northeast Struct Genom Consortium NESG, Piscataway, NJ USA. [Liu, Gaohua; Montelione, Gaetano T.] Rutgers State Univ, Robert Wood Johnson Med Sch, Dept Biochem & Mol Biol, Piscataway, NJ USA. [Liu, Gaohua; Montelione, Gaetano T.] Rutgers State Univ, Ctr Adv Biotechnol & Med, Piscataway, NJ USA. [Joachimiak, Andrzej] Argonne Natl Lab, Div Biol Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Koide, Shohei] NYU, Sch Med, Dept Biochem & Mol Pharmacol, New York, NY USA. [Koide, Shohei] NYU, Sch Med, Perlmutter Canc Ctr, New York, NY USA. RP Sachleben, JR (reprint author), Univ Chicago, Biomol NMR Core Facil, Chicago, IL 60637 USA.; Koide, S (reprint author), NYU, Sch Med, Dept Biochem & Mol Pharmacol, New York, NY USA. EM jsachle-ben@gmail.com; shohei.koide@nyumc.org OI Koide, Shohei/0000-0001-5473-4358 FU US National Institutes of Health [U54 GM094597, U54 GM074942, R01 GM055694] FX Grant sponsor: US National Institutes of Health; Grant number: U54 GM094597 (G.T.M.), U54 GM074942 (A.J.), and R01 GM055694 (T.R.S.). NR 31 TC 0 Z9 0 U1 1 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 EI 1469-896X J9 PROTEIN SCI JI Protein Sci. PD FEB PY 2017 VL 26 IS 2 BP 208 EP 217 DI 10.1002/pro.3069 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA EK5IO UT WOS:000393960300006 PM 27750371 ER PT J AU Wagenhofer, MF Barath, E Gutierrez, OY Lercher, JA AF Wagenhofer, Manuel F. Barath, Eszter Gutierrez, Oliver Y. Lercher, Johannes A. TI Carbon-Carbon Bond Scission Pathways in the Deoxygenation of Fatty Acids on Transition-Metal Sulfides SO ACS CATALYSIS LA English DT Article DE fatty acid; hydrodeoxygenation; decarbonylation; reaction mechanism; transition metal sulfides ID VEGETABLE-OILS; CATALYTIC DEOXYGENATION; STEARIC-ACID; PALMITIC ACID; PROMOTED MOS2; HYDRODESULFURIZATION CATALYSTS; HYDROTREATING CATALYSTS; CARBOXYLIC-ACIDS; ALIPHATIC ESTERS; H-2 ACTIVATION AB The mechanism of the deoxygenation of fatty acids on transition-metal sulfides was determined on the basis of kinetic data obtained with fatty acids, their reaction intermediates (aldehyde and alcohol), and reactants of restricted reactivity (adamantanyl-substituted carboxylic acids). Deoxygenation on MoS2 proceeds exclusively via hydrogenolysis to aldehyde, followed by hydrogenation to the corresponding alcohol, consecutive dehydration to the olefin, and hydrogenation to the alkane. In contrast, the selectivity on Ni-MoS2 and on Ni3S2 substantially shifts toward carbon oxide elimination routes: i.e., direct production of Cn-1 olefins and alkanes. The carbon losses occur by decarbonylation of a ketene intermediate, which forms only on sites associated with Ni. The rate determining steps are the cleavage of the C-C bond and the removal of oxygen from the surface below and above, respectively, 2.5 MPa of H-2. The different reaction pathways catalyzed by MoS2 and Ni-MoS2 are attributed to a preferred deprotonation of a surface acyl intermediate formed upon the adsorption of the fatty acid on Ni-MoS2. The shift in mechanism is concluded to originate from the higher basicity of sulfur induced by nickel. C1 [Wagenhofer, Manuel F.; Barath, Eszter; Gutierrez, Oliver Y.; Lercher, Johannes A.] Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-85747 Garching, Germany. [Wagenhofer, Manuel F.; Barath, Eszter; Gutierrez, Oliver Y.; Lercher, Johannes A.] Tech Univ Munich, Catalysis Res Ctr, Lichtenbergstr 4, D-85747 Garching, Germany. [Lercher, Johannes A.] Pacific Northwest Natl Lab, Inst Integrated Catalysis, POB 999, Richland, WA 99352 USA. RP Gutierrez, OY; Lercher, JA (reprint author), Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-85747 Garching, Germany.; Gutierrez, OY; Lercher, JA (reprint author), Tech Univ Munich, Catalysis Res Ctr, Lichtenbergstr 4, D-85747 Garching, Germany.; Lercher, JA (reprint author), Pacific Northwest Natl Lab, Inst Integrated Catalysis, POB 999, Richland, WA 99352 USA. EM oliver.gutierrez@mytum.de; johannes.lercher@ch.tum.de OI Lercher, Johannes/0000-0002-2495-1404 FU German Federal Ministry of Food and Agriculture (Bundesministerium fur Ernahrung und Landwirtschaft) in the framework of AUFWIND [FKZ 22409412]; U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences Geosciences Biosciences FX The authors thank Gaurav Laddha, My Linh Vo, and Sheng Wang for their support in catalyst preparation and kinetic experiments and Xaver Hecht for BET measurements. Funding by the German Federal Ministry of Food and Agriculture (Bundesministerium fur Ernahrung und Landwirtschaft) in the framework of AUFWIND (FKZ 22409412) is gratefully acknowledged. J.A.L. acknowledges support for his contribution by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences, for exploring nonoxidic materials for deoxygenation reactions. NR 70 TC 0 Z9 0 U1 12 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2017 VL 7 IS 2 BP 1068 EP 1076 DI 10.1021/acscatal.6b02753 PG 9 WC Chemistry, Physical SC Chemistry GA EJ9IG UT WOS:000393539200016 ER PT J AU Wu, CH Eren, B Bluhm, H Salmeron, MB AF Wu, Cheng Hao Eren, Baran Bluhm, Hendrik Salmeron, Miguel B. TI Ambient-Pressure X-ray Photoelectron Spectroscopy Study of Cobalt Foil Model Catalyst under CO, H-2, and Their Mixtures SO ACS CATALYSIS LA English DT Article DE catalysis; Fischer-Tropsch synthesis; cobalt; ambient-pressure X-ray photoelectron spectroscopy ID FISCHER-TROPSCH SYNTHESIS; SCANNING-TUNNELING-MICROSCOPY; CARBON-MONOXIDE HYDROGENATION; SUM-FREQUENCY GENERATION; SYNTHESIS GAS; ETHYLENE HYDROGENATION; PT(111) SURFACE; LOWER OLEFINS; CO(0001); ADSORPTION AB Ambient-pressure X-ray photoelectron spectroscopy (XPS) was used to investigate the reactions of CO, H-2, and their mixtures on Co foils. We found that CO adsorbs molecularly on the clean Co surface and desorbs intact in vacuum with increasing rate until similar to 90 degrees C where all CO desorbs in seconds. In equilibrium with 100 mTorr gas, CO dissociates above 120 degrees C, leaving carbide species on the surface but no oxides, because CO efficiently reduces the oxides at temperatures similar to 100 degrees C lower than H-2. Water as impurities or produced by reaction of CO and H-2 efficiently oxidizes Co even at room temperature. Under 97:3 CO/H-2 mixture and with increasing temperatures, the Co surface becomes more oxidized and covered by hydroxyl groups until similar to 150 degrees C where surface starts to get reduced, accompanied by carbide accumulation indicative of CO dissociation. A similar trend was observed for 9:1 and 1:1 mixtures, but surface reduction begins at higher temperatures. C1 [Wu, Cheng Hao] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Salmeron, Miguel B.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Wu, Cheng Hao; Eren, Baran; Salmeron, Miguel B.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Bluhm, Hendrik; Salmeron, Miguel B.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Salmeron, MB (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.; Salmeron, MB (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Salmeron, MB (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM mbsalmeron@lbl.gov FU Office of Basic Energy Sciences (BES) of the U.S. Department of Energy (DOE) through the Chemical Sciences, Geosciences, and Biosciences Division [DE-AC02-05CH11231] FX This work was supported by the Office of Basic Energy Sciences (BES) of the U.S. Department of Energy (DOE) under contract no. DE-AC02-05CH11231, through the Chemical Sciences, Geosciences, and Biosciences Division. Funding from the same contract for the ALS and beamline 11.0.2 is also acknowledged. NR 56 TC 0 Z9 0 U1 8 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2017 VL 7 IS 2 BP 1150 EP 1157 DI 10.1021/acscatal.6b02835 PG 8 WC Chemistry, Physical SC Chemistry GA EJ9IG UT WOS:000393539200027 ER PT J AU Weidner, VL Barger, CJ Delferro, M Lohr, TL Marks, TJ AF Weidner, Victoria L. Barger, Christopher J. Delferro, Massimiliano Lohr, Tracy L. Marks, Tobin J. TI Rapid, Mild, and Selective Ketone and Aldehyde Hydroboration/Reduction Mediated by a Simple Lanthanide Catalyst SO ACS CATALYSIS LA English DT Article DE homogeneous catalysis; carbonyl hydroboration; ketone/aldehyde reduction; lanthanide; chemoselective hydroboration ID CARBONYL-COMPOUNDS; COMPLEXES; MECHANISM; SCOPE; HYDROALKOXYLATION/CYCLIZATION; HYDROAMINATION/CYCLIZATION; PINACOLBORANE; DERIVATIVES; REDUCTION; ALKYNYL AB Rapid, clean hydroboration of ketones and aldehydes with HBpin is achieved using the homoleptic rare-earth catalyst La[N-(SiMe-3)-2](3) (La-NTMS). The reaction employs low catalyst loadings (0.01-1 mol % La-NTMS), proceeds rapidly (>99% in 5 min) at 25 degrees C, and is moderately air-tolerant. Additionally, this hydroboration has good functional group compatibility, including halides, nitro groups, and nitriles, and is exclusively carbonyl-selective in the presence of alkenes and alkynes. C1 [Weidner, Victoria L.; Barger, Christopher J.; Delferro, Massimiliano; Lohr, Tracy L.; Marks, Tobin J.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Delferro, Massimiliano] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. RP Lohr, TL; Marks, TJ (reprint author), Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. EM tracy.lohr@northwestern.edu; t-marks@northwestern.edu FU National Science Foundation [CHE-1213235]; NSF FX Financial support was provided by National Science Foundation through element grant CHE-1213235. This work made use of the IMSERC at Northwestern University, which has received support from the NSF (CHE-1048773 and CHE-9871268); Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205); the State of Illinois and International Institute for Nanotechnology. V.L.W. was supported by an NSF graduate research fellowship. We acknowledge R.J. Thomson (Northwestern) for helpful discussions. NR 38 TC 0 Z9 0 U1 19 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2017 VL 7 IS 2 BP 1244 EP 1247 DI 10.1021/acscatal.6b03332 PG 4 WC Chemistry, Physical SC Chemistry GA EJ9IG UT WOS:000393539200036 ER PT J AU Favaro, M Drisdell, WS Marcus, MA Gregoire, JM Crumlin, EJ Haber, JA Yano, J AF Favaro, Marco Drisdell, Walter S. Marcus, Matthew A. Gregoire, John M. Crumlin, Ethan J. Haber, Joel A. Yano, Junko TI An Operando Investigation of (Ni-Fe-Co-Ce)O-x System as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction SO ACS CATALYSIS LA English DT Article DE oxygen evolution reaction (OER); transiton metal oxides; operando techniques; ambient pressure; catalytic conditions; synchrotron radiation; electron spectroscopies ID X-RAY-ABSORPTION; WATER OXIDATION CATALYSIS; NEAR-EDGE STRUCTURE; PHOTOELECTRON-SPECTROSCOPY; HETEROGENEOUS CATALYSIS; ELECTRONIC-STRUCTURE; TRANSITION-METALS; MNOX COCATALYST; ALKALINE MEDIA; OXIDIZED METAL AB The oxygen evolution reaction (OER) is a critical component of industrial processes such as electrowinning of metals and the chlor-alkali process. It also plays a central role in the development of a renewable energy field for generation a solar fuels by providing both the protons and electrons needed to generate fuels such as H-2 or reduced hydrocarbons from CO2. To improve these processes, it is necessary to expand the fundamental understanding of catalytically active species at low overpotential, which will further the development of electrocatalysts with high activity and durability. In this context, performing experimental investigations of the electrocatalysts under realistic working regimes (i.e., under operando conditions) is of crucial importance. Here, we study a highly active quinary transition-metal-oxide-based OER electrocatalyst by means of operando ambient-pressure X-ray photoelectron spectroscopy and X-ray absorption spectroscopy performed at the solid/liquid interface. We observe that the catalyst undergoes a clear chemical-structural evolution as a function of the applied potential with Ni, Fe, and Co oxyhydroxides comprising the active catalytic species. While CeO2 is redox inactive under catalytic conditions, its influence on the redox processes of the transition metals boosts the catalytic activity at low overpotentials, introducing an important design principle for the optimization of electrocatalysts and tailoring of high-performance materials. C1 [Favaro, Marco; Marcus, Matthew A.; Crumlin, Ethan J.] Lawrence Berkeley Natl Lab, Adv Light Source, One Cyclotron Rd, Berkeley, CA 94720 USA. [Favaro, Marco; Drisdell, Walter S.; Yano, Junko] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynthesis, One Cyclotron Rd, Berkeley, CA 94720 USA. [Favaro, Marco; Drisdell, Walter S.; Yano, Junko] Lawrence Berkeley Natl Lab, Div Chem Sci, One Cyclotron Rd, Berkeley, CA 94720 USA. [Gregoire, John M.; Haber, Joel A.] CALTECH, Joint Ctr Artificial Photosynthesis, Pasadena, CA 91125 USA. [Yano, Junko] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, One Cyclotron Rd, Berkeley, CA 94720 USA. RP Crumlin, EJ (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, One Cyclotron Rd, Berkeley, CA 94720 USA.; Yano, J (reprint author), Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynthesis, One Cyclotron Rd, Berkeley, CA 94720 USA.; Yano, J (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, One Cyclotron Rd, Berkeley, CA 94720 USA.; Haber, JA (reprint author), CALTECH, Joint Ctr Artificial Photosynthesis, Pasadena, CA 91125 USA.; Yano, J (reprint author), Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, One Cyclotron Rd, Berkeley, CA 94720 USA. EM ejcrumlin@lbl.gov; jahaber@caltech.edu; jyano@lbl.gov FU Office of Science of the U.S. Department of Energy [DE-SC0004993]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Dan Guevarra for his assistance collecting the cyclic voltamograms shown in Figure 1, using the scanning drop electrochemical cell. This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy (Award No. DE-SC0004993). The XAS work was done at BL 10.3.2 at the Advanced Light Source, and at BL 7-3 at the Stanford Synchrotron Radiation Lightsource. The AMPS work was done at BL 9.3.1 at the Advanced Light Source. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 100 TC 0 Z9 0 U1 26 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2017 VL 7 IS 2 BP 1248 EP 1258 DI 10.1021/acscatal.6b03126 PG 11 WC Chemistry, Physical SC Chemistry GA EJ9IG UT WOS:000393539200037 ER PT J AU Bare, SR Vila, FD Charochak, ME Prabhakar, S Bradley, WJ Jaye, C Fischer, DA Hayashi, ST Bradley, SA Rehr, JJ AF Bare, Simon R. Vila, F. D. Charochak, Meghan E. Prabhakar, Sesh Bradley, William J. Jaye, Cherno Fischer, Daniel A. Hayashi, S. T. Bradley, Steven A. Rehr, J. J. TI Characterization of Coke on a Pt-Re/gamma-Al2O3 Re-Forming Catalyst: Experimental and Theoretical Study SO ACS CATALYSIS LA English DT Article DE carbon NEXAFS; coke characterization; catalyst deactivation; Pt-Re/alumina; TPO; DFT calculations; C-13 MAS NMR; Raman ID RAY-ABSORPTION-SPECTROSCOPY; RAMAN-SPECTROSCOPY; PARAFFIN DEHYDROGENATION; EXCHANGE-ENERGY; DENSITY; CARBON; DEPOSITS; MOLECULES; APPROXIMATION; DEACTIVATION AB The characterization of coke on spent catalysts is key to understanding deactivation mechanisms in hydrocarbon transformations. In this paper we report the comprehensive characterization (using laser Raman spectroscopy, C-13 MAS NMR, temperature-programmed oxidation, XPS, and carbon K-edge NEXAFS) of coke on a series of spent Pt-Re re-forming catalysts as a function of time on stream and position in the catalytic bed. Laser Raman spectroscopy is shown to be rather insensitive to the carbon species present, while C-13 MAS NMR finds that the carbon is present primarily as aromatic carbon. The TPO data are consistent with the coke being present on the alumina support and not to a large extent covering the metallic Pt-Re nanoclusters, but the data do suggest the presence of more than one type of coke present. The carbon K-edge NEXAFS data, however, clearly differentiate the types of coke species present. In the more coked samples the features ascribed to graphite become more pronounced, together with an increase in the aromaticity, as judged by the intensity of the pi* peak. With increasing amounts of carbon on the catalyst there is also a concomitant decrease in the sigma* C-H peak, indicating that the carbon is becoming less hydrogenated. By using a linear combination of C NEXAFS spectra for n hexane, benzene, and broadened highly oriented pyrolytic graphite (HOPG), we estimate the compositional change on the coke species, verifying the aliphatic to aromatic conversion. The data indicate that a good model for the deposited coke is that of highly defected, medium-sized rafts with a short-range polycydic aromatic structure which have a variety of points of contact with the alumina surface, in particular with the 0 atoms. In agreement with the NMR, there is evidence for the C-O functionality from the presence of a shoulder in the C NEXAFS spectra that is ascribed, as a result of DFT calculations, to a 1s -> pi* transition of the carbon atoms bound to the oxygen of a phenoxide-like species bound to the alumina surface. These data confirm earlier Soxhlet extraction studies and show that extraction process did not substantially change the character of the coke from what it was while still in contact with the catalyst surface. C1 [Bare, Simon R.] SLAG Natl Accelerator Lab, SSRL, Menlo Pk, CA 94025 USA. [Vila, F. D.; Hayashi, S. T.; Rehr, J. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Charochak, Meghan E.; Prabhakar, Sesh; Bradley, Steven A.] Honeywell UOP, Des Plaines, IL 60017 USA. [Bradley, William J.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Jaye, Cherno; Fischer, Daniel A.] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. RP Bare, SR (reprint author), SLAG Natl Accelerator Lab, SSRL, Menlo Pk, CA 94025 USA. EM simon.bare@slac.stanford.edu FU U.S. Department of Energy [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Basic Energy Sciences, Catalysis Science Program [DE-FG02-03ER15476]; NERSC, a DOE Office of Science User Facility [DE-AC02-05CH11231] FX This research was carried out in part at the National Synchrotron Light Source at Brookhaven National Laboratory, which is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. F.D.V. and J.J.R. acknowledge partial support of U.S. Department of Energy, Office of Basic Energy Sciences, Catalysis Science Program, Grant No. DE-FG02-03ER15476, with computational support from the NERSC, a DOE Office of Science User Facility, under Contract No. DE-AC02-05CH11231. Norma Kahn is thanked for the XPS data, Randy Zea for the TPO data, and Brendon Lyons for the laser Raman data. Certain commercial names mentioned do not constitute an endorsement by the National Institute of Standards and Technology. NR 53 TC 0 Z9 0 U1 16 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2017 VL 7 IS 2 BP 1452 EP 1461 DI 10.1021/acscatal.6b02785 PG 10 WC Chemistry, Physical SC Chemistry GA EJ9IG UT WOS:000393539200061 ER PT J AU Draz, MS Wang, YJ Chen, FF Xu, YH Shafiee, H AF Draz, Mohamed Shehata Wang, Ying-Jie Chen, Frank Fanqing Xu, Yuhong Shafiee, Hadi TI Electrically Oscillating Plasmonic Nanoparticles for Enhanced DNA Vaccination against Hepatitis C Virus SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID GOLD NANOPARTICLES; IN-VIVO; PARTICLE-SIZE; CANCER-IMMUNOTHERAPY; NONVIRAL VECTORS; GENE-TRANSFER; VACCINES; ELECTROPORATION; DELIVERY; CELLS AB The promise of DNA vaccines is far-reaching. However, the development of potent immunization methods remains a key challenge for its use in clinical applications. Here, an approach for in vivo DNA vaccination by electrically activated plasmonic Au nanoparticles is reported. The electrical excitation of plasmonic nanoparticles can drive vibrational and dipole-like oscillations that are able to disrupt nearby cell membranes. In combination with their intrinsic ability to focus and magnify the electric field on the surface of cells, Au nanoparticles allow enhanced cell poration and facilitate the uptake of DNA vaccine. Mice immunized with this approach showed up to 100-fold higher gene expression compared to control treatments (without nanoparticles) and exhibited significantly increased levels of both antibody and cellular immune responses against a model hepatitis C virus DNA vaccine. This approach can be tuned to establish controlled and targeted delivery of different types of therapeutic molecules into cells and live animals as well. C1 [Draz, Mohamed Shehata; Shafiee, Hadi] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Div Engn Med, Boston, MA 02115 USA. [Draz, Mohamed Shehata] Tanta Univ, Fac Sci, Tanta 31527, Egypt. [Draz, Mohamed Shehata; Wang, Ying-Jie] Zhejiang Univ, Sch Med, State Key Lab Diag & Treatment Infect Dis,Affilia, Collaborat Innovat Ctr Diag & Treatment Infect Di, Hangzhou 310003, Zhejiang, Peoples R China. [Chen, Frank Fanqing] Lawrence Berkeley Natl Lab, Div Life Sci, Mailstop 977,1 Cyclotron Rd, Berkeley, CA 94720 USA. [Xu, Yuhong] Shanghai Jiao Tong Univ, Sch Pharm, Shanghai 200240, Peoples R China. [Shafiee, Hadi] Harvard Med Sch, Dept Med, Boston, MA 02115 USA. RP Shafiee, H (reprint author), Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Div Engn Med, Boston, MA 02115 USA.; Chen, FF (reprint author), Lawrence Berkeley Natl Lab, Div Life Sci, Mailstop 977,1 Cyclotron Rd, Berkeley, CA 94720 USA.; Xu, YH (reprint author), Shanghai Jiao Tong Univ, Sch Pharm, Shanghai 200240, Peoples R China.; Shafiee, H (reprint author), Harvard Med Sch, Dept Med, Boston, MA 02115 USA. EM f_chen@lbl.gov; yhxu@sjtu.edu.cn; hshafiee@bwh.harvard.edu FU National Institute of Allergy and Infectious Disease (NIAID), National Institute of Health (NIH) [1R01AI118502]; Brigham and Women's Hospital (BWH); Harvard Medical School (HMS); Department of Medicine, Harvard Medical School through the Innovation Evergreen Fund; Department of Science and Technology of China through "863" [2014AA020700] FX The authors wish to acknowledge supports received from the National Institute of Allergy and Infectious Disease (NIAID), National Institute of Health (NIH) through 1R01AI118502, Brigham and Women's Hospital (BWH), Harvard Medical School (HMS) through the Bright Futures Prize and Fund to Sustain Research Excellence, Department of Medicine, Harvard Medical School through the Innovation Evergreen Fund, and Department of Science and Technology of China through "863" Grant No. 2014AA020700 (to Y. Xu). The authors wish to thank Dr. Jinliang Peng, Wang Wei, Yuta Dobashi, and Anish Vasan for helping in the preliminary experiments, discussions, and electric field simulation. NR 45 TC 0 Z9 0 U1 7 U2 7 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD FEB PY 2017 VL 27 IS 5 AR UNSP 1604139 DI 10.1002/adfm.201604139 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EL5RA UT WOS:000394677300005 ER PT J AU Roni, MS Eksioglu, SD Cafferty, KG Jacobson, JJ AF Roni, Mohammad S. Eksioglu, Sandra D. Cafferty, Kara G. Jacobson, Jacob J. TI A multi-objective, hub-and-spoke model to design and manage biofuel supply chains SO ANNALS OF OPERATIONS RESEARCH LA English DT Article DE Multi-objective optimization; Hub-and-spoke supply chain; Densified biomass; Augmented epsilon-constraint method; Rail transportation ID EPSILON-CONSTRAINT METHOD; INTEGER PROGRAMMING-PROBLEMS; LONG-HAUL TRANSPORTATION; OPTIMIZATION PROBLEMS; DENSIFIED BIOMASS; LOCATION-PROBLEMS; HIGH-VOLUME; NETWORK; IMPLEMENTATION; LOGISTICS AB In this paper we propose a multi-objective, mixed integer linear programming model to design and manage the supply chain for biofuels. This model captures the trade-offs that exist between costs, environmental and social impacts of delivering biofuels. The in-bound supply chain for biofuel plants relies on a hub-and-spoke structure which optimizes transportation costs of biomass. The model proposed optimizes the emissions due to transportation-related activities in the supply chain. The model also optimizes the social impact of biofuels. The social impacts are evaluated by the number of jobs created. The multi-objective optimization model is solved using an augmented -constraint method. The method provides a set of Pareto optimal solutions. We develop a case study using data from the Midwest region of the USA. The numerical analyses estimates the quantity and cost of cellulosic ethanol delivered under different scenarios generated. The insights we provide will help policy makers design policies which encourage and support renewable energy production. C1 [Eksioglu, Sandra D.] Clemson Univ, Dept Ind Engn, Clemson, SC 29634 USA. [Roni, Mohammad S.; Cafferty, Kara G.] Idaho Natl Lab, Biofuels & Renewable Energy Technol, Idaho Falls, ID USA. [Jacobson, Jacob J.] Minds Eye Comp LLC, Idaho Falls, ID USA. RP Eksioglu, SD (reprint author), Clemson Univ, Dept Ind Engn, Clemson, SC 29634 USA. EM seksiog@clemson.edu OI Eksioglu, Sandra/0000-0002-6674-2133 FU National Science Foundation [CMMI 1462420] FX This work is partially supported by National Science Foundation, grant CMMI 1462420. This support is gratefully acknowledged. NR 76 TC 0 Z9 0 U1 6 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0254-5330 EI 1572-9338 J9 ANN OPER RES JI Ann. Oper. Res. PD FEB PY 2017 VL 249 IS 1-2 BP 351 EP 380 DI 10.1007/s10479-015-2102-3 PG 30 WC Operations Research & Management Science SC Operations Research & Management Science GA EK8CL UT WOS:000394151400018 ER PT J AU Chen, RLY Fan, N Pinar, A Watson, JP AF Chen, Richard Li-Yang Fan, Neng Pinar, Ali Watson, Jean-Paul TI Contingency-constrained unit commitment with post-contingency corrective recourse SO ANNALS OF OPERATIONS RESEARCH LA English DT Article DE Integer programming; Bi-level programming; Benders decomposition; Unit commitment; Contingency constraints ID VULNERABILITY ANALYSIS; POWER GRIDS; SECURITY; OPTIMIZATION; MODEL AB We consider the problem of minimizing costs in the generation unit commitment problem, a cornerstone in electric power system operations, while enforcing an -- reliability criterion. This reliability criterion is a generalization of the well-known - criterion and dictates that at least fraction of the total system demand (for ) must be met following the failure of or fewer system components. We refer to this problem as the contingency-constrained unit commitment problem, or CCUC. We present a mixed-integer programming formulation of the CCUC that accounts for both transmission and generation element failures. We propose novel cutting plane algorithms that avoid the need to explicitly consider an exponential number of contingencies. Computational studies are performed on several IEEE test systems and a simplified model of the Western US interconnection network. These studies demonstrate the effectiveness of our proposed methods relative to current state-of-the-art. C1 [Chen, Richard Li-Yang; Pinar, Ali] Sandia Natl Labs, Quantitat Modeling & Anal, Livermore, CA 94551 USA. [Fan, Neng] Univ Arizona, Dept Syst & Ind Engn, Tucson, AZ 85721 USA. [Watson, Jean-Paul] Sandia Natl Labs, Analyt Dept, POB 5800, Albuquerque, NM 87185 USA. RP Fan, N (reprint author), Univ Arizona, Dept Syst & Ind Engn, Tucson, AZ 85721 USA. EM rlchen@sandia.gov; nfan@email.arizona.edu; apinar@sandia.gov; jwatson@sandia.gov FU Sandia National Laboratories' Laboratory-Directed Research and Development Program; U.S. Department of Energy's Office of Science (Advanced Scientific Computing Research program); U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories' Laboratory-Directed Research and Development Program and the U.S. Department of Energy's Office of Science (Advanced Scientific Computing Research program) funded portions of this work. