EXHIBIT U

Case No. 1:14-cv-00857-TSC-DAR
Hypertext Transfer Protocol -- HTTP/1.1

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, collaborative, hypermedia information systems. It is a generic, stateless, protocol which can be used for many tasks beyond its use for hypertext, such as name servers and distributed object management systems, through extension of its request methods, error codes and headers [47]. A feature of HTTP is the typing and negotiation of data representation, allowing systems to be built independently of the data being transferred.

HTTP has been in use by the World-Wide Web global information initiative since 1990. This specification defines the protocol referred to as "HTTP/1.1", and is an update to RFC 2068 [33].
RFC 2616
HTTP/1.1
June 1999

7 Entity ..42
7.1 Entity Header Fields ...42
7.2 Entity Body ..43
7.2.1 Type ...43
7.2.2 Entity Length ...43
8 Connections ...44
8.1 Persistent Connections ...44
8.1.1 Purpose ...44
8.1.2 Overall Operation ...45
8.1.3 Proxy Servers ...46
8.1.4 Practical Considerations46
8.2 Message Transmission Requirements47
8.2.1 Persistent Connections and Flow Control47
8.2.2 Monitoring Connections for Error Status Messages48
8.2.3 Use of the 100 (Continue) Status48
8.2.4 Client Behavior if Server Prematurely Closes Connection 50
9 Method Definitions ..51
9.1 Safe and Idempotent Methods51
9.1.1 Safe Methods ..51
9.1.2 Idempotent Methods ...51
9.2 OPTIONS ..52
9.3 GET ..53
9.4 HEAD ...54
9.5 POST ..54
9.6 PUT ...55
9.7 DELETE ...56
9.8 TRACE ..56
9.9 CONNECT ..57
10 Status Code Definitions ..57
10.1 Informational 1xx ..57
10.1.1 100 Continue ..58
10.1.2 101 Switching Protocols58
10.2 Successful 2xx ...58
10.2.1 200 OK ..58
10.2.2 201 Created ...59
10.2.3 202 Accepted ...59
10.2.4 203 Non-Authoritative Information59
10.2.5 204 No Content ...60
10.2.6 205 Reset Content ..60
10.2.7 206 Partial Content ...60
10.3 Redirection 3xx ..61
10.3.1 300 Multiple Choices ...61
10.3.2 301 Moved Permanently62
10.3.3 302 Found ...62
10.3.4 303 See Other ..63
10.3.5 304 Not Modified ..63
10.3.6 305 Use Proxy ..64
10.3.7 306 (Unused) ...64

