
By Authority Of
THE UNITED STATES OF AMERICA

Legally Binding Document

By the Authority Vested By Part 5 of the United States Code § 552(a) and
Part 1 of the Code of Regulations § 51 the attached document has been duly
INCORPORATED BY REFERENCE and shall be considered legally
binding upon all citizens and residents of the United States of America.
HEED THIS NOTICE: Criminal penalties may apply for noncompliance.

Official Incorporator:
THE EXECUTIVE DIRECTOR
OFFICE OF THE FEDERAL REGISTER
WASHINGTON, D.C.

Document Name:

CFR Section(s):

Standards Body:

e

carl
Typewritten Text
Society of Cable Telecommunications Engineers

carl
Typewritten Text
SCTE 28: Host-POD Interface Standard

carl
Typewritten Text
47 CFR 15.123(b)(4)

ENGINEERING COMMITTEE
Digital Video Subcommittee

AMERICAN NATIONAL STANDARD

ANSI/SCTE 28 2007

HOST-POD Interface Standard

NOTICE

The Society of Cable Telecommunications Engineers (SCTE) Standards are intended to serve the public interest by
providing specifications, test methods and procedures that promote uniformity of product, interchangeability and
ultimately the long term reliability of broadband communications facilities. These documents shall not in any way
preclude any member or nonmember of SCTE from manufacturing or selling products not conforming to such
documents, nor shall the existence of such standards preclude their voluntary use by those other than SCTE members,
whether used domestically or internationally.

SCTE assumes no obligations or liability whatsoever to any party who may adopt the Standards. Such adopting party
assumes all risks associated with adoption of these Standards or Recommended Practices, and accepts full
responsibility for any damage and/or claims arising from the adoption of such Standards or Recommended Practices.

Attention is called to the possibility that implementation of this standard may require use of subject matter covered by
patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any
patent rights in connection therewith. SCTE shall not be responsible for identifying patents for which a license may
be required or for conducting inquires into the legal validity or scope of those patents that are brought to its attention.

Patent holders who believe that they hold patents which are essential to the implementation of this standard have been
requested to provide information about those patents and any related licensing terms and conditions. Any such
declarations made before or after publication of this document are available on the SCTE web site at
http://www.scte.org.

All Rights Reserved

© Society of Cable Telecommunications Engineers, Inc.
140 Philips Road
Exton, PA 19341

i

Table of Contents
1 Scope .. 1
2 Overview of HOST-POD Interface .. 2

2.1 Historical Perspective (INFORMATIVE) ... 2
2.2 Advanced Cable Services (INFORMATIVE) ... 2

2.2.1 Interactive Program Guide (IPG).. 2
2.2.2 Impulse Pay-Per-View (IPPV).. 3
2.2.3 Video-on-Demand (VOD) .. 3
2.2.4 Interactive services ... 3

2.3 References .. 4
2.3.1 Normative references.. 4
2.3.2 Informative references .. 6

3 CEA 679 Part B Compliance.. 7
3.1 Exceptions to Compliance .. 7

4 System Architecture (INFORMATIVE) .. 13
4.1 Introduction .. 13
4.2 Two-way Networks .. 14
4.3 One-way Networks ... 15
4.4 Two-way Networks with DOCSIS ... 17

5 Extended channel data flows .. 18
5.1 Internet Protocol Flows (Informative) .. 18
5.2 Flow Examples—QPSK Modem Case (Informative)... 19
5.3 Flow Examples— High Speed Host Modem Case DSG Mode.. 20
5.4 Summary of Extended Channel Flow Requirement (Normative)... 22
5.5 System/Service Information Requirements (Normative).. 22
5.6 Emergency Alert Requirements (Normative) ... 22

6 Physical Interface (NORMATIVE).. 23
6.1 PC Card Compliance .. 23

6.1.1 POD Module Port Custom Interface (0341h) ... 23
6.1.2 Power Management .. 23
6.1.3 Pin Assignment... 24

6.2 POD Module Identification .. 27
6.3 Card Information Structure... 27
6.4 Host-POD OOB Interface... 28

6.4.1 Out of Band (OOB) Mode .. 28
6.4.2 DOCSIS Settop Gateway (DSG Mode ... 30
6.4.3 Timing and Voltage Parameters ... 31

6.5 CPU Interface ... 33
6.5.1 Control Register Modification.. 35
6.5.2 Status Register Modification .. 36

6.6 Copy Protection on the FAT Channel... 36
6.7 Host-POD Interface Initialization... 36

6.7.1 Descriptions .. 36
6.7.2 Configuration Option Register (Normative)... 40
6.7.3 Initialization Conditions ... 40
6.7.4 OOB Connection and Disconnection Behavior .. 40
6.7.5 Low Level Step by Step POD Personality Change Sequence... 41
6.7.6 Initialization Overview ... 43
6.7.7 Interrupt Operation ... 49

6.8 Mechanical Design ... 50
7 Link Interface (NORMATIVE).. 50

7.1 Data Channel .. 50
7.2 Extended Channel... 50

7.2.1 Maximum PDUs... 51

ii

8 Application Interface (NORMATIVE)... 52
8.1 Scope Introduction.. 52
8.2 Resource Manager .. 54
8.3 Man Machine Interface... 54

8.3.1 Introduction .. 54
8.3.2 Open_mmi_req() & Open_mmi_cnf().. 55
8.3.3 Close_mmi_req() & Close_mmi_cnf() ... 57

8.4 Application Information ... 58
8.4.1 Introduction .. 58
8.4.2 Application_info_req() & Application_info_cnf() ... 59
8.4.3 Server_Query() & Server_Reply().. 66

8.5 Low Speed Communication ().. 70
8.6 Conditional Access ... 71

8.6.1 CA_update() ... 71
8.7 Copy Protection .. 74
8.8 Host Control ... 74

8.8.1 OOB_TX_tune_req() & OOB_TX_tune_cnf()... 74
8.8.2 OOB_RX_tune_req() & OOB_RX_tune_cnf() .. 74
8.8.3 inband_tune_req() (Normative) .. 74
8.8.4 inband_tuning_cnf (Normative) ... 74

8.9 Extended Channel Support ... 74
8.9.1 New_flow_req() & New_flow_cnf() .. 74
8.9.2 Delete_flow_req() & Delete_flow_cnf() .. 74
8.9.3 Lost_flow_ind() & Lost_flow_cnf() ... 74
8.9.4 inquire_DSG_mode(), set_DSG_mode(), & DSG_packet_error() 74

8.10 Generic IPPV Support .. 74
8.10.1 Program_req() & Program_cnf() .. 74
8.10.2 Purchase_req() & Purchase_cnf()... 74
8.10.3 Cancel_req() & Cancel_cnf() ... 74
8.10.4 History_req() & History_cnf().. 74

8.11 Specific Application Support.. 74
8.11.1 Specific Application Support Connectivity .. 74
8.11.2 Resource Identifier ... 74
8.11.3 Application Objects .. 74

8.12 Generic Feature Control Support.. 74
8.12.1 Parameter Storage... 74
8.12.2 Parameter Operation ... 74
8.12.3 Host to POD Module Transfer.. 74
8.12.4 Resource Identifier ... 74
8.12.5 Feature ID... 74
8.12.6 Application Objects .. 74
8.12.7 Feature Parameter Definition.. 74

8.13 POD Module Firmware Upgrade.. 74
8.13.1 Introduction (Informative) .. 74
8.13.2 Implementation... 74
8.13.3 Homing Resource (Normative)... 74

8.14 Generic Diagnostic Support.. 74
8.14.1 Diagnostic_req() ... 74
8.14.2 Diagnostic_cnf() ... 74
8.14.3 Diagnostic Report Definition.. 74

8.15 Support for Common Download Specification... 74
8.15.1 Overview of Protocol (Informative) ... 74
8.15.2 OPERATIONAL DETAILS (Informative) .. 74
8.15.3 System Control Resource (Normative)... 74

APPENDIX A. Operational Modes (Informative) ... 74
A.1. Data Path Options... 74

iii

A.2. OOB TX Channel Available... 74
A.3. High Speed Modem Available.. 74

A.3.1. OOB TX Channel Available... 74
A.3.2. OOB TX Channel Not Available.. 74

APPENDIX B. Glossary .. 74
APPENDIX C. Baseline HTML Profile Requirements ... 74

C.1. Format .. 74
C.1.1. Display.. 74
C.1.2. Font... 74
C.1.3. Text and Background Colors .. 74
C.1.4. Unvisited Link Color .. 74
C.1.5. Paragraph.. 74
C.1.6. Image .. 74
C.1.7. Table ... 74
C.1.8. Forms.. 74

C.2. Supported User Interactions ... 74
C.2.1. Navigation and Links.. 74

C.3. HTML Keywords ... 74
C.4. Characters ... 74

APPENDIX D. POD Module Attribute and Configuration Registers.. 74
D.1. General ... 74
D.2. Attribute Tuples.. 74

D.2.1. CISTPL_LINKTARGET.. 74
D.2.2. CISTPL_DEVICE_0A ... 74
D.2.3. CISTPL_DEVICE_0C.. 74
D.2.4. CISTPL_VERS_1... 74
D.2.5. CISTPL_CONFIG.. 74
D.2.6. CCST_CIF.. 74
D.2.7. CISTPL_CFTABLE_ENTRY.. 74
D.2.8. CISTPL_END... 74
D.2.9. Configuration Option Register ... 74

APPENDIX E. POD Error Handling ... 74
E.1. Error Handling.. 74

iv

List of Tables
Table 3.1-A CEA 679 Part B Compliance Exceptions ... 7
Table 3.1-B Replacement for CEA-679-C Table 87 Resource Identifier Values... 11
Table 3.1-C Replacement for CEA-679-C Table 91 Application Object Tag Values.................................. 11
Table 6.1-A PC Card Signal Definitions .. 26
Table 6.3-A CIS Minimum Set of Tuples .. 28
Table 6.4-A Transmission Signals for Host-POD Interface ... 29
Table 6.5-A Extended Interface Registers.. 34
Table 6.7-A Create Transport Connection.. 44
Table 6.7-B Create Transport Connection Reply ... 45
Table 6.7-C Open Session Request .. 45
Table 6.7-D Open Session Response.. 45
Table 6.7-E Profile Inquiry... 46
Table 6.7-F Profile Reply ... 46
Table 6.7-G Profile Changed.. 47
Table 6.7-H Profile Inquiry .. 47
Table 6.7-I Profile Reply.. 47
Table 7.2-A Extended Channel Link Layer Packet .. 51
Table 8.1-A Host-POD Interface Resources .. 52
Table 8.1-B Host-POD Interface Resource Loading .. 53
Table 8.3-A Man Machine Interface Resource... 55
Table 8.3-B Man Machine Interface Objects ... 55
Table 8.3-C Open MMI Request Object Syntax... 56
Table 8.3-D Open MMI Confirm Object Syntax.. 56
Table 8.3-E Open Status Values... 57
Table 8.3-F Close MMI Request Object Syntax... 57
Table 8.3-G Close MMI Confirm Object Syntax ... 58
Table 8.4-A Application Information Resource ... 58
Table 8.4-B Table Application Information Objects .. 59
Table 8.4-C Application Information Request Object Syntax.. 60
Table 8.4-D Data Entry Support Values... 61
Table 8.4-E HTML Support Values ... 61
Table 8.4-F Link Support Values ... 62
Table 8.4-G Form Support Values ... 62
Table 8.4-H Table Support Values ... 63
Table 8.4-I List Support Values ... 63
Table 8.4-J Image Support Values ... 63
Table 8.4-K Application Information Confirm Object Syntax... 64
Table 8.4-L Pod Manufacturer ID Values .. 65
Table 8.4-M Application Type Values ... 65
Table 8.4-N Server Query Object Syntax... 67
Table 8.4-O Server Reply Object Syntax ... 68
Table 8.4-P File Status Values ... 69
Table 8.5-A Low Speed Communication Resource ... 70
Table 8.6-A Conditional Access Support Resource ... 71
Table 8.6-B Conditional Access Support Objects .. 71
Table 8.6-C Conditional Access Support CA_update Object Syntax... 72
Table 8.6-D CA Enable Field Values ... 73
Table 8.8-A Host Control Resource ... 74
Table 8.8-B Host Control Objects .. 74
Table 8.8-C OOB TX Tune Request Object Syntax... 74
Table 8.8-D RF TX Frequency Value .. 74
Table 8.8-E RF TX Power Level.. 74
Table 8.8-F RF TX Rate Value .. 74

v

Table 8.8-G OOB TX Tune Confirm Object Syntax.. 74
Table 8.8-H Status Field Values for OOB TX Tune Confirm.. 74
Table 8.8-I OOB RX Tune Request Object Syntax.. 74
Table 8.8-J RF RX Frequency Value ... 74
Table 8.8-K RF RX Data Rate.. 74
Table 8.8-L OOB RX Tune Confirm Object Syntax .. 74
Table 8.8-M Status Field Values for OOB RX Tune Confirm ... 74
Table 8.8-N Inband Tune Request Object Syntax .. 74
Table 8.8-O Tune Type Values .. 74
Table 8.8-P Tune Value.. 74
Table 8.8-Q Modulation Value... 74
Table 8.8-R Inband Tuning Confirm Object Syntax .. 74
Table 8.8-S Tune Status Values ... 74
Table 8.9-A Extended Channel Resource... 74
Table 8.9-B Extended Channel Objects.. 74
Table 8.9-C New Flow Request Object Syntax.. 74
Table 8.9-D Service Type Values for New Flow Request.. 74
Table 8.9-E New Flow Confirm Object Syntax ... 74
Table 8.9-F Status Field Values for New Flow Confirm.. 74
Table 8.9-G Flag field definitions ... 74
Table 8.9-H POD Module DHCP Vendor Specific Information (Option 43) Sub-option Encoding........... 74
Table 8.9-I POD Module DHCP Vendor Class Indentifier (Option 60) Encoding 74
Table 8.9-J Delete Flow Request Object Syntax .. 74
Table 8.9-K Delete Flow Confirm Object Syntax .. 74
Table 8.9-L Status Field for Delete Flow ... 74
Table 8.9-M Lost Flow Indication Object Syntax .. 74
Table 8.9-N Reason Field Values for Lost Flow Indication... 74
Table 8.9-O Lost Flow Confirm Object Syntax ... 74
Table 8.9-P Status Field Values for Lost Flow Confirm .. 74
Table 8.9-Q Inquire DSG Mode Object Syntax ... 74
Table 8.9-R Set DSG Mode Object Syntax .. 74
Table 8.9-S DSG packet_error Object Syntax.. 74
Table 8.10-A Generic IPPV Support Resources... 74
Table 8.10-B Generic IPPV Support Objects ... 74
Table 8.10-C Program Request Object Syntax... 74
Table 8.10-D Program Confirm Object Syntax .. 74
Table 8.10-E Status Field Values for Program Confirm... 74
Table 8.10-F Purchase Type Values for Program Confirm .. 74
Table 8.10-G Purchase Price for Program Confirm ... 74
Table 8.10-H Purchase Validation Value for Program Confirm .. 74
Table 8.10-I Purchase Request Object Syntax.. 74
Table 8.10-J Purchase Confirm Object Syntax... 74
Table 8.10-K Status Field Values for Purchase Confirm ... 74
Table 8.10-L Status Register for Purchase Confirm... 74
Table 8.10-M Cancel Request Object Syntax... 74
Table 8.10-N Cancel Confirm Object Syntax... 74
Table 8.10-O Status Field Values for Cancel Confirm... 74
Table 8.10-P History Request Object Syntax ... 74
Table 8.10-Q History Confirm Object Syntax.. 74
Table 8.10-R Status Field Values for History Confirm .. 74
Table 8.11-A Specific Application Support Resource.. 74
Table 8.11-B Specific Application Support Objects .. 74
Table 8.11-C sas_connect_rqst Object Syntax ... 74
Table 8.11-D sas_connect_cnf Object Syntax.. 74
Table 8.11-E sas_session_status... 74
Table 8.11-F sas_data_rqst Object Syntax ... 74

vi

Table 8.11-G sas_data_av Object Syntax... 74
Table 8.11-H sas_data_cnf Object Syntax.. 74
Table 8.11-I sas_data_status... 74
Table 8.11-J sas_server_query Object Syntax.. 74
Table 8.11-K sas_server_reply Object Syntax ... 74
Table 8.12-A Generic Feature Control Resource ... 74
Table 8.12-B Generic Feature IDs.. 74
Table 8.12-C Generic Feature Control Objects .. 74
Table 8.12-D Feature List Request Object Syntax ... 74
Table 8.12-E Feature List Object Syntax ... 74
Table 8.12-F Feature List Confirm Object Syntax ... 74
Table 8.12-G Feature List Changed Object Syntax.. 74
Table 8.12-H Feature Parameter Request Object Syntax ... 74
Table 8.12-I Feature Parameters Object Syntax ... 74
Table 8.12-J Feature Parameters Confirm Object Syntax .. 74
Table 8.12-K RF Output Channel Parameters Syntax.. 74
Table 8.12-L Parental Control PIN Parameters .. 74
Table 8.12-M Parental Control Settings Parameters ... 74
Table 8.12-N IPPV PIN Parameters ... 74
Table 8.12-O Time Zone Parameters.. 74
Table 8.12-P Daylight Savings Parameters .. 74
Table 8.12-Q AC Outlet Parameters... 74
Table 8.12-R Language Parameters.. 74
Table 8.12-S Rating Region Parameters... 74
Table 8.12-T Reset PIN.. 74
Table 8.12-U Cable URLs.. 74
Table 8.12-V Emergency Alert Location Code.. 74
Table 8.13-A Homing Resource... 74
Table 8.13-B Homing Objects.. 74
Table 8.13-C Open Homing Object Syntax.. 74
Table 8.13-D Open Homing Reply Object Syntax ... 74
Table 8.13-E Homing Active Object Syntax.. 74
Table 8.13-F Homing Cancelled Object Syntax... 74
Table 8.13-G Homing Complete Object Syntax... 74
Table 8.13-H Firmware Upgrade Object Syntax .. 74
Table 8.13-I Upgrade Sources .. 74
Table 8.13-J Timeout Types... 74
Table 8.13-K Firmware Upgrade Reply Object Syntax.. 74
Table 8.13-L Firmware Upgrade Complete Object Syntax .. 74
Table 8.13-M Reset Request Status Values.. 74
Table 8.14-A Generic Diagnostic Support Resource.. 74
Table 8.14-B Generic Diagnostic Support Objects .. 74
Table 8.14-C Diagnostic Request Object Syntax ... 74
Table 8.14-D Diagnostic ID Values ... 74
Table 8.14-E Diagnostic Confirm Object Syntax... 74
Table 8.14-F Status Field Values ... 74
Table 8.14-G Memory Report Syntax .. 74
Table 8.14-H Memory Type Values... 74
Table 8.14-I Software Version Report Syntax.. 74
Table 8.14-J Software Status Flag Values.. 74
Table 8.14-K Firmware Version Report Syntax... 74
Table 8.14-L MAC Address Report Syntax ... 74
Table 8.14-M MAC Address Type Values... 74
Table 8.14-N FAT Status Report Syntax.. 74
Table 8.14-O FDC Status Report Syntax ... 74
Table 8.14-P FDC Center Frequency Value... 74

vii

Table 8.14-Q Current Channel Report Syntax.. 74
Table 8.14-R 1394 Report Syntax .. 74
Table 8.14-S DVI Status Report Syntax... 74
Table 8.14-T HDMI Status Report Syntax .. 74
Table 8.15-A Code Version Download Table .. 74
Table 8.15-B Resource Identifier ... 74
Table 8.15-C Table of Application Protocol Data Units .. 74
Table 8.15-D host_info_request .. 74
Table 8.15-E host_info_response .. 74
Table 8.15-F code version table .. 74
Table 8.15-G code_version_table_reply.. 74
Table 8.15-H host_download_control table .. 74
Table 8.15-I host_download_command .. 74
Table A.1-A Table Downstream Data Paths .. 74
Table A.1-B Upstream Data Paths ... 74
Table C.3-A Keyword List ... 74
Table C.4-A Characters .. 74
Table D.2-A CISTPL_LINKTARGET .. 74
Table D.2-B CISTPL_DEVICE_0A .. 74
Table D.2-C CISTPL_DEVICE_0C... 74
Table D.2-D CISTPL_VERS_1 ... 74
Table D.2-E CISTPL_CONFIG ... 74
Table D.2-F CCST_CIF ... 74
Table D.2-G CISTPL_CFTABLE_ENTRY... 74
Table D.2-H CISTPL_END ... 74
Table D.2-I Configuration Option Register.. 74
Table E.1-A Error Handling ... 74

viii

List of Figures
Figure 4.2-1 System with Two-way Network .. 15
Figure 4.3-1 System with One-way Network ... 16
Figure 4.4-1 - System with DOCSIS Two-way Network ... 17
Figure 5.2-1 Flow Examples - QPSK Modem Case... 20
Figure 5.3-1 Flow Examples - High Speed Host Modem Case.. 21
Figure 6.4-1 Host-POD Out-of-Band Interface .. 29
Figure 6.4-2. Phase States for Mapping ITX and QTX OK .. 30
Figure 6.4-3 POD Output Timing Diagram.. 32
Figure 6.4-4 POD Input Timing Diagram .. 33
Figure 6.5-1 Modem-in-the-POD Module System Overview .. 33
Figure 6.5-2 Modem in-the-Host System View... 34
Figure 6.5-3 Map of Hardware Interface Registers ... 35
Figure 6.7-1 POD RS Operation... 39
Figure 6.7-2 POD Personality Change Sequence ... 42
Figure 6.7-3 POD Module Interrupt Logical Operation ... 49
Figure 8.11-1 .. 74
Figure 8.11-2 .. 74
Figure 8.12-1 Generic Feature List Exchange.. 74
Figure 8.12-2 POD Module Feature List Change... 74
Figure 8.12-3 Host Feature List Change... 74
Figure 8.12-4 Host to POD Module Feature Parameters.. 74
Figure 8.12-5 Host Parameter Update .. 74
Figure 8.12-6 POD Module to Host Feature Parameters.. 74
Figure 8.13-1 Firmware Upgrade Flowchart .. 74
Figure 8.15-1 One-Way Operation... 74
Figure 8.15-2 One-Way Operation – IB FAT Channel .. 74
Figure 8.15-3 Two-Way Operation .. 74
Figure 8.15-4 Two Way - Command Operation - IB FAT Channel... 74
Figure 8.15-5 Two Way - Command Operation - IB FAT Channel (continued) ... 74
Figure 8.15-6 Two Way – On-Demand Operation - IB FAT Channel (continued)...................................... 74
Figure 8.15-7 Flow chart summarizing download operations .. 74
Figure 8.15-8 Flow chart summarizing download operations for OOB Forward Data Channel method 74
Figure 8.15-9 Flow chart summarizing broadcast download operations .. 74
Figure A.2-1 OOB TX Channel Available ... 74
Figure A.3-1 High Speed Host Modem and OOB TX Channel Available... 74
Figure A.3-2 High Speed Host Modem Available, OOB TX Channel Not Available 74
Figure A.3-3 High Speed Host Modem Available, OOB TX Channel Not Available 74
Figure E.1-1 Error Display ... 74

1

Host-POD
Interface Specification

1 SCOPE
This standard defines the characteristics and normative specifications for the interface
between Point of Deployment (POD) security modules owned and distributed by
cable operators, and commercially available consumer receivers and set-top terminals
(“Host devices”) that are used to access multi-channel television programming carried
on North American cable systems. The Point-of-Deployment module is also known as
a CableCARD™ device. These Host devices may also be supplied by the cable
operators. The combination of a properly-authorized POD module and a Host device
permits the unscrambled display of cable programming that is otherwise protected by
a conditional access scrambling system.

This standard applies extensions, modifications, and constraints to the interface
defined in CEA-679B Part B, the National Renewable Security Standard.

This standard supports a variety of conditional access scrambling systems.
Entitlement management messages (EMMs) for such scrambling systems are carried
in the cable out of band channel as defined by ANSI SCTE 55-1 2002 and
ANSI/SCTE 55-2 2002. Other data transfer mechanisms such as the signaling
methods of the DOCSIS version. 1.1 cable modem standard may be supported in the
Host device. A cable operator is able to upgrade security in response to a breach by
replacing the POD modules, without requiring any change in the host device.

The interface will support Emergency Alert messages transmitted over the out of
band channel to the POD module and then delivered by the POD module over the
interface to the host device using the format defined in SCTE 18 2002.

It may also support Interactive Program Guide services, Impulse Pay Per View
services, Video on Demand, and other messaging and interactive services. It supports
both one way and two way cable systems, as well as host devices that incorporate
DOCSIS modems or telco modems.

This standard defines the physical interface, signal timing, the link interface, and the
application interface. It includes the extended channel specification, power
management specifications, initialization procedures and firmware upgrade methods.

2

2 OVERVIEW OF HOST-POD INTERFACE

2.1 Historical Perspective (INFORMATIVE)

This specification has its origins in CEA-679 (formerly EIA-679), the National
Renewable Security Standard, which was initially adopted in September 1998. Part B
of that standard has the physical size, shape and connector of the computer industry
PCMCIA card, and also defines the interface protocols and stack. Part B of that
standard was adopted by SCTE DVS as DVS/064.

Further extensions and modifications of EIA-679 led to the adoption of EIA-679-B in
2000. Independently, the cable industry prepared a modified version of DVS/064
which was submitted as DVS/131. Revision 7 of that document was adopted by
SCTE DVS in early 1999 but never attained the status of a final standard because
there were comments and objections that were never resolved.

Instead, the cable industry prepared a revised version that was submitted in January
2000 as DVS/295, incorporating many of the comments associated with DVS/131.
Work on this document by the cable industry proceeded during the first half of 2000,
leading to substantial changes that were embodied in DVS/295r1 (July 2000) and
subsequent revisions in the open review process.

2.2 Advanced Cable Services (INFORMATIVE)

The POD Module interface specification is designed to support advanced digital cable
services by a digital television receiver when a POD Module is inserted.

In this case, “Advanced Digital Cable Services” would include support of the
following functions:

• Emergency Alert System

• Interactive Program Guide

• Impulse Pay-Per-View (IPPV)

• Video On Demand (VOD)

• General Messaging

• Interactive Services

2.2.1 Interactive Program Guide (IPG)

The Host may support an Interactive Program Guide (IPG) to enable the user to
navigate to available services. The services supported by the IPG may include basic
channel, premium channels, and Impulse Pay-Per-View (IPPV) events. Program

3

guide data may be delivered to the application by means of the in-band (QAM)
channel and/or by means of the out-of-band (QPSK) channel:

• In-band transmission of program and system information typically describes only the
digital multiplex in which it is sent. This means that a single-tuner Host must
periodically scan through all channels to receive data for each channel and store this
information in memory.

• Optionally, at the discretion of the cable operator, the out-of-band channel may be
used to deliver guide data. The format of this information over the OOB channel will
be defined by the cable operator and may be used to support specific IPG
implementations. The Host receives data from the POD that is sent on the out-of-band
channel and delivered over the Extended Channel described in Section 5.The guide
data typically describes the entire range of services offered by the cable system.

2.2.2 Impulse Pay-Per-View (IPPV)

The Host may support the purchase of Impulse Pay-Per-View (IPPV) events. IPPV
processing is split as follows:

• All security related and billing functions are in the POD Module.

• All user-interface functions are in the Host.

The IPPV API is specified by “Generic IPPV Support” in section 8.10 and covers all
common functions related to (1) IPPV purchase (2) IPPV cancel (3) IPPV purchase
review.

2.2.3 Video-on-Demand (VOD)

Video-on-Demand (VOD) may be modeled as an IPPV event where the program
stream is dedicated to an individual subscriber. The VOD application executes in the
Host and supports all of the User Interface (UI) functions.

The additional streaming media control functions (i.e. Pause, Play, Fast-Forward,
Rewind) may be supported using DSM-CC User-to-User messages. The Extended
Channel described in Section 5 may be used as the communication path for VOD
signaling, and may also be used for VOD event purchases. After a VOD control
session is established via the session creation interface, UDP messages may be
exchanged transparently between the Host and the cable system. RFC 1831, 1832 &
1833 may be used as the underlying RPC mechanism for the exchange of DSM-CC
UU.

2.2.4 Interactive services

Interactive Services may be supported by applications executing on the Host, for
example, an email or game application. To advertise interactive services, a
mechanism is required to deliver information about applications to the Host and the

4

protocols described in ANSI/SCTE 80 2002 may be used for this purpose. Typically,
information about interactive services are not associated with a streaming media service,
so information about them is delivered via the out-of-band channel. The service
information is passed to the Host via the Extended Channel resource when the POD
Module serves as the OOB modem.

The Extended Channel may also be used as the communication path for interactive
service signaling when the POD Module is serving as the OOB modem. After an
interactive service session is established via the session creation interface, UDP
messages may be exchanged transparently between the Host and the cable system.
RFC 1831, 1832 & 1833 may be used as the underlying RPC mechanism for the
exchange of application level messages.

2.3 References

2.3.1 Normative references

The following standards contain provisions that, through reference in this text,
constitute normative provisions of this Specification. At the time of publication, the
editions indicated are current. All standards are subject to revision, and parties to
agreements based on this Specification are encouraged to investigate the possibility of
applying for the most recent editions of the standards listed in this section.

Normative reference list
1. CEA-679-C Part B: National Renewable Security Standard (July 2005)

2. ANSI/SCTE 55-2 2002 (formerly DVS 167), Digital Broadband Delivery
System: Out Of Band Transport – Mode B

3. ANSI/SCTE 55-1 2002 (formerly DVS 178), Digital Broadband Delivery
System: Out Of Band Transport – Mode A

4. SCTE 18 2002 (formerly DVS 208), Emergency Alert Message for Cable,
approved as a joint standard with CEA as ANSI-J-STD-042-2002

5. ANSI/SCTE 65 2002 (formerly DVS 234), Service Information Delivered Out-
of-Band for Digital Cable Television (28 March, 2000)

6. ANSI/SCTE 54 2004, Digital Video Service Multiplex and Transport System
Standard for Cable Television

7. ISO/IEC 13818-6:1998 (E) Information Technology: Generic coding of moving
pictures and associated audio information. Part 6: Extension for DSM-CC

8. ISO 8859-1: 8-Bit Single-Byte Coded Graphic Character Sets - Part 1: Latin
Alphabet No. 1, revised 1987

5

9. PC Card Standard, Volume 2 Electrical Specification, March 1997, Personal
Computer Memory Card International Association, Sunnyvale, CA.

10. PC Card Standard, Volume 4 Metaformat Specification, 2001, Personal
Computer Memory Card International Association, Sunnyvale, CA

11. RFC 2131, Dynamic Host Configuration Protocol, March 1997.

12. RFC 2132, DHCP Options and BOOTP Vendor Extensions, March 1997.

13. PC Card Standard, Volume 3 Physical Specification, Release 7, February 1999,
Personal Computer Memory Card International Association, Sunnyvale, CA.

14. ANSI/SCTE 41 2004, POD Copy Protection System

15. HTML 3.2 Reference Specification:
http://www.w3.org/TR/REC-html32.html

16. Hypertext Transfer Protocol – HTTP/1.1:
http://www.ietf.org/rfc/rfc2616.txt?number=2616

17. SCTE 23-2 2002, Data-Over-Cable Systems 1.1, Baseline Privacy Plus Interface
Specification,

18. DOCSIS Set-top Gateway (DSG) Interface Specification, CM-SP-DSG-I08-
060728

19. ANSI/SCTE 90-1 2004 SCTE Applications Platform Part 1: OCAP 1.0 Profile

Normative reference acquisition
ANSI/CEA Standards:

• American National Standards Institute, Customer Service, 11 West 42nd Street, New
York, NY 10036; Telephone 212-642-4900; Facsimile: 212-302-1286; E-mail:
sales@ansi.org ; URL:http://www.ansi.org

CEA Standards: United States of America

• Global Engineering Documents, World Headquarters, 15 Inverness Way East,
Englewood, CO USA 80112-5776; Telephone 800-854-7179; Facsimile: 303-397-
2740; E-mail: global@ihs.commailto:global@ihs.com ; URL: <http://global.ihs.com>

SCTE Standards: United States of America

• Society of Cable Telecommunications Engineers Inc., 140 Philips Road, Exton, PA
19341; Telephone 800-542-5040; Facsimile: 610-363-5898; E-mail:
standards@scte.org ;URL: <http://www.scte.org>

ITU Standards:

6

• ITU Sales and Marketing Service, International Telecommunication Union, Place des
Nations CH-1211, Geneva 20, Switzerland; Telephone: +41 22 730 6141; Facsimile:
+41 22 730 5194; E-mail: sales@itu.int ; URL: <http://www.itu.org>

ISO/IEC Standards:

• Global Engineering Documents, World Headquarters, 15 Inverness Way East,
Englewood, CO 80112-5776, USA; Telephone: 800-854-7179; Facsimile: 303-397-
2740; E-mail: global@ihs.commailto:global@ihs.com ; URL: http://global.ihs.com

• Internet Specifications: The Internet Engineering Task Force, IETF Secretariat, c/o
Corporation for National Research Initiatives, 1895 Preston White Drive, Suite 100,
Reston, VA 20101-5434; Telephone 703-620-8990; Facsimile 703-620-9071; E-mail:
ietf-secretariat@ietf.org; URL: http://www.ietf.org/rfc

PC Card Standards:

• Personal Computer Memory Card International Association, 2635 North First Street,
Suite 209, San Jose, CA 95134, (Tel) +408-433-CARD (2273), (Fax) +408-433-
9558, (Email) office@pcmcia.org

DOCSIS and OpenCable Specifications:

• Cable Television Laboratories, Inc., 858 Coal Creek Circle, Louisville, CO 80027-
9750; URLs: http://cablelabs.com/, http://www.cablemodem.com/,
http://www.opencable.com/

2.3.2 Informative references

The following documents contain information that is useful in understanding of this
Specification. Some of these documents are drafts of standards or balloted standards
with unresolved comments.

Informative document list

1. OC-SP-CD-IF-I08-040831 OpenCable Common Download Specification

2. Data-Over-Cable Service Interface Specifications, Radio Frequency Interface
Specification, SP-RFIv1.1-I10-030730.

3. Data-Over-Cable Service Interface Specifications, Radio Frequency Interface
Specification, SP-RFIv2.0-I07-041210

4. Data-Over-Cable Service Interface Specifications, Operations Support System
Interface Specification, ANSI/SCTE 23-3 2005.

7

5. Data-Over-Cable Service Interface Specifications, Operations Support System
Interface Specification, SP-OSSIv2.0-I07-041210

Informative document acquisition

Same as listed under Normative reference acquisition.

3 CEA 679 PART B COMPLIANCE

3.1 Exceptions to Compliance

In all aspects not covered in this document, the POD Module interface requires
complete CEA-679-Part C compliance with the following exceptions:

Table 3.1-A CEA 679 Part B Compliance Exceptions

Item Section Issue Comment
1 4.1 Second paragraph states “It also allows

for multiple instance of CA processes
to exist for the same Host.”

 SCTE 28 supports only one
POD Module per POD/Host
Interface.

2 4.1 Third paragraph is a description of
handling multiple modules.

 SCTE 28 supports only one
POD Module per POD/Host
Interface

3 5.3 First paragraph states “This
functionality includes: the ability to
support multiple modules on one host,
...”.

 SCTE 28 supports only one
POD Module per POD/Host
Interface

4 5.4.1 Item 5 of the requirements and limits
list is “5) use of multiple modules”.

 SCTE 28 supports only one
POD Module per POD/Host
Interface

5 5.4.2 Item 3 of the transport stream interface
restrictions regarding the use of the
word contiguous.

Packets arrive synchronously
with clock but not necessarily
continuously

6 5.4.2 Item 5 of the transport stream interface
specifies the maximum data rate of 58
Mbps..

Section 6.1.1 specifies rates
around 27 and 39 Mbps.

7 5.4.2 Maximum jitter is not defined in the
document.

 Defined in Section 6.1.1

8 5.4.4 Entire paragraph is about multiple
modules.

SCTE 28 supports only one
POD Module per POD/Host
Interface

9 5.5 First paragraph sentence contains “...
and indicates to the host that it is a
NRSS-conformant module.”

 “NRSS-conformant module”
should be changed to a POD
module.

8

Table 3.1-A CEA 679 Part B Compliance Exceptions

Item Section Issue Comment
10 7.2.4 Item 2 of the SPDU list states “a

conditional body of variable length
which contains an integer number of
APDUs belonging to the same session
(see application layer).”

Section 8.1 limits the number of
APDUs in an SPDU to one.

11 7.2.6 “... which is always followed by a
SPDU body containing one or several
APDUs.”

Section 8.1 limits the number of
APDUs in an SPDU to one.

12 8.2.1 First paragraph contains “Resources
with higher version number shall be
backwards compatible with previous
versions, so that applications
requesting a previous version will have
a resource with expected behavior.

All resources that are defined in
CEA-679-C that are modified
in SCTE 28 should have a
different type value or version
number.

13 8.4.1.1 First paragraph contains “When a
module is plugged in or the host is
powered up one or perhaps two
transport connections are created to the
module, ...”.

Section 8.1 limits the number of
transport connections to one.

14 8.4.2 Entire section. Section 8.4 replaces this entire
section.

15 8.5 Entire section. Section 8.8 of SCTE 28
replaces Section 8.5 of CEA
679B Part B except for Section
8.5.2 which remains.

16 8.6 Entire section Section 8.3 replaces this entire
section.

17 8.7 Entire section. Section 8.5 modifies this
operation.

18 8.8 Entire section. Section 8.13 replaces this entire
section.

19 8.9 Entire section. This entire section is replaced
by ANSI/SCTE 41 2001

20 8.10 Entire section. SCTE 28 does not require this
resource.

21 8.11 Table 87 & 91 Table 87 is replaced by Table
3.1-B and Table 91 is replaced
by Table 3.1-C.

22 8.11 EIA-679-B Part B contained two
sections numbered 8.11. This was
corrected in CEA-679-C Part B, where
they are now numbered 8.11 and 8.12.
The Section formerly numbered 8.12
in EIA-679-B Part B has been
renumbered 8.13 in CEA-679-C Part
B.

9

Table 3.1-A CEA 679 Part B Compliance Exceptions

Item Section Issue Comment
23 8.12.2 Host Control sections Host Control operation in

Sections 8.12.1 and 8.12.2 of
CEA-679-C is replaced by
Section 8.8.

24 8.12.3-
8.12.6

Extended Channel Support These sections of CEA-679-C
Part B are replaced by Sections
5 and 8.9

25 8.13 Entire section Section 8.13 of CEA-679-C is
replaced by Section 8.10.

26 A.2.2.1 Status register description. IIR flag and operation
description is given in Section
6.5.2 of SCTE 28.

27 A.4.1.3 Entire section Removed by section 6.7.6.
28 A.5.5.1 “Hosts shall support 5V working and

may optionally support 3.3V working.”
Section 6.1.2 specifically states
that the POD module is only
implemented as a 3.3V device.

29 A.5.5.2 Table 119 1. MCLKO has been moved
from pin 57 to pin 14. Pin
14 is shared with A14 and
becomes an I/O. Pin 57
shall be VS2# always.

2. Pin 11 Address 9 is also
DRX.

3. Pin 12 Address 8 is also
CRX.

4. Pin 22 Address 7 is also
QTX. It is also changed to
an I/O.

5. Pin 23 Address 6 is also
ETX. It is also changed to
an I/O.

6. Pin 24 Address 5 is also
ITX. It is also changed to
an I/O.

7. Pin 25 Address 4 is also
CTX,

30 A.5.5.10 Item 1 of the power management
features list: “Except in standby mode,
...”

POD Standby mode is not
defined in SCTE 28.

31 A.5.5.10 Item 2 of the power management
features list.

Section 6.1.2 modifies this to 1
amp.