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 36 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0254-5330 EI 1572-9338 J9 ANN OPER RES JI Ann. Oper. Res. PD FEB PY 2017 VL 249 IS 1-2 BP 381 EP 407 DI 10.1007/s10479-014-1760-x PG 27 WC Operations Research & Management Science SC Operations Research & Management Science GA EK8CL UT WOS:000394151400019 ER PT J AU Park, K Kang, S Ravindran, S Min, JW Lee, YT AF Park, Kwangwook Kang, Seokjin Ravindran, Sooraj Min, Jung-Wook Lee, Yong-Tak TI Unveiling interfaces between In-rich and Ga-rich GaInP vertical slabs of laterally composition modulated structures SO APPLIED PHYSICS EXPRESS LA English DT Article ID SHORT-PERIOD SUPERLATTICES; MOLECULAR-BEAM EPITAXY; QUANTUM-WELLS; OPTICAL ANISOTROPY; GROWTH; LASERS; SHIFTS AB We report changes at the interface between Ga-rich/In-rich GaInP vertical slabs in laterally composition modulated (LCM) GaInP as a function of the V/III ratio. The photoluminescence exhibits satellite peaks, indicating that the parasitic potential between the GaInP vertical slabs disappears as the V/III ratio decreases. However, a high V/III ratio leads to an abrupt interface, increasing the parasitic potential because of the phosphorus-amount- dependent diffusion of group-III atoms during growth. These results suggest that the V/III ratio is an important parameter that must be wisely chosen in designing optoelectronic devices incorporating LCM structure. (C) 2017 The Japan Society of Applied Physics C1 [Park, Kwangwook] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Kang, Seokjin; Lee, Yong-Tak] Gwangju Inst Sci & Technol, Sch Elect Engn & Comp Sci, Gwangju 61005, South Korea. [Ravindran, Sooraj] Indian Inst Space Sci & Technol, Dept Avion, Trivandrum 695547, Kerala, India. [Min, Jung-Wook] Gwangju Inst Sci & Technol, Dept Phys & Photon Sci, Gwangju 61005, South Korea. RP Park, K (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.; Lee, YT (reprint author), Gwangju Inst Sci & Technol, Sch Elect Engn & Comp Sci, Gwangju 61005, South Korea. EM kwangwook.park@nrel.gov; ytlee@gist.ac.kr NR 21 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1882-0778 EI 1882-0786 J9 APPL PHYS EXPRESS JI Appl. Phys. Express PD FEB PY 2017 VL 10 IS 2 AR 025801 DI 10.7567/APEX.10.025801 PG 4 WC Physics, Applied SC Physics GA EK5MH UT WOS:000393970000001 ER PT J AU Meisner, AM Bromley, BC Nugent, PE Schlegel, DJ Kenyon, SJ Schlafly, EF Dawson, KS AF Meisner, Aaron M. Bromley, Benjamin C. Nugent, Peter E. Schlegel, David J. Kenyon, Scott J. Schlafly, Edward F. Dawson, Kyle S. TI SEARCHING FOR PLANET NINE WITH COADDED WISE AND NEOWISE-REACTIVATION IMAGES SO ASTRONOMICAL JOURNAL LA English DT Article DE planets and satellites: detection; techniques: image processing ID INFRARED-SURVEY-EXPLORER; OUTER SOLAR-SYSTEM; ALL-SKY SURVEY; OBSERVATIONAL CONSTRAINTS; OBJECTS; ORBIT; PERFORMANCE; EVOLUTION; LOCATION; MISSION AB A distant, as yet unseen ninth planet has been invoked to explain various observations of the outer solar system. While such a "Planet Nine," if it exists, is most likely to be discovered via reflected light in the optical, it may emit much more strongly at 3 5 mu m than simple blackbody predictions would suggest, depending on its atmospheric properties. As a result, Planet Nine may be detectable at 3 4 mu m with the Wide-field Infrared Survey Explorer, but single exposures are too shallow except at relatively small distances (d(9). 430 au). We develop a method to search for Planet Nine far beyond the W1 single-exposure sensitivity, to distances as large as 800 au, using inertial coadds of W1 exposures binned into similar to 1 day intervals. We apply our methodology to a similar to 2000 square degree testbed sky region which overlaps a southern segment of Planet Nine's anticipated orbital path. We do not detect a plausible Planet Nine candidate, but are able to derive a detailed completeness curve, ruling out its presence within the parameter space searched at W1 < 16.66 (90% completeness). Our method uses all publicly available W1 imaging, spanning 2010 January to 2015 December, and will become more sensitive with future NEOWISE-Reactivation releases of additional W1 exposures. We anticipate that our method will be applicable to the entire high Galactic latitude sky, and we will extend our search to that full footprint in the near future. C1 [Meisner, Aaron M.] Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Meisner, Aaron M.; Nugent, Peter E.; Schlegel, David J.; Schlafly, Edward F.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bromley, Benjamin C.; Dawson, Kyle S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Nugent, Peter E.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Kenyon, Scott J.] Smithsonian Astrophys Observ, 60 Garden St, Cambridge, MA 02138 USA. RP Meisner, AM (reprint author), Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA.; Meisner, AM (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. OI Kenyon, Scott/0000-0003-0214-609X; Bromley, Benjamin/0000-0001-7558-343X; Schlafly, Edward Ford/0000-0002-3569-7421 FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Planetary Science Division of the National Aeronautics and Space Administration; National Science Foundation; National Aeronautics and Space Administration FX The National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, provided staff, computational resources, and data storage for this project.; This research makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This research also makes use of data products from NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology, funded by the Planetary Science Division of the National Aeronautics and Space Administration. This publication makes use of data products from the Two Micron All-Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. NR 32 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD FEB PY 2017 VL 153 IS 2 AR 65 DI 10.3847/1538-3881/153/2/65 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EK2WU UT WOS:000393788400009 ER PT J AU Choncubhair, ON Osborne, B Finnan, J Lanigan, G AF Choncubhair, Orlaith Ni Osborne, Bruce Finnan, John Lanigan, Gary TI Comparative assessment of ecosystem C exchange inMiscanthus and reed canary grass during early establishment SO GLOBAL CHANGE BIOLOGY BIOENERGY LA English DT Article DE bioenergy crops; C-4 photosynthesis; carbon balance; eddy covariance; grassland; land-use change; leaf longevity; perennial rhizomatous grasses; Phalaris arundinacea; reed canary grass ID MISCANTHUS X-GIGANTEUS; EDDY COVARIANCE MEASUREMENTS; ANALYTICAL FOOTPRINT MODEL; GREENHOUSE-GAS EMISSIONS; CARBON-DIOXIDE EXCHANGE; ENERGY-BALANCE CLOSURE; LAND-USE CHANGE; WATER-VAPOR; SOIL CARBON; PHALARIS-ARUNDINACEA AB Land-use change to bioenergy crop production can contribute towards addressing the dual challenges of greenhouse gas mitigation and energy security. Realisation of the mitigation potential of bioenergy crops is, however, dependent on suitable crop selection and full assessment of the carbon (C) emissions associated with land conversion. Using eddy covariance-based estimates, ecosystem C exchange was studied during the early-establishment phase of two perennial crops, C-3 reed canary grass (RCG) and C(4)Miscanthus, planted on former grassland in Ireland. Crop development was the main determinant of net carbon exchange in the Miscanthus crop, restricting significant net C uptake during the first 2years of establishment. The Miscanthus ecosystem switched from being a net C source in the conversion year to a strong net C sink (-411 +/- 63gCm(-2)) in the third year, driven by significant above-ground growth and leaf expansion. For RCG, early establishment and rapid canopy development facilitated a net C sink in the first 2years of growth (-319 +/- 57 (post-planting) and -397 +/- 114gCm(-2), respectively). Peak seasonal C uptake occurred three months earlier in RCG (May) than Miscanthus (August), however Miscanthus sustained net C uptake longer into the autumn and was close to C-neutral in winter. Leaf longevity is therefore a key advantage of C(4)Miscanthus in temperate climates. Further increases in productivity are projected as Miscanthus reaches maturity and are likely to further enhance the C sink potential of Miscanthus relative to RCG. C1 [Choncubhair, Orlaith Ni; Lanigan, Gary] TEAGASC, Environm Res Ctr, Johnstown Castle, Co Wexford, Ireland. [Choncubhair, Orlaith Ni; Osborne, Bruce] Univ Coll Dublin, UCD Sch Biol & Environm Sci, Dublin 4, Ireland. [Osborne, Bruce] Univ Coll Dublin, UCD Earth Inst, Dublin 4, Ireland. [Finnan, John] TEAGASC, Crops Res Ctr, Oak Pk, Carlow, Ireland. RP Choncubhair, ON (reprint author), TEAGASC, Environm Res Ctr, Johnstown Castle, Co Wexford, Ireland.; Choncubhair, ON (reprint author), Univ Coll Dublin, UCD Sch Biol & Environm Sci, Dublin 4, Ireland. EM o.nichoncubhair@teagasc.ie RI Lanigan, Gary/C-6864-2012 OI Lanigan, Gary/0000-0003-0813-3097 FU Department of Agriculture, Food and the Marine Research Stimulus Fund [07 527] FX This research was funded by the Department of Agriculture, Food and the Marine Research Stimulus Fund (Project Ref. 07 527). The authors also gratefully acknowledge the technical assistance of Brendan Swan, Kevin McNamara, Vincent Staples, Carmel O' Connor and Teresa Cowman in Johnstown Castle. NR 101 TC 0 Z9 0 U1 5 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1757-1693 EI 1757-1707 J9 GCB BIOENERGY JI GCB Bioenergy PD FEB PY 2017 VL 9 IS 2 BP 280 EP 298 DI 10.1111/gcbb.12343 PG 19 WC Agronomy; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA EK0AV UT WOS:000393589600002 ER PT J AU Swinton, SM Tanner, S Barham, BL Mooney, DF Skevas, T AF Swinton, Scott M. Tanner, Sophia Barham, Bradford L. Mooney, Daniel F. Skevas, Theodoros TI How willing are landowners to supply land for bioenergy crops in the Northern Great Lakes Region? SO GLOBAL CHANGE BIOLOGY BIOENERGY LA English DT Article DE bioenergy crops; bioenergy supply; contingent valuation; corn; food vs; fuel; land availability; marginal land; poplar; sustainability; switchgrass; Willingness to supply land ID FARMERS WILLINGNESS; SWITCHGRASS; MIDWEST AB Land to produce biomass is essential if the United States is to expand bioenergy supply. Use of agriculturally marginal land avoids the food vs. fuel problems of food price rises and carbon debt that are associated with crop and forestland. Recent remote sensing studies have identified large areas of US marginal land deemed suitable for bioenergy crops. Yet the sustainability benefits of growing bioenergy crops on marginal land only pertain if land is economically available. Scant attention has been paid to the willingness of landowners to supply land for bioenergy crops. Focusing on the northern tier of the Great Lakes, where grassland transitions to forest and land prices are low, this contingent valuation study reports on the willingness of a representative sample of 1124 private, noncorporate landowners to rent land for three bioenergy crops: corn, switchgrass, and poplar. Of the 11% of land that was agriculturally marginal, they were willing to make available no more than 21% for any bioenergy crop (switchgrass preferred on marginal land) at double the prevailing land rental rate in the region. At the same generous rental rate, of the 28% that is cropland, they would rent up to 23% for bioenergy crops (corn preferred), while of the 55% that is forestland, they would rent up to 15% for bioenergy crops (poplar preferred). Regression results identified deterrents to land rental for bioenergy purposes included appreciation of environmental amenities and concern about rental disamenities. In sum, like landowners in the southern Great Lakes region, landowners in the Northern Tier are reluctant to supply marginal land for bioenergy crops. If rental markets existed, they would rent more crop and forestland for bioenergy crops than they would marginal land, which would generate carbon debt and opportunity costs in wood product and food markets. C1 [Swinton, Scott M.; Tanner, Sophia] Michigan State Univ, Dept Agr Food & Resource Econ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Barham, Bradford L.; Mooney, Daniel F.] Univ Wisconsin Madison, Dept Agr & Appl Econ, Great Lakes Bioenergy Res Ctr, Madison, WI USA. [Skevas, Theodoros] Univ Florida, Gulf Coast Res & Educ Ctr, Wimauma, FL USA. RP Swinton, SM (reprint author), Michigan State Univ, Dept Agr Food & Resource Econ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. EM swintons@msu.edu FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; DOE OBP Office of Energy Efficiency and Renewable Energy [DE-AC05-76RL01830]; MSU AgBioResearch; USDA National Institute of Food and Agriculture FX This work was funded in part by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) and DOE OBP Office of Energy Efficiency and Renewable Energy (DE-AC05-76RL01830), as well as by MSU AgBioResearch and the USDA National Institute of Food and Agriculture. For data collection and input, we thank Daniel Prager, Matthew Kaplan, Michaela Palmer, and Zhuli Stoyanova. For helpful comments, we thank Sarah Klammer, Conner Bailey, and two anonymous reviewers. NR 30 TC 1 Z9 1 U1 6 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1757-1693 EI 1757-1707 J9 GCB BIOENERGY JI GCB Bioenergy PD FEB PY 2017 VL 9 IS 2 BP 414 EP 428 DI 10.1111/gcbb.12336 PG 15 WC Agronomy; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA EK0AV UT WOS:000393589600011 ER PT J AU LeDuc, SD Zhang, XS Clark, CM Izaurralde, RC AF LeDuc, Stephen D. Zhang, Xuesong Clark, Christopher M. Izaurralde, R. Cesar TI Cellulosic feedstock production on Conservation Reserve Program land: potential yields and environmental effects SO GLOBAL CHANGE BIOLOGY BIOENERGY LA English DT Article DE biofuel; biomass; carbon; Conservation Reserve Program; erosion; nitrogen; no-till corn; residue removal; switchgrass ID SOIL ORGANIC-CARBON; BIOENERGY PRODUCTION; LONG-TERM; CROP PRODUCTION; SEQUESTRATION; DYNAMICS; ENERGY; SCALE; SWITCHGRASS; GRASSLANDS AB Producing biofuel feedstocks on current agricultural land raises questions of a food-vs.-fuel' trade-off. The use of current or former Conservation Reserve Program (CRP) land offers an alternative; yet the volumes of ethanol that could be produced and the potential environmental impacts of such a policy are unclear. Here, we applied the Environmental Policy Integrated Climate model to a US Department of Agriculture database of over 200000 CRP polygons in Iowa, USA, as a case study. We simulated yields and environmental impacts of growing three cellulosic biofuel feedstocks on CRP land: (i) an Alamo-variety switchgrass (Panicum virgatum L.); (ii) a generalized mixture of C4 and C3 grasses; (iii) and no-till corn (Zea mays L.) with residue removal. We simulated yields, soil erosion, and soil carbon (C) and nitrogen (N) stocks and fluxes. We found that although no-till corn with residue removal produced approximately 2.6-4.4 times more ethanol per area compared to switchgrass and the grass mixture, it also led to 3.9-4.5 times more erosion, 4.4-5.2 times more cumulative N loss, and a 10% reduction in total soil carbon as opposed to a 6-11% increase. Switchgrass resulted in the best environmental outcomes even when expressed on a per liter ethanol basis. Our results suggest planting no-till corn with residue removal should only be done on low slope soils to minimize environmental concerns. Overall, this analysis provides additional information to policy makers on the potential outcome and effects of producing biofuel feedstocks on current or former conservation lands. C1 [LeDuc, Stephen D.; Clark, Christopher M.] US EPA, Natl Ctr Environm Assessment, 1200 Penn Ave NW,8623P, Washington, DC 20460 USA. [Zhang, Xuesong] Pacific Northwest Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 1200, College Pk, MD 20740 USA. [Zhang, Xuesong; Izaurralde, R. Cesar] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Izaurralde, R. Cesar] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Izaurralde, R. Cesar] Texas A&M Univ, Texas AgriLife Res, Temple, TX 76502 USA. RP LeDuc, SD (reprint author), US EPA, Natl Ctr Environm Assessment, 1200 Penn Ave NW,8623P, Washington, DC 20460 USA. EM leduc.stephen@epa.gov FU US EPA Biofuel Research Initiative; US DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494, KP1601050]; US DOE Great Lakes Bioenergy Research Center (DOE EERE OBP) [20469-19145]; NASA [NNH12AU03I, NNH13ZDA001N] FX Funding for this work was provided by US EPA Biofuel Research Initiative, US DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494, DOE BER Office of Science KP1601050, DOE EERE OBP 20469-19145), and NASA (NNH12AU03I and NNH13ZDA001N). We thank Ellen Cooter and Mark Johnson of the US EPA, and three anonymous reviewers, whose suggestions improved the quality of this manuscript. We also thank the USDA Farm Service Agency (FSA), particularly Rich Iovanna, for providing the CRP data. These data were obtained from the FSA under a Non-Disclosure Agreement (NDA 525277) signed with Battelle Memorial Institute, Pacific Northwest Division. Disclosure: The views expressed in this paper are those of the authors and do not necessarily represent the views or policies of the US Environmental Protection Agency. NR 49 TC 0 Z9 0 U1 4 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1757-1693 EI 1757-1707 J9 GCB BIOENERGY JI GCB Bioenergy PD FEB PY 2017 VL 9 IS 2 BP 460 EP 468 DI 10.1111/gcbb.12352 PG 9 WC Agronomy; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA EK0AV UT WOS:000393589600014 ER PT J AU Rodriguez-Palacios, A Corridoni, D Di Stefano, G Di Martino, L Antonopoulos, DA Chang, E Pizarro, TT Cominelli, F AF Rodriguez-Palacios, Alexander Corridoni, Daniele Di Stefano, Gabriella Di Martino, Luca Antonopoulos, D. A. Chang, Eugene Pizarro, T. T. Cominelli, Fabio TI Bacterial Sensor NOD2 Deletion Causes Th2-Inflammatory Bowel Disease Improvement Without Inducing Acute Metatranscriptomic Dysbiosis in Mice SO INFLAMMATORY BOWEL DISEASES LA English DT Meeting Abstract CT Advances-in-Inflammatory-Bowel-Diseases-Crohn's-and-Colitis Foundation's National Clinical and Research Conference CY DEC 08-10, 2016 CL Orlando, FL SP Advances Inflammatory Bowel Dis Crohns & Colitis Fdn C1 [Rodriguez-Palacios, Alexander] Case Western Reserve Univ, Sch Med, Case Digest Hlth Res Inst, Cleveland, OH USA. [Corridoni, Daniele; Di Stefano, Gabriella] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Antonopoulos, D. A.] Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Chang, Eugene] Univ Chicago, Chicago, IL 60637 USA. [Cominelli, Fabio] Univ Hosp Case Med Ctr, Cleveland, OH USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 1078-0998 EI 1536-4844 J9 INFLAMM BOWEL DIS JI Inflamm. Bowel Dis. PD FEB PY 2017 VL 23 SU 1 MA O-014 BP S5 EP S5 PG 1 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA EK4MX UT WOS:000393902100015 PM 28125562 ER PT J AU Alkire, RW AF Alkire, R. W. TI Approximating the near-edge mass absorption coefficients for Ni using an ultra-thin bimetal foil SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE mass absorption coefficients; nickel; titanium; absorption; ultra-thin foils; Ni K edge ID X-RAY-ABSORPTION; EXTENDED-RANGE TECHNIQUE; ATTENUATION COEFFICIENTS; SYNCHROTRON-RADIATION; ELEMENTS; CRYSTALLOGRAPHY; THICKNESS; MONITOR; SILICON; NICKEL AB In an effort to improve the characteristics of a fluorescing metal-foil-based beam position monitor, a new bimetal ultra-thin (0.98/0.67 mu m) Ti-Ni foil was introduced to replace an existing single-element ultra-thin 0.5 mu m thick Cr foil. During characterization it was determined that absorption measurements on the bimetal foil could be used to fit the Ni mass absorption coefficients accurately in the vicinity of the Ni K edge. Comparison with experimental results from the literature demonstrated that the fitting procedure produced coefficients with uncertainties of the order of +/- 1%. Once determined, these fit coefficients allowed the thickness of an independently mounted 8 mm thick Ni foil to be computed from absorption measurements instead of relying on a tool-based measurement of the foil thickness. Using the 8 mm thick foil, a continuous map of Ni mass absorption coefficients was produced at 1 eV resolution throughout the near-edge region. This high-resolution map marks a significant improvement over the existing NIST XCOM or FFAST database mass absorption coefficients, which have estimated errors of 10-20% for the near-edge region. C1 [Alkire, R. W.] Argonne Natl Lab, Struct Biol Ctr, Biosci Div, 9700 South Cass Ave, Argonne, IL 60439 USA. RP Alkire, RW (reprint author), Argonne Natl Lab, Struct Biol Ctr, Biosci Div, 9700 South Cass Ave, Argonne, IL 60439 USA. EM alkire@anl.gov FU US Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357] FX The author thanks Ralu Divan from the Center for Nanoscale Materials located at Argonne National Laboratory for help with physical measurements on the fs-Ni thickness, Paw Kristiansen from FMB Oxford for help with the HV QBPM graphics and F. J. Rotella for assistance in reviewing this manuscript. Results shown in this report are derived from work performed at Argonne National Laboratory, Structural Biology Center, at the Advanced Photon Source. Argonne is operated by UChicago Argonne, LLC, for the US Department of Energy, Office of Biological and Environmental Research, under contract No. DE-AC02-06CH11357. NR 27 TC 0 Z9 0 U1 0 U2 0 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2017 VL 50 BP 1 EP 13 DI 10.1107/S1600576716017544 PN 1 PG 13 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA EL0CC UT WOS:000394289400001 ER PT J AU White, CE Olds, DP Hartl, M Hjelm, RP Page, K AF White, Claire E. Olds, Daniel P. Hartl, Monika Hjelm, Rex P. Page, Katharine TI Evolution of the pore structure during the early stages of the alkali-activation reaction: an in situ small-angle neutron scattering investigation SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE small-angle neutron scattering; alkali-activated materials; pore structure; gel pores; nanoscale morphology ID PAIR DISTRIBUTION FUNCTION; C-S-H; PARTICLE-SIZE DISTRIBUTIONS; CALCIUM-SILICATE-HYDRATE; FLY-ASH; ELECTRON-MICROSCOPY; LOCAL-STRUCTURE; CEMENT PASTE; ALUMINOSILICATE GEOPOLYMER; METAKAOLIN GEOPOLYMERS AB The long-term durability of cement-based materials is influenced by the pore structure and associated permeability at the sub-micrometre length scale. With the emergence of new types of sustainable cements in recent decades, there is a pressing need to be able to predict the durability of these new materials, and therefore nondestructive experimental techniques capable of characterizing the evolution of the pore structure are increasingly crucial for investigating cement durability. Here, small-angle neutron scattering is used to analyze the evolution of the pore structure in alkali-activated materials over the initial 24 h of reaction in order to assess the characteristic pore sizes that emerge during these short time scales. By using a unified fitting approach for data modeling, information on the pore size and surface roughness is obtained for a variety of precursor chemistries and morphologies (metakaolin- and slag-based pastes). Furthermore, the impact of activator chemistry is elucidated via the analysis of pastes synthesized using hydroxide-and silicate-based activators. It is found that the main aspect influencing the size of pores that are accessible using small-angle neutron scattering analysis (approximately 10-500 angstrom in diameter) is the availability of free silica in the activating solution, which leads to a more refined pore structure with smaller average pore size. Moreover, as the reaction progresses the gel pores visible using this scattering technique are seen to increase in size. C1 [White, Claire E.] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. [White, Claire E.] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08544 USA. [Olds, Daniel P.; Hartl, Monika; Hjelm, Rex P.; Page, Katharine] Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, Los Alamos, NM USA. [Olds, Daniel P.; Page, Katharine] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN USA. [Hartl, Monika] European Spallat Source, Lund, Sweden. RP White, CE (reprint author), Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA.; White, CE (reprint author), Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08544 USA. EM whitece@princeton.edu RI Olds, Daniel/D-1722-2016 OI Olds, Daniel/0000-0002-4611-4113 FU Los Alamos National Laboratory; DOE [DE-AC52-06NA25396]; US Department of Energy through the LANL/LDRD Program; National Science Foundation [1362039]; DOE-Basic Energy Sciences under FWP [2012LANLE389] FX The authors would like to acknowledge the assistance of Anna Blyth in collecting the nitrogen sorption data. The participation of CEW and KP in this work was in part supported by Los Alamos National Laboratory, which is operated by Los Alamos National Security LLC under DOE contract DE-AC52-06NA25396. Furthermore, CEW gratefully acknowledges the support of the US Department of Energy through the LANL/LDRD Program and the National Science Foundation under grant No. 1362039. This research was performed on the LQD instrument at the Lujan Center at Los Alamos National Laboratory, supported by DOE-Basic Energy Sciences under FWP # 2012LANLE389. NR 70 TC 0 Z9 0 U1 5 U2 5 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2017 VL 50 BP 61 EP 75 DI 10.1107/S1600576716018331 PN 1 PG 15 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA EL0CC UT WOS:000394289400007 ER PT J AU Guthrie, M Pruteanu, CG Donnelly, ME Molaison, JJ dos Santos, AM Loveday, JS Boehler, R Tulk, CA AF Guthrie, M. Pruteanu, C. G. Donnelly, M. -E. Molaison, J. J. dos Santos, A. M. Loveday, J. S. Boehler, R. Tulk, C. A. TI Radiation attenuation by single-crystal diamond windows SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE high pressure; time of flight; diamond-anvil cells; attenuation ID DIFFRACTION AB As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leading to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. This article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities. C1 [Guthrie, M.] ERIC, European Spallat Source, Lund, Sweden. [Pruteanu, C. G.; Donnelly, M. -E.; Loveday, J. S.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland. [Pruteanu, C. G.; Donnelly, M. -E.; Loveday, J. S.] Univ Edinburgh, Ctr Sci Extreme Condit, Edinburgh, Midlothian, Scotland. [Molaison, J. J.; dos Santos, A. M.; Boehler, R.; Tulk, C. A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Boehler, R.] Carnegie Inst Sci, Washington, DC USA. RP Guthrie, M (reprint author), ERIC, European Spallat Source, Lund, Sweden. EM malcolm.guthrie@esss.se FU Deep Carbon Observatory; Scottish Doctoral Training Centre in Condensed Matter Physics - UK Engineering and Physical Sciences Research Council (EPSRC); EPSRC; EFree, an Energy Frontier Research Center - US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES) [DE-SC0001057] FX We thank Jon Taylor for assistance in implementing the MantidPlot software and Richard Nelmes for useful discussions. The internal-membrane diamond anvil cell used in this work was developed with the support of the Deep Carbon Observatory. CGP is supported by a studentship from the Scottish Doctoral Training Centre in Condensed Matter Physics, which is funded in part by the UK Engineering and Physical Sciences Research Council (EPSRC). MED is supported by an EPSRC doctoral training programme studentship. Part of MG's contribution to this work was supported by EFree, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), under award DE-SC0001057. NR 15 TC 0 Z9 0 U1 1 U2 1 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2017 VL 50 BP 76 EP 86 DI 10.1107/S1600576716018185 PN 1 PG 11 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA EL0CC UT WOS:000394289400008 ER PT J AU Playford, HY Tucker, MG Bull, CL AF Playford, Helen Y. Tucker, Matthew G. Bull, Craig L. TI Neutron total scattering of crystalline materials in the gigapascal regime SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE total scattering; high pressure; pair distribution function; neutron diffraction ID POWDER DIFFRACTION; SIO2; NANOSCALE; QUARTZ; ORDER; CELL; GPA AB Neutron total scattering of disordered crystalline materials provides direct experimental access to the local (short-range) structure. The ways in which this local structure agrees (or disagrees) with the long-range crystal structure can provide important insight into structure-property relationships. High-pressure neutron diffraction using a Paris-Edinburgh (P-E) pressure cell allows experimenters to explore the ways in which materials are affected by pressure, can reveal new synthetic routes to novel functional materials and has important applications in many areas, including geology, engineering and planetary science. However, the combination of these two experimental techniques poses unique challenges for both data collection and analysis. In this paper it is shown that, with only minor modifications to the standard P-E press setup, high-quality total scattering data can be obtained from crystalline materials in the gigapascal pressure regime on the PEARL diffractometer at ISIS. The quality of the data is assessed through the calculation of coordination numbers and the use of reverse Monte Carlo refinements. The time required to collect data of sufficient quality for detailed analysis is assessed and is found to be of the order of 8 h for a quartz sample. Finally, data from the perovskite LaCo0.35Mn0.65O3 are presented and reveal that PEARL total scattering data offer the potential of extracting local structural information from complex materials at high pressure. C1 [Playford, Helen Y.; Tucker, Matthew G.; Bull, Craig L.] Rutherford Appleton Lab, STFC ISIS Facil, Didcot OX11 0QX, Oxon, England. [Tucker, Matthew G.] