MIL-STD-105D

29 April 1963

SUPERSEDING MIL-STD-105C 18 July 1961

MILITARY STANDARD

SAMPLING PROCEDURES AND TABLES FOR INSPECTION BY ATTRIBUTES

MIL-STD-105D 29 APRIL 1963

DEPARTMENT OF DEFENSE Washington 25, D. C.

SAMPLING PROCEDURES AND TABLES FOR INSPECTION BY ATTRIBUTES

MIL-STD-1050

29 APRIL 1963

2

)

1. This standard has been approved by the Department of Defense and is mandatory for use by the Departments of the Army, the Navy, the Air Force and the Defense Supply Agency. This revision supersedes MIL-STD-105C, dated 18 July 1961.

2. This publication provides sampling procedures and reference tables for use in planning and conducting inspection by attributes. This publication was developed by a working group representing the military services of Canada, the United Kingdom and the United States of America with the assistance and cooperation of American and European organizations for quality control. The international designation of this document is ABC-STD-105. When revision or cancellation of this standard is proposed, the departmental custodians will inform their respective Departmental Standardization Office so that appropriate action may be taken respecting the international agreement concerned.

3. The U.S. Army Munitions Command is designated as preparing activity for this standard. Recommended corrections, additions, or deletions should be addressed to the Commanding Officer, U.S. Army CRR Engineering Office, Attn: SMUCE-ED-S, Army Chemical Center, Maryland.

CONTENTS

Paragraph

•---- +

•

٠

 $\leq i$

Page

.

1.	SCOPE	1
2.	CLASSIFICATION OF DEFECTS AND DEFECTIVES	2
3.	PERCENT DEFECTIVE AND DEFECTS PER HUNDRED UNITS	2
4.	ACCEPTABLE QUALITY LEVEL (AQL)	3
5.	SUBMISSION OF PRODUCT	
6.	ACCEPTANCE AND REJECTION	4
7.	DRAWING OF SAMPLES	
8.	NORMAL, TIGHTENED, AND REDUCED INSPECTION	
9 .	SAMPLING PLANS	
10.	DETERMINATION OF ACCEPTABILITY	7
11.	SUPPLEMENTARY INFORMATION	7

TABLES

Table	I	Sample Size Code Letters	9
Table	II–A	Single Sampling Plans for Normal Inspection (Master Table)	10
Table	II–B	Single Sampling Plans for Tightened Inspection (Master Table)	11
Table	II–C	Single Sampling Plans for Reduced Inspection (Master Table)	12
Table	III–A	Double Sampling Plans for Normal Inspection (Master Table)	13
Table	III–B	Double Sampling Plans for Tightened Inspection (Master Table)	14
Table	III–C	Double Sampling Plans for Reduced Inspection (Master Table)	15
Table	IV–A	Multiple Sampling Plans for Normal Inspection (Master Table)	16
Table	IV-B	Multiple Sampling Plans for Tightened Inspection (Master Table)	18
Table	IV-C	Multiple Sampling Plans for Reduced Inspection (Master Table)	
Table	V–A	Average Outgoing Quality Limit Factors for Normal Inspection (Single Sampling)	
Table	V-B	Average Outgoing Quality Limit Factor for Tightened Inspection (Single Sampling)	23
Table	VI-A	Limiting Quality (in percent defective) for which the $P_a = 10\%$ (for Normal Inspection, Single Sampling)	24
Table	VI–B	Limiting Quality (in defects per hundred units) for which the $P_a = 10\%$ (for Normal Inspection, Single Sampling)	
Table	VII–A	Limiting Quality (in percent defective) for which the $P_a = 5\%$ (for Normal Inspection, Single Sampling)	2 6
Table	VII–B	Limiting Quality (in defects per hundred units) for which $P_a = 5\%$ (for Normal Inspection, Single Sampling)	27
Table	VIII	Limit Numbers for Reduced Inspection	
Table	IX	Average Sample Size Curves for Double and Multiple Sampling	29
		Sampling Plans and Operating Characteristic Curves (and Data) for:	
Table	X-A	Sample Size Code Letter A	30
Table	X–B	Sample Size Code Letter B	
Table	X–C	Sample Size Code Letter C	

iii

)

)

.

Table	X-D	Sample S	Size (Code	Letter	D		36
Table	X-E	Sample 3	Size (Code	Letter	Е		38
Table	X-F	Sample 3	Size (Code	Letter	F		4 0
Table	XG	Sample \$	Size (Code	Letter	G		42
Table	X–H	Sample 3	Size (Code	Letter	Η		44
Table	X–J	Sample 3	Size	Code	Letter	J		46
Table	X–K	Sample \$	Size (Code	Letter	Κ		4 8
Table	X-L	Sample 3	Size (Code	Letter	L		50
Table	X–M							
Table	X–N							
Table	X-P	Sample	Size (Code	Letter	Ρ		56
Table	X-Q							
Table	X–R	Sample 3	Size (Code	Letter	R		60
Table	X–S							
		-						
INDE	X OF TE	RMS WIT	TH SE	PECL	AL ME	AN	INGS	63

~(OHO)

iv 🖉

SAMPLING PROCEDURES AND TABLES FOR INSPECTION BY ATTRIBUTES

A10

~OHO*

1. SCOPE

1.1 **PURPOSE.** This publication establishes sampling plans and procedures for inspection by attributes. When specified by the responsible authority, this publication shall be referenced in the specification, contract, inspection instructions, or other documents and the provisions set forth herein shall govern. The "responsible authority" shall be designated in one of the above documents.

1.2 APPLICATION. Sampling plans designated in this publication are applicable, but not limited, to inspection of the following:

- a. End items.
- b. Components and raw materials.
- c. Operations.
- d. Materials in process.
- e. Supplies in storage.
- f. Maintenance operations.
- g. Data or records.

Ż

h. Administrative procedures.

These plans are intended primarily to be used for a continuing series of lots or batches.

The plans may also be used for the inspection of isolated lots or batches, but, in this latter case, the user is cautioned to consult the operating characteristic curves to find a plan which will yield the desired protection (see 11.6).

1.3 INSPECTION. Inspection is the process of measuring, examining, testing, or otherwise comparing the unit of product (see 1.5) with the requirements.

1.4 INSPECTION BY ATTRIBUTES. Inspection by attributes is inspection whereby either the unit of product is classified simply as defective or nondefective, or the number of defects in the unit of product is counted, with respect to a given requirement or set of requirements.

1.5 UNIT OF PRODUCT. The unit of product is the thing inspected in order to determine its classification as defective or nondefective or to count the number of defects. It may be a single article, a pair, a set, a length, an area, an operation, a volume, a component of an end product, or the end product itself. The unit of product may or may not be the same as the unit of purchase. supply, production, or shipment.

ł

2. CLASSIFICATION OF DEFECTS AND DEFECTIVES

2.1 METHOD OF CLASSIFYING DEFECTS.

A classification of defects is the enumeration of possible defects of the unit of product classified according to their seriousness. A defect is any nonconformance of the unit of product with specified requirements. Defects will normally be grouped into one or more of the following classes; however, defects may be grouped into other classes, or into subclasses within these classes.

2.1.1 CRITICAL DEFECT. A critical defect is a defect that judgment and experience indicate is likely to result in hazardous or unsafe conditions for individuals using, maintaining, or depending upon the product; or a defect that judgment and experience indicate is likely to prevent performance of the tactical function of a major end item such as a ship, aircraft, tank, missile or space vehicle. NOTE: For a special provision relating to critical defects, see 6.3.

2.1.2 MAJOR DEFECT. A major defect is a defect, other than critical, that is likely to result in failure, or to reduce materially the usability of the unit of product for its intended purpose. 2.1.3 MINOR DEFECT. A minor defect is a defect that is not likely to reduce materially the usability of the unit of product for its intended purpose, or is a departure from established standards having little bearing on the effective use or operation of the unit.