32 A.5.5.10 Item 4 of the power management
features list.

Section 6.1.2 modifies this to
250 ma on Vpp.

33 A.5.6 Item 5 of the metaformat list regarding
ID number.

Section 6.1.1 changes this to
0341h.

10

Table 3.1-A CEA 679 Part B Compliance Exceptions

Item Section Issue Comment
34 A.5.6 Item 5 of the metaformat list lists

STCI_STR as “NRSS_CI_V1.00”.
Section 6.2 changes this to
“OPENCABLE_ POD_
MODULE”.

35 A.5.6 Item 7 of the metaformat list lists
system name as “NRSS_HOST”

Change this to “OPENCABLE_
HOST”

36 A.5.6 Item 8 of the metaformat list lists
physical device name as
“NRSS_CI_MODULE”.

Section 6.2 changes this to
“OPENCABLE_ POD_
MODULE”.

37 A.5.6 CISTPL_LINKTARGET is not
included.

Section 6.3 requires this tuple
per PCMCIA
recommendations.

38 B Entire appendix Should be replaced by appendix
C.

39 C.1 Entire section SCTE 28 does not support this
resource.

40 C.2 Entire section SCTE 28 does not support this
resource.

41 C.3 Entire section SCTE 28 does not support this
resource.

42 D Entire section Homing operation is modified
by Section 8.13.

43 E Entire section. SCTE 28 supports only one
POD Module per POD/Host
Interface

44 F Entire section SCTE 28 does not require
smart-card resource.

45 A.2.1.2.2-
A.2.2.2

Single buffer implementation SCTE 28 does not support a
single buffer implementation in
the POD.

• The requirement of section 7.2.6.1 of CEA-679-C Part B that the Host or POD
module must support earlier versions of a resource shall only apply to versions of
resources described in this specification.

• Transport layer timeout period shall be modified from 300 ms to 5 seconds.

• Hardware Interface Description – The term “command register” is used erroneously.
It shall therefore be referred to as “Control Register.”

• The requirement of Section 8.3.3 of CEA-679-C Part B to support an integer number
of APDUs in a body of a single SPDU shall be changed to only a single APDU shall
be supported in the body of a SPDU.

• The requirement of Section 8.4.3.5 of CEA-679-B Part B that the POD shall
implement its CA application such that when ca_enable is present in ca_pmt_reply()

11

both at program level and elementary stream level, only the ca_enable at ES level
applies for that elementary stream shall be applicable to a POD in a network that
support different authorization at program level and elementary stream level.

• NOTE: Section 8.4.3.5 of CEA-679-C Part B states that the CA PMT Reply "may"
also be sent after reception of a CA PMT object. Implementors should be aware that
sending a CA_PMT object to the POD with ca_pmt_cmd_id set to 'ok_mmi' is not
guaranteed to return a response.

• Products compliant with this specification shall provide a double buffer
implementation. The single buffer implementation permitted by CEA-679-C shall
not be used.

Table 3.1-B Replacement for CEA-679-C Table 87
Resource Identifier Values

Resource class type Version resource identifier
Resource Manager 1 1 1 00010041
Application Information 2 2 1 00020081
Conditional Access Support 3 1 2 00030042
Host Control 32 1 3 00200043
System Time 36 1 1 00240041
MMI 64 2 1 00400081
Low Speed Communication 96 ** 2 0060xxx2
Homing 17 1 2 00110042
Copy Protection 176 3 1 00B000C1
Specific Application 144 1 1 00900041
Generic Feature 42 1 1 002A0041
Extended Channel 160 1 1 00A00041
Generic IPPV Support 128 2 1 00800081
 ** - See section 8.5 for details.

Table 3.1-C Replacement for CEA-679-C Table 91
Application Object Tag Values

apdu_tag tag value (hex) Resource Direction
Host ↔ POD

Tprofile_inq 9F 80 10 Resource Manager ↔
Tprofile_reply 9F 80 11 Resource Manager ↔

Tprofile_changed 9F 80 12 Resource Manager ↔
Tapplication_info_req 9F 80 20 Application Info →
Tapplication_info_cnf 9F 80 21 Application Info ←

Tserver_query 9F 80 22 Application Info →
Tserver_reply 9F 80 23 Application Info ←

Tca_info_inq** 9F 80 30 CA Support →
Tca_info** 9F 80 31 CA Support ←

12

Table 3.1-C Replacement for CEA-679-C Table 91
Application Object Tag Values

apdu_tag tag value (hex) Resource Direction
Host ↔ POD

Tca_pmt** 9F 80 32 CA Support →
Tca_pmt_reply** 9F 80 33 CA Support ←

Tca_update 9F 80 34 CA Support ←
TOOB_TX_tune_req 9F 84 04 Host Control ←
TOOB_TX_tune_cnf 9F 84 05 Host Control →
TOOB_RX_tune_req 9F 84 06 Host Control ←
TOOB_RX_tune_cnf 9F 84 07 Host Control →

Tinband_tune 9F 84 08 Host Control ←
Tinband_tune_cnf 9F 84 09 Host Control →

Tsystem_time_inq** 9F 84 42 System Time ←
Tsystem_time** 9F 84 43 System Time →
Topen_mmi_req 9F 88 20 MMI ←
Topen_mmi_cnf 9F 88 21 MMI →
Tclose_mmi_req 9F 88 22 MMI ←
Tclose_mmi_cnf 9F 88 23 MMI →
Tcomms_cmd 9F 8C 00 Low speed comms. ←

Tconnection_descriptor 9F 8C 01 Low speed comms. ←
Tcomms_reply 9F 8C 02 Low speed comms. →

Tcomms_send_last 9F 8C 03 Low speed comms. ←
Tcomms_send_more 9F 8C 04 Low speed comms. ←
Tcomms_rcv_last 9F 8C 05 Low speed comms. →
Tcomms_rcv_more 9F 8C 06 Low speed comms. →
Tnew_flow_req 9F 8E 00 Extended Channel ↔*
Tnew_flow_cnf 9F 8E 01 Extended Channel ↔*
Tdelete_flow_req 9F 8E 02 Extended Channel ↔*
Tdelete_flow_cnf 9F 8E 03 Extended Channel ↔*
Tlost_flow_ind 9F 8E 04 Extended Channel ↔*
Tlost_flow_cnf 9F 8E 05 Extended Channel ↔*
Tprogram_req 9F 8F 00 Generic IPPV Support →
Tprogram_cnf 9F 8F 01 Generic IPPV Support ←
Tpurchase_req 9F 8F 02 Generic IPPV Support →
Tpurchase_cnf 9F 8F 03 Generic IPPV Support ←
Tcancel_req 9F 8F 04 Generic IPPV Support →
Tcancel_cnf 9F 8F 05 Generic IPPV Support ←
Thistory_req 9F 8F 06 Generic IPPV Support →
Thistory_cnf 9F 8F 07 Generic IPPV Support ←

Tfeature_list_req 9F 98 02 Generic Feature Control ↔
Tfeature_list 9F 98 03 Generic Feature Control ↔

Tfeature_list_cnf 9F 98 04 Generic Feature Control ↔
Tfeature_list_changed 9F 98 05 Generic Feature Control ↔

Tfeature_parameters_req 9F 98 06 Generic Feature Control ↔
Tfeature_parameters 9F 98 07 Generic Feature Control ↔

Tfeature_parameters_cnf 9F 98 08 Generic Feature Control ↔
Topen_homing 9F 99 90 Homing →

Thoming_cancelled 9F 99 91 Homing →
Topen_homing_reply 9F 99 92 Homing ←

13

Table 3.1-C Replacement for CEA-679-C Table 91
Application Object Tag Values

apdu_tag tag value (hex) Resource Direction
Host ↔ POD

Thoming_active 9F 99 93 Homing →
Thoming_complete 9F 99 94 Homing ←
Tfirmware_upgrade 9F 99 95 Homing ←

Tfirmware_upgrade_reply 9F 99 96 Homing →
Tfirmware_upgrade_complete 9F 99 97 Homing ←

* - Direction depends on if Host has modem. See section 8.9.
** These values are copied directly from Table 91 of CEA-679-C Part B and do not appear explicitly in this
document.

4 SYSTEM ARCHITECTURE (INFORMATIVE)

4.1 Introduction

At the subscriber premises, a reception system includes a cable navigation device, or
Host, and a POD Module. This combination allows the isolation of cable operator
hardware specifics into a renewable POD Module and therefore provides the
architectural foundation for retail availability of cable navigation devices. The POD
Module interface consists of a standardized:

• Bi-directional access to the Out-Of-Band RF Front End, or alternatively
access to forward Out-Of-Band Messaging supplied by one or more DSG
Tunnels via the DOCSIS Set-top Gateway (DSG) [2]

• In-band MPEG-2 Transport Stream input and output, and

• CPU interface.

The Host-POD Interface will operate in one of two modes, a mode using SCTE 55-1
or SCTE 55-2 OOB channels (the OOB mode), or a mode that uses the DOCSIS Set-
top Gateway (DSG) for the forward OOB messaging and the normal DOCSIS IP
channel for return traffic (the DSG mode).

In the first mode of operation, the signaling functions are split between the Host and
the POD Module such that only the RF processing and QPSK demodulation and
modulation are done in the Host. The Advanced Host will operate in either of these
two modes, OOB or DSG, based on network configurations. All other Hosts will
operate in the OOB mode.

The remainder of the processing, including all of the Data-link and MAC protocols, is
implemented in the POD Module. This split was chosen for the following reasons:

14

• SCTE 55-1 and SCTE 55-2 use common modulation (QPSK), but in all other
respects are quite different. Only the parts of the protocol stack common to
both OOB schemes are included in the Host.

• Future development of OOB protocols should not be precluded. By placing
the majority of the OOB processing in the POD Module, the OOB can be
renewed at a future time by replacement of the POD Module.

• It is important to the cable operator that the reverse (upstream) transmissions
from any device are correctly controlled, because a single uncontrolled device
can impair a significant portion of the shared access network. By
implementing the media access control processing in the POD Module, the
cable operator can maintain the integrity of the access network.

• All processing of conditional access messages is done in the POD Module.
This approach is taken to protect from theft-of-service attacks.

In the DSG mode of operation, all of the Data-link and MAC level protocols are
implemented in the embedded DOCSIS cable modem in the Host. In this case the
POD is not responsible for implementing these protocols, since they are provided via
the embedded DOCSIS cable modem. The OOB messaging in this case is transported
as follows:

• The forward OOB messaging is transported via one or more DSG Tunnels to
the Host

• The Host filters the IP packets on the DSG Tunnels identified by the Ethernet
MAC addresses specified by the POD.

• The Host optionally removes the IP headers of these packets as instructed by
the POD (the POD specifies the number of bytes to be removed from the
header of the IP packet).

• The resulting data packets are transmitted over the extended channel to the
POD module.

The POD Module can be used in a number of different networks, as described in the
sections below.

4.2 Two-way Networks

Figure 4.2-1 gives a schematic view of the system when the cable network includes
an OOB return Data Channel based on ANSI/SCTE 55-1 2002 or ANSI/SCTE 55-2
2002.

15

POD Module

DEMOD

Cable

Host

OOB INB CPU

TUNER

RX

MPEGDEMUX

CPU
QPSK

TX

Figure 4.2-1 System with Two-way Network

The QPSK receiver circuit in the Host tunes and demodulates the QPSK Forward
Data Channel (FDC). The receiver circuit adapts to the 1.544/3.088 Mbps or 2.048
Mbps FDC bit rate, and delivers the serial bit-stream and clock to the POD Module.
(This serial data is used primarily to send conditional access entitlement management
messages from the cable system to the POD Module. These messages are beyond the
scope of this standard.)

Tuning of the QPSK receiver circuit is under control of the POD Module, as
explained in Section 8.8.2. The tuning range is between 70 and 130 MHz.

In the return path, the POD Module generates QPSK symbols and clock and transfers
them to the QPSK transmitter circuit in the Host. The transmitter circuit adapts to the
1.544/3.088 Mbps or 0.256 Mbps RDC bit rate. The QPSK transmitter circuit
modulates the QPSK symbols onto a narrow band carrier.

Tuning and level control of the QPSK transmitter are under control of the POD
Module as explained in Section 8.8.1. The tuning range is between 5 MHz and 42
MHz .

4.3 One-way Networks

The configuration shown in Figure 4.3-1 applies where there is a no return channel.

16

The QPSK transmitter in the Host is not active (and it is therefore omitted from the
diagram). The receiver circuit operates in the same manner as described in Section
8.8.

An optional telephone modem may be used in one-way networks to allow limited
interactive services. In this case, the standard telephone modem is incorporated into
the Host.

The Host may opt to allow the POD to have access to the telephone modem. In the
event that the Host permits the POD to have access to the telephone modem, the POD
Module may access the telephone modem via the Low Speed Communications
Resource defined in CEA 679-C Part B. Support of the Low Speed Communication
Resource as defined in CEA 679-C Part B is optional.

POD Module

Cable

Host

OOB INB CPU

TUNER

RX

MPEGDEMOD DEMUX

CPU

Figure 4.3-1 System with One-way Network

After POD Module initialization, the Host informs the POD Module about the
available Low Speed Communication resources as defined by CEA-679-C Part B (see
the Reference List in the Informative Annex). Then, when the POD Module requires
setting up a connection with the cable headend, datagrams are sent to the telephone
modem via the CPU interface as defined by CEA-679-C Part B.

17

4.4 Two-way Networks with DOCSIS

The configuration shown in Figure 4.4-1 applies where a DOCSIS capability exists in
the Host.

TUNER-1

QPSK/
QAM 16

TX

DOCSIS

DSG Mode

TUNER-2

DEMOD

RX

DEMUX

OOB Mode

CPU

OpenCable Advanced Host

Cable

POD Module

OOB INB CPU

Figure 4.4-1 - System with DOCSIS Two-way Network

In this configuration a single upstream transmit path is shared between the POD
Module and the DOCSIS modem. In order to prevent conflict between the DOCSIS
upstream and the OOB upstream the system will operate in one of two modes.

• OOB mode – The downstream Conditional Access Messages and network
management messages will be delivered to the POD Module via the QPSK
receive interface on the POD Module using, e.g., SCTE 55-1, SCTE 55-2, or
other agreed OOB specification. The upstream Conditional Access Messages
and network management messages will be transmitted from the POD Module
via the QPSK transmit interface on the POD Module using, e.g., SCTE 55-1,
SCTE 55-2, or other agreed OOB specification.

• DSG mode – The downstream Conditional Access Messages and network
management messages will be delivered to the POD Module by the Extended
Channel using the DSG Service_type using the DOCSIS downstream in

18

accordance with the DOCSIS Set-top Gateway (DSG) Specification [1]. The
upstream Conditional Access Messages and network management messages
will be transmitted from the POD module via IP over the DOCSIS upstream
channel using the Extended Channel. The DOCSIS bi-directional channel can
be used by any applications running in the Host, simultaneously with the POD
module’s communication with the headend via the Extended Channel using
DOCSIS. The use of the Extended Channel by the POD module for IP flows
does not change DSG usage of the DSG Service_type on the Extended
Channel.

The mode used is based on whether the DOCSIS Set-top Gateway is supported by the
network. The POD informs the Host which of these modes is to be used as detailed
later in this specification.

5 EXTENDED CHANNEL DATA FLOWS

5.1 Internet Protocol Flows (Informative)

The Extended Channel supports delivery of IP packets across the POD interface.
Both unicast (point to point) and multicast (point to multipoint) addressing shall be
supported by this protocol. If the Host is in OOB mode, then the POD module shall
service the IP flow via utilization of the Host’s RDC and shall supply the Host with
an IP address. On request of a “new flow request” from the Host, the POD Module
shall respond to the request to open the flow by obtaining an IP address for use by the
Host. That IP address shall be returned in the “new flow confirmation” message.
Informative Note: The POD is not required to grant a request for service type IP
Unicast when requested by the Host.

In DSG mode, the Card resides at the Network Layer and the Host shall utilize its
eCM to provide the Data Link Layer to the underlying DOCSIS network. When the
Card wishes to utilize the DOCSIS network to transfer IP datagrams upstream, it shall
first submit a “new flow request” to the Host to establish an IP flow to transfer
datagrams between the Card and the Host’s eCM interface. The Card shall submit its
MAC address in its request to the Host for an IP flow.

If the Host grants the new IP flow request, then the Host shall utilizes DHCP to
acquire an IP address for the Card, and shall send this information, along with the
DOCSIS maximum transmission unit (MTU) (1500 bytes for IP datagrams) to the
Card in a new flow confirmation. The Host shall then open an IP flow to the Card
over the Extended Data Channel.

The Host shall utilize the MAC address provided in the Card’s IP flow request to
filter Ethernet frames from the eCM that are intended for the Card. The Host shall
extract all unicast IP datagrams from Ethernet frames addressed to the CableCARD’s
MAC address and shall forward them over the Extended Data Channel to the
CableCARD.

19

The Host shall utilize the Extended Data Channel’s IP flow to forward IP datagrams it
receives over the eCM interface on behalf of the Card. The Host shall not forward the
Card any datagrams received over other interfaces (e.g. Ethernet port, USB port, etc.).

The Host shall forward all IP datagrams received from the Card to the eCM interface.
The Host shall not forward any IP datagrams received from the Card to any other
interface, including but not limited to: IEEE-1394, Ethernet, USB, 802.11a/b/g/n/x,
Multimedia Over Coax Alliance (MoCA), etc. The Host shall resolve the destination
MAC address of the IP datagrams that it receives from the Card and shall apply the
appropriate MAC addresses to the Ethernet frames it sends upstream. If an
established IP type of flow becomes unavailable for any reason, the device that has
granted the flow shall report that fact to the one that has requested the flow. The “lost
flow indication” transaction shall be used to report this type of event. One example
case where a flow may become unavailable is due to a change in the state of the eCM
that may have resulted from a change via SNMP to the eCM’s operational state.

5.2 Flow Examples—QPSK Modem Case (Informative)

Figure 5.2-1 diagrams a POD-Host interface in which four flows have been set up. In
this example case, the POD provides a full-duplex modem function for the benefit of
the Host (as well as itself).

The rounded rectangle boxes represent applications. In this example, the Host has a
Navigation application that receives Service Information data on the Extended
Channel via the POD interface (#1). The Host has opened up three flows to receive
MPEG data from the POD, and has supplied different PID values for filtering for
each. The navigation function (#1) uses two SI flows in the example, and another
application (#2) uses the third flow. The Host also has a web browser application
(#3) and a Video On Demand (VOD) application (#4).

In Figure 5.2-1, the types of services that the POD is required to support are shown
with black arrows. As shown in the figure, three flows delivering MPEG table
sections are required. Flows that may be available at the option of the supplier of the
POD are shaded gray. In the figure, the POD supports an IP flow, but a compliant
POD can choose not to support the IP service type.

20

Host

M
PE

G
_s

ec
tio

n

Nav. (SI)

1

Web
3

VOD
4

POD
CA
5

RPT
6

QPSK
Rx

QPSK Tx

Transport Processing, Filtering and Routing

IP
_U

IP/Port Routing

App.
2

M
PE

G
_s

ec
tio

n

Figure 5.2-1 Flow Examples - QPSK Modem Case

The POD includes two applications of its own. The Conditional Access process (#5)
receives data via downstream QPSK. The POD includes a pay-per-view reportback
function (#6).

Note that none of these POD applications use flows that travel across the POD
interface.

5.3 Flow Examples— High Speed Host Modem Case DSG Mode

In the next example case, the Host includes a High Speed Host Modem. Figure 5.3-1
diagrams a POD-Host interface in which five flows have been set up. When a Host
includes a High Speed Host Modem, the Host is required to support at least one flow
of service type IP Unicast (IP_U). As before, the POD must support three MPEG
section flows if the Host requests them.

21

Host

High
Speed
Host

Modem

IP/Port Routing

POD

IP/Port Routing

Web

1

MC

2

Transport Processing, Filtering, and Routing

Nav
 (SI)

3

IP
_U

IP
_M

M
PE

G
_s

ec
tio

n

CA

4

RPT

5

MC

6

Figure 5.3-1 Flow Examples - High Speed Host Modem Case

In this example, the Host has a web browser application (#1), some application that
uses multicast addressed packets (#2) and a Navigation application (#3) that receives
Service Information data on the Extended Channel via the POD interface via three
separate flows.

The Navigation application can open three different simultaneous flows, specifying
different PID values for each. For example, it might set one to the base PID that
carries SI network data including the Master Guide Table, Virtual Channel Table and
System Time. It can set a second one to point to a PID value where Event
Information Tables for a specific time slot may be found, and another to collect
associated Extended Text Tables (ETTs).

The POD includes three applications of its own. The Host routes IP packets to the
POD applications based on IP address. For unicast packets, those that match the IP
address assigned to the POD will be routed across the interface. For multicast

22

packets, those matching the multicast group address associated with a particular flow
will be delivered.

The POD includes a pay-per-view reportback function (#5) that uses standard IP
packets for data transport. Finally, the POD includes some application (#6) that has
registered with the Host to receive multicast-addressed IP packets through the Host
modem.

5.4 Summary of Extended Channel Flow Requirement
(Normative)

Compliance with this standard requires Host and POD devices to support certain
flows. Other types of flows may be supported at the discretion of the Host or POD.
The following table summarizes the requirements.

Table 5.4-A Flow Requirements

Requestor Data Direction Service Type Number of
Concurrent Flows

Host POD → Host MPEG section 6 or more
If Host implements High Speed Host Modem or if OCAP is supported:
POD Host ↔ POD IP Unicast At least 1
If Host implements DSG:
POD Host → POD DSG 1

5.5 System/Service Information Requirements (Normative)

The POD module shall supply System and Service Information across the HOST-
POD interface, using Service_type MPEG_section, as defined in Section 8.9.1 and
ANSI/SCTE 65 2002. The set of MPEG-2 tables provided to support the navigation
function in the terminal device shall conform to one or more of the profiles specified
in ANSI/SCTE 65 2002.

Note: 1 (Informative) Profiles 1 through 5 are compatible with terminal devices
deployed as of Jan 1, 2000. Terminal devices that are intended to be portable across
the US will need to function with any of the six profiles of ANSI/SCTE 65 2002. For
operational considerations of various profiles, see section A.3 in ANSI/SCTE 65
2002

5.6 Emergency Alert Requirements (Normative)

The POD module may receive Emergency Alert messaging on either the FAT
channels or the Out-of-Band Forward Data channel (OOB FDC). The EAS message
syntax is compatible with MPEG-2 transport and is defined in SCTE 18 2002. For

23

FAT channel transmission, the EAS message shall appear in transport packets with
the same PID as those used for Service/System Information (SI) and shall be
transmitted by the POD to the HOST. The table ID for the EAS message is 0xD8 as
defined in SCTE 18 2002. For out-of-band (OOB) transmission, EAS messages shall
be processed by the POD module and shall be transmitted over the Extended Channel
according to SCTE 18 2002.

6 PHYSICAL INTERFACE (NORMATIVE)

6.1 PC Card Compliance

6.1.1 POD Module Port Custom Interface (0341h)

The POD Module interface is registered to the PC Card Standard as the POD Module
Custom Interface with the interface ID number (STCI_IFN) allocated to equal
hexadecimal 341. In case the Host is not capable of operating with the POD Module,
the Host shall ignore the POD Module.

 The POD Module shall present the 16-bit PC Card memory-only interface following
the application of VCC or the RESET signal. When operating in this configuration,
D7-D0 are retained as a byte-oriented I/O port, and the capability to read the Attribute
Memory is retained.

Only two address lines are required for four Bytes of register space. Pin CE2# is
assigned to select the Extended Channel function required for the POD Module CPU
interface to enable the access to the Extended Channel resource. Pin IOIS16# is never
asserted.

The Host-POD interface shall be required to support transport stream interface data
rates of 26.97035 Mb/s and 38.81070 Mb/s averaged over the period between the
sync bytes of successive transport packets with allowable jitter of +/- one MCLKI
clock period.

6.1.2 Power Management

In order to remain compliant with the PC Card standard and to simplify the Host and
POD Module implementations, and regardless of the powering state of the Host (i.e.,
active or standby), the following power management features are required.

• The Host shall permanently supply 3.3V on the VCC pins. The Host shall be capable
of supplying up to a maximum of 1 amp total on the VCC pins (500 ma each) at 3.3
VDC per POD Module supported.

• The Host shall supply 5V on the VPP pins if requested by the POD Module Card
Information Structure. The Host shall be capable of supplying up to 250 ma total on
the VPP pins (125 ma each) at 5 VDC per POD Module supported.

24

• The Host shall continuously supply 3.3V on the VPP pins upon Host power-up and
also when a POD module is not installed. When a POD module or a PC Card is
installed, if the voltage sense pins are set as required per the Host-POD Interface
Specification, the Host shall supply 5 V on the VPP pins only if requested by the
POD Module Card Information Structure. Otherwise, the Host shall continue to
supply 3.3 V on the VPP pins while the POD module/PC Card is installed. Upon
removal of a POD module or a PC Card, the Host shall revert to or continue to supply
3.3V on the VPP pins. The Host shall be capable of supplying up to 250 ma total on
the VPP pins (125 ma each) at 5 VDC per POD module supported.

• The Host shall not be required to support the separate nominal voltage parameter
descriptors in the power descriptor structures for VPP1 and/or VPP2.

• The POD module shall only support the value of 0x2 in the Power field of the Feature
Selection Byte (TPCE_FS) and the associated parameter descriptor according to
section 3.3.2.3 of PC Card Standard, Volume 4 if the POD module requires a
switched nominal voltage level of +5V on the VPP lines.

• There is no standby power mode for the POD module.

• The POD Module shall draw no more than 2.5 watts averaged over a period of 10
seconds.

• The Host OOB Receive circuitry must continue to operate in all powering states of
the Host.

• The Host shall support hot insertion and removal of the POD Module.

• The POD Module shall implement the mechanical Low Voltage Keying.

• The POD Module shall force VS1 (pin 43) to ground and VS2 (pin 57) to high
impedance until it switches to the POD Module Custom Interface mode.

• The POD Module shall support 3.3V hot insertion.

• The POD module does not have to meet the requirement of section 4.12.2 of the
PCMCIA Electrical Specification to limit its average current to 70 mA prior to the
POD Personality Change (writing to the Configuration Option Register).

6.1.3 Pin Assignment

The following table shows the function of various PC Card signals when the POD
Module Port custom interface mode is set to active in the Host.

Differences between CEA-679-C Part B and this Host-POD Interface Specification
affect the A4 to A9 signals, which are now assigned to the OOB RF I/Os, and CE2#,
which is used to access the Extended Channel. The MCLKO is provided on pin 14 to
be fully PC Card compliant. This is a modification from CEA-679-C (Part B). Pin 57

25

remains the PC Card VS2# signal. Shaded entries in Table 6.1-A highlight the
differences between CEA-679-C Part B and this specification.

26

Table 6.1-A PC Card Signal Definitions

Pin Signal I/O Comment Pin Signal I/O Comment
1 GND DC Ground 35 GND Ground
2 D3 I/O 36 CD1# O
3 D4 I/O 37 MDO3 I/O (D11)
4 D5 I/O 38 MDO4 I/O (D12)
5 D6 I/O 39 MDO5 I/O (D13)
6 D7 I/O 40 MDO6 I/O (D14)
7 CE1# I 41 MDO7 I/O (D15)
8 A10 I 42 CE2# I Extended Channel
9 OE# I 43 VS1# O
10 A11 I 44 IORD# I (RFU)
11 DRX I (A9) 45 IOWR# I (RFU)
12 CRX I (A8) 46 MISTRT I (A17)
13 A13 I 47 MDI0 I (A18)
14 MCLKO I/O (A14) 48 MDI1 I (A19)
15 WE# I 49 MDI2 I (A20)
16 IREQ# O (READY) 50 MDI3 I (A21)
17 VCC DC 3.3V 51 VCC DC 3.3V
18 VPP-1 DC Switched 5V 52 VPP-2 DC Switched 5V
19 MIVAL I (A16) 53 MDI4 I (A22)
20 MCLKI I (A15) 54 MDI5 I (A23)
21 A12 I 55 MDI6 I (A24)
22 QTX I/O (A7) 56 MDI7 I (A25)
23 ETX I/O (A6) 57 VS2# O
24 ITX I/O (A5) 58 RESET I
25 CTX I (A4) 59 WAIT# O
26 A3 I 60 INPACK# O
27 A2 I 61 REG# I
28 A1 I 62 MOVAL O (BVD2)
29 A0 I 63 MOSTRT O (BVD1)
30 D0 I/O 64 MDO0 I/O (D8)
31 D1 I/O 65 MDO1 I/O (D9)
32 D2 I/O 66 MDO2 I/O (D10)
33 IOIS16# O (WP) 67 CD2# O
34 GND DC Ground 68 GND DC Ground

Note: “I” indicates signal is input to POD Module, “O” indicates signal is output
from POD Module

27

6.2 POD Module Identification

The Host has two different ways to recognize a POD Module: (1) at the application
level, using the Application Info CEA-679-C Part B resource, or (2) at the physical
level as defined by PCMCIA. .

In PCMCIA memory mode, the Host accesses the POD Module’s Attribute Memory
to read the Card Information Structure (CIS) on the even addresses (first byte at
address 000h, second byte at address 002h, etc.). Since the POD Module interface is a
PC Card Custom Interface the CIS must include a custom interface subtuple
(CCST_CIF) that provides the interface ID number (STCI_IFN) defined by PCMCIA
(hex341).

For a more explicit identification, the CIS also includes in the tuple CISTPL_VER_1,
the field name of the product of subtuple TPLLV1_INFO defined as
“OPENCABLE_POD_MODULE”.

This information in the CIS is mandatory to ensure backup operation in case of
trouble when the CI stack is lost (e.g., power shut down, POD Module extraction).

6.3 Card Information Structure

The Card Information Structure (CIS) shall be readable whenever the SCTE POD
module is powered, the SCTE POD module has been reset by the Host in accordance
with section 4.12.1 of Volume 2, “Electrical Specification” of the PC Card Standard,
the SCTE POD module is asserting the READY signal, and the POD Personality
Change has not occurred. The CIS contains the information needed by the Host to
verify that a POD module has been installed. . After the POD Personality Change,
the CIS shall no longer be available.

The following table is the minimum set of tuples required for the POD Module.

28

Table 6.3-A CIS Minimum Set of Tuples

CISTPL_LINKTARGET
CISTPL_DEVICE_0A
CISTPL_DEVICE_0C
CISTPL_VERS_1
CISTPL_MANFID
CISTPL_CONFIG
CISTPL_CFTABLE_ENTRY
CISTPL_NO_LINK
CISTPL_END

6.4 Host-POD OOB Interface

This standard requires support for OOB signaling. This signaling is provided in one
of two modes, Out of Band (OOB) Mode and DOCSIS Settop Gateway (DSG) Mode:

6.4.1 Out of Band (OOB) Mode

• The Host RF front-end specification provides the QPSK physical layer to support
OOB (downstream and upstream) communications according to SCTE 55-1 or
SCTE 55-2. The data link and media access control protocols for SCTE 55-1 or
SCTE 55-2 are implemented in the POD Module.

The interface data rates are:

o Forward Receiver: 1.544/3.088 Mbps and 2.048 Mbps

o Reverse Transmitter: 772/1544 Ksymbol/s and 128 Ksymbol/s
(i.e., 1.544/3.088 Mbps and 256 Kbps)

The transmit and receive interfaces for the Host-POD OOB Interface are shown in
Figure 6.4-1 below. The receiver interface comprises a serial bit stream and a clock,
while the transmitter interface comprises I and Q data, a symbol clock, and a
transmit-enable signal. The clock signal should be transferred from the Host to the
POD, as shown in Figure 6.4-1.

29

QPSK
Demodulator

QPSK
Transmitter

Master
Clock

DRX CRX ITX CTXETX

Host

POD Module

QTX

Figure 6.4-1 Host-POD Out-of-Band Interface

The interface symbols are defined below.

Table 6.4-A Transmission Signals for Host-POD Interface

Signal Definition Rates Type
DRX RX Data 1.544/3.088 and 2.048 Mbps I
CRX RX Gapped Clock 1.544/3.088 and 2.048 MHz I
ITX TX I Channel 772/1544 and 128

Ksymbol/s
O

QTX TX Q Channel 772/1544 and 128
Ksymbol/s

O

ETX TX Enable [n/a] O
CTX TX Gapped Symbol Clock 772/1544 and 128 KHz I

1. DRX/CRX

DRX – The DRX data directly from the Host FDC QPSK receiver.

30

CRX – Gapped clock is a clock signal in which some of the clock cycles are
missing, creating an artificial gap in the clock pattern. The clock rate is one of
1.544, 3.088 or 2.048 MHz

2. ITX, QTX – Differential encoding shall take place within the POD module.
The Host shall map ITX,QTX directly to the phase states shown in Figure 5.4-
3 below.

3. ETX – ETX is an output from the POD Module and an input to the Host. It is
defined to be active high. When ETX is inactive, the values of ITX and QTX
are not valid and the upstream transmitter shall not transmit such values.
When ETX is active, the values of ITX and QTX are both valid and the
upstream transmitter shall transmit these values.

xx

x x

11
IQ =

00

01

10

I

Q

Figure 6.4-2. Phase States for Mapping ITX and QTX OK

6.4.2 DOCSIS Settop Gateway (DSG Mode

The Host DOCSIS cable modem provides the physical, data link, and media access
control protocols. Unlike the OOB mode, the data link and media access control
protocols for SCTE 55-1 or SCTE 55-2 are bypassed in the POD Module. The
downstream communications are implemented in accordance with the DOCSIS Set-
top Gateway (DSG) Specification. The upstream Conditional Access Messages and
network management messages will be transmitted from the POD Module via IP over
the DOCSIS upstream channel using the Extended Channel.

The interface data rates are:

o Downstream direction: 2.048 Mbps

o Upstream direction: Limited by DOCSIS return channel capacity

The first two bytes of the frame are the total number of bytes following in the frame,
i.e. they do not include this two-byte length field. There is no CRC check required on

31

the frame, as the interface between the Host and POD is reliable. It is the
responsibility of the POD vendor to implement error detection in the DSG
encapsulated data. The POD should disregard any invalid packets received from the
Host. The Host must provide buffer space for a minimum of two DSG IP packets, one
for transmission to the POD and one for receiving from the DOCSIS channel.
Informational note: The DSG rate limits the aggregate data rate to 2.048 Mbps to
avoid buffer overflow. Figure 5.4-2 below shows how the DSG packets are
transported across the POD/Host interface with and without removal of the header
bytes. Prior to transmission across the POD/Host interface, the CRC of the DSG
packet received from the eCM is removed, then optionally header bytes may be
removed in order from the Ethernet header through the IP header and the UDP header
resulting in the removal of X header bytes where X is defined by the POD as per the
remove_header_bytes of the set_dsg_mode() APDU (note that X may be zero, thus
no header bytes are removed). A two byte field containing the DSG byte count of the
resulting data payload is prepended to the remaining frame and transmitted across the
POD/Host interface.

Ethernet Header IP Header Data Payload Ethernet CRC

DSG Packet From Embedded DOCSIS CM

DSG Byte Count Ethernet

HeaderDSG
Byte Count

IP Header Data Payload

DSG Packet Across POD/Host Interface
(Remove_Header_Bytes = 0)

DSG Byte Count Data Payload

DSG Packet Across POD/Host
Interface
(Remove_Header_Bytes = Ethernet Header + IP Header Size)

Figure 6.4-3. DSG Packet Format Across POD/Host Interface

6.4.3 Timing and Voltage Parameters

All POD signal requirements and timing requirements shall comply with Table 6.4-B
and Figures 6.4-2 and 6.4-3, and shall be measured with no less than the maximum
load of the receiver as defined in table 4-19 of [10].

The PC Card A7, A6, and A5 pin definitions have been modified to QTX, ETX, and
ITX. These pins will be driven by the POD and will have Data Signal characteristics
per table 4-19 of [10]. Additionally, the signals MOVAL and MOSTRT will be
driven by the POD and will have Data Signal characteristics per table 4-19 of [10].
The remaining signals follow the signal type assignments as listed in table 4-19 of
[10].

DSG Byte Count

DSG Byte Count

32

All signal voltage levels are compatible with normal 3.3V CMOS levels.

Table 6.4-B POD Signal Parameters

Parameter Signal Unit Min Type Max Conditions
Frequency CTX kHz 3088
Frequency CRX kHz 3088
Hold (THCTX) CTX ns 250 Note 1,2
Hold (THCRX) CRX ns 250 Note 1,2
Delay (tD) ETX, ITX, QTX ns 5 180 Note 1,2
Set-up (Tsu) DRX ns 10 From time signal

reaches 90% of high
level (rising) or 10%
of high level (falling)
until CRX mid-point
transition

Hold (Th) DRX ns 5 From CRX mid-point
transition until signal
reaches 10% of high
level (rising) or 90%
of high level (falling)

Note1: Refer to Figure 6.4-2 POD Return Data Channel Timing Diagram.

Note2: AC Timing is measured with Input/Output Timing Reference level at 1.5V.

CTX
from Host

ETX

ITX or QTX

POD RDC Timing Diagram

tD tD tLCTXtHCTX

Figure 6.4-3 POD Output Timing Diagram

33

CRX
from Host

DRX
from Host

tH tSU

POD Input Timing Diagram

Figure 6.4-4 POD Input Timing Diagram

6.5 CPU Interface

With OOB traffic included, the POD Module requires more bandwidth and
connections on the CPU Interface than are supported by the Data Channel alone. Two
communication paths shall share the same pins on the PC Card connector.

Data Channel – This channel is compliant with the Command Interface protocol of
CEA-679-C Part B, plus the interrupt mode extension. POD Module applications
shall use this path when they require support from Host resources.

Extended Channel – This second communication only includes physical and link
layers. The purpose of the Extended Channel is to provide a communication path
between the POD Module and the Host such that applications in one (e.g. Host, POD
Module) can communicate with the headend via a link layer or modem function in the
other (POD Module, Host respectively). Whereas the content and format of the
messages for the Data Channel are well defined, the content and format of the
messages for the Extended Channel are application specific.

Depending on whether the POD Module or the Host is acting as the modem (or link
device), the Extended Channel has a reversible function as described in figure 6.5-1
and figure 6.5-2.

HEADEND POD HOST

POD APPS
Data

Channel

Extended
ChannelOOB

Interface

CPU Interface

Figure 6.5-1 Modem-in-the-POD Module System Overview

34

HEADEND HOST
POD

HOST APPS
Data

Channel

Extended
Channel

Modem
or OOB

CPU Interface

Figure 6.5-2 Modem in-the-Host System View

When the Data Channel is physically activated by CE1# (Card Enable 1) as defined
by CEA-679-C Part B, the Extended Channel is enabled by CE2# (Card Enable 2),
which is not used by CEA-679-C Part B.

The Extended Channel includes the same type of registers as defined by CEA-679-C
Part B for the Command Interface. The POD Module enables access to the Extended
Channel after the initialization phase. At this time, the CE2# signal interpretation
begins, and the Extended hardware interface registers can be read and written. The
signals mentioned in the table below are all inputs for the POD Module. The registers
depicted in figure 6.5-3 are part of the POD Module.

Table 6.5-A Extended Interface Registers

Extended Interface
Reg.

REG# CE2# CE1# A1 A0 IORD# IOWR#

Standby mode X H H X X X X
Ext_Data Write L L H L L H L
Ext_Data Read L L H L L L H
Ext_Command Write L L H L H H L
Ext_Status_Reg. Read L L H L H L H
Ext_Size (LS) Write L L H H L H L
Ext_Size (LS) Read L L H H L L H
Ext_Size (MS) Write L L H H H H L
Ext_Size (MS) Read L L H H H L H

The Extended Channel has its own data buffer that may have a different size than the
Data Channel buffer.