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England. [Tucker, Matthew G.] Spallat Neutron Source, One Bethel Valley Rd,MS-6475, Oak Ridge, TN USA. RP Bull, CL (reprint author), Rutherford Appleton Lab, STFC ISIS Facil, Didcot OX11 0QX, Oxon, England. EM craig.bull@stfc.ac.uk NR 36 TC 0 Z9 0 U1 2 U2 2 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2017 VL 50 BP 87 EP 95 DI 10.1107/S1600576716018173 PN 1 PG 9 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA EL0CC UT WOS:000394289400009 ER PT J AU Birkbak, ME Nielsen, IG Frolich, S Stock, SR Kenesei, P Almer, JD Birkedal, H AF Birkbak, Mie Elholm Nielsen, Ida Gjerlevsen Frolich, Simon Stock, Stuart R. Kenesei, Peter Almer, Jonathan D. Birkedal, Henrik TI Concurrent determination of nanocrystal shape and amorphous phases in complex materials by diffraction scattering computed tomography SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE diffraction scattering computed tomography; nanocrystals; amorphous phases; Rietveld refinement ID POWDER DIFFRACTION; GROWTH-KINETICS; MCR-ALS; NANOPARTICLES; TIO2; HYDROXYAPATITE; TEMPERATURE; REFINEMENT; BROOKITE; COBALT AB Advanced functional materials often contain multiple phases which are (nano) crystalline and/or amorphous. The spatial distribution of these phases and their properties, including nanocrystallite size and shape, often drives material function yet is difficult to obtain with current experimental techniques. This article describes the use of diffraction scattering computed tomography, which maps wide-angle scattering information onto sample space, to address this challenge. The wide-angle scattering signal contains information on both (nano) crystalline and amorphous phases. Rietveld refinement of reconstructed diffraction patterns is employed to determine anisotropic nanocrystal shapes. The background signal from refinements is used to identify contributing amorphous phases through multivariate curve resolution. Thus it is demonstrated that reciprocal space analysis in combination with diffraction scattering computed tomography is a very powerful tool for the complete analysis of complex multiphase materials such as energy devices. C1 [Birkbak, Mie Elholm; Nielsen, Ida Gjerlevsen; Frolich, Simon; Birkedal, Henrik] Aarhus Univ, Dept Chem, Gustav Wieds Vej 14, DK-8000 Aarhus, Denmark. [Birkbak, Mie Elholm; Nielsen, Ida Gjerlevsen; Frolich, Simon; Birkedal, Henrik] Aarhus Univ, iNANO, Gustav Wieds Vej 14, DK-8000 Aarhus, Denmark. [Stock, Stuart R.] Northwestern Univ, Feinberg Sch Med, Dept Cell & Mol Biol, Chicago, IL 60611 USA. [Kenesei, Peter; Almer, Jonathan D.] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Birkedal, H (reprint author), Aarhus Univ, Dept Chem, Gustav Wieds Vej 14, DK-8000 Aarhus, Denmark.; Birkedal, H (reprint author), Aarhus Univ, iNANO, Gustav Wieds Vej 14, DK-8000 Aarhus, Denmark. EM hbirkedal@chem.au.dk FU DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; Human Frontiers Science Program; Danish Research Councils for Independent Research in the form an EliteForsk Travel Scholarship; Danish Agency for Science, Technology and Innovation (DANSCATT) FX This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract No. DE-AC02-06CH11357. Support from the Human Frontiers Science Program, the Danish Research Councils for Independent Research in the form an EliteForsk Travel Scholarship to SF, and the Danish Agency for Science, Technology and Innovation (DANSCATT) is gratefully acknowledged. NR 30 TC 0 Z9 0 U1 0 U2 0 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2017 VL 50 BP 192 EP 197 DI 10.1107/S1600576716019543 PN 1 PG 6 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA EL0CC UT WOS:000394289400018 ER PT J AU Iamsasri, T Guerrier, J Esteves, G Fancher, CM Wilson, AG Smith, RC Paisley, EA Johnson-Wilke, R Ihlefeld, JF Bassiri-Gharb, N Jones, JL AF Iamsasri, Thanakorn Guerrier, Jonathon Esteves, Giovanni Fancher, Chris M. Wilson, Alyson G. Smith, Ralph C. Paisley, Elizabeth A. Johnson-Wilke, Raegan Ihlefeld, Jon F. Bassiri-Gharb, Nazanin Jones, Jacob L. TI A Bayesian approach to modeling diffraction profiles and application to ferroelectric materials SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE ferroelectric materials; Bayesian inference; domain switching fraction; modeling diffraction profiles ID LEAD-ZIRCONATE-TITANATE; THIN-FILMS; X-RAY; POLYCRYSTALLINE FERROELECTRICS; FERROELASTIC CERAMICS; NEUTRON-DIFFRACTION; TEXTURE; STRAIN AB A new statistical approach for modeling diffraction profiles is introduced, using Bayesian inference and a Markov chain Monte Carlo (MCMC) algorithm. This method is demonstrated by modeling the degenerate reflections during application of an electric field to two different ferroelectric materials: thin-film lead zirconate titanate (PZT) of composition PbZr0.3Ti0.7O3 and a bulk commercial PZT polycrystalline ferroelectric. The new method offers a unique uncertainty quantification of the model parameters that can be readily propagated into new calculated parameters. C1 [Iamsasri, Thanakorn; Guerrier, Jonathon; Esteves, Giovanni; Fancher, Chris M.; Jones, Jacob L.] North Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA. [Iamsasri, Thanakorn] King Mongkuts Univ Technol North Bangkok, Dept Ind Phys & Med Instrumentat, Fac Sci Appl, Bangkok 10800, Thailand. [Wilson, Alyson G.] North Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA. [Smith, Ralph C.] North Carolina State Univ, Dept Math, Box 8205, Raleigh, NC 27695 USA. [Paisley, Elizabeth A.; Johnson-Wilke, Raegan; Ihlefeld, Jon F.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Bassiri-Gharb, Nazanin] Georgia Inst Technol, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Bassiri-Gharb, Nazanin] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. RP Jones, JL (reprint author), North Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA. EM jljone21@ncsu.edu RI Fancher, Chris/F-1293-2017 OI Fancher, Chris/0000-0002-3952-5168 FU Development and Promotion of Science and Technology Talents Project, Royal Thai Government, Thailand; US Defense Threat Reduction Agency (DTRA) [HDTRA1-15-1-0035]; Laboratory Directed Research and Development Program at Sandia National Laboratories; Lockheed Martin Corporation; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX TI acknowledges support from the Development and Promotion of Science and Technology Talents Project, Royal Thai Government, Thailand. JG, NBG and JLJ acknowledge the US Defense Threat Reduction Agency (DTRA) for support under grant No. HDTRA1-15-1-0035. EAP, RLJ and JFI were supported by the Laboratory Directed Research and Development Program at Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract No. DE-AC04-94AL85000. This research used the resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract No. DE-AC02-06CH11357. NR 27 TC 0 Z9 0 U1 1 U2 1 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2017 VL 50 BP 211 EP 220 DI 10.1107/S1600576716020057 PN 1 PG 10 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA EL0CC UT WOS:000394289400020 ER PT J AU Chacon, L Chen, G Knoll, DA Newman, C Park, H Taitano, W Willert, JA Womeldorff, G AF Chacon, L. Chen, G. Knoll, D. A. Newman, C. Park, H. Taitano, W. Willert, J. A. Womeldorff, G. TI Multiscale high-order/low-order (HOLO) algorithms and applications SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE High-order/low-order; HOLO; Multiscale algorithms; Implicit timestepping; Communication avoiding algorithms ID RADIATIVE-TRANSFER PROBLEMS; FOKKER-PLANCK EQUATION; IMPLICIT PARTICLE SIMULATION; IN-CELL ALGORITHM; ELECTROMAGNETIC PLASMA SIMULATION; DIFFUSION SYNTHETIC ACCELERATION; MOMENT-BASED ACCELERATOR; MESH FINITE-DIFFERENCE; K-EIGENVALUE PROBLEMS; FULLY IMPLICIT AB We review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. The HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing. (C) 2016 Elsevier Inc. All rights reserved. C1 [Chacon, L.; Chen, G.; Knoll, D. A.; Newman, C.; Park, H.; Taitano, W.; Womeldorff, G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Willert, J. A.] Inst Def Anal, Alexandria, VA 22311 USA. RP Chacon, L (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM chacon@lanl.gov OI Chen, Guangye/0000-0002-8800-5791 FU Los Alamos National Laboratory Directed Research and Development (LDRD) program; Los Alamos National Laboratory Advance Simulation and Computing (ASC) program; Office of Applied Scientific Computing Research (ASCR) of the U.S. Department of Energy; Office of Biological and Environmental Research (BER) of the U.S. Department of Energy; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was partially sponsored by the Los Alamos National Laboratory Directed Research and Development (LDRD) program, by the Los Alamos National Laboratory Advance Simulation and Computing (ASC) program, and by the Office of Applied Scientific Computing Research (ASCR) and Office of Biological and Environmental Research (BER) of the U.S. Department of Energy. This work was performed under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory, managed by LANS, LLC under contract DE-AC52-06NA25396. NR 122 TC 0 Z9 0 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 1 PY 2017 VL 330 BP 21 EP 45 DI 10.1016/j.jcp.2016.10.069 PG 25 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA EL1VG UT WOS:000394408900002 ER PT J AU Choi, S Lee, C Lee, D AF Choi, Sooyoung Lee, Changho Lee, Deokjung TI Resonance treatment using pin-based pointwise energy slowing-down method SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Reactor physics; Resonance treatment; Resonance self-shielding; Equivalence theory; Light water reactor; Slowing-down ID ELASTIC-SCATTERING; INTERFERENCE; IMPACT AB A new resonance self-shielding method using a pointwise energy solution has been developed to overcome the drawbacks of the equivalence theory. The equivalence theory uses a crude resonance scattering source approximation, and assumes a spatially constant scattering source distribution inside a fuel pellet. These two assumptions cause a significant error, in that they overestimate the multi-group effective cross sections, especially for U-238. The new resonance self-shielding method solves pointwise energy slowing-down equations with a sub-divided fuel rod. The method adopts a shadowing effect correction factor and fictitious moderator material to model a realistic pointwise energy solution. The slowing-down solution is used to generate the multi-group cross section. With various light water reactor problems, it was demonstrated that the new resonance self-shielding method significantly improved accuracy in the reactor parameter calculation with no compromise in computation time, compared to the equivalence theory. (C) 2016 Elsevier Inc. All rights reserved. C1 [Choi, Sooyoung; Lee, Deokjung] Ulsan Natl Inst Sci & Technol, 50 UNIST Gil, Ulsan 44919, South Korea. [Lee, Changho] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Lee, D (reprint author), Ulsan Natl Inst Sci & Technol, 50 UNIST Gil, Ulsan 44919, South Korea. EM csy0321@unist.ac.kr; clee@anl.gov; deokjung@unist.ac.kr FU U.S. Department of Energy (DOE) [DE-AC02-06CH11357]; Korea Energy Technology Evaluation and Planning (KETEP) - Korean Government Ministry of Trade, Industry and Energy [20131610101850] FX This work was supported by the U.S. Department of Energy (DOE) under Contract number DE-AC02-06CH11357 and Korea Energy Technology Evaluation and Planning (KETEP) funded by the Korean Government Ministry of Trade, Industry and Energy (No. 20131610101850). NR 25 TC 0 Z9 0 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 1 PY 2017 VL 330 BP 134 EP 155 DI 10.1016/j.jcp.2016.11.007 PG 22 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA EL1VG UT WOS:000394408900009 ER PT J AU Foster, EL Loheac, J Tran, MB AF Foster, Erich L. Loheac, Jerome Minh-Binh Tran TI A structure preserving scheme for the Kolmogorov-Fokker-Planck equation SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Kolmogorov equation; Long time simulation; Self-similar variables ID 2ND-ORDER DIFFERENTIAL-EQUATIONS; CONVECTION-DIFFUSION EQUATION; FINITE-VOLUME SCHEME; BLOWING-UP SOLUTIONS; PARABOLIC EQUATIONS; TIME BEHAVIOR AB In this paper we introduce a numerical scheme which preserves the behavior of solutions to the Kolmogorov Equation as time tends to infinity. The method presented is based on a self-similar change of variables technique to transform the Kolmogorov Equation into a new form, such that the problem of designing structure preserving schemes, for the original equation, amounts to building a standard scheme for the transformed equation. This transformation also has the added benefit of allowing for an exact operator splitting scheme, whereas in the original form a standard operator splitting was only second-order. Finally, we verify the preservation of long time behavior through numerical simulations. (C) 2016 Elsevier Inc. All rights reserved. C1 [Foster, Erich L.] Sandia Natl Labs, Ctr Res Comp, POB 5800, Albuquerque, NM 87185 USA. [Loheac, Jerome] LUNAM Univ, IRCCyN UMR CNRS 6597, Ecole Mines Nantes, Inst Rech Commun & Cybernet Nantes, 4 Rue Alfred Kastler, F-44307 Nantes, France. [Minh-Binh Tran] Univ Wisconsin, Dept Math, Madison, WI 53706 USA. RP Loheac, J (reprint author), LUNAM Univ, IRCCyN UMR CNRS 6597, Ecole Mines Nantes, Inst Rech Commun & Cybernet Nantes, 4 Rue Alfred Kastler, F-44307 Nantes, France. EM elfost@sandia.gov; jerome.loheac@irccyn.ec-nantes.fr; mtran23@wisc.edu RI Loheac, Jerome/K-4275-2014 OI Loheac, Jerome/0000-0002-2785-268X FU European Research Council Executive Agency [NUMERIWAVES/FP7-246775]; EOARD-AFOSR [FA9550-14-1-0214]; BERC program of the Basque Government; MINECO [MTM2011-29306-C02-00, SEV-2013-0323]; BCAM; [PI2010-04] FX The authors would like to thank Professor Enrique Zuazua for suggesting this research topic and his great guidance while supervising this work. This work is supported by the Advanced Grants NUMERIWAVES/FP7-246775 of the European Research Council Executive Agency, FA9550-14-1-0214 of the EOARD-AFOSR, PI2010-04 and the BERC 2014-2017 program of the Basque Government, the MTM2011-29306-C02-00 and SEV-2013-0323 Grants of the MINECO. During this research, the authors were members of the Basque Center for Applied Mathematics and thank the BCAM for hospitality and support. NR 25 TC 0 Z9 0 U1 2 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 1 PY 2017 VL 330 BP 319 EP 339 DI 10.1016/j.jcp.2016.11.009 PG 21 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA EL1VG UT WOS:000394408900018 ER PT J AU Sauer, RA Duong, TX Mandadapu, KK Steigmann, DJ AF Sauer, Roger A. Duong, Thang X. Mandadapu, Kranthi K. Steigmann, David J. TI A stabilized finite element formulation for liquid shells and its application to lipid bilayers SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Cell budding; Cell tethering; Helfrich energy; Isogeometric analysis; Non-linear finite elements; Non-linear shell theory ID RED-BLOOD-CELL; MEMBRANE CURVATURE; ENDOPLASMIC-RETICULUM; PROTEINS; VESICLES; TENSION; MECHANISMS; MODEL; SHAPE; MICROTUBULES AB This paper presents a new finite element (FE) formulation for liquid shells that is based on an explicit, 3D surface discretization using C-1-continuous finite elements constructed from NURBS interpolation. Both displacement-based and mixed displacement/pressure FE formulations are proposed. The latter is needed for area-incompressible material behavior, where penalty-type regularizations can lead to misleading results. In order to obtain quasi-static solutions for liquid shells devoid of shear stiffness, several numerical stabilization schemes are proposed based on adding stiffness, adding viscosity or using projection. Several numerical examples are considered in order to illustrate the accuracy and the capabilities of the proposed formulation, and to compare the different stabilization schemes. The presented formulation is capable of simulating non-trivial surface shapes associated with tube formation and protein-induced budding of lipid bilayers. In the latter case, the presented formulation yields non-axisymmetric solutions, which have not been observed in previous simulations. It is shown that those non-axisymmetric shapes are preferred over axisymmetric ones. (C) 2016 Elsevier Inc. All rights reserved. C1 [Sauer, Roger A.; Duong, Thang X.] Rhein Westfal TH Aachen, Aachen Inst Adv Study Computat Engn Sci AICES, Templergraben 55, D-52056 Aachen, Germany. [Mandadapu, Kranthi K.] Univ Calif Berkeley, Dept Chem & Biomol Engn, 110 Gilman Hall, Berkeley, CA 94720 USA. [Mandadapu, Kranthi K.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Steigmann, David J.] Univ Calif Berkeley, Dept Mech Engn, 6141 Etcheverry Hall, Berkeley, CA 94720 USA. RP Sauer, RA (reprint author), Rhein Westfal TH Aachen, Aachen Inst Adv Study Computat Engn Sci AICES, Templergraben 55, D-52056 Aachen, Germany. EM sauer@aices.rwth-aachen.de FU German Research Foundation (DFG) [GSC 111, SA1822/5-1]; University of California, Berkeley; Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy [DE AC02-05CH11231] FX The authors are grateful to the German Research Foundation (DFG) for supporting this research under grants GSC 111 and SA1822/5-1. They acknowledge support from the University of California, Berkeley and from Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy under contract No. DE AC02-05CH11231. Further, they thank the graduate student Yannick Omar for checking the theory. NR 69 TC 0 Z9 0 U1 3 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 1 PY 2017 VL 330 BP 436 EP 466 DI 10.1016/j.jcp.2016.11.004 PG 31 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA EL1VG UT WOS:000394408900023 ER PT J AU Einkemmer, L Tokman, M Loffeld, J AF Einkemmer, Lukas Tokman, Mayya Loffeld, John TI On the performance of exponential integrators for problems in magnetohydrodynamics SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Exponential integrators; Magnetohydrodynamics; Stiff systems; EPIC ID PROPAGATION ITERATIVE METHODS; RUNGE-KUTTA TYPE; KRYLOV SUBSPACE APPROXIMATIONS; RESISTIVE MAGNETOHYDRODYNAMICS; KADOMTSEV-PETVIASHVILI; ACCRETION DISKS; MATRIX; IMPLICIT; OPERATOR; IMPLEMENTATION AB Exponential integrators have been introduced as an efficient alternative to explicit and implicit methods for integrating large stiff systems of differential equations. Over the past decades these methods have been studied theoretically and their performance was evaluated using a range of test problems. While the results of these investigations showed that exponential integrators can provide significant computational savings, the research on validating this hypothesis for large scale systems and understanding what classes of problems can particularly benefit from the use of the new techniques is in its initial stages. Resistive magnetohydrodynamic (MHD) modeling is widely used in studying large scale behavior of laboratory and astrophysical plasmas. In many problems numerical solution of MHD equations is a challenging task due to the temporal stiffness of this system in the parameter regimes of interest. In this paper we evaluate the performance of exponential integrators on large MHD problems and compare them to a state-of-the-art implicit time integrator. Both the variable and constant time step exponential methods of EPIRK-type are used to simulate magnetic reconnection and the Kevin-Helmholtz instability in plasma. Performance of these methods, which are part of the EPIC software package, is compared to the variable time step variable order BDF scheme included in the CVODE (part of SUNDIALS) library. We study performance of the methods on parallel architectures and with respect to magnitudes of important parameters such as Reynolds, Lundquist, and Prandtl numbers. We find that the exponential integrators provide superior or equal performance in most circumstances and conclude that further development of exponential methods for MHD problems is warranted and can lead to significant computational advantages for large scale stiff systems of differential equations such as MHD. (C) 2016 Elsevier Inc. All rights reserved. C1 [Einkemmer, Lukas] Univ Innsbruck, Innsbruck, Austria. [Tokman, Mayya] Univ Calif Merced, Merced, CA USA. [Loffeld, John] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Einkemmer, L (reprint author), Univ Innsbruck, Innsbruck, Austria. EM lukas.einkemmer@uibk.ac.at; mtokman@ucmerced.edu; loffeld1@llnl.gov FU Marshall plan scholarship of the Austrian Marshall Plan Foundation; Fonds zur Forderung der Wissenschaftlichen Forschung (FWF) [P25346]; National Science Foundation, Computational Mathematics Program [1115978]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We would like to take the opportunity to thank D. R. Reynolds for providing the code of. the Fortran MHD solver and for the helpful discussion. Dr. Einkemmer was supported by the Marshall plan scholarship of the Austrian Marshall Plan Foundation (http://www.marshallplan.at/) and by the Fonds zur Forderung der Wissenschaftlichen Forschung (FWF) - project id: P25346. This work was in part supported by a grant from the National Science Foundation, Computational Mathematics Program, under Grant No. 1115978. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 57 TC 0 Z9 0 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 1 PY 2017 VL 330 BP 550 EP 565 DI 10.1016/j.jcp.2016.11.027 PG 16 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA EL1VG UT WOS:000394408900028 ER PT J AU Lei, H Yang, X Li, Z Karniadakis, GE AF Lei, Huan Yang, Xiu Li, Zhen Karniadakis, George Em TI Systematic parameter inference in stochastic mesoscopic modeling SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Coarse-grained force field; Dissipative particle dynamics; Energy conserving dissipative particle dynamics; Compressive sensing; Generalized polynomial chaos; Model reduction; High dimensionality ID DISSIPATIVE PARTICLE DYNAMICS; SICKLE-CELL-ANEMIA; DIFFERENTIAL-EQUATIONS; UNCERTAINTY QUANTIFICATION; ENERGY-CONSERVATION; COLLOCATION METHOD; POLYNOMIAL CHAOS; HEAT-CONDUCTION; SIMULATION; MECHANICS AB We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are "sparse". The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way. (C) 2016 Elsevier Inc. All rights reserved. C1 [Lei, Huan; Yang, Xiu] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Li, Zhen; Karniadakis, George Em] Brown Univ, Div Appl Math, Providence, RI 02912 USA. RP Karniadakis, GE (reprint author), Brown Univ, Div Appl Math, Providence, RI 02912 USA. EM george_karniadakis@brown.edu RI Li, Zhen/B-2722-2013 OI Li, Zhen/0000-0002-0936-6928 FU Army Research Laboratory; new Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4) - DOE; [W911NF-12-2-0023] FX This research is sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-12-2-0023 to University of Utah. We also acknowledge partial support from the new Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4) supported by DOE. We would like to thank Hui Wang, Zhongqiang Zhang, Mingge Deng, Xiaoxing Cheng and two anonymous reviewers for helpful discussions and constructive suggestions. NR 66 TC 0 Z9 0 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 1 PY 2017 VL 330 BP 571 EP 593 DI 10.1016/j.jcp.2016.10.029 PG 23 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA EL1VG UT WOS:000394408900030 ER PT J AU Carlberg, K Barone, M Antil, H AF Carlberg, Kevin Barone, Matthew Antil, Harbir TI Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Model reduction; GNAT; Least-squares Petrov-Galerkin projection; Galerkin projection; CFD ID PROPER ORTHOGONAL DECOMPOSITION; PARTIAL-DIFFERENTIAL-EQUATIONS; REDUCED BASIS APPROXIMATION; NAVIER-STOKES EQUATIONS; REAL-TIME SOLUTION; EMPIRICAL INTERPOLATION; COHERENT STRUCTURES; DYNAMICAL-SYSTEMS; TURBULENT FLOWS; POD MODELS AB Least-squares Petrov-Galerkin (LSPG) model-reduction techniques such as the Gauss Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible flow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform optimal projection associated with residual minimization at the time-continuous level, while LSPG techniques do so at the time discrete level. This work provides a detailed theoretical and computational comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge-Kutta schemes. We present a number of new findings, including conditions under which the LSPG ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and computationally that decreasing the time step does not necessarily decrease the error for the LSPG ROM; instead, the time step should be 'matched' to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible-flow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the LSPG reduced-order model by an order of magnitude. (C) 2016 Elsevier Inc. All rights reserved. C1 [Carlberg, Kevin] Sandia Natl Labs, 7011 East Ave,MS 9159, Livermore, CA 94550 USA. [Barone, Matthew] Sandia Natl Labs, POB 5800,MS 0825, Albuquerque, NM 87185 USA. [Antil, Harbir] George Mason Univ, 4400 Univ Dr,MS 3F2,Exploratory Hall,Room 4201, Fairfax, VA 22030 USA. RP Carlberg, K (reprint author), Sandia Natl Labs, 7011 East Ave,MS 9159, Livermore, CA 94550 USA. EM ktcarlb@sandia.gov; mbarone@sandia.gov; hantil@gmu.edu FU Sandia National Laboratories Truman Fellowship in National Security Science and Engineering; Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; [NSF-DMS-1521590] FX We thank Prof. Stephen Pope for insightful conversations related to comparing Galerkin and least-squares Petrov Galerkin reduced-order models; these conversations inspired this work. We also thank the anonymous reviewers for their extremely helpful and insightful comments and suggestions. We also thank Prof. Charbel Farhat for permitting us the use of AERO-F, as well as Julien Cortial, Charbel Bou-Mosleh, and David Amsallem for their previous contributions in implementing nonlinear reduced-order models in AERO-F. K. Carlberg acknowledges an appointment to the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering. The Truman Fellowship is sponsored by Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. H. Antil acknowledges the support by the NSF-DMS-1521590. The content of this publication does not necessarily reflect the position or policy of any of these institutions, and no official endorsement should be inferred. NR 57 TC 1 Z9 1 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 1 PY 2017 VL 330 BP 693 EP 734 DI 10.1016/j.jcp.2016.10.033 PG 42 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA EL1VG UT WOS:000394408900037 ER PT J AU Rosen, AL Krumholz, MR Oishi, JS Lee, AT Klein, RI AF Rosen, A. L. Krumholz, M. R. Oishi, J. S. Lee, A. T. Klein, R. I. TI Hybrid Adaptive Ray-Moment Method (HARM(2)): A highly parallel method for radiation hydrodynamics on adaptive grids SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Radiative transfer; Hydrodynamics; Parallelization; Long characteristics; Adaptive mesh refinement ID STAR-FORMATION SIMULATIONS; MESH REFINEMENT; MOLECULAR CLOUDS; HII-REGIONS; DIFFUSION; TRANSPORT; SCHEME; RESOLUTION; EQUATIONS; PRESSURE AB We present a highly-parallel multi-frequency hybrid radiation hydrodynamics algorithm that combines a spatially-adaptive long characteristics method for the radiation field from point sources with a moment method that handles the diffuse radiation field produced by a volume-filling fluid. Our Hybrid Adaptive Ray-Moment Method (HARM(2)) operates on patch based adaptive grids, is compatible with asynchronous time stepping, and works with any moment method. In comparison to previous long characteristics methods, we have greatly improved the parallel performance of the adaptive long-characteristics method by developing a new completely asynchronous and non-blocking communication algorithm. As a result of this improvement, our implementation achieves near-perfect scaling up to O(10(3)) processors on distributed memory machines. We present a series of tests to demonstrate the accuracy and performance of the method. (C) 2016 Elsevier Inc. All rights reserved. C1 [Rosen, A. L.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Krumholz, M. R.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Oishi, J. S.] Bates Coll, Dept Phys &Astron, Lewiston, ME 04240 USA. [Lee, A. T.; Klein, R. I.