https://tools.ietf.org/html/rfc2616#section-1.4
10.3.8 307 Temporary Redirect65
10.4 Client Error 4xx ..65
 10.4.1 400 Bad Request ..65
 10.4.2 401 Unauthorized ..66
 10.4.3 402 Payment Required66
 10.4.4 403 Forbidden ...66
 10.4.5 404 Not Found ...66
 10.4.6 405 Method Not Allowed66
 10.4.7 406 Not Acceptable67
 10.4.8 407 Proxy Authentication Required67
 10.4.9 408 Request Timeout67
 10.4.10 409 Conflict ...67
 10.4.11 410 Gone ..68
 10.4.12 411 Length Required68
 10.4.13 412 Precondition Failed68
 10.4.14 413 Request Entity Too Large69
 10.4.15 414 Request-URI Too Long69
 10.4.16 415 Unsupported Media Type69
 10.4.17 416 Requested Range Not Satisfiable69
 10.4.18 417 Expectation Failed70
10.5 Server Error 5xx ..70
 10.5.1 500 Internal Server Error70
 10.5.2 501 Not Implemented70
 10.5.3 502 Bad Gateway ..70
 10.5.4 503 Service Unavailable70
 10.5.5 504 Gateway Timeout71
 10.5.6 505 HTTP Version Not Supported71
11 Access Authentication ..71
12 Content Negotiation ..71
 12.1 Server-driven Negotiation72
 12.2 Agent-driven Negotiation73
 12.3 Transparent Negotiation74
13 Caching in HTTP ...74
 13.1.1 Cache Correctness ...75
 13.1.2 Warnings ..76
 13.1.3 Cache-control Mechanisms77
 13.1.4 Explicit User Agent Warnings78
 13.1.5 Exceptions to the Rules and Warnings78
 13.1.6 Client-controlled Behavior79
 13.2 Expiration Model ...79
 13.2.1 Server-Specified Expiration79
 13.2.2 Heuristic Expiration80
 13.2.3 Age Calculations ..80
 13.2.4 Expiration Calculations83
 13.2.5 Disambiguating Expiration Values84
 13.2.6 Disambiguating Multiple Responses84
 13.3 Validation Model ...85
 13.3.1 Last-Modified Dates86
13.3.2 Entity Tag Cache Validators86
13.3.3 Weak and Strong Validators86
13.3.4 Rules for When to Use Entity Tags and Last-Modified Dates.89
13.3.5 Non-validating Conditionals90
13.4 Response Cacheability ...91
13.5 Constructing Responses From Caches92
13.5.1 End-to-end and Hop-by-hop Headers92
13.5.2 Non-modifiable Headers92
13.5.3 Combining Headers ...94
13.5.4 Combining Byte Ranges95
13.6 Caching Negotiated Responses95
13.7 Shared and Non-Shared Caches96
13.8 Errors or Incomplete Response Cache Behavior97
13.9 Side Effects of GET and HEAD97
13.10 Invalidation After Updates or Deletions97
13.11 Write-Through Mandatory98
13.12 Cache Replacement ...99
13.13 History Lists ...99
14 Header Field Definitions ..100
14.1 Accept ..100
14.2 Accept-Charset ...102
14.3 Accept-Encoding ..102
14.4 Accept-Language ..104
14.5 Accept-Ranges ...105
14.6 Age ...106
14.7 Allow ...106
14.8 Authorization ...107
14.9 Cache-Control ...108
14.9.1 What is Cacheable ..109
14.9.2 What May be Stored by Caches110
14.9.3 Modifications of the Basic Expiration Mechanism111
14.9.4 Cache Revalidation and Reload Controls113
14.9.5 No-Transform Directive115
14.9.6 Cache Control Extensions116
14.10 Connection ...117
14.11 Content-Encoding ...118
14.12 Content-Language ...118
14.13 Content-Length ..119
14.14 Content-Location ...120
14.15 Content-MD5 ...121
14.16 Content-Range ...122
14.17 Content-Type ..124
14.18 Date ...124
14.18.1 Clockless Origin Server Operation125
14.19 ETag ...126
14.20 Expect ...126
14.21 Expires ..127
14.22 From ..128
14.23 Host ... 128
14.24 If-Match .. 129
14.25 If-Modified-Since ... 130
14.26 If-None-Match ... 132
14.27 If-Range ... 133
14.28 If-Unmodified-Since .. 134
14.29 Last-Modified .. 134
14.30 Location .. 135
14.31 Max-Forwards .. 136
14.32 Pragma .. 136
14.33 Proxy-Authenticate ... 137
14.34 Proxy-Authorization ... 137
14.35 Range ... 138
14.35.1 Byte Ranges .. 138
14.35.2 Range Retrieval Requests 139
14.36 Referer ... 140
14.37 Retry-After .. 141
14.38 Server ... 141
14.39 TE ... 142
14.40 Trailer ... 143
14.41 Transfer-Encoding .. 143
14.42 Upgrade ... 144
14.43 User-Agent .. 145
14.44 Vary ... 145
14.45 Via ... 146
14.46 Warning ... 148
14.47 WWW-Authenticate ... 150
15 Security Considerations .. 150
15.1 Personal Information .. 151
15.1.1 Abuse of Server Log Information 151
15.1.2 Transfer of Sensitive Information 151
15.1.3 Encoding Sensitive Information in URI's 152
15.1.4 Privacy Issues Connected to Accept Headers 152
15.2 Attacks Based On File and Path Names 153
15.3 DNS Spoofing ... 154
15.4 Location Headers and Spoofing 154
15.5 Content-Disposition Issues 154
15.6 Authentication Credentials and Idle Clients 155
15.7 Proxies and Caching .. 155
15.7.1 Denial of Service Attacks on Proxies 156
16 Acknowledgments ... 156
17 References .. 158
18 Authors' Addresses .. 162
19 Appendices .. 164
19.1 Internet Media Type message/http and application/http 164
19.2 Internet Media Type multipart/byteranges 165
19.3 Tolerant Applications .. 166
19.4 Differences Between HTTP Entities and RFC 2045 Entities ... 167
1 Introduction

1.1 Purpose

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, collaborative, hypermedia information systems. HTTP has been in use by the World-Wide Web global information initiative since 1990. The first version of HTTP, referred to as HTTP/0.9, was a simple protocol for raw data transfer across the Internet. HTTP/1.0, as defined by RFC 1945 [6], improved the protocol by allowing messages to be in the format of MIME-like messages, containing metainformation about the data transferred and modifiers on the request/response semantics. However, HTTP/1.0 does not sufficiently take into consideration the effects of hierarchical proxies, caching, the need for persistent connections, or virtual hosts. In addition, the proliferation of incompletely-implemented applications calling themselves "HTTP/1.0" has necessitated a protocol version change in order for two communicating applications to determine each other's true capabilities.