2.2 METHOD OF CLASSIFYING DEFEC-TIVES. A defective is a unit of product which contains one or more defects. Defectives will usually be classified as follows:

2.2.1 CRITICAL DEFECTIVE. A critical defective contains one or more critical defects and may also contain major and or minor defects. NOTE: For a special provision relating to critical defectives, see 6.3.

2.2.2 MAJOR DEFECTIVE. A major defective contains one or more major defects, and may also contain minor defects but contains no critical defect.

_)

2.2.3 MINOR DEFECTIVE. A minor defective contains one or more minor defects but contains no critical or major defect.

3. PERCENT DEFECTIVE AND DEFECTS PER HUNDRED UNITS

3.1 EXPRESSION OF NONCONFORM-ANCE. The extent of nonconformance of product shall be expressed either in terms of percent defective or in terms of defects per hundred units.

3.2 PERCENT DEFECTIVE. The percent defective of any given quantity of units of product is one hunderd times the number of defective units of product contained therein divided by the total number of units of product, i.e.:

Percent defective = $\frac{\text{Number of defectives}}{\text{Number of units inspected}} \times 100$

3.3 DEFECTS PER HUNDRED UNITS. The number of defects per hundred units of any given quantity of units of product is one hundred times the number of defects contained therein (one or more defects being possible in any unit of product) divided by the total number of units of product, i.e.:

Defects per = <u>Number of defects</u> \times 100 hundred units = <u>Number of units inspected</u>

4. ACCEPTABLE QUALITY LEVEL (AQL)

4.1 USE. The AQL, together with the Sample Size Code Letter, is used for indexing the sampling plans provided herein.

4.2 **DEFINITION.** The AQL is the maximum percent defective (or the maximum number of defects per hundred units) that, for purposes of sampling inspection, can be considered satisfactory as a process average (see 11.2).

NOTE ON THE MEANING OF AQL. 4.3 When a consumer designates some specific value of AQL for a certain defect or group of defects, he indicates to the supplier that his (the consumer's) acceptance sampling plan will accept the great majority of the lots or batches that the supplier submits, provided the process average level of percent defective (or defects per hundred units) in these lots or batches be no greater than the designated value of AQL. Thus, the AQL is a designated value of percent defective (or defects per hundred units) that the consumer indicates will be accepted most of the time by the acceptance sampling procedure to be used. The sampling plans provided herein are so arranged that the probability of acceptance at the designated AQL value depends upon the sample size, being generally higher for large samples than for small ones, for a given AQL. The AQL alone does not describe the protection to the consumer for individual lots or batches but more directly relates to what might be expected from a series of lots or batches, provided the steps indicated in this publication are taken. It is necessary to refer to the operating characteristic curve of the plan, to determine what protection the consumer will have.

4.4 LIMITATION. The designation of an AQL shall not imply that the supplier has the right to supply knowingly any defective unit of product.

4.5 SPECIFYING AQLs. The AQL to be used will be designated in the contract or by the responsible authority. Different AQLs may be designated for groups of defects considered collectively, or for individual defects. An AQL for a group of defects may be designated in addition to AQLs for individual defects, or subgroups, within that group. AQL values of 10.0 or less may be expressed either in percent defective or in defects per hundred units; those over 10.0 shall be expressed in defects per hundred units only.

4.6 PREFERRED AQLs. The values of AQLs given in these tables are known as preferred AQLs. If, for any product, an AQL be designated other than a preferred AQL, these tables are not applicable.

5. SUBMISSION OF PRODUCT

5.1 LOT OR BATCH. The term lot or batch shall mean "inspection lot" or "inspection batch," i.e., a collection of units of product from which a sample is to be drawn and inspected to determine conformance with the acceptability criteria, and may differ from a collection of units designated as a lot or batch

ł

for other purposes (e.g., production, shipment, etc.).

5.2 FORMATION OF LOTS OR BATCHES. The product shall be assembled into identifiable lots, sublots, batches, or in such other manner as may be prescribed (see 5.4). Each lot or batch shall, as far as is practicable,

5. SUBMISSION OF PRODUCT (Continued)

consist of units of product of a single type, grade, class, size, and composition, manufactured under essentially the same conditions, and at essentially the same time.

5.3 LOT OR BATCH SIZE. The lot or batch size is the number of units of product in a lot or batch.

5.4 PRESENTATION OF LOTS OR BATCHES. The formation of the lots or batches, lot or batch size, and the manner in which each lot or batch is to be presented and identified by the supplier shall be designated or approved by the responsible authority. As necessary, the supplier shall provide adequate and suitable storage space for each lot or batch, equipment needed for proper identification and presentation, and personnel for all handling of product required for drawing of samples. }

-)

)

6. ACCEPTANCE AND REJECTION

6.1 ACCEPTABILITY OF LOTS OR BATCHES. Acceptability of a lot or batch will be determined by the use of a sampling plan or plans associated with the designated AQL or AQLs.

6.2 DEFECTIVE UNITS. The right is reserved to reject any unit of product found defective during inspection whether that unit of product forms part of a sample or not, and whether the lot or batch as a whole is accepted or rejected. Rejected units may be repaired or corrected and resubmitted for inspection with the approval of, and in the manner specified by, the responsible authority.

6.3 SPECIAL RESERVATION FOR CRITI-CAL DEFECTS. The supplier may be required at the discretion of the responsible authority to inspect every unit of the lot or batch for critical defects. The right is reserved to inspect every unit submitted by the supplier for critical defects, and to reject the lot or batch immediately, when a critical defect is found. The right is reserved also to sample, for critical defects, every lot or batch submitted by the supplier and to reject any lot or batch if a sample drawn therefrom is found to contain one or more critical defects.

6.4 **RESUBMITTED LOTS OR BATCHES.** Lots or batches found unacceptable shall be resubmitted for reinspection only after all units are re-examined or retested and all defective units are removed or defects corrected. The responsible authority shall determine whether normal or tightened inspection shall be used, and whether reinspection shall include all types or classes of defects or for the particular types or classes of defects which caused initial rejection.

7. DRAWING OF SAMPLES

7.1 SAMPLE. A sample consists of one or more units of product drawn from a lot or batch, the units of the sample being selected at random without regard to their quality. The number of units of product in the sample is the sample size. 7.2 **REPRESENTATIVE SAMPLING.** When appropriate, the number of units in the sample shall be selected in proportion to the size of sublots or subbatches, or parts of the lot or batch, identified by some rational criterion.

7. DRAWING OF SAMPLES (Continued)

When representative sampling is used, the units from each part of the lot or batch shall be selected at random.

ŧ

7.3 TIME OF SAMPLING. Samples may be drawn after all the units comprising the lot or batch have been assembled, or sam-

NORMAL, TIGHTENED AND REDUCED INSPECTION 8.

INITIATION OF INSPECTION. Nor-8.1 mal inspection will be used at the start of inspection unless otherwise directed by the responsible authority.

8.2 CONTINUATION OF INSPECTION. Normal, tightened or reduced inspection shall continue unchanged for each class of defects or defectives on successive lots or batchs except where the switching procedures given below require change. The switching procedures given below require a change. The switching procedures shall be applied to each class of defects or defectives independently.

SWITCHING PROCEDURES. 8.3

8.3.1 NORMAL TO TIGHTENED. When normal inspection is in effect, tightened inspection shall be instituted when 2 out of 5 consecutive lots or batches have been rejected on original inspection (i.e., ignoring resubmitted lots or batches for this procedure).

8.3.2 TIGHTENED TO NORMAL. When tightened inspection is in effect, normal inspection shall be instituted when 5 consecutive lots or batches have been considered acceptable on original inspection.

8.3.3 NORMAL TO REDUCED. When normal inspection is in effect, reduced inspection shall be instituted providing that all of the following conditions are satisfied:

ples may be drawn during assembly of the lot or batch.