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Klein, R. I.] Lawrence Livermore Natl Lab, POB L-23, Livermore, CA 94550 USA. RP Rosen, AL (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. EM alrosen@ucsc.edu OI Krumholz, Mark/0000-0003-3893-854X; Rosen, Anna/0000-0003-4423-0660 FU National Aeronautics and Space Administration (NASA) through Hubble Archival Research grant by Space Telescope Science Institute [HST-AR-13265.02-A]; NASA [NAS 5-26555, NAS8-03060]; Chandra Theory Grant Award by Chandra X-ray Observatory Center [TM5-16007X]; NSF Graduate Research Fellowship Program [DGE-0809125]; NASA through ATP grant [NNX13AB84G]; NSF [AST-1211729]; US Department of Energy at the Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NASA TCAN grant [NNX-14AB52G]; Australian Research Council [DP160100695] FX We thank the referees for their comments and suggestions, which improved the quality of this work. We thank Nathan Roth, Andrew Myers, and Pak Shing Li for their assistance in integrating HARM2 into ORION, Chris McKee for helpful comments throughout the development process, and John Wise and Christian Baczynski for comments and advice. ALR and MRK acknowledge support from the National Aeronautics and Space Administration (NASA) through Hubble Archival Research grant HST-AR-13265.02-A issued by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555 and Chandra Theory Grant Award Number TM5-16007X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. ALR and ATL acknowledge support from the NSF Graduate Research Fellowship Program (number DGE-0809125). RIK acknowledges support from NASA through ATP grant NNX13AB84G, the NSF through grant AST-1211729 and the US Department of Energy at the Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. MRK and RIK acknowledge support from NASA TCAN grant NNX-14AB52G. MRK acknowledges support from Australian Research Council grant DP160100695. NR 36 TC 0 Z9 0 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 1 PY 2017 VL 330 BP 924 EP 942 DI 10.1016/j.jcp.2016.10.048 PG 19 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA EL1VG UT WOS:000394408900048 ER PT J AU Mahajan, A Youssef, LA Cleyrat, C Grattan, R Lucero, SR Mattison, CP Erasmus, MF Jacobson, B Tapia, L Hlavacek, WS Schuyler, M Wilson, BS AF Mahajan, Avanika Youssef, Lama A. Cleyrat, Cedric Grattan, Rachel Lucero, Shayna R. Mattison, Christopher P. Erasmus, M. Frank Jacobson, Bruna Tapia, Lydia Hlavacek, William S. Schuyler, Mark Wilson, Bridget S. TI Allergen Valency, Dose, and FcERI Occupancy Set Thresholds for Secretory Responses to Pen a 1 and Motivate Design of Hypoallergens SO JOURNAL OF IMMUNOLOGY LA English DT Article ID FC-EPSILON-RI; MAJOR SHRIMP ALLERGEN; BASOPHILIC LEUKEMIA-CELLS; MAST-CELLS; SEAFOOD ALLERGY; IGE ANTIBODY; IN-VITRO; MOLECULAR CHARACTERIZATION; RECOMBINANT ALLERGENS; TYROSINE KINASE AB Ag-mediated crosslinking of IgE FcERI complexes activates mast cells and basophils, initiating the allergic response. Of 34 donors recruited having self-reported shrimp allergy, only 35% had significant levels of shrimp-specific IgE in serum and measurable basophil secretory responses to rPen a 1 (shrimp tropomyosin). We report that degranulation is linked to the number of Fc epsilon RI occupied with allergen-specific IgE, as well as the dose and valency of Pen a 1. Using clustered regularly interspaced palindromic repeat based gene editing, human RBL'K cells were created that exclusively express the human FcERIa subunit. Pen a 1 specific IgE was affinity purified from shrimp-positive plasma. Cells primed with a range of Pen a 1 specific IgE and challenged with Pen a 1 showed a bell-shaped dose response for secretion, with optimal Pen a 1 doses of 0.1-10 ng/ml. Mathematical modeling provided estimates of receptor aggregation kinetics based on FcERI occupancy with IgE and allergen dose. Maximal degranulation was elicited when similar to 2700 IgE Fc epsilon RI complexes were occupied with specific IgE and challenged with Pen a 1 (IgE epitope valency of although measurable responses were achieved when only a few hundred FcERI were occupied. Prolonged periods of pepsin-mediated Pen a 1 proteolysis, which simulates gastric digestion, were required to diminish secretory responses. Recombinant fragments (60-79 aa), which together span the entire length of tropomyosin, were weak secretagogues. These fragments have reduced dimerization capacity, compete with intact Pen a 1 for binding to IgE Fc epsilon RI complexes, and represent a starting point for the design of promising hypoallergens for immunotherapy. C1 [Mahajan, Avanika; Cleyrat, Cedric; Grattan, Rachel; Lucero, Shayna R.; Erasmus, M. Frank; Wilson, Bridget S.] Univ New Mexico, Dept Pathol, Albuquerque, NM 87131 USA. [Youssef, Lama A.] Damascus Univ, Sch Pharm, Dept Pharmaceut & Pharmaceut Technol, Damascus, Syria. [Youssef, Lama A.] Natl Commiss Biotechnol, Damascus, Syria. [Mattison, Christopher P.] USDA ARS, Southern Reg Res Ctr, New Orleans, LA 70124 USA. [Jacobson, Bruna; Tapia, Lydia] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. [Hlavacek, William S.] Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Hlavacek, William S.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Schuyler, Mark] Univ New Mexico, Dept Med, Albuquerque, NM 87131 USA. RP Wilson, BS (reprint author), Univ New Mexico, Canc Res Facil, 205A,2325 Camino Salud NE, Albuquerque, NM 87131 USA. EM bwilson@salud.unm.edu OI Tapia, Lydia/0000-0002-7822-7091; Hlavacek, William/0000-0003-4383-8711 FU National Institutes of Health [P50GM085273]; National Science Foundation Career Award [III-1553266]; U.S. Department of Agriculture, Agricultural Research Service FX This work was supported by National Institutes of Health Grant P50GM085273 (to B.S.W.) and National Science Foundation Career Award III-1553266 (to L.T.). This work was also supported in part by funds from the U.S. Department of Agriculture, Agricultural Research Service (to C.P.M.). NR 80 TC 0 Z9 0 U1 1 U2 1 PU AMER ASSOC IMMUNOLOGISTS PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0022-1767 EI 1550-6606 J9 J IMMUNOL JI J. Immunol. PD FEB 1 PY 2017 VL 198 IS 3 BP 1034 EP 1046 DI 10.4049/jimmunol.1601334 PG 13 WC Immunology SC Immunology GA EI3SX UT WOS:000392412700009 PM 28039304 ER PT J AU DeVine, JA Weichman, ML Lyle, SJ Neumark, DM AF DeVine, Jessalyn A. Weichman, Marissa L. Lyle, Steven J. Neumark, Daniel M. TI High-resolution photoelectron imaging of cryogenically cooled alpha- and beta-furanyl anions SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Photoelectron spectroscopy; Velocity-map imaging; Aromatic heterocycle; Radical; Furan ID GAS-PHASE; ANGULAR-DISTRIBUTIONS; ELECTRONIC-STRUCTURE; NEGATIVE-IONS; PYROLYSIS; PHOTODETACHMENT; SPECTROSCOPY; RADICALS; 2,5-DIMETHYLFURAN; DISSOCIATION AB Isomer-specific, high-resolution photoelectron spectra of alpha- and beta-furanyl obtained via slow electron velocity-map imaging of cryogenically cooled anions are reported. The spectra yield electron affinities of 1.8546(4) and 1.6566(4) eV for the alpha-and beta-furanyl neutral radicals, respectively. New vibronic structure is resolved and assigned based on density functional theory and Franck-Condon simulations, providing several vibrational frequencies for the ground electronic state of both neutral isomers. Subtle differences in orbital hybridization resulting from varying proximity of the deprotonated carbon to the heteroatom are inferred from photoelectron angular distributions, and the C-beta-H bond dissociation energy is estimated from a combination of experimental and theoretical results to be 119.9(2) kcal mol(-1). (C) 2016 Elsevier Inc. All rights reserved. C1 [DeVine, Jessalyn A.; Weichman, Marissa L.; Lyle, Steven J.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Neumark, Daniel M.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu FU Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy [DE-AC02-05CH11231]; National Science Foundation FX This research is funded by the Director, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under Contract DE-AC02-05CH11231. M.L.W. thanks the National Science Foundation for a graduate research fellowship. NR 50 TC 0 Z9 0 U1 2 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 EI 1096-083X J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD FEB PY 2017 VL 332 SI SI BP 16 EP 21 DI 10.1016/j.jms.2016.09.002 PG 6 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA EK2AE UT WOS:000393728700004 ER PT J AU Chang, O Dilmore, R Wang, JYL AF Chang, Oliver Dilmore, Robert Wang, John Yilin TI Model development of proppant transport through hydraulic fracture network and parametric study SO JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING LA English DT Article DE Proppant transport; Hydraulic fracture network; Shale gas reservoirs AB A model capable of simulating proppant transport through hydraulic fracture network is developed and summarized in this paper. The proppant transport model (PTM) is able to capture multiple proppant transport patterns, including suspension, saltation and creeping. These patterns are first identified, and then quantified to establish proppant transport equations. The governing equations are programed into a three-dimensional, finite-difference model to simulate the proppant transport process. The PTM is coupled to a previously developed hydraulic fracture network propagation model, which updates essential input parameters such as fracture geometry, velocity distribution and pressure profile for each step. In every step, the proppant transport model extracts values for these parameters and solves the mass transport equations for all three patterns. Finally, the PTM generates proppant concentration, fracture conductivity and distribution throughout the created fracture network and predicts, at the end of the designed treatment the propped stimulated reservoir volume (PSRV) a critical indicator of long-term stimulation effectiveness for hydraulically fractured oil/gas reservoirs. Parametric Studies of several important treatment, operational, reservoir, and geomechanical parameters are done in this paper to illustrate the impact of each factor on the PSRV. C1 [Chang, Oliver; Wang, John Yilin] Penn State Univ, Petr & Nat Gas Engn, Dept Energy & Mineral Engn, 202 Hosler Bldg, University Pk, PA 16802 USA. [Chang, Oliver; Wang, John Yilin] Penn State Univ, EMS Energy Inst, 202 Hosler Bldg, University Pk, PA 16802 USA. [Dilmore, Robert] US DOE, Natl Energy Technol Lab, 626 Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA. RP Chang, O (reprint author), Penn State Univ, Petr & Nat Gas Engn, Dept Energy & Mineral Engn, 202 Hosler Bldg, University Pk, PA 16802 USA.; Chang, O (reprint author), Penn State Univ, EMS Energy Inst, 202 Hosler Bldg, University Pk, PA 16802 USA. FU RES [DE-FE0004000] FX This work was performed as part of a collaborative research effort with the National Energy Technology Laboratory's Office of Research and Development, with support from the RES contract DE-FE0004000. NR 12 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-4105 EI 1873-4715 J9 J PETROL SCI ENG JI J. Pet. Sci. Eng. PD FEB PY 2017 VL 150 BP 224 EP 237 DI 10.1016/j.petrol.2016.12.003 PG 14 WC Energy & Fuels; Engineering, Petroleum SC Energy & Fuels; Engineering GA EK2AA UT WOS:000393728300024 ER PT J AU Berryhill, J Oh, A AF Berryhill, J. Oh, A. TI Electroweak physics at the LHC SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Review DE standard model; electroweak interaction; Large Hadron Collider ID PROTON-PROTON COLLISIONS; PRODUCTION CROSS-SECTIONS; TRIPLE GAUGE COUPLINGS; EFFECTIVE-FIELD THEORY; PP COLLISIONS; ZZ PRODUCTION; ROOT-S=8 TEV; ATLAS DETECTOR; PARTON DISTRIBUTIONS; HADRON COLLIDERS AB The Large Hadron Collider (LHC) has completed in 2012 its first running phase and the experiments have collected data sets of proton-proton collisions at center-of-mass energies of 7 and 8 TeV with an integrated luminosity of about 5 and 20 fb(-1), respectively. Analyses of these data sets have produced a rich set of results in the electroweak sector of the standard model. This article reviews the status of electroweak measurements of the ATLAS, CMS and LHCb experiments at the LHC. C1 [Berryhill, J.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Oh, A.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. RP Oh, A (reprint author), Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. EM alexander.oh@manchester.ac.uk FU Fermi Research Alliance, LLC [De-AC02-07CH11359]; United States Department of Energy; Royal Society [UF120106] FX We thank CERN for the very successful operation of the LHC, as well as the ATLAS, CMS and LHCb Collaborations for delivering an impressive set of electroweak analysis results. JB is supported by the Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. AO would like to acknowledge support from the Royal Society through grant UF120106. NR 106 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD FEB PY 2017 VL 44 IS 2 AR 023001 DI 10.1088/1361-6471/44/2/023001 PG 35 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA EK7PK UT WOS:000394117500001 ER PT J AU Bock, F Loizides, C Peitzmann, T Sas, M AF Bock, F. Loizides, C. Peitzmann, T. Sas, M. TI Impact of residual contamination on inclusive and direct photon flow SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article DE heavy-ion collisions; QGP; direct photon; elliptic flow ID HEAVY-ION COLLISIONS; PB-PB COLLISIONS; ANISOTROPY AB Direct photon flow is measured by subtracting the contribution of decay photon flow from the measured inclusive photon flow via the double ratio R-gamma, which defines the excess of direct over decay photons. The inclusive photon sample is affected by a modest contamination arising from different background sources, which can not always be fully corrected for in measurements. However, due to the sensitivity of the direct photon measurement even a residual contamination may significantly bias the extracted direct photon flow. In particular, for measurements using photon conversions, which are very powerful at low transverse momentum, these effects can be substantial. Assuming three different types of correlated background contributions we demonstrate using the Therminator2 event generator that the impact of the contamination on the magnitude of direct photon flow can be on the level of 50%, even if the purity of the inclusive photon sample is about 97%. Future measurements should attempt to account for the contamination by measuring the background contributions and subtracting them from the inclusive photon flow. C1 [Bock, F.; Loizides, C.] LBNL, Berkeley, CA 94720 USA. [Bock, F.] Ruprecht Karls Univ Heidelberg, Inst Phys, Heidelberg, Germany. [Peitzmann, T.; Sas, M.] Univ Utrecht, Nikhef, Utrecht, Netherlands. RP Sas, M (reprint author), Univ Utrecht, Nikhef, Utrecht, Netherlands. EM msas@nikhef.nl OI Loizides, Constantin/0000-0001-8635-8465 FU US Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-05CH11231]; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands FX The work of F Bock and C Loizides is supported by the US Department of Energy, Office of Science, Office of Nuclear Physics, under contract number DE-AC02-05CH11231. The work of M Sas and T Peitzmann is supported in part by the Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands. NR 31 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD FEB PY 2017 VL 44 IS 2 AR 025106 DI 10.1088/1361-6471/aa52db PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA EK7PQ UT WOS:000394118100002 ER PT J AU Chintapalli, M Higa, K Chen, XC Srinivasan, V Balsara, NP AF Chintapalli, Mahati Higa, Kenneth Chen, X. Chelsea Srinivasan, Venkat Balsara, Nitash P. TI Simulation of local ion transport in lamellar block copolymer electrolytes based on electron micrographs SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS LA English DT Article DE block copolymers; electron microscopy; simulations ID WATER FILTRATION; MOLECULAR-WEIGHT; FUEL-CELLS; THIN-FILMS; CONDUCTIVITY; MEMBRANES; MORPHOLOGY; SEPARATION; BATTERIES; BLEND AB A method is presented to relate local morphology and ionic conductivity in a solid, lamellar block copolymer electrolyte for lithium batteries, by simulating conductivity through transmission electron micrographs. The electrolyte consists of polystyrene-block-poly(ethylene oxide) mixed with lithium bis(trifluoromethanesulfonyl) imide salt (SEO/LiTFSI), where the polystyrene phase is structural phase and the poly(ethylene oxide)/LiTFSI phase is ionically conductive. The electric potential distribution is simulated in binarized micrographs by solving the Laplace equation with constant potential boundary conditions. A morphology factor, f, is reported for each image by calculating the effective conductivity relative to a homogenous conductor. Images from two samples are examined, one annealed with large lamellar grains and one unannealed with small grains. The average value of f is 0.45 +/- 0.04 for the annealed sample, and 0.37 +/- 0.03 for the unannealed sample, both close to the value predicted by effective medium theory, 1/2. Simulated conductivities are compared to published experimental conductivities. The value of f(Unannealed)/f(Annealed) is 0.82 for simulations and 6.2 for experiments. Simulation results correspond well to predictions by effective medium theory but do not explain the experimental measurements. Observation of nanoscale morphology over length scales greater than the size of the micrographs (approximate to 1 m) may be required to explain the experimental results. (c) 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 266-274 C1 [Chintapalli, Mahati] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Chintapalli, Mahati; Chen, X. Chelsea; Balsara, Nitash P.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Higa, Kenneth; Srinivasan, Venkat; Balsara, Nitash P.] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Balsara, NP (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Srinivasan, V; Balsara, NP (reprint author), Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA.; Balsara, NP (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM vsrinivasan@lbl.gov; nbalsara@gmail.com FU Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy under the Battery Materials Research program [DE-AC02-05CH11231]; Electron Microscopy of Soft Matter Program from the Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy under Contract DE-AC02-05CH11231 under the Battery Materials Research program. The STEM work performed by X.C. Chen was supported by the Electron Microscopy of Soft Matter Program from the Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors gratefully acknowledge CD-adapco support engineer Megan Karalus for her advice in using STAR-CCM+ to perform the simulations in this work. NR 46 TC 0 Z9 0 U1 3 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-6266 EI 1099-0488 J9 J POLYM SCI POL PHYS JI J. Polym. Sci. Pt. B-Polym. Phys. PD FEB 1 PY 2017 VL 55 IS 3 BP 266 EP 274 DI 10.1002/polb.24268 PG 9 WC Polymer Science SC Polymer Science GA EK2KR UT WOS:000393756700005 ER PT J AU Zhou, MW Pasa-Tolic, L Stenoien, DL AF Zhou, Mowei Pasa-Tolic, Ljiljana Stenoien, David L. TI Profiling of Histone Post-Translational Modifications in Mouse Brain with High-Resolution Top-Down Mass Spectrometry SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE histones; post-translational modifications; top-down mass spectrometry ID MIDDLE-DOWN; BOTTOM-UP; PROTEOMICS; GLUTATHIONYLATION; IDENTIFICATION; ACCURACY; PATTERNS; REVEALS; INTACT; CELLS AB As histones play central roles in most chromosomal functions including regulation of DNA replication, DNA damage repair, and gene transcription, both their basic biology and their roles in disease development have been the subject of intense study. Because multiple post-translational modifications (PTMs) along the entire protein sequence are potential regulators of histones, a top-down approach, where intact proteins are analyzed, is ultimately required for complete characterization of proteoforms. However, significant challenges remain for top-down histone analysis primarily because of deficiencies in separation/resolving power and effective identification algorithms. Here we used state-of-the-art mass spectrometry and a bioinformatics workflow for targeted data analysis and visualization. The workflow uses ProMex for intact mass deconvolution, MSPathFinder as a search engine, and LcMsSpectator as a data-visualization tool. When complemented with the open-modification tool TopPIC, this workflow enabled identification of novel histone PTMs including tyrosine bromination on histone H4 and H2A, H3 glutathionylation, and mapping of conventional PTMs along the entire protein for many histone subunits. C1 [Zhou, Mowei; Pasa-Tolic, Ljiljana; Stenoien, David L.] Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, POB 999, Richland, WA 99352 USA. RP Stenoien, DL (reprint author), Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, POB 999, Richland, WA 99352 USA. EM david.stenoien@pnnl.gov OI Zhou, Mowei/0000-0003-3575-3224 FU U.S. Department of Energy (DOE) Office of Biological and Environmental Research; U.S. DOE [DE-AC05-76RL01830] FX We thank Christopher Wilkins, Jung Kap Park, and Sangtae Kim at the Pacific Northwest National Laboratory (PNNL) for developing the Informed-Proteomics and Xiaowen Liu and Qiang Kou at Indiana University for customizing the TopPIC software used in this work. We appreciate the help from other PNNL colleagues: Matthew Monroe and Nikola Tolic for data analysis; Carrie Nicora for preparing the bottom-up sample; Anil K. Shukla, Rosalie K. Chu, and Ron Moore for the LC MS experiments; and Charles Timchalk for providing mouse brain samples. The research was performed in the Environmental Molecular Sciences Laboratory (EMSL), a U.S. Department of Energy (DOE) national user facility at the Pacific Northwest National Laboratory (PNNL) in Richland, WA. This research was funded by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research. PNNL is a multiprogram national laboratory operated by Battelle for the U.S. DOE under Contract DE-AC05-76RL01830. NR 37 TC 0 Z9 0 U1 2 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 EI 1535-3907 J9 J PROTEOME RES JI J. Proteome Res. PD FEB PY 2017 VL 16 IS 2 BP 599 EP 608 DI 10.1021/acs.jproteome.6b00694 PG 10 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA EJ9IK UT WOS:000393539600022 PM 28001079 ER PT J AU Tan, ZJ Nie, S McDermott, SP Wicha, MS Lubman, DM AF Tan, Zhijing Nie, Song McDermott, Sean P. Wicha, Max S. Lubman, David M. TI Single Amino Acid Variant Profiles of Subpopulations in the MCF-7 Breast Cancer Cell Line SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE single amino acid variant; breast cancer; MCF-7 cell line; cell line subpopulation; proteomics ID LARGE-SCALE ANALYSIS; STEM-CELLS; MASS-SPECTROMETRY; PROTEIN STABILITY; DATABASE; IDENTIFICATION; MUTATIONS; STATES; BRCA1; QUANTIFICATION AB Cancers are initiated and developed from a small population of stem-like cells termed cancer stem cells (CSCs). There is heterogeneity among this CSC population that leads to multiple subpopulations with their own distinct biological features and protein expression. The protein expression and function may be impacted by amino acid variants that can occur largely due to single nucleotide changes. We have thus performed proteomic analysis of breast CSC subpopulations by mass spectrometry to study the presence of single amino acid variants (SAAVs) and their relation to breast cancer. We have used CSC markers to isolate pure breast CSC subpopulation fractions (ALDH+ and CD44+/CD24- cell populations) and the mature luminal cells (CD49f-EpCAM+) from the MCF-7 breast cancer cell line. By searching the Swiss-CanSAAVs database, 374 unique SAAVs were identified in total, where 27 are cancer-related SAAVs. 135 unique SAAVs were found in the CSC population compared with the mature luminal cells. The distribution of SAAVs detected in MCF-7 cells was compared with those predicted from the Swiss-CanSAAVs database, where we found distinct differences in the numbers of SAAVs detected relative to that expected from the Swiss-CanSAAVs database for several of the amino acids. C1 [Tan, Zhijing; Nie, Song; Lubman, David M.] Univ Michigan, Dept Surg, Ann Arbor, MI 48109 USA. [Nie, Song] Pacific Northwest Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Nie, Song] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [McDermott, Sean P.; Wicha, Max S.] Univ Michigan, Div Hematol Oncol, Dept Internal Med, Ann Arbor, MI 48109 USA. [McDermott, Sean P.; Wicha, Max S.] Univ Michigan, Ctr Comprehens Canc, Ann Arbor, MI 48109 USA. RP Lubman, DM (reprint author), Univ Michigan, Dept Surg, Ann Arbor, MI 48109 USA. EM dmlubman@umich.edu FU National Institutes of Health [R01 GM49500]; NIH Center Grant [P30 ES 020957, P30 CA 022453]; NIH Shared Instrumentation Grant [S10 OD 010700] FX We thank Dr. Ramdane Harouaka in the Department of Internal Medicine, Dr. Jianhui Zhu and Dr. Mingrui An in the Department of Surgery at the University of Michigan, and Dr. Haidi Yin in the Department of Applied Biology and Chemical Technology at the Hong Kong Polytechnic University for a critical reading of the manuscript. This work was supported by the National Institutes of Health under grant number R01 GM49500. The MS data were generated by the Wayne State University Proteomics Core. The Proteomics Core is supported through the NIH Center Grant P30 ES 020957, P30 CA 022453 and the NIH Shared Instrumentation Grant S10 OD 010700. NR 47 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 EI 1535-3907 J9 J PROTEOME RES JI J. Proteome Res. PD FEB PY 2017 VL 16 IS 2 BP 842 EP 851 DI 10.1021/acs.jproteome.6b00824 PG 10 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA EJ9IK UT WOS:000393539600045 PM 28076950 ER PT J AU Choi, M Eren-Dogu, ZF Colangelo, C Cottrell, J Hoopmann, MR Kapp, EA Kim, S Lam, H Neubert, TA Palmblad, M Phinney, BS Weintraub, ST MacLean, B Vitek, O AF Choi, Meena Eren-Dogu, Zeynep F. Colangelo, Christopher Cottrell, John Hoopmann, Michael R. Kapp, Eugene A. Kim, Sangtae Lam, Henry Neubert, Thomas A. Palmblad, Magnus Phinney, Brett S. Weintraub, Susan T. MacLean, Brendan Vitek, Olga TI ABRF Proteome Informatics Research Group (iPRG) 2015 Study: Detection of Differentially Abundant Proteins in Label-Free Quantitative LC-MS/MS Experiments SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE mass spectrometry; LC-MS/MS; quantitative proteomics; bioinformatics; statistics; differential abundance ID DATABASE SEARCH TOOL; MASS-SPECTROMETRY; PEPTIDE IDENTIFICATIONS; QUANTIFICATION; YEAST; PACKAGE; RATES AB Detection of differentially abundant proteins in label-free quantitative shotgun liquid chromatography tandem mass spectrometry (LC-MS/MS) experiments requires a series of computational steps that identify and quantify LC-MS features. It also requires statistical analyses that distinguish systematic changes in abundance between conditions from artifacts of biological and technical variation. The 2015 study of the Proteome Informatics Research Group (iPRG) of the Association of Biomolecular Resource Facilities (ABRF) aimed to evaluate the effects of the statistical analysis on the accuracy of the results. The study used LC tandem mass spectra acquired from a controlled mixture, and made the data available to anonymous volunteer participants. The participants used methods of their choice to detect differentially abundant proteins, estimate the associated fold changes, and characterize the uncertainty of the results. The study found that multiple strategies (including the use of spectral counts versus peak intensities, and various software tools) could lead to accurate results, and that the performance was primarily determined by the analysts' expertise. This manuscript summarizes the outcome of the study, and provides representative examples of good computational and statistical practice. The data set generated as part of this study is publicly available. C1 [Choi, Meena; Vitek, Olga] Northeastern Univ, Boston, MA 02115 USA. [Eren-Dogu, Zeynep F.] Mugla Sitki Kocman Univ, TR-48000 Mugla, Turkey. [Colangelo, Christopher] Primary Ion LLC, Old Lyme, CT 06371 USA. [Cottrell, John] Matrix Sci Ltd, London W1U 7GB, England. [Hoopmann, Michael R.] Inst Syst Biol, Seattle, WA 98109 USA. [Kapp, Eugene A.] Walter & Eliza Hall Inst Med Res, Melbourne, Vic 3052, Australia. [Kim, Sangtae] Pacific Northwest Natl Lab, Richland, WA 99354 USA. [Lam, Henry] Hong Kong Univ Sci & Technol, Dept Chem & Biomol Engn, Hong Kong, Hong Kong, Peoples R China. [Lam, Henry] Hong Kong Univ Sci & Technol, Div Biomed Engn, Hong Kong, Hong Kong, Peoples R China. [Neubert, Thomas A.] NYU, Sch Med, Skirball Inst, New York, NY 10016 USA. [Neubert, Thomas A.] NYU, Sch Med, Dept Biochem & Mol Pharmacol, New York, NY 10016 USA. [Palmblad, Magnus] Leiden Univ, Ctr Prote & Metabol, Med Ctr, NL-2333 ZA