Since there are two physical channels (data channel and extended channel), the
behavior of the interface is defined in such a way that when the Host sets the RS_flag
on either channel, the interface is reset for both channels. Therefore, if the Host sets
an RS_flag after detection of an error condition, it should set the RS-flag for both
channels.

35

CE1#CE2#

Ext_Data Register

Ext_Control/Ext_Status Reg.

Ext_Size Register (LS)

Ext_Size Register (MS)

Data Register

Control/Status Reg.

Size Register (LS)

Size Register (MS)

Ext_buffer Buffer

CPU Interface

Figure 6.5-3 Map of Hardware Interface Registers

6.5.1 Control Register Modification

The following extension to the CEA-679-C Part B Command Interface shall be used
in order to facilitate the interrupt mode over the Data Channel and the Extended
Channel.

The DA & FR bits of the Status Register should be gated onto the IREQ# line by two
new Interrupt Enable bits for the Control Register: DAIE (bit 7) and FRIE (bit 6)
respectively. The Control register now becomes:

Table 6.5-B Control Register Definitions

Bit 7 6 5 4 3 2 1 0
 DAIE FRIE R R RS SR SW HC

RS, SR, SW and HC retain their function, as described in CEA-679-C Part B
specification.

When set, DAIE allows any assertion of the DA bit in the Status register also to assert
IREQ#.

When set, FRIE allows any assertion of the FR bit in the Status register also to assert
IREQ#.

36

When IREQ# is asserted, the Host shall first check the data channel, and then the
extended channel to determine the source of the interrupt.

6.5.2 Status Register Modification

The following extension to CEA-679-C Part B Status Interface shall be used in order
to allow the POD to request the initialization process to occur. A new status bit called
the Initialize Interface Request (IIR) is added to bit 4 of the Status Register to allow
the POD Module to request that the interface be re-initialized. This bit exists in both
the data channel and extended channel. When the POD module sets the IIR flag, the
POD must also reset the IIR flag when the RS flag is set.

Table 6.5-C Status Register Definitions

bit 7 6 5 4 3 2 1 0
 DA FR R IIR R R WE RE

6.6 Copy Protection on the FAT Channel

Copy protection shall be provided for ‘high value’ content delivered in MPEG
transport streams flowing from the POD to the Host. Such protection, including
scrambling of content from POD to Host and authenticated delivery of messages
through the CPU interface for permitted use of ‘high value’ content, is defined in the
POD Copy Protection System specification (see ANSI/SCTE 41 2001).

6.7 Host-POD Interface Initialization

This section defines the interface initialization procedure between the POD module
and the Host.

6.7.1 Descriptions

Initialization is a very general term. The following are definitions of the how the term
initialization is used in this section.

6.7.1.1 Interface Initialization Definition (Informative)

Any computing device must go through an initialization phase whenever a reset
condition occurs, such as when initial power is applied, manual reset, or an
unrecoverable software error condition occurs. What is covered in this section is the
initialization of the interface between the host and the POD module. This is defined
to be the interface initialization.

37

6.7.1.2 POD Personality Change Definition (Informative)

The host and POD module shall initialize to the PCMCIA interface and will, at a
particular point in the sequence, change to the POD interface. This point is defined as
the POD Personality Change.

6.7.1.3 Reset Definition
There are two possible resets that can occur in the POD interface, a hard reset
(called PCMCIA reset) and a soft reset (called POD reset).

6.7.1.3.1 PCMCIA Reset

The PCMCIA reset is defined to be one in which the Host shall bring the RESET
signal to the POD module active. The interface shall revert to the PCMCIA interface
including no longer routing the MPEG data stream through the POD module.
Obviously this will cause problems to the viewer and should be avoided except in the
case that a catastrophic failure has occurred in the POD module or in the interface
between the Host and the POD module.

6.7.1.3.2 POD Reset

The POD reset is defined to be when Host sets the RS bit in the control register
anytime after the POD personality change has occurred. The Host shall set the RS bit
in both the data channel and extended channel. The POD module shall detect whether
the RS bit has been set in either channel and, if so, shall close all open sessions and
transport connections and operation shall revert to that of just after the POD
personality change. This reset shall prevent the change of routing of the MPEG data
stream, thereby preventing the viewer from noticing any problems unless the
video/audio stream being viewed is scrambled. Since the conditional access session is
closed, the POD module shall cease descrambling the data stream until a new session
is opened and the appropriate APDU transmitted to the POD module.

The POD reset should occur when the Host detects an error in the POD module
interface or the POD module has set the IIR flag (see below).

6.7.1.3.3 Initialize Interface Request Flag

A status bit called the Initialize Interface Request (IIR) flag is included in bit 4 of
the status register to allow the POD module to request that the interface be re-
initialized. This bit exists in both the data channel and extended channel. When a
condition occurs that the POD module needs to request an interface initialization, it
shall set both IIR bits. Upon recognition of the IIR flag being set, the Host shall
implement a POD reset. The POD module will clear the IIR flag when the RS bit is
set. To further ensure reliable interoperability, POD modules shall be prohibited from
sending LPDUs to the Host after setting the IIR bit and prior to recognizing an active
RS bit.

38

6.7.1.3.4 Detailed POD Reset Operation

The following flowchart (POD Reset Sequence) is the required implementation of the
POD RS operation. LPDUs shall not be transmitted until the completion of the POD
Reset sequence.

39

Host clears RS
flags on Data

Channel after a
minimum of 40

usec

Host sets RS flag
on Extended

Channel

Data Channel
FR flag set?

Extended
Channel

 FR flag set?

Host executes
Data Channel

buffer size
negotiation

Host sets RS flag
on Data Channel

Yes

No

No

Yes

Host clears RS
flags on Extended

Channel after a
minimum of 40

usec

Host executes
Extended Channel

buffer size
negotiation

Figure 6.7-1 POD RS Operation

40

6.7.2 Configuration Option Register (Normative)

The Configuration Option Register (COR) in the POD module is only accessible prior
to the POD Personality Change (see appendix D.2). After the POD personality
change, the COR is no longer available. Any relevant configuration data must be
transferred via the data or extended channels and is not covered in this document.

By writing the COR with the value defined by the Configuration-Table index byte,
TPCE_INDX, from the CISTPL_CFTABLE_ENTRY tuple, the Host configures the
module into the POD mode, thus causing the POD Personality Change.

6.7.3 Initialization Conditions

There are 4 possible conditions that can cause the PCMCIA interface initialization
phase. Please see section 6.7.4 of this document for detailed operation. They are:

1. The Host and POD module are powered up at the same time. After both have
performed their internal initialization, then the interface initialization will begin.

2. Host has been powered and in a steady state. A POD module is then inserted.
After the POD module has performed its internal initialization, the interface
initialization phase will begin.

3. The Host has performed a reset operation for some reason (spurious signal,
brownout, software problem, etc.) that has not caused the POD module to reset. The
Host shall go through its initialization and then shall perform a PCMCIA reset on the
POD module. After the POD module has performed its internal initialization, then
the interface initialization shall begin.

4. The POD module has performed a reset operation for some reason (spurious
signals, software problem, etc.) that has not caused the Host to reset. The Host shall
incorporate the timeout detection and will thus detect a timeout and will perform a
POD reset.

6.7.4 OOB Connection and Disconnection Behavior

If a POD module is not connected to the Host, the OOB transmitter in the Host shall
not operate. Upon connection of a POD module, the Host shall initiate, with the POD
module, the low-level personality change sequence defined in Section 6.7.5 of this
document. If successful, the Host shall then activate the OOB transmitter as
instructed by the POD module.

The OOB receiver in the Host shall be connected only to the POD module interface.

41

6.7.5 Low Level Step by Step POD Personality Change Sequence

The POD Personality Change covers the detection of the POD module and the
transition to the POD interface. A step-by-step operation for the interface
initialization of the physical layer from the POD module’s viewpoint is defined
below.

1. The POD module is inserted or already present in a Host.

2. Please refer to section 4.12.1 of “PC Card Standard, Volume 2 Electrical
Specification, March 1997” for timing diagrams and specifications.

• Power-up: Power is applied to the POD module with the RESET signal in a high-Z
state for a minimum of 1 msec after VCC is valid (section 4.4.20 of the PC Card
Electrical Specification). The POD module’s READY signal (pin 16) shall be
inactive (logic 0) within 10 usec after the RESET signal goes inactive (logic 0),
unless the POD module will be ready for access within 20 msec after RESET goes
inactive. Note that at this time the POD module shall only operate as an unconfigured
PCMCIA module.

• PCMCIA Reset: The RESET signal goes active for a minimum of 10 usec. The
POD module’s READY signal (pin 16) shall be inactive (logic 0) within 10 usec after
RESET goes inactive (logic 0), unless the POD module will be ready for access
within 20 msec after RESET goes inactive. Note that at this time the POD module
shall only operate as an unconfigured PCMCIA module.

3. After a minimum of 20 msec after RESET goes inactive (section 4.4.6 of “PC
Card Standard, Volume 2 Electrical Specification, March 1997”), the Host shall test
the POD module’s READY signal. It shall not attempt to access the POD module
until the READY signal is active (logic 1).

4. After the POD module has completed its PCMCIA internal initialization, it shall
bring the READY signal active. At this time, all of the interface signals are defined
by the PC Card interface standard for Memory Only Card interface (Table 4-1 of
“PC Card Standard, Volume 2 Electrical Specification, March 1997”). The POD
module must bring READY active within 5 seconds after RESET goes inactive
(section 4.4.6 of “PC Card Standard, Volume 2 Electrical Specification, March
1997”).

5. The Host shall read the Configuration Information Structure (CIS) available in
the attribute memory to determine that the device is POD module, what version is
used, and any other pertinent information. This data is outlined in section A.5.6 of
CEA-679-C Part B with the revisions in section 3.1 of this document.

6. The Host shall read all the CCST_CIF subtuples to verify that the SCTE
interface ID number (STCI_IFN) is present (0x341). (Informative Note--If it is not
present, this means that a different PCMCIA module has been inserted which is not

42

capable of operating with the SCTE format, however, it may be capable of operating
as a NRSS-B module (CEA-679-C Part B).)

7. The Host shall then write into the COR the value read in TPCE_INDX.
Following this write cycle, the Host shall switch the address signals A4-A8 to the
OOB interface signals and the inband transport stream signals. The Host must
implement a pull-down resistor on the ETX signal to prevent spurious operation of
the transmitter. It must also implement a pull down resistor on the MCLKO signal
to prevent invalid inband transport data from being received prior to the POD’s
personality change.

8. At a minimum of 10 usec after the COR write signal, the POD module shall
switch to the OOB interface signals and the inband transport stream signals.

9. In the event that the POD module requires additional initialization, it shall not
bring the FR bit in the status register active until it is ready to begin communications
with the Host.

10. This completes the physical link layer initialization.

The following diagram helps define this operation.

Host reset
Host completes internal initialization

Waits until READY = 1 to begin POD
Personality Change Sequence

Host reads CCST_CIF from SCTE
POD module's attribute register

Host enables POD interface in SCTE
POD module by writing TPCE_INDX
value to Configuration Option Register
(COR)

Host converts to POD interface (A4-
A8 become OOB interface)

Begin upper layer initialization

SCTE POD module reset
SCTE POD module completes internal
initialization

SCTE POD module changes from
PCMCIA interface to POD interface.

Wait 10 usec min.

SCTE POD module OOB interface
becomes active

Host SCTE POD Module

READY = 0

READY = 1

Read CCST_CIF

Return hex341

Write TPCE_INDX

End of POD Personality Change
Sequence

POD Personality Change
Sequence

RESET = 0

FR =1

Figure 6.7-2 POD Personality Change Sequence

43

6.7.6 Initialization Overview

The following sections provide a description of the initialization procedure that shall
occur between the POD module and the Host.

6.7.6.1 Physical Layer Initialization

The physical layer initialization covers the buffer size negotiation of both the data and
extended channels, and the initialization of the Host-pod transport layer and resource
manager. The following shall be implemented in the order listed.

6.7.6.1.1 Data Channel Initialization

The data channel is initialized by the Host writing a ‘1’ to the RS bit in the data
channel Control/Status Register. After a minimum of 40 usec, the Host will write a
‘0’ to the RS bit in the data channel Control/Status Register. The POD module shall
clear out any data in the data channel data buffer and configures the POD interface so
it can perform the data channel buffer size negotiation protocol. When the POD
module is ready, it sets the data channel FR bit to ‘1’.

6.7.6.1.2 Extended Channel Initialization

The extended channel is initialized by the Host writing a ‘1’ to the RS bit in the
extended channel Control/Status Register. After a minimum of 40 usec, the Host will
write a ‘0’ to the RS bit in the extended channel Control/Status Register. The POD
module shall clear out any data in the extended channel data buffer and configures the
POD interface so it can perform the extended data channel buffer size negotiation
protocol. When the POD module is ready, it sets the extended channel FR bit to ‘1’.

6.7.6.1.3 Data Channel Buffer Size Negotiation

The Data Channel buffer size negotiation is covered in sections 5.5 and A.2.2.1.1 of
CEA 679 Part B (reference [1]). There are 2 buffers which must be negotiated, the
POD buffer for the data channel and the Host buffer for the data channel. According
to Section A.2.2.1.1. of [1], the minimum buffer size for the POD module is 16 bytes
and the minimum buffer size for the Host is 256 bytes. The maximum size for both is
65,535 bytes.

Using the protocol called out in section A.2.2.1.1 of [1], the Host will read the POD
module’s data channel buffer size, compare the result to its data channel buffer size,
and write the smaller of the two buffer sizes to the POD module’s data channel. All
future data channel transaction buffer sizes shall be at most this buffer size. Note that
a data channel transaction’s buffer size can be smaller than the negotiated buffer size.

6.7.6.1.4 Extended Channel Buffer Size Negotiation

44

The Extended Channel buffer size negotiation is the same as the data channel. Note
that the buffer sizes of the data and extended channels do not have to be the same.
The minimum buffer size for the POD module is 16 bytes and the minimum buffer
size for the Host is 256 bytes. The maximum size for both is 65,535 bytes.

Using the protocol called out in section A.2.2.1.1 of [1], the Host will read the POD
module’s extended channel buffer size, compare the result to its extended channel
buffer size, and write the smaller of the two buffer sizes to the POD module’s
extended channel. All future extended channel transaction buffer sizes shall be at
most this buffer size. Note that a extended channel transaction’s buffer size can be
smaller than the negotiated buffer size.

6.7.6.2 Link Connection

The link connection (LPDU) is covered in section A.3.2 of [1]. No explicit
initialization of the Link Layer is required.

6.7.6.3 Host-POD Transport Layer Connection

The transport layer (TPDU) connection is covered in sections 7 and A.4.1 of [1].
Section A.4.1.3 of [1] shall be supported with the addition of the following: “TPDU
chaining shall not be supported. The maximum length of the transport data shall be
limited to 65,534 bytes.”

The Host shall request to open a transport connection. The host shall open exactly
one transport connection for each POD module.

Table 6.7-A Create Transport Connection

Syntax Value # of bits Mnemonic

Create_T_C() {

 create_T_C_tag

 length_field()

 t_c_id

}

82

01

XX

8

8

8

uimsbf

uimsbf

uimsbf

Where XX is defined by the Host. A transport connection ID (t_c_ID) value of zero
is invalid.

The POD module shall respond with the following.

45

Table 6.7-B Create Transport Connection Reply

Syntax Value # of bits Mnemonic

C_T_C_Reply (){

 C_T_C_Reply_tag

 length_field()

 t_c_id

}

83

01

XX

8

8

8

Uimsbf

Uimsbf

Uimsbf

A transport connection of ID “XX” now exists.

6.7.6.4 Resource Manager Session Initialization

The resource manager session initialization is covered in section 7.2.6.1 of [1].

First, the module requests a session to be opened to the Host’s Resource Manager.

Table 6.7-C Open Session Request

Syntax Value # of bits Mnemonic

Open_session_request(){

 open_session_request_tag

 length_field()

 resource_identifier()

}

91

04

00010041

8

8

32

uimsbf

uimsbf

uimsbf

The Host shall respond with the following.

Table 6.7-D Open Session Response

Syntax Value # of bits Mnemonic

Open_session_response(){

 open_session_response_tag

 length_field()

 session_status

 resource_identifier()

 session_nb

}

92

07

00*

00010041

YYYY

8

8

8

32

16

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

* - assumes that the resource manager is always available.

46

The session number for the resource manager is YYYY and is created by the Host. A
session number (session_nb) of zero is invalid.

The session is now created.

6.7.6.4.1 POD Resource Profile

The POD resource profile is obtained by the Host and is covered in section 8.4.1.1 of
[1]. Since the POD module is designed to be the only module in a Host, it shall not
report any resources to the Host.

First the Host’s Resource Manager sends a Profile Inquiry to the module.

Table 6.7-E Profile Inquiry

Syntax Value (hex) # of bits Mnemonic

profile_inq(){

 profile_inq_tag

 length_field()

}

9F8010

00

24

8

uimsbf

uimsbf

The POD shall respond with

Table 6.7-F Profile Reply

Syntax Value (hex) # of bits Mnemonic

profile_reply(){

 profile_reply_tag

 length_field()

}

9F8011

00

24

8

uimsbf

uimsbf

6.7.6.4.2 Host Resource Profile

The Host shall send a profile_changed APDU so that the POD module shall then
perform a profile_inq APDU to which the Host shall respond with its profile_reply
APDU.

The Host sends:

47

Table 6.7-G Profile Changed

Syntax Value (hex) # of bits Mnemonic

profile_changed(){

 profile_changed_tag

 length_field()

}

9F8012

00

24

8

uimsbf

uimsbf

to which the module replies with:

Table 6.7-H Profile Inquiry

Syntax Value (hex) # of bits Mnemonic

profile_inq(){

 profile_inq_tag

 length_field()

}

9F8010

00

24

8

uimsbf

uimsbf

to which the Host shall reply with:

Table 6.7-I Profile Reply

Syntax Value # of bits Mnemonic

profile_reply(){

 profile_reply_tag

 length_field()

 for(i=0; i<N; i++) {

 resource_identifier()

 }

}

9F8011

N*4

XXXXXXXX

24

8

32

uimsbf

uimsbf

uimsbf

where N is the number of resource identifiers and XXXXXXXX is each unique
resource identifier.

NOTE: If a Host supports multiple versions of a given resource, each version of that
resource will be reported as a resource identifier.

Now the module knows what resources are available in the Host.

48

6.7.6.5 Application Info Session Initialization

Each POD module application shall open a single session to the Application
Information resource to pass application information and to manage application menu
entry points. Once the session is created, the Host sends an application_info_req
APDU to the POD module. The POD module will respond with the
application_info_cnf APDU. Detailed operation of the application info is covered in
section 8.4 of this document.

6.7.6.6 Conditional Access Application Initialization

A Conditional Access application in the POD module shall then create a single
session to the CA Support resource in the Host to allow CA information from the SI
and information about user-selected services to be given to the application. Once the
session is created, the Host sends a CA Info Inquiry APDU to the application, which
responds with CA Info APDU. The Host may then enter into a subsequent dialogue
with the CA application to determine which selected services the CA application can
descramble and under what conditions. This is described in section 8.4.3 of [1].
Under normal operating conditions, this session will never be closed.

6.7.6.7 Copy Protection

A Copy Protection application in the POD module shall create a session to the Copy
Protection resource in the Host. Initialization of Copy Protection is covered in
ANSI/SCTE 41 2001.

6.7.6.8 Extended Channel

An extended channel application in the POD module shall create a session to the
Extended Channel Support resource to allow for the establishment of flows on the
extended channel. These flows will be used for transferring IP packets and MPEG
table sections across the POD/Host interface. Under normal operating conditions,
this session will never be closed. Please refer to sections 4 and 8.9 of this document.

6.7.6.9 Host Control

A Host Control application shall create a session to the Host Control resource to
allow the POD module to control various Host devices. Please refer to section 8.8 of
this document for details on the Host Control resource.

6.7.6.10 Low Speed Communication

If reported by the Host as an available resource and the POD module implements a
Low Speed Communication application, the POD module application shall create a
session to the Low Speed Communication resource to allow the POD module to
communicate to the headend through the Host.

49

6.7.6.11 Generic IPPV Support

If reported by the Host as an available resource and the POD module implements a
Generic IPPV application, the POD module application shall create a session to the
Generic IPPV resource to allow the Host to receive information on and purchase
IPPV events.

6.7.6.12 System Time

If the POD module desires, it shall open a single session to the System Time resource
to allow the POD module to receive system time from the Host.

6.7.6.13 Homing

If the POD module desires, it shall open a single session to the Homing resource in
the Host to allow the POD module to determine when it may take control of the tuner.
The Homing operation is defined in Section 8.13.

6.7.7 Interrupt Operation

Section 6.5.1 of this document defines that the PCMCIA IREQ# signal is available
for use by the Host. This signal can be utilized by the Host to simplify the physical
layer operation but currently cannot be used for transport layer operation.

6.7.7.1 Physical Level

The following diagram shows the POD module interrupt logical operation.

Data Channel

Extended Channel

DA

DAIE

FR

FRIE

DA

DAIE

FR

FRIE

IREQ#

Figure 6.7-3 POD Module Interrupt Logical Operation

From this diagram, an interrupt shall occur whenever the DA or FR bits are set for
either the data or extended channels and their corresponding interrupt enable bit is set.

6.7.7.1.1 Data Channel Operation

The Host/POD module relation on the data channel is defined to be a master-slave
interface. The Host will periodically poll the POD module to determine if it has data.

50

The POD module will only transmit data to the Host after one of these polls. The
interrupts are particularly useful when the transaction has to be fragmented. The
method of interrupt implementation is dependent on the Host manufacturer and is not
defined in this document.

6.7.7.1.2 Extended Channel Operation

The Host/POD module relation on the extended channel is defined in section 5.5 of
this document. This is a peer type interface. The Host and POD module can transmit
data over the extended channel at any time. The interrupt implementation is
dependent on the Host manufacturer and is not defined in this document.

6.7.7.1.3 Priorities

Since the data and extended channel interrupts are logically OR’ed together to a
single interrupt signal, a priority must be established. Since the data channel is
defined to be the command interface, it shall have priority over the extended channel.
Additionally, the data channel shall have less traffic overall than the extended
channel.

This priority can be easily implemented by having the Host first read the data channel
status byte and then the extended channel status byte when an interrupt occurs to
resolve the source.

6.8 Mechanical Design

The mechanical design of the POD module shall follow either the PC Card or
CardBus specifications called out in [13]. Additionally, any future modifications to
the physical specification which are backwards compatible may be implemented.

7 LINK INTERFACE (NORMATIVE)

7.1 Data Channel

The link layer of the Data Channel is compliant to the link layer of CEA-679-C Part
B Command Interface.

7.2 Extended Channel

The Extended Channel provides a data path between the POD and the Host. The
QPSK modem (the traditional “out-of-band channel”) is one such path. A High
Speed Host Modem, when present, provides another.

The link layer of the Extended Channel fragments the datagram PDU, if necessary,
over the limited buffer size of the physical layer and reassembles received fragments.
The link header includes two control bits and the FLOW_ID value that has been

51

negotiated by the link device for the application (see section 8.9) to identify the end-
to-end communication flow.

Table 7.2-A Extended Channel Link Layer Packet

L F 0x00
FLOW_ID (MSB)

FLOW_ID
FLOW_ID (LSB)

datagram PDU fragment

• L: Last indicator: if this bit is set to ‘0’, then at least one more datagram fragment
follows. If this bit is set to ‘1’ then this fragment is the last in the datagram.

• F: First fragment indicator: if this bit is set to ‘1’, then this fragment is the first of
the datagram. If this bit is set to ‘0’ then this fragment is not the first.

• FLOW_ID: 3-byte flow identifier associating the data with a registered flow.
The FLOW_ID value of zero is reserved is not to be assigned.

For data flows made available to the Host by the POD, the POD is responsible for
link layer processing of messages to be transferred across the Extended Channel. It is
the Host’s responsibility to re-assemble received datagram PDU fragments, and to
segment PDUs for delivery across the interface. For data flows made available to the
POD by the Host, the roles are reversed.

Received datagram PDU fragments shall be reassembled into either IP packets or
MPEG-2 table sections, depending upon the Service_type associated with the flow
given by FLOW_ID. The maximum size of the reassembled PDU (IP packet or
MPEG-2 table section) shall be 4096 for any Service Type.

7.2.1 Maximum PDUs

Datagram PDUs to be transmitted upstream shall be segmented into fragments not
exceeding the negotiated buffer size. The maximum size of any PDU before
fragmentation shall be 4096 bytes for downstream data for any Service Type. The
maximum size of any PDU before fragmentation shall be 1500 bytes for upstream
data for any Service Type.

52

8 APPLICATION INTERFACE (NORMATIVE)

8.1 Scope Introduction

The Host-POD Interface Specification requires the following extensions to the Host,
the Host-POD Interface Specification requires the following extensions to CEA-679-
C Part B on the Data Channel. The Extended Channel does not have an application
layer.

Table 8.1-A Host-POD Interface Resources

Resource CEA
679-C

Host-POD Class Type Version Resource ID

Resource Manager Yes Yes 1 1 1 00010041
MMI Yes Updated 64 2 1 00400081
Application Info Yes Updated 2 2 1 00020081
Low Speed Communication
(Cable Return) Yes2 Updated and

Optional3 96 50 3 00605043

Low Speed Communication
(Host Modem) Yes2 Updated and

Optional3 96 80 3 00608043

Conditional Access Support Yes Yes 3 1 2 00030042
Copy Protection No Yes 176 3 1 00B000C1
Host Control Yes Updated 32 1 3 00200043
Extended Channel Support No Yes 160 1 14 00A00041

Generic IPPV Support Yes Updated and
Optional3 128 2 1 00800081

Specific Application Support No Yes 144 1 1 00900041
Generic Feature Control No Yes 42 1 1 002A0041
Homing Resource1 No Yes 17 1 2 00110042
System Time Yes Yes 36 1 1 00240041
Generic Diagnostic Resource No Yes 260 1 1 01040041
NOTES:

1. The Homing resource is defined in Section 8.13 of this standard.

2. The Resource ID delivered by a Host shall be either 0x00605043 for a Host
device with a Cable Return Channel (e.g., SCTE 55-1 or SCTE 55-2), or
0x00608043 for a Host device with a Host modem (e.g., DOCSIS). If no Low Speed
Communication Resource Identifier is reported by the Host than the Host device is
assumed to be equipped with only a Forward Data Channel. The POD may use the
presence of the Resource ID as a means to identify what type of Cable Return
Channel is supported by the Host.

53

3. If a device manufacturer opts to implement an optional resource on a device,
then the resource shall use the indicated resource ID.

4. The Resource Version depends on the implementation of a Host High Speed
(DOCSIS) Modem. See the description of Table 8.9-A in Section 8.9.

Table 8.1-B Host-POD Interface Resource Loading

Item Name Maximum
sessions at

one time

Closes Resource
Location

1 Transport Connection ID 1 No Host creates
TC_ID

2 Sessions total (sum of items 3-
16)

128 N/A N/A

3 Resource Manager 32 No Host
4 MMI 1 No Host
5 Application Info 1 No Host
6 Low Speed Communication 1 Yes Host
7 Conditional Access Support 1 No Host
8 Copy Protection 1 No Host
9 Host Control 1 No Host
10 Extended Channel Support 2 No Host
11 Generic IPPV Support 1 Yes Host
12 Specific Application Support 32 Yes Host
13 Generic Feature Control 1 No Host
14 Homing 1 Yes Host
15 Generic Diagnostic Support 1 No Host
16 System Time 1 Yes Host

NOTES:

1. A maximum of one Generic Diagnostic Support resource may be open at a time.

2. A POD module may assume that it is the only POD module in a Host, even if the
Host supports multiple POD modules. It is the responsibility of the Host to handle
the multiple interfaces. Specifications for multiple POD interfaces are beyond the
scope of this standard and subject to further study.

54

3. After buffer negotiation, the Host will create a transport connection. The POD
module will ignore the t_c_id value in the link layer when there is no transport
connection established.

4. Only one program may be descrambled at a time, hence only one conditional
access support session shall be opened. The conditional access session does not close
according to section 6.7. Descrambling of multiple programs is beyond the scope of
this standard and subject to further study

5. Only one copy protection session shall be open at a time. The copy protection
session does not close according to section 6.7.

6. Two extended channel sessions may be open at a time, however only when the
Host has modem capability (either phone, DOCSIS, or other); otherwise only one
extended channel session may be open.
The extended channel session does not close according to section 6.7.

7. Only one host control session shall be open at a time. The host control session
does not close according to section 6.7.

8. A maximum of one Generic IPPV session may be open at a time.

9. A maximum of one homing session may be open at a time.

10. A maximum of one system time session may be open at a time.

11. The POD shall limit the resource to the values defined in Table 8.1-B. The host
shall at a minimum support the number of resources defined in Table 8.1-B.

8.2 Resource Manager

The CEA-679-C Part B Resource Manager resource shall be implemented.

8.3 Man Machine Interface

8.3.1 Introduction

The Man-Machine Interface resource resides in the Host. The POD shall only open
one session to this resource if it wants to initialize one or more MMI dialogs. This
session shall remain open during normal operation.

The Man-Machine Interface resource provides

• Support to the POD to open an MMI dialog

• Support to the Host to confirm that the MMI dialog has been opened

• Support to the POD to close the MMI dialog, it opened

55

• Support to the Host to confirm that the MMI dialog has been closed either upon
POD or Host request

The Man-Machine Interface resource has been changed to type 2 to reflect the
changes listed into this section compared to CEA-679-C.

Table 8.3-A Man Machine Interface Resource

Resource Class Type Version Identifier (hex)
MMI 64 2 1 000400081

The Man-Machine Interface resource includes four APDUs as described in the
following table:

Table 8.3-B Man Machine Interface Objects

Apdu_tag Tag value
(hex)

Resource Direction
Host <-> POD

open_mmi_req() 9F8820 MMI
open_mmi_cnf() 9F8821 MMI
close_mmi_req() 9F8822 MMI
close_mmi_cnf() 9F8823 MMI

8.3.2 Open_mmi_req() & Open_mmi_cnf()

The POD shall send an Open_mmi_req() APDU to the Host when it wants to
initialize an MMI dialog. The Host shall reply with an Open_mmi_cnf() APDU to
confirm the status of the request.

For Host that supports more than one MMI dialog at the same time (multiple
windows), the POD may send another Open_mmi_req() APDU, before it closes the
previous one.

56

8.3.2.1 Open_mmi_req()

Table 8.3-C Open MMI Request Object Syntax

Syntax # of bits Mnemonic

open_mmi_req(){

 open_mmi_req_tag

 length_field()

 zero

 url_length()

 For (I=0; I < url_length; I++) {

 url_byte

 }

}

24

8

16

8

uimsbf

0x00

uimsbf

uimsbf

Where:

url_byte

Each url_byte is one octet of a parameter that points to a HTML page in the POD and
that needs to be queried by the Host display application using the Server_query()
APDU when the MMI dialog will be opened

8.3.2.2 Open_mmi_cnf()

Table 8.3-D Open MMI Confirm Object Syntax

Syntax # of bits Mnemonic

Open_mmi_cnf(){

 open_mmi_cnf_tag

 length_field()

 dialog_number()

 open_status()

}

24

8

8

Uimsbf

Uimsbf

Uimsbf

where:

open_status

The status of the requested MMI dialog as defined in the following table.

57

Table 8.3-E Open Status Values

Open_Status Value (hex)
OK- Dialog Opened 00
Request Denied – Host Busy 01
Request Denied – Display Type not
Supported

02

Request Denied – No Video Signal 03
Request Denied – No more
Windows Available

04

Reserved 05-FF

dialog_number

A number supplied by the Host issued from an 8-bit cyclic counter that identifies each
Open_mmi_cnf() APDU and allows the POD to close the MMI dialog.

8.3.3 Close_mmi_req() & Close_mmi_cnf()

The POD shall send a Close_mmi_req() APDU to the Host to close the MMI dialog
previously opened with an Open_mmi_req() APDU. The Host shall reply with a
Close_mmi_cnf() object to report the status of the close operation.

The Host may send a Close_mmi_cnf() without the POD having sent a
Close_mmi_req() to inform about a close operation performed by the Host.

8.3.3.1 Close_mmi_req()

Table 8.3-F Close MMI Request Object Syntax

Syntax # of bits Mnemonic

close_mmi_req(){

 close_mmi_req_tag

 length_field()

 dialog_number()

}

24

8

Uimsbf

Uimsbf

where:

dialog_number

The number of the MMI dialog provided by the Close_mmi_req().

58

8.3.3.2 Close_mmi_cnf()

Table 8.3-G Close MMI Confirm Object Syntax

Syntax # of bits Mnemonic

close_mmi_cnf(){

 close_mmi_cnf_tag

 length_field()

 dialog_number()

}

24

8

uimsbf

uimsbf

where:

dialog_number The number of the MMI dialog provided by the Close_mmi_req().

8.4 Application Information

8.4.1 Introduction

The Application Information resource resides in the Host. The POD shall only open
one session to it after it has completed the profile inquiry operation with the
Resource Manager resource (see Section 6.7.6.4).

The Application Information resource provides:

• Support to the Host to expose its display characteristics to the POD

• Support to the POD to expose its applications to the Host

• Support to the POD to deliver HTML pages to the Host

The Application Information resource has been changed to type 2 to reflect the
changes listed in this section as compared to CEA-679-C. During initialization, the
POD module opens a session to the Application Information resource on the Host.
This session shall remain open during normal operation.

Table 8.4-A Application Information Resource

Resource Class Type Version Identifier (hex)

Application_info 2 2 1 00020081

The Application Information resource includes four APDUs as described in the
following table:

59

Table 8.4-B Table Application Information Objects

Apdu_tag Tag value
(hex)

Resource Direction
Host <-> POD

application_info_req() 9F8020 Application Info

application_info_cnf() 9F8021 Application Info

server_query() 9F8022 Application Info

server_reply() 9F8023 Application Info

The method for initiating an application is beyond the scope of this document.

8.4.2 Application_info_req() & Application_info_cnf()

The Host shall send, as soon as the POD has opened the Application Information
resource, an Application_info_req() APDU to the POD to advertise its display
capabilities. The POD shall reply with an Application_info_cnf() APDU to describe
its supported applications.

60

8.4.2.1 Application_info_req()

Table 8.4-C Application Information Request Object Syntax

Syntax # of bits Mnemonic

Application_info_req() {

 Application_info_req_tag

 length_field()

 Display_rows

 Display_columns

 Vertical_scrolling

 Horizonal_scrolling

 Multi_window

 Data_entry_support

 HTML_support

 if (HTML_support==1) then {

 Link_support

 Form_support

 Table_support

 List_support

 Image_support

 }

}

24

16

16

8

8

8

8

8

8

8

8

8

8

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

Where:

Display_rows

This field defines the number of rows of the display device.

Display_columns

This field defines the number of columns of the display device. Columns are one
pixel in width.

Vertical_scrolling

This field defines if the Host display application supports vertical scrolling
(Vertical_scrolling = 1), or not (Vertcal_scrolling = 0).

Default value is 0.

61

Horizontal_scrolling

This field defines if the Host display application supports horizontal scrolling
(Horizontal_scrolling = 1), or not (Horizontal_scrolling =0).

Default value is 0.

Multi_window

This field is deprecated and shouldbe set to zero. Data_entry_support

This field defines the data entry capability of the Host, according to the following
table. The POD may use this information in creating HTML pages.

Table 8.4-D Data Entry Support Values

Data_entry_support Value (hex)

None 0

Last/Next 1

Numeric Pad 2

Alpha Keyboard with Mouse 3

Reserved 4-FF

HTML_support

This field defines the HTML support capability of the Host display application,
according to the following table. All Hosts shall support as a minimum the Baseline
HTML profile. The Baseline HTML profile is defined in Appendix C.

Table 8.4-E HTML Support Values

HTML_support Value (hex)

Baseline Profile 0

Custom Profile 1

HTML 3.2 2

XHTML 1.0 3

Reserved 4-FF

Link_support

This field defines if the Host display application supports single or multiple Links,
according to the following table.

62

Table 8.4-F Link Support Values

Link_support Value (hex0

One link 0

Multiple links 1

Reserved 2-FF

Form_support

This field defines if the Host display application supports Forms, according to the
following table.

Table 8.4-G Form Support Values

Form_support Value (hex)

None 0

HTML 3.2 w/o POST method 1

HTML 3.2 2

Reserved 3-FF

Table_support

This field defines if the Host display application supports Tables, according to the
following table.

63

Table 8.4-H Table Support Values

Table_support Value (hex)

None 0

HTML 3.2 1

Reserved 2-FF

List_support

This field defines if the Host display application supports Lists, according to the
following table.

Table 8.4-I List Support Values

List_support Value (hex)

None 0

HTML 3.2 w/o Descriptive Lists 1

HTML 3.2 2

Reserved 3-FF

Image_support

This field defines if the Host display application supports Images, according to the
following table.

Table 8.4-J Image Support Values

Image_support Value (hex)

None 0

HTML 3.2 – PNG Picture under
RGB w/o resizing

1

HTML 3.2 2

Reserved 3-FF

64

8.4.2.2 Application_info_cnf()

Table 8.4-K Application Information Confirm Object Syntax

Syntax # of bits Mnemonic

Application_info_cnf() {

application_info_cnf_tag

length_field()

pod_manufacturer_id

pod_version_number

number_of_applications

for (I=0; I<number_of_applications; I++) {

 application_type

 application_version_number

 application_name_length

 for (J=0; J<application_name_length; J++)

 {

 application_name_byte

 }

 application_url_length

 for (J=0; J<application_url_length; J++)

 {

 application_url_byte

 }

 }

}

24

16

16

8

8

16

8

8

8

8

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

bslbf

uimsbf

bslbf

Where:

pod_manufacturer_id

The first byte specifies the POD module manufacturer, while the second byte, which
is not defined here, can be used by the POD module manufacturer to privately
identify product generation and derivatives.

65

Table 8.4-L Pod Manufacturer ID Values

Pod_manufacturer_id Value (hex)

Motorola 00XX

Scientific Atlanta 01XX

SCM Microsystems 02XX

Future 0300-FFFF

pod_version_number:

Privately defined by the POD module manufacturer. The POD module shall upgrade
the pod_version_number each time the POD module is modified by using the POD
Module Upgrade Host Interface (Section 8.13).

application_type

The POD module application type are:

Table 8.4-M Application Type Values

Application_type Value
(hex)

Description

Conditional Access 00 conditional access application

POD-Host Binding Information 01 POD-Host binding information
application (NOTE: see Figure 3.2-
A of SCTE 41 2003)

IP Service 02 support for bi-directional IP
transactions over the extended
channel

Network Interface –SCTE 55-2 03 support for ANSI/SCTE 55-2 2002
PHY and MAC layers on the out-of-
band channel

Network Interface – SCTE 55-1 04 support for ANSI/SCTE 55-1 2002
PHY and MAC layers on the out-of-
band channel

Copy Protection 05 Copy protection application

Diagnostic 06 Diagnostic application

Undesignated 07 Undesignated application

Reserved 08-FF

66

application_version_number

Defined by the POD application supplier. The POD module shall upgrade the
application_version_number each time the POD application software is modified
according to the POD Module Firmware Upgrade Host Interface (Section 8.13).

application_name_byte

The commercial name of the application specified as a text string in ASCII format.
The Host shall replace the default generic identifier of the POD module’s application
with the application name. The application name, when selected by the user, triggers
a Host initialized MMI dialog.

The Host shall display at least eight different POD module application name strings
in its top menu. The application name length shall be limited to 32 characters.

application_url_byte

Defines the URL of the POD module application’s top level HTML page in the POD
module memory. The application URL may or may not be displayed in the Host top
menu. The Host shall use the application URL in a server_query() object to initialize
an MMI dialog with the POD module application, when an object identified by either
the application name or the application URL is selected in the Host menu.