7.4 DOUBLE OR MULTIPLE SAMPLING. When double or multiple sampling is to be used, each sample shall be selected over the entire lot or batch.

a. The preceding 10 lots or batches (or more, as indicated by the note to Table VIII) have been on normal inspection and none has been rejected on original inspection; and

The total number of defectives (or de**b**. fects) in the samples from the preceding 10 lots or batches (or such other number as was used for condition "a" above) is equal to or less than the applicable number given in Table VIII. If double or multiple sampling is in use, all samples inspected should be included, not "first" samples only; and

c. Production is at a steady rate; and

d. Reduced inspection is considered desirable by the responsible authority.

8.3.4 REDUCED TO NORMAL. When reduced inspection is in effect, normal inspection shall be instituted if any of the following occur on original inspection:

a. A lot or batch is rejected; or

b. A lot or batch is considered acceptable under the procedures of 10.1.4; or

c. Production becomes irregular or delayed; or

d. Other conditions warrant that normal inspection shall be instituted.

8.4 DISCONTINUATION OF INSPECTION. In the event that 10 consecutive lots or batches remain on tightened inspection (or such other number as may be designated by the responsible authority), inspection under the provisions of this document should be discontinued pending action to improve the quality of submitted material.

9. SAMPLING PLANS

9.1 SAMPLING PLAN. A sampling plan indicates the number of units of product from each lot or batch which are to be inspected (sample size or series of sample sizes) and the criteria for determining the acceptability of the lot or batch (acceptance and rejection numbers).

9.2 INSPECTION LEVEL. The inspection level determines the relationship between the lot or batch size and the sample size. The inspection level to be used for any particular requirement will be prescribed by the responsible authority. Three inspection levels: I, II, and III, are given in Table I for general use. Unless otherwise specified. Inspection Level II will be used. However, Inspection Level I may be specified when less discrimination is needed, or Level III may be specified for greater discrimination. Four additional special levels: S-1, S-2, S-3 and S-4, are given in the same table and may be used where relatively small sample sizes are necessary and large sampling risks can or must be tolerated.

NOTE: In the designation of inspection levels S-1 to S-4, care must be exercised to avoid AQLs inconsistent with these inspection levels.

9.3 CODE LETTERS. Sample sizes are designated by code letters. Table I shall be used to find the applicable code letter for the particular lot or batch size and the prescribed inspection level.

9.4 OBTAINING SAMPLING PLAN. The AQL and the code letter shall be used to ob-

tain the sampling plan from Tables II. III or IV. When no sampling plan is available for a given combination of AQL and code letter. the tables direct the user to a different letter. The sample size to be used is given by the new code letter not by the original letter. If this procedure leads to different sample sizes for different classes of defects, the code letter corresponding to the largest sample size derived may be used for all classes of defects when designated or approved by the responsible authority. As an alternative to a single sampling plan with an acceptance number of 0, the plan with an acceptance number of 1 with its correspondingly larger sample size for a designated AQL (where available), may be used when designated or approved by the responsible authority.

)

_)

)

9.5 TYPES OF SAMPLING PLANS. Three types of sampling plans: Single, Double and Multiple, are given in Tables II, III and IV, respectively. When several types of plans are available for a given AQL and code letter, any one may be used. A decision as to type of plan, either single, double, or multiple, when available for a given AQL and code letter, will usually be based upon the comparison between the administrative difficulty and the average sample sizes of the available plans. The average sample size of multiple plans is less than for double (except in the case corresponding to single acceptance number 1) and both of these are always less than a single sample size. Usually the administrative difficulty for single sampling and the cost per unit of the sample are less than for double or multiple.

10. DETERMINATION OF ACCEPTABILITY

10.1 PERCENT DEFECTIVE INSPECTION. To determine acceptability of a lot or batch under percent defective inspection, the applicable sampling plan shall be used in accordance with 10.1.1, 10.1.2, 10.1.3, 10.1.4, and 10.1.5.

10.1.1 SINGLE SAMPLING PLAN. The number of sample units inspected shall be equal to the sample size given by the plan. If the number of defectives found in the sample is equal to or less than the acceptance number, the lot or batch shall be considered acceptable. If the number of defectives is equal to or greater than the rejection number, the lot or batch shall be rejected.

10.1.2 DOUBLE SAMPLING PLAN. The number of sample units inspected shall be equal to the first sample size given by the plan. If the number of defectives found in the first sample is equal to or less than the first acceptance number, the lot or batch shall be considered acceptable. If the number of defectives found in the first sample is equal to or greater than the first rejection number, the lot or batch shall be rejected. If the number of defectives found in the first sample is between the first acceptance and rejection numbers, a second sample of the size given by the plan shall be inspected. The number of defectives found in the first and second samples shall be accumulated. If the cumulative number of defectives is equal to or less than the second acceptance number, the lot or batch shall be considered acceptable. If the cumulative number of defectives is equal to or greater than the second rejection number, the lot or batch shall be rejected.

10.1.3 MULTIPLE SAMPLE PLAN. Under multiple sampling, the procedure shall be similar to that specified in 10.1.2, except that the number of successive samples required to reach a decision may be more than two.

10.1.4 SPECIAL PROCEDURE FOR RE-DUCED INSPECTION. Under reduced inspection, the sampling procedure may terminate without either acceptance or rejection criteria having been met. In these circumstances, the lot or batch will be considered acceptable, but normal inspection will be reinstated starting with the next lot or batch (see 8.3.4 (b)).

10.2 DEFECTS PER HUNDRED UNITS IN-SPECTION. To determine the acceptability of a lot or batch under Defects per Hundred Units inspection, the procedure specified for Percent Defective inspection above shall be used, except that the word "defects" shall be substituted for "defectives."

11. SUPPLEMENTARY INFORMATION

11.1 OPERATING CHARACTERISTIC CURVES. The operating characteristic curves for normal inspection, shown in Table X (pages 30-62), indicate the percentage of lots or batches which may be expected to be accepted under the various sampling plans for a given process quality. The curves shown are for single sampling; curves for double

~ 1

and multiple sampling are matched as closely as practicable. The O. C. curves shown for AQLs greater than 10.0 are based on the Poisson distribution and are applicable for defects per hundred units inspection; those for AQLs of 10.0 or less and sample sizes of 80 or less are based on the binomial distribution and are applicable for percent defec-

11. SUPPLEMENTARY INFORMATION (Continued)

tive inspection; those for AQLs of 10.0 or less and sample sizes larger then 80 are based on the Poisson distribution and are applicable either for defects per hundred units inspection, or for percent defective inspection (the Poisson distribution being an adequate approximation to the binomial distribution under these conditions). Tabulated values, corresponding to selected values of probabilities of acceptance (P_a , in percent) are given for each of the curves shown, and, in addition, for tightened inspection, and for defects per hundred units for AQLs of 10.0 or less and sample sizes of 80 or less.

11.2 **PROCESS AVERAGE.** The process average is the average percent defective or average number of defects per hundred units (whichever is applicable) of product submitted by the supplier for original inspection. Original inspection is the first inspection of a particular quantity of product as distinguished from the inspection of product which has been resubmitted after prior rejection.

11.3 AVERAGE OUTGOING QUALITY (AOQ). The AOQ is the average quality of outgoing product including all accepted lots or batches, plus all rejected lots or batches after the rejected lots or batches have been effectively 100 percent inspected and all defectives replaced by nondefectives.

11.4 AVERAGE OUTGOING QUALITY LIMIT (AOQL). The AOQL is the maximum of the AOQs for all possible incoming qualities for a given acceptance sampling plan. AOQL values are given in Table V-A for each of the single sampling plans for normal inspection and in Table V-B for each of the single sampling plans for tightened inspection. 11.5 AVERAGE SAMPLE SIZE CURVES. Average sample size curves for double and multiple sampling are in Table IX. These show the average sample sizes which may be expected to occur under the various sampling plans for a given process quality. The curves assume no curtailment of inspection and are approximate to the extent that they are based upon the Poisson distribution, and that the sample sizes for double and multiple sampling are assumed to be 0.631n and 0.25n respectively, where n is the equivalent single sample size. - 1

)

LIMITING QUALITY PROTECTION. 11.6 The sampling plans and associated procedures given in this publication were designed for use where the units of product are produced in a continuing series of lots or batches over a period of time. However, if the lot or batch is of an isolated nature, it is desirable to limit the selection of sampling plans to those, associated with a designated AQL value, that provide not less than a specified limiting quality protection. Sampling plans for this purpose can be selected by choosing a Limiting Quality (LQ) and a consumer's risk to be associated with it. Tables VI and VII give values of LQ for the commonly used consumer's risks of 10 percent and 5 percent respectively. If a different value of consumer's risk is required, the O.C. curves and their tabulated values may be used. The concept of LQ may also be useful in specifying the AQL and Inspection Levels for a series of lots or batches, thus fixing minimum sample size where there is some reason for avoiding (with more than a given consumer's risk) more than a limiting proportion of defectives (or defects) in any single lot or batch.