Leiden, Netherlands. [Phinney, Brett S.] Univ Calif Davis, Davis, CA 95616 USA. [Weintraub, Susan T.] Univ Texas Hlth Sci Ctr San Antonio, San Antonio, TX 78229 USA. [MacLean, Brendan] Univ Washington, Seattle, WA 98105 USA. RP Vitek, O (reprint author), Northeastern Univ, Boston, MA 02115 USA. EM o.vitek@neu.edu FU NIH NINDS [P30 NS050276]; National Institute of General Medical Sciences [R01GM087221]; Center for Systems Biology [2P50 GM076547]; ABRF; NIH Shared Instrumentation Grant [RR027990] FX We thank the participants of the iPRG 2015 study for their work in preparing the submissions. We thank Steven Blais and Jingjing Deng from the Neubert Lab (Mass Spectrometry Core for Neuroscience), Skirball Institute, NYU School of Medicine, for the LC-MS/MS analysis to produce the data for this study. We acknowledge support from the ABRF and NIH Shared Instrumentation Grant RR027990, NIH NINDS grant P30 NS050276, the National Institute of General Medical Sciences under grant R01GM087221, and 2P50 GM076547/Center for Systems Biology. NR 29 TC 0 Z9 0 U1 5 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 EI 1535-3907 J9 J PROTEOME RES JI J. Proteome Res. PD FEB PY 2017 VL 16 IS 2 BP 945 EP 957 DI 10.1021/acs.jproteome.6b00881 PG 13 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA EJ9IK UT WOS:000393539600054 PM 27990823 ER PT J AU Im, MY Fischer, P Han, HS Vogel, A Jung, MS Chao, W Yu, YS Meier, G Hong, JI Lee, KS AF Im, Mi-Young Fischer, Peter Han, Hee-Sung Vogel, Andreas Jung, Min-Seung Chao, Weilun Yu, Young-Sang Meier, Guido Hong, Jung-Il Lee, Ki-Suk TI Simultaneous control of magnetic topologies for reconfigurable vortex arrays SO NPG ASIA MATERIALS LA English DT Article ID PERMALLOY; FLUCTUATIONS; SKYRMION; CORES; DOTS AB The topological spin textures in magnetic vortices in confined magnetic elements offer a platform for understanding the fundamental physics of nanoscale spin behavior and the potential of harnessing their unique spin structures for advanced magnetic technologies. For magnetic vortices to be practical, an effective reconfigurability of the two topologies of magnetic vortices, that is, the circularity and the polarity, is an essential prerequisite. The reconfiguration issue is highly relevant to the question of whether both circularity and polarity are reliably and efficiently controllable. In this work, we report the first direct observation of simultaneous control of both circularity and polarity by the sole application of an in-plane magnetic field to arrays of asymmetrically shaped permalloy disks. Our investigation demonstrates that a high degree of reliability for control of both topologies can be achieved by tailoring the geometry of the disk arrays. We also propose a new approach to control the vortex structures by manipulating the effect of the stray field on the dynamics of vortex creation. The current study is expected to facilitate complete and effective reconfiguration of magnetic vortex structures, thereby enhancing the prospects for technological applications of magnetic vortices. C1 [Im, Mi-Young; Chao, Weilun] Lawrence Berkeley Natl Lab, Ctr Xray Opt, 2-400,CXRO LBNL,One Cyclotron Rd, Berkeley, CA 94720 USA. [Im, Mi-Young; Jung, Min-Seung; Hong, Jung-Il] DGIST, Dept Emerging Mat Sci, Daegu 42988, South Korea. [Fischer, Peter] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA. [Fischer, Peter] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Han, Hee-Sung] Ulsan Natl Inst Sci & Technol, KIST UNIST Ulsan Ctr Convergent Mat, Sch Mat Sci & Engn, Ulsan, South Korea. [Vogel, Andreas; Meier, Guido] Univ Hamburg, Inst Angew Phys, Hamburg, Germany. [Vogel, Andreas; Meier, Guido] Univ Hamburg, Zentrum Mikrostrukturforsch, Hamburg, Germany. [Yu, Young-Sang] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA. [Meier, Guido] Hamburg Ctr Ultrafast Imaging, Hamburg, Germany. [Meier, Guido] Max Planck Inst Struct & Dynam Matter, Hamburg, Germany. RP Im, MY (reprint author), Lawrence Berkeley Natl Lab, Ctr Xray Opt, 2-400,CXRO LBNL,One Cyclotron Rd, Berkeley, CA 94720 USA.; Hong, JI (reprint author), DGIST, Dept Emerging Mat Sci, 333 Technojungang Daero, Dalseong Gun 42988, Daegu, South Korea.; Lee, KS (reprint author), UNIST, 301-6,50 UNIST Gil, Ulsan 44919, South Korea. EM mim@lbl.gov; jihong@dgist.ac.kr; kisuk@unist.ac.kr RI Fischer, Peter/A-3020-2010 OI Fischer, Peter/0000-0002-9824-9343 FU National Research Foundation (NRF) of Korea - Ministry of Education, Science and Technology (MEST) [2012K1A4A3053565, 2014R1A2A2A01003709, 2015M3D1A1070465, 2016K1A3A7A09005336]; KIST-UNIST partnership program [1.160097.01/2V05150]; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division within the Non-Equilibrium Magnetic Materials Program (MSMAG) [DE-AC02-05CH11231]; Deutsche Forschungsgemeinschaft [SFB 668]; Deutsche Forschungsgemeinschaft via Graduiertenkolleg 1286 'Functional Metal-Semiconductor Hybrid Systems'; Deutsche Forschungsgemeinschaft via excellence cluster 'The Hamburg Centre for Ultrafast Imaging-Structure, Dynamics and Control of Matter on the Atomic Scale' FX This work was supported by the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (MEST) (2012K1A4A3053565, 2014R1A2A2A01003709, 2015M3D1A1070465 and 2016K1A3A7A09005336), by the KIST-UNIST partnership program (1.160097.01/2V05150). Work at the ALS was supported by the Director, Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. PF acknowledges support by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02-05CH11231 within the Non-Equilibrium Magnetic Materials Program (MSMAG). AV and GM acknowledge financial support from the Deutsche Forschungsgemeinschaft via SFB 668 'Magnetism from the Single Atom to the Nanostructure', via Graduiertenkolleg 1286 'Functional Metal-Semiconductor Hybrid Systems', and via excellence cluster 'The Hamburg Centre for Ultrafast Imaging-Structure, Dynamics and Control of Matter on the Atomic Scale'. NR 43 TC 0 Z9 0 U1 11 U2 11 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1884-4049 EI 1884-4057 J9 NPG ASIA MATER JI NPG Asia Mater. PD FEB PY 2017 VL 9 AR e348 DI 10.1038/am.2016.199 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA EK2ZR UT WOS:000393796200002 ER PT J AU Brady, MP Muralidharan, G Yamamoto, Y Pint, BA AF Brady, M. P. Muralidharan, G. Yamamoto, Y. Pint, B. A. TI Development of 1100 A degrees C Capable Alumina-Forming Austenitic Alloys SO OXIDATION OF METALS LA English DT Article DE Alumina; Water vapor; Fe-base alloy; Ni-base alloy ID HIGH-TEMPERATURE OXIDATION; STAINLESS-STEELS; CREEP-RESISTANT; WATER-VAPOR; CORROSION; BEHAVIOR; SCALES; MICROSTRUCTURE; OPTIMIZATION; ADDITIONS AB Recently developed alumina-forming austenitic (AFA) alloys based on similar to 12-32 weight % (wt%) Ni offer an attractive combination of oxidation resistance and creep resistance at relatively low alloy cost. However, they exhibit a transition to internal oxidation and nitridation of Al above similar to 750-950 A degrees C depending on composition and exposure environment. In order to identify AFA compositions capable of higher-temperature operation for applications such as ethylene cracking, the oxidation behavior of a series of developmental, as-cast nominal Fe-(25-45)Ni-(10-25)Cr-(4-5)Al-1Si-0.15Hf-0.07Y-0.01B wt% base alloys with and without Nb, Ti, and C additions was evaluated at 1100 A degrees C in air with 10% water vapor. Protective alumina scale formation was observed at levels of 35Ni, 25Cr, and 4Al with additions of Nb and C, indicating promise for 1100A degrees C capable cast AFA alloys. C1 [Brady, M. P.; Muralidharan, G.; Yamamoto, Y.; Pint, B. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Brady, MP (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM bradymp@ornl.gov OI Brady, Michael/0000-0003-1338-4747 FU Oak Ridge National Laboratory's Laboratory Directed Research and Development (LDRD) Technology Innovation Program; U.S. Department of Energy ARPA-E program; U.S. Department of Energy [DE-AC05-00OR22725] FX The authors thank C. Carmichael, M. Stephens, and T.M. Lowe for assistance with the experimental work. S. Dryepondt and M. Lance provided comments for the manuscript. This research was sponsored by Oak Ridge National Laboratory's Laboratory Directed Research and Development (LDRD) Technology Innovation Program and U.S. Department of Energy ARPA-E program. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 48 TC 0 Z9 0 U1 7 U2 7 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X EI 1573-4889 J9 OXID MET JI Oxid. Met. PD FEB PY 2017 VL 87 IS 1-2 BP 1 EP 10 DI 10.1007/s11085-016-9667-3 PG 10 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA EK2HQ UT WOS:000393748800001 ER PT J AU Duan, R Jalowicka, A Unocic, K Pint, BA Huczkowski, P Chyrkin, A Gruner, D Pillai, R Quadakkers, WJ AF Duan, R. Jalowicka, A. Unocic, K. Pint, B. A. Huczkowski, P. Chyrkin, A. Gruener, D. Pillai, R. Quadakkers, W. J. TI Predicting Oxidation-Limited Lifetime of Thin-Walled Components of NiCrW Alloy 230 SO OXIDATION OF METALS LA English DT Article DE ALLOY 230; Chromia scales; Lifetime; Subscale depletion; Wall thickness loss ID HIGH-TEMPERATURE OXIDATION; NI-BASE ALLOYS; CYCLIC-OXIDATION; SPECIMEN THICKNESS; BREAKAWAY OXIDATION; DEPLETION PROFILES; INTERNAL OXIDATION; CREEP-PROPERTIES; FERRITIC STEELS; STAINLESS-STEEL AB Using alloy 230 as an example, a generalized oxidation lifetime model for chromia-forming Ni-base wrought alloys is proposed, which captures the most important damaging oxidation effects relevant for component design: wall thickness loss, scale spallation, and the occurrence of breakaway oxidation. For deriving input parameters and for verification of the model approach, alloy 230 specimens with different thicknesses were exposed for different times at temperatures in the range 950-1050 A degrees C in static air. The studies focused on thin specimens (0.2-0.5 mm) to obtain data for critical subscale depletion processes resulting in breakaway oxidation within reasonably achievable test times up to 3000 h. The oxidation kinetics and oxidation-induced subscale microstructural changes were determined by combining gravimetric data with results from scanning electron microscopy with energy dispersive X-ray spectroscopy. The modeling of the scale spallation and re-formation was based on the NASA cyclic oxidation spallation program, while a new model was developed to describe accelerated oxidation occurring after longer exposure times in the thinnest specimens. The calculated oxidation data were combined with the reservoir model equation, by means of which the relation between the consumption and the remaining concentration of Cr in the alloy was established as a function of temperature and specimen thickness. Based on this approach, a generalized lifetime diagram is proposed, in which wall thickness loss is plotted as a function of time, initial specimen thickness, and temperature. The time to reach a critical Cr level at the scale/alloy interface of 10 wt% is also indicated in the diagrams. C1 [Duan, R.; Jalowicka, A.; Huczkowski, P.; Chyrkin, A.; Gruener, D.; Pillai, R.; Quadakkers, W. J.] Forschungszentrum Julich, Inst Energy & Climate Res, IEK-2, D-52425 Julich, Germany. [Unocic, K.; Pint, B. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Jalowicka, A (reprint author), Forschungszentrum Julich, Inst Energy & Climate Res, IEK-2, D-52425 Julich, Germany. EM a.jalowicka@fz-juelich.de FU Bundesministerium fur Bildung und Forschung [03EK3032]; U.S. Department of Energy, U.S. Assistant Secretary for Energy Efficiency and Renewable Energy, Advanced Manufacturing Office FX The authors would like to acknowledge Dr. K. Ohla from Haynes International, Inc. for supplying the studied material. The authors would also like to acknowledge the Bundesministerium fur Bildung und Forschung for funding part of this work under Grant No. 03EK3032. Assistance with ICP-OES analysis provided by H. Lippert and V. Nischwitz from the Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Julich GmbH is greatly appreciated. The authors are grateful to the following colleagues in the Institute of Energy and Climate Research of the Forschungszentrum Julich GmbH (IEK-2) for assistance in the experimental work: R. Mahnke, H. Cosler, and A. Kick for the oxidation experiments; V. Gutzeit and J. Bartsch for metallographic studies; and Dr. E. Wessel for SEM investigations. At ORNL, G. Garner, T. Lowe, and T. Jordan assisted with the experimental work; S. Dryepondt and J. A. Haynes provided comments on the manuscript; and the research was sponsored by the U.S. Department of Energy, U.S. Assistant Secretary for Energy Efficiency and Renewable Energy, Advanced Manufacturing Office (Combined Heat and Power Program). NR 65 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X EI 1573-4889 J9 OXID MET JI Oxid. Met. PD FEB PY 2017 VL 87 IS 1-2 BP 11 EP 38 DI 10.1007/s11085-016-9653-9 PG 28 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA EK2HQ UT WOS:000393748800002 ER PT J AU Dryepondt, S Turan, J Leonard, D Pint, BA AF Dryepondt, Sebastien Turan, Josh Leonard, Donovan Pint, Bruce A. TI Long-Term Oxidation Testing and Lifetime Modeling of Cast and ODS FeCrAl Alloys SO OXIDATION OF METALS LA English DT Article DE FeCrAl; ODS; Lifetime modeling; Cracks; Spallation; Al consumption ID ALUMINA-FORMING ALLOYS; HIGH-TEMPERATURE OXIDATION; CYCLIC-OXIDATION; BREAKAWAY OXIDATION; MECHANICAL-PROPERTIES; SCALE ADHESION; SPALLING MODEL; WATER-VAPOR; KINETICS; BEHAVIOR AB Long-term cyclic oxidation testing was conducted on oxide dispersion strengthened (ODS) and cast FeCrAlY alloys at 1100 and 1200 A degrees C with 1 or 100 h hold time in air, O-2, and humid atmospheres. These data were used to optimize four different cyclic oxidation models and calculate the Al consumption rate due to oxidation. The pkp and COSIM-GSA models were able to reproduce accurately the experimental oxidation curves, and lifetime predictions based on these models were in good agreement with experiments. Microstructure characterization revealed that the degradation of the ODS FeCrAlY cyclic oxidation performance was mainly due to the incorporation of Ti carbonitrides in the alumina scale and the formation of tensile cracks. Controlling the levels of C, N, and S in one ODS alloy resulted in oxidation performance only moderately lower than the performance of cast FeCrAlY alloys. A few, very deep, tensile cracks formed at the cast alloy surface upon thermal cycling. Finally, the effect of specimen mechanical strength and the presence of H2O on ODS FeCrAl durability are discussed. C1 [Dryepondt, Sebastien; Turan, Josh; Leonard, Donovan; Pint, Bruce A.] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Dryepondt, S (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM dryepondtsn@ornl.gov OI Dryepondt, Sebastien/0000-0003-1265-1612 FU U.S. Department of Energy, Fossil Energy Crosscutting Research Program FX The authors would like to thanks G. Garner, M Stephens, and T. Lowe for their help with the oxidation testing. They also would like to thank P. Tortorelli and K Terrani for reviewing the manuscript and I. G. Wright who helped guide this research for many years. This research was sponsored by the U.S. Department of Energy, Fossil Energy Crosscutting Research Program. NR 47 TC 0 Z9 0 U1 5 U2 5 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X EI 1573-4889 J9 OXID MET JI Oxid. Met. PD FEB PY 2017 VL 87 IS 1-2 BP 215 EP 248 DI 10.1007/s11085-016-9668-2 PG 34 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA EK2HQ UT WOS:000393748800014 ER PT J AU Werth, D Buckley, R Zhang, GS Kurzeja, R Leclerc, M Duarte, H Parker, M Watson, T AF Werth, David Buckley, Robert Zhang, Gengsheng Kurzeja, Robert Leclerc, Monique Duarte, Henrique Parker, Matthew Watson, Thomas TI Quantifying the local influence at a tall tower site in nocturnal conditions SO THEORETICAL AND APPLIED CLIMATOLOGY LA English DT Article ID MODELING SYSTEM; FOOTPRINT; DISPERSION; EXCHANGE; FLUXES; ATMOSPHERE; CO2; PERSPECTIVE; VEGETATION; CANOPY AB The influence of the local terrestrial environment on nocturnal atmospheric CO2 measurements at a 329-m television transmitter tower (and a component of a CO2 monitoring network) was estimated with a tracer release experiment and a subsequent simulation of the releases. This was done to characterize the vertical transport of emissions from the surface to the uppermost tower level and how it is affected by atmospheric stability. The tracer release experiment was conducted over two nights in May of 2009 near the Department of Energy's Savannah River Site (SRS) in South Carolina. Tracer was released on two contrasting nights-slightly stable and moderately stable-from several upwind surface locations. Measurements at the 329-m level on both nights indicate that tracer was able to mix vertically within a relatively short (similar to 24 km) distance, implying that nocturnal stable conditions do not necessarily prevent vertical dispersion in the boundary layer and that CO2 measurements at the tower are at least partly influenced by nearby emissions. A simulation of the tracer release is used to calculate the tower footprint on the two nights to estimate the degree to which the local domain affects the tower readings. The effect of the nocturnal boundary layer on the area sampled by the tower can be seen clearly, as the footprints were affected by changes in stability. The contribution of local sources to the measurements at the tower was minimal, however, suggesting that nocturnal concentrations at upper levels are contributed mostly by regional sources. C1 [Werth, David; Buckley, Robert; Kurzeja, Robert; Parker, Matthew] Savannah River Natl Lab, Bldg 773-A, Aiken, SC 29808 USA. [Zhang, Gengsheng; Leclerc, Monique; Duarte, Henrique] Univ Georgia, Lab Atmospher & Environm Phys, Griffin, GA USA. [Watson, Thomas] Brookhaven Natl Lab, Tracer Technol Grp, Upton, NY 11973 USA. RP Werth, D (reprint author), Savannah River Natl Lab, Bldg 773-A, Aiken, SC 29808 USA. EM david.werth@srnl.doe.gov FU U.S. Department of Energy [DE-AC09-08SR22470]; SRNL, the University of Georgia and Brookhaven National Laboratory by the DOE Office of Science - Terrestrial Carbon Processes program FX This document was prepared by members of the Savannah River National Laboratory (SRNL) in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy. Funding support was provided to SRNL, the University of Georgia and Brookhaven National Laboratory by the DOE Office of Science - Terrestrial Carbon Processes program. NR 39 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-798X EI 1434-4483 J9 THEOR APPL CLIMATOL JI Theor. Appl. Climatol. PD FEB PY 2017 VL 127 IS 3-4 BP 627 EP 642 DI 10.1007/s00704-015-1648-y PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EK1ED UT WOS:000393667700009 ER PT J AU Zhou, Y Qu, J AF Zhou, Yan Qu, Jun TI Ionic Liquids as Lubricant Additives: A Review SO ACS APPLIED MATERIALS & INTERFACES LA English DT Review DE ionic liquids; lubricant additives; oil-solubility; tribofilm; friction; wear ID STEEL-ALUMINUM CONTACTS; TRIBOLOGICAL PERFORMANCE; HALOGEN-FREE; POLY(ETHYLENE GLYCOL); ANTIWEAR PERFORMANCE; STEEL/STEEL CONTACTS; NEAT LUBRICANTS; ETHYL-DIMETHYL-2-METHOXYETHYLAMMONIUM TRIS(PENTAFLUOROETHYL)TRIFLUOROPHOSPHATE; MECHANICAL-PROPERTIES; PHOSPHONIUM CATIONS AB In pursuit of energy efficiency and durability throughout human history, advances in lubricants have always played important roles. Ionic liquids (ILs) are room temperature molten salts that possess unique physicochemical properties and have shown great potential in many applications with lubrication as one of the latest. While earlier work (2001-2011) primarily explored the feasibility of using ILs as neat or base lubricants, using as as lubricant additives has become the new focal research topic since the breakthrough in ILs' miscibility in nonpolar hydrocarbon oils in early 2012. This work reviews the recent advances in developing ILs as additives for lubrication with an attempt to correlate among the cationic and anionic structures, oil-solubility, and other relevant physicochemical properties, and lubricating behavior. Effects of the concentration of ILs in lubricants and the compatibility between ILs and other additives in the lubricant formulation on the tribological performance are described followed by a discussion of wear protection mechanism based on tribofilm characterization. Future research directions are suggested at the end. C1 [Zhou, Yan; Qu, Jun] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. RP Qu, J (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. EM qujn@ornl.gov OI Qu, Jun/0000-0001-9466-3179 FU U.S. Department of Energy [DE-AC05-000R22725] FX This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-000R22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 91 TC 0 Z9 0 U1 22 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD FEB 1 PY 2017 VL 9 IS 4 BP 3209 EP 3222 DI 10.1021/acsami.6b12489 PG 14 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EJ6UW UT WOS:000393355900001 PM 28029771 ER PT J AU Handick, E Reinhard, P Wilks, RG Pianezzi, F Kunze, T Kreikemeyer-Lorenzo, D Weinhardt, L Blum, M Yang, WL Gorgoi, M Ikenaga, E Gerlach, D Ueda, S Yamashita, Y Chikyow, T Heske, C Buecheler, S Tiwari, AN Bar, M AF Handick, Evelyn Reinhard, Patrick Wilks, Regan G. Pianezzi, Fabian Kunze, Thomas Kreikemeyer-Lorenzo, Dagmar Weinhardt, Lothar Blum, Monika Yang, Wanli Gorgoi, Mihaela Ikenaga, Eiji Gerlach, Dominic Ueda, Shigenori Yamashita, Yoshiyuki Chikyow, Toyohiro Heske, Clemens Buecheler, Stephan Tiwari, Ayodhya N. Baer, Marcus TI Formation of a K-In-Se Surface Species by NaF/KF Postdeposition Treatment of Cu(In,Ga)Se-2 Thin-Film Solar Cell Absorbers SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE chalcopyrite thin-film solar cells; alkali postdeposition treatment; photoelectron spectroscopy; X-ray spectroscopy; chemical surface structure ID X-RAY PHOTOELECTRON; ELECTRONIC-STRUCTURE; ANGULAR-DISTRIBUTION; CUINSE2; SPECTROSCOPY; PHOTOEMISSION; ABSORPTION; EFFICIENCY; RANGE; PHOTOABSORPTION AB A NaF/KF postdeposition treatment (PDT) has recently been employed to achieve new record efficiencies of Cu(In,Ga)Se-2 (CIGSe) thin film solar cells. We have used a combination of depth-dependent soft and hard X-ray photoelectron spectroscopy as well as soft X-ray absorption and emission spectroscopy to gain detailed insight into the chemical structure of the CIGSe surface and how it is changed by different PDTs. Alkali-free CIGSe, NaF-PDT CIGSe, and NaF/KF-PDT CIGSe absorbers grown by low-temperature coevaporation have been interrogated. We find that the alkali-free and NaF-PDT CIGSe surfaces both display the well-known Cu-poor CIGSe chemical surface structure. The NaF/KF-PDT, however, leads to the formation of bilayer structure in which a K-In-Se species covers the CIGSe compound that in composition structure of the alkali-free and NaF-PDT absorber. is identical to the chalcopyrite structure of the alkali-free and NaF-PDT absorber. C1 [Handick, Evelyn; Wilks, Regan G.; Kunze, Thomas; Baer, Marcus] Helmholtz Zentrum Berlin Mat & Energie GmbH HZB, Renewable Energy, Hahn Meitner Pl 1, D-14109 Berlin, Germany. [Reinhard, Patrick; Pianezzi, Fabian; Buecheler, Stephan; Tiwari, Ayodhya N.] Empa Swiss Fed Labs Mat & Sci & Technol, Lab Thin Films & Photovolta, Uberlandstr 129, CH-8600 Dubendorf, Switzerland. [Wilks, Regan G.; Gorgoi, Mihaela; Baer, Marcus] Helmholtz Zentrum Berlin Mat & Energie GmbH, Energy Mat In Situ Lab Berlin, Albert Einstein Str 15, D-12489 Berlin, Germany. [Kreikemeyer-Lorenzo, Dagmar; Weinhardt, Lothar; Heske, Clemens] Karlsruhe Inst Technol, Inst Photon Sci & Synchrotron Radiat IPS, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany. [Kreikemeyer-Lorenzo, Dagmar; Weinhardt, Lothar; Heske, Clemens] Karlsruhe Inst Technol, Inst Chem Technol & Polymer Chem ITCP, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany. [Weinhardt, Lothar; Blum, Monika; Heske, Clemens] Univ Nevada, Dept Chem & Biochem, 4505 S Maryland Pkwy, Las Vegas, NV 89154 USA. [Yang, Wanli] Lawrence Berkeley Natl Lab, ALS, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Gorgoi, Mihaela] Helmholtz Zentrum Berlin Mat & Energie GmbH, Inst Nanospectroscopy, Albert Einstein Str 15, D-12489 Berlin, Germany. [Ikenaga, Eiji] SPring8 JASRI, 1-1-1 Koto, Sayo, Hyogo 6795198, Japan. Natl Inst Mat Sci, MANA Nanoelect Mat Unit, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan. [Ueda, Shigenori] NIMS, SPring 8, Synchrotron Xray Stn, 1-1-1 Kouto, Sayo, Hyogo 6795148, Japan. NIMS, Quantum Beam Unit, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan. [Baer, Marcus] Brandenburg Tech Univ Cottbus Senftenberg, Inst Phys & Chem, Pl Deutsch Einheit 1, D-03046 Cottbus, Germany. RP Handick, E; Bar, M (reprint author), Helmholtz Zentrum Berlin Mat & Energie GmbH HZB, Renewable Energy, Hahn Meitner Pl 1, D-14109 Berlin, Germany.; Bar, M (reprint author), Helmholtz Zentrum Berlin Mat & Energie GmbH, Energy Mat In Situ Lab Berlin, Albert Einstein Str 15, D-12489 Berlin, Germany.; Bar, M (reprint author), Brandenburg Tech Univ Cottbus Senftenberg, Inst Phys & Chem, Pl Deutsch Einheit 1, D-03046 Cottbus, Germany. EM evelyn.handick@helmholtz-berlin.de; marcus.baer@helmholtz-berlin.de RI Yang, Wanli/D-7183-2011 OI Yang, Wanli/0000-0003-0666-8063 FU Helmholtz Association [VH-NG-423]; Robert Bosch Stiftung GmbH [32.5.8003.0111.0]; European Union's Horizon research and innovation Programme [641004]; Swiss State Secretariat for Education, Research, and Innovation (SERI) [REF-1131-52107]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX E.H., R.G.W., and Ma.B. acknowledge the Helmholtz Association (VH-NG-423) and the Robert Bosch Stiftung GmbH (grant no. 32.5.8003.0111.0) for financial support. Furthermore, this project has received funding from the European Union's Horizon 2020 research and innovation Programme under grant agreement no. 641004 (Sharc25) and by the Swiss State Secretariat for Education, Research, and Innovation (SERI) under contract number REF-1131-52107. The HAXPES measurements at SPring-8 were performed under the approval of JASRI (Proposal No. 2013A1703) and NIMS Synchrotron X-ray Station (Proposal No. 2015A4600). The Advanced Light Source (ALS) is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 53 TC 0 Z9 0 U1 6 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD FEB 1 PY 2017 VL 9 IS 4 BP 3581 EP 3589 DI 10.1021/acsami.6b11892 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EJ6UW UT WOS:000393355900038 PM 28058843 ER PT J AU Ye, RQ Liu, YY Peng, ZW Wang, T Jalilov, AS Yakobson, BI Wei, SH Tour, JM AF Ye, Ruquan Liu, Yuanyue Peng, Zhiwei Wang, Tuo Jalilov, Almaz S. Yakobson, Boris I. Wei, Su-Huai Tour, James M. TI High Performance Electrocatalytic Reaction of Hydrogen and Oxygen on Ruthenium Nanoclusters SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE hydrogen evolution reaction; hydrogen oxidation reaction; oxygen reduction reaction; ruthenium; electrocatalyst ID DOUBLE HYDROXIDE ELECTROCATALYST; AUGMENTED-WAVE METHOD; EVOLUTION REACTION; WATER OXIDATION; REDUCTION REACTION; GRAPHENE; CATALYSTS; NANOSHEETS; PHOSPHIDE AB The development of catalytic materials for the hydrogen oxidation, hydrogen evolution, oxygen reduction or oxygen evolution reactions with high reaction rates and low overpotentials are key goals for the development of renewable energy. We report here Ru(0) nanoclusters supported on nitrogen-doped graphene as high-performance multifunctional catalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR), showing activities similar to that of commercial Pt/C in alkaline solution. For HER performance in alkaline media, sample Ru/NG-750 reaches 10 mA cm(-2) at an overpotential of 8 mV with a Tafel slope of 30 mV dec(-1). The high HER performance in alkaline solution is advantageous because most catalysts for ORR and oxygen evolution reaction (OER) also prefer alkaline solution environment whereas degrade in acidic electrolytes. For ORR performance, Ru/NG effectively catalyzes the conversion of O-2 into OH- via a 4e process at a current density comparable to that of Pt/C. The unusual catalytic activities of Ru(0) nanoclusters reported here are important discoveries for the advancement of renewable energy conversion reactions. C1 [Ye, Ruquan; Peng, Zhiwei; Wang, Tuo; Jalilov, Almaz S.; Yakobson, Boris I.; Tour, James M.] Rice Univ, Dept Chem, 6100 Main St, Houston, TX 77005 USA. [Yakobson, Boris I.; Tour, James M.] Rice Univ, Smalley Inst Nanoscale Sci & Technol, 6100 Main St, Houston, TX 77005 USA. [Yakobson, Boris I.; Tour, James M.] Rice Univ, Dept Mat Sci & NanoEngn, 6100 Main St, Houston, TX 77005 USA. [Liu, Yuanyue; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Jalilov, Almaz S.] King Fand Univ Petr & Minerals, Dept Chem, Dhahran 31261, Saudi Arabia. [Wei, Su-Huai] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China. RP Yakobson, BI; Tour, JM (reprint author), Rice Univ, Dept Chem, 6100 Main St, Houston, TX 77005 USA.; Yakobson, BI; Tour, JM (reprint author), Rice Univ, Smalley Inst Nanoscale Sci & Technol, 6100 Main St, Houston, TX 77005 USA.; Yakobson, BI; Tour, JM (reprint author), Rice Univ, Dept Mat Sci & NanoEngn, 6100 Main St, Houston, TX 77005 USA. EM biy@rice.edu; tour@rice.edu OI Jalilov, Almaz/0000-0002-8932-2107; Ye, Ruquan/0000-0002-2543-9090; Tour, James/0000-0002-8479-9328 FU U.S. DOE [DE-AC36-08GO28308]; DOE's office of EERE located at NREL; Air Force Office of Scientific Research [FA9550-14-1-0111, FA9550-14-1-0107] FX Work at NREL was supported by U.S. DOE under Contract No. DE-AC36-08GO28308, and used computational resources sponsored by the DOE's office of EERE located at NREL. The Air Force Office of Scientific Research (FA9550-14-1-0111 and FA9550-14-1-0107) also provided support. NR 39 TC 0 Z9 0 U1 47 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD FEB 1 PY 2017 VL 9 IS 4 BP 3785 EP 3791 DI 10.1021/acsami.6b15725 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EJ6UW UT WOS:000393355900061 PM 28055176 ER PT J AU Bowland, CC Malakooti, MH Sodano, HA AF Bowland, Christopher C. Malakooti, Mohammad H. Sodano, Henry A. TI Barium Titanate Film Interfaces for Hybrid Composite Energy Harvesters SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE multifunctional composite; barium titanate; energy harvesting; embedded sensing; carbon fibers ID COATED CARBON-FIBERS; MULTIFUNCTIONAL COMPOSITES; HYDROTHERMAL SYNTHESIS; STRUCTURAL FIBER; SMART MATERIALS; X-RAY; DIFFRACTION; PERFORMANCE; NANOFIBERS AB Energy harvesting utilizing piezoelectric materials has become an attractive approach for converting mechanical energy into electrical power for low-power electronics. Structural composites are ideally suited for energy scavenging due to the large amount of mechanical energy they are subjected to. Here, a multifunctional composite with embedded sensing and energy harvesting is developed by integrating an active interface into carbon fiber reinforced polymer composites. By modifying the composite matrix, both rigid and flexible multifunctional composites are fabricated. Through electromechanical testing of a cantilever beam of the rigid composite, it reveals a power density of 217 pW/cc from only 1 g root-mean-square acceleration when excited at its resonant frequency of 47 Hz. Electromechanical sensor testing of the flexible multifunctional composite reveals an average voltage generation of 23.5 mV/g at its resonant frequency of 96 Hz. This research introduces a route for integrating nonstructural functionality into structural fiber composites by utilizing BaTiO3 coated woven carbon fiber fabrics with power scavenging and passive sensing capabilities. C1 [Bowland, Christopher C.