Errata for the 2003 Uniform Mechanical Code ${ }^{\text {TM }}$ (2nd Printing)

The following is a list of changes that we found after the second printing of the 2003 Uniform Mechanical Code. These changes may or may not apply to your code book. However, we do encourage you to check your code book with this list to ensure that all changes are updated. Thank you.

Chapter 1:

Section 103.0 Scope, fifth paragraph, revise the last sentence to read: Appendix D contains conversion tables and a table for determining the approximate minimum thickness for carbon sheet steel.

Chapter 3

Section 310.3 revise table to read as follow:

Equipment Capacity in		Minimum Condensate Pipe Diameter	
Tons of Refrigeration	(kW)	Inches	$(\mathbf{m m})$
Up to 20	(Up to 70.34)	$3 / 4$	(20)
$21-40$	$(73.85-140.67)$	1	(25)
$41-90$	$(144.19-316.6)$	$1-1 / 4$	(32)
$91-125$	$(320.03-439.6)$	$1-1 / 2$	(40)
$126-250$	$(443.12-879.2)$	2	(50)

Table 3-1: Delete superscript 11.

Chapter 5:

Section 502.0 Definitions: insert section 507.2 at the end of Closed Combustible Construction definition.
Change the existing Table 5-7 to Table 5-8 Vent Selection Chart. See below for new Table 5-7:
TABLE 5-7
Construction, Clearance and Termination Requirements for Unlisted Single-Wall Metal Chimneys

CHIMNEYS SERVING	MINIMUM THICKNESS		TERMINATION				CLEARANCE			
	WALL	LINING	ABOVE ROOF OPENING	ABOVE ANY PART OF BUILDING WITHIN			COMBUSTIBLE CONSTRUCTION		NONCOMBUSTIBLE CONSTRUCTION	
				10^{\prime}	25^{\prime}	50^{\prime}	Interior Inst.	Exterior Inst.	Interior Inst.	Exterior Inst.
Building-heating and industrial-type low-heat appliances ($1000^{\circ} \mathrm{F}$ operating- $1400^{\circ} \mathrm{F}$ temp. maximum) ${ }^{1}$	$\begin{aligned} & 0.127 " \\ & \text { (Mfs. Std. } \\ & 10 \text { ga.) } \end{aligned}$	None	$3 '$	$2 '$			18"	$6{ }^{\prime \prime}$	Up to 18" diameter, $2^{\prime \prime}$ Over 18" diameter, 4"	
Medium-heat industrial-trial-type appliances ($2000^{\circ} \mathrm{F}$ maximum) ${ }^{1,3}$	$0.127^{\prime \prime}$ (Mfrs. Std. 10 ga.)	Up to $18^{\prime \prime}$ dia.-2-1/2" Over 18" $4-1 / 2^{\prime \prime}$ on $4-1 / 2^{\prime \prime}$ bed	10^{\prime}		10'		36"	24"		
High-heat industrialappliances (Over 2000º ${ }^{1,2}{ }^{1,2}$	0.127" (Mfrs. Std. 10 ga .)	$\begin{aligned} & 4-1 / 2^{"} \text { laid } \\ & \text { on } 4-1 / 2^{\prime \prime} \\ & \text { bed } \end{aligned}$	20'			20'	See footnote 3			
Residential-type incinerator ${ }^{4}$	$\begin{aligned} & \text { 0.127" (Mfrs. } \\ & \text { Std. } 10 \mathrm{ga.} \text {) } \end{aligned}$	None	$3 '$	$2 '$			Not permitted	18"	Not permitted	4"
1 Lining shall extend from bottom to top of chimney. 2 Lining shall extend from 24 inches (610 mm) below connector to 24 feet (7315 mm) above. 3 Clearance shall be as specified by the design engineer and shall have sufficient clearance from buildings and structures to avoid overheating combustible materials [maximum $160^{\circ} \mathrm{F}\left(71^{\circ} \mathrm{C}\right)$]										

Chapter 8:

After section 802.5.1.2, please insert 802.5.1.3 Masonry chimney shall be built and installed in accordance with NFPA 211, Standard for Chimneys, Fireplace, Vents, and Solid-Fuel-Burning Appliances, and lined with...

Chapter 9:

Section 904.10.3.3, revise measurement in the last sentence to read, Where parapets or other building structures are utilized in lieu of guards or rails, they shall be a minimum of 42 in . (1.1m) in height.

Chapter 11, Table 11-1:

R-11: Revise IDLH ${ }^{6}$ (ppm) to read 40,00010
R-23: Revise Chemical Formula to read CHF_{3}
R-124: Revise Chemical Name to read 2-chloro-1,1,1,2-tetrafluoroethane
R-500: Revise Chemical Name to read R-12/1529(73.8/26.2).
R-500, 26.2\%: Chemical Formula to read $\mathrm{CH}_{3} \mathrm{CHF}_{2}$
R-502, 48\%: Revise Chemical Formula to read Chlorodifluoromethane
R-509A: Revise Chemical Formula to read R-22/218 (44/56)
R-600a: Revise Chemical Formula to read $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{3}$

Chapter 13:

Revise Section 1311.2.5 Prohibited Locations to read, Gas piping inside any building shall not be installed in or through a circulating air duct, clothes chute, chimney or gas vent, ventilating duct, dumbwaiter, elevator shaft. This provision shall not apply to ducts used to provide combustion and ventilation air in accordance with Section 701.0 or to above-ceiling spaces as covered 1311.2.4.1.