1

TABLE 1-Sample size code letters

..... L

(See 9.2 and 9.3)

Lot	Lot or hatch aize			Special insp	Special inspection levels		Gener	General inspection levels	levels
			S-1	S-2	S-3	S-4	-	II	I
3	9	œ	V	۷	V	A	V	<	B
6	2	15	V	×	•	<	۷	B	U
16	9	ស	<	<	B	B	в	C	٩
26	2	5	<	æ	B	U	U	D	<u>ب</u>
51	2	8	B	8	U	U	U	ш	<u>ند</u>
16	2	150	â	æ	U	D	Q	Ĩ.	9
151	8	280	B	U	Q	Ŀ	ш	J	H
281	5	200	B	υ	D	ы	Ŀ.	Н	-
501	2	1200	υ	υ	ы	[2 .,	υ	~	¥
1201	3	3200	U	۵	ы	J	H	х	ب
3201	9	10000	υ	D	ís.	U	7	د.	X
10001	2	35000	υ	Q	<u>ن</u> د.	н	К	X	z
35001	9	150000	۵	٤J	U	7	Ļ	z	۵.
150001	ţ	50000	Q	ы	υ	-7	X	G	0
20001	and	over	Q	ш	H	Х	z	ð	æ

9

CODE LETTERS

Downloaded from http://www.everyspec.com

(See 9.4 and 9.5)

Т	8	Ac Re	8 3
ł		ž	х л у /
╞	જુ	۲ ۲	
	ş	Ac B	
ſ	ิฆิ	Ac Re	
ł	<u>8</u>	<u>۲</u>	∞ = s ¤ ₽
ŀ		Re Ac	
	100	٩c	5 2 2 3
	\$\$	Ac Re	× ∞ × 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	40	Ac Re	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	25	Ac Re	3 3
	15	Ac Re	
	10	Ac Re	
spection	65	Ac Re	
Acceptable (Juality Levels (normal inspection)	4.0	Ac Re	
Levels (I	2.5	Ac Re	
Vality	15	Re	
sptable (10	c Re Ac	
Acce	0.65	ReAc	
	\$	Re Ac	
	23	Re Ac	<u> </u>
	°	ReAc	
	0 0 15	Re Ac	
	01.0 SS	۲ ۲	
	0.065	¥	
	0.040	Re Ac Re	······································
	0.025	Re Ac Re	
	0.015		
	0.010	Ac Re Ac	
	Semple size		2000 125 88 55 55 33 5 33 2 5 5 5 5 5 5 5 5 5 5 5 5
	Sample size	r:	< E U Q D L U I N X J ¥ Z L O E

10

Use first sampling plan below error. If sample size equals, or exceeds, lot or batch size, do 100 percent inspection.
Institution and the sampling plan above arrow.
Acceptance number.
Respection number.

(See 9.4 and 9.5)

	90E	Ac Re	
	8	Ac Re	289
	ş	ž	
	۶ X	¥ B	• EI 6 2 /
		Re Ac	° Ω Ω Ω Ω Ω Ω ° ° Ω Ω ° ° ° Ω Ω ° ° ° °
	150	Re Ac	23 8 23 8 23 8 23 8 2 23 8 2 2 3 8 2 2 3 8 2 2 3 8 2 2 3 8 2 2 3 8 2 2 3 8 2 2 3 8 2 3 2 3
	8	ReAc	
	8	ž	
	ę.	Ac Re	- N M N M N M N M N M N M N M N M N M N
	ß	Ac Re	
	15	Ac Re	
	01	Ac Re Ac Re	
vection)	6.5	hc Re	
med in a	4.0	Ac Re Ac Re	
Arceptable Quality Levela (tightened inspection)	2.5	Ac Re A	
y Level	1.5	R	
e Oralie	1.0	Re Ac	
rceptabl	0.65	Re Re	
Ž		Re Ac	
	25 0.40	Re Ac	
	15 0.25	Re Ac	······································
	Ö		
	0.10	P Ac F	~ ~ ~ ~ ~ ~ ~ ~
	0.065	Ac R	
	0.040	Ac Re	
	0.025	Ac Re	
	0.015	Ac Re	·→ · · · ·
	010.0	Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac	
	Sample size		2 3 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

11

Use first sampling plan below arrow. If sample size equals or exceeds lot or batch size, do 100 percent inspection.
Tube first sampling plan above arrow.
Ac = Acceptance number.
Rejection number.

-

1

TABLE II-B --- Single sampling plans for tightened inspection (Master table)

TABLE II-C-Single sampling plans for reduced inspection (Master table)

SINGLE REDUCED

(See 9.4 and 9.5)

	801	Ac Re	
	8	¥ ۲	
ŀ	ş	چ ۲	
	R	ž	
F	8	R R	
ł	8	R R	••• • 2 <u>.</u>
ŀ	8	¥ #	▼
ŀ	\$	۲ لا	
ŀ	ĸ	۲ لار	~ ~ ~ ~ <u>~</u> <u>~</u> <u>~</u> <u>~</u> <u>~</u> <u>~</u> <u>~</u> <u>~</u>
ŀ	5	Re Re	
$\left \right $	- 9	Ac Re Ac	
t is	د ک ۱	2	
inapecti	• •	Re Re	
reduced	2.5	ReAc	
Acceptable Quality Levels (reduced inspection) [†]	~	Re Ac	
Ail I	0 1.5	ReAc	
epteble	1.0	Ac Re Ac	
Acc	0.65	Re Ac 1	
	0.40	Re Ac F	
	5 0.25	Re Ac R	
	0.15	ž	
	0.10	e Ac Re	······································
	0.066	Re Ac Re Ac Re	·····································
	0.040	Ac Re	······································
	1.025	ل ا لا لا	〉 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
	0.015	ž	
	010.0	¥ لا	
	i i		66 20 12 6 2 13 13 1 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
j	1 - B	letter	<

12

Use first sampling plan below arrow. If sample size equals or exceeds lot or batch size, do 100 percent insprction. Use first sampling plan above arrow. . 1

ance number Accept Rejecti

Į j

accept the lot, but reinstate normal inspection (see 10.1.4). reached, ž but the rejection number been exceeded. i If the acceptance ৻৻∕₽ৼৼ৸ TABLE III-A—Double sampling plans for normal inspection (Master table)

(See 9.4 and 9.5)