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Malakooti, Mohammad H.; Sodano, Henry A.] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA. [Sodano, Henry A.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Sodano, Henry A.] Univ Michigan, Macromol Sci & Engn Dept, Ann Arbor, MI 48109 USA. RP Sodano, HA (reprint author), Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA.; Sodano, HA (reprint author), Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA.; Sodano, HA (reprint author), Univ Michigan, Macromol Sci & Engn Dept, Ann Arbor, MI 48109 USA. EM hsodano@umich.edu RI Bowland, Christopher/E-1569-2017 OI Bowland, Christopher/0000-0002-1229-4312 FU National Science Foundation [CMMI-1333818]; Air Force Office of Scientific Research [FA9550-16-1-0087, FA9550-12-1-0132]; Air Force Research Laboratory [FA8651-08-D-0108] FX The authors gratefully acknowledge finanical support from National Science Foundation (Award No. CMMI-1333818), Air Force Office of Scientific Research (Contract No. FA9550-16-1-0087 and Contract No. FA9550-12-1-0132), and Air Force Research Laboratory (Award No. FA8651-08-D-0108) for this research. NR 42 TC 0 Z9 0 U1 11 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD FEB 1 PY 2017 VL 9 IS 4 BP 4057 EP 4065 DI 10.1021/acsami.6b15011 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EJ6UW UT WOS:000393355900091 PM 28094498 ER PT J AU Medlin, DL Hattar, K Zimmerman, JA Abdeljawad, F Foiles, SM AF Medlin, D. L. Hattar, K. Zimmerman, J. A. Abdeljawad, F. Foiles, S. M. TI Defect character at grain boundary facet junctions: Analysis of an asymmetric Sigma=5 grain boundary in Fe SO ACTA MATERIALIA LA English DT Article DE Grain-boundaries; Dislocations; Faceting; Electron microscopy; Atomistic modeling ID ATOMIC-STRUCTURE; ANISOTROPIC SURFACES; SLIP TRANSMISSION; BCC METALS; ENERGY; ALUMINUM; CRYSTAL; IRON; DISLOCATIONS; DISCONNECTIONS AB Grain boundaries often develop faceted morphologies in systems for which the interfacial free energy depends on the boundary inclination. Although the mesoscale thermodynamic basis for such morphological evolution has been extensively studied, the influence of line defects, such as secondary grain boundary dislocations, on the facet configurations has not been thoroughly explored. In this paper, through a combination of atomistic simulations and electron microscopic observations, we examine in detail the structure of an asymmetric Sigma = 5 [001] grain boundary in well-annealed, body-centered cubic (BCC) Fe. The observed boundary forms with a hill-and-valley morphology composed of nanoscale {310} and {210} facets. Our analysis clarifies the atomic structure of the {310}/{210} facet junctions and identifies the presence of an array of secondary grain boundary dislocations that are localized to these junctions. Analysis of the Burgers vectors of the grain boundary dislocations, which are of type (1/5) <310> and (1/5)<120>, shows that the defect density is consistent with that required to accommodate a small observed angular deviation from the exact Sigma = 5 orientation relationship. These observations and analysis suggest a crucial role for secondary grain boundary dislocations in dictating the length-scale of grain boundary facets, a consideration which has not been included in prior analyses of facet evolution and equilibrium facet length. (c) 2016 Acta Materialia Inc. Published by Elsevier Ltd. C1 [Medlin, D. L.; Zimmerman, J. A.] Sandia Natl Labs, Livermore, CA 94551 USA. [Hattar, K.; Abdeljawad, F.; Foiles, S. M.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Medlin, DL (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM dlmedli@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors thank our colleagues, Ryan Sills and Ping Lu, and the anonymous referee for helpful and constructive comments on the manuscript. NR 65 TC 0 Z9 0 U1 3 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 1 PY 2017 VL 124 BP 383 EP 396 DI 10.1016/j.actamat.2016.11.017 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EJ1WK UT WOS:000393000800039 ER PT J AU Cordero, ZC Meyer, HM Nandwana, P Dehoff, RR AF Cordero, Zachary C. Meyer, Harry M., III Nandwana, Peeyush Dehoff, Ryan R. TI Powder bed charging during electron-beam additive manufacturing SO ACTA MATERIALIA LA English DT Article DE Additive manufacturing; Electron beam welding; Powder processing; Surface spectroscopy; Electrostatics ID X-RAY PHOTOELECTRON; SEMICONDUCTING PROPERTIES; SURFACE CHARACTERIZATION; PASSIVE FILMS; STEEL POWDER; ALLOYING ELEMENTS; STAINLESS-STEELS; SINGLE-CRYSTAL; METAL-SURFACES; OXIDE-FILMS AB Electrons injected into the build envelope during powder bed electron-beam additive manufacturing can accumulate on the irradiated particles and cause them to repel each other. Under certain conditions, these electrostatic forces can grow so large that they drive the particles out of the build envelope in a process known as "smoking". In the present work, we investigate the causes of powder bed charging and smoking during electron-beam additive manufacturing. In the first part of the paper, we characterize the surface chemistry of a common feedstock material-gas-atomized Ti-6Al-4V powder-and find that a thick, electrically insulating oxide overlayer encapsulates the particles. Based on these experimental results, we then formulate an analytical model of powder bed charging in which each particle is approximated as a capacitor, where the particle and its substrate are the electrodes and the oxide overlayer is the dielectric. Using this model, we estimate the charge distribution in the powder bed, the electrostatic forces acting on the particles, and the conditions under which the powder bed will smoke. It is found that the electrical resistivity of the oxide overlayer strongly influences the charging behavior of the powder bed and that a high resistivity promotes charge accumulation and consequent smoking. This analysis suggests new quality control and process design measures that can help suppress smoking. (c) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Cordero, Zachary C.; Nandwana, Peeyush; Dehoff, Ryan R.] Oak Ridge Natl Lab, Mfg Demonstrat Facil, Knoxville, TN 37932 USA. [Cordero, Zachary C.; Meyer, Harry M., III; Nandwana, Peeyush; Dehoff, Ryan R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Cordero, ZC (reprint author), Rice Univ, Mat Sci & NanoEngn, Houston, TX 77005 USA. EM zachary.cordero@rice.edu RI Dehoff, Ryan/I-6735-2016; OI Dehoff, Ryan/0000-0001-9456-9633; Nandwana, Peeyush/0000-0002-5147-1668 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office [DE-AC05-00OR22725]; UTBattelle, LLC FX This research was sponsored in part by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UTBattelle, LLC. ZCC helpful discussions with Dr. Ralph Dinwiddie of the Oak Ridge National Laboratory, with Gavin Darcey of the Massachusetts Institute of Technology, and with Dr. Francisco Medina, formerly of the Arcam AB Corporation. NR 51 TC 0 Z9 0 U1 17 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 1 PY 2017 VL 124 BP 437 EP 445 DI 10.1016/j.actamat.2016.11.012 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EJ1WK UT WOS:000393000800044 ER PT J AU Wu, Y Ma, D Li, QK Stoica, AD Song, WL Wang, H Liu, XJ Stoica, GM Wang, GY An, K Wang, XL Li, M Lu, ZP AF Wu, Y. Ma, D. Li, Q. K. Stoica, A. D. Song, W. L. Wang, H. Liu, X. J. Stoica, G. M. Wang, G. Y. An, K. Wang, X. L. Li, Mo Lu, Z. P. TI Transformation-induced plasticity in bulk metallic glass composites evidenced by in-situ neutron diffraction SO ACTA MATERIALIA LA English DT Article DE Bulk metallic glass composite; Neutron scattering; Transformation induced plasticity; Martensitic transformation; Molecular dynamic simulations ID INDUCED MARTENSITIC-TRANSFORMATION; MOLECULAR-DYNAMICS; BACK STRESS; DEFORMATION; STEELS; DUCTILITY; STRAIN; VULCAN; ALLOY; TI AB Transformation-induced plasticity in a strain-softening amorphous matrix consisting of austenite B2 phase was studied by in-situ neutron diffraction, coupled with molecular dynamic simulation. It was found that the martensitic transformation from B2 to B19' upon loading commenced at the macroscopic yielding which increased with the decrease of the fraction of the parent austenite B2 phase, and the threshold lattice strain for the martensitic transformation is almost the same in different samples, suggesting that the martensitic transformation in the current glassy matrix is strain-controlled. Analysis of load partition and strain accommodation unveiled that B2 has elastic anisotropy, and the desirable elastic match between B2 and the amorphous matrix ensures a good cooperative deformation. Additionally, molecular dynamic simulation revealed that atoms at the interface between B2 and the amorphous matrix deviated from the standard B2 lattices and acted as nucleation site for the martensitic transformation, eventually giving rise to the strain-controlled martensitic transformation. Our findings provide new insights into the mechanism of phase transformation-mediated plasticity at the microscopic level, and have useful implications for developing novel, high-performance bulk metallic glass composites. (c) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Wu, Y.; Li, Q. K.; Song, W. L.; Wang, H.; Liu, X. J.; Li, Mo; Lu, Z. P.] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Ma, D.; Stoica, A. D.; Stoica, G. M.; An, K.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Wang, G. Y.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Wang, X. L.] City Univ Hong Kong, Dept Phys & Mat Sci, 83 Tat Chee Ave, Kowloon, Hong Kong, Peoples R China. RP Lu, ZP (reprint author), Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China.; Ma, D (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, Spallat Neutron Source, Oak Ridge, TN 37831 USA. EM dongma@ornl.gov; luzp@ustb.edu.cn RI Li, Qikai/B-4538-2012; An, Ke/G-5226-2011; Lu, Zhao-Ping/A-2718-2009 OI An, Ke/0000-0002-6093-429X; FU National Natural Science Foundation of China [51531001, 51671018, 51422101, 51371003, 51271212]; 111 Project [B07003]; International S&T Cooperation Program of China [2015DFG52600]; Program for Changjiang Scholars and Innovative Research Team in University [IRT_14R05]; Top Notch Young Talents Program; Fundamental Research Fund for the Central Universities [FRF-TP-15-004C1]; Center for Advanced Structure Materials, City University of Hong Kong; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This research was supported by National Natural Science Foundation of China (Nos. 51531001, 51671018, 51422101, 51371003 and 51271212), 111 Project (B07003), International S&T Cooperation Program of China (2015DFG52600) and Program for Changjiang Scholars and Innovative Research Team in University (IRT_14R05). YW acknowledges the financial support from the Top Notch Young Talents Program and Fundamental Research Fund for the Central Universities (Nos. FRF-TP-15-004C1). XLW acknowledges the support by Center for Advanced Structure Materials, City University of Hong Kong. The Research conducted on the VULCAN diffractometer at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The authors also thank Dr. E. P. George, H. Bei, Y. F. Gao and Y. D. Wang, Z. Q Sun for their fruitful discussion and Dr. E.A. Payzant (ORNL) for critical reading of the manuscript. NR 39 TC 0 Z9 0 U1 15 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 1 PY 2017 VL 124 BP 478 EP 488 DI 10.1016/j.actamat.2016.11.029 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EJ1WK UT WOS:000393000800048 ER PT J AU Wang, K Bannister, ME Meyer, FW Parish, CM AF Wang, Kun Bannister, Mark E. Meyer, Fred W. Parish, Chad M. TI Effect of starting microstructure on helium plasma-materials interaction in tungsten SO ACTA MATERIALIA LA English DT Article DE Tungsten; Electron microscopy; Plasma materials interaction; Fusion ID LOW-ENERGY; SIMULATIONS; CONTRAST AB In a magnetic fusion energy (MFE) device, the plasma-facing materials (PFMs) will be subjected to tremendous fluxes of ions, heat, and neutrons. The response of PFMs to the fusion environment is still not well defined. Tungsten metal is the present candidate of choice for PFM applications such as the divertor in ITER. However, tungsten's microstructure will evolve in service, possibly to include recrystallization. How tungsten's response to plasma exposure evolves with changes in microstructure is presently unknown. In this work, we have exposed hot-worked and recrystallized tungsten to an 80 eV helium ion beam at a temperature of 900 degrees C to fluences of 2 x 10(23) or 20 x 10(23) He/m(2). This resulted in a faceted surface structure at the lower fluence or short but well-developed nanofuzz structure at the higher fluence. There was little difference in the hot-rolled or recrystallized material's near-surface (<= 50 nm) bubbles at either fluence. At higher fluence and deeper depth, the bubble populations of the hot-rolled and recrystallized were different, the recrystallized being larger and deeper. This may explain previous high-fluence results showing pronounced differences in recrystallized material. The deeper penetration in recrystallized material also implies that grain boundaries are traps, rather than high-diffusivity paths. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Wang, Kun; Bannister, Mark E.; Meyer, Fred W.; Parish, Chad M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Parish, CM (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM parishcm@ornl.gov RI Parish, Chad/J-8381-2013; Wang, Kun/E-2349-2017 OI Wang, Kun/0000-0002-0704-5370 FU US Department of Energy, Office of Science, Fusion Energy Sciences, via an Early Career Research Program Award; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by US Department of Energy, Office of Science, Fusion Energy Sciences, via an Early Career Research Program Award. This work performed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. This research was performed, in part, using instrumentation (FEI Tabs F200X) provided by the Department of Energy, Office of Nuclear Energy, Fuel Cycle R&D Program and the Nuclear Science User Facilities. NR 35 TC 1 Z9 1 U1 8 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 1 PY 2017 VL 124 BP 556 EP 567 DI 10.1016/j.actamat.2016.11.042 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EJ1WK UT WOS:000393000800055 ER PT J AU Scotti, KL Northard, EE Plunk, A Tappan, BC Dunand, DC AF Scotti, Kristen L. Northard, Emily E. Plunk, Amelia Tappan, Bryce C. Dunand, David C. TI Directional solidification of aqueous TiO2 suspensions under reduced gravity SO ACTA MATERIALIA LA English DT Article DE Microgravity; Freeze casting; Parabolic flights; Ice banding; Ice-templating ID FREEZING COLLOIDAL SUSPENSIONS; ENHANCED THERMAL-CONDUCTIVITY; MECHANICAL-PROPERTIES; POROUS CERAMICS; UNIDIRECTIONAL SOLIDIFICATION; MORPHOLOGICAL INSTABILITY; DENDRITIC SOLIDIFICATION; PARTICLE SUSPENSIONS; SOLUTAL CONVECTION; PATTERN-FORMATION AB Porous materials exhibiting aligned, elongated pore structures can be created by directional solidification of aqueous suspensions-where particles are rejected from a propagating ice front and form interdendritic, particle-packed walls-followed by sublimation of the ice, and sintering of the particle walls. Theoretical models that predict dendritic lamellae spacing-and thus wall and pore width in the final materials-are currently limited due to an inability to account for gravity-driven convective effects during solidification. Here, aqueous suspensions of 10-30 nm TiO2 nanoparticles are solidified on parabolic flights under micro, lunar (similar to 0.17 g; g(l) = 1.62 m/s(2)), and Martian (similar to 0.38 g; g(m) = 3.71 m/s(2)) gravity and compared to terrestrially-solidified samples. After ice sublimation and sintering, all resulting TiO2 materials exhibit elongated lamellar pores replicating the ice dendrites. Increasing the TiO2 fraction in the suspensions leads to decreased lamellar spacing in all samples, regardless of gravitational acceleration. Consistent with previous studies of microgravity solidification of binary metallic alloys, lamellar spacing decreases with increasing gravitational acceleration. Mean lamellar spacing for 20 wt% TiO2 nanoparticles suspensions under micro, lunar, Martian, and terrestrial gravity are, respectively: 50 +/- 8, 34 +/- 11,30 +/- 6, and 23 +/- 9 mu m, indicating that gravity driven convection strongly affects lamellae spacing under terrestrial gravity conditions. Gravitational effects on lamellar spacing are highest at low TiO2 fractions in the suspension; for 5 wt% TiO2 suspensions, the microgravity lamellar spacing is more than twice that under terrestrial gravity (182 +/- 21 vs. 81 +/- 23;mu m). Results of this study are in good agreement with previous studies of binary metallic alloy solidification where primary dendrite spacing increases under microgravity. Literature data from icetemplating systems are used to discuss a dependence on lamellae spacing of the density ratio of particles and fluid. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Scotti, Kristen L.; Northard, Emily E.; Plunk, Amelia; Dunand, David C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Tappan, Bryce C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Dunand, DC (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM dunand@northwestern.edu FU NASA Flight Opportunities Program (NASA FOP); Institute for Sustainability and Energy at Northwestern, Northwestern University (NU) Office of the Provost; Illinois Space Grant Consortium; MRSEC program of the National Science Foundation at the Materials Research Center at NU [DMR-1121262] FX This work was supported by grants from NASA Flight Opportunities Program (NASA FOP), the Institute for Sustainability and Energy at Northwestern, Northwestern University (NU) Office of the Provost, and the Illinois Space Grant Consortium. This work made use of the MatCI Facility, and the J.B. Cohen X-Ray Diffraction Facility at Northwestern University (NU) which are supported by the MRSEC program of the National Science Foundation (DMR-1121262) at the Materials Research Center at NU. The authors thank the following NU students: Ms. Felicia Teller and Ms. Kimberly Clinch for their assistance during parabolic flight testing and Mr. Matthew Ocana for his assistance with ceramographic sample preparation. The authors also thank Mr. Robert Roe (NASA FOP) for his technical guidance during, and in preparation of, parabolic flight testing, Prof. M. Grae Worster (University of Cambridge) for his insight on ice banding, and Prof. Peter Voorhees (NU) for numerous useful discussions and helpful insights on alloy solidification. NR 101 TC 0 Z9 0 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 1 PY 2017 VL 124 BP 608 EP 619 DI 10.1016/j.actamat.2016.11.038 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EJ1WK UT WOS:000393000800060 ER PT J AU Challacombe, JF Petersen, JM Gallegos-Graves, LV Hodge, D Pillai, S Kuske, CR AF Challacombe, Jean F. Petersen, Jeannine M. Gallegos-Graves, La Verne Hodge, David Pillai, Segaran Kuske, Cheryl R. TI Whole-Genome Relationships among Francisella Bacteria of Diverse Origins Define New Species and Provide Specific Regions for Detection SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article DE Francisella species; Francisella tularensis; Francisella novicida; Francisella ID TULARENSIS SUBSP TULARENSIS; FORMERLY YERSINIA-PHILOMIRAGIA; COD GADUS-MORHUA; PATHOGENICITY ISLAND; ATLANTIC COD; SP NOV.; ENVIRONMENTAL-SAMPLES; NOVICIDA BACTEREMIA; GENUS FRANCISELLA; WOLBACHIA-PERSICA AB Francisella tularensis is a highly virulent zoonotic pathogen that causes tularemia and, because of weaponization efforts in past world wars, is considered a tier 1 biothreat agent. Detection and surveillance of F. tularensis may be confounded by the presence of uncharacterized, closely related organisms. Through DNA-based diagnostics and environmental surveys, novel clinical and environmental Francisella isolates have been obtained in recent years. Here we present 7 new Francisella genomes and a comparison of their characteristics to each other and to 24 publicly available genomes as well as a comparative analysis of 16S rRNA and sdhA genes from over 90 Francisella strains. Delineation of new species in bacteria is challenging, especially when isolates having very close genomic characteristics exhibit different physiological features-for example, when some are virulent pathogens in humans and animals while others are nonpathogenic or are opportunistic pathogens. Species resolution within Francisella varies with analyses of single genes, multiple gene or protein sets, or whole-genome comparisons of nucleic acid and amino acid sequences. Analyses focusing on single genes (16S rRNA, sdhA), multiple gene sets (virulence genes, lipopolysaccharide [LPS] biosynthesis genes, pathogenicity island), and whole-genome comparisons (nucleotide and protein) gave congruent results, but with different levels of discrimination confidence. We designate four new species within the genus; Francisella opportunistica sp. nov. (MA06-7296), Francisella salina sp. nov. (TX07-7308), Francisella uliginis sp. nov. (TX07-7310), and Francisella frigiditurris sp. nov. (CA97-1460). This study provides a robust comparative framework to discern species and virulence features of newly detected Francisella bacteria. IMPORTANCE DNA-based detection and sequencing methods have identified thousands of new bacteria in the human body and the environment. In most cases, there are no cultured isolates that correspond to these sequences. While DNA-based approaches are highly sensitive, accurately assigning species is difficult without known near relatives for comparison. This ambiguity poses challenges for clinical cases, disease epidemics, and environmental surveillance, for which response times must be short. Many new Francisella isolates have been identified globally. However, their species designations and potential for causing human disease remain ambiguous. Through detailed genome comparisons, we identified features that differentiate F. tularensis from clinical and environmental Francisella isolates and provide a knowledge base for future comparison of Francisella organisms identified in clinical samples or environmental surveys. C1 [Challacombe, Jean F.; Gallegos-Graves, La Verne; Kuske, Cheryl R.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87544 USA. [Petersen, Jeannine M.] Ctr Dis Control & Prevent, Div Vector Borne Infect Dis, Ft Collins, CO USA. [Hodge, David] Dept Homeland Secur, Sci & Technol Directorate, Chem & Biol Div, Washington, DC USA. [Pillai, Segaran] US FDA, Off Lab Sci & Safety, Silver Spring, MD USA. RP Kuske, CR (reprint author), Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87544 USA. EM Kuske@lanl.gov FU U.S. Department of Homeland Security, Science and Technology Directorate FX The genomic sequencing for seven of the isolates was funded by the U.S. Department of Homeland Security, Science and Technology Directorate, through multiple grants to C.R.K. and J.F.C. NR 104 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2017 VL 83 IS 3 AR UNSP e02589 DI 10.1128/AEM.02589-16 PG 17 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA EJ8MW UT WOS:000393480900012 ER PT J AU Renner, LD Zan, JD Hu, LI Martinez, M Resto, PJ Siegel, AC Torres, C Hall, SB Slezak, TR Nguyen, TH Weibel, DB AF Renner, Lars D. Zan, Jindong Hu, Linda I. Martinez, Manuel Resto, Pedro J. Siegel, Adam C. Torres, Clint Hall, Sara B. Slezak, Tom R. Nguyen, Tuan H. Weibel, Douglas B. TI Detection of ESKAPE Bacterial Pathogens at the Point of Care Using Isothermal DNA-Based Assays in a Portable Degas-Actuated Microfluidic Diagnostic Assay Platform SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article DE ESKAPE pathogens; bacteria; detection; infection; isothermal PCR; lab-on-a-chip; point of care ID RECOMBINASE POLYMERASE AMPLIFICATION; RAPID DETECTION; ANTIBIOTICS; RESISTANCE; THERAPY; INFECTION; SETTINGS; CRISIS; RNA AB An estimated 1.5 billion microbial infections occur globally each year and result in similar to 4.6 million deaths. A technology gap associated with commercially available diagnostic tests in remote and underdeveloped regions prevents timely pathogen identification for effective antibiotic chemotherapies for infected patients. The result is a trial-and-error approach that is limited in effectiveness, increases risk for patients while contributing to antimicrobial drug resistance, and reduces the lifetime of antibiotics. This paper addresses this important diagnostic technology gap by describing a low-cost, portable, rapid, and easy-to-use microfluidic cartridgebased system for detecting the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) bacterial pathogens that are most commonly associated with antibiotic resistance. The point-of-care molecular diagnostic system consists of a vacuumdegassed microfluidic cartridge preloaded with lyophilized recombinase polymerase amplification (RPA) assays and a small portable battery-powered electronic incubator/reader. The isothermal RPA assays detect the targeted ESKAPE pathogens with high sensitivity (e.g., a limit of detection of similar to 10 nucleic acid molecules) that is comparable to that of current PCR-based assays, and they offer advantages in power consumption, engineering, and robustness, which are three critical elements required for the point-of-care setting. IMPORTANCE This paper describes a portable system for rapidly identifying bacteria in resource-limited environments; we highlight the capabilities of the technology by detecting different pathogens within the ESKAPE collection, which cause nosocomial infections. The system is designed around isothermal DNA-based assays housed within an autonomous plastic cartridge that are designed with the end user in mind, who may have limited technological training. Displaying excellent sensitivity and specificity, the assay systems that we demonstrate may enable future diagnoses of bacterial infection to guide the development of effective chemotherapies and may have a role in areas beyond health where rapid detection is valuable, including in industrial processing and manufacturing, food security, agriculture, and water quality testing. C1 [Renner, Lars D.; Zan, Jindong; Hu, Linda I.; Resto, Pedro J.; Siegel, Adam C.; Weibel, Douglas B.] Univ Wisconsin, Dept Biochem, Madison, WI 53705 USA. [Weibel, Douglas B.] Univ Wisconsin, Dept Biomed Engn, Madison, WI 53705 USA. [Weibel, Douglas B.] Univ Wisconsin, Dept Chem, Madison, WI 53705 USA. [Renner, Lars D.] Leibniz Inst Polymer Res Dresden, Dresden, Germany. [Martinez, Manuel; Resto, Pedro J.] Univ Puerto Rico, Dept Mech Engn, Mayaguez, PR USA. [Torres, Clint] Lawrence Livermore Natl Lab, Computat Directorate, Livermore, CA USA. [Hall, Sara B.