8.4.3 Server_Query() & Server_Reply()

The Host shall send a Server_query() APDU to the POD to request the information in
the POD file server system pointed by a specific URL. The URL defines the access,
Host, and location of the data that the Host is requesting. Upon receipt of the URL,
the POD module locates the requested data and provides it back to the Host in the
server_reply() APDU. The Host shall process and display the data returned in the
server_reply() APDU in a timely manner.

67

8.4.3.1 Server Query

Table 8.4-N Server Query Object Syntax

Syntax # of bits Mnemonic

server_query(){

 server_query_tag

 length_field()

 transaction_number

 header_length

 For (I=0; I < header_length; I++) {

 header_byte

 }

 url_length

 For (I=0; I < url_length; I++) {

 url_byte

 }

}

24

8

16

8

16

8

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

Transaction_number

A number supplied by the Host issued from an 8-bit cyclic counter that identifies each
Server_query() APDU and allows the Host to route the Server_reply() to the right
MMI dialog.

Header_byte

Each header_byte is an octet of an optional parameter that uses the same format as
the HTTP/1.1[16] request header to pass additional parameters related to the request,
like browser version, accepted mime types, etc. A Host not supporting headers shall
set header_length to 0. The POD module may also ignore this parameter.

url_byte

Each url_byte is an octet of a parameter that defines a protocol, domain, and location
for the transfer of data. For the purposes of an application running on a POD module,
the URL must allow the transfer of a file of data from the POD module to the Host.

The access indicator is “pod”.

The second part of the URL is the Host. The convention for “current server” (i.e., the
server that generated the current page) can be used and is indicated by an empty Host.

68

The third part of the URL is the file location. This is indicated by a hierarchical
directory/file path.

For example, in order to request the file menu.html from the directory
apps/user/program_guide on the POD module, the properly constructed URL would
be:

pod:///apps/user/program_guide/menu.html

If, after receiving a server_reply from the POD module, the Host has data that it
wants to send to the POD module, the Host can do so through a server_query. In this
case, the last part of the URL contains a list of name-value pairs separated by “&”s.
This list is preceded by a “?”. A properly constructed URL would be:

pod:///path/file?name1=value1&name2=value2&…

Such a URL sent to an application on the POD module as a response to a
server_reply would cause the name-value pairs to be processed by the application.
Data entered and selected at the Host may be sent to the POD module through the use
of these name-value pairs as part of the URL in a server_query object.

8.4.3.2 Server Reply

Table 8.4-O Server Reply Object Syntax

Syntax # of bits Mnemonic

server_reply(){

 server_reply_tag

 length_field()

 transaction_number

 file_status

 header_length

 For (I=0; I < header_length; I++) {

 Header_byte

 }

 file_length

 For (I=0; I < file_length; I++) {

 file_byte

 }

}

24

8

8

16

8

16

8

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

69

transaction_number

A number supplied by the Host issued from an 8-bit cyclic counter that identifies each
Server_query() APDU and allows the Host to route the Server_reply() to the right
MMI dialog.

file_status

The file status is indicated by the following values:

Table 8.4-P File Status Values

File_status Value (hex)
OK 00
URL_not_found 01
URL_access_not_granted 02
Reserved 03-FF

Header_byte

This parameter is an optional parameter to pass HTTP/ 1.1[16] response headers. This
header may contain additional information on served file, like mime type, expiration
date, etc. Both Host and module may not support this extension and process only file
bytes. A POD module not supporting headers shall set header_length to 0.

file_byte

Each file_byte is an octet of the contents of the requested file. A server reply object
with file_length equals to 0 will be interpreted as a null file.

70

8.5 Low Speed Communication (1)

The Low Speed Communication resource is used to support the identification of the
Forward Data Channel (FDC), the Reverse Data Channel (RDC), and any type of Host
modem implementations. The Low Speed Communication resource is not a means for
passing upstream/downstream OOB data to/from POD via the Host-POD interface. All
downstream OOB data shall be passed directly to/from the POD via the Host-POD OOB
Interface. Support for Section 8.7 of CEA-679B Part B is optional.

Table 8.5-A Low Speed Communication Resource

Resource Class Type Version Identifier
(hex)

Low_Speed_Communication
(Cable Return)

96 321 3 00605043

Low_Speed_Communication
(Host Modem)

96 513 3 00608043

For Host devices with a RDC, the Low_Speed_Communication Identifier shall be
0x00605043 for a Host device with a Cable Return Channel only , or 0x00608043 for
a Host with a Cable Return Channel and a Host Modem (e.g., DOCSIS).

A Host that supports FDC only (no RDC) shall not report a Low Speed
Communication identifier of either 0x00605043 or 0x00608043.

A Host that has a DOCSIS Cable Modem but does not have a SCTE 55 transmitter is
not supported and shall not report a Low Speed Communication identifier of either
0x00605043 or 0x00608043.

The following table summarizes this operation:

Table 8.5-B Low Speed Communication Resource ID Reporting Matrix

SCTE 55
Receiver

(FDC)

SCTE 55
Transmitter

(RDC)

DOCSIS
Cable Modem

Low Speed Communication
Resource ID

Yes No No None
Yes No1 Yes None
Yes Yes No 0x00605043
Yes Yes Yes 0x00608043
1 This variation is not permitted.

1

71

8.6 Conditional Access

The CEA-679-C Part B Conditional Access Support resource shall be implemented
in its entirety, with the following addition:

 The POD shall inform the host of changes in CA states by sending the CA_UPDATE
APDU defined below. A new version of the CA resource on the host shall process the
CA_UPDATE APDU.

Table 8.6-A Conditional Access Support Resource

Resource Class Type Version Identifier (hex)

Conditional Access
Support

3 1 2 00030042

This extension includes the following objects:

Table 8.6-B Conditional Access Support Objects

Apdu_tag Tag value
(hex)

Resource Direction
Host <-> POD

CA_update() 9F8034 Conditional Access
Support

8.6.1 CA_update()

The POD Module shall use the CA_update() object to inform the Host when CA
information for the currently tuned program has changed. Here CA_PMT(query)
refers to a CA_PMT APDU with its ca_pmt_cmd_id parameter set to “query”. Note
that CA_UPDATE shall always reference the service to which the host is currently
tuned. This is the last service for which a CA_PMT() was sent from the Host to the
POD.

The different APDU tag prevents any confusion between CA_PMT_reply and
CA_update APDUs during CA_PMT (query)/CA_PMT_reply exchanges. CEA-679-
C Part B states that a CA_PMT (query) is sent by the Host to determine which
conditional access resource can decrypt the specified service when more than one

72

conditional access resource is present. The reader should note that some conditional
access implementations may send a CA_PMT (query) each time a service is tuned
and with only one POD installed in the Host. While this behavior may differ from
that defined in CEA-679-C Part B, it is done to determine if the currently tuned
service can be descrambled by the POD. The POD may respond with a
CA_PMT_reply specifying “descrambling possible” or “descrambling not possible”.
The Host would respond to a CA_PMT_reply (descrambling_possible) with a
CA_PMT (ok_descrambling) to the POD.

Table 8.6-C Conditional Access Support CA_update Object Syntax

Syntax # of
bits

Mnemonic

CA_update() {

 ca_update_tag

 Length_field()

 Program_number

 Reserved

 Version_number

 Current_next_indicator

 CA_enable_flag

 if (CA_enable_flag==1)

 CA_enable /* at program level */

 else if (CA_enable_flag==0)

 reserved

 for (i=0; I<N; i++) {

 reserved

 elementary_PID

 CA_enable_flag

 if (CA_enable_flag==1)

 CA_enable /*at elementary stream level*/

 else if (CA_enable_flag==0)

 reserved

 }

}

24

16

2

5

1

1

7

7

3

13

1

7

7

Uimsbf

Uimsbf

Bslbf

Uimsbf

Bslbf

Bslbf

Uimsbf

Bslbf

Bslbf

Uimsbf

Bslbf

Uimsbf

Bslbf

73

The syntax contains one possible ca_enable at program level and, for each elementary
stream, one possible ca_enable at elementary stream level.

When both are present, only ca_enable at ES level applies for that elementary stream

When none is present, the host does not interpret the ca_pmt_reply object.

The CA_enable field indicates whether the application is able to perform the
descrambling operation. CA_enable values are coded as follows:

Table 8.6-D CA Enable Field Values

CA_enable Value (hex)
Descrambling possible 01
Descrambling possible under conditions (purchase dialogue) 02
Descrambling possible under conditions (technical dialogue) 03
Descrambling not possible (because no entitlement) 71
Descrambling not possible (for technical reasons) 73
RFU other values other values 00-7F

The value "descrambling possible" means that the application can descramble with
no extra condition (e.g.: the user has a subscription) or that the user has authorized the
purchase of the elementary stream.

The value "descrambling possible under conditions (purchase dialogue)" means that
the application has to enter into a purchase dialogue with the user before being able to
descramble (pay per view program).

The value "descrambling possible under conditions (technical dialogue)" means that
the application has to enter into a technical dialogue with the user before being able to
descramble (e.g. : ask the user to select fewer elementary streams because the
descrambling capabilities are limited).

The value "descrambling not possible (because no entitlement)" means that the user
has no entitlement for the program or the user does not want to buy the program.

The value "descrambling not possible (for technical reasons)" means that the
application cannot descramble the elementary stream for technical reasons (e.g. : all
descrambling capabilities are already in use).

The protocol allows services to be selected for descrambling at either the program
level or the elementary stream level. Where the host cannot support descrambling of
different elementary streams by different modules, then it shall take as the CA_enable

74

value for the program the lowest of the CA_enable values returned for each
elementary stream of the program. This ensures that any stream will be descrambled
if it can be.

8.7 Copy Protection

A Copy Protection resource shall be required. The Copy Protection resource class for
the Host-POD Interface is defined in Table 8.1-A of this standard.

8.8 Host Control

The CEA-679-C Part B Host Control resource is modified to give the POD Module
the capability to set up the Host RF Receiver and the RF Transmitter, if any.
Additional modifications have been included to give the POD module the capability
to tune to the Host’s In-band Receiver. This version of the Host Control resource
includes both the OOB and inband tuning. While the OOB tuning is not used by the
Host, the inband tuning is used. It is anticipated that the Host will perform its internal
tuning operation without requiring to open a session to the Host Control resource.
Therefore, when it receives any inband tuning APDUs from the POD module, it must
decide whether to grant them or not. Typically, unless either a Homing resource has
been opened and either the Host is in standby state or the POD module has
transmitted a firmware_upgrade, the Host should not grant access to the inband tuner
to the POD module. Support of version 1 in CEA-679-C Part B is optional.

Table 8.8-A Host Control Resource

Resource Class Type Version Identifier (hex)
Host Control 32 1 3 00200043

The POD module will have the Host Control resource open for control of the OOB
receiver and transmitter and shall leave it open independent of the operation of the
Homing resource.

The creation of the specification application resource includes the following objects:

75

Table 8.8-B Host Control Objects

Apdu_tag Tag value
(hex)

Resource Direction
Host <-> POD

OOB_TX_tune_req() 9F8404 Host Control
OOB_TX_tune_cnf() 9F8405 Host Control
OOB_RX_tune_req() 9F8406 Host Control
OOB_RX_tune_cnf() 9F8407 Host Control
inband_tune_req() 9F8408 Host Control
inband_tune_cnf() 9F8409 Host Control

8.8.1 OOB_TX_tune_req() & OOB_TX_tune_cnf()

The POD Module shall use the OOB_TX_tune_req() object to set up the Host’s RF
Transmitter.

The Host shall respond with the OOB_TX_tune_cnf() object to the
OOB_TX_tune_req() request.

Table 8.8-C OOB TX Tune Request Object Syntax

Syntax # of bits Mnemonic

OOB_TX_tune_req() {

 OOB_TX_tune_req_tag

 Length_field()

 RF_TX_frequency_value

 RF_TX_power_level

 RF_TX_rate_value

}

24

16

8

8

Uimsbf

Uimsbf

Uimsbf

Uimsbf

.

76

Table 8.8-D RF TX Frequency Value

Bit 7 6 5 4 3 2 1 0

 Frequency (MS)

 Frequency (LS)

 RF_TX_frequency_value – This field defines the frequency of the RF Transmitter,
in kHz.

Table 8.8-E RF TX Power Level

Bit 7 6 5 4 3 2 1 0

 RF Power Level

RF_TX_power_level - Power level of the RF Transmitter, in units of 0.5dBmV. The
value 0x00 shall correspond to an output level of 0 dBmV.

Table 8.8-F RF TX Rate Value

Bit 7 6 5 4 3 2 1 0

 Rate Reserved

RF_TX_rate_value

• Rate – Bit rate. 00 = 256 kbps
 01 = 2048 kbps
 10 = 1544 kbps
 11 = 3088 kbps

Table 8.8-G OOB TX Tune Confirm Object Syntax

Syntax # of bits Mnemonic

OOB_TX_tune_cnf() {

 OOB_TX_tune_cnf_tag

 Length_field()

 Status_field

}

24

8

Uimsbf

Uimsbf

• Status_field – This field returns that status of the OOB_TX_tune_req(). If the
request was granted and the RF Transmitter set up to the desired configuration,
Status_field will be set to 0x00. . If the Host is a unidirectional Host, Status_field
shall be set to 0x01; the POD shall not attempt to perform RF transmit operations

77

after receiving an OOB_TX_tune_req() with Status_field set to 0x01. If any of
the parameters passed to the Host are outside of its capability, then the Host shall
transmit the OOB_TX_tune_req() with Status_field set to 0x03. Otherwise it
will be set to one of the following values:

Table 8.8-H Status Field Values for OOB TX Tune Confirm

Status_field Value (hex)

Tuning granted 00

Tuning Denied – RF Transmitter not physically available 01

Tuning Denied – RF Transmitter busy 02

Tuning Denied – Invalid Parameters 03

Tuning Denied – Other reasons 04

Reserved 05-FF

8.8.2 OOB_RX_tune_req() & OOB_RX_tune_cnf()

The POD Module shall use the OOB_RX_tune_req() object to set up the Host’s RF
Receiver.

The Host shall respond with the OOB_RX_tune_cnf() object to the
OOB_RX_tune_req() request.

The OOB_RX_tune_cnf APDU should only be transmitted after either the requested
frequency has been tuned and acquired (“tune time”), or 500msec has elapsed since
receiving the Request, whichever comes first.

Table 8.8-I OOB RX Tune Request Object Syntax

Syntax # of bits Mnemonic

OOB_RX_tune_req() {

 OOB_RX_tune_req_tag

 Length_field()

 RF_RX_frequency_value

 RF_RX_data_rate

}

24

16

8

Uimsbf

Uimsbf

Uimsbf

• RF_RX_frequency_value – This field defines the frequency of the RF Receiver,
in MHz. (Frequency = value * 0.05 + 50 MHz.)

78

Table 8.8-J RF RX Frequency Value

Bit 7 6 5 4 3 2 1 0

 0 0 0 0 0 Value (MS)

 Value (LS)

RF_RX_coding_value – This field defines the RF Receiver characteristics.

Table 8.8-K RF RX Data Rate

Bit 7-6 5 4 3 2 1 0

 Rate 0 0 0 0 0 Spec

• Rate – Bit rate = 2048 kbps when Rate = 00 or 01
 1544 kbps when Rate = 10
 3088 kbps when Rate = 11

• Spec – Spectrum is non-inverted when Spec=0 and inverted when Spec=1

Table 8.8-L OOB RX Tune Confirm Object Syntax

Syntax # of bits Mnemonic

OOB_RX_tune_cnf() {

 OOB_TX_tune_cnf_tag

 Length_field()

 Status_field

}

24

8

Uimsbf

Uimsbf

• Status_field – This field returns that status of the OOB_RX_tune_req(). If the
request was granted and the RF receiver set up to the desired configuration,
Status_field will be set to 0x00. Otherwise it will be set to one of the following
values:

79

Table 8.8-M Status Field Values for OOB RX Tune Confirm

Status_field Value (hex)

Tuning granted 00

Tuning Denied – RF Receiver not physically available 01

Tuning Denied – RF Receiver busy 02

Tuning Denied – Invalid Parameters 03

Tuning Denied – Other reasons 04

Reserved 05-FF

8.8.3 inband_tune_req() (Normative)

The inband_tune_req() APDU allows for the POD module to request the Host to tune
the inband QAM tuner. The APDU will allow support of tuning to either a source_id
or a frequency with the modulation type.

Table 8.8-N Inband Tune Request Object Syntax

Syntax # of bits Mnemonic

Inband_tune_req() {

 Inband_tune_tag

 length_field()

 tune_type

 if(tune_type == 0){

 source_id

 }

 else if (tune_type == 1) {

 tune_frequency_value

 modulation_value

 }

}

24

8

16

16

8

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

tune_type – Determines the definition of the tune_frequency_value.

80

Table 8.8-O Tune Type Values

Value (hex) Type
00 Source ID
01 Frequency

02-FF Reserved

source_id – When tune_type = 0, the source_id is a 16 bit unsigned integer in the
range of 0x0000 to 0xFFFF that identifies the programming source associated with
the virtual channel on a system wide basis. IN this context, a source is one specific
source of video, text, data, or audio programming. For the purposes of referencing
virtual channels to the program guide database, each such program source is
associated with a unique value of source_id. The source_id itself may appear in an
IPG database, where it tags entries to associate them with specific services. The
value zero for source_id, if used, shall indicate the channel is not associated with a
source_id.

tune_frequency_value – When tune type = 1, tune_frequency_value contains the
frequency for the Host to tune. The frequency is calculated by multiplying
tune_frequency_value by 0.05 MHz (50 KHz resolution).

Table 8.8-P Tune Value

Bit 7 6 5 4 3 2 1 0
MSB Value (MS)
LSB Value (LS)

modulation_value – When tune type = 1, modulation_value sets the type of
modulation for the inband tuner.

81

Table 8.8-Q Modulation Value

Value
(hex)

Type

00 QAM-64
01 QAM-256

02-FF Reserved

8.8.4 inband_tuning_cnf (Normative)

After the Host has received the inband_tuning, it will respond with the following
APDU.

Table 8.8-R Inband Tuning Confirm Object Syntax

Syntax # of bits Mnemonic

Inband_tuning_cnf() {

 inband_tuning_cnf_tag

 length_field()

 tune_status

}

24

8

uimsbf

uimsbf

tune_status – The Host response to the inband_tuning APDU.

82

Table 8.8-S Tune Status Values

Value
(hex)

Source Comment

00 Tuning accepted Frequency, modulation type accepted
01 Invalid frequency Host does not support this frequency.
02 Invalid modulation Host does not support this modulation type.
03 Hardware failure Host has hardware failure.
04 Tuner busy Host is not relinquishing control of the tuner.
05-FF Reserved

8.9 Extended Channel Support

For purposes of the Extended Channel, the device (POD Module or Host) that
provides the physical communications link to the headend is referred to as the “link
device.” The POD Module is the link device for the QPSK modem; the Host is the
link device for the High Speed Host Modem.

The Extended Channel Support resource shall be created to register the interactive
applications that expect to send and receive data to and from the Extended Channel.

All Hosts are required to provide the hardware necessary to support a QPSK
downstream out-of-band channel for the POD. The POD shall forward data received
on this channel to the Host as appropriate through one or more data flows requested
by the Host. In some cases, the POD will terminate data received on the QPSK
downstream OOB channel by using it itself (for example EMMs). In other cases, it
may perform a filtering function and discard data known to be of no interest to the
Host.

Supported system architectures imply two different ways of using the Extended
Channel Support resource.

• The application is in the Host and the data are transferred to/from the headend
via the QPSK modem.

• The application is in the POD Module and the data are transferred to/from the
headend via the Host’s High Speed Host Modem.

This resource has two versions. Version 1 of this resource is required for Hosts that
do not have an embedded High Speed Host (DOCSIS) Modem and version 2 of this
resource is required for Hosts that do have an embedded High Speed Host (DOCSIS)
Modem. Version 2 of this resource includes support for all of the objects defined by
version 1.

83

Table 8.9-A Extended Channel Resource

Resource Class Type Version Identifier (hex)

Extended_Channel 160 1 1 00A00041

Extended_Channel 160 1 2 00A00042

This creation includes the following objects:

Table 8.9-B Extended Channel Objects

Direction
Host POD

Apdu_tag

Tag
value
(hex)

Resource (Version)

Host
Modem

POD
Modem

new_flow_req() 9F8E00 Extended Channel Support (1)

new_flow_cnf() 9F8E01 Extended Channel Support (1)

delete_flow_req() 9F8E02 Extended Channel Support (1)

delete_flow_cnf() 9F8E03 Extended Channel Support (1)

Lost_flow_ind() 9F8E04 Extended Channel Support (1)

Lost_flow_cnf() 9F8E05 Extended Channel Support (1)

inquire_DSG_mode() 9F8E06 Extended Channel Support (2)

Set_DSG_mode() 9F8E07 Extended Channel Support (2)

DSG_packet_error() 9F8E08 Extended Channel Support (2)

8.9.1 New_flow_req() & New_flow_cnf()

The application shall use the new_flow_req() object to register a new flow with the
link device.

The link device shall return a new_flow_cnf() object in response to the
new_flow_req() request.

84

Table 8.9-C New Flow Request Object Syntax

Syntax # of bits Mnemonic

new_flow_req() {

new_flow_req_tag 24 uimsbf

length_field()

service_type 8 uimsbf

if (service_type == mpeg_section) {

 Reserved 3 bslbf

 Pid 13 uimsbf

}

if (service_type == ip_u) {

 mac_address 48 uimsbf

 option_field_length 8 uimsbf

 for (i=0; i<option_field_length; i++) {

 option_byte 8 uimsbf

 }

}

if (service_type == ip_m) {

 Reserved 4 bslbf

 multicast_group_id 28 uimsbf

}

}

Service_type – This field defines the type of the requested service.

85

Table 8.9-D Service Type Values for New Flow Request

Service_type Value

MPEG_section 0x00

IP_U – IP Unicast 0x01

IP_M – IP Multicast 0x02

DSG 0x03

Reserved 0x04-FF

MPEG_section – This Service_type is applicable only for flows between between
POD module and the Host. The requested flow shall be in the form of MPEG-2 table
sections (both long and short form). This type of flow is uni-directional, from the
POD module to the Host only. It should be noted that the data may originate from
either the QPSK modem or via the DSG interface. The value of the section_length
field in these sections shall not exceed 4093 bytes.

When the table section is in long form (as indicated by the section_syntax_indicator
flag set to ‘1’), a 32-bit CRC is present. The 32-bit CRC is present. The 32-bit CRC
is also present in short-form sections (as ijndicated by the section_syntax indicator
flag set to ‘0’) carried in the SI_base_PID (0x1FFC). For these table sections in
which an MPEG-2 CRC is known to be preset, the POD module shall verify the
integrity of the table section using the 32-bit CRC at the table section level, or a 32-
bit CRC at another protocol layer. Only messages that pass the CRC check shall be
forwarded to the Host. The POD module shall discard table sections that are
incomplete or fail the CRC check.

The 32-bit CRC may or may not be present in short-form sections associated with
PID values other than the SI_base_PID (0x1FFC) and the POD module may send
these sections to the Host without any checks. In this case, the Host is responsible for
validation of these sections.

IP_U – IP Unicast. This service type shall be used both for flows between
the POD Module and an embedded cable modem in the Host (DSG mode),
and between the Host and an SCTE 55 modem in the POD module (SCTE
55 mode). The requested flow shall be in the form of IP packets addressed
to or from the POD Module's IP address when in DSG mode, and the
Host's IP address when in SCTE 55 mode. This type of flow may be bi-
directional. The maximum length of any IP packet in SCTE 55 mode shall be 1500
bytes. With respect to DSG mode, the requested flow from the POD Module to the
Host shall be in the form of IP packets addressed to the applicable destination IP
address as determined by the POD Module. The requested flow from the Host to the
POD Module in DSG mode shall be in the form of IP packets addressed to the IP
address of the POD Module. The maximum total length of any IP packet in DSG

86

mode shall be the DOCSIS maximum transmission unit (MTU) which is 1500 bytes.
This MTU is relayed to the POD Module via the new_flow_conf() APDU.

IP_M – IP Multicast. This Service_type is shall be used both for flows between the
POD module and a modem in the Host and for the Host and a modem in the POD
module. The requested flow shall be in the form of multicast IP packets addressed to
the multicast_group_ID assigned IP address. This type of flow is uni-directional,
from network to application only. The maximum total length of any IP packet shall
be 1500 bytes.

DSG – DSG extended channel interface. This data may only be transmitted from the
Host to the POD module and only one flow may be open at a time. The format is
defined in section 5.4 If the Host does not support DSG, then it shall return the
“Request Denied – Service Type Unavailable” error code (0x02) in the
new_flow_cnf() response.

PID – The 13-bit MPEG-2 Packet Identifier associated with the flow request. The
POD shall be responsible for filtering the OOB MPEG-2 Transport Stream and
delivering only MPEG table sections delivered on transport packets with the given
value of PID.

multicast_group_ID – The 28-bit Multicast Group ID associated with the flow
request. The modem function shall be responsible for filtering arriving multicast IP
packets and delivering only packets matching the given IP_multicast_group_ID
address.

MAC_address – The 48-bit MAC address of the entity requesting the unicast IP
flow.

option_field_length – An 8-bit unsigned integer number that represents the number
of bytes of option field data to follow.

option_byte – These bytes correspond to the options field of a DHCP message. One
or more DHCP options per RFC 2132 may be included. The “end option” (code 255)
shall not be used, so that the entity granting the IP flow request may append zero or
more additional option fields before delivering the request to the server.

Conformance to this specification requires the Host and the POD Module to comply
with the following requirements:

• The POD Module Interface shall support at least six concurrent
MPEG_section Service_type flows.

• The POD Module Interface shall support at least one IP_U Service_type flow.

• If the Service Information Virtual Channel Table indicates that one or more
services are defined as being transport out-of-band, the POD module shall
provide one or more additional flows of the MPEG_section type.

87

• If the Host supports DSG, it shall support one DSG Service_type flow

• When the Host support a unicast IP flow, it shall use DHCP per RFC 2131 to
obtain an IP address for POD module use. The Host shall provide the options
parameters supplied by the POD module in the New_flow_req() to build the
DHCP message, and add any other options as necessary or desired.

• The POD Module and Host are required to support only one outstanding
New_flow_req() transaction at a time. The POD Module or Host shall send a
New_flow_cnf() with a Status_field of 0x04 (Network Busy) when addtional
New_flow_req() messages are received and one is pending.

Table 8.9-E New Flow Confirm Object Syntax

Syntax # of bits Mnemonic

new_flow_cnf() {

 new_flow_cnf_tag 24 uimsbf

 length_field()

 status_field 8 uimsbf

 flows_remaining 8 uimsbf

 if (status_field == 0) {

 flow_id 24 uimsbf

 service_type 8 uimsbf

 if (service_type == ip_u) {

 ip_address 32 uimsbf

 flow type 8 uimsbf

 flags 3 uimsbf

 max_pdu_size 13 uimsbf

 option_field_length 8 uimsbf

 For (i=1; i<option_field_length; i++){

 option_byte 8 uimsbf

 }

 }

 }

}

88

Status_field – This field returns the status of the New_flow_req(). If the request was
granted and a new flow created, the Status_field will be set to 0x00. Otherwise it will
be set to one of the following values:

Table 8.9-F Status Field Values for New Flow Confirm

Status_field Value

Request Granted 0x00

Request Denied – Number of flows exceeded 0x01

Request Denied – Service_type not available 0x02

Request Denied – Network unavailable or not
responding

0x03

Request Denied – Network Busy 0x04

Reserved 0x05-FF

flows_remaining – Indicates the number of additional flows of the same
Service_type that can be supported. The value 0 indicates that no additional flows
beyond the one currently requested can be supported.

FLOW_ID – The unique flow identifier for this application’s data flow. The
FLOW_ID value of zero is reserved and is not to be assigned.

Service_type – This field reflects the type of the requested service.

IP_Address – This field is the 32-bit IP address associated with the requested flow.

flow_type - an 8-bit unsigned integer number that represent(s) the protocols
supported by the POD to establish the IP-U flow. The field has the following values:

 0x00 UDP and TCP supported

 0x01 UDP unly supported

 0x02-0xFF reserved

flags - a 3-bit field that contains information as defined in the following table
pertaining to limitations associated with the interactive network.

89

Table 8.9-G Flag field definitions

BITS

2 1 0

Reserved no_frag

no_frag - a 1 bit Boolean that designates whether the network supports fragmentation.
A value of 02 indicates that fragmentation is supported. A value of 12 indicates that
fragmentation is not supported.

max_pdu_size - a 13 bit unsigned integer that designates the maximum PDU length
that may be transmitted across the interface.

option_field_length - an 8 bit unsigned integer number that represents the number of
bytes of option field data to follow.

option_byte - these bytes correspond to the options requested in the new_flow_req()
message. The format of the field is as defined in RFC 2132. The end option (code
255) shall not be used.

8.9.1.1 new_flow_req IP Unicast DSG Mode Details

When the Host is configured for DSG mode, then the Host and POD Module shall
interact as defined within this section:

• If the POD Module requires two-way communications in DSG mode, then the
POD Module shall request a new IP Unicast flow using the new_flow_request()
APDU

• When requesting the new flow, the POD Module shall at a minimum supply the
Vendor Specific Options defined in Table 8.9-x and provide the MAC address of
the POD Module in the MAC_address field.

• If the Host grants the request for the IP flow, then the Host shall acquire an IP
address for the POD MODULE and forward this information to the POD Module
in the IP_address field of the new_flow_cnf() APDU, the maximum transmission
unit (MTU) for the DOCSIS network (1500 bytes for IP datagrams) in the
max_pdu_size field and any requested options via the option_byte field.

• The Host shall acquire a unique IP address for the POD Module utilizing DHCP
as defined in RFC-2131.

• The Host shall be responsible for resolving POD Module IP address conflicts as
defined in RFC-2131.

90

• All Host DHCP transactions associated with acquiring the POD Module and IP
address shall be over the embedded cable modem interface and shall not
propagate to any other interface on the Host.

• The Host shall not use Network Address Translation (NAT) to provide an IP
address for the POD Module.

• On receipt of an IP packet from the POD Module over the interface via the IP
Unicast Flow, the Host shall acquire the appropriate destination MAC address,
encapsulate the IP packet received over the interface within Ethernet frames
utilizing the acquired destination MAC address.

• On receipt of an Ethernet frame from the embedded cable modem interface
targeted to the MAC address of the POD Module, the Host shall extract the
embedded IP packet and forward the packet to the POD Module via the granted
Unicast IP Flow

• The Host shall not forward any Ethernet frames or IP packets destined to the POD
Module to any interface other than the CHI.

• The Host shall only forward IP packets destined to the POD Module that have
been received via the embedded cable modem interface or via applications
resident on the Host.

• The Host shall not forward any IP packets received from the POD Module over
the CHI to any interface other than the eCM interface.

• The POD Module shall implement the DHCP Vendor Specific Information
Option (option 43) and Vendor Class Identifier Option (option 60) as specified in
Tables 8.9-x and 8.9-y.

91

Table 8.9-H POD Module DHCP Vendor Specific Information (Option 43) Sub-
option Encoding

Sub-option Value Description
1 “<null>” The request sub-option vector is a list of sub-

options (within option 43) to be returned to
client by the server upon reply to the request.
None defined.

2 “CARD” Device type of the entity making the DHCP
request.

3 “ECM:ESTB:CARD” Indicates that a POD Module is making a
request via the eCM’s DOCSIS return
channel

4

“<device serial number>”

Serial Number of POD Module. If Serial
Number is not available, then other unique
identifier (other than MAC Address) may be
utilized

5 “<hardware version number>“ Hardware version number of POD Module
6 “<firmware version number>“ Firmware version number of POD Module
7 “<boot ROM version number>“ Boot ROM version number of POD Module
8

e.g. “0204DF”

A 6-octet, hexadecimal-encoded, vendor-
specific Organization Unique Identifier (OUI)
that may match the OUI in the embedded
cable modem’s MAC address.

9 e.g. “XYZ-CARD-001” Vendor model number of POD Module
51 e.g. “XYZ Corporation” Vendor name
52 “yyyyyy” POD Module capability using the encoding

format per DOCSIS specification. Since there
is no standard/required capability
identification, Conditional Access vendor
must provide documentation on the supported
capability.

53 e.g. “000-01234-56789-000”
(example is unit address of
Motorola POD Module)

Conditional Access Vendor specific device
identification

54 e.g., “00AA11BB22CC33DD” 64 bit Card_ID as specified in POD Module
X.509 certificate

92

Table 8.9-I POD Module DHCP Vendor Class Indentifier (Option 60) Encoding

Option Value Description
60 “OpenCable 2.0” OpenCable Version

8.9.2 Delete_flow_req() & Delete_flow_cnf()

The interactive application shall use the Delete_flow_req() object to delete a
registered data flow.

The link device shall respond with the Delete_flow_cnf() object to the
Delete_flow_req() request.

Table 8.9-J Delete Flow Request Object Syntax

Syntax # of bits Mnemonic

Delete_flow_req() {

 Delete_flow_req_tag

 Length_field()

 FLOW_ID

}

24

24

Uimsbf

Uimsbf

Table 8.9-K Delete Flow Confirm Object Syntax

Syntax # of bits Mnemonic

Delete_flow_cnf() {

 Delete_flow_cnf_tag

 Length_field()

 FLOW_ID

 Status_field

}

24

24

8

Uimsbf

Uimsbf

Uimsbf

• Status_field – This field returns the status of the Delete_flow_req(). If the request
was granted and the flow deleted, the Status_field will be set to 0x00. Otherwise it
will be set to one of the following values:

93

Table 8.9-L Status Field for Delete Flow

Status_field Value (hex)

Request Granted 0x00

Reserved 0x01-0x02

Request Denied – Network unavailable or not responding 0x03

Request Denied – Network busy 0x04

Request Denied – FLOW_ID does not exist 0x05

Request Denied – Not authorized 0x06

Reserved 0x07-0xFF

8.9.3 Lost_flow_ind() & Lost_flow_cnf()

A link device shall indicate that a registered data flow has been lost by issuing the
Lost_flow_ind() object.

The application shall respond with the Lost_flow_cnf() object in response to the
Lost_flow_ind() object.

Table 8.9-M Lost Flow Indication Object Syntax

Syntax # of bits Mnemonic

Lost_flow_ind() {

 Lost_flow_ind_tag

 Length_field()

 FLOW_ID

 Reason_field

}

24

24

8

Uimsbf

Uimsbf

Uimsbf

• Reason_field – This field returns the reason the flow was lost. It will be set to one
of the following values:

94

Table 8.9-N Reason Field Values for Lost Flow Indication

Reason_field Value
(hex)

Unknown or unspecified reason 0x00

IP address expiration 0x01

Network down or busy 0x02

Lost or revoked authorization 0x03

Reserved 0x04-0xFF

Table 8.9-O Lost Flow Confirm Object Syntax

Syntax # of bits Mnemonic

Lost_flow_cnf() {

 Lost_flow_cnf_tag

 Length_field()

 FLOW_ID

 Status_field

}

24

24

8

Uimsbf

Uimsbf

Uimsbf

Status_field – This field returns the status of the Lost_flow_ind(). If the indication
was acknowledged, the Status_field will be set to 0x00. Otherwise it will be set to
one of the following values:

Table 8.9-P Status Field Values for Lost Flow Confirm

Status_field Value (hex)

Indication Acknowledged 0x00

Reserved 0x01-0xFF

8.9.4 inquire_DSG_mode(), set_DSG_mode(), & DSG_packet_error()

Version 2 of the Extended Channel Support Resource adds the following three
messages:

• inquire_DSG_mode () - The Host can inquire of the POD the preferred
operational mode for the network, either OOB mode or DSG mode.

• set_DSG_mode () - The POD can inform the Host of the preferred
operational mode for the network, either OOB mode or DSG mode.

95

• DSG_packet_error () - The POD can inform the Host of errors that occur in
receiving DSG packets.

The Host shall use the inquire_DSG_mode () object to inquire the preferred
operational mode for the network.

Table 8.9-Q Inquire DSG Mode Object Syntax

Syntax # of bits Mnemonic

inquire_dsg_mode () {

inquire_dsg_mode_tag 24 uimsbf

length_field()

}

The POD shall use the set_DSG_mode () object to inform the Host of the preferred
operational mode for the network. This message is sent in response to the
inquire_DSG_mode () message or it may be sent as an unsolicited message to the
Host. The method by which the POD determines the preferred operational mode is
proprietary to the CA/POD system vendor.

96

Table 8.9-R Set DSG Mode Object Syntax

Syntax # of bits Mnemonic

set_dsg_mode () {

set_dsg_mode_tag 24 uimsbf

length_field()

operational_mode 8 uimsbf

if (operation_mode==dsg_mode or
operation_mode==dsg_one-way_mode) {

number_mac_addresses 8 uimsbf

for (i=0; i< number_mac_addresses; i++) {

dsg_mac_address 48 uimsbf

}

remove_header_bytes 16 uimsbf

}

}

Operational_Mode – This field defines the preferred operational mode of the
network.

Operational_mode Value

OOB_mode 0x00

DSG_mode 0x01

DSG_One-Way_mode 0x02

Reserved 0x03-FF

OOB_mode - In this mode, the reverse transmitter is under the control of the POD
module through the use the OOB_TX_tune_req () message. The Host must respond
to these messages by tuning the reverse transmitter to the requested frequency and
coding value (bit-rate and power level). The POD module uses the OOB-RDC for
returning data to the cable headend.

DSG_mode - In this mode, the reverse transmitter is under the control of the Host for
DOCSIS functionality. If the POD attempts to command the reverse transmitter with
the OOB_TX_tune_req() message while the Host is operating in the DSG mode the
Host will deny the tune request with a Tuning Denied – RF Transmitter busy status.

97

DSG_One-Way_mode - In this mode, the reverse transmitter must be disabled for
both the OOB channel and the DOCSIS return channel. This mode could be used in
one-way cable systems and for network diagnosis in two-way cable systems.

A default operational mode must be utilized when the Host and/or POD is unable to
obtain the preferred operational mode. There are two potential default conditions that
must be addressed. In particular:

a. Either the Host or the POD may not support the Inquire_DSG_mode () and
Set_DSG_mode () messages.

b. The POD may not have acquired the preferred operational mode from the
network due to possible network errors.

To insure backward compatibility in case (a) above, an Advanced Host will initialize
in the default operational mode of OOB_mode. In case (b), the POD Module shall
instruct the Host that the preferred operational mode of OOB_mode.

If the operational mode is either DSG_mode or One-Way_Mode, the POD Module
may provide up to eight Ethernet MAC addresses and the number of header bytes to
be removed from the DSG tunnel packets. In DSG or one-way mode, the Host must
filter IP packets whose Ethernet destination address match any of the
DSG_MAC_Adddresses specified, remove the specified number of header bytes from
these packets, and generate a serialized bit-stream across the DRX pin.

Number_MAC_Addresses – The number of DSG MAC Addresses allocated by the
CA/POD provider to carry DSG tunnels. A maximum of eight DSG tunnels per
CA/POD provider are allowed.

DSG_MAC_Address– The Ethernet MAC addresses allocated by the CA/POD
provider to carry the number of DSG tunnels specified by Number_MAC_Addresses.

Remove_Header_Bytes – The number of bytes to be removed from the DSG tunnel
packets before generating a serial bit-stream. A value of zero implies that no header
bytes be removed.

98

Table 8.9-S DSG packet_error Object Syntax

Syntax # of bits Mnemonic

DSG_packet_error () {

DSG_packet_error_tag 24 uimsbf

length_field()

error_status 8 uimsbf

}

DSG_packet_error () - The POD can inform the Host of errors that occur in
receiving DSG packets. The Error_status indicates the type of error that occurred.

Error_status Value

Byte_count_error 0x00

Reserved 0x01-FF

Byte_count_error – The POD did not receive the same number of bytes in the DSG
packet as was signaled by the Host.