Insert missing Section 1311.3 Concealed Piping in Building after Section 1311.2.7.
Under Equation 13-1 Low-Pressure Gas Formula [Less than $1.5 \mathrm{psi}(10.3 \mathrm{kPa})$], the correct equation should be:

$$
\mathrm{D}=\frac{\mathrm{Q}^{0.38}}{19.17\left(\frac{\Delta \mathrm{H}}{C r \times \mathrm{L}}\right)^{0.206}}
$$

Under Equation 13-2 High-Pressure Gas Formula [1.5 psi 10.3 kPa) and above], the correct equation should be:

$$
\mathrm{D}=\frac{\mathrm{Q}^{0.38}}{18.93\left[\frac{\left(\mathrm{P}_{1}{ }^{2}-\mathrm{P}_{2}{ }^{2}\right) \cdot \mathrm{Y}}{\mathrm{CrxL}}\right]^{0.206}}
$$

Figure 13-2 Example Illustrating Use of Tables 13-1 and 13-7: Solution 3, 4, and 5 table reference should be 13-7.
Section 1322.2 Location of Meters. Change "motor" to read "meter" in the first sentence of this section.

Chapter 17:

Revise ASHRAE 61-2002 to read ASHRAE 62-2002.
Revise ASTM 1961-99 to read ASTM 1961-1999.
Revise IAPMO PS 14-2001 to read IAPMO PS 14-1999.

Appendix A, Standard 2-2:

Insert an additional section 603.0 on top of the page. It should read, See Section 209.0 and 603.0 of the Uniform Mechanical Code.

Appendix A, Standard 6-2:

Align $\mathrm{P}=192$ " in the correct column. See Table below.
TABLE 6-2-A
Rectangular Duct Hangers, Minimum Size