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. [Slezak, Tom R.; Nguyen, Tuan H.] Lawrence Livermore Natl Lab, Global Secur Principal Directorate, Livermore, CA USA. RP Weibel, DB (reprint author), Univ Wisconsin, Dept Biochem, Madison, WI 53705 USA.; Weibel, DB (reprint author), Univ Wisconsin, Dept Biomed Engn, Madison, WI 53705 USA.; Weibel, DB (reprint author), Univ Wisconsin, Dept Chem, Madison, WI 53705 USA.; Nguyen, TH (reprint author), Lawrence Livermore Natl Lab, Global Secur Principal Directorate, Livermore, CA USA. EM thn@llnl.gov; weibel@biochem.wisc.edu FU Department of Defense [B603628]; Bill and Melinda Gates Foundation [OPP1068092]; National Science Foundation [DMR-1121288]; U.S. Department of Energy [DE-AC52-07NA27344] FX The research was supported by grants from the Department of Defense (grant B603628) and the Bill and Melinda Gates Foundation (grant OPP1068092) and used instrumentation provided by support from the National Science Foundation (under award DMR-1121288). Work by Lawrence Livermore National Laboratory was performed under the auspices of the U.S. Department of Energy through contract DE-AC52-07NA27344. NR 33 TC 0 Z9 0 U1 5 U2 5 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2017 VL 83 IS 4 AR UNSP e02449-16 DI 10.1128/AEM.02449-16 PG 13 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA EJ8NI UT WOS:000393482200003 ER PT J AU Thorgersen, MP Lancaster, WA Rajeev, L Ge, XX Vaccaro, BJ Poole, FL Arkin, AP Mukhopadhyay, A Adamsa, MWW AF Thorgersen, Michael P. Lancaster, W. Andrew Rajeev, Lara Ge, Xiaoxuan Vaccaro, Brian J. Poole, Farris L. Arkin, Adam P. Mukhopadhyay, Aindrila Adamsa, Michael W. W. TI A Highly Expressed High-Molecular-Weight S-Layer Complex of Pelosinus sp Strain UFO1 Binds Uranium SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article DE contamination; uranium sequestration; uranium-binding protein ID CONTAMINATED AQUIFER; SPHAERICUS JG-A12; U(VI) REDUCTION; BIOREDUCTION; ENVIRONMENTS; MECHANISM; BACTERIA; PROTEIN AB Cell suspensions of Pelosinus sp. strain UFO1 were previously shown, using spectroscopic analysis, to sequester uranium as U(IV) complexed with carboxyl and phosphoryl group ligands on proteins. The goal of our present study was to characterize the proteins involved in uranium binding. Virtually all of the uranium in UFO1 cells was associated with a heterodimeric protein, which was termed the uranium-binding complex (UBC). The UBC was composed of two S-layer domain proteins encoded by UFO1_4202 and UFO1_4203. Samples of UBC purified from the membrane fraction contained 3.3 U atoms/heterodimer, but significant amounts of phosphate were not detected. The UBC had an estimated molecular mass by gel filtration chromatography of 15 MDa, and it was proposed to contain 150 heterodimers (UFO1_4203 and UFO1_4202) and about 500 uranium atoms. The UBC was also the dominant extracellular protein, but when purified from the growth medium, it contained only 0.3 U atoms/heterodimer. The two genes encoding the UBC were among the most highly expressed genes within the UFO1 genome, and their expressions were unchanged by the presence or absence of uranium. Therefore, the UBC appears to be constitutively expressed and is the first line of defense against uranium, including by secretion into the extracellular medium. Although S-layer proteins were previously shown to bind U(VI), here we showed that U(IV) binds to S-layer proteins, we identified the proteins involved, and we quantitated the amount of uranium bound. IMPORTANCE Widespread uranium contamination from industrial sources poses hazards to human health and to the environment. Herein, we identified a highly abundant uranium-binding complex (UBC) from Pelosinus sp. strain UFO1. The complex makes up the primary protein component of the S-layer of strain UFO1 and binds 3.3 atoms of U(IV) per heterodimer. While other bacteria have been shown to bind U(VI) on their S-layer, we demonstrate here an example of U(IV) bound by an S-layer complex. The UBC provides a potential tool for the microbiological sequestration of uranium for the cleaning of contaminated environments. C1 [Thorgersen, Michael P.; Lancaster, W. Andrew; Ge, Xiaoxuan; Vaccaro, Brian J.; Poole, Farris L.; Adamsa, Michael W. W.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Rajeev, Lara; Arkin, Adam P.; Mukhopadhyay, Aindrila] Lawrence Berkeley Natl Lab, Syst & Engn Div, Berkeley, CA USA. RP Adamsa, MWW (reprint author), Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. EM adamsm@uga.edu FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This material by the Ecosystems and Networks Integrated with Genes and Molecular Assemblies (ENIGMA) (http://enigma.lbl.gov), a scientific focus area program at Lawrence Berkeley National Laboratory is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under contract number DE-AC02-05CH11231. NR 34 TC 0 Z9 0 U1 2 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2017 VL 83 IS 4 AR UNSP e03044 DI 10.1128/AEM.03044-16 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA EJ8NI UT WOS:000393482200022 ER PT J AU Wang, LL Yi, WY Ye, JS Qin, HM Long, Y Yang, M Li, QS AF Wang, Linlin Yi, Wenying Ye, Jinshao Qin, Huaming Long, Yan Yang, Meng Li, Qusheng TI Interactions among triphenyltin degradation, phospholipid synthesis and membrane characteristics of Bacillus thuringiensis in the presence of D-malic acid SO CHEMOSPHERE LA English DT Article DE Fatty acid; Transport; Membrane potential; Organotin; Organic acid ID POLYUNSATURATED FATTY-ACIDS; BREVIBACILLUS-BREVIS; HUMAN NEUTROPHILS; OLEIC-ACID; BIOSORPTION; CELLS; BIODEGRADATION; ACTIVATION; ORGANOTINS; RESPONSES AB Degradation pathway and surface biosorption of triphenyltin (TPT) by effective microbes have been investigated in the past. However, unclear interactions among membrane components and TPT binding and transport are still obstacles to understanding TPT biotransformation. To reveal the mechanism involved, the phospholipid expression, membrane potential, cellular mechanism and molecular dynamics between TPT and fatty acids (FAs) during the TPT degradation process in the presence of D-malic acid (DMA) were studied. The results show that the degradation efficiency of 1 mg L-1 wi by Bacillus thuringiensis (1 g L-1) with 0.5 or 1 mg L-1 DMA reached values up to approximately 90% due to the promotion of element metabolism and cellular activity, and the depression of FA synthesis induced by DMA. The addition of DMA caused conversion of more linoleic acid into 10-oxo-12(Z)-octadecenoic acid, increased the membrane permeability, and alleviated the decrease in membrane potential, resulting in TPT transport and degradation. Fluorescence analysis reveals that the endospore of B. thuringiensis could act as an indicator for membrane potential and cellular activities. The current findings are advantageous for acceleration of biosorption, transport and removal of pollutants from natural environments. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Wang, Linlin; Yi, Wenying; Ye, Jinshao; Qin, Huaming; Long, Yan; Yang, Meng; Li, Qusheng] Jinan Univ, Sch Environm, Key Lab Environm Exposure & Hlth Guangzhou City, Guangzhou 510632, Guangdong, Peoples R China. [Wang, Linlin; Ye, Jinshao] Lawrence Berkeley Natl Lab, Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Ye, JS (reprint author), Jinan Univ, Sch Environm, Key Lab Environm Exposure & Hlth Guangzhou City, Guangzhou 510632, Guangdong, Peoples R China. EM jinshaoye@lbl.gov FU National Natural Science Foundation of China [21377047, 21577049]; Science and Technology Project of Guangdong Province [2014A020216013, 2016A020222005]; University Foundation of Education Ministry of China [21615459] FX The authors would like to thank the National Natural Science Foundation of China (Nos. 21377047, 21577049), Science and Technology Project of Guangdong Province (Nos. 2014A020216013, 2016A020222005) and the University Foundation of Education Ministry of China (No. 21615459) for their financial support. NR 35 TC 0 Z9 0 U1 9 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD FEB PY 2017 VL 169 BP 403 EP 412 DI 10.1016/j.chemosphere.2016.10.140 PG 10 WC Environmental Sciences SC Environmental Sciences & Ecology GA EJ1XH UT WOS:000393003300048 PM 27886543 ER PT J AU Wu, LJ Dholabhai, PP Uberuaga, BP Castro, RHR AF Wu, Longjia Dholabhai, Pratik P. Uberuaga, Bias P. Castro, Ricardo H. R. TI Temperature Dependence Discontinuity in the Stability of Manganese-Doped Ceria Nanocrystals SO CRYSTAL GROWTH & DESIGN LA English DT Article ID GRAIN-BOUNDARY ENERGIES; DENSIFICATION BEHAVIOR; WATER-ADSORPTION; CEO2; SEGREGATION; SURFACE; GROWTH; OXIDE; NANOPARTICLES; ZIRCONIA AB CeO2 has strong potential for chemical-looping water splitting. It has been shown that manganese doping decreases interface energies of CeO2, allowing increased stability of high surface areas in this oxygen carrier oxide. The phenomenon is related to the segregation of Mn3+ at interfaces, which causes a measurable decrease in excess energy. In the present work, it is shown that, despite the stability of nanocrystals of manganese-doped CeO2 with relation to undoped CeO2, the effect is strongly dependent on the oxidation state of manganese, i.e., on the temperature. At temperatures below 800 degrees C, Mn is in the 3+ valence state, and coarsening is hindered by the reduced interface energetics, showing smaller crystal sizes with increasing Mn content. At temperatures above 800 degrees C, Mn is reduced to its 2+ valence state, and coarsening is enhanced with increasing Mn content. Atomistic simulations show the segregation of Mn to grain boundaries is relatively insensitive to the charge state of the dopant. However, point defect modeling finds that the reduced state causes a decrease in cation vacancy concentration and an increase in cation interstitials, reducing drag forces for grain boundary mobility and increasing growth rates. C1 [Wu, Longjia; Castro, Ricardo H. R.] Univ Calif Davis, Dept Mat Sci & Engn, Davis, CA 95616 USA. [Wu, Longjia; Castro, Ricardo H. R.] Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA. [Dholabhai, Pratik P.; Uberuaga, Bias P.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Castro, RHR (reprint author), Univ Calif Davis, Dept Mat Sci & Engn, Davis, CA 95616 USA.; Castro, RHR (reprint author), Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA. EM rhrcastro@ucdavis.edu FU UC Lab Fees Research Program [12-LF-239032]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; National Nuclear Security Administration of the U.S. DOE [DE-AC52-06NA25396] FX This work was supported by UC Lab Fees Research Program 12-LF-239032. B.P.U. acknowledges support by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under Contract DE-AC52-06NA25396. NR 37 TC 0 Z9 0 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD FEB PY 2017 VL 17 IS 2 BP 446 EP 453 DI 10.1021/acs.cgd.6b01193 PG 8 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA EJ6UG UT WOS:000393354100007 ER PT J AU Smetana, V Steinberg, S Mudring, AV AF Smetana, Volodymyr Steinberg, Simon Mudring, Anja-Verena TI Layered Structures and Disordered Polyanionic Nets in the Cation Poor Polar Intermetallics CsAu1.4Ga2.8 and CsAu2Ga2.6 SO CRYSTAL GROWTH & DESIGN LA English DT Article ID AU-GA SYSTEM; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; CRYSTAL-STRUCTURE; BUILDING UNITS; GOLD-GALLIUM; BASIS-SET; TERNARY; SODIUM; PHASES AB Gold intermetallics are known for their unusual structures and bonding patterns. Two new compounds have been discovered in the cation-poor part of the CsAuGa system. Both compounds were obtained directly by heating the elements at elevated temperatures. Structure determinations based on single-crystal X-ray diffraction analyses revealed two structurally and compositionally related formations: CsAu1.4Ga2.8 (I) and CsAu2Ga2.6 (II) crystallize in their own structure types (I: R (3) over bar, a = 11.160(2) A, c = 21.706(4) A, Z = 18; II: R (3) over bar, a = 11.106(1) A, A, c = 77.243(9) A, Z = 54) and contain hexagonal cationic layers of cesium. This is a unique structural motif, which has never been observed for the other (lighter) alkali metals in combination with Au and post transition elements. The polyanionic part is characterized in contrast by Au/Ga tetrahedral stars, a structural feature that is characteristic for light alkali metal representatives, and disordered sites with mixed Au/Ga occupancies that occur in both structures with a more significant disorder in the polyanionic component of CsAu2Ga2.6. Examinations of the electronic band structure for a model approximating the composition of CsAu1.4Ga2.8 have been completed using density-functional-theory-based methods and reveal a deep pseudogap at EF. Bonding analysis by evaluating the crystal orbital Hamilton populations show dominant heteroatomic AuGa bonds and only a negligible contribution from Cs pairs. C1 [Smetana, Volodymyr; Steinberg, Simon; Mudring, Anja-Verena] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Smetana, Volodymyr; Steinberg, Simon; Mudring, Anja-Verena] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Steinberg, Simon] Rhein Westfal TH Aachen, Inst Inorgan Chem, Landoltweg 1, D-52074 Aachen, Germany. RP Mudring, AV (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA.; Mudring, AV (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM mudring@iastate.edu RI Smetana, Volodymyr/C-1340-2015; OI Mudring, Anja/0000-0002-2800-1684; Smetana, Volodymyr/0000-0003-0763-1457 FU Critical Materials Institute, an Energy Innovation Hub of the U.S. Department of Energy (DOE); Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office; Office of the Basic Energy Sciences, Materials Sciences Division of the U.S. DOE; Department of Materials Science and Engineering at Iowa State University; U.S. DOE by Iowa State University [DE-AC02-07CH11358] FX This research was supported by the Critical Materials Institute, an Energy Innovation Hub of the U.S. Department of Energy (DOE), the Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office (A.V.M. and V.S. electronic structure calculations, data analysis, sample and manuscript preparation), the Office of the Basic Energy Sciences, Materials Sciences Division of the U.S. DOE (A.V.M., S. S. and V.S. data analysis, sample and manuscript preparation) and the Department of Materials Science and Engineering at Iowa State University (A.V.M. and S. S. data analysis, sample and manuscript preparation). Ames Laboratory is operated for U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 56 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD FEB PY 2017 VL 17 IS 2 BP 693 EP 700 DI 10.1021/acs.cgd.6b01536 PG 8 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA EJ6UG UT WOS:000393354100033 ER PT J AU Edge, CB Rollinson, N Brooks, RJ Congdon, JD Iverson, JB Janzen, FJ Litzgus, JD AF Edge, Christopher B. Rollinson, Njal Brooks, Ronald J. Congdon, Justin D. Iverson, John B. Janzen, Fredric J. Litzgus, Jacqueline D. TI Phenotypic plasticity of nest timing in a post-glacial landscape: how do reptiles adapt to seasonal time constraints? SO ECOLOGY LA English DT Article DE glaciation; individual variation; Jinks-Connolly rule; random regression; range limit; reaction norm; turtle ID TURTLES CHELYDRA-SERPENTINA; DEPENDENT SEX DETERMINATION; HATCHLING PAINTED TURTLES; COMMON SNAPPING TURTLES; WILD BIRD POPULATION; CHRYSEMYS-PICTA; CLIMATE-CHANGE; REACTION NORMS; EVOLUTIONARY SIGNIFICANCE; OVERWINTERING STRATEGY AB Life histories evolve in response to constraints on the time available for growth and development. Nesting date and its plasticity in response to spring temperature may therefore be important components of fitness in oviparous ectotherms near their northern range limit, as reproducing early provides more time for embryos to complete development before winter. We used data collected over several decades to compare air temperature and nest date plasticity in populations of painted turtles and snapping turtles from a relatively warm environment (southeastern Michigan) near the southern extent of the last glacial maximum to a relatively cool environment (central Ontario) near the northern extent of post-glacial recolonization. For painted turtles, population-level differences in reaction norm elevation for two phenological traits were consistent with adaptation to time constraints, but no differences in reaction norm slopes were observed. For snapping turtle populations, the difference in reaction norm elevation for a single phenological trait was in the opposite direction of what was expected under adaptation to time constraints, and no difference in reaction norm slope was observed. Finally, among-individual variation in individual plasticity for nesting date was detected only in the northern population of snapping turtles, suggesting that reaction norms are less canalized in this northern population. Overall, we observed evidence of phenological adaptation, and possibly maladaptation, to time constraints in long-lived reptiles. Where present, (mal) adaptation occurred by virtue of differences in reaction norm elevation, not reaction norm slope. Glacial history, generation time, and genetic constraint may all play an important role in the evolution of phenological timing and its plasticity in long-lived reptiles. C1 [Edge, Christopher B.; Rollinson, Njal] Univ Toronto, Ecol & Evolutionary Biol, Toronto, ON M5S 3G5, Canada. [Brooks, Ronald J.] Univ Guelph, Dept Integrat Biol, Guelph, ON N1G 2W1, Canada. [Congdon, Justin D.] Savannah River Ecol Lab, Aiken, SC 29802 USA. [Iverson, John B.] Earlham Coll, Dept Biol, Richmond, IN 47374 USA. [Janzen, Fredric J.] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA. [Litzgus, Jacqueline D.] Laurentian Univ, Dept Biol, Sudbury, ON P3E 2C6, Canada. RP Rollinson, N (reprint author), Univ Toronto, Ecol & Evolutionary Biol, Toronto, ON M5S 3G5, Canada. EM njal.rollinson@utoronto.ca FU Natural Sciences and Engineering Research Council (NSERC); Canadian Wildlife Federation; Ontario Ministry of Natural Resources and Forestry; National Sciences Foundation (NSF) [DEB-74-070631, DEB-79-06301, BSR-84-00861, BSR-90-19771, BSR-8914686]; Foundation Ipsen; NSERC Post Doctoral Fellowship; University of Toronto Ecology and Evolutional Biology Fellowship; Canadian Water Network; Office of Biological and Environmental Research, U.S. Department of Energy [DE-FC09-96SR18546]; Savannah River Ecology Laboratory; NSF [DEB-9629529, DEB-0089680, DEB-0640932, DEB-1242510, IOS-1257857] FX We thank the many post docs, graduate students, and undergraduate students who contributed to the long-term studies. We especially thank Julia Riley for providing incubation data. Funding at the Ontario study was provided by the Natural Sciences and Engineering Research Council (NSERC; J. Litzgus and R. Brooks), Canadian Wildlife Federation (J. Litzgus), and the Ontario Ministry of Natural Resources and Forestry (J. Litzgus). Funding at the Michigan study was provided by the National Sciences Foundation (NSF; J. Congdon: DEB-74-070631, DEB-79-06301, BSR-84-00861, and BSR-90-19771) and a financial award associated with the Prix Longevite Prize from Foundation Ipsen (J. Congdon). Funding for the Illinois study (data analyzed in the appendix) was provided primarily by NSF (F. Janzen: BSR-8914686, DEB-9629529, DEB-0089680, and DEB-0640932). Support for manuscript preparation was provided by NSERC Post Doctoral Fellowship (C. Edge and N. Rollinson), a University of Toronto Ecology and Evolutional Biology Fellowship (N. Rollinson), the Canadian Water Network (C. Edge) and by the Office of Biological and Environmental Research, U.S. Department of Energy through Financial Assistant Award No. DE-FC09-96SR18546 to the University of Georgia Research Foundation and the Savannah River Ecology Laboratory (J. Congdon), and NSF (F. Janzen: DEB-1242510 and IOS-1257857). C. Edge and N. Rollinson contributed equally to the paper. NR 76 TC 0 Z9 0 U1 10 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0012-9658 EI 1939-9170 J9 ECOLOGY JI Ecology PD FEB PY 2017 VL 98 IS 2 BP 512 EP 524 DI 10.1002/ecy.1665/suppinfo PG 13 WC Ecology SC Environmental Sciences & Ecology GA EJ7BI UT WOS:000393375700022 PM 27870008 ER PT J AU Jiang, JH AF Jiang, Junhua TI Promotion of PtIr and Pt catalytic activity towards ammonia electrooxidation through the modification of Zn SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Ammonia electrooxidation; Electrocatalytic activity; Platinum-iridium alloy; Platinum-iridium-zinc; Zn modification ID ELECTROCHEMICAL OXIDATION; METHANOL ELECTROOXIDATION; ALKALINE MEDIA; BINARY-ALLOYS; IR; ELECTRODE; ELECTROCATALYSIS; NANOPARTICLES; PT(111); ANODE AB Zn is introduced into Pt and PtIr electrodes by applying potential cycles to their corresponding polycrystalline microdisc electrodes in a ZnC12-containing ionic liquid bath. Scanning-electron microscopy and energy-dispersive X-ray microanalysis studies show that nanostructured PtIrZn and PtZn layers created on the microdisc electrodes contain approximately 5 wt% Zn. Cyclic voltammetric studies reveal that PtZn and PtIrZn are significantly more active towards electrochemical ammonia oxidation in alkaline media than virgin Pt and Pfir electrodes. The PtIrZn electrode demonstrates a low onset potential of 0.30 V vs RHE and a high exchange current density of 4.3 x 10(-8) A cm(-2), which is favorably comparable to state-of-the-art electrocatalyts for the same reaction. The catalytic activity promotion by the Zn modification may be related to the inhibition of the hydrogen electrochemistry. PtIrZn appears therefore to be a very promising anode catalyst for direct ammonia fuel cells and ammonia electrolysis. (C) 2017 Elsevier B.V. All rights reserved. C1 [Jiang, Junhua] Univ Illinois, Illinois Sustainable Technol Ctr, Urbana, IL 61820 USA. [Jiang, Junhua] Idaho Natl Lab, Fuel Performance & Dev Dept, Idaho Falls, ID 83415 USA. RP Jiang, JH (reprint author), Univ Illinois, Illinois Sustainable Technol Ctr, Urbana, IL 61820 USA.; Jiang, JH (reprint author), Idaho Natl Lab, Fuel Performance & Dev Dept, Idaho Falls, ID 83415 USA. EM junhua.jiang@inl.gov RI Jiang, Junhua/D-2645-2017 OI Jiang, Junhua/0000-0003-2437-9812 NR 31 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 EI 1873-1902 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD FEB PY 2017 VL 75 BP 52 EP 55 DI 10.1016/j.elecom.2016.12.017 PG 4 WC Electrochemistry SC Electrochemistry GA EJ5HZ UT WOS:000393249700013 ER PT J AU Doll, KM Bantchev, GB Walter, EL Murray, RE Appell, M Lansing, JC Moser, BR AF Doll, Kenneth M. Bantchev, Grigor B. Walter, Erin L. Murray, Rex E. Appell, Michael Lansing, James C. Moser, Bryan R. TI Parameters Governing Ruthenium Sawhorse-Based Decarboxylation of Oleic Acid SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID ORDINARY DIFFERENTIAL-EQUATIONS; RENEWABLE RAW-MATERIALS; LINEAR ALPHA-OLEFINS; FATTY-ACIDS; CATALYTIC DEOXYGENATION; CARBOXYLIC-ACIDS; DECARBONYLATION; ISOMERIZATION; COMPLEXES; DEHYDRATION AB Ruthenium-catalyzed decarboxylation of 9-cis-octadecenoic is a path to produce biobased olefins. Here, a mechanistic study of this reaction was undertaken utilizing a closed reaction system and a pressure reactor. The proposed mechanism of an isomerization followed by a decarboxylation reaction was consistent with a mathematical kinetic model. That same model was able to accurately predict CO2 evolution. Additionally, computational chemistry was used to determine that the barrier of the oleic acid decarboxylation reaction is 249 kJ mo1(-1). Using the new information, the efficacy of the decarboxylation reaction was improved to an overall catalytic efficiency of 850 total turnovers. C1 [Doll, Kenneth M.; Bantchev, Grigor B.; Walter, Erin L.; Murray, Rex E.; Lansing, James C.; Moser, Bryan R.] ARS, Natl Ctr Agr Utilizat Res, Biooils Unit, USDA, 1815 N Univ St, Peoria, IL 61604 USA. [Appell, Michael] USDA, Mycotoxin Prevent & Appl Microbiol Res Unit, 1815 N Univ St, Peoria, IL 61604 USA. [Lansing, James C.] US DOE, Oak Ridge Inst Sci & Educ, 1299 Bethel Valley Rd, Oak Ridge, TN 37830 USA. RP Doll, KM (reprint author), ARS, Natl Ctr Agr Utilizat Res, Biooils Unit, USDA, 1815 N Univ St, Peoria, IL 61604 USA. EM Kenneth.Doll@ars.usda.gov OI Bantchev, Grigor/0000-0003-2790-5195 NR 45 TC 0 Z9 0 U1 2 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD FEB 1 PY 2017 VL 56 IS 4 BP 864 EP 871 DI 10.1021/acs.iecr.6b04555 PG 8 WC Engineering, Chemical SC Engineering GA EJ6UL UT WOS:000393354700005 ER PT J AU Lyon, KL Utgikar, VP Greenhalgh, MR AF Lyon, Kevin L. Utgikar, Vivek P. Greenhalgh, Mitchell R. TI Dynamic Modeling for the Separation of Rare Earth Elements Using Solvent Extraction: Predicting Separation Performance Using Laboratory Equilibrium Data SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID NEODYMIUM; PC88A; ACID AB Industrial rare earth element (REE) separation facilities utilize acidic cation exchange ligands such as 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC88A) for solvent extraction processes. REE separations are costly and difficult due to their chemical similarities and subsequent low separation factors. Several empirical correlations are available in the literature to predict steady state extraction equilibria for various solvent systems. However, complete solvent extraction flow sheet design for REE separations requires complex scrubbing and stripping circuits to separate and produce individual pure species. Furthermore, dynamic modeling of extraction, scrubbing, and stripping in REE separations circuits will aid in process design, optimization, and management of process fluctuations. A dynamic MATLAB/SIMULINK REE equilibrium model has been coupled with dynamic acid balances to predict REE solvent extraction processes using laboratory equilibrium data. The model was used to predict a flow sheet that produced high purity neodymium from a 25 wt % praseodymium and 75 wt % neodymium feed. Laboratory mixer settlers were used to verify and validate model performance. Results indicated that the model reasonably predicts the dynamic behavior of a countercurrent REE separation process, and accurately predicts the steady state REE concentration profiles across the cascade. Transient concentration predictions exhibit more deviation from experimental results due to the initial assumption of a homogeneous, well-mixed stage. The model was revised to account for variations in mixer settler holdup volumes for future validation efforts. Current model limitations assume complete equilibrium is achieved in each stage. The model can be applied to any REE separation or solvent system provided adequate laboratory equilibrium data are available. C1 [Lyon, Kevin L.; Greenhalgh, Mitchell R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Utgikar, Vivek P.] Univ Idaho, Dept Chem & Mat Engn, Moscow, ID 83844 USA. RP Lyon, KL (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM Kevin.Lyon@inl.gov FU Cytec Solvay Group [PC88A]; Critical Materials Institute, an Energy Innovation Hub - U.S. Department of Energy; Office of Energy Efficiency; Renewable Energy, Advanced Manufacturing Office; Molycorp, Inc. FX The authors would like to thank the Cytec Solvay Group for providing PC88A and Molycorp, Inc., for providing didymium. The authors wish to acknowledge the contributions of INL interns Jeffery B. Porter and Justin D. McAlister for their laboratory work supporting this research. The authors would also like to thank R Scott Herbst (INL) and Amy K. Welty (INL) for their contributions during flow sheet planning and testing. The authors acknowledge the Center for Advanced Energy Studies for conducting the ICP-OES analysis for this research. This research is supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. NR 20 TC 0 Z9 0 U1 6 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD FEB 1 PY 2017 VL 56 IS 4 BP 1048 EP 1056 DI 10.1021/acs.iecr.6b04009 PG 9 WC Engineering, Chemical SC Engineering GA EJ6UL UT WOS:000393354700023 ER PT J AU Frye, CD Saw, CK Padavala, B Nikolic, RJ Edgar, JH AF Frye, C. D. Saw, C. K. Padavala, Balabalaji Nikolic, R. J. Edgar, J. H. TI Hydride CVD Hetero-epitaxy of B12P2 on 4H-SiC SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Chemical vapor deposition processes; Hydride vapor phase epitaxy; Borides; Semiconducting boride compounds ID CHEMICAL-VAPOR-DEPOSITION; BORON-RICH SOLIDS; EPITAXIAL-GROWTH; SILICON-CARBIDE; CRYSTAL-GROWTH; PHOSPHIDE; B12AS2; FILMS; B6P AB Icosahedral boron phosphide (B12P2) is a wide bandgap semiconductor (3.35 eV) that has been reported to "self-heal" from high-energy electron bombardment, making it attractive for potential use in radioisotope batteries, radiation detection, or in electronics in high radiation environments. This study focused on improving B12P2 hetero-epitaxial films by growing on 4H-SiC substrates over the temperature range of 1250-1450 degrees C using B2H6 and PH3 precursors in a H-2 carrier gas. XRD scans and Laue transmission photographs revealed that the epitaxial relationship was (0001) < 11 (2) over bar0 >(B12P2)parallel to(0001) < 11 (2) over bar0 >(4H-SiC). The film morphology and crystallinity were investigated as a function of growth temperature and growth time. At 1250 degrees C, films tended to form rough, polycrystalline layers, but at 1300 and 1350 degrees C, films were continuous and comparatively smooth (R-RMS <= 7 nm). At 1400 or 1450 degrees C, the films grew in islands that coalesced as the films became thicker. Using XRD rocking curves to evaluate the crystal quality, 1300 degrees C was the optimum growth temperature tested. At 1300 degrees C, the rocking curve FWHM decreased with increasing film thickness from 1494 arcsec for a 1.1 mu m thick film to 954 arcsec for a 2.7 mu m thick film, suggesting a reduction in defects with thickness. C1 [Frye, C. D.; Saw, C. K.; Nikolic, R. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Frye, C. D.; Padavala, Balabalaji; Edgar, J. H.] Kansas State Univ, Dept Chem Engn, Durland Hall, Manhattan, KS 66506 USA. RP Edgar, JH (reprint author), Kansas State Univ, Dept Chem Engn, Durland Hall, Manhattan, KS 66506 USA. FU U.S. Department of Energy [DE-AC52-07NA27344, LLNL-JRNL-696569]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0005156] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-JRNL-696569. Material growth was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Award No. DE-SC0005156. NR 30 TC 1 Z9 1 U1 9 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 EI 1873-5002 J9 J CRYST GROWTH JI J. Cryst. Growth PD FEB 1 PY 2017 VL 459 BP 112 EP 117 DI 10.1016/j.jcrysgro.2016.11.101 PG 6 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA EJ1XT UT WOS:000393004600018 ER PT J AU Dally, R Clement, RJ Chisnell, R Taylor, S Butala, M Doan-Nguyen, V Balasubramanian, M Lynn, JW Grey, CP Wilson, SD AF Dally, Rebecca Clement, Raphaele J. Chisnell, Robin Taylor, Stephanie Butala, Megan Doan-Nguyen, Vicky Balasubramanian, Mahalingam Lynn, Jeffrey W. Grey, Clare P. Wilson, Stephen D. TI Floating zone growth of alpha-Na0.90MnO2 single crystals SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Characterization; Floating zone technique; Single crystal growth; Manganites ID RAY-ABSORPTION SPECTROSCOPY; HIGH-PERFORMANCE CATHODE; SODIUM-ION BATTERY; NAMNO2; MANGANESE; NAXCOO2; OXIDES AB Single crystal growth of alpha-NaxMnO2 (x=0.90) is reported via the floating zone technique. The conditions required for stable growth and intergrowth-free crystals are described along with the results of trials under alternate growth atmospheres. Chemical and structural characterizations of the resulting alpha-Na0.90MnO2 crystals are performed using ICP-AES NMR, XANES, XPS, and neutron diffraction measurements. As a layered transition metal oxide with large ionic mobility and strong correlation effects, alpha-NaxMnO2 is of interest to many communities, and the implications of large volume, high purity, single crystal growth are discussed. C1 [Dally, Rebecca] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Dally, Rebecca; Taylor, Stephanie; Butala, Megan; Wilson, Stephen D.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Chisnell, Robin; Grey, Clare P.] Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England. [Chisnell, Robin; Lynn, Jeffrey W.] NIST, Ctr Neutron Researrch, Gaithersburg, MD 20899 USA. [Doan-Nguyen, Vicky] Univ Calif Santa Barbara, Calif NanoSyst Inst, Santa Barbara, CA 93106 USA. [Doan-Nguyen, Vicky] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. [Balasubramanian, Mahalingam] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Wilson, SD (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. EM stephendwilson@engineering.ucsb.edu FU Hellman Fellowship at UCSB; ARO Award [W911NF-16-1-0361]; University of California President's Postdoctoral Fellowship; University of California, Santa Barbara California NanoSystems Institute Elings Prize Fellowship; Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231, 7057154]; EU ERC; MRSEC Program of the NSF [DMR 1121053]; DOE Office of Science [DE-AC02-06CH11357] FX SDW gratefully acknowledges support from a Hellman Fellowship at UCSB, and SDW and RD acknowledge support from ARO Award W911NF-16-1-0361. VDN is supported by the University of California President's Postdoctoral Fellowship and the University of California, Santa Barbara California NanoSystems Institute Elings Prize Fellowship. This work was partially supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, under the Batteries for Advanced Transportation Technologies (BATT) Program subcontract No. 7057154 (RJC and CPG). CPG and RJC thank the EU ERC for an Advanced Fellowship for CPG. The MRL Shared Experimental Facilities are supported by the MRSEC Program of the NSF under Award No. DMR 1121053; a member of the NSF-funded Materials Research Facilities Network (www.mrfn.org. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Sector 20 operations are supported by the US Department of Energy and the Canadian Light Source. The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology. NR 29 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 EI 1873-5002 J9 J CRYST GROWTH JI J. Cryst. Growth PD FEB 1 PY 2017 VL 459 BP 203 EP 208 DI 10.1016/j.jcrysgro.2016.12.010 PG 6 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA EJ1XT UT WOS:000393004600034 ER PT J AU Angradi, TR Bartsch, WM Trebitz, AS Brady, VJ Launspach, JJ AF Angradi, Ted R. Bartsch, Will M. Trebitz, Anett S. Brady, Valerie J. Launspach, Jonathon J. TI A depth-adjusted ambient distribution approach for setting numeric removal targets for a Great Lakes Area of Concern beneficial use impairment: Degraded benthos SO JOURNAL OF GREAT LAKES RESEARCH LA English DT Article DE Great Lakes; St. Louis River; Benthos; Area of concern; Beneficial use impairment; Hexagenia ID WATER-QUALITY; HEXAGENIA-LIMBATA; SUPERIOR ESTUARY; ERIE; INVERTEBRATES; SEDIMENTS; RIVER; MACROINVERTEBRATES; EPHEMEROPTERA; EXPECTATIONS AB We compiled macroinvertebrate data collected from 1995 to 2014 from the St. Louis River Area of Concern (AOC) of Lake Superior. Our objective was to define depth-adjusted cutoff values for benthos condition classes to provide an analytical tool for quantifying progress toward achieving removal targets for the degraded benthos beneficial use impairment. We used quantile regression to model the limiting effect of depth on selected benthos metrics, including taxa richness, percent non-oligochaete individuals, combined percent Ephemeroptera, Trichoptera, and Odonata individuals, and density of ephemerid mayfly nymphs (Hexagenia). We created a scaled trimetric index from the first three metrics. Metric values above the 75th percentile quantile regression model prediction were defined as being in relatively excellent condition in the context of the degraded beneficial use impairment for that depth. We set the cutoff between good and fair condition as the 50th percentile model prediction, and we set the cutoff between fair and poor condition as the 25th percentile model prediction. We examined sampler type, geographic zone, and substrate type for confounding effects. Based on these analyses we combined data across sampler types and created separate models for each of three geographic zones. We used the resulting condition-class cutoff values to determine the relative benthic condition for three adjacent habitat restoration project areas. The depth-limited pattern of ephemerid abundance we observed in the St. Louis River AOC also occurred elsewhere in the Great Lakes. We provide tabulated model predictions for application of our depth-adjusted condition class cutoff values to new sample data. Published by Elsevier B.V. on behalf of International Association for Great Lakes Research. C1 [Angradi, Ted R.; Trebitz, Anett S.] US EPA, Off Res & Dev, Mid Continent Ecol Div, Natl Hlth & Environm Effects Res Lab, 6201 Congdon Blvd, Duluth, MN 55804 USA. [Bartsch, Will M.] Oak Ridge Inst Sci & Educ, 6201 Congdon Blvd, Duluth, MN 55804 USA. [Brady, Valerie J.] Univ Minnesota, Nat Resources Res Inst, 5013 Miller Trunk Highway, Duluth, MN 55811 USA. [Launspach, Jonathon J.] SRA Int Inc, 6201 Congdon Blvd, Duluth, MN 55804 USA. RP Angradi, TR (reprint author), US EPA, Off Res & Dev, Mid Continent Ecol Div, Natl Hlth & Environm Effects Res Lab, 6201 Congdon Blvd, Duluth, MN 55804 USA. EM angradi.theodore@epa.gov NR 57 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0380-1330 J9 J GREAT LAKES RES JI J. Gt. Lakes Res. PD FEB PY 2017 VL 43 IS 1 BP 108 EP 120 DI 10.1016/j.jglr.2016.11.006 PG 13 WC Environmental Sciences; Limnology; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA EJ5JW UT WOS:000393255300011 ER PT J AU Valu, SO Benes, O Manara, D Konings, RJM Cooper, MWD Grimes, RW Gueneau, C AF Valu, S. O. Benes, O. Manara, D. Konings, R. J. M. Cooper, M. W. D. Grimes, R. W. Gueneau, C. TI The high-temperature heat capacity of the (Th,U)O-2 and (U,Pu)O-2 solid solutions SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Actinide mixed oxides; Calorimetry; Heat capacity ID NEUTRON-SCATTERING TECHNIQUES; URANIUM-DIOXIDE; CALORIMETRIC MEASUREMENTS; THERMOPHYSICAL PROPERTIES; ENTHALPY; DYNAMICS; OXIDES AB The enthalpy increment data for the (Th,U)O-2 and (U,Pu)O-2 solid solutions are reviewed and complemented with new experimental data (400-1773 K) and many-body potential model simulations. The results of the review show that from room temperature up to about 2000 K the enthalpy data are in agreement with the additivity rule (Neumann-Kopp) in the whole composition range. Above 2000 K the effect of Oxygen Frenkel Pair (OFP) formation leads to an excess enthalpy (heat capacity) that is modeled using the enthalpy and entropy of OFP formation from the end-members. A good agreement with existing experimental work is observed, and a reasonable agreement with the results of the many-body potential model, which indicate the presence of the diffuse Bredig (superionic) transition that is not found in the experimental enthalpy increment data. (C) 2016 Published by Elsevier B.V. C1 [Valu, S. O.; Benes, O.; Manara, D.; Konings, R. J. M.] European Commiss, Joint Res Ctr, POB 2340, D-76125 Karlsruhe, Germany. [Valu, S. O.; Konings, R. J. M.] Delft Univ Technol, Fac Appl Phys, Mekelweg 15, NL-2629 JB Delft, Netherlands. [Cooper, M. W. D.; Grimes, R. W.] Imperial Coll, Dept Mat, London SW7 2AZ, England. [Cooper, M. W. D.] Los Alamos Lab, Div Mat Sci & Technol, POB 1663, Los Alamos, NM 87545 USA. [Gueneau, C.] Ctr Saclay, LM2T, SCCME, CEA,DANS,DPC, Gif Sur Yvette, France. RP Konings, RJM (reprint author), European Commiss, Joint Res Ctr, POB 2340, D-76125 Karlsruhe, Germany. EM rudy.konings@ec.europa.eu FU European Commission FX The authors wish to acknowledge to support of J. Somers and his colleagues for providing the samples, and O.S.V. acknowledges the European Commission support for his research fellowship. Computational resources are due to the Imperial College High Performance Computing Service. NR 45 TC 0 Z9 0 U1 8 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2017 VL 484 BP 1 EP 6 DI 10.1016/j.jnucmat.2016.11.010 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA EJ5GR UT WOS:000393246300001 ER PT J AU Setyawan, W Nandipati, G Kurtz, RJ AF Setyawan, Wahyu Nandipati, Giridhar Kurtz, Richard J. TI Ab initio study of interstitial cluster interaction with Re, Os, and Ta in W SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Fusion; Tungsten; Interstitial cluster; Structure; Stability; Dissociation; Solute; Binding energy; Density functional theory; Finite-size scaling; Semicore states; Transmutation; Diffusion ID BCC TRANSITION-METALS; FUSION POWER-PLANT; POINT-DEFECTS; MICROSTRUCTURAL EVOLUTION; IRRADIATED TUNGSTEN; DISPLACEMENT FIELD; TRANSMUTATION; MIGRATION; CRYSTALS; ALLOYS AB The stability of tungsten self-interstitial atom (SIA) clusters is studied using first-principles methods. Clusters from one to seven SIAs are systematically explored from 1264 unique configurations. Finite-size effect of the simulation cell is corrected based on the scaling of formation energy versus inverse volume cell. Furthermore, the accuracy of the calculations is improved by treating the 5p semicore states as valence states. ConfigUrations of the three most stable clusters in each cluster size n are presented, which consist of parallel 1111] dumbbells. The evolution of these clusters leading to small dislocation loops is discussed. The binding energy of size-n clusters is analyzed relative to an n ->(n-1) + 1 dissociation and is shown to increase with size. Extrapolation for n> 7 is presented using a dislocation loop model. In addition, the interaction of these clusters with a substitutional Re, Os, or Ta solute is explored by replacing one of the dumbbells with the solute. Re and Os strongly attract these clusters, but Ta strongly repels. The strongest interaction is found when the solute is located on the periphery of the cluster rather than in the middle. The magnitude of this interaction decreases with cluster size. Empirical fits to describe the trend of the solute binding energy are presented. Published by Elsevier B.V. C1 [Setyawan, Wahyu; Nandipati, Giridhar; Kurtz, Richard J.] Pacific Northwest Natl Lab, POB 999, Richland, WA 99352 USA. RP Setyawan, W (reprint author), Pacific Northwest Natl Lab, POB 999, Richland, WA 99352 USA. EM wahyu.setyawan@pnnl.gov OI Setyawan, Wahyu/0000-0001-5192-8085 FU U. S. Department of Energy Office of Fusion Energy Sciences [DE-AC06-76RL0-1830] FX This research has been supported by the U. S. Department of Energy Office of Fusion Energy Sciences (#DE-AC06-76RL0-1830). Computations were performed on Olympus and Constance super-computers at Pacific Northwest National Laboratory. The authors would like to acknowledge the use of OVITO [47] and SCIDAVIS [48] softwares for visualization and plotting. NR 48 TC 0 Z9 0 U1 13 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2017 VL 484 BP 30 EP 41 DI 10.1016/j.jnucmat.2016.11.002 PG 12 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA EJ5GR UT WOS:000393246300005 ER PT J AU Jung, HJ Edwards, DJ Kurtz, RJ Yamamoto, T Wu, Y Odette, GR AF Jung, Hee Joon Edwards, Dan J. Kurtz, Richard J. Yamamoto, Takuya Wu, Yuan Odette, G. Robert TI Structural and chemical evolution in neutron irradiated and helium-injected ferritic ODS PM2000 alloy SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Dual helium and neutron irradiation; Ferritic ODS alloy; Transmission electron Microscopy ID FE-CR ALLOYS; DISPERSION-STRENGTHENED STEEL; HEAVY-ION IRRADIATION; MICROSTRUCTURAL CHANGES; DISLOCATION LOOPS; BEAM IRRADIATION; ALPHA' PRECIPITATION; MARTENSITIC STEELS; PHASE-SEPARATION; TRANSFORMATIONS AB An investigation of the influence of helium on damage evolution under neutron irradiation of an 11 at% Al, 19 at% Cr ODS ferritic PM2000 alloy was carried out in the High Flux Isotope Reactor (HFIR) using a novel in situ helium injection (ISHI) technique. Helium was injected into adjacent TEM discs from thermal neutron Ni-58(n(th),gamma) Ni-59(n(th),alpha) reactions in a thin NiAl layer. The PM2000 undergoes concurrent displacement damage from the high-energy neutrons. The ISHI technique allows direct comparisons of regions with and without high concentrations of helium since only the side coated with the NiAl experiences helium injection. The corresponding microstructural and microchemical evolutions were characterized using both conventional and scanning transmission electron microscopy techniques. The evolutions observed include formation of dislocation loops and associated helium bubbles, precipitation of a variety of phases, amorphization of the Al2YO3 oxides (which also variously contained internal voids), and several manifestations of solute segregation. Notably, high concentrations of helium had a significant effect on many of these diverse phenomena. These results on PM2000 are compared and contrasted to the evolution of so-called nanostructured ferritic alloys (NFA). (C) 2016 Elsevier B.V. All rights reserved. C1 [Jung, Hee Joon; Edwards, Dan J.; Kurtz, Richard J.] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. [Yamamoto, Takuya; Wu, Yuan; Odette, G. Robert] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA. [Odette, G. Robert] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RP Edwards, DJ (reprint author), Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. EM dan.edwards@pnnl.gov OI Jung, Hee Joon/0000-0001-7963-0897 FU U.S. Department of Energy, Office of Fusion Energy Sciences [DE-AC06-76RLO1830, DE-FG03-94ER54275]; Department of Energy, Office of Biological and Environmental Research FX This research was supported by the U.S. Department of Energy, Office of Fusion Energy Sciences, under contracts DE-AC06-76RLO1830 and DE-FG03-94ER54275. A portion of the research was performed using the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy, Office of Biological and Environmental Research and located at PNNL. NR 56 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2017 VL 484 BP 68 EP 80 DI 10.1016/j.jnucmat.2016.11.022 PG 13 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA EJ5GR UT WOS:000393246300009 ER PT J AU Li, X Samin, A Zhang, J Unal, C Mariani, RD AF Li, Xiang Samin, Adib Zhang, Jinsuo Unal, C. Mariani, R. D. TI Ab-initio molecular dynamics study of lanthanides in liquid sodium SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Ab-initio molecular dynamics; Atomic structure; Electronic density of states; Diffusion coefficient ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; DIFFUSION COUPLES; METALS; SOLIDIFICATION; SEGREGATION; MODEL AB To mitigate the fuel cladding chemical interaction (FCCI) phenoniena in liquid sodium cooled fast reactors, a fundamental understanding of the lanthanide (Ln) transport through liquid Na-Cs filled pores in U-Zr fuel is necessary. In this study, we investigate three abundant Ln fission products diffusion coefficients in liquid Na at multiple temperatures. By utilization of Ab-initio Molecular Dynamics, the Ln diffusivities are found to be in the magnitude order of liquid diffusion (10(-5) cm(2)/s) and the temperature dependence of the diffusivity for different lanthanides in liquid sodium was explored. It is also observed that dilute concentration of Pr and Nd led to a significant change in Na diffusivity. The structural and electronic properties of Na-Ln metallic systems have been investigated. The total coordination number shows dependence on both the temperature and the composition. (C) 2016 Elsevier B.V. All rights reserved. C1 [Li, Xiang; Samin, Adib; Zhang, Jinsuo] Ohio State Univ, Dept Mech & Aerosp Engn, Nucl Engn Program, 201 W 19th Ave, Columbus, OH 43210 USA. [Unal, C.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Mariani, R. D.] Idaho Natl Lab, Mat & Fuels Complex, Idaho Falls, ID 83415 USA. RP Zhang, J (reprint author), Ohio State Univ, Dept Mech & Aerosp Engn, Nucl Engn Program, 201 W 19th Ave, Columbus, OH 43210 USA. EM zhang.3558@osu.edu FU U.S. Department of Energy, Office of Nuclear Energy through the Nuclear Energy University Program [14-6482] FX We acknowledge support from the U.S. Department of Energy, Office of Nuclear Energy through the Nuclear Energy University Program (Project 14-6482) and also acknowledge the computing resources from Idaho National Laboratory. NR 24 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2017 VL 484 BP 98 EP 102 DI 10.1016/j.jnucmat.2016.11.028 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA EJ5GR UT WOS:000393246300012 ER PT J AU Tallman, DJ He, LF Gan, J Caspi, EN Hoffman, EN Barsoum, MW AF Tallman, Darin J. He, Lingfeng Gan, Jian Caspi, El'ad N. Hoffman, Elizabeth N. Barsoum, Michel W. TI Effects of neutron irradiation of Ti3SiC2 and Ti3AlC2 in the 121-1085 degrees C temperature range SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Ti3SiC2; Ti3AlC2; MAX phases; Neutron irradiation; Dislocation loops ID ION IRRADIATION; ELECTRICAL-PROPERTIES; ELASTIC PROPERTIES; ROOM-TEMPERATURE; MAX PHASES; HEAVY-IONS; TI2ALC; DAMAGE; EVOLUTION; OXIDATION AB Herein we report on the formation of defects in response to neutron irradiation of polycrystalline Ti3SiC2 and Ti3AlC2 samples exposed to total fluences of approximate to 6 x 10(20) n/m(2), 5 x 10(21) n/m(2) and 1.7 x 10(22) n/m(2) at irradiation temperatures of 121(12), 735(6) and 1085(68)degrees C. These fluences correspond to 0.14, 1.6 and 3.4 dpa, respectively. After irradiation to 0.14 dpa at 121 degrees C and 735 degrees C, black spots are observed via transmission electron microscopy in both Ti3SiC2 and Ti3AlC2. After irradiation to 1.6 and 3.4 dpa at 735 degrees C, basal dislocation loops, with a Burgers vector of b = 1/2 [0001] are observed in Ti3SiC2 , with loop diameters of 21(6) and 30(8) nm after 1.6 dpa and 3.4 dpa, respectively. In Ti3AlC2, larger dislocation loops, 75(34) nm in diameter are observed after 3.4 dpa at 735 degrees C, in addition to stacking faults. Impurity particles of TiC, as well as stacking fault TiC platelets in the MAX phases, are seen to form extensive dislocation loops under all conditions. Cavities were observed at grain boundaries and within stacking faults after 3.4 dpa irradiation, with extensive cavity formation in the TiC regions at 1085 degrees C. Remarkably, denuded zones on the order of 1 gm are observed in Ti3SiC2 after irradiation to 3.4 dpa at 735 degrees C. Small grains, 3-5 mu m in diameter, are damage free after irradiation at 1085 degrees C at this dose. The results shown herein confirm once again that the presence of the A-layers in the MAX phases considerably enhance their irradiation tolerance. Based on these results, and up to 3.4 dpa, Ti3SiC2 remains a promising candidate for high temperature nuclear applications as long as the temperature remains >700 degrees C. (C) 2016 Elsevier B.V. All rights reserved. C1 [Tallman, Darin J.; Caspi, El'ad N.; Barsoum, Michel W.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [He, Lingfeng; Gan, Jian] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Caspi, El'ad N.] Nucl Res Ctr Negev, Dept Phys, IL-84190 Beer Sheva, Israel. [Hoffman, Elizabeth N.] Savannah River Natl Lab, Savannah River Site, Aiken, SC 29808 USA. RP Barsoum, MW (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. EM barsoumw@drexel.edu FU U.S. Department of Energy Office of Nuclear Energy University Program; Office of Nuclear Energy under DOE Idaho Operations Office, ATR National Scientific User Facility experiment [DE-AC07-051D14517] FX This research is supported by the U.S. Department of Energy Office of Nuclear Energy University Program and the Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-051D14517, as part of an ATR National Scientific User Facility experiment. The authors would like to thank Joanna Taylor, Jatuporn Burns, Kristi Moser-McIntire, Dr. Yaqiao Wu, Collin Knight, Karen Wright, Dr. Brandon Miller, Bryan Forsmann, Jeff Benson, and Dr. James Cole for their invaluable assistance at the CAES facility and Idaho National Laboratory. The authors also thank Dr. Leah Squires for her assistance with XRD data collection for this work, and Sankalp Kota for his assistance with SEM. NR 73 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2017 VL 484 BP 120 EP 134 DI 10.1016/j.jnucmat.2016.11.016 PG 15 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA EJ5GR UT WOS:000393246300015 ER PT J AU Singh, M Sarkar, A Mao, XL Russo, RE AF Singh, Manjeet Sarkar, Arnab Mao, Xianglei Russo, Richard E. TI Short Communication on "Direct compositional quantification of (U-Th)O-2 - MOX nuclear fuel using ns-UV-LIBS and chemometric regression models" SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE LIBS; Chemometrics; PLSR; Nuclear fuel; AHWR ID INDUCED BREAKDOWN SPECTROSCOPY; NANOSECOND 266 NM; WAVELENGTH DEPENDENCE; GLASS; THORIUM; URANIUM; SPECTROMETRY AB The determination of uranium with composition varying from 0% to 35 wt% in (Th-U)O-2 mixed oxide fuel using laser induced breakdown spectroscopy (LIBS) utilizing partial least square regression (PLSR) has been demonstrated. Good agreement between expected and experiment results using 266 nm, 532 nm and 1064 nm was shown. The analytical results at 266 nm of 2-3% precision and similar to 1% accuracy (bias) satisfy the acceptance criteria range for chemical analysis in the nuclear industry. (C) 2016 ElseVier B.V. All rights reserved. C1 [Singh, Manjeet; Sarkar, Arnab] Bhabha Atom Res Ctr, Div Fuel Chem, Bombay 400085, Maharashtra, India. [Mao, Xianglei; Russo, Richard E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Sarkar, A (reprint author), Bhabha Atom Res Ctr, Div Fuel Chem, Bombay 400085, Maharashtra, India. EM arnab@barc.gov.in OI Sarkar, Arnab/0000-0003-3783-8299 FU Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX The authors (MS and AS) are thankful to Dr. S. Kannan, Head, Fuel Chemistry Division, Prof. B.S. Tomar, Director, Radiochemistry and Isotope Group, B.A.R.C. for their support and encouragement of the LIBS work. The authors (RER and XM) acknowledge support from the Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under contract number DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory. NR 17 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2017 VL 484 BP 135 EP 140 DI 10.1016/j.jnucmat.2016.11.025 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA EJ5GR UT WOS:000393246300016 ER PT J AU Byun, TS Hoelzer, DT Kim, JH Maloy, SA AF Byun, Thak Sang Hoelzer, David T. Kim, Jeoung Han Maloy, Stuart A. TI A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID SELF-ION IRRADIATION; MECHANICAL-PROPERTIES; HIGH-TEMPERATURE; STRENGTHENING MECHANISMS; MICROSTRUCTURAL CHANGES; CORE MATERIALS; HT9 STEEL; 14YWT; ODS; CREEP AB The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferriticmartensitic (FM) steels hardened primarily by ultrafirie laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This study aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The KM versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundarnental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures >= 600 degrees C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement. Published by Elsevier B.V. C1 [Byun, Thak Sang] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Hoelzer, David T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Kim, Jeoung Han] Hanbat Natl Univ, Daejeon 305719, South Korea. [Maloy, Stuart A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Byun, TS (reprint author), Pacific Northwest Natl Lab, Richland, WA 99352 USA. EM thaksang.byun@pnnl.gov FU U.S. Department of Energy/Office of Nuclear Energy through Fuel Cycle RD Program; U.S. Department of Energy [DE-AC05-76RL01830] FX This research was sponsored by U.S. Department of Energy/Office of Nuclear Energy through Fuel Cycle R&D Program. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. The authors would like to express special thanks to Drs. Mychailo Toloczko and Timothy Lach for their technical reviews and thoughtful comments. NR 62 TC 0 Z9 0 U1 9 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2017 VL 484 BP 157 EP 167 DI 10.1016/j.jnucmat.2016.12.004 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA EJ5GR UT WOS:000393246300019 ER EF