8.10 Generic IPPV Support

NOTE--The Generic IPPV Support resource is being deprecated, though it may still
be in use; the preferred approach for supporting IPPV is to use the appropriate OCAP
application.

The Generic IPPV Support resource provides Conditional Access information (in the
POD Module) to the navigation application (in the Host). This allows subscriber
access to Pay Per View functions such as purchase, cancellation and history review.
The desired result is better subscriber recognition and increased IPPV usage.

If reported by the Host as an available resource and the POD module implements a
Generic IPPV application, the POD module application shall create a session to the
Generic IPPV resource to allow the Host to receive information on and purchase
IPPV events.

ISO-8859-1 shall be used for the coding of text.

99

Table 8.10-A Generic IPPV Support Resources

Resource Class Type Version Identifier (hex)

Generic IPPV Support 128 2 1 00800081

This creation includes the following objects:

Table 8.10-B Generic IPPV Support Objects

Apdu_tag Tag value
(hex)

Resource Direction
Host <-> POD

Program_req() 9F8F00 Generic IPPV Support

Program_cnf() 9F8F01 Generic IPPV Support

Purchase_req() 9F8F02 Generic IPPV Support

Purchase_cnf() 9F8F03 Generic IPPV Support

Cancel_req() 9F8F04 Generic IPPV Support

Cancel_cnf() 9F8F05 Generic IPPV Support

History_req() 9F8F06 Generic IPPV Support

History_cnf() 9F8F07 Generic IPPV Support

8.10.1 Program_req() & Program_cnf()

The Host’s navigation application shall use the Program_req() object to request the
POD Module’s CA information on a particular program.

The POD Module shall respond with the Program_cnf() object to the Program_req()
request.

100

Table 8.10-C Program Request Object Syntax

Syntax # of bits Mnemonic

program_req() {

 program_req_tag

 length_field()

 transaction_id

 transport_stream_id

 program_number

 source id

 event_id

 current_next indicator

 reserved

 current_next

 program_info_length

 for (i=0; i < program_info_length; i++) {

 ca_descriptor()

 /* ca descriptor at program level*/

 }

}

24

8

16

16

16

16

8

7

1

8

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

transaction_id – This field is a unique number generated by the Host to uniquely
identify this transaction. The associated Program_cnf() message will include this
Transaction_ID value. Hosts shall maintain a Transaction_ID counter and increment
it by 1 (mod 256) for each new transaction.

transport_stream_id - A 16-bit unsigned integer field, in the range 0x0000 to
0xFFFF, that represents the MPEG-2 Transport Stream ID associated with the
program being requested.

program_number - A 16-bit unsigned integer number indicating the program that is
being requested.

source_id – A 16-bit unsigned integer number indicating the source_id of the
program that is being requested. (This text should be inserted after the
program_number field description.)

event_id – A 16-bit unsigned integer number specifying the event requested on the
specified program_number. If the Event_ID is unknown, this field shall be set to all
0s.

101

current_next– Used to specify the current or next event on the specified
program_number. Only relevant when Event_ID is set to 0. When not set, indicates
that the current event is being requested. When set, indicates that the next event is
requested.

program_info_length, CA descriptor – These fields shall be used by the Host to
provide the POD Module with every program level CA descriptor of this MPEG
program. The CA descriptor shall be, extracted from the PMT table by the Host
navigation application.

102

Table 8.10-D Program Confirm Object Syntax

Syntax # of bits Mnemonic

Program_cnf() {

 Program_cnf_tag

 Length_field()

 Transaction_ID

 Status_field

 If (Status_field == 0) {

 Option_nb

 For (Option_ID=1; I <= Option_nb;

 Option_ID++) {

 Purchase_type

 Purchase_price

 Purchase_validation

 Expiration_date

 Program_start_time

 Initial_Free_preview_duration

 Anytime_free_preview_duration

 Title_length

 for (J=0; J < Title_length; J++) {

 Title_txt

 }

 Text_length

 for (J=0; J < Text_length; J++) {

 Text_txt

 }

 Descriptor_length

 for (K=0; K < Desc_length; K++) {

 Descriptor()

 }

 }

 }

}

24

8

8

8

8

16

8

32

32

16

16

8

8

8

8

16

var

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

103

Status_field – This field returns the status of the Program_req(). If the POD Module
can provide the requested information on the pointed event then Status_field shall be
set to 0x00. Otherwise it will be set to one of the following values.

Table 8.10-E Status Field Values for Program Confirm

Status_field Value (hex)
Request Granted 00
Request Denied – POD module busy 01
Request Denied – Unknown Event 02
Reserved 03-FF

• Option_nb – This field defines the number of options under which a particular
event can be purchased

• Purchase_type – This field characterizes how the event may be purchased

Table 8.10-F Purchase Type Values for Program Confirm

Purchase_type Value (hex)
Viewing Only 00
Viewing and Right to Copy Once 01
Viewing and Right to Copy Unlimited 02

Subscription 03
Purchased for Viewing Only 04
Purchased with Viewing and Right to Copy Once 05
Purchased with Viewing and Right to Copy Unlimited 06
Un-purchasable 07
Reserved 08-FF

Viewing only - This program may be purchased for viewing only, without the right to
make any copies, as defined by the operator.
NOTE: Through private agreements between a cable operator and content providers,
the cable operator determines the pricing and right to copy options appropriate for his
market.

Viewing and Right to Tape Copy Once - This program may be purchased for viewing
and with the right to copy the analog video output and make one copy as defined by
the operator.

Viewing and Right to Copy Unlimited - This program may be purchased for viewing
and with the right to make unlimited copies as defined by the operator.

104

Subscription - This program is a subscription event, and is not purchasable as an
IPPV event.

Purchased for Viewing Only -This program has already been purchased with viewing
rights only, and without the right to make any copies as defined by the operator.

Purchased with Viewing and Right to Tape Copy Once -This program has already
been purchased for viewing with the right to tape and right to make one copy as
defined by the operator.

Purchased with Viewing and Right to Copy Unlimited – This program has already
been purchased for viewing with the right to make unlimited copies as defined by the
operator.

Un-purchasable - This is not a purchasable program.

Reserved – These values are currently undefined, but are reserved for future IPPV
purchase options, including digital copyrights. These values may be expanded as they
are defined.

Purchase_price – This 2-byte field provides event pricing information. The event
price is given by the Denomination unit multiplied by the Value. For example, if the
Denomination unit is 5 cents, and the Value is 79, the price would be $3.95.

Table 8.10-G Purchase Price for Program Confirm

Bit 7 6 5 4 3 2 1 0
 Denomination unit in cents (MS)
 Value (LS)

Purchase_validation – This parameter defines the level of validation the POD
Module expects to validate the purchase.

105

Table 8.10-H Purchase Validation Value for Program Confirm

Purchase_validation Value (hex)
No CA validation required 00
PIN Code required for Purchase transaction 01
PIN Code required for Cancel transaction 02
PIN Code required for History transaction 03
PIN Code required for Purchase and Cancel transactions 04
PIN Code required for Purchase and History transactions 05
PIN Code required for Purchase, Cancel, History transactions 06
Reserved 07-FF

• Expiration_date – This field contains the expiration time of the event. It is a 32-
bit unsigned integer quantity representing the expiration time as the number of
seconds since 12 am, January 6th 1980.

• Program_start_time: A 32 bit unsigned integer, defining the start time of the
program, in GPS seconds since 12 AM January 6th, 1980.

• Initial_free_preview_duration: A 16-bit unsigned integer, defining the duration
of the free preview period. The duration is measured from the
program_start_time.

• Anytime_free_preview duration: A 16-bit unsigned integer, defining the duration
of the Anytime_free_preview.

• Title_length, Title_txt – These fields allow the POD Module to provide a
purchase option title.

• Text_length, Text_txt – These fields allow the POD Module to provide a
purchase option text.

• Desc_length – A 16-bit unsigned integer that indicates the length of the block of
optional descriptors to follow. If no descriptors are present, the length shall
indicate zero.

• Descriptor() – A data structure of the form type-length-data, where type is an 8-
bit descriptor type identifier, length is an 8-bit field indicating the number of bytes
to follow in the descriptor, and data is arbitrary data. The syntax and semantics
of the data are as defined for the particular type of descriptor. The
content_advisory_descriptor() (as defined in section 6.7.4 of ATSC A/65) may
be used to indicate the rating of the program. The program rating shall be coded
according to the MPAA and V-Chip Rating and Content Advisories to be used for
parental restrictions on program purchases.

106

8.10.2 Purchase_req() & Purchase_cnf()

The Host’s navigation application shall use the Purchase_req() object to request a
purchase of a particular program offer.

The POD Module shall respond with the Purchase_cnf() object to the
Purchase_req() request.

Table 8.10-I Purchase Request Object Syntax

Syntax # of bits Mnemonic
Purchase_req() {
Purchase_req_tag
Length_field()
Transaction_ID
Option_ID
PINcode_length
For (I=0; I<=PINcode_length; I++) {
PINcode_byte
}
}

24

8
8
8

8

Uimsbf

Uimsbf
Uimsbf
Uimsbf

Uimsbf

• PINcode_length, PINcode_byte – These fields allow the Host navigation
application to pass the requested PIN code to the POD Module. In case no PIN
code was requested, the PINcode_length is set to ‘0’.

107

Table 8.10-J Purchase Confirm Object Syntax

Syntax # of bits Mnemonic

Purchase_cnf() {

 Purchase_cnf_tag

 Length_field()

 Transaction_ID

 Option_ID

 Status_field

 IPPVslot_ID

 Status_register

 Comment_length

 For (I=0; I<= Comment_length; I++) {

 Comment_txt

 }

}

24

8

8

8

8

8

8

8

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

• Status_field – This field returns the status of the Purchase_req(). If the POD has
validated the purchase, then Status_field shall be set to 0x00. Otherwise it will be
set to one of the following values. When there are more than one reason to deny
the purchase, Status_field is set to the lowest applicable value.

Table 8.10-K Status Field Values for Purchase Confirm

Status_field Value (hex)
Purchase Granted 00
Purchase Denied – POD Module busy 01
Purchase Denied – Unknown Transaction_ID or Option_ID 02
Purchase Denied – Invalid PIN code 03
Purchase Denied – Event already purchased 04
Purchase Denied – Blackout is active 05
Purchase Denied - Credit limit is exceeded 06
Purchase Denied - IPPV slot limit is exceeded 07
Purchase Denied – Spending limit is exceeded 08
Purchase Denied – Rating limit is exceeded 09
Purchase Denied – Check Comments 0A

108

Reserved 0B-FF

• Purchase Denied: IPPV_slot_limit is exceeded: The POD is unable to make
additional IPPV purchases until it has reported all of its unreported purchases to
the headend.

• IPPVslot_ID - If Status_field is 0x00 (Purchase Granted) then IPPVslot_ID will
contain the unique slot identifier that will later identify the purchasing transaction.
If Status_field is any other value, IPPVslot_ID is reset to 0.

• Comment_length, Comment_txt – These fields allow the POD Module to
explain, using plain text, why the purchase request has been granted or denied.

• Status_register - This field identifies the CA status of the program event. The
designation of each bit is summarized in the following table.

Table 8.10-L Status Register for Purchase Confirm

Bit 7 6 5 4 3 2 1 0
 VPU OPU UPU AUT FRE REP CAN VIE

• VPU is set to 1 when the program event has been purchased for viewing once.

• OPU is set to 1 when the program event has been purchased for taping once.

• UPU is set to 1 when the program event has been purchased for unlimited
taping.

• AUT is set to 1 when the program event has been authorized.

• FRE is set to 1 when the free preview (initial or anytime) of the program event
has been viewed.

• REP is set to 1 when the program event has been reported.

• CAN is set to 1 when the program event has been cancelled.

• VIE is set to 1 when the program event has been viewed.

8.10.3 Cancel_req() & Cancel_cnf()

The Host’s navigation application shall use the Cancel_req() object to request a
Cancellation of a particular purchased program offer.

The POD shall respond with the Cancel_cnf() object to the Cancel_req() request.

109

Table 8.10-M Cancel Request Object Syntax

Syntax # of bits Mnemonic

Cancel_req() {

 Cancel_req_tag

 Length_field()

 IPPVslot_ID

 PINcode_length

 For (I=0; I<=PINcode_length; I++) {

 PINcode_byte

 }

}

24

8

8

8

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Table 8.10-N Cancel Confirm Object Syntax

Syntax # of bits Mnemonic

Cancel_cnf() {

 Cancel_cnf_tag

 Length_field()

 IPPVslot_ID

 Status_field

 Status_register

 Comment_length

 For (I=0; I<= Comment_length; I++) {

 Comment_txt

 }

}

24

8

8

8

8

8

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

Uimsbf

• Status_field – This field returns the status of the Cancel_req(). If the POD has
validated the cancellation, then Status_field shall be set to 0x00. Otherwise it will
be set to one of the following values. When there are more than one reason to
deny the cancellation, Status_field is set to the lowest applicable value.

110

Table 8.10-O Status Field Values for Cancel Confirm

Status_field Value (hex)

Cancellation Granted 00

Cancellation Denied – POD Module is busy 01

Cancellation Denied – Unknown IPPVslot_ID 02

Cancellation Denied – Invalid PIN code 03

Cancellation Denied – Program already viewed or in progress 04

Reserved 05-09

Cancellation Denied - Check Comments 0A

Reserved 0B-FF

8.10.4 History_req() & History_cnf()

The Host’s navigation application shall use the History_req() object to request the
history of all purchased and cancelled program events held in POD memory.

The POD shall respond with the History_cnf() object to the History_req() request.

Table 8.10-P History Request Object Syntax

Syntax # of bits Mnemonic

History_req() {

 History_req_tag

 Length_field()

 PINcode_length

 For (I=0; I<=PINcode_length; I++) {

 PINcode_byte

 }

}

24

8

8

Uimsbf

Uimsbf

Uimsbf

Uimsbf

• PINcode_length, PINcode_byte – These fields allow the Host navigation application
to pass the requested PIN code to get IPPV history on events that required a PIN
Code validation for History. In case no PIN code or a wrong PIN code is supplied,
only history on events that do not require PIN Code validation for History will be
provided.

111

Table 8.10-Q History Confirm Object Syntax

Syntax # of bits Mnemonic

history_cnf() {

history_cnf_tag

length_field()

status_field

comment_length

for (i=0; i<= comment_length; i++) {

comment_txt

}

ippvslot_nb

for (i=0; i<= ippvslot_nb; i++) {

ippvslot_id

purchase_type

purchase_price

status_register

purchase_date

cancel_date

event_date

title_length

for (j=0; j < title_length; j++) {

title_txt

}

text_length

for (j=0; j < text_length; j++) {

text_txt

}

 descriptor_length

 for (k=0; k < desc_length; k++) {

 descriptor()

 }

}

}

24

8

8

8

8

8

8

16

8

32

32

32

8

8

8

8

16

var

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

112

• Status_field – This field returns the status of the History_req(). If the POD has
validated the History request, then Status_field shall be set to 0x00. Otherwise it
will be set to one of the following values.

Table 8.10-R Status Field Values for History Confirm

Status_field Value (hex)

History Granted 00

History Denied – POD Module is busy 01

Reserved 02

History Denied – Invalid PIN code 03

Reserved 04-09

History Denied - Check Comments 0A

Reserved 0B-FF

• Purchase_date, Cancel_date, Event_date – These fields contain respectively the
purchase time, the cancel time and the starting time of the event. They are 32-bit
unsigned integer quantities representing the time as the number of seconds since
12 am, January 6th 1980.

• If the Cancel_date field contains all FFFFs, this indicates that no appropriate
value is available for this field.

8.11 Specific Application Support

The Specific Application Support resource is intended for use when a vendor-specific
application, which resides in either the POD or the Host, needs to communicate a
private set of objects across the interface. Support for this resource is required in the
Host and POD Module. The POD shall establish at least one session for
communication with the Specific Application Support Resource.

8.11.1 Specific Application Support Connectivity

The POD Module shall open one or more Specific Application Support (SAS)
sessions for private communications between vendor-specific POD Module
applications and private Host applications, as shown in Figure 8.11-1. The POD
Module, as the initiator of the sessions, is responsible for associating each session (by
session number) with the appropriate vendor-specific POD Application. When a
private Host application is ready to establish a connection with POD Module, an SAS
Connect Request (sas_connect_rqst) message is sent to the POD over any opened
SAS session. The POD uses the private Host Application ID to identify the specific

113

SAS session that should be used for communication between the identified private
Host Application and the appropriate vendor-specific POD Module application. This
session number, along with the private Host Application ID is returned to the Host via
the SAS Connect Confirm message (sas_connect_cnf). This operation establishes the
communication path between a specific pair of applications (vendor-specific POD
application, private Host application).

 POD
Module Host

Open_Session_Response

Open_Session_Request

Open_Session_Response

Open_Session_Request

Sas_Connect_Rqst

 SAS #1

 SAS #n

Sas_Connect_Cnf

Private App ID #xx

App ID #xx, SAS #k

App ID #xx, SAS #k

•
•
•

Figure 8.11-1

In some instances, the POD Module may receive an sas_connect_rqst before a
session has been opened for the associated vendor-specific Application, as shown in
Figure 8.11-2. In this case, the Pod Module shall establish the necessary SAS session
and then respond with sas_connect_cnf.

114

 POD
Module Host

Open_Session_Response

Open_Session_Request

Open_Session_Response

Open_Session_Request

Sas_Connect_Rqst

 SAS #1

 SAS #k

Sas_Connect_Cnf

Private App ID #xx

App ID #xx, SAS #k
App ID #xx, SAS #k

Figure 8.11-2

8.11.2 Resource Identifier

Table 8.11-A Specific Application Support Resource

Resource Class Type Version Identifier
(hex)

Specific Application Support 144 1 1 00900041

8.11.3 Application Objects

The Specific Application Support resource includes seven APDU’s as described in
the following table:

115

Table 8.11-B Specific Application Support Objects

Apdu_tag Tag value
(hex)

Resource Direction
Host <-> POD

sas_connect_rqst() 9F9A00 SAS

sas_connect_cnf() 9F9A01 SAS

sas_data_rqst() 9F9A02 SAS

sas_data_av() 9F9A03 SAS

sas_data_cnf() 9F9A04 SAS

sas_server_query() 9F9A05 SAS

sas_server_reply() 9F9A06 SAS

8.11.3.1 sas_connect_cqst() & cas_connect_cnf()

The Host shall send a sas_connect_rqst() APDU to the POD Module to establish a
connection between a private Host application and the corresponding POD Module
vendor-specific application. The Pod shall reply with an sas_connect_cnf() APDU to
inform the Host of which SAS session is to be used for this connection.

8.11.3.1.1 sas_connect rqst()

Table 8.11-C sas_connect_rqst Object Syntax

Syntax # of bits Mnemonic

sas_connect_rqst(){

 sas_connect_rqst_tag 24 uimsbf

 Length_field()

private_host_application_id 64

} uimsbf

116

8.11.3.1.2 sas_connect_cnf()

Table 8.11-D sas_connect_cnf Object Syntax

Syntax # of bits Mnemonic

sas_connect_cnf(){

 sas_connect_cnf_tag 24 uimsbf

 Length_field()

 private_host_application_id 64 uimsbf

 sas_session_status 8 uimsbf

 reserved 16 uimsbf

}

where:

private_host_application_id This is a unique identifier of the private Host
Application.

Informative Note: There is no need to register Private_Host_Application_IDs used by
different manufacturers. Applications that make use of this resource are downloaded into the
Host by the cable operator, and thus the application has knowledge of valid ID values that are
expected from operator-supplied POD modules.

sas_session_status The status of the requested connection as defined in the
following table.

Table 8.11-E sas_session_status

sas_session_status Value (Hex)

Connection established 00

Connection denied – no associated vendor-
specific POD application found

01

Connection denied – no more connections
available

02

Reserved 03-FF

sas_session _nb The session number to be used for the designated Specific
Application communications.

117

8.11.3.2 sas_data_rqst(), sas_data_av(), & sas_data_cnf()

Once a communication path has been established between the application pair
(vendor-specific POD application, private Host application) via an SAS session, each
of the applications can utilized the SAS APDUs to communicate with the other. The
APDUs defined in this section are bi-directional in that they can originate from either
side of the Host-POD Interface. The sas_data_rqst()APDU is used by one
application to inform the other application that it is ready to process incoming data.
The application which receives this APDU responds with an sas_data_av() APDU.
When an application has data to send across the Host-POD Interface, an
sas_data_av() APDU is sent. The receiving application responds with an
sas_data_cnf() APDU to acknowledge that it is preparing to receive the available
data.

8.11.3.2.1 sas_data_rqst()

Table 8.11-F sas_data_rqst Object Syntax

Syntax # of bits Mnemonic

sas_data_rqst(){

 sas_data_rqst_tag 24 uimsb

 Length_field()

 reserved 16 uimsb

}

8.11.3.2.2 sas_data_av()

Table 8.11-G sas_data_av Object Syntax

Syntax # of bits Mnemonic

sas_data_av(){

 sas_data_av_tag 24 uimsb

 Length_field()

 reserved 16 uimsb

 sas_data_status 8 uimsb

 transaction_nb 8 uimsb

}

118

8.11.3.2.3 sas_data_av_cnf()

Table 8.11-H sas_data_cnf Object Syntax

Syntax # of bits Mnemonic

sas_data_av_cnf(){

 sas_data_av_cnf_tag 24 uimsbf

 Length_field()

 reserved 16 uimsbf

 transaction_nb 8 uimsbf

}

where:

sas_data_status The status of the available data defined in the following table.

Table 8.11-I sas_data_status

sas_data_status Value (Hex)

Data Available 00

Data Not Available 01

Reserved 02-FF

Transaction _nb The Transaction number is issued from an 8-bit cyclic
counter (1 – 255) and is used to identify each data transaction and to gain access to
the available data. When data is not available, the transaction_nb will be set to zero.

8.11.3.3 sas_server_query() & sas_server_reply()

When data availability has been confirmed, an sas_server_query() APDU is sent to
initiate the transfer of Application Specific data. The sas_server_reply() APDU shall
be used to respond to the query and transfer data.

119

8.11.3.3.1 sas_server_query()

Table 8.11-J sas_server_query Object Syntax

Syntax # of bits Mnemonic

sas_server_query(){

 sas_server_query_tag 24 uimsb

 Length_field()

 reserved 16 uimsb

 transaction_nb 8 uimsb

}

8.11.3.3.2 sas_server_reply()

Table 8.11-K sas_server_reply Object Syntax

Syntax # of bits Mnemonic

sas_server_reply(){

 sas_server_reply_tag 24 uimsbf

 Length_field()

 reserved 16 uimsbf

 transaction_nb 8 uimsbf

 Message_length 16 uimsbf

 for (i =0; i< message_length; i++)

 {

 message_byte 8 uimsbf

 }

}

8.12 Generic Feature Control Support

The Generic Feature Control resource enables the Host device to receive control of
features which are considered generic to Host devices (set-top terminal, television,
VCR, etc.). There are three aims to this resource: 1) to provide control of features
that subscribers do not desire to set themselves, 2) to provide the ability to inhibit
subscriber control and only allow headend control, and 3) to provide a mechanism in
which a POD Module or Host device can be staged to a known value.

120

A resource is created which resides in the Host called the Generic Feature Control
resource. If the Host reports this resource to the POD module, the POD module shall
open only one session to the Host and should never close the session.

8.12.1 Parameter Storage

8.12.1.1 Host

The Host may provide non-volatile storage for the parameters associated with generic
features on a parameter-by-parameter basis. These parameters shall be stored in the
Host.

8.12.1.2 POD

There is no requirement for the POD module to store the generic feature’s parameters
although there is no requirement that it cannot.

8.12.2 Parameter Operation

8.12.2.1 Feature List Exchange

Immediately after the session to the Generic Feature Control resource has been
established, the POD module shall query the Host to determine which generic
features are supported in the Host (feature_list_req). After the POD module
receives the generic feature list from the Host (feature_list), the POD module shall
send its confirmation of the feature list to the Host (feature_list_cnf). The Host shall
then query the POD module to determine which generic features are supported in the
POD module and the headend (feature_list_req). The POD module shall send its
feature list to the Host (feature_list) to which the Host shall send its confirmation
(feature_list_cnf). This is called the generic feature list exchange.

Host
POD

ModuleHeadend
open_session_request

open_session_response

feature_list_req

feature_list

feature_list_cnf

feature_list_req

feature_list

feature_list_cnf

Figure 8.12-1 Generic Feature List Exchange

121

If the generic feature list on the Host or the POD module changes, then the changed
device shall send a generic feature list changed APDU to the other device
(feature_list_changed). The other device shall then perform the generic feature list
exchange to obtain the new list.

Host
POD

ModuleHeadend
feature_list_changed

feature_list_req

feature_list

feature_list_cnf

Figure 8.12-2 POD Module Feature List Change

Host
POD

ModuleHeadend
feature_list_changed

feature_list_req

feature_list

feature_list_cnf

Figure 8.12-3 Host Feature List Change

8.12.3 Host to POD Module Transfer

After the feature exchange has occurred, the POD module may request the Host to
send its feature parameters (feature_parameters_req). After any request, the Host
shall send to the POD module the parameters for all the generic features in the Host’s
generic feature list (feature_parameters). The POD module shall reply with the
confirmation (feature_parameters_cnf). The POD module may utilize these generic
feature parameters, transfer them to the headend, or ignore them.

Host
POD

ModuleHeadend
feature_parameters_req

feature_parameters

feature_parameters_cnf

122

Figure 8.12-4 Host to POD Module Feature Parameters

Anytime any of the parameters of the generic features that are in the POD module
generic feature list are changed in the Host, for whatever reason, the Host shall
transmit these new parameters to the POD module (feature_parameters). The POD
module shall reply with the confirmation (feature_parameters_cnf).

Host
POD

ModuleHeadend
feature_parameters

feature_parameters_cnf

Figure 8.12-5 Host Parameter Update

The POD module may request, at any time the session is open and the generic feature
list exchange has occurred, the current parameters in the Host. The POD module
shall do this by sending a feature parameters request (feature_parameters_request)
as shown in figure 8.12-4.

8.12.3.1 Headend to Host

It is not intended that the headend would transmit all the generic feature’s parameters
cyclically. Most of the parameters would only be transmitted once at the request of
the user or for staging of the device. The generic feature’s parameters which may
need to be sent cyclically are the RF output channel, time zone, daylight savings, and
rating region. The headend may send all or just some of the parameters.

The method in which the POD module receives the generic feature’s parameters is
proprietary to the POD manufacturer.

After the session has been established, when the POD module receives a message
from the headend containing generic feature parameters, the POD module shall
transfer this information to the Host (feature_parameters). The Host shall replace
the parameters with the values in the APDU. If the POD module utilizes the
parameters, it shall replace its internal parameters with the values in the message from
the headend. The Host shall respond with the confirmation
(feature_parameters_cnf). The Host may receive parameters for generic features
which it does not support. The Host shall ignore any generic feature parameters that
it does not implement.

123

Host
POD

ModuleHeadend

feature_parameters

feature_parameters_cnf

proprietary generic feature control
message

Figure 8.12-6 POD Module to Host Feature Parameters

8.12.4 Resource Identifier

The following resource identifier shall be utilized for the Host to open in the POD
module.

Table 8.12-A Generic Feature Control Resource

Resource Class Type Version Identifier (hex)

Generic Feature Control 42 1 1 002A0041

8.12.5 Feature ID

Each generic feature shall have a unique ID assigned to it. This ID is the same for all
APDUs. The following is a list of the features and their assigned feature ID.

124

Table 8.12-B Generic Feature IDs

Feature ID Feature

00 Reserved

01 RF Output Channel

02 Parental Control PIN

03 Parental Control Settings

04 IPPV PIN

05 Time Zone

06 Daylight Savings Control

07 AC Outlet

08 Language

09 Rating Region

0A Reset PIN

0B Cable URLs

0C Emergency Alert Location Code

0D-3F Reserved for future use

70-FF Reserved for proprietary use

8.12.6 Application Objects

The following is a list of the application objects (APDUs).

Table 8.12-C Generic Feature Control Objects

Apdu_tag Tag value
(hex)

Resource Direction
Host <->

POD
Feature_list_req 9F 98 02 Generic Feature Control ↔
Feature_list 9F 98 03 Generic Feature Control ↔
Feature_list_cnf 9F 98 04 Generic Feature Control ↔
Feature_list_changed 9F 98 05 Generic Feature Control ↔
Feature_parameters_req 9F 98 06 Generic Feature Control ←
Feature_parameters 9F 98 07 Generic Feature Control ↔
Feature_parameters_cnf 9F 98 08 Generic Feature Control ↔

125

8.12.6.1 Feature List Request

Either the Host or POD shall send this APDU to the POD module or the Host to
query the generic features that it supports.

Table 8.12-D Feature List Request Object Syntax

Syntax # of bits Mnemonic

feature_list_req() {

 feature_list_req_tag

 length_field()

}

24

uimsbf

• feature_list_req_tag Value = 0x9F9802

8.12.6.2 Feature List

After receiving the feature_list_req, the Host or POD module shall transmit this
APDU to the POD module or Host which lists the generic features that the POD
module and headend support control of.

Table 8.12-E Feature List Object Syntax

Syntax # of bits Mnemonic

Feature_list() {

 Feature_list_tag

 Length_field()

 Number_of_features

 For(i=0; i<number_of_features; i++){

 feature_id

 }

}

24

8

8

uimsbf

uimsbf

uimsbf

• feature_list_tag Value = 0x9F9803

• number_of_features Number of features to report

• feature_id Assigned feature ID number as defined in section 8.12.5
 of this document.

126

8.12.6.3 Feature List Confirmation

After receiving the feature_list APDU, the Host or POD module shall transmit this
APDU to the POD module or Host to confirm receiving it.

Table 8.12-F Feature List Confirm Object Syntax

Syntax # of bits Mnemonic

feature_list_cnf() {

 feature_list_cnf_tag

 length_field()

}

24

uimsbf

• feature_list_cnf_tag Value = 0x9F9804

8.12.6.4 Feature List Changed

Either the Host or the POD module shall send this APDU to inform the POD module
or the Host that its feature list changes.

Table 8.12-G Feature List Changed Object Syntax

Syntax # of bits Mnemonic

feature_list_changed() {

 feature_list_changed_tag

 length_field()

}

24

uimsbf

8.12.6.5 Feature Parameters Request

After the feature exchange has occurred, the POD module may, at any time, send the
feature parameters request to the Host. The Host shall not send this APDU to the
POD module.

127

Table 8.12-H Feature Parameter Request Object Syntax

Syntax # of bits Mnemonic

feature_parameters_req() {

 feature_parameters_req_tag

 length_field()

}

24

uimsbf

• feature_parameters_req_tag Value = 0x9F9806

8.12.6.6 Feature Parameters

The Host shall send the feature_parameters of its feature list to the POD module
after receiving a feature_parameters_req APDU or when any of the parameters in
the Host’s generic feature list are modified, except if the change is the result of
receiving a feature_parameters APDU from the POD module. The POD module
may ignore any feature parameters which it does not support.

The POD module may send the feature_parameters APDU at any time in response
to a message that it receives from the headend.

128

Table 8.12-I Feature Parameters Object Syntax

Syntax # of bits Mnemonic

feature_parameters() {

feature_parameters_tag

length_field()

number_of_features

for(i=0; i<number_of_features; i++){

feature_id

if(feature_id == 0x01) {

rf_output_channel()

}

if(feature_id == 0x02) {

p_c_pin()

}

if(feature_id == 0x03) {

p_c_settings()

}

if(feature_id == 0x04) {

ippv_pin()

}

if(feature_id == 0x05) {

time_zone()

}

if(feature_id == 0x06) {

daylight_savings()

}

if(feature_id == 0x07) {

 ac_outlet()

}

if(feature_id == 0x08) {

language()

}

if(feature_id == 0x09) {

24

8

8

uimsbf

uimsbf

uimsbf

129

rating_region()

}

if(feature_id == 0x0a) {

reset_pin()

}

if(feature_id == 0x0b) {

cable_urls()

}

if(feature_id == 0x0c) {

ea_location_code()

}

}

}

 feature_parameters_tag Value = 0x9F9807

 number_of_features Number of features to report

 feature_id Assigned feature ID number as defined in section 7.1.2.5

 of this document.
 rf_output_channel RF output channel

 p_c_pin Parental Control PIN parameter

 p_c_settings Parental Control Settings parameter.

 ippv_pin IPPV PIN parameter.

 time_zone Time Zone parameter.

 This feature is only utilized if the cable system crosses time zones.
 daylight_savings Daylight Savings parameter.

This feature is only utilized if the cable system encompasses both areas which
recognize daylight savings and those which do not.

 ac_outlet AC Outlet parameter.

 language Language parameter.

 rating_region Rating Region parameter.

 reset_pin Reset PIN’s

 cable_urls URL list

 ea_location_code EAS location code

130

8.12.6.7 Feature Parameters Confirmation

When the POD module or Host receives the feature_parameter APDU, it shall
respond with the feature parameters confirmation APDU.

Table 8.12-J Feature Parameters Confirm Object Syntax

Syntax # of bits Mnemonic

Feature_parameters_cnf() {

 feature_parameters_cnf_tag

 length_field()

 number_of_features

 for(i=0; i<number_of_features; i++){

 feature_id

 status

 }

}

24

8

8

8

uimsbf

uimsbf

uimsbf

uimsbf

feature_parameters_tag Value = 0x9F9808

number_of_features Number of features to report

feature_ID Assigned feature ID number as defined in section 8.12.5 of
this document.

status Status of feature parameter
 00 Accepted
 01 Denied – feature not supported
 02 Denied – invalid parameter
 03 Denied – other reason
 04-FF Reserved

8.12.7 Feature Parameter Definition

Each generic feature will have a parameter definition uniquely assigned. These
parameters will be consistent for all APDUs. The following sections define these
parameters if the specified features are implemented.

131

8.12.7.1 RF Output Channel Parameters

Table 8.12-K RF Output Channel Parameters Syntax

Syntax # of bits Mnemonic

Rf_output_channel() {

 Output_channel

 Output_channel_ui

}

8

8

uimsbf

uimsbf

• output_channel - RF output channel. The Host shall ignore any value that it
cannot accommodate and will use its previous value

• output_channel_ui - Enable RF output channel user interface. If disabled, the
Host shall disable the user from changing the RF output channel.

• 00-Reserved
01-Enable RF output channel user interface
02-Disable RF output channel user interface
03-FF Reserved

8.12.7.2 Parental Control PIN Parameters

Table 8.12-L Parental Control PIN Parameters

Syntax # of bits Mnemonic

P_c_pin() {

 P_c_pin_length

 For(i=0; i<p_c_pin_length; i++) {

 p_c_pin_chr

 }

}

8

8

Uimsbf

Uimsbf

• p_c_pin_length Length of the parental control pin.
Maximum length is 255 bytes.

• p_c_pin_chr Parental control PIN character.
The value is coded as defined in ISO/IEC 10646-1:1993, Information technology —
Universal Multiple-Octet CodedCharacter Set (UCS) — Part 1: Architecture and
Basic Multilingual Plane. The first character received is the first character entered by
the user.

132

8.12.7.3 Parental Control Settings Parameters

Table 8.12-M Parental Control Settings Parameters

Syntax # of bits Mnemonic

P_c_settings() {

 P_c_factory_reset

 p_c_channel_count

 for(i=0; i<p_c_channel_count; i++) {

 reserved

 major_channel_number

 minor_channel_number

 }

}

8

16

4

10

10

Uimsbf

Uimsbf

‘1111’

Uimsbf

Uimsbf

• p_c_factory_reset Perform factory reset on parental control feature.
00-A6 No factory reset
A7 Perform factory reset
A8-FF No factory reset

• p_c_channel_count Number of virtual channels to place under parental control

• major_channel_number For two-part channel numbers, this is the major
number for a virtual channel to place under parental control. For one-part channel
number semantics, see Table 5.27 of ANSI/SCTE 65 2002. Both two-part and one-
part channel numbers shall comply with ANSI/SCTE 65.

• minor_channel_number For two-part channel numbers, this is the minor
number for a virtual channel to place under parental control. For one-part channel
number semantics, see Table 5.27 of ANSI/SCTE 65 2002. Both two-part and one-
part channel numbers shall comply with ANSI/SCTE 65.

133

8.12.7.4 IPPV PIN Parameters

Table 8.12-N IPPV PIN Parameters

Syntax # of bits Mnemonic

IPPV_pin() {

 IPPV_pin_length

 for(i=0; i<IPPV_pin_length; i++) {

 IPPV_pin_chr

 }

}

8

8

uimsbf

uimsbf

• IPPV_pin_length Length of the Purchase PIN. Maximum length is 255 bytes.

• IPPV_pin_chr Purchase PIN character. The value is coded as defined in ISO/IEC
10646-1:1993, Information technology. Universal Multiple-Octet Coded Character
Set (UCS). Part 1: Architecture and Basic Multilingual Plane. The first character
received is the first character entered by the user.

8.12.7.5 Time Zone Parameters

Table 8.12-O Time Zone Parameters

Syntax # of bits Mnemonic

Time_zone() {

 time_zone_offset

}

16

tcimsbf

• time_zone_offset Two’s complement integer offset, in number of minutes,
from UTC. The value represented shall be in the range of –12 to +12 hours. This is
intended for systems which cross time zones.

8.12.7.6 Daylight Savings Parameters

Table 8.12-P Daylight Savings Parameters

Syntax # of bits Mnemonic

Daylight_savings() {

 daylight_savings_control

}

8

uimsbf

• daylight_savings_control Enable daylight savings time control in the Host.
00 Ignore this field

134

01 Do not use daylight savings
02 Use daylight savings
03-FF Reserved

8.12.7.7 AC Outlet Parameters

Table 8.12-Q AC Outlet Parameters

Syntax # of bits Mnemonic

Ac_outlet()

 ac_outlet_control

}

8

uimsbf

• ac_outlet_control AC outlet control
00 User setting
01 Switched AC outlet
02 Unswitched AC outlet (always on)
03-FF Reserved

8.12.7.8 Language Parameters

Table 8.12-R Language Parameters

Syntax # of bits Mnemonic

Language() {

 language_control

}

24

Uimsbf

• language_control Language setting using ISO 639, Code for the
Representation of Names of Languages, 1988, and ISO CD 639.2, Code for the
Representation of Names of Languages: alpha-3 code, Committee Draft, dated
December 1994.

8.12.7.9 Rating Region Parameters

Table 8.12-S Rating Region Parameters

Syntax # of bits Mnemonic

Rating_region() {

 Rating_region_setting

}

8

Uimsbf

• rating_region_setting The 8-bit unsigned integer number defined in ATSC A/65,
December 23, 1997, “Program and System Information Protocol for Terrestrial
Broadcast and Cable” that defines the rating region in which the Host resides.

135

00 Forbidden
01 United States (50 states + possessions)
02 Canada
03-FF Reserved

8.12.7.10 Reset PIN

Table 8.12-T Reset PIN

Syntax # of bits Mnemonic

Reset_pin() {

 reset_pin_control

}

8

Uimsbf

• reset_pin_control Defines the control of resetting PIN(s).
 The reset value is defined by the manufacturer and not covered in this document.
00 Do not reset any PIN
01 Reset parental control PIN
02 Reset purchase PIN
03 Reset parental control and purchase PIN
04-FF Reserved

8.12.7.11 Cable URLs

Table 8.12-U Cable URLs

Syntax # of bits Mnemonic

Cable_urls() {

 number_of_urls

 for(i=0; I<number_of_urls; I++) {

 url_type

 url_length

 for(I=0; i<url_length; I++) {

 url_chr

 }

 }

}

8

8

8

8

uimsbf

uimsbf

uimsbf

uimsbf

• number_of_urls Number of URLs defined.

• url_type Type of URL, according to the following:
00 Undefined
01 Web portal URL

136

02 EPG URL
03 VOD URL
04-FF Reserved

• url_length Length of the URL.
The maximum length is 255 bytes.