Maximum Half of Duct Perimeter	Pair at 10 ft . Spacing		Pair at 8 ft . Spacing		Pair at 5 ft . Spacing		Pair at 4 ft . Spacing	
	Strap	Wire/Rod	Strap	Wire/Rod	Strap	Wire/Rod	Strap	Wire/Rod
$\begin{gathered} \mathrm{P}=30^{"} \\ 2 \end{gathered}$	$\begin{gathered} 1^{\prime \prime} \times 0.030 \\ \left(1^{\prime \prime} \times 22 \text { ga. }\right) \end{gathered}$	$\begin{gathered} 10 \mathrm{ga.} \\ \left(0.1355^{\prime}\right) \end{gathered}$	$\begin{gathered} 1^{\prime \prime} \times 0.030 \\ \left(1^{\prime \prime} \times 22 \text { ga. }\right) \end{gathered}$	$\begin{gathered} 10 \mathrm{ga} . \\ \left(0.1355^{\prime}\right) \end{gathered}$	$\begin{gathered} 1^{\prime \prime} \times 0.030 \\ \left(1^{\prime \prime} \times 22 \text { ga. }\right) \end{gathered}$	$\begin{gathered} 12 \mathrm{ga.} \\ \left(0.106^{\prime}\right) \end{gathered}$	$\begin{gathered} 1^{\prime \prime} \times 0.030 \\ \left(1^{\prime \prime} \times 22 \text { ga. }\right) \end{gathered}$	$\begin{gathered} 12 \mathrm{ga.} \\ \left(0.106^{\prime}\right) \end{gathered}$
$\begin{gathered} \mathrm{P}=72^{\prime \prime} \\ 2 \end{gathered}$	$\begin{gathered} 1^{\prime \prime} \times 0.047 \\ \left(1^{\prime \prime} \times 18\right. \text { ga.) } \end{gathered}$	$3 / 8 "$	$\begin{gathered} 1^{\prime \prime} \times 0.036 \\ \left(1^{\prime \prime} \times 20 \text { ga. }\right) \end{gathered}$	1/4"	$\begin{gathered} 1^{\prime \prime} \times 0.030 \\ \left(1^{\prime \prime} \times 22 \text { ga. }\right) \end{gathered}$	1/4"	$\begin{gathered} 1^{\prime \prime} \times 0.030 \\ \left(1^{\prime \prime} \times 22 \text { ga. }\right) \end{gathered}$	1/4"
$\begin{gathered} \mathrm{P}=96{ }^{\prime \prime} \\ 2 \end{gathered}$	$\begin{gathered} 1^{\prime \prime} \times 0.058 \\ \left(1^{\prime \prime} \times 16 \text { ga. }\right) \end{gathered}$	$3 / 8 "$	$\begin{gathered} 1^{\prime \prime} \times 0.047 \\ \left(1^{\prime \prime} \times 18 \text { ga. }\right) \end{gathered}$	3/8"	$\begin{gathered} 1^{1 "} \times 0.036 \\ \left(1^{\prime \prime} \times 20 \text { ga. }\right) \end{gathered}$	$3 / 8{ }^{\prime \prime}$	$\begin{gathered} 1^{\prime \prime} \times 0.030 \\ \left(1^{\prime \prime} \times 22 \text { ga. }\right) \end{gathered}$	1/4"
$\begin{gathered} \mathrm{P}=120 " \\ 2 \end{gathered}$	$\left\lvert\, \begin{gathered} 1-1 / 2^{\prime \prime} \times 0.058 \\ \left(1-1 / 2^{\prime \prime} \times 16 \text { ga. }\right) \end{gathered}\right.$	$1 / 2^{\prime \prime}$	$\begin{gathered} 1^{\prime \prime} \times 0.058 \\ \left(1^{\prime \prime} \times 16 \text { ga. }\right) \end{gathered}$	3/8"	$\begin{gathered} 1^{\prime \prime} \times 0.047 \\ \left(1^{\prime \prime} \times 18 \text { ga. }\right) \end{gathered}$	3/8"	$\begin{gathered} 1^{\prime \prime} \times 0.036 \\ \left(1^{\prime \prime} \times 20 \text { ga. }\right) \end{gathered}$	1/4"
$\begin{gathered} \mathrm{P}=168{ }^{\prime \prime} \\ 2 \end{gathered}$	$\left\lvert\, \begin{gathered} 1-1 / 2^{\prime \prime} \times 0.058 \\ \left(1-1 / 2^{\prime \prime} \times 16 \text { ga. }\right) \end{gathered}\right.$	$1 / 2^{\prime \prime}$	$\begin{gathered} 1^{\prime \prime} \times 0.058 \\ \left(1-1 / 2^{\prime \prime} \times 16 \text { ga. }\right) \end{gathered}$	1/2"	$\begin{gathered} 1^{\prime \prime} \times 0.058 \\ \left(1^{\prime \prime} \times 16 \text { ga. }\right) \end{gathered}$	3/8"	$\begin{gathered} 1^{1 "} \times 0.047 \\ \left(1^{\prime \prime} \times 18 \text { ga. }\right) \end{gathered}$	3/8"
$\begin{gathered} \mathrm{P}=192^{"} \\ 2 \end{gathered}$	-	$1 / 2^{\prime \prime}$	$\begin{gathered} 1-1 / 2^{\prime \prime} \times 0.058 \\ \left(1-1 / 2^{\prime \prime} \times 16 \mathrm{ga.}\right) \end{gathered}$	1/2"	$\begin{gathered} 1^{\prime \prime} \times 0.058 \\ \left(1^{\prime \prime} \times 16 \mathrm{ga.}\right) \end{gathered}$	$3 / 8{ }^{\prime \prime}$	$\begin{gathered} 1^{\prime \prime} \times 0.058 \\ \left(1^{\prime \prime} \times 16 \mathrm{ga.}\right) \end{gathered}$	$3 / 8 "$
$\begin{gathered} \mathrm{P}=193 \mathrm{l} \text { up } \\ 2 \end{gathered}$			Special	analysis re	aired			

Table 6-2-J:
Align LF under WT. See Table below.
TABLE 6-2-J
Intermediate Reinforcement

Minimum Rigidity Class	ANGLE				HAT SECTION		CHANNEL	
EI*	$\mathrm{H} \times \mathrm{T}(\mathrm{MIN})$ (x 25.4 for mm$)$	$\begin{gathered} \frac{\text { WT }}{\text { LF }} \\ \left(\begin{array}{c} (x .488 \\ \text { for kg/m) } \end{array}\right. \end{gathered}$	$\begin{aligned} & \mathrm{H} \times \mathrm{B} \times \mathrm{T}(\mathrm{MIN}) \\ & (\times 25.4 \text { for } \mathrm{mm}) \end{aligned}$	WT LF (for 1.488 for $\mathrm{kg} / \mathrm{m})$	$\begin{aligned} & \mathrm{H} \times \mathrm{B} \times \mathrm{D} \times \mathrm{T} \\ & (\times 25.4 \text { for } \mathrm{mm}) \end{aligned}$	$\begin{aligned} & \frac{\text { WT }}{\text { LF }} \\ & (\mathrm{x} 1.488 \\ & \text { for } \mathrm{kg} / \mathrm{m}) \end{aligned}$	$\begin{gathered} \mathrm{H} \times \mathrm{B} \times \mathrm{D} \times \mathrm{T}(\mathrm{MIN}) \\ (\times 25.4 \text { for } \mathrm{mm}) \end{gathered}$	$\begin{gathered} \frac{\mathrm{WT}}{\mathrm{LF}} \\ \begin{array}{c} (\mathrm{xF} 1.488 \\ \mathrm{for} \mathrm{~kg} / \mathrm{m}) \end{array} \end{gathered}$

Section A.6.504 Reinforcement \#4, third paragraph, first sentence should read, The longitudinal spacing of the rows of tie rods is based upon the schedule in Table 6-5-10.