(

-

$ \begin{array}{c} \operatorname{true} \left\{ \left\{ \begin{array}{c} \operatorname{true} \left\{ \left\{ \begin{array}{c} \operatorname{true} \left\{ $																			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		8			1	1													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-				- ~													
$ \begin{array}{c} true the true true true true true true true tru$		8		•	1	1	(≔						·						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		8				· · · · · ·	<u>د</u> ه	1											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		¥					_	v	1										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		x		•					[(=										==
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		•				_		_	1										
Verticity (sub- int) Constrained (sub- int) Constrained (sub- int) <td></td> <td>1S</td> <td></td> <td>Ŀ</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>		1S		Ŀ					1										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		8		•]													-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									2 2	1									
$ \begin{array}{c} \text{trues} t$		38		·	<u> </u>	ļ				1									
Accession (10) (10) (10) (10) (10) (10) (10) (10)		8									4								
According to the form the large the large that that that the large that the large that that that the larg					L						3 2	4							
According to the form the large larg		R		•	0 7		~ ~	. m . m		~ =	* = *	۲.							
Carrier Carrier Consider		S		L L	1				1	4 1			<u> </u>						
true true <t< td=""><td></td><td></td><td></td><td>1-1/</td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				1 -1/	<u> </u>						_		1						
Table in the set of	2	≗			=>	1			i	1 1				$\langle =$					
Lumber	ection	S.	ž		6	~		1							1_				
Lumber Served Cost	iesp.	\$			1	<u> </u>			1				_		V-				
Samuelie line Constant Line Constant		4.0		4	•				i	1						(==			—
Samuelie line Constant Line Constant	1	s				<u> </u>			2 2	~ •	4 9	5	~ •	• 11	= 2	2 E	1		
Samuelie line Constant Line Constant	r Lev	2	٩c		<u></u>	<u> </u>	5	<u>۲</u>					<u>.</u>				1		
Samuelie line Constant Line Constant	Deality	1.5				 >							1 1		-				====
Samuelie line Constant Line Constant	D alde							`	· · · · · ·				4 0	5				9 R	
Samuelie line Constant Line Constant	cept	1.0					=>	•		5	o	0 m						= %	9
Samuelie Canadia <	×	. 6S								C	Ľ		i I						
Samuelic annueli								<u> </u>	L										
Serute Serute<		9							\Rightarrow	•		l L	o	0 10	- •	e 9	~ •		
Samuelic stanution Constant statution Constant statution Constan			<u>+</u>									6	~		~ ~	(1		
Samuels Samuels Samuels Comment Comment <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>V</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												V							
Smartle Smartle Come intervent		0.15			_						⇒	•		り		1			1 1
Samuelia Canadia Canadia Canadia Canadia Control O OS O ONO O OS		2												1	~		1		1 1
Samuelic servetic strategic strategic servetic strategic servetic serv							-					/	t	て					
Samuelic answite Case answite Case answite Conto O OIO O OOS <		890.0	الا د										⇒)	•	$\langle \boldsymbol{\nabla} \rangle$		1 1		1 1
Sample sample size Case sample size Case sample size Case sample size O 00 O 005 O 025 O 00 Sample size size size Case size Case size Case size Case size O 00 O 005 O 025 O 05 O 055													-				7	~ ~	~ •
Sample from the stand of the stand		8	¥											_ / _	•		<u> </u>	0	
Sample sample Came lative sample Came lative		8													=>	•			
Sample free transition Came of the lifetime of the lif																		<u> </u>	
Sample control Sample control Control </td <td></td> <td>10.0</td> <td>٩c</td> <td></td> <td>\rightarrow</td> <td>•</td> <td>5</td> <td></td>		10.0	٩c													\rightarrow	•	5	
Sample sample site Came lative site Sample site Lative lative site Sample site Lative site Final 2 Final 3 Fina		010															⇒	·	
Sample Sample Sample Sample First 2 First 3 First 3 Second 3 First 3 First 3 Second 3 First 3 First 3 First 3 Second 3 First 30 First 30 Second 32 Second 31 First 30 Second 315	┣	_	_		1	1		r								r—	<u> </u>		
Sample Sample Sample Sample First 2 First 3 First 3 Second 3 First 3 First 3 Second 3 First 3 First 3 First 3 Second 3 First 30 First 30 Second 32 Second 31 First 30 Second 315		ШŤ	A.		~ ~	~ •	° ≥	• 2	¤ %	83	83	88	8 3	<u>N</u> 22	8 9	18 3	<u>8</u> 8	83	<u>80</u>
Ramulte Research Ramulte Research Ramulte Research Recoard Rec	\vdash										~ ~			5 5	00	5 5			
Sample Second Final Fina		Ţf								X X	жж	সস		21	88	E E	88	88	N X
		_			- 1	= ī	- 1	- 1	- 7	- -	- Î	- 1	- T	THE P	Ţ	Į į	T.	7	Į į
	L	- See		ļ	Ēš	<u>EŠ</u>	ž š	E S	ĒŠ	÷.	ž Š	23	23	Ξ¥,	Ë ¥	Ξš	23	23	it š
		111	- Ita	-	=	<u>с</u>	=	¥	<u>د</u>	3	Ŧ	-	4		7	-	ء ا	>	=
	<u> </u>	5 - 0	<u> </u>		L	L	L	L	L	L	l	L	L		L	L	<u> </u>	I	I

13

TABLE 111-B — Double sampling plans for tightened inspection (Master table)

and 9.5) 2. 7 9 Ç z, (4 ź 2, 5 8, 6 5 7, 72 12 1 (See 9.4 1. 1. = 1 > 1 <u>ह</u> प्र 11 र 7. A 7. A Ĵ, $\langle \overline{} \rangle$ Ŧ ΞŚ = 7 2 5 2,7 17.7 Ϋ́ - 7, :: ≠ 71 22 ئر <u>ء ج</u> ÷ · 2 = -, 2.2 5 ~ = ំ ភ្ ٤ :: = Ŧ 10 P 2 2 2 = 7, 8 ~ = <u>د</u> م ~ ~ It Ar <u>م</u> د -1- 2 0 9 = =; \$ - -~ • ~ = • 12 • 73 Y ٤ Ť 5 7 <u>2</u> 2 12 Ş • 12 o -- **w** 10 ~ = • 2 4 ÷ 2 7 99 2 2 **5** r អ \Rightarrow ¢ • -0 -- -~ • ~ = ہ ہ • 5 ž ÷ 24 2 2 2 8 2 ¢ E ÷ • 0 0 - -~ • ~ = ۰ د • ព <u>e</u> 10 9 14 16 23 24 ŧ 2 ¢ Ξ Acceptable (Justicy Ervichs (Lightened Inspection) 7 6 12 15 10 0 ~ es 10 ~ = 2 2 \overline{z} 5 ŝ ¢ 9 10 16 23 He-Ar 7 6 12 15 0 ~ • ~ 111 0 23 S 10 • ¢ • ~ • ° . c -- -~ = •°12 lt⊧ Ar 6 10 15 16 9 14 23 24 1.0 * 5 21 5 10 ٢, _ _ • **。** es 16 ∽ = ÷ J 7 11 12 9 14 23 24 2 2 • 4 5 5 2 2 1 Ç • C - - e 19 0 m -----° 5 1 X 7 R 2 2 1 H. + 10 12 ~ ŝ in h 8 . ÷ 5 -0 -- e 1 10 Ξ 11-- -- .. 5 ~ 12 2 2 2 2 98 ν ν ⇒ Ð **o** ~ ~ • = <u>ه</u> د ° 2 2 2 ď 12 16-2 2 5 Q O ⇒ ~ = 9 ~ • ə – -• :2 -÷ ż 5 7 12 • • • **4** 17 1 5 • ~ • ~ = -ت ÷ ٠ -, 50 2 γ 0 - -~ • ŧ * * 20 **。** ~ - --÷. 1.00 2 3 $\dot{\mathbf{v}}$ ə o ~ تر 1910-0 ż 2 5 ə --نہ 0.00 ż ~ ~ • د 0.015 -¢ ۲ Ŧ 010.0 Г ¥ ji ta **≈** ⊴ 9 **3 -**7 ·^ 2 23 R 8 83 二名 <u>x</u> x 응용 또용 ¢ 88 00 M 99.99 19.99 2000 es es = = :: ::: - -* * 2.2 22 33 88 សួស 8 B ŝŝ ę ĝ <u>7</u> 8 2100 Vample First First -cont First - Electrony Fire First First Fint (cross) Find the second E III 11 First Arread E E - HOUM Firet Firm E F First -Ŧ = с <u>-</u> Ξ 4 ≥ , ÷ Ξ , ---_

14

If sample size equals or exceeds for or batch size, do 100 per rot inspec tise first sampling plan helow arms lise first sampling plan shove arow

lise conceponding single sampling filan (or, alternatively, use double sampling plan below, where available)

-)

Ē

Arreptance number

Itejection number

. \$\$\$ ≠ ±.