• url_chr A URL character.
The restricted set of characters and the generic syntax defined in RFC 2396, August
1998, T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource Identifier
(URI): Generic Syntax” shall be used.

8.12.7.12 Emergency Alert Location Code

Table 8.12-V Emergency Alert Location Code

Syntax # of bits Mnemonic

EA_location_code() {

 state_code

 county_subdivision

 reserved

 county_code

}

8

4

2

10

uimsbf

uimsbf

‘11’

uimsbf

• state_code, county_subdivision, county_code
These fields shall be as defined in SCTE 18 2002.

8.13 POD Module Firmware Upgrade

8.13.1 Introduction (Informative)

The POD module will require that its firmware be upgraded occasionally. The
mechanism of upgrading this firmware is unique to each POD module manufacturer’s
system. This operation can be facilitated by adding the interface outlined in this
section. New versions of the Homing and Host Control resources are utilized which
encapsulates the previous operations of the resources but adds new operations for
facilitating the firmware upgrade.

8.13.1.1 Summary (Informative)

8.13.1.1.1 Firmware Upgrade (Informative)

A POD module may be designed to be capable of having its firmware reprogrammed.
Generally, this is implemented with flash memory or battery backed up RAM.
Occasionally, this firmware will be upgraded. There are generally two paths in which

137

the firmware can be upgraded: 1) over the cable network using the QAM inband
channel, and 2) over the cable network using the QPSK OOB channel. Upgrade can
be accomplished either by the methods defined in this document or by other methods.
Since different system implementations affect the method of POD module upgrade,
two types of upgrade states are offered, a “delayed” and an “immediate”.

8.13.1.1.1.1 Delayed Upgrade (Informative)

When the POD module detects that a firmware upgrade is required and immediate
upgrade has not been requested by the headend, then if the Homing resource is not
already open, and the POD module requires utilizing the Homing resource, it will
open a session to the Homing resource if it is not already open. The POD module
will then wait until the open_homing APDU is received prior to beginning the
upgrade. The POD module will inform the Host through the firmware_upgrade
APDU that it will be doing a firmware upgrade. After receiving the
firmware_upgrade_reply APDU, the POD module can use the Host Control resource
to tune either the QAM or QPSK tuner in the Host to the appropriate frequency and
modulation type. The Host will not modify the selected tuner until the POD module
has indicated that the firmware upgrade has finished by sending the
firmware_upgrade_complete APDU or a timeout condition occurs. The
firmware_upgrade_complete APDU can also indicate to the Host whether a PCMCIA
reset, POD reset, or no reset is required by the POD module. After receiving the
firmware_upgrade_complete APDU, the Host will be free to change the QAM tuner.

The Host will send the open_homing APDU when it is in standby mode (power
applied but in the “Off“ state) as defined in [1].

8.13.1.1.1.2 Immediate Upgrade (Informative)

There are conditions in which the POD module will need to perform an immediate
upgrade. When this is required, the POD module will have the option to use the
interface upgrade mechanisms defined in this document. If using these mechanisms,
the POD module will open the Homing resource, if it is not already open, and send a
firmware_upgrade APDU. The Host will reply with a firmware_upgrade_reply when
it is ready. The POD module will use the Host Control APDUs to tune either the
QAM or QPSK tuner in the Host to the appropriate frequency and modulation type.
The Host will not interrupt this process until it has either received a
firmware_upgrade_complete APDU or a timeout condition occurs. An optional text
message is included in the APDU to display to the user if the Host is not in standby.

Additionally, it is possible that an outside occurrence, such as a power failure, may
cause the firmware to become corrupted. If this occurs, then the POD module is
incapable of performing most of its functions. It is still able to perform some
functions if ROM code is included in the design. Generally, this ROM code is fairly
small since it is not upgradeable and is utilized only for verification of the firmware
and loading the firmware in case of corruption. This ROM code, called bootloader

138

code in this document, must be carefully designed and verified since it cannot be
modified.

The bootloader is called upon reset of the POD module CPU. It first performs basic
initialization operations, then tests the main program memory to insure that it is valid,
and if it is valid, starts executing out of the main firmware memory. The problem
occurs that if the main program memory is not valid, then a mechanism is needed to
allow for recovery of the main firmware.

For this rare condition, under this proposal, the bootloader will contain firmware
which will allow the POD module to utilize the APDUs defined in this document for
an immediate upgrade.

8.13.1.1.2 Inband Upgrade Considerations (Informative)

If the POD module utilizes the QAM inband channel for upgrades, then for normal
upgrades it should utilize the delayed upgrade. The Host should then notify the POD
module that it can upgrade when the Host is placed in the standby state by the user. If
the Host has been in the on state for a long period of time or the POD module
bootloader has detected corrupted memory, then an immediate upgrade is required in
which case the Host will give control of the QAM tuner immediately to the POD
module, independent of its state.

8.13.1.1.3 OOB Upgrade Considerations (Informative)

If the POD module utilizes the QPSK OOB channel for upgrades, then its operation
will depend on whether applications can still operate while performing an upgrade. If
they cannot, a delayed firmware upgrade should be used. The POD module will have
to open the Homing resource and wait until the open_homing APDU is received prior
to beginning the upgrade. If applications can operate during an upgrade, then an
immediate firmware upgrade can be used.

8.13.1.1.4 Other Homing Operations (Informative)

If desired, the POD module can use the Homing resource for receiving other
parameters over the inband channel when the Host is in standby state. If this is
utilized, then the upgrade option should not be used so as to allow the Host to return
to the on state at the users request.

8.13.2 Implementation

8.13.2.1 Introduction (Normative)

In order to meet these operations, there is a need for a mechanism whereby the POD
module can inform the Host that a firmware upgrade is required, a optional text
message to the user, and the type of upgrade path.

139

Note that it is the responsibility of the Host to inform the user when an immediate
upgrade occurs and to determine when the recovery can occur for delayed upgrades.

8.13.2.2 Reset Implementation (Normative)

After the POD module has finished its firmware upgrade, it will either send the
firmware_upgrade_complete APDU with the appropriate reset type or simply timeout
based on the timeout type.

8.13.2.3 Host Operation (Normative)

While the POD module is performing its upgrade operation, its ability to support the
normal POD interface may range from severely limited to entirely unimpaired. To
accommodate any case some modifications to normal operation are required. The
following is a list of those modifications as well as requirements to the Host.

1. If enabled by the firmware_upgrade APDU, the POD module shall still respond
to the transport layer polls with a 5 second timeout. If the POD module fails to
respond to the poll within 5 seconds, the Host shall perform a PCMCIA reset on the
POD module.

2. The POD module may not be able to support session or application layer
operations. The Host shall not initiate any new sessions or initiate any new
application layer operations after transmitting a firmware_upgrade_reply APDU
until either the firmware_upgrade_complete APDU is received or the POD module
times out. However, the Host shall maintain all session connections so that if the
POD module cancels the firmware upgrade, normal operation can continue. The
POD shall provide a finite timeout value to the Host sufficient for all tuning and
firmware update operations to complete before the timeout occurs, when the
firmware update operation occurs under nominal network operating conditions. The
timeout value is set taking into account relevant factors such as the nominal time for
the POD module to determine and tune to the frequency or location of the update
information, nominal repetition rate of the update information, and nominal size and
transmission rate of the update information. Prior to initiating a firmware upgrade
operation, the POD module shall close any sessions it will not be able to support
during that operation, and restore sessions as necessary following completion (or
cancellation) of the upgrade operation so that normal operation can continue. Note:
If the POD module has set the response_interval in the system_time_inq() APDU to
a non-zero value, the Host may continue to transmit the system_time() APDU to the
POD module after transmitting a firmware_upgrade_reply() APDU.

3. If the download_timeout_period expires, the Host shall perform a PCMCIA reset
on the POD module.

If the POD module sends a firmware_upgrade_complete with “No Reset Required”,
then the Host shall resume normal operation with the POD module in all respects,
including timeout and reset operation.

140

8.13.2.3.1 Timeout Types (Normative)

The firmware_upgrade APDU includes a variable called timeout_type which defines
the type of timeout the Host is to utilize during a firmware upgrade. This can include
the normal 5 second transport timeout and/or a download timeout timer which starts
from the last firmware_upgrade APDU received or neither. It is highly recommended
that the POD module not use the “No timeout” option.

8.13.2.3.2 Transport Layer Timeout (Normative)

Since the POD module may be incorporating flash memory which takes a longer time
to program than the transport layer timeout period (5 seconds), using option 02 or 03
on the timeout_type variable in the firmware_upgrade APDU will cause the Host to
cease implementing this timeout until either a firmware_upgrade_complete APDU is
received or the download_timeout_period from the last firmware_upgrade APDU has
passed, in which case the Host will perform a PCMCIA reset.

8.13.2.4 Upgrade Cancellation (Normative)

If the POD module cancels its firmware upgrade, then it will send the
firmware_upgrade_complete APDU with the reset type set to 02, “no reset required”.

8.13.2.5 Flowchart (Informative)

Figure 8.13.1 is a flowchart which shows the POD module/Host interface which uses
the POD module upgrade methods defined in this document.

141

If not already open, POD
module opens Homing

resource

Received
open_homing from

Host

POD Module to perform
an immediate upgrade

POD Module to perform
a delayed upgrade

If not already open, POD
module opens Homing

resource

No

POD module sends
upgrade_firmware APDU

and receives
upgrade_firmware_reply

APDU from Host

Yes

POD module uses
OOB

POD module uses OOB
Host Control APDU's and

performs upgrade

POD module uses
inband Host Control

APDU's and performs
upgrade

POD module sends
upgrade_finished APDU

POD module
requests PCMCIA

reset

POD module
requests POD

 reset

Normal operation
continues

Host performs POD reset
(sets RS flag)

Host performs PCMCIA
reset (sets RESET

signal)

Yes

No

Yes

Yes

No

No

POD module times
out?

Yes

No

Figure 8.13-1 Firmware Upgrade Flowchart

142

8.13.3 Homing Resource (Normative)

8.13.3.1 Homing Resource Definition (Normative)

As defined in section 8.8.1.1 of [1], the Homing resource allows for the POD module
to request specific services from the Host when the Host is in a standby state. When
the Host is in a standby state, only the “immediate” modes will be supported. This
resource shall be modified to the following definition.

Table 8.13-A Homing Resource

Resource Class Type Version Identifier (hex)

Homing 17 1 2 00110042

The POD module will open the Homing resource when it requires a firmware upgrade
or requires a service. The creation of Homing resource session includes the following
objects:

Table 8.13-B Homing Objects

Apdu_tag Tag value
(hex)

Resource Direction
Host <-> POD

open_homing 9F9990 Homing

homing_cancelled 9F9991 Homing

open_homing_reply 9F9992 Homing

homing_active 9F9993 Homing

homing_complete 9F9994 Homing

firmware_upgrade 9F9995 Homing

firmware_upgrade_reply 9F9996 Homing

firmware_upgrade_complete 9F9997 Homing

8.13.3.2 open_homing (Normative)

The open_homing APDU is transmitted by the Host to the POD module when it
enters the standby state, either from power up or from user action. It shall send this
independent of whether the Host Control resource has a session active.

143

Table 8.13-C Open Homing Object Syntax

Syntax # of bits Mnemonic

open_homing() {

 open_homing_tag

 length_field()

}

24

uimsbf

8.13.3.3 open_homing_reply (Normative)

The open_homing_reply APDU is transmitted by the POD module to the Host to
acknowledge receipt of the open_homing APDU.

Table 8.13-D Open Homing Reply Object Syntax

Syntax # of bits Mnemonic

open_homing_reply() {

 open_homing_reply_tag

 length_field()

}

24

uimsbf

8.13.3.4 homing_active (Normative)

The homing_active APDU is transmitted by the Host to the POD module to inform
the POD module that the homing request has been activated.

Table 8.13-E Homing Active Object Syntax

Syntax # of bits Mnemonic

homing_active() {

 homing_active_tag

 length_field()

}

24

uimsbf

144

8.13.3.5 homing_cancelled (Normative)

If the Host was not informed that a firmware upgrade was in progress, then it shall
have the capability to close the homing state.

Table 8.13-F Homing Cancelled Object Syntax

Syntax # of bits Mnemonic

homing_cancelled() {

 homing_cancelled_tag

 length_field()

}

24

uimsbf

8.13.3.6 homing_complete (Normative)

When the POD module no longer needs the homing function, then it can transmit a
homing_complete to the Host.

Table 8.13-G Homing Complete Object Syntax

Syntax # of bits Mnemonic

homing_complete() {

 homing_complete_tag

 length_field()

}

24

uimsbf

8.13.3.7 firmware_upgrade (Normative)

If the POD module uses an in-band channel to perform a firmware upgrade, it shall
transmit the firmware_upgrade APDU to the Host. If the upgrade_source is equal to
the QAM inband channel (01), then the Host shall immediately give access to the
inband tuner through the Host Control resource tune APDU. The Host shall not
interrupt a firmware upgrade until it receives the firmware_upgrade_complete APDU.
If the Host is not in the standby mode, then it shall display the user_notification_text.
The user_notification_text shall be in ISO-8859-1. The estimated time to download
in download_time shall be in seconds.

145

Table 8.13-H Firmware Upgrade Object Syntax

Syntax # of bits Mnemonic

firmware_upgrade() {

 firmware_upgrade_tag

 length_field()

 upgrade_source

 download_time

 timeout_type

 download_timeout_period

 text_length

 for(i=0; i<text_length; i++) {

 user_notification_text

 }

}

24

8

16

8

16

8

8

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

uimsbf

upgrade_source – This shall define which path the POD module will use for its
firmware upgrade.

Table 8.13-I Upgrade Sources

Value
(hex)

Source Comment

00 Unknown POD is not informing Host of source
01 QAM Inband Channel Host Control resource will be used.
02 QPSK OOB Channel Host Control resource will be used.
03-FF Reserved

download_time – the amount of time, in seconds, that it estimated to take for the
firmware upgrade. If the value is 0000, then the value is unknown.

timeout_type – the type of timeout requested.

146

Table 8.13-J Timeout Types

Value
(hex)

Timeout Type Comment

00 Both timeouts Use both 5 seconds and
download_timeout_period

01 Transport timeout only 5 second timeout on transport layer
02 Download timeout only Value in download_timeout_period
03 No timeout Host will not timeout POD module

04-FF Reserved

download_timeout_period – the amount of time, in seconds, after the Host has
received the firmware_upgrade APDU that the Host should use to determine that the
POD module has become unstable. After this time, the Host should perform a
PCMCIA reset on the POD module. The Host’s timer should be reset every time a
firmware_upgrade APDU is received. A value of 0000 is defined to be an infinite
timeout period.

user_notification_text – the text to be displayed to the user if the Host is not in
standby mode.

8.13.3.8 firmware_upgrade_reply (Normative)

The Host will reply to the firmware_upgrade APDU. The POD module will not start
the download operation until it receives this reply.

Table 8.13-K Firmware Upgrade Reply Object Syntax

Syntax # of bits Mnemonic

firmware_upgrade_reply() {

 firmware_upgrade_reply_tag

 length_field()

}

24

uimsbf

8.13.3.9 firmware_upgrade_complete (Normative)

After the POD module has completed its upgrade, it will transmit the
firmware_upgrade_complete APDU to the Host. Included in this is whether the POD
module needs a PCMCIA reset (RESET signal active), POD reset (RS flag active), or
no reset. If there is no reset, then the Host may take control of the tuner if the source
was inband.

147

Table 8.13-L Firmware Upgrade Complete Object Syntax

Syntax # of bits Mnemonic

Firmware_upgrade_complete() {

 firmware_upgrade_complete_tag

 length_field()

 reset_request_status

}

24

8

uimsbf

uimsbf

reset_request_status – This contains the status of the reset for the POD module.

Table 8.13-M Reset Request Status Values

Value
(hex)

Source Comment

00 PCMCIA reset
requested

Host will bring RESET signal active
then inactive.

01 POD reset requested Host will set RS flag and begin
interface initialization.

02 No reset required Normal operation continues
03-FF Reserved

Note that if the POD module wishes to cancel the firmware upgrade, it can send the
firmware_upgrade_complete APDU with no reset requested. Normal operation
should continue if the Host receives this APDU.

8.14 Generic Diagnostic Support

The Generic Diagnostic Support resource enables the POD to request that the Host
perform a diagnostic and report the status/results of the request to the POD. The POD
may then use the diagnostic information to report diagnostics to the headend or the
OSD diagnostic application. If the POD attempts to open a diagnostic support session
and the Host replies that generic diagnostic support is not available, then the POD
shall not request any diagnostic information from the Host.

The POD may request that the Host perform a diagnostic and report the status/result
in response to a headend OOB message or SNMP message request to perform a
diagnostic that is supported exclusively on the Host.

148

Table 8.14-A Generic Diagnostic Support Resource

Resource Class Type Version Identifier

Generic Diagnostic Support 260 1 1 01040041

This creation includes the following objects:

Table 8.14-B Generic Diagnostic Support Objects

Apdu_tag Tag Value
(hex) Resource Direction

Host POD

Diagnostic_req() 9FDF00 Generic Diagnostic Support

Diagnostic_cnf() 9FDF01 Generic Diagnostic Support

8.14.1 Diagnostic_req()

The POD’s diagnostic application shall use the Diagnostic_req() object to request the
Host perform a specific set of diagnostic functions and report the result/status of the
diagnostics to the POD’s diagnostic application.

Table 8.14-C Diagnostic Request Object Syntax

Syntax # of bits Mnemonic

Diagnostic_req() {

 Diagnostic_req_tag 24 uimsbf

 length_field()

 number_of_diag 8 uimsbf

 for (i = 0; i < number_of_diag; i++){

 Diagnostic_id 8 uimsbf

 }

}

number_of_diag This field indicates the total number of self-diagnostic being
requested
Diagnostic_id This field is a unique ID assigned to a particular diagnostic. The
following is a list of diagnostics and their assigned diagnostic ID.

149

Table 8.14-D Diagnostic ID Values

Diagnostic ID Diagnostic
00 Set-Top memory allocation

01 Software version

02 Firmware version

03 MAC address

04 FAT status

05 FDC status

06 Current Channel Report

07 1394 Port

08 DVI status

09-FF Reserved for future use.

8.14.2 Diagnostic_cnf()

The Host’s diagnostic application shall use the Diagnostic_cnf() object to respond to
a POD’s request to perform a specific set of diagnostic functions.

150

Table 8.14-E Diagnostic Confirm Object Syntax

Syntax # of bits Mnemonic
Diagnostic_cnf() {
 Diagnostic_cnf_tag 24 uimsbf
 length_field()
 number_of_diag 8 uimsbf
 for (i = 0; i < number_of_diag; i++){
 Diagnostic_id 8 uimsbf
 Status_field 8 uimsbf
 if (status_field == 0x00) {
 if (Diagnostic_id == 0x00) {
 Memory_report()
 }
 else if (Diagnostic_id == 0x01) {
 Software_ver_report()
 }
 else if (Diagnostic_id == 0x02) {
 Firmware_ver_report()
 }
 else if (Diagnostic_id == 0x03) {
 MAC_address_report()
 }
 else if (Diagnostic_id == 0x04) {
 FAT_status_report()
 }
 else if (Diagnostic_id == 0x05) {
 FDC_status_report()
 }
 else if (Diagnostic_id == 0x06) {
 Current_channel_report()
 }
 else if (Diagnostic_id == 0x07) {
 1394_port_report()
 }
 else if (Diagnostic_id == 0x08) {
 DVI_status_report()
 }
 }
 }
}

151

number_of_diag This field indicates the total number of self-diagnostic contained in
the confirmation
Diagnostic_id This field echoes back the unique ID assigned to a particular
diagnostic request.
status_field Status of the requested diagnostic.

Table 8.14-F Status Field Values

Bit Value (Hex) Status_field

00 Diagnostic granted

01 Diagnostic Denied - Feature not Implemented.

02 Diagnostic Denied - Device Busy

03 Diagnostic Denied - Other reasons

04-FF Reserved for future use.

For Diagnostic_id values from 09 to FF, a Status_field value of 01 shall be returned.

8.14.3 Diagnostic Report Definition

Each applicable diagnostic confirm shall consist of a set of diagnostic reports that
shall contain a specific set of parameters applicable to the requested diagnostics. The
following sections define these reports and their associated parameters.

8.14.3.1 Memory Report

Memory reports shall contain the memory parameters associated with the Host.

Table 8.14-G Memory Report Syntax

Syntax # of bits Mnemonic

memory_report() {

 number_of_memory 8 Uimsbf

 if (i=0; i<number_of_memory; i++) { Uimsbf

 memory_type 8 Uimsbf

 memory_size 32 uimsbf

 } uimsbf

}

152

number_of_memory The number of memory types being reported in this
message.
memory_type Designates the type of memory that is being reported.

Table 8.14-H Memory Type Values

Bit Value (Hex) Memory Type

00 ROM

01 DRAM

02 SRAM

03 FLASH

04 NVM

05 Hard Drive

06 Video Memory

07 Other Memory

08 – FF Reserved for future use.

memory_size Designates the physical size of the specified memory type.
The units are kilobytes, defined to be 1024 bytes.

8.14.3.2 Software Version Report

Software version reports shall contain the software version parameters associated
with the Host.

153

Table 8.14-I Software Version Report Syntax

Syntax # of bits Mnemonic
software_ver_report() {
 number_of_applications 8 uimsbf
 for (i=0; i<number_of_applications; i++) {
 Application_version_number 16 uimsbf
 application_status_flag 8 uimsbf
 application_name_length 8 uimsbf
 for (j=0; j<application_name_length; j++){
 application_name_byte 8 uimsbf
 }

 application_sign_length 8 uimsbf
 for (j=0; j<application_sign_length; j++){
 application_sign_byte 8 uimsbf
 }
 }
}

number_of_applications Total number of applications contained within the report.
application_status_flag Status of the software, either active, inactive or
downloading.

Table 8.14-J Software Status Flag Values

Bit Value (Hex) Software Status Flag
00 Active
01 Inactive
02 Downloading

03-FF Reserved for future use.

154

application_name_length Designates the number of characters required to
define the application name.
application_name_byte ASCII character, 8-bits per character, of string that
identifies the application.
application_version_length Designates the number of characters required to
define the application version.
application_version_byte ASCII character, 8-bits per character, of string that
identifies the version.
application_sign_length Designates the number of characters required to
define the application signature.
application_sign_byte ASCII character, 8-bits per character, of string that
identifies the application signature.

8.14.3.3 Firmware Version Report

Firmware version reports shall contain the firmware version parameters associated
with the Host.

Table 8.14-K Firmware Version Report Syntax

Syntax # of bits Mnemonic
firmware_ver_report() {

 Firmware_version 16 uimsbf

 Firmware_date {

 firmware_year 16 uimsbf

 firmware_month 8 uimsbf

 firmware_day 8 uimsbf

 }

}

firmware_version_length Designates the number of characters required to
define the firmware version.
firmware_version_byte ASCII character, 8-bits per character, of string that
identifies the firmware version.
firmware_date 32-bit numerical representation, in the form of
YYYYMMDD, which identifies the date of the firmware.
firmware_year 16-bit designation of the firmware’s year.

155

firmware_month 8-bit numerical representation of the firmware’s month.
firmware_day 8-bit numerical representation of the firmware’s day.

8.14.3.4 MAC Address Report

MAC address report shall contain the MAC address parameters associated with the
Host.

Table 8.14-L MAC Address Report Syntax

Syntax # of bits Mnemonic
MAC_address_report() {
 number_of_addresses 8 uimsbf
 for (i=0; i<number_of_addresses; i++) {
 MAC_address_type 8 uimsbf
 number_of_bytes 8 uimsbf
 for (j=0; j<number_of_bytes; j++) {
 MAC_address_byte 8 uimsbf
 }
 }
}

number_of_addresses Total number of MAC addresses contained on report
MAC_address_type Type of device associated with reported MAC address

Table 8.14-M MAC Address Type Values

Bit Value (hex) MAC Address Type
00 No addressable device available
01 Host
02 1394
03 USB
04 DOCSIS
05 Ethernet

06 – FF Reserved

number_of_bytes The total number of bytes required for the MAC address.
MAC_address_byte One of a number of bytes of that constitute the media

156

access control (MAC) address of the Host device. Each byte represents 2 hexadecimal
values (xx) in the range of 0x00 to 0xFF.

8.14.3.5 FAT Status Report

In response to a FAT Status Report request the Host shall reply with a FAT Status
Report, unless an error has occurred.

Table 8.14-N FAT Status Report Syntax

Syntax # of bits Mnemonic
FAT_status_report() {
 reserved 4 bslbf
 PCR_lock 1 bslbf
 modulation_mode 2 bslbf
 carrier_lock_status 1 bslbf
 SNR 16 simsbf
 signal_level 16 simsbf
}

reserved Reserved bits shall be set to 11112.
PCR_lock Indicates if the FAT channel receiver is locked to the currently
tuned channel,
02 = not locked,
12 = locked.
modulation_mode Indicates if current forward transport is analog, 64-QAM or
256-QAM,
002 = analog,
012 = 64-QAM,
102 = 256-QAM,
112 = Reserved
carrier_lock_status Indicates if the current carrier is lock or not locked,
02 = not locked,
 12 = locked.
SNR Numerical representation of the signal to noise ratio in tenths of a dB.
signal_level Numerical representation of the signal level in tenths of a dBmV.

8.14.3.6 FDC Status Report

In response to a FDC Status Report request the Host shall reply with a FDC Status
Report, unless an error has occurred.

157

Table 8.14-O FDC Status Report Syntax

Syntax # of bits Mnemonic
FDC_report() {
 FDC_center_frq 16 uimsbf
 Reserved 6 bslbf
 carrier_lock_status 1 bslbf
 Reserved 1 bslbf
}

FDC_center_frq Indicates the frequency of the FDC center frequency, in MHz.
(Frequency = value * 0.05 + 50 MHz)

Table 8.14-P FDC Center Frequency Value

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Frequency (MS) Frequency (LS)

reserved Reserved bits shall be set to 1111112.
carrier_lock_status Indicates if the current carrier is lock or not locked,
02 = not locked,
12 = locked.

8.14.3.7 Current Channel Report

In response to a Current Channel Report request the Host shall reply with a Current
Channel Report, unless an error has occurred.

158

Table 8.14-Q Current Channel Report Syntax

Syntax # of bits Mnemonic
current_channel_report() {
 Reserved 2 Bslbf
 channel_type 1 Bslbf
 authorizartion_flag 1 Bslbf
 purchasable_flag 1 Bslbf
 purchased_flag 1 Bslbf
 preview_flag 1 Bslbf
 parental_control_flag 1 Bslbf
 current_channel 16 Uimsbf
}

reserved Reserved bits shall be set to 112.
channel_type Indicates if channel is analog or digital,
02 = analog,
12 = digital
authorization_flag Indicates if the set-top terminal is authorized for the
currently tuned channel,
02 = not authorized,
12 = authorized.
purchasable_flag Indicates if the currently tuned channel may be purchased,
02 = not purchasable, 12 = purchasable.

purchased_flag Indicates if the currently tuned channel has been purchased,
02 = not purchased,
12 = purchased.
preview_flag Indicates if the currently tuned channel is in preview mode,
02 = not in preview mode,
12 = in preview mode.
parental_control_flag Indicates if the currently tuned channel is under parental
control,
02 = channel is not blocked,
12 = channel is blocked.
current_channel Indicates the numerical representation of the currently
tuned channel.

8.14.3.8 1394 Port Report

In response to a 1394 Port Report request the Host shall reply with a 1394 Port
Report, unless an error has occurred.

159

Table 8.14-R 1394 Report Syntax

Syntax # of bits Mnemonic
1394_port_report() {
 Reserved 3 Bslbf
 loop_status 1 Bslbf
 root_status 1 Bslbf
 cycle_master_status 1 Bslbf
 port_1_connection_status 1 Bslbf
 port_2_connection_status 1 Bslbf
 total_number_of_nodes 16 Uimsbf
}

reserved Reserved bits shall be set to 1112.
loop_status Indicates if a loop exists on the 1394 bus,
0 = no loop exists,
1 = loop exists
root_status Indicates if the set-top terminal is the root node on the 1394 bus,
02 = not root,
12 = is root.
cycle_master_status Indicates if the set-top terminal is the cycle master node on
the 1394 bus,
02 = not cycle master,
12 = is cycle master.
port_1_connection_status Indicates if port 1 of the 1394 PHY is connected to
a 1394 bus,
02 = not connected,
12 = connected.
port_2_connection_status Indicates if port 2 of the 1394 PHY is connected to
a 1394 bus,
02 = not connected,
12 = connected.
total_number_of_nodes Indicates the total number of nodes connected to the 1394
bus. A maximum of 65535 nodes may exist, excluding the Host (a maximum of 64
nodes per bus with a maximum of 1024).

8.14.3.9 DVI Status Report

In response to a DVI Status Report request the Host shall reply with a DVI Status
Report, unless an error has occurred.

160

Table 8.14-S DVI Status Report Syntax

Syntax # of bits Mnemonic

DVI_status_report() {

 reserved 3 bslbf

 connection_status 2 bslbf

host_HDCP_status 1 bslbf

device_HDCP_status 2 bslbf

video_format

 {

 horizontal_lines 16 uimsbf

 vertical_lines 16 uimsbf

 frame_rate 8 uimsbf

 aspect_ratio 2 bslbf

 prog_inter_type 1 bslbf

 reserved 5

 }

}

reserved All reserved bits shall be set to 12
connection_status Indicates if a connection exists on the DVI port:
002 = no connection exists,
012 = device connected – not repeater,
102 = device connected - repeater ,
112 = reserved
host_HDCP_status Indicates if HDCP is enabled on the DVI link,
02 = not enabled,
12 = enabled.
Device_HDCP_status Indicates the connected device's HDCP status (valid only
when connection status is not equal to 002)
002 = non HDCP device,
012 = compliant HDCP device
102 = revoked HDCP device,
112 = reserved
video_format Indicates the current video format utilized on the DVI port
as defined in the following fields:
horizontal_lines Indicates the number of horizontal lines associated with the
video format on the DVI link.
vertical_lines Indicates the number of vertical lines associated with the
video format on the DVI link.

161

frame_rate Indicates the frame rate associated with the video
format on the DVI link as follows:

0x01=23.976 Hz
0x02=24 Hz
0x03=reserved
0x04=29.97 Hz
0x05=30 Hz
0x06=reserved
0x07=59.94 Hz
0x08=60 Hz.
0x09-0xFF=reserved

aspect_ratio Indicates the aspect ratio associated with the video format
on the DVI link as follows:

002 = 4:3
012 = 16:9
102 = reserved
112 = reserved

prog_inter_type Indicates if the video is either progressive or interlaced on
the DVI link,
02 = Interlaced,
12 = Progressive

8.14.3.10 HDMI Port Status Report

162

In response to a HDMI Status Report request, the Host shall reply with a HDMI Status
Report, unless an error has occurred.

Table 8.14-T HDMI Status Report Syntax

Syntax # of bits Mnemonic

HDMI_status_report() {

 Rreserved 3 ‘111’

 connection_status 2 Bslbf

 host_HDMI_status 1 Bslbf

 device_HDCP_status 2 Bslbf

 video_format

 {

 horizontal_lines 16 Uimsbf

 vertical_lines 16 Uimsbf

 frame_rate 8 Uimsbf

 aspect_ratio 2 Bslbf

 prog_inter_type 1 Bslbf

 Reserved 5 Bslbf

 }

}

connection_status Indicates if a connection exists on the HDMI port
 002 No connection exists
 012 Device connected, no repeater
 102 Device connected, with repeater
 112 Reserved
host_HDMI_status Indicates if HDCP is enabled on the HDMI link
 02 Not enabled
 12 Enabled.
device_HDCP_status Indicates the connected device’s HDCP status (valid only when

connection_status is not equal to 002)
 002 Non HDCP device
 012 Compliant HDCP device
 102 Revoked HDCP device
 112 Reserved
video_format Indicates the current video format utilized on the HDMI port as defined

in the following fields:

horizontal_lines Indicates the number of horizontal lines associated with the video
format on the HDMI link.

vertical_lines Indicates the number of vertical lines associated with the video format
on the HDMI link.

163

frame_rate Indicates the frame rate associated with the video format on the HDMI
link as follows.

0x01 23.976 Hz
0x02 24 Hz
0x03 reserved
0x04 29.97 Hz
0x05 30 Hz
0x06 reserved
0x07 59.94 Hz
0x08 60 Hz
0x09-0xFF reserved
aspect_ratio Indicates the aspect ratio associated with the video format on the HDMI

link as follows:

002 4:3
012 16:9
102 Reserved
112 Reserved
prog_inter_type Indicates if the video is progressive or interlaced on the HDMI link,
 02 Interlaced
 12 Progressive

8.15 Support for Common Download Specification

This section specifies a common download protocol for POD-Host Interface for Host
devices with OOB data channels as well as the In-Band (IB) Forward Application
Transport (FAT) channel, consistent with the OpenCable Common Download
Specification.

8.15.1 Overview of Protocol (Informative)

The protocol described in this document is based on the DSM-CC data carousel,
which provides a format for data objects on a broadcast carousel. Since a common
transport layer protocol for the in-band data channel (also known as the Forward
Application Transport or FAT Channel) is MPEG-2, it provides a convenient starting
point for a common protocol to download operating software code objects.

Control messages, specific to each type of Host device on the network, provide a
locator (frequency of the transport stream, modulation mode, and PID) for the code
file on the data carousel. A second approach is also defined where a source ID is
utilized that identifies the program source associated with the virtual channel that is
utilized for carrying the DSM-CC Download Information Indication message and/or
the code file. The DSM-CC Download Information Indication message contains
information pertaining to various firmware images that are available for download for
particular Host devices.

164

This document uses the following terminology to differentiate between the two
download methods:

1) OOB Forward Data Channel method: This method places the Code Version

Table (CVT), as defined in section 3.5.5, in the OOB Forward Data Channel.
The POD acquires the CVT via the OOB, filters the CVT and passes relevant
information to the Host, as defined within this document. The Host utilizes the
information passed to it via the POD to determine if a download is available.
Download via this method is not possible without the POD. The data carousel
is carried on the IB and contains the code file image. The Host only knows of
the existence of a download via the POD.

2) IB FAT Channel method: This method places the Code Version Download

Table (CVDT), as defined in section 8.15.2.2.1, in the IB FAT Channel. The
Host acquires the CVDT via the IB, filters the CVDT and determines if a
download available. The POD is not used for filtering or reception of the
table. The data carousel is carried on the IB and contains both the code file
image and the CVDT. The Host knows of the existence of a download via the
utilization of a source ID or via interaction with the POD.

Currently, the transport and message protocols between the Headend and the POD are
proprietary. In order for any Host to decode the message, extensions to the existing
POD-Host interface specification, are required. These extensions provide a common
network interface to the Host. This approach requires some additional functionality
in the POD, in that the POD translates the proprietary network protocols to the
common one specified in this document.

There are four types of code upgrade protocols that may be used by the MSO to
download code. Additionally, there may be devices on the network for which the
MSO does not have code objects, in which case, download would not be supported.
Summarizing these options:

• In-band, broadcast

• In-band, command

• In-band, on-demand

• DOCSIS

• Not supported

This specification defines protocols for the first three download methods; the fourth
method is well documented in the DOCSIS specification. These methods specified
here are based on the DSM-CC data carousel. The broadcast model is used when the
MSO is not dynamically adding files to the broadcast carousel. The command model

165

is used when the MSO has just added a new code file and wants all applicable Host
devices to download the code file immediately. The on-demand case allows the MSO
to dynamically add and remove code images as new subscribers come online and
require upgrades.

8.15.1.1 Common Download via the OOB Forward Data Channel

In the broadcast model, data is broadcast over the OOB Forward Data Channel that
relates the manufacturer and hardware version to the locator for the code object in a
DSM-CC data carousel. The POD filters these data and passes the appropriate data
onto the Host. The Host can then tune to the appropriate broadcast MPEG multiplex
stream and set the PID filters to the PID that identifies the code object in the
multiplex stream.

Because every possible code object might not be carried all of the time on the
broadcast carousel, the MSO may provide an on-demand capability. In this method,
when a Host signs onto the network, the Headend is informed that a new Host is now
on-line. If a new version of the software for that Host is available, the Headend loads
the object onto the carousel and sends a message back to the Host identifying the
location of this code object. If a code object is not available, the Host is informed that
download is unsupported. After the Host has finished downloading the object and
authenticates it, it sends a ‘done’ message so that the Headend can unload that object
from the carousel.

8.15.1.2 Common Download via the IB Forward Application Transport Channel

The IB FAT common download utilizes a combination of a source ID that identifies
the program source associated with the virtual channel that is utilized for carrying the
DSM-CC Download Information Indication message and/or the code file. In this
scenario the cable plant:

• places the DSM-CC Download Information Indication message and/or the
code file on a multiplex,

• assigns the source ID, to the virtual channel that the DSM-CC Download
Information Indication message and/or the code file will be mapped to,

• and if the multiplex is encrypted, authorizes the Host for that service.

The Download Information Indication message contains the data necessary for the
Host device to determine if the code file is targeted for that particular device. If the
code file is applicable to the device, then the Host device downloads the code file. If
the code file is not applicable or no code file is present on a different MPEG
multiplex, as defined by the CVDT, then the Host device terminates the common
download process.

The Host device parses the contents of the DSM-CC Download Information
Indication message in order to determine if a download exists for the device. There

166

are several methods in which the host will acquire the DSM-CC Download
Information Indication message:

1. The Host device monitors the Version Number of the VCT. If the Version Number
of the VCT changes, then the Host parses the VCT to see if the source ID is present.
If the source ID is present, then when the Host is in a state that will not interrupt the
user’s service, the Host tunes to the channel defined by the source ID and parses the
DSM-CC Download Information Indication message. If the DSM-CC Download
Information Indication message indicates that a download is available, then the Host
downloads the firmware code file.

2. The headend informs the POD that the DSM-CC Download Information Indication
message has been modified and likewise the POD informs the Host that the DSM-CC
Download Information Indication message has been modified. The Host parses the
VCT to see if the source ID is present. If the source ID is present, then when the Host
is in a state that will not interrupt the user’s service, the Host tunes to the channel
defined by the source ID and parses the DSM-CC Download Information Indication
message. If the DSM-CC Download Information Indication message indicates that a
download is available, then the Host downloads the firmware code file.

3. The Host device periodically parses the VCT and searches for the applicable source
ID. If the source ID is present, then when the Host is in a state that will not interrupt
the user’s service, the Host tunes to the channel defined by the source ID and parses
the DSM-CC Download Information Indication message. If the DSM-CC Download
Information Indication message indicates that a download is available, then the Host
downloads the firmware code file.

4. The headend commands the Host, via the POD, to tune to the channel defined by
the given source ID or tune to the multiplex defined via the provided frequency,
modulation type and mpeg number or PID, and parse the DSM-CC Download
Information Indication message. If the DSM-CC Download Information Indication
message indicates that a download is available, then the Host downloads the firmware
code file.

After acquiring the Download Information Indication message, the Host device parses
the Download Information Indication message and extracts the Code Version
Download Table (CVDT), which is defined in this document. The CVDT is contained
in the Private Data sector of the Download Information Indication message. The
CVDT indicates the vendor ID and hardware version ID of all Host devices that have
code files available for download. The CVDT also indicates the source ID associated
with the multiplex and/or the frequency, modulation type and MPEG number of the
stream that contains the applicable DSM-CC data carousel. The MSO may opt to
place the applicable download object within the same stream that contains the CVDT;
this would be indicated by the source ID being equal to the previously defined source
ID.

167

It is the responsibility of the Host device manufacturer to ensure that the device has
the means to verify that the code file is valid.