This specification defines the protocol referred to as "HTTP/1.1". This protocol includes more stringent requirements than HTTP/1.0 in order to ensure reliable implementation of its features.

Practical information systems require more functionality than simple retrieval, including search, front-end update, and annotation. HTTP allows an open-ended set of methods and headers that indicate the purpose of a request [47]. It builds on the discipline of reference provided by the Uniform Resource Identifier (URI) [3], as a location (URL) [4] or name (URN) [20], for indicating the resource to which a
inbound/outbound
Inbound and outbound refer to the request and response paths for messages: "inbound" means "traveling toward the origin server", and "outbound" means "traveling toward the user agent"

1.4 Overall Operation

The HTTP protocol is a request/response protocol. A client sends a request to the server in the form of a request method, URI, and protocol version, followed by a MIME-like message containing request modifiers, client information, and possible body content over a connection with a server. The server responds with a status line, including the message's protocol version and a success or error code, followed by a MIME-like message containing server information, entity metainformation, and possible entity-body content. The relationship between HTTP and MIME is described in appendix 19.4.

Most HTTP communication is initiated by a user agent and consists of a request to be applied to a resource on some origin server. In the simplest case, this may be accomplished via a single connection (v) between the user agent (UA) and the origin server (O).

```
request chain -------------------->
UA -----------------v---------- 0
<------------------------ response chain
```

A more complicated situation occurs when one or more intermediaries are present in the request/response chain. There are three common forms of intermediary: proxy, gateway, and tunnel. A proxy is a forwarding agent, receiving requests for a URI in its absolute form, rewriting all or part of the message, and forwarding the reformatted request toward the server identified by the URI. A gateway is a receiving agent, acting as a layer above some other server(s) and, if necessary, translating the requests to the underlying server's protocol. A tunnel acts as a relay point between two connections without changing the messages; tunnels are used when the communication needs to pass through an intermediary (such as a firewall) even when the intermediary cannot understand the contents of the messages.

```
request chain ------------------------->
UA ------v----- A ------v----- B ------v----- C ------v----- 0
<------------------------------------ response chain
```

The figure above shows three intermediaries (A, B, and C) between the user agent and origin server. A request or response message that travels the whole chain will pass through four separate connections. This distinction is important because some HTTP communication options
may apply only to the connection with the nearest, non-tunnel neighbor, only to the end-points of the chain, or to all connections along the chain. Although the diagram is linear, each participant may be engaged in multiple, simultaneous communications. For example, B may be receiving requests from many clients other than A, and/or forwarding requests to servers other than C, at the same time that it is handling A's request.

Any party to the communication which is not acting as a tunnel may employ an internal cache for handling requests. The effect of a cache is that the request/response chain is shortened if one of the participants along the chain has a cached response applicable to that request. The following illustrates the resulting chain if B has a cached copy of an earlier response from O (via C) for a request which has not been cached by UA or A.

```
request chain ---------->
UA -----v----- A -----v----- B -----v----- C -----v----- O
<---------- response chain
```

Not all responses are usefully cacheable, and some requests may contain modifiers which place special requirements on cache behavior. HTTP requirements for cache behavior and cacheable responses are defined in section 13.

In fact, there are a wide variety of architectures and configurations of caches and proxies currently being experimented with or deployed across the World Wide Web. These systems include national hierarchies of proxy caches to save transoceanic bandwidth, systems that broadcast or multicast cache entries, organizations that distribute subsets of cached data via CD-ROM, and so on. HTTP systems are used in corporate intranets over high-bandwidth links, and for access via PDAs with low-power radio links and intermittent connectivity. The goal of HTTP/1.1 is to support the wide diversity of configurations already deployed while introducing protocol constructs that meet the needs of those who build web applications that require high reliability and, failing that, at least reliable indications of failure.

HTTP communication usually takes place over TCP/IP connections. The default port is TCP 80 [19], but other ports can be used. This does not preclude HTTP from being implemented on top of any other protocol on the Internet, or on other networks. HTTP only presumes a reliable transport; any protocol that provides such guarantees can be used; the mapping of the HTTP/1.1 request and response structures onto the transport data units of the protocol in question is outside the scope of this specification.