DOUBLE TIGHTENED

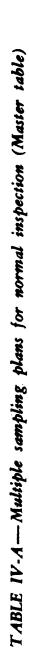
TABLE III-C --- Double sampling plans for reduced inspection (Master table)

(See 9.4 and 9.5)

- 1

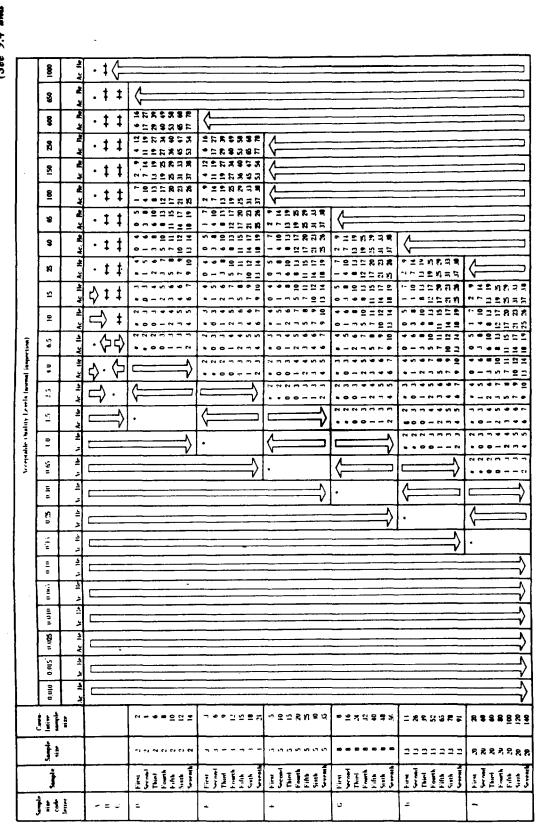
.

, t


												_				_
	8	¥ ۲	•• <													
	<u>3</u> 3	ž	•••										·			
	ê	Re Ac		E R	Λ											
		Re Ac		12 25	\ ≥ я	٨										
	250	Re Ac	•••	10 7 16 18	22 II											=
	95	۲	•••	a 5 12 12	10 7 16 18	<u>\</u>										
	8	e Ac Re	• • •	~	5 12											ᅴ
	ŝ	Ac Re	•••	27 69	3 8 8 12	5 10 12 16	\leftarrow									
	3	Ac Re	• • •	1 2	27 69	3 6 8 12	\$ 10 12 16	$\langle =$								
	Я	Ac Re		0 4 3 6	1547	2 2 6 9	3 8 8 12	5 10 12 16	$\langle -$		· <u> </u>					=
	15	Ac Re	1	• • • •	* *	- 4 2 - 4	2 7 6 9	3 8	5 10 12 16	$\langle =$						=
	<u>e</u>	Ac Re		- - -	* 5	* • 0 m	1 5 4	2 7 6 9	3 8 8 12 1	5 16						
t (aci	6.5	2		N N	F 0	• •	**	4 4 6	F • N •		2 10	<u>/</u>				
Acceptable Quality Lavels (reduced inspection) 1	•	¥ 2			7 7	m •	* vî	* *	51	~ •	• 2	2 2	<u>/</u>			
(reduced	2.5	ž ž	<u>-</u> <u></u> .			202	01	3 4 2 4	-+	5 2 6	~ •	12 S	V 9 %	1		
The second secon	2	R R		1			2 0	6 -	4 0 5 3		2 2 6 2	~ •	12 S	2 2	1	
a line	-	¥ #			N	$\frac{1}{1}$	• • N	0 0 5 0	0 	9 E		0 13 	~ =	2 e 2 c	2 2 1	
- Proble	-	۲ ۲		\rightarrow	·			0 0 N	0 0 7 7	0 	0 m 4 v	+ + •	5 2	~ •	8 2 12 12	
Yes	0.65	¥			\exists	ŀ	$\langle S \rangle$	$\left \frac{1}{2} \right\rangle$	• •	2 0 2 0	o	9 0 8 3		2 9 2		8 S
	9.0	<u>ل</u> ي ج				\Rightarrow	•	(\Box)	5)		20	• ~	9 9		0 V	~ •
1	6.2	¥ ۲					\Rightarrow	ŀ	白		00	0 3	0 4 1 5	* • 0 m	- - -	1 0 N 9
	0.15	2 2 2	11					\Rightarrow	•	$\langle \succ \rangle$	ц)	0 2 3 2	м Ф	0 + 1 S	••	- +
	0.10	r R R R	11						\Rightarrow	•	Û	Ъ,	0 2 0 <i>7</i>	0 3 0 4	0 4 1 5	4 ¢
	9.0	Ac Re								=>	•	Ŷ	Ŀ	0 2 0 2	0 3 4	0 - V
	0.040	÷ ۲									Ţ	•	(].	L)	0 2 0 2	m 🔹
1	0.025	Ac Re										=>	•	Ġ	し	0 2 0 2
	0.015	Ľ	·										=>	•	1	
	0 010 0	× #											<u>v</u>	<u>_</u>		
┝─	·	<u> </u>		~ 4	~ ~	و م ا	• •	2 8	83	32	88	83	10.9			
	jii							ļ		er va	2 1		12 22	<u>8</u> 8	315 630	<u>88</u>
	te s			~ ~	~ ~	s vi	••	: : :	8 8	8 8 8	88	88	20	<u>r</u> r	315 315	<u>8</u> 8
	Ĭ			First	Firm Second	Fire S	E	I J	Fire a	Fire	First Second	S-cont	Fine Second	Fine Section	Fires Second	First Second
<u> </u>		ŧ	< = U	=	u.	<u> </u>	c	Ŧ	-	¥	د ا	z	z	•	2	x
ل ــــــــــــــــــــــــــــــــــــ	,		J	1	L	L	L	L	L	L	L	L	L	L		ليبينيا

* Use first emerging plan below move. If sample mice equals or encoreds lot or batch size, do 100 percent importion.
* A first emerging plan above arrow.
* A compared submatrix
* A compared submatrix
* R compared submatrix
* E is above the surveying plan (see authore to be been exceeded in the majority and below, when and been model.

ohamusiyeiy, ase double somojing pian balow, when avuilable.) aundur bas been exceeded, bat the nejection number has not been resched, accept the lot, hat relations commal inspection (soo 10.14).


•

DOUBLE REDUCED

MULTIPLE NORMAL

(See 9.4 and 9.5)

use multiple manyling plan below, where available). use multiple nampling plan below, where available) on of table on following enaitedy. service plan for shi ermu (refer to

equals ar exceeds he or batch size, do 100 percess inspactio

ł

when accessery). If sample

ŧ

_)

33

\$\\$*±.‡.