8.15.2 OPERATIONAL DETAILS (Informative)

8.15.2.1 Download Protocols

8.15.2.1.1 In-band, one-way, broadcast

No interaction with the Headend is supported for this method. This method utilizes a
DSM-CC data carousel. If a code file for a particular host is not defined in the
CVDT, then code download for that host is not supported.

For the In-Band method that utilizes on the Download Info Indication message, the
DSM-CC data carousel is placed on a multiplex that is defined by a source IDThe
Host device parses the VCT for this source ID. If the source ID is found, then the
Host device acquires the DSM-CC data carousel, extracts the Download Info
Indication message and determines if a download is available. If a download is
available, then the Host device downloads the code object.

8.15.2.1.2 In band, two-way, command

This method is applicable only for the case where the CVDT is delivered via the
Download Info Indication message. This method uses interaction with the Headend
and also uses the DSM-CC data carousel as defined in Section 8.15.2.1.1. After the
Headend receives a new code file for a Host and/or a set of Hosts that requires an
immediate download, the Headend loads the new code file onto the in-band broadcast
carousel and modifies the Download Info Indication message accordingly. The
Headend then instructs the POD to command the Host to download the code file.
Headend knowledge of the existence of the device is made by prior POD-Host
interaction and subsequent POD-headend interaction.

8.15.2.1.3 In-band, two-way, on-demand

This method requires interaction with the Headend and also utilizes the DSM-CC data
carousel. When a Host receives a CVT and determines that an image download is
required, it will either

a) always notify the POD module to notify the headend, or

b) it will look at the DSM-CC carousel location in the CVT. If it does not detect its
image file, it will notify the POD module to notify the Headend. After the Headend is
notified that a particular Host has requested a download, the Headend loads the
appropriate code file onto the in-band broadcast carousel.

If no code file is available for a particular host, then code download for that host is
not supported.

168

8.15.2.1.4 DOCSIS

This method uses a two-way connection through a DOCSIS cable modem and utilizes
the Trivial File Transport Protocol (TFTP) method used by DOCSIS for its
operational software. For Advanced Terminal devices (with embedded DOCSIS), in
DOCSIS enabled networks, this mechanism can, at the discretion of the operator, be
used to upgrade the operating software. Further elaboration of this method is beyond
the scope of this specification.

8.15.2.2 DSM-CC Data Carousel

All software objects are transported over the in-band, broadcast channel via the DSM-
CC data carousel. The Download Information Indication message, as defined in
Section 8.15.2.2.1 of this document, and the message sequence for data carousel
scenario, as defined in section 7.5 of ISO/IEC 13818-6, Extensions for DSM-CC, are
supported. The DSM-CC specification does not require the DSM-CC control
messages. The Host-POD control messages are defined in this specification.

8.15.2.2.1 Download Info Indication Message

The Download Info Indication message is only utilized when an MSO is broadcasting
a download utilizing the source ID method for download as defined in section
8.15.1.2. The DSM-CC Download Info Indication message is extended to include a
Code Version Download Table (CVDT). The CVDT is placed in the Private Data
bytes of the Download Info Indication message. The format of the CVDT is defined
in the following table.

169

Table 8.15-A Code Version Download Table

Syntax # of bits Mnemonic

code_version_download_table() {

 code_version_download_table_tag 24 uimsbf

 length_field()

 number_of_entries 8 uimsbf

 For(i=0; i<number_of_entries; i++){

 vendor_id 24 uimsbf

 hardware_version_id 32 uimsbf

 download_type 4 uimsbf

 download_command 4 uimsbf

 location_type 8 uimsbf

 if(location_type == 0){

 Source_id 16 uimsbf

 }

 else{

 Frequency_vector 16 uimsbf

 transport_value 8 uimsbf

 Stream_ID 8 uimsbf

 if(stream_ID == 0){

 reserved 3 uimsbf

 PID 13 uimsbf

 }

 Else{

 Program_number 16 uimsbf

 }

 }

 code_file_name_length 8 uimsbf

 For(i=0;I<code_file_name_length;i++){

 code_file_name_byte 8 uimsbf

 }

 code_verification_certificate()

 }

}

170

code_version_download_tag Value = 0xFF0FFF

number_of_entries Defines the total number of entries that are contained
within the CVDT.

vendor_ID Organizationally Unique Identifier (OUI) assigned to the
Host device vendor by the IEEE. A value of 0x000000 is not valid.

hardware_version_id Unique Hardware identifier assigned to each type of
hardware from a particular vendor. A value of 0x0000 is not permitted.

download_type Defines the type of download.
00 Broadcast
01 Command
02 On Demand
03 DOCSIS TFTP
04 Download unsupported – no code object available. In this case, the remaining
fields will have no meaning and must be set to all zeros.

download_command
00 Download now
01 Deferred Download
02 Download now, no exceptions
03-0F Reserved

location_type Defines the method in which the Host device is to utilize to acquire
the DSM-CC stream. A value of zero (0) indicates that the stream location is defined
in the channel map and may be found via the defined source ID. A value other than
zero indicates that the Host device is to use the frequency, modulation type and PID
or program number to acquire the DSM-CC stream.

source_id The VCT source ID that is associated with each program source. The
source ID is utilized to locate the frequency that the DSC-CC data carousel is
multiplexed on.

frequency_vector Frequency of the download carousel. The frequency is coded as
the number of 0.25 MHz intervals. If download_type parameter equals 03, this
parameter must be set to 0.

transport_value Value Type
00 DOCSIS channel
01 FAT channel/QAM-64
02 FAT channel/QAM-256
03-FF Reserved

stream_ID Defines the way in which the DSM-CC is to be located. A value of
zero (0) indicates that the DSM-CC stream is to be located utilizing the defined PID.

171

Any other value indicates that the stream is to be located utilizing the program
number.

PID Packet identifier of the stream that contains the code file.

program_number Defines the program number in which the DSM-CC stream
resides.

code_file_name_length Length of the code file name

code_file_name_byte Name of the software upgrade file on the DSM-CC
carousel. This is the name of the Code File [3] that is on the data carousel as well as
in Host Flash.

code_verification_certificate Authentication certificate(s) per DOCSIS SCTE 23-
2 2002

8.15.2.3 Download Operation

The download method used by the operator is optional and in part depends upon the
capabilities of the network and the Hosts on the network.

8.15.2.3.1 One-Way Operation- OOB Forward Data Channel

The following figure describes the communication between the Headend and the
POD module and the POD module and the Host.

172

Host
POD

ModuleHeadend
open_session_request

open_session_response

host_info_request

host_info_response

Filter
CVTs

code version and locator data
code_version_table

code_version_table_reply (ACK)

DSM-CC data download formatted
code file

DSM-CC data carousel
Code Objects on in-band channel

Tune frequency

Open flow to PID
on in-band

channel

Figure 8.15-1 One-Way Operation

After a session is opened between the POD and the Host, the POD requests
identification information from the Host. The Host responds with the vendor_id
(OUI), hardware_version_id from the Host (host_info_response). The POD module
uses this data to filter the Code Version Tables (CVT) that are broadcast over the
OOB channel. Each CVT corresponds to a different hardware and software version.
The locator is contained within the CVT and is the frequency of the transport stream
and the PID for the specific data carousel of the code file. The POD transmits the
proper CVT to the host. The Host determines if a download is required by comparing
the code file name in the CVT to that store in the Host. If a download is required, the
Host begins to download the code object by tuning to the proper in-band frequency
and selecting the proper PID in the in-band multiplex stream.

8.15.2.3.2 One-Way Operation - IB Forward Application Transport Channel

The following figure describes the communication between the Headend and the
POD module and the POD module and the Host.

173

Host
POD

ModuleHeadend
open_session_request

open_session_response

host_info_request

host_info_response

Tune frequency

Parse for stream
type 0x08

Parse VCT
for source ID

Acquire multiplex
tune information

DSM-CC DownloadInfoIndication message

Verify download
availability

DSM-CC DownloaddataBlock

Acquire
information to

locate download
stream and

extract the CVC

Tune frequency

Acquire stream
type 0x08

Download code

Verify code

Load code

Figure 8.15-2 One-Way Operation – IB FAT Channel

174

8.15.2.3.3 Two-way Operation- OOB Forward Data Channel

The two-way operation is similar to the one-way operation, except that there is some
handshaking between the POD and the Headend. After the Host receives a CVT and
determines that a new code image exists, it is told in the CVT to either notify the
POD module to inform the Headend of this hardware or to first determine if its code
image is already loaded on the DSM-CC carousel and only notify the POD module to
inform the Headend of the hardware if it is not. If download is not supported, the
default CVT is sent (“Download Unsupported”, download_type equals 03, see section
8.15.3.5).

H o s t
P O D

M o d u leH e a d e n d
o p e n _ s e s s io n _ re q u e s t

o p e n _ s e s s io n _ re s p o n s e

h o s t_ in fo _ re q u e s t

h o s t_ in fo _ re s p o n s e

F il te r
C V T s

c o d e v e rs io n a n d lo c a to r d a ta
(i f re q u ire d)

c o d e _ v e rs io n _ ta b le

c o d e _ v e rs io n _ ta b le _ re p ly

D S M -C C d a ta d o w n lo a d fo rm a t te d
c o d e f i le

C o d e O b je c ts
(i f a lre a d y lo a d e d)

h o s t_ d o w n lo a d _ c o n t ro l
(d o n e)

T u n e f re q u e n c y

O p e n f lo w to P ID
o n in -b a n d

c h a n n e l

h o s t_ o n l in e _ n o t i f ic a t io n
(i f re q u ire d)

d o n e

M e s s a g e

R e p ly

h o s t_ d o w n lo a d _ c o n t ro l
(s ta r t d o w n lo a d)

C o d e O b je c ts
(i f n o t a lre a d y lo a d e d)

Figure 8.15-3 Two-Way Operation

8.15.2.3.4 Two-way Operation - Command Operation - IB Forward Application
Transport Channel

The following figures describe the communication between the Headend and the Host
for IB Forward Application Transport Channel command downloads.

175

H o s t
P O D

M o d u leH e a d e n d
o p e n _ s e s s io n _ re q u e s t

o p e n _ s e s s io n _ re s p o n s e

h o s t_ in fo _ re q u e s t

h o s t_ in fo _ re s p o n s e
P ro p r ie ta ry M e s s a g e

(V e n d o r ID & H a rw a re V e rs io n ID)

T u n e f re q u e n c y

P a rs e fo r s t re a m
ty p e 0 x 0 8

P a rs e V C T
fo r s o u rc e ID

T B D

A c q u ire m u lt ip le x
tu n e in fo rm a t io n

H e a d e n d R e c e iv e s
n e w c o d e f i le fo r

H o s ts

V e r i fy d o w n lo a d
a v a i la b i l i t y

D S M -C C D o w n lo a d In fo In d ic a t io n m e s s a g e

D o w n llo a d
A v a i la b le &

O n -D e m a n d ty p e

D S M -C C D o w n lo a d D a ta B lo c k (s)

B u i ld s D S M -C C
d a ta c a ro u s e l

A c q u ire
in fo rm a t io n to

lo c a te d o w n lo a d
s t re a m a n d

e x tra c t th e C V C

T u n e f re q u e n c y

A c q u ire s t re a m
ty p e 0 x 0 8

H e a d e n d b u i ld s l is t o f
H o s ts v ia V e n d o r ID a n d

H a rd w a re V e rs io n ID

P ro p r ie ta ry M e s s a g e
(C o m m a n d D o w n lo a d)

h o s t_ d o w n lo a d _ c o m m a n d

C O N T IN U E D O N N E X T P A G E

Figure 8.15-4 Two Way - Command Operation - IB FAT Channel

176

H o s t
P O D

M o d u leH e a d e n d

h o s t_ d o w n lo a d _ c o n t ro l
(D o w n lo a d C o m p le te)

h o s t_ d o w n lo a d _ c o n t ro l
(D o w n lo a d S ta r te d)

P ro p r ie ta ry M e s s a g e
(V e n d o r ID & H a rd w a re V e rs io n ID

D o w n lo a d C o m p le te)

A f te r a p p l ic a b le H o s ts
a re u p g ra d e d , th e
M S O m a y o p t to

re m o v e th e c o d e f i le
f ro m D a ta C a ro u s e l

D o w n lo a d
C o m p le te

D o w n lo a d c o d e

V e r ify c o d e

L o a d c o d e

Figure 8.15-5 Two Way - Command Operation - IB FAT Channel (continued)

8.15.2.3.5 Two-way Operation - On-Demand Operation - IB Forward Application
Transport Channel

The following figure describes the communication between the Headend and the Host
for on-demand downloads.

177

H o s t
P O D

M o d u leH e a d e n d
o p e n _ s e s s io n _ re q u e s t

o p e n _ s e s s io n _ re s p o n s e

h o s t_ in fo _ re q u e s t

h o s t_ in fo _ re s p o n s e

h o s t_ d o w n lo a d _ c o n t ro l
(D o w n lo a d C o m p le te)

h o s t_ d o w n lo a d _ c o n t ro l
(D o w n lo a d S ta r te d)

P ro p r ie ta ry M e s s a g e
(V e n d o r ID & H a rw a re V e rs io n ID

D o w n lo a d C o m p le te)

P ro p r ie ta ry M e s s a g e
(V e n d o r ID & H a rw a re V e rs io n ID)

T u n e f re q u e n c y

P a rs e fo r s t re a m
ty p e 0 x 0 8

P a rs e V C T
fo r s o u rc e ID

T B D

A c q u ire m u lt ip le x
tu n e in fo rm a t io n

P la c e C o d e
F ile (s) o n D a ta

C a ro u s e l

V e r i fy d o w n lo a d
a v a i la b i l i t y

D S M -C C D o w n lo a d In fo In d ic a t io n m e s s a g e

D o w n llo a d
A v a ila b le &

O n -D e m a n d ty p e

R e m o v e C o d e
F ile (s) o n D a ta

C a ro u s e l

D S M -C C D o w n lo a d D a ta B lo c k (s)

D o w n lo a d
C o m p le te

V e r i fy d o w n lo a d
a v a i la b i l i t y

A c q u ire
in fo rm a t io n to

lo c a te d o w n lo a d
s t re a m a n d

e x t ra c t th e C V C

T u n e f re q u e n c y

A c q u ire s t re a m
ty p e 0 x 0 8

D o w n lo a d c o d e

V e r ify c o d e

L o a d c o d e

Figure 8.15-6 Two Way – On-Demand Operation - IB FAT Channel (continued)

8.15.2.4 Summary

The following figure summarizes the flow of events and the decision points in the
download operation.

178

POD -> Host
host info request

message

download
method == 00

Download via
OOB Forward
Data Channel

method
(section 3.3.6.1)

YES

Download via IB
FAT Channel

method
(section 3.3.6.2)

NO

Figure 8.15-7 Flow chart summarizing download operations

8.15.2.4.1 OOB Forward Data Channel Summary

179

Figure 8.15-8 Flow chart summarizing download operations for OOB Forward Data Channel
method

180

8.15.2.4.2 IB Forward Application Transport Channel Summary

Host -> POD
host info message

Exit from Download
Protocol

NO

Extract Program Number
and obtain Multiplex

Frequency and Modulation
mode from VCT

YES

Tune to
Multiplex

Acquire PMT
and parse

stream type(s)

stream type ==
0x08

All stream types
parsed?NO

NO

Parse stream and extract
DSM-CC Download Info

Indication Message

Examine contents of
message and determine
if download is applicable.

Download
Applicable

NO

YES

YES

A

On-Demand?
Host -> POD

host download control
(host command = 0x00)

Download
Complete?

Host -> POD
host download control

(host command = 0x01)

YES

NO

YES

NO

AYES

Extract CVC and
Acquire DSM--CC
that contains code

files

Transaction ID
changed?

YES

ANO

VCT Version
Number Change?

POD -> Host
host download

command?
NO

NO

Parse VCTlocation type == 0 YES

Source ID exists?

YES

YES

Extract Multiplex
Frequency and

Modulation mode from
message

Download
code file

Flash
Image

Boot from
Flash

Figure 8.15-9 Flow chart summarizing broadcast download operations

181

8.15.2.5 Code Authentication

After a code image is downloaded into the set top box and before it is placed in
permanent storage in non-volatile memory, the image is authenticated using the
SCTE 23-2 2002 code authentication process regardless of the method used to
download the file. This method specifies a particular structure to the code file
(PKCS#7 compliant). The code file consists of the manufacturer’s Code Verification
Signature (CVS), and X.509 Code Verification Certificate (CVC) signed by the root
CA, and the signed code image that is compatible with the target.

8.15.3 System Control Resource (Normative)

This section provides details of Host-POD messages. A new resource, the System
Control resource, is introduced for handling revision control and download
operations. Applications must exist in the POD to support this resource. New
Application Protocol Data Units (APDU) are also introduced.

8.15.3.1 Resource Identifier

The following resource identifier associated with the System Control resource shall
reside in the Host and is optional for use by the POD module. The POD shall open a
session to this resource in the Host and shall never close it. Only one session is
supported by the Host.

Table 8.15-B Resource Identifier

Resource Class Type Version Identifier

System Control 43 1 1 0x002B0041*

*proposed value

8.15.3.2 Application Objects (APDUs)

The following table is a list of the APDUs that are required for this specification. The
host_info_request, host_info_response and the host_download_control APDUs are
required for both download methods. The code_version_table and
code_version_table_reply APDUs are exclusively utilized for the OOB Forward Data
Channel download method. The host_download_command APDU is exclusively
utilized for the IB FAT Channel download method.

182

Table 8.15-C Table of Application Protocol Data Units

APDU_tag Tag value (hex) Resource
Direction

Host <-> POD

Host_info_request 9F9C00 System Control

Host_info_response 9F9C01 System Control

Code_version_table 9F9C02 System Control

Code_version_table_reply 9F9C03 System Control

Host_download_control 9F9C04 System Control

Host_download_command 9F9C05 System Control

8.15.3.3 host_info_request

After the POD module opens a session to the System Control resource, the POD
module shall query the Host to determine its vendor ID and hardware version ID and
optional additional parameters. The POD also must inform the Host as to what type
of download the Headend is going to use to update the Host. The POD module shall
use at least the vendor ID and hardware version ID to filter the CVT. If a download
is in progress, the Host shall terminate it.

Table 8.15-D host_info_request

Syntax # of bits Mnemonic

host_info_request() {

 host_info_request_tag 24 Uimsbf

 length_field()

 supported_download_type 8 Uimsbf

}

host_info_request_tag Value = 0x9F9C00

supported_download_type Defines the type of Common Download method
utilized by the Headend.
00 OOB Forward Data Channel method
01 IB FAT Channel method
02 DOCSIS only
03 – FF Reserved

183

Note: this document does not define DOCSIS download requirements. A headend
need not use this ADPU to inform the Host that updates are performed via a DOCSIS
download.

8.15.3.4 host_info_response

The Host shall respond to the POD module query with its vendor ID and hardware
version ID.

Table 8.15-E host_info_response

Syntax # of bits Mnemonic

Host_info_response() {

 Host_info_response_tag 24 Uimsbf

 Length_field()

 Vendor_id 24 Uimsbf

 Hardware_version_id 32 Usmsbf

 Number_of_descriptors 8 Uimsbf

 for(I=0;i<number_of_descriptors;i++){

 Descriptor_tag 8 Uimsbf

 Descriptor_len 8 Usmsbf

 Descriptor_data()

 }

}

host_info_response_tag Value = 0x9F9C01

vendor_id Organizationally Unique Identifier (OUI) assigned to the Host
device vendor by the IEEE. A value of 0x000000 is not valid.

hardware_version_id Unique Hardware identifier assigned to each type of
hardware from a particular vendor.

number_of_descriptors Indicates the number of descriptors defined in the following
fields

descriptor_tag
0 – descriptor_data is Host proprietary data. The maximum value for descriptor_len
is 128.

184

1-127 – reserved for future standardization
128-255 – optional, for use by POD-Host pairs, where both POD and Host support
the same implementation of the Specific Application Resource. Other POD-Host
pairs shall skip these descriptors using descriptor_len value.

8.15.3.5 code_version_table

The Headend broadcasts all CVTs via the OOB-FDC. After the POD receives the
host_info_response message from the Host, the POD module shall only then start
filtering any CVT’s it receives from the Headend and passing them to the Host. The
POD module shall pass a CVT to the Host only if it meets all of the following
criteria:

• CVT vendor_id matches Host vendor_id, and

• CVT hardware_version_id matches Host hardware_version_id

Only one code object shall be on the carousel at any given time for a given vendor_id
and hardware_id.

The Host acknowledges the receipt of the CVT and responds with an OK or an
appropriate error code message in the code_version_table_reply. The POD continues
to transmit the CVT until it receives the ACK message. If a new, different CVT is
received during this time, the POD module shall transmit it to the Host, if appropriate
to the selection criteria described above.

It is up to the Host to determine if a download is required, the POD module shall not
determine this. When the Host receives a valid CVT (the OUI and
hardware_version_id match), the Host shall determine if the code file name in the
CVT matches the code file name stored in non-volatile memory when the code was
last updated. If the file names do not match, the action of the Host shall be according
to the download_command parameter. If the length of the CVT software upgrade
filename is different than the length of the Host software upgrade filename, then they
shall be declared to be different, independent of their contents. If the
download_command parameter equals 03 (download now, no exceptions), then the
Host shall ignore the code file name that is stored in non-volatile memory and shall
begin to download of the file referred to in the CVT.

It is also up to the Host design to handle error conditions without lockouts or wait
states as well as to authenticate the vendor parameters and download code. The Host
shall assume that the POD module is operating correctly.

The use of frequency vector and PID avoids the use of the virtual channel table,
which assumes that the entire SI is being processed. When the download is on-
demand (download_type parameter equal 01), the POD may send a CVT with
frequency and PID equal to 0, to signify that the location of the code file is not

185

known. In this case, an additional CVT with the frequency and PID should be sent
when the location is known.

In a program corruption case, the CVT may not be available.

Table 8.15-F code version table

Syntax # of bits Mnemonic

code_version_table() {

code_version_table_tag 24 Uimsbf

length_field()

number of descriptors 8 Uimsbf

for(i=0;i<number of descriptors;i++){

 descriptor_tag 8 Uimsbf

 descriptor_len 8 Usmsbf

 descriptor_data()

}

download_type 4 Uimsbf

download_command 4 Uimsbf

frequency_vector 16 Uimsbf

transport_value 8 Uimsbf

Reserved 3 Uimsbf

PID 13 Uimsnf

 code_file_name_length 8 Uimsbf

for(i=0;i<software_filename_length;i++){

 code_file_name_byte 8 Uimsbf

}

code_verification_certificate()

}

download_status_tag Value = 0x9F9C02

number_of_descriptors must be greater than 2, mandatory descriptors are
vendor_id and hardware_version_id

descriptor_tag
0 – descriptor_data is vendor_id (mandatory, descriptor_len = 3). Unique Identifier
(the vendor’s OUID) assigned to each vendor.

186

1 – descriptor_data is hardware_version_id (mandatory, descriptor_len = 4), Unique
Hardware identifier assigned to each type of hardware from a particular vendor.
2 – descriptor_data is Host proprietary data. The maximum value for descriptor_len
is 128.
3-127 – reserved for future standardization
128-255 – optional, for use by POD-Host pairs, where both POD and Host support
the same implementation of the Specific Application Resource. Other POD-Host
pairs shall skip these descriptors using descriptor_len value

download _type Type of download (supplied by Headend) :
00 One-way, broadcast
01 Always On Demand
02 DOCSIS tftp
03 Download unsupported – no code object available. In this case, the
code_file_name_length, frequency_vector and PID parameters must be equal to zero.
NOTE: If the Host does not receive a CVT, then it shall assume that no code object is
available.
04 Conditional On Demand

download_command
00 Download now
01 Deferred download
02 Download now, no exceptions
03 Reserved

frequency_vector Frequency of the download carousel. The frequency is
coded as the number of 0.25 MHz intervals. If download_type parameter equals 02,
this parameter shall be set to 0

transport_value
Value Type
00 DOCSIS channel
01 FAT channel/QAM-64
02 FAT channel/QAM-256
03-FF Reserved

PID Stream identifier of the code file. If download_type parameter equals 02,
this parameter shall be set to 0.

code_file_name_length length of code file name

code_file_name_byte Name of software upgrade file on carousel. This is the
name of the Code File (see SCTE 23-2 2002) that is on the broadcast carousel as well
as in Host Flash

code_verification_certificate Authentication certificate(s) per SCTE 23-2 2002

187

8.15.3.6 code_version_table_reply

When the Host receives a CVT APDU, it shall respond with the
code_version_table_reply APDU. This response serves as an acknowledgement to
the receipt of the CVT and an error code if necessary. When the POD receives this
APDU, it shall stop sending CVTs to the Host.

Table 8.15-G code_version_table_reply

Syntax # of bits Mnemonic

code_version_table_reply() {

code_version_table_reply_tag 24 uimsbf

length_field()

 host_response 8 uimsbf
}

download_status_reply_tag Value = 0x9F9C03

host_response host response to download status:
00 ACK, no error
01 Invalid vendor ID or hardware version ID.
02 Other parameter error
03-FF Reserved

8.15.3.7 host_download_control

This APDU is used when the download_type parameter equals 01 (on-demand
download) in CVT.

If the Host was told to do conditional_on_demand, the Host shall first determine if its
new download image is already loaded on the DSM-CC carousel. If it is, then it shall
send the host_download_control with the host_command as (00) start download.

If the Host was told to do conditional_on_demand and it does not find its download
image, or it was told to do always_on_demand, then it shall send the
host_download_control with the host_command as (02), notify_headend. The POD
module shall then send a host_notification to the Headend along with the vendor_id
and hardware_version_id. The Headend shall then send the host_download_control
with the host_command as (00) start download.

When the Host has successfully authenticated the code file and it had request that the
POD module send the host_notification, it shall send an additional
host_download_control APDU with a host_command parameter equal to 01 (done).

188

The POD shall then send the done message to the Headend along with the vendor_id
and hardware_version_id so that the code file can be unloaded from the carousel.

Table 8.15-H host_download_control table

Syntax # of bits Mnemonic

host_download_control() {

 host_download_control_tag 24 Uimsbf

 length_field()

host_command 8 Uimsbf

}

host_download_control_tag Value = 0x9F9C04

host_command host command:
00 Start download
01 Download Completed – sent when done receiving data.
02 Notify headend
03-FF Reserved

8.15.3.8 host_download_command

The POD shall utilize the host_download_command APDU to command a Host to
initiate a download when using the two-way Inband FAT channel commanded
download method. The POD shall also utilize this APDU to command a Host to use
the values defined within the APDU to locate CVDTs instead of the source ID when
using the one-way Inband Forward Application Transport Channel broadcast
download method

189

Table 8.15-I host_download_command

Syntax # of bits Mnemonic

host_download_command() {

 host_download_control_tag 24 Uimsbf

 length_field()

 host_command 8 Uimsbf

 location_type 8 uimsbf

 if(location_type == 00){

 source_id 16 uimsbf

 }

 if(location_type == 01){

 frequency_vector 16 uimsbf

 transport_value 8 uimsbf

 stream_ID 8 uimsbf

 if(stream_ID == 00){

 Reserved 3 uimsbf

 PID 13 uimsbf

 }

 if(stream_ID == 01){

 program_number 16 uimsbf

 }

 }

}

host_download_control_tag Value = 0x9F9C05

host_command Defines the priority of download.
00 Check for download during next cycle using source_id
01 Download now
02 Deferred download
03 Download now, no exceptions
04-FF Reserved

location_type Defines the method in which the Host device is to utilize to acquire
the DSM-CC stream.
00 Transport Stream location is defined in the channel map and may be found
via the defined source ID

190

01 Indicates that the Host device is to use the frequency, modulation type and
PID or program number to acquire the DSM-CC stream.
02 – FF Reserved

source_id The VCT source ID that is associated with each program source.
The source ID is utilized to locate the frequency that the DSC-CC data carousel is
multiplexed on. A value of zero indicates that the download is located via the
previously assigned source ID.

frequency_vector Frequency of the download carousel. The frequency is
coded as the number of 0.25 MHz intervals. If download_type parameter equals 02,
this parameter must be set to 0.

transport_value Value Type
00 DOCSIS channel
01 FAT channel/QAM-64
02 FAT channel/QAM-256
03-FF Reserved

stream_ID Defines the way in which the DSM-CC is to be located.
00 Indicates that the DSM-CC stream is to be located utilizing the defined
PID.
01 Indicates that the stream is to be located utilizing the program number.
02 – FF Reserved

PID Packet identifier of the stream that contains the code file.

program_number Defines the program number in which the DSM-CC stream
resides

191

APPENDIX A. Operational Modes (Informative)

A.1. Data Path Options
The Low Speed Communication resource allows the Host to share with the POD the
different supported communication channels. This appendix describes data path
options for various configurations.

Compliant Hosts must implement a “POD RX” channel (QPSK downstream modem),
through which the POD Module expects to receive its messages. The following table
describes standardized data paths with and without the availability of a “Host RX”
channel.

Table A.1-A Table Downstream Data Paths

Host RX
implemented
(e.g. DOCSIS)

Standardized Downstream Data
Paths

No • POD RX → Extended Channel → Host

• POD RX

Yes • Host RX

• POD RX

• Host RX → Extended Channel → POD

When a “POD TX” channel is implemented, the POD Module expects to send its
messages through its OOB channel. Other combinations are described in the
following table.

192

Table A.1-B Upstream Data Paths

POD TX
implemented (e.g.
QPSK upstream

modem)

Host TX
implemented
(e.g. DOCSIS)

Standardized Upstream Data

Paths

No No • None

No Yes • Host TX

• POD → Extended Channel → Host TX

Yes No • Host → Extended Channel → POD TX

• POD TX

Yes Yes • Host TX

• POD TX

A.2. OOB TX Channel Available
When the Host includes POD TX support, it includes the RF circuitry that enables the
POD Module to control the out-of-band. The POD Module demultiplexes from the
OOB stream the Host’s application messages and the POD Module’s application
messages and transmit the Host’s application messages through the Extended
Channel, and keeps its own application messages for its own use. On the return path,
the POD Module multiplexes the Host’s application messages with its own messaging
and transmits them to the Cable System.

Figure A.2-1 shows the example case where the POD has offered a bi-directional IP
packet flow across the interface. The Extended channel also supports MPEG sections
uni-directionally from POD to Host.

193

APPS

OOB PHY

OOB LINK OOB LINK EXT LINK

APPS

EXT LINK

APPS

POD module Host Headend

covered by
this standard

RX

TX

OOB PHY

RX

TXOOB
Channel

OOB PHY

RX

TX

OOB PHY

RX

TXExtended
Channel

 IP ↔

MPEG →

Figure A.2-1 OOB TX Channel Available

A.3. High Speed Modem Available
When the Host includes a High Speed Host Modem (e.g. DOCSIS), the POD Module
still receives MPEG tables from the OOB channel, but relies on the HSHM for
sending and receiving IP messages. The module OOB TX function may or may not
be available.

A.3.1. OOB TX Channel Available

Figure A.3-1 shows the case that the OOB TX function is available. In this case, the
POD Module uses it for upstream communications. Now, the POD has requested an
IP flow from the Host, which must make its High Speed modem available for its use.
It now has two possible paths for upstream data, the HSHM and the QPSK

194

EXT LINK EXT LINK

POD module Host

covered by
this standard

APPS

OOB LINK OOB LINK

Headend

HS Modem CMTS

OOB PHY

RX

TX

OOB PHY

RX

TX
OOB PHY

TX

OOB PHY

RX

Extended
Channel

OOB
Channel

High Speed
Host

Modem

APPS APPS

TX RX

IP ↔
MPEG →

Figure A.3-1 High Speed Host Modem and OOB TX Channel Available

A.3.2. OOB TX Channel Not Available

Figure A.3-2 shows the case that the OOB TX function is not available. In this case,
the POD Module uses the HSHM for upstream communications.

195

EXT LINK EXT LINK

POD module Host

covered by
this standard

APPS

OOB LINK OOB LINK

Headend

HS Modem CMTS

OOB PHY

TX

OOB PHY

RX

OOB PHY

RX

TX

OOB PHY

RX

TXExtended
Channel

OOB
Channel

High Speed
Host

APPS

IP ↔
MPEG →

APPS

Figure A.3-2 High Speed Host Modem Available, OOB TX Channel Not Available

196

EXT LINK EXT LINK

POD module Host

covered by
this standard

APPS

OOB LINK OOB LINK

Headend

HS Modem CMTS

OOB PHY

TX

OOB PHY

RX

OOB PHY

RX

TX

OOB PHY

RX

TX Extended
Channel

OOB
Channel

High Speed
Host

APPS

IP ↔
MPEG →

APPS

Figure A.3-3 High Speed Host Modem Available, OOB TX Channel Not Available

197

APPENDIX B. Glossary
Term Definition

A1 Address Line 1

ANSI American National Standards Institute

APDU (Application
Protocol Data Unit)

 A common structure to send application data between POD
module and Host.

API (Application Program
Interface)

The software interface to system services or software libraries.
An API can consist of classes, function calls, subroutine calls,
descriptive tags, etc.

ASCII (American Standard
Code for Information
Interchange)

Internationally recognized method for the binary
representation of text

ATSC Advanced Television System Committee.

AUT AUT is a field in the status register that is set to 1 when the
program event has been authorized.

BVD1 Chip pin acronym defined in CEA-679-C Part B.

BVD2 Chip pin acronym defined in CEA-679-C Part B.

CA Conditional Access

CAN CAN is a field in the status register that is set to 1 when the
program event has been cancelled.

CD1# Chip pin acronym defined in CEA-679-C Part B.

CD2# Chip pin acronym defined in CEA-679-C Part B.

CE#2 Card Enable

CE1# Chip pin acronym defined in CEA-679-C Part B.

CEA Consumer Electronics Alliance

CIS (Card Information
Structure)

 Low-level configuration information contained in the POD
module’s Attribute Memory.

CMOS Complementary Metal Oxide Silicon

Cnf Chip pin acronym defined in CEA-679-C Part B.

Conditional Access and
encryption

 Conditional access and encryption is a system that provides
selective access to programming to individual customers.

CPU Interface The logical interface between the POD module and the Host
comprised of the Data and Extended communications
channels.

198

APPENDIX B. Glossary
Term Definition

CRC Cyclic Redundancy Check.

CRX Chip pin acronym defined in CEA-679-C Part B.

CTX Chip pin acronym defined in CEA-679-C Part B.

D1 Chip pin acronym defined in CEA-679-C Part B.

D3 Chip pin acronym defined in CEA-679-C Part B.

DA Data Available

DAIE Chip pin acronym defined in CEA-679-C Part B.

DHCP (Dynamic Host
Configuration Protocol)

An Internet standard for assigning IP addresses dynamically to
IP hosts.

DOCSIS Data-Over-Cable Service Interface Specification

Downstream Transmission from head-end to Host.

DRX Chip pin acronym defined in CEA-679-C Part B.

DSM-CC Digital Storage Medium – Command and Control.

DSM-CC-UU Digital Storage Medium – Command and Control – User to
User.

DVB Digital Video Broadcast.

DVS Digital Video Subcommittee

EAS Emergency Alert System

EIA Electronic Industries Alliance

EIT (Event Information
Table)

An MPEG 2 table contained within the Program and System
Information Protocol (“PSIP”) which provides information for
events on the virtual channels.

EMM (Entitlement
Management Message)

A conditional access control message to a Host.

ETT (Extended Text Table) An MPEG 2 table contained in the Program and System
Information Protocol (“PSIP”) which provides detailed
descriptions of virtual channels and events.

ETX Chip pin acronym defined in CEA-679-C Part B.

FAT (Forward Applications
Transport) Channel

A data channel carried from the headend to the set-top
terminal in a modulated channel at a rate of 27 or 36 Mbps.
MPEG-2 transport is used to multiplex video, audio, and data
into the FAT channel.

199

APPENDIX B. Glossary
Term Definition

FDC (Forward Data
Channel)

An out-of-band (“OOB”) data channel from the headend to the
Host.

Forward See Downstream

FRE FRE is a field in the status register that is set to 1 when the
free preview of the program event has been viewed.

FRIE Chip pin acronym defined in CEA-679-C Part B.

Gapped clock A periodic signal in which some transitions are omitted
creating gaps in a clock pattern.

GND Ground

H Chip pin acronym defined in CEA-679-C Part B.

HC Header Check

Headend The point at which all signals are collected and formatted for
placement on the cable system.

Host The consumer device used to access and navigate cable
content. Typically a digital TV or set-top DTV receiver,

HTML (HyperText
Markup Language)

A presentation language for the display of multiple media
contents, typically used on the Internet.

HTTP (HyperText
Transport Protocol)

The transport layer for HTML documents over the Internet
Protocol (“IP”).

I/O Input or output

ID Identifier

IIR (Initialize Interface
Request)

Data bit in Status register

INPACK# Chip pin acronym defined in CEA-679-C Part B.

In-band Within the main Forward Applications Transport channel

IOIS6# Chip pin acronym defined in CEA-679-C Part B.

IORD# Chip pin acronym defined in CEA-679-C Part B.

IOWR# Chip pin acronym defined in CEA-679-C Part B.

IP (Internet Protocol) Network layer protocol in the TCP/IP stack offering a
connectionless internetwork service.

IP_U (IP Unicast) Point-to-Point Internet Protocol datagram service

200

APPENDIX B. Glossary
Term Definition

IP_M(IP Multicast) Point to multi-point Internet Protocol datagram service

IPG Interactive Program Guide

IPPV Impulse Pay-per-View

IREQ# Chip pin acronym defined in CEA-679-C Part B.

ITX Chip pin acronym defined in CEA-679-C Part B.

KHz Kilo Hertz

Low Speed
Communications Resource

Communications protocol defined in CEA-679-C Part B

LSB Least Significant Bit or Byte

M/L Chip pin acronym defined in CEA-679-C Part B.

MA Milli-Amps

MAC Media Access Control

Master Guide Table An MPEG 2 table which provides version, size and PIDs of
other tables contained within the transport stream.

MCLKO Chip pin acronym defined in CEA-679-C Part B.

MCLKI Chip pin acronym defined in CEA-679-C Part B.

MDO1 Chip pin acronym defined in CEA-679-C Part B.

MISTRT Chip pin acronym defined in CEA-679-C Part B.

MIVAL Chip pin acronym defined in CEA-679-C Part B.

MMI Man Machine Interface

MOSTRT Chip pin acronym defined in CEA-679-C Part B.

MOVAL Chip pin acronym defined in CEA-679-C Part B.

MPEG (Moving Picture
Experts Group)

Colloquial name for ISO-IEC SC29/WG11, which develops
standards for compressed full-motion video, still image, audio,
and other associated information.

MPEG-2 Video ISO-IEC 13818-2, international standard for the compression
of video.

MPEG-2 Transport ISO-IEC 13818-1, international standard for the transport of
compressed digital media.

201

APPENDIX B. Glossary
Term Definition

Ms Milli-second

MSB Most Significant Bit or Byte

Ns Nano-second

NTSC (National Television
Systems Committee)

An entity that developed the analog television system used in
North America and elsewhere.

OE# Chip pin acronym defined in CEA-679-CPart B.

OOB (Out-of-Band)
Channel

The combination of the Forward and Reverse Data Channels.
The OOB channel provides a data communication channel
between the cable system and the Host.

OPU OPU is a field in the status register that is set to 1 when the
program event has been purchased for taping once.

PC Card A device that complies with the PC Card Standard, as
specified in Section 2.3.1 of this document.

PCMCIA Personal Computer Memory Card International Association

PDU (Protocol Data Unit) A packet of data passed across a network or interface

PF Pico-farad

PHY Physical Layer

PID Packet Identifier.

PIN Personal Identification Number

PNG Portable Network Graphics.

POD Point-of-Deployment; The Point-of-Deployment module is
also known as a CableCARD™ device.

PPV Pay-Per-View.

PSI Program Specific Information.