16

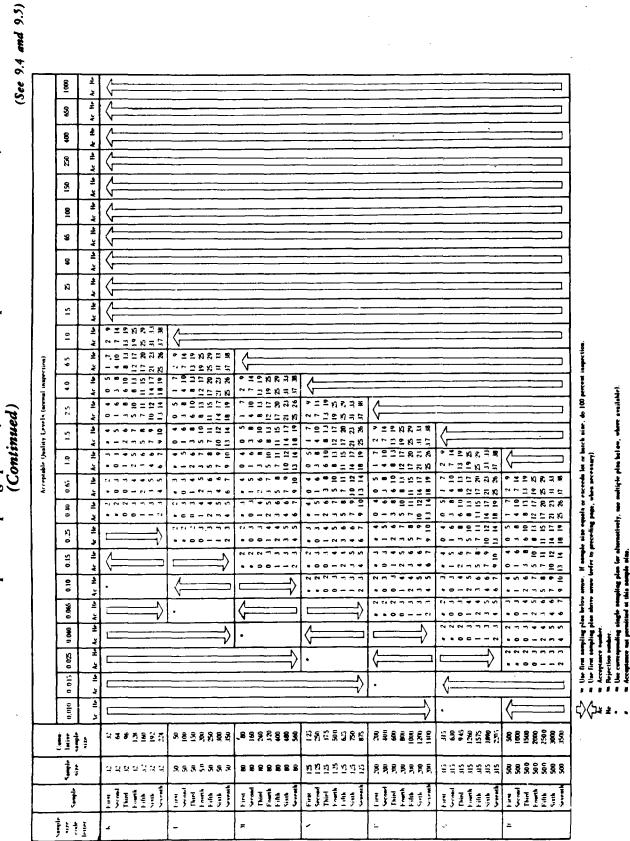
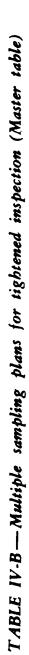
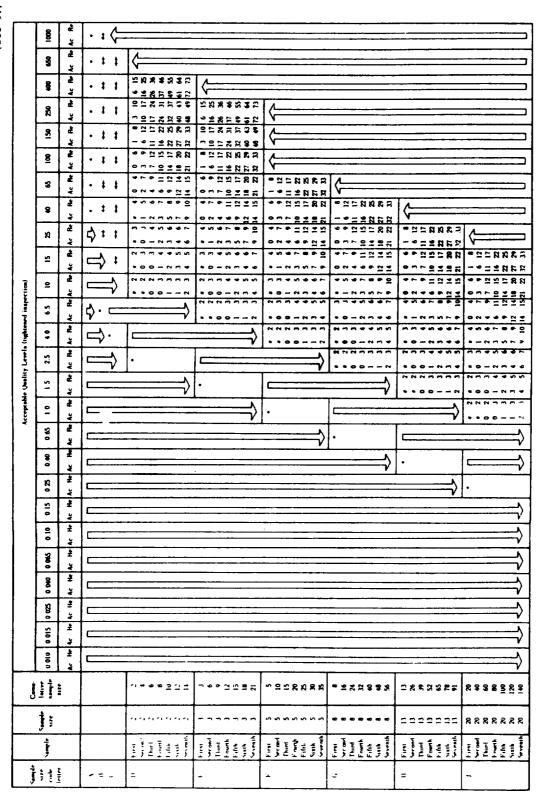



TABLE IV-A — Multiple sampling plans for normal inspection (Master table) (Continued)


- (

Downloaded from http://www.everyspec.com

MULTIPLE NORMAL

(See 9.4 and 9.5)

8

when microsary). If sample size agains or exceeds for or batch

umpling plan below arrow (refer to continuation of table on following page, unspling plan above arrow

¥ = = = ¥

......

\$\$*±. : .

sampling plan (or alternatively, aur waltighe sampling plan below, where available) - sampling plan (or alternatively, aur waltighe sampling plan below, where available) si this ample ass

_)

)

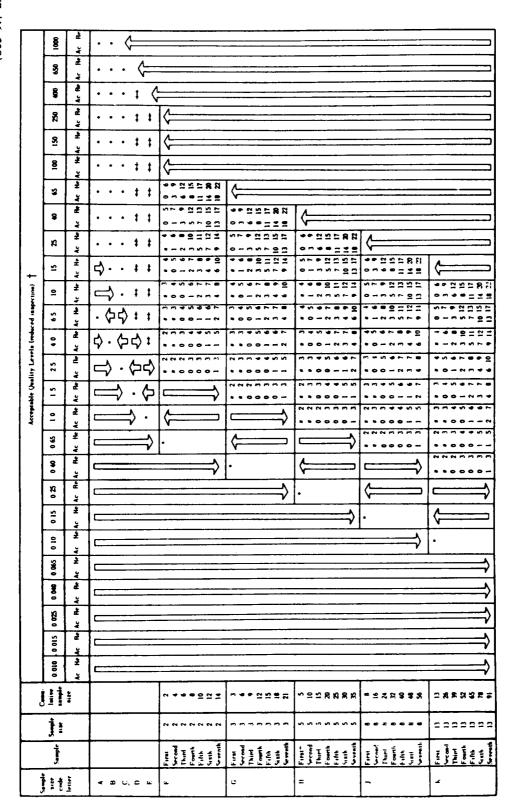
md 9.5)												
(See 9.4 and		1000	ž	A]
3			¥ ¥	4								
		959	¥	{								
		₿ I	¥c ∄e									
		%	Ac Ite	<							. <u> </u>	
		35	Ar 14	¢	· · · · · · · · · · · · · · · · · · ·							
		90]	à	·	· · · · · · · · · · · · · · · · · · ·							
		65	Ite Ac	A								
			lto Ac	A								
		\$	¥	V								
		2	Ar Ar	¢=====				 				
	Inspection	15	Ac He	{								
		10	Ac He	2222222 222222 222222	¢							
	ł	65	4		**************************************	{						pection
	Ĩ	••	Hr A	*~*=245	** 22288	-228883	٨					
	Acceptable (Justicy Lovels (Lightened		He A.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	22222 22222 22222 22222 22222 22222 2222	-21288E	۸				100 percent
led	5	25	He Ac	*-~~~	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 7 3 11 10 12 14 15 14 15 21	2015100 2015200	-228A83				-
(Continued)	Me	1.5	۶	• • - 0 - • •	• - 2 m S • - •	0.08-00 10.06 10.06 10.00	4 4 5 1 4 4 0	- • = 2 X k X	- <u></u>			etch si
uo		0 1	Ac Ite	*******	••~~~ • •	•	550 6 4 NO	****	~*=285¤			
2		0 65	ic He	2 00 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	*00* *00 *0	• • • • • • • • • • • • • • • • • • •	*	87.9499.74 47.910.53	21 10 15 4 6 21 10 15 2 4 6			abeen anote
		9 0	T He A		0000000				0 4 2 7 6 11 6 11 9 12 14 15	28222.00		
}		50	He Ar	· · · · · ·		******			******	4~+ 3745		oe – K sample size equals or exceeds bit or batch size. on (refer to preceding page, oben accesser).
		15 0	ite Ac		V	···· ····	0000000	55449 56492 56497 564777 564777 564777 564777 5647777 5647777 56477777 5647777777777	400 N H H H H H H H H H H H H H H H H H H	0 4 8 4 9 4 5 0 1 5 4 8 4 5 0		apte si
		10 0	Ite Ac		· · · · · · · · · · · · · · · · · · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	··	*****	*******			*** ***
		•	¥ ¥		•		/	**30N	******	*******		
		0 065	5		===⇒	•	C	>				31
		090.0	4 4 7		<u>. </u>	>	•	<u></u>	====⇒			senging plan krine an sengir yilan darer ar re senter senator
		520 0	-11 -2				$ \rightarrow $	•		>	NAN"""""	
		0.015	ž						•	(======		Une first Une first Acceptant
		0 010 0	۲ ۲	r								
ŀ	 i	_	<u> </u>									¢≬≈∎
			: 	X 2 8 8 3 5 5 5				R\$\$\$ <u>8</u> <u>8</u> 8 <u>8</u> 8				1
ļ		<u>,</u>		*******			22222222 22222222					
ļ		-prime /						Illei	4	EALERS		
Į	- Semple	\$ŧ.		4	یر 	7	*	۹.	0	¢	~	

19


MULTIPLE TIGHTENED

Downloaded from http://www.everyspec.com

-


-1

Ę

MULTIPLE REDUCED

(See 9.4 and 9.5)

when nereasory). If mample size equals, or exceeds los or botch size, do 100 percent inspection Use first sampling plas below some (refer to continuation of table on following page.) fing plan above mij zan 💻

II Acceptonce number II Rejection number

\$\$#.:.+

Rejection

sempling plan (or elte 2 20 R

compliant plan below. ----ţ ing plan (or Ī

aben everleblei

altermetively, use multiple sampling plan below, where available i. l at this sample M Use com

isspection (see 10.1.4). Į ā ē ĩ 1 Ī has been exceeded the accept ł ž N

)

)