QAM (Quadrature
Amplitude Modulation)

 A digital modulation method in which the value of a symbol
consisting of multiple bits is represented by amplitude and
phase states of a carrier. Typical types of QAM include 16-
QAM (four bits per symbol), 32-QAM (five bits), 64-QAM
(six bits), and 256-QAM (eight bits).

QPSK (Quadrature Phase
Shift Key)

 A digital modulation method in which the state of a two-bit
symbol is represented by one of four possible phase states.

QTX Chip pin acronym defined in CEA-679-C Part B.

202

APPENDIX B. Glossary
Term Definition

R Chip pin acronym defined in CEA-679-C Part B.

RDC (Reverse Data
Channel)

 An out-of-band (“OOB”) data channel from the host to the
headend.

REG# Chip pin acronym defined in CEA-679-C Part B.

REP Chip pin acronym defined in CEA-679-C Part B.

RESET Chip pin acronym defined in CEA-679-C Part B.

Resource A unit of functionality provided by the host for use by a
module. A resource defines a set of objects exchanged
between module and host by which the module uses the
resource.

Reverse See Upstream

RF Radio Frequency

RFC Request For Comments

RPC (Remote Procedure
Call)

The ability for client software to invoke a function or
procedure call on a remote server machine.

RX Receive

SCTE Society of Cable Telecommunications Engineers

Smart Card A ISO 7816-compliant card with embedded electronics used
to store or process data

SPKR# Chip pin acronym defined in CEA-679-C Part B.

STSCHG# Chip pin acronym defined in CEA-679-C Part B.

STCI_IFN The interface ID number defined by PCMCIA to be included
in the Custom Interface Subtuple.

Subtuple Subset of a Tuple

System Time Table An MPEG 2 table which provides date and time.

Td Time interval for delay

Th Time interval for holding

Tsu Time interval for setup

Tuple Data stored within a PC Card that can be used to determine the
capabilities of the card

TX Transmit

203

APPENDIX B. Glossary
Term Definition

UDP (User Datagram
Protocol)

Connectionless Transport layer protocol in the TCP/IP stack.

Uimsbf Unsigned Integer Most Significant Bit First

UPU UPU is a field in the status register that is set to 1 when the
program event has been purchased for unlimited taping.

Upstream Transmission from host to head-end

URL (Uniform Resource
Locator)

A standard method of specifying the location of an object or
file.

V Volt

VCC Chip pin acronym defined in CEA-679-C Part B.

VIE VIE is a field in the status register that is set to 1 when the
program event has been viewed.

VCT (Virtual Channel
Table)

An MPEG 2 table which contains a list of all the channels that
are or will be on plus their attributes.

VOD Video on Demand.

VPP-1 Chip pin acronym defined in CEA-679-C Part B.

VPP-2 Chip pin acronym defined in CEA-679-C Part B.

VPU VPU is a field in the status register that is set to 1 when the
program event has been purchased for viewing once.

VS1 Chip pin acronym defined in CEA-679-C Part B.

WAIT# Chip pin acronym defined in CEA-679-C Part B.

WE# Chip pin acronym defined in CEA-679-C Part B.

204

APPENDIX C. Baseline HTML Profile Requirements
This appendix describes HTML keywords that shall be supported by the Baseline
HTML Profile and gives for each keyword the requirements foreseen on the Host.

The Baseline HTML Profile only supports formatted text messages, in the form of
HTML pages with one hyperlink.

The Application Information resource may identify Hosts that support more
elaborate HTML pages with multiple hyperlinks and multiple levels of text rendering
and graphic support. In such a case the POD can supply HTML pages that take
advantage of these enhanced features.

This extended mode of operation is not described in Appendix C.

C.1. Format

C.1.1. Display

Baseline HTML Profile pages shall be designed to fit in a 4/3 and 16/9 NTSC display
size using the smallest common screen (640 x 480) without vertical and horizontal
scrolling.

MMI messages from the POD shall be limited to a maximum of 16 lines of 32
characters each. If the MMI message is longer than 16 lines, the message may include
up to 16 lines of text including a hyperlink pointing to an additional page.

Under the Baseline HTML Profile the Uni-Directional Receiving Device shall
support minimum of 32 characters per line and a minimum of 16 lines of characters in
a window without vertical and horizontal scrolling. The vertical height of the
characters shall be approximately 1/18 of the screen height.

The Host shall display all text of every page visibly on the screen.The Host device
may use screen space around the MMI message for navigation buttons such as “Press
MENU to Exit” and/or status information. Host-added navigation buttons and status
information, if added, shall not obscure any MMI text.

If the HTML from the POD contains a hyperlink, the Host manufacturer shall provide
instructions on how to navigate to any links contained in the POD’s HTML message.
Instructions may be provided by on-screen display or by instructions in the owner’s
manual.

The Baseline HTML Profile requires that MMI windows shall be opaque.

205

C.1.2. Font

The Baseline HTML Profile font shall support a minimum of 32 characters per line,
and a minimum of 16 lines of characters.

C.1.3. Text and Background Colors

Under the Baseline HTML Profile, the Host may render text color as requested in the
HTML data from the POD.

Under the Baseline HTML Profile, the Host may render the background color as
requested in the HTML data from the POD.

If the HTML data does not include a background and/or text color command, or the
Host does not support the background and/or color command, the Host shall use
either

1) black (#000000) text on a light gray (#C0C0C0) background or

2) white (#FFFFFF) text on a black (#000000) background.

If the Host device supports either the background color or text color command then it
shall support both of the commands. It should not support only one of the commands.
(Footnote: Supporting only one of the commands could lead to unreadable messages,
for example if the POD requests gray text on a white background and the Host
supports the text color command but uses the default background color, the result
would be gray text on a gray background).

C.1.4. Unvisited Link Color

Under the Baseline HTML Profile, the Host may render the unvisited link color as
requested in the HTML data from the POD. If the HTML data does not include an
unvisited link color command, or the Host does not support the unvisited link color
command, the Host shall use blue (#0000FF).

C.1.5. Paragraph

Under the Baseline HTML Profile, the Host may align paragraphs as requested by the
HTML data from the POD. If the HTML data does not include a paragraph alignment
command, or the Host does not support the paragraph alignment command, the Host
shall use a LEFT paragraph alignment.

206

C.1.6. Image

The Baseline HTML Profile does not require support for images.

C.1.7. Table

The Baseline HTML Profile does not require support for tables.

C.1.8. Forms

The Baseline HTML Profile does not require support for forms.

C.2. Supported User Interactions

C.2.1. Navigation and Links

The Baseline HTML Profile does not define how a hyperlink is navigated and
selected. It is up to the Host manufacturer to provide some navigation/selection
mechanism to identify the user intention and forward the selected link to the POD
module using the server_query object. It is up to the POD module manufacturer to
determine how results are returned to the POD module through the URL of the
server_query object. . The Host shall provide a method of user navigation to the
hyperlink in the MMI message if one is present.

C.3. HTML Keywords
The following table lists HTML keywords used in the Baseline HTML Profile
(R=required or O=Optional).

A keyword or a parameter marked as optional may be inserted in an HTML page, but
may not be used by the Host. It shall not change what is displayed on the screen but
only the way of displaying it (basically it applies to the style).

207

Table C.3-A Keyword List

STRUCTURE
<HTML>...</HTML> R

Begin and end HTML document

<BODY> ... </BODY> R

Begin and end of the body of the document, optional attributes of the document:

• bgcolor: background color, default: light gray (#C0C0C0)

• text: color of text, default: black (#000000)

• link: color of unvisited links, default: blue (#0000FF)

O

O

O

... R

Begin and end an anchor

• href: URL targeted by this anchor

R
Style Element
<P> R

Change of paragraph

• align: CENTER, LEFT or RIGHT (default : LEFT)

O

 R

Force new line

... <I>...</I> <U>...</U> O

Character style: bold, italic and underlined

C.4. Characters
An HTML page can refer to all characters by their numeric value by enclosing them
between the & and ; symbols. For example, the quotation mark “ can be expressed as
" in an HTML page. The characters also have mnemonic names as well. Thus,
the following 3 expressions are interpreted as a character “:

"
"
”

Note: Mnemonic expressions are case sensitive.

208

Table C.5-A defines characters, their numeric and mnemonic expressions that
Baseline HTML viewer shall support. Any baseline HTML page shall not use the
characters, numeric or mnemonic expressions which are not defined in the table C.5-
A. The host device may ignore the characters which are not defined in the table C.5-
A.

This list is taken from the HTML 4 Character entity references found at:

http://www.w3.org/TR/1999/REC-html401-19991224/sgml/entities.html.

Table C.4-A Characters

Character Name Numeric
Expression

Mnemonic
Expression

!
"

$
%
&
'
(
)
*
+
,
-
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?
@
A
B
C

Horizontal tab
Line feed

Space
Exclamation mark
Quotation mark
Number sign
Dollar sign
Percent sign
Ampersand
Apostrophe
Left parenthesis
Right parenthesis
Asterisk
Plus sign
Comma
Hyphen
Period
Solidus (slash)

Colon
Semicolon
Less than
Equals sign
Greater than
Question mark
Commercial at

	

!
"

$
%
&
'
(
)
*
+
,
-
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?
@
A
B
C

"

&

<

>

209

Table C.4-A Characters

D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_
`
a
b
c
d
e
f
g
h
I
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y

Left square bracket
Reverse solidus
Right square bracket
Circumflex
Horizontal bar
Grave accent

D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_
`
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y

210

Table C.4-A Characters

z
{
|
}
~

¡
¢
£
¤
¥
¦
§
¨
©
ª
«
¬
-
®
¯
°
±
²
³
´
µ
¶
·
¸
¹
º
»
¼
½
¾
¿
À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï
Ð

Left curly brace
Vertical bar
Right curly brace
Tilde
Non-breaking space
Inverted exclamation
Cent
Pound
Currency
Yen
Broken vertical
Section sign
Umlaut/diaeresis
Copyright
Feminine
Left angle quote
No sign
Hyphen
Reg. trade mark
Macron
Degrees
Plus/Minus
Superscript 2
Superscript 3
Acute accent
Micron
Paragraph sign
Middle dot
Cedilla
Superscript 1
Masculine
Right angle quote
One quarter
One half
Three quarters
Inverted question mark
A Grave
A Acute
A Circumflex
A Tilde
A Diaeresis
A Ring
AE Diphthong
C Cedilla
E Grave
E Acute
E Circumflex
E Diaeresis
I Grave
I Acute
I Circumflex
I Diaeresis
Icelandic eth

z
{
|
}
~

¡
¢
£
¤
¥
¦
§
¨
©
ª
«
¬
­
®
¯
°
±
²
³
´
µ
¶
·
¸
¹
º
»
¼
½
¾
¿
À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï
Ð

¡
¢
£
¤
¥
¦
§
¨
©
ª
«
¬
­
®
¯
°
±
²
³
´
µ
¶
·
¸
¹
º
»
¼
½
¾
¿
À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï
Ð

211

Table C.4-A Characters

Ñ
Ò
Ó
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü
Ý
Þ
ß
à
á
â
ã
ä
å
æ
ç
è
é
ê
ë
ì
í
î
ï
ð
ñ
ò
ó
ô
õ
ö
÷
ø
ù
ú
û
ü
ý
þ
ÿ

N Tilde
O Grave
O Acute
O Circumflex
O Tilde
O Diaeresis
Multiplication
O Slash
U Grave
U Acute
U Circumflex
U Diaeresis
Y Acute
Icelandic Thorn
Small sharp S
a Grave
a Acute
a Circumflex
a Tilde
a Diaeresis
a Ring
ae Diphthong
c Cedilla
e Grave
e Acute
e Circumflex
e Diaeresis
i Grave
i Acute
i Circumflex
i Diaeresis
Icenlandic eth
n Tilde
o Grave
o Acute
o Circumflex
o Tilde
o Diaeresis
Division
o Slash
u Grave
u Acute
u Circumflex
u Diaeresis
y Acute
Icenlandic thorn
y Diaeresis

Ñ
Ò
Ó
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü
Ý
Þ
ß
à
á
â
ã
ä
å
æ
ç
è
é
ê
ë
ì
í
î
ï
ð
ñ
ò
ó
ô
õ
ö
÷
ø
ù
ú
û
ü
ý
þ
ÿ

Ñ
Ò
Ó
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü
Ý
Þ
ß
à
á
â
ã
ä
å
æ
ç
è
é
ê
ë
ì
í
î
ï
ð
ñ
ò
ó
ô
õ
ö
÷
ø
ù
ú
û
ü
ý
þ
ÿ

212

APPENDIX D. POD Module Attribute and Configuration
Registers

D.1. General
This appendix was originally documented in SCTE –DVS/222 and has been included
in this document.

This appendix is a detailed map of the attribute registers and configuration option
register of the SCTE Point of Deployment (POD) module. It is assumed that the
reader is familiar with the PC Card tuple arrangement for the attribute registers.

D.2. Attribute Tuples
The following is a list of the attribute tuples which must be implemented in the POD
module.

CISTPL_LINKTARGET
CISTPL_DEVICE_OA
CISTPL_DEVICE_OC
CISTPL_VERS_1
CISTPL_MANFID
CISTPL_CONFIG
CCST_CIF
CISTPL_CFTABLE_ENTRY
STCE_EV
STCE_PD
CISTPL_NO_LINK
CISTPL_END

D.2.1. CISTPL_LINKTARGET

Defined in section 3.1.4 of PC Card Metaformat [10], this is recommended by the PC
Card standard for low voltage PC Cards for robustness. This would be in addition to
the tuples defined in [1] and would be the first tuple.

213

Table D.2-A CISTPL_LINKTARGET

Byte Address (hex) 7 6 5 4 3 2 1 0

0 00 TPL_CODE = CISTPL_LINKTARGET (0x13)

1 02 TPL_LINK = 0x03

2 04 TPL_TAG (3 bytes) = 0x43 (C)

3 06 0x49 (I)

4 08 0x53 (S)

D.2.2. CISTPL_DEVICE_0A

Defined in section 3.2.3 of PC Card Metaformat [10] , this tuple is used to define the
attribute memory operation.

Table D.2-B CISTPL_DEVICE_0A

Byte Address (hex) 7 6 5 4 3 2 1 0

0 00 TPL_CODE = CISTPL_DEVICE_0A (0x1D)

1 02 TPL_LINK = 0x04

2 04 Other_Conditions_Info = 0x02

3 06 Device_ID_1 = 0x08

4 08 Device_Size = 0x00

5 0A 0xFF

D.2.3. CISTPL_DEVICE_0C

Defined in section 3.2.3 of PC Card Metaformat [10] , this tuple is used to define the
common memory operation.

Table D.2-C CISTPL_DEVICE_0C

Byte Address (hex0 7 6 5 4 3 2 1 0

0 00 TPL_CODE = CISTPL_DEVICE_0C (0x1C)

1 02 TPL_LINK = 0x04

2 04 Other_Conditions_Info = 0x02
3 06 Device_ID_1 = 0x08
4 08 Device_Size = 0x00
5 0A TPL_END = 0xFF

214

D.2.4. CISTPL_VERS_1

Defined in section 3.2.10 of PC Card Metaformat [10] . Section A.5.6 of [1] requires
that TPLLV1_MAJOR be 0x05 and that TPLLV1_MINOR = 0x00. The field name
of the product shall be “OPENCABLE POD Module”.

Table D.2-D CISTPL_VERS_1

Byte Address (hex) 7 6 5 4 3 2 1 0
0 00 TPL_CODE = CISTPL_VERS_1 (0x15)
1 02 TPL_LINK = 26+n+m

2 04 TPLLV1_MAJOR = 0x05
3 06 TPLLV1_MINOR = 0x00

4 08 TPPLV1_INFO = {Name of manufacturer (n bytes)
4+n 08+(2*n) TPLLV1_INFO (multiple bytes) ox00 (Null)
5+n 0A+(2*n) 0x4F (O)
6+n 0C+(2*n) 0x50 (P)
7+n 0E+(2*n) 0x45 (E)
8+n 10+(2*n) 0x4E (N)
9+n 12+(2*n) 0x43 (C)

10+n 14+(2*n) 0x41 (A)
11+n 16+(2*n) 0x42 (B)
12+n 18+(2*n) 0x4C (L)
13+n 1A+(2*n) 0x45 (E)
14+n 1C+(2*n) 0x20 ()
15+n 1E+(2*n) 0x50 (P)
16+n 20+(2*n) 0x4F (O)
17+n 22+(2*n) 0x44 (D)
18+n 24+(2*n) 0x20 ()
19+n 26+(2*n) 0x4D (M)
20+n 28+(2*n) 0x6F (o)
21+n 2A+(2*n) 0x64 (d)
22+n 2C+(2*n) 0x75 (u)
23+n 2E+(2*n) 0x6C (l)
24+n 30+(2*n) 0x65 (e)
25+n 32+(2*n) 0x00 (Null)
26+n 34+(2*n) Additional Product Information (m bytes)
27+n 36+(2*n) 0x00 (Null)}

27+n+
m

36+(2*n)+m TPL_END = 0xFF

215

D.2.5. CISTPL_CONFIG

Defined in section 3.3.4 of PC Card Metaformat [10] with requirements in [1].

Table D.2-E CISTPL_CONFIG

Byte Address (hex) 7 6 5 4 3 2 1 0
0 00 TPL_CODE = CISTPL_CONFIG (0x1A)
1 02 TPL_LINK = 5+n+m+p

2 04 0 TPCC_RMSZ TPCC_RAS
Z

3 06 0 TPCC_LAST
4 08 n bytes of TPCC_RADR

5+n 0A+(2*n) m bytes of TPCC_RMSK
6+n+m 0C+(2*

(n+m))
19 bytes of TPCC_SBTPL

25+n+
m

32+(2*
(n+m+p))

TPL_END = 0xFF

TPCC_RMSZ The number of bytes in the configuration registers Base Address in Attribute Memory

Space field (TPCC_RMSK) of this tuple is the value of this field plus 1. For the POD
module, this value will depend on the manufacturer.

TPCC_RASZ The number of bytes in the Configuration Register presence mask field
(TPCC_RADR field) of the tuple is this value plus 1. For the POD module, this value
will depend on the manufacturer.

TPCC_LAST One byte field which contains the Configuration Index Number of the last
configuration described in the Card Configuration Table. Once the Host encounters
this configuration, when scanning for valid configurations, it shall have processed all
valid configurations. For the POD module, this value will depend on the
manufacturer.

TPCC_RADR The Base Address of the Configuration Registers, in an even byte of Attribute
Memory (address of Configuration Register 0), is given in this field.

TPCC_RMSK The presence mask for the Configuration Registers is given in this field. Each bit
represents the presence (1) or absence (0) of the corresponding Configuration
Register.

TPCC_SBTPL The sub-tuple allows for additional configuration sub-tuples. The CCST_CIF sub-
tuple must be implemented.

D.2.6. CCST_CIF

Defined in section 3.3.4.5.1 of PC Card Metaformat [10] . The interface ID number
(STCI_IFN) is 0x41. STCI_STR is defined to be ‘POD_V1.00’.

216

Table D.2-F CCST_CIF

Byte AddressH 7 6 5 4 3 2 1 0
0 00 ST_CODE = CCST_CIF (0xC0)
1 02 ST_LINK = 0x0B

2 04 STCI_IFN = 0x41
3 06 STCI_IFN_1 = 0x03
4 08 STCI_STR (multiple bytes) 0x50 (P)
5 0A 0x4F (O)
6 0C 0x44 (D)
7 0E 0x5F (_)
8 10 0x56 (V)
9 12 0x31 (1)

10 14 0x2E (.)
11 16 0x30 (0)
12 18 0x30 (0)
13 1A 0x00 (Null)
14 1C TPL_END 0xFF

D.2.7. CISTPL_CFTABLE_ENTRY

Defined in section 3.3.2 of PC Card Metaformat [10]. For the first entry
TPCE_INDX has both bits 6 (Default) and 7 (Intface) set. The Configuration Entry
Number is selected by the manufacturer. TPCE_IF = 0x04 – indicating Custom
Interface 0. TPCE_FS shall indicate the presence of both I/O and power
configuration entries. TPCE_IO is a 1-byte field with the value 0x22. The
information means: 2 address lines are decoded by the module and it uses only 8-bit
accesses. The power configuration entry – required by this specification, shall follow
the PC Card Specification.” Additionally, two sub-tuples, STCE_EV and STCE_PD
shall be included.

The power descriptor for Vcc is modified to 1 A.

217

Table D.2-G CISTPL_CFTABLE_ENTRY

Byte Address (hex) 7 6 5 4 3 2 1 0
0 00 TPL_CODE = CISTPL_CFTABLE_ENTRY (0x1B)
1 02 TPL_LINK == 0x33

2 04 TPCE_INDX = 0xC0 LOGICAL OR Config. Entry NumberH

3 06 TPCE_IF = 0x04
4 08 TPCE_FS = 0x0A

5 0A TPCE_PD Vcc Parameter Selection Byte = 0x38

6 0C TPCE_PD Vcc Static Current = Manufacturer value
7 0E TPCE_PD Vcc Average Current = 0x07

8 10 TPCE_PD Vcc Peak Current = 0x07

9 12 TPCE_PD Vpp Parameter Selection Byte = 0x78
10 14 TPCE_PD Vpp Static Current = Manufacturer value

11 16 TPCE_PD Vpp Average Current = 0x26

12 18 TPCE_PD Vpp Peak Current = 0x26

13 1A TPCE_PD Vpp Power Down Current = Manufacturer value
14 1C TPCE_IO = 0x22

15 1E ST_CODE = STCE_EV (0xC0)
16 20 ST_LINK = 0x10

17 22 STEV_STRS = “NRSS_HOST” 0x4F (O)
18 24 0x50 (P)

19 26 0x45 (E)
20 28 0x4E (N)
21 2A 0x43 (C)
22 2C 0x41 (A)
23 2E 0x42 (B)
24 30 0x4C (L)
25 32 0x45 (E)
26 34 0x5F (_)
27 36 0x48 (H)
28 38 0x4F (O)
29 3A 0x53 (S)
30 3C 0x54 (T)
31 3E 0x00 (Null)
32 40 0xFF
33 42 ST_CODE = STCE_PD (0xC1)
34 44 ST_LINK = 0x12

35 46 STPD_STRS = “NRSS_CI_MODULE” 0x45 (O)
36 48 0x50 (P)

37 4A 0x45 (E)
38 4C 0x4E (N)
39 4E 0x43 (C)
40 50 0x41 (A)
41 52 0x42 (B)
42 54 0x4C (L)
43 56 0x45 (E)
44 58 0x5F(_)

218

Table D.2-G CISTPL_CFTABLE_ENTRY

Byte Address (hex) 7 6 5 4 3 2 1 0
45 5A 0x4D (M)
46 5C 0x4F (O)
47 5E 0x44 (D)
48 60 0x55 (U)
49 62 0x4C (L)
50 64 0x45 (E)
51 66 0x00 (Null)
52 68 0xFF
53 6A 0xFF

D.2.8. CISTPL_END

Defined in section 3.1.2 of PC Card Metaformat [10] .

Table D.2-H CISTPL_END

Byte Address (hex) 7 6 5 4 3 2 1 0
0 00 TPL_CODE = CISTPL_END(0xFF)

219

D.2.9. Configuration Option Register

Defined in section 4.15.1 of PC Card Electrical [9].

Table D.2-I Configuration Option Register

Byte Address

,(hex)
7 6 5 4 3 2 1 0

0 00 SRESET Levl
REQ

Function Configuration Index

D.2.9.1. Values to Enable POD Personality Change

SRESET – 0 (Do not soft reset (POD reset) the POD module)

LevIREQ – 1 (POD module generates Level Mode interrupts.

Function Configuration Index – Lower 6 bits of TPCE_INDX.

D.2.9.2. Operation After Invoking POD Personality Change

After the correct value is written into the configuration register, the POD module
shall wait a minimum of 10 usec before switching from the PCMCIA to the POD
interface.

220

APPENDIX E. POD Error Handling

E.1. Error Handling
When error handling requires action by both the Host and the POD module, the action by the first is designated with a “(1)”. It is
suggested that the POD module create a diagnostic user interface which registers with the application info resource to allow it to
report any error conditions, especially in a broadcast (one-way) scenario.

Table E.1-A Error Handling

 Error condition Failure
mechanism

Host action SCTE POD module action Comments

1 POD READY signal does not go
active.

POD Host either
1) reports error using screen
in figure (figure E.1-1),
2) retry PCMCIA resets up to
two times and then report
error using screen in figure (
figure E-1), or
3) report error but continue to
perform PCMCIA resets

None Host reports error to user.

2 Host reads incorrect CIS values POD Host reports error using
screen in figure E.1-1 Error
Display

None Host reports error to user.1

3 Host writes incorrect TPCE_INDX
value to POD configuration register

Host None POD cannot perform any action. Host detects as failure #4 and
reports error to user.1

221

Table E.1-A Error Handling

 Error condition Failure
mechanism

Host action SCTE POD module action Comments

4 Host sets data channel RS bit but
POD fails to set FR bit within 5
second timeout.

POD Host either
1) reports error using screen
in figure Figure E.1-1 Error
Display
2) retry PCMCIA resets up to
two times and then report
error using screen in figure
Figure E.1-1 Error Display,
or
3) reports error and continue
to perform PCMCIA resets

None Host reports error to user.1

5 Host sets extended channel RS bit but
POD fails to set FR bit within 5
second timeout.

POD Host either
1) reports error using screen
in figure Figure E.1-1 Error
Display
2) retry PCMCIA resets up to
two times and then report
error using screen in figure
Figure E.1-1 Error Display,
or
3) reports error and continue
to perform PCMCIA resets

None Host reports error to user.1

222

Table E.1-A Error Handling

 Error condition Failure
mechanism

Host action SCTE POD module action Comments

6 Invalid buffer negotiation - POD data
channel (buffer size < 16)

POD Host either
1) reports error using screen
in figure Figure E.1-1 Error
Display
2) retry PCMCIA resets up to
two times and then report
error using screen in figure
Figure E.1-1 Error Display,
or
3) operate with smaller size

None Host reports error to user.1

7 Invalid buffer negotiation - Host data
channel (buffer size < 16 or greater
than POD data channel buffer size)

Host None Minimum – POD sets IIR flag
and stops responding to polls.
Preferred – POD works with
Host buffer size

Host reports error to user.1

8 Invalid buffer negotiation – POD
extended channel (buffer size < 16)

POD Host either
1) reports error using screen
in figure Figure E.1-1 Error
Display
2) retry PCMCIA resets up to
two times and then report
error using screen in figure
Figure E.1-1 Error Display,
or
3) operate with smaller size

None Host reports error to user.1

9 Invalid buffer negotiation - Host
extended channel (buffer size < 16 or
greater than POD data channel buffer
size)

Host None Minimum – POD sets IIR flag
and stops responding to polls.
Preferred – POD works with
Host buffer size

Host reports error to user.1

223

Table E.1-A Error Handling

 Error condition Failure
mechanism

Host action SCTE POD module action Comments

10 POD does not respond to Hosts open
transport request within 5 seconds.

POD Host either
1) reports error using screen
in figure Figure E.1-1 Error
Display
2) retry PCMCIA resets up to
two times and then report
error using screen in figure
Figure E.1-1 Error Display,
or
3) reports error and continue
to perform PCMCIA resets

None Host reports error to user.1

11 Host does not respond to POD request
to open resource manager session
within 5 seconds.

Host None Minimum – POD sets IIR flag
and stops responding to polls.

Host reports error to user.1

12 Host response to open resource
manager session response - resource
manager non-existent

Host None Minimum – POD sets IIR flag
and stops responding to polls.

Host reports error to user.1

13 Host response to open resource
manager session response - resource
manager unavailable

Host None Minimum – POD sets IIR flag
and stops responding to polls.

Host reports error to user.1

14 Host response to open resource
manager session response - incorrect
version of resource manager

Host None Minimum – POD sets IIR flag
and stops responding to polls.

Host reports error to user.1

15 Host response to open resource
manager session response - resource
manager busy

Host None Minimum – POD sets IIR flag
and stops responding to polls.

Host reports error to user.1

16 Host response to open resource
manager session response - invalid
status byte

Host None Minimum – POD sets IIR flag
and stops responding to polls.

Host reports error to user.1

224

Table E.1-A Error Handling

 Error condition Failure
mechanism

Host action SCTE POD module action Comments

17 POD fails to respond to profile_inq
within 5 seconds.

POD Host either
1) reports error using screen
in figure Figure E.1-1 Error
Display
2) retry PCMCIA resets up to
two times and then report
error using screen in figure
Figure E.1-1 Error Display,
or
3) reports error and continue
to perform PCMCIA resets

None Host reports error to user.1

18 Host resource response - no
application information resource

Host None Minimum – POD sets IIR flag
and stops responding to polls..
Preferred – POD continues
operation and will not open a
session to the application info
resource.

Minimum – Host reports error to
user. Preferred - Applications on
the POD may not operate
correctly, including MMI.1

19 Host resource response - no Host
control resource

Host None Minimum – POD sets IIR flag
and stops responding to polls.

POD may not be able to do
conditional access properly.
NOTE: There is a discussion
ongoing about DOCSIS only
operation.1

20 Host resource response - no system
time resource

Host None Minimum – POD continues
operation and will not open a
session to the system time
resource.
Preferred – Same as minimum
but also reports this in its MMI
diagnostics application.

POD operations which require
system time will not operate.1

225

Table E.1-A Error Handling

 Error condition Failure
mechanism

Host action SCTE POD module action Comments

21 Host resource response - no MMI
resource

Host None Minimum – POD continues
operation and will not open a
session to the MMI resource.

POD cannot utilize MMI for
applications or to report error
conditions.1

22 Host resource response - no low speed
communications

Host None Minimum – POD continues
operation and will not open a
session to the low speed
communication resource.
Preferred – Same as minimum
but also reports this in its MMI
diagnostic application.

If OOB reverse path not
available, then some applications
will be unavailable.1

23 Host resource response - no homing
resource1

Host None Minimum – POD continues
operation and will not open a
session to the homing resource.
Preferred – Same as minimum
but also reports this in its MMI
diagnostic application.

POD may have some operational
problems (i.e. downloading
software).1

24 Host resource response - no copy
protection resource

Host None Minimum – POD continues
operation, disables descrambling
of all conditional access
channels, it will not open a
session to the copy protection
resource, reports to headend if
possible, reports error to user,
and reports this in its MMI
diagnostic application.

All CA channels will not be
descrambled, only clear channels
may be viewed.1

25 Host resource response - unknown
resource identifier

Host None Minimum – POD continues
operation.

Not a failure condition

26 Host fails to respond to open session
request within 5 seconds.

Host None Minimum – POD sets IIR flag
and stops responding to polls.

Host reports error to user.1

226

Table E.1-A Error Handling

 Error condition Failure
mechanism

Host action SCTE POD module action Comments

27 Host response to open application info
resource session - application info
non-existent

Host None Minimum – POD sets IIR flag
and stops responding to polls..
Preferred – POD continues
operation and will not open a
session to the application info
resource.

Minimum – Host reports error to
user. Preferred - Applications on
the POD may not operate
correctly, including MMI.1

28 Host response to open application info
resource session - application info
unavailable

Host None Minimum – POD sets IIR flag
and stops responding to polls..
Preferred – POD continues
operation and will not open a
session to the application info
resource.

Minimum – Host reports error to
user. Preferred - Applications on
the POD may not operate
correctly, including MMI.1

29 Host response to open application info
resource session - incorrect version of
application info

Host None Minimum – POD sets IIR flag
and stops responding to polls..
Preferred – POD continues
operation and will not open a
session to the application info
resource.

Minimum – Host reports error to
user. Preferred - Applications on
the POD may not operate
correctly, including MMI.1

30 Host response to open application info
resource session - application info
busy

Host None Minimum – POD sets IIR flag
and stops responding to polls..
Preferred – POD continues
operation and will not open a
session to the application info
resource.

Minimum – Host reports error to
user. Preferred - Applications on
the POD may not operate
correctly, including MMI.1

31 Host response to open application info
resource session - invalid status byte

Host None Minimum – POD sets IIR flag
and stops responding to polls..
Preferred – POD continues
operation and will not open a
session to the application info
resource.

Minimum – Host reports error to
user. Preferred - Applications on
the POD may not operate
correctly, including MMI.1

227

Table E.1-A Error Handling

 Error condition Failure
mechanism

Host action SCTE POD module action Comments

32 POD module requests to open
conditional access session to the Host
times out after 5 seconds.

Host None Minimum – POD sets IIR flag
and stops responding to polls.

Host reports error to user.1

33 POD response to conditional access
resource session - conditional access
non-existent

Host None Minimum – POD sets IIR flag
and stops responding to polls.
Preferred – POD will not
descramble but will continue
other operation and reports this
in its MMI diagnostic
application.

Minimum - Host reports error to
user. Preferred – Scrambled
channels are not viewed.1

34 POD response to conditional access
resource session - conditional access
unavailable

Host None Minimum – POD sets IIR flag
and stops responding to polls.
Preferred – POD will not
descramble but will continue
other operation and reports this
in its MMI diagnostic
application.

Minimum - Host reports error to
user. Preferred – Scrambled
channels are not viewed.1

35 POD response to conditional access
resource session - incorrect version of
conditional access

Host None Minimum – POD sets IIR flag
and stops responding to polls.
Preferred – POD will not
descramble but will continue
other operation and reports this
in its MMI diagnostic
application.

Minimum - Host reports error to
user. Preferred – Scrambled
channels are not viewed.1

36 POD response to conditional access
resource session - conditional access
busy

Host None Minimum – POD sets IIR flag
and stops responding to polls.
Preferred – POD will not
descramble but will continue
other operation and reports this
in its MMI diagnostic
application.

Minimum - Host reports error to
user. Preferred – Scrambled
channels are not viewed.1

228

Table E.1-A Error Handling

 Error condition Failure
mechanism

Host action SCTE POD module action Comments

37 POD response to conditional access
resource session - invalid status byte

Host None Minimum – POD sets IIR flag
and stops responding to polls.
Preferred – POD will not
descramble but will continue
other operation and reports this
in its MMI diagnostic
application.

Minimum - Host reports error to
user. Preferred – Scrambled
channels are not viewed.1

38 POD fails to respond to ca_info_inq
within 5 seconds.

POD Host either
1) reports error using screen
in figure Figure E.1-1 Error
Display
2) retry PCMCIA resets up to
two times and then report
error using screen in figure
Figure E.1-1 Error Display,
or
3) reports error and continue
to perform PCMCIA resets

None Host reports error to user.1

39 POD module requests to open copy
protection resource session to the
Host times out after 5 seconds.

Host None Minimum – POD continues
operation, disables descrambling
of all conditional access
channels, reports to headend if
possible, reports this to user, and
reports this in its MMI diagnostic
application.

All CA channels will not be
descrambled, only clear channels
may be viewed.1

229

Table E.1-A Error Handling

 Error condition Failure
mechanism

Host action SCTE POD module action Comments

40 Host response to open copy protection
resource session - copy protection
non-existent

Host None Minimum – POD continues
operation, disables descrambling
of all conditional access
channels, reports to headend if
possible, reports this to user, and
reports this in its MMI diagnostic
application.

All CA channels will not be
descrambled, only clear channels
may be viewed.1

41 Host response to open copy protection
resource session - copy protection
unavailable

Host None Minimum – POD continues
operation, disables descrambling
of all conditional access
channels, reports to headend if
possible, reports this to user, and
reports this in its MMI diagnostic
application.

All CA channels will not be
descrambled, only clear channels
may be viewed.1

42 Host response to open copy protection
resource session - copy protection
busy

Host None Minimum – POD continues
operation, disables descrambling
of all conditional access
channels, reports to headend if
possible, reports this to user, and
reports this in its MMI diagnostic
application.

All CA channels will not be
descrambled, only clear channels
may be viewed.1

43 Host response to open copy protection
resource session - invalid status byte

Host None Minimum – POD continues
operation, disables descrambling
of all conditional access
channels, reports to headend if
possible, reports this to user, and
reports this in its MMI diagnostic
application.

All CA channels will not be
descrambled, only clear channels
may be viewed.1

230

Table E.1-A Error Handling

 Error condition Failure
mechanism

Host action SCTE POD module action Comments

44 Host does not support POD's copy
protection system.

Host/POD
incompatibility

None Minimum – POD continues
operation, disables descrambling
of all conditional access
channels, reports to headend if
possible, reports this to user, and
reports this in its MMI diagnostic
application.

All CA channels will not be
descrambled, only clear channels
may be viewed.1

45 Host and POD do not mate Host/POD
incompatibility

None Minimum – POD continues
operation, disables descrambling
of all conditional access
channels, reports to headend if
possible, reports this to user, and
reports this in its MMI diagnostic
application.

All CA channels will not be
descrambled, only clear channels
may be viewed.1

46 Host response to CP_sync - Host
busy

Host None Minimum – POD will cease
descrambling of copy protected
channels.

A copy protected channel will
stop being descrambled.

47 Host response to CP_sync - no CP
support

Host None Minimum – POD will cease
descrambling of copy protected
channels.

A copy protected channel will
stop being descrambled.

48 Host response to CP_sync - invalid
status

Host None Minimum – POD will cease
descrambling of copy protected
channels.

A copy protected channel will
stop being descrambled.

49 Host fails to respond to cp_open_req. Host None Minimum – POD will cease
descrambling of copy protected
channels.

A copy protected channel will
stop being descrambled.

231

Table E.1-A Error Handling

 Error condition Failure
mechanism

Host action SCTE POD module action Comments

50 Invalid Host certificate Host None Minimum – POD continues
operation, disables descrambling
of all conditional access
channels, reports to headend if
possible, reports this to user, and
reports this in its MMI diagnostic
application.

All CA channels will not be
descrambled, only clear channels
may be viewed.1

51 Write Error (WE) occurs after
completion of any transfer from Host
to POD

POD or Host Host performs POD reset. None User may see frozen picture on
scrambled channels.1

52 Read Error (RE) occurs after

completion of any transfer from POD
to Host

POD or Host Host performs POD reset. None User may see frozen picture on
scrambled channels.1

53 POD fails to respond to any request
within 5 seconds, other than described
by error conditions 17 and 38.

POD Host performs PCMCIA
reset up to two times and then
reports error using screen in
figure Figure E.1-1 Error
Display.

None User may see frozen picture on
scrambled channels.1

54 Invalid session APDU from Host Host None No action Not a failure condition

55 Invalid session APDU from POD POD Host ignores invalid
sessions.

None Not a failure condition

56 Invalid SPDU tag from Host Host None No action Not a failure condition
57 Invalid SPDU tag from POD POD Host ignores invalid SPDU

tags.
None Not a failure condition

58 Invalid APDU tag from Host Host None No action Not a failure condition
59 Invalid APDU tag from POD POD Host ignores invalid APDU

tags.
None Not a failure condition

60 Transport ID from Host that has not
been created and confirmed by POD

Host None No action Not a failure condition

232

Table E.1-A Error Handling

 Error condition Failure
mechanism

Host action SCTE POD module action Comments

61 Transport ID from POD that has not
been created by Host.

POD Host ignores transport ID’s
that have not been created

None Not a failure condition

62 Session ID from Host that has not
been created and confirmed by POD

Host None No action Not a failure condition

63 Session ID from POD that has not
been created by Host.

POD Host ignores session ID’s
that have not been created

None Not a failure condition

 NOTE: A POD reset is defined that the Host shall set the RS bit in the command interface control register. A PCMCIA reset is defined that the Host shall
set the RESET signal active on the PCMCIA interface.

1 - If the error is caused by an issue with the design of the Host or POD module, this should be detected during certification.

In the even that an error occurs in which the Host must display an error message, the following message, or its equivalent, shall be
displayed:

233

A technical problem is preventing you
from receiving all cable services at

this time.

Please call your cable operator and
report error code 161-xx to have this

problem resolved.

Figure E.1-1 Error Display

The “xx” after the error code 161 shall be the item number of the above table which has failed.