1 9.5)		•	1 E							
		1000	4c	⟨]
pme			*	·		·····			······································	ł
		650	e Ac	V						1
e 9.4		ş	Ac Re	(·····				
(See		250	Ac Re	¢			· · · · · · · · · · · · · · · · · · ·]
		150	*	<u>ا</u>				······································		
`			ReAc	Y						2 1
pre		<u>1</u>	Ac	ζ	······································					
19	:	8	Ac Re	¢						
t l		\$	ž	<u>/</u>	·····		· · · · · · · · · · · · · · · · · · ·			
Sel			Re Ac	N						1
٤ ا		N 	Ac	<u>د</u>						I I
		ñ	Ac He	<						Ĭ
	+	ē	ž	<u>(</u>						± ₹
eumea mspection (Master table)	Acceptable (Juality Levela (reduced inspection) 🕈	~	ReAc	**22588	۸					Use first sampling plan below arme. If sample size equals, or excrets, lot or bach size, do 100 parcent impection. Use first sampling plan above armov (vefor to preceding page when accessary). Acceptance number Repection sumler Acceptance on permitted at this sample size.
	denib	6.5	He Ac		V				J	erroede, hot an butch size, do 100 porcent impection en encessary). oodad, hat the rejection nomber has unt boss reached.
t et	- Part -	4	Ac H	0 5 1 7 3 9 5 12 5 12 7 13 10 15 13 17	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<		· · · · · · · · · · · · · · · · · · ·		
) elar	2.5	c He	• • • • • • • • • • • • • • • •	0 2 3 4 5 12 5 12 13 12 13 17	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	¢			8 1
1 21	lity L	1.5	R= Ac	****	*****	25525 • ~ S	**************************************	۸		4
(p)	3		Hada	********	*~~~~~~~	1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	5 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*•25588 /		ach ai Ction
- nu	cestab	° -	٩c	* 0 0 - N M *	*0-NM+0		0 - n n ~ 9 E	0 E 9 8 1 7 8		8 . E 8 . E
(Continued)	٩c	0.65	Ac He	**00N		*0-8789 *048789	• - 2 0 - 4 • - 2 0 - 4 • - 2	0 5 3 9 5 12 5 13 7 13 10 15 13 17	0 0 0 0 0 0 0 0 0 0 0 0 0 0	
ီပို		9	÷.		~~~~~	****	* 4 4 4 4 9 9	***8255	~~ • <u>255</u> 55	ar erro
,) "		5	Hr Ac	000 MMMMMM	8 800N	*00-NM*		*	+ + + + + + + + + + + + + + + + + + +	11
nd		0.25	¥	******	* * 0 0 0	**00N	• 0 0 - N M + - 0 0 0 - N M +	94 74 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9	* - N M M M A	
sampung plans jon (Continued		0 15	Ac Re	$ \longrightarrow \rangle$				* 0 0 - 0 0 +	• • • • • • • •	ama. Il aanoje alae equala, or erreta, lot o arou (refer to precediag page when accessary) is sample alte: receptares number has been exceeded, hat the r
1		0 10	a L	{		NNNMMMM = = 0 0 0 0 -	******	* 3 • 3 • 5 • 5 • 5 • 5 • 3 • 3 • 3 • 3 • 3 • 3 • 3 • 3 • 3 • 3		
ande		Ş	Re Ac		·			*****	~~~~	
		0 0.065	Re Ac	•	·		• • • • • • • • • •	000	**00N	
		090.0	٨c		•			•••••-	•••••	Use first sampling plan below Liar first sampling plan above Acceptone number Rejection sumber Acceptone number H, after the final nample, the 1
		520.0	Ac Re		>	•			**0000	Use first sampling Use first sampling Acceptance number Rejection number Acceptance and per Acceptance and per
		0.015	÷				•	<u>ر</u>		e firs e firs crepte sectio
			Re Ac			V		v	4	
		a. oto	¥				>	•		¢¢≈±⊶
	Į	letive suple	aize	8388 <u>88</u> 3	2 3 8 8 9 8 8	20 <u>20 20 20 10 10 20</u>	80 240 480 320 480 320 480 320 320 320 320 320 320 320 320 320 32	1,25 375 300 520 525 730 573	<u>8</u> 8888888	
		Sample		*****	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	*****	8888888	21 22 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	***	
		Sample		First Second Thurd Fourth Fifth Sinth	First Second Third Fourth Fifth Sirth Seventh	Firm Second Third Found Filth Seath Seath	Firest Second Third Fourth Fith Sirth Sirth	First Second Third Fourth Fifth Sirth	First Sec and Third Founds Sereads Sereads	
		12r	letter		3	z	د	•	I	

TABLE IV-C-Multiple sampling plans for reduced inspection (Master table)

Í

1

Downloaded from http://www.everyspec.com

MULTIPLE REDUCED

(See 11.4)

											-	Accept	Acceptable Quality Level	ality l	Level												
Code Letter	Size	0.010	0.015	0.025	0.040	0.010 0.015 0.025 0.040 0.065	0.10	0.15	0.25	0.40	0.65	1.0	1.5	2.5	4.0	6.5	0	15	ĸ	\$	8	8	150 150	250	9 900	650 1	1000
ن ھ >	0 9 0												1	4 2	12	<u>8</u>	12	85	3 8 5	8	76 1 10 8	130 150	22 02 25 02 25 06 16 22 06	330 310 290	470 7 9 9 6 4 30 6	1 062 280 1	1100
0 6 6	8 II •							<u></u>			1.8	2.8	\$0. ₩	4.2	6.9 6.9	11 11 9.7	17 15 16	24 23 23	4 0 3 4 33	885	8 2 73 73	<u>8</u> 91	120 2	220	10		
0 H ¬	32 50 80						. <u>.</u>	0.46	0.74	1.2	=	1.7 1.7	2.6 2.7 2.4	6 .3 9 .0 4 .0	6.1 6.3 5.6	9.9 9.0 8.2	14 13 12	21 19 18	R i Ri	\$	···						
X J X Z C	125 200 315 800		0.046	0.074	0.12	0.18	0.29	0.27 0.24 0.26	0.42 0.44 0.39 0.40	0.67 0.69 0.62 0.63 0.56	1.1 0.97 1.00 0.90 0.90		2.5 2.2 2.1 2.1 1.9 1.8	3.6 3.3 3.0 2.9	5.2 4.7 4.7	7.3	13		<u></u>								
⊃ ¤	1250 2000	0.029		0.042	0.067	0.042 0.069 0.097	0.16 7 0.16	6 0.25 5 0.22	0.36	0 72	0.75	1.2							<u> </u>								
																	·			-1		-		-1	-	-	1

22

TABLE V-A-Average Outgoing Quality Limit Factors for Normal Inspection (Single sampling)

AOQL NORMAL

Notes For the exact AOQL, the above values must be multiplied by (1 - 3 ample size) Lot or Batch size

(See 11.4)

TABLE V-B—Average Outgoing Quality Limit Factors for Tightened Inspection (Single sampling)

ţ

·---- 1

	8	00 1100					
	<u>8</u>	620 650 610					
ĺ	₿,	400 410 390	R				
	ស្ត		5				
	150	160 170 160	160 150				
	100	97 110 100	88				
	S	233	2 2 2				
	ş	2 3 8 S	383	R			
	р	8 5	***	X X			
	15	11	17 15 16	16 16			
	10		11 11 9.7	9.9 10 9.9	6.6		
Ŧ	6.5	12	6.9	6.1 6.4	6.2		
hality L	4.0	12	• 2	E.4 9.5 0.4	4.1 4.6 3.9		
Acceptable Quality Level	2.5		4	2.6 2.7 2.4	2.5 2.6 2.5	2.5	
Acce	1.5		2.8	11	1.6 1.6 1.6	1.6	
	1.0		1.0	1.1	1.1 0.97 1.0	1.0 6.9 99.9	
	0.65			1.2	0.67 0.69 0.62	0.63 0.64 0.64	0.62
	01.00			0.74	0.42	0.39 0.40 0.41	9
	SZ 0			99 .0	0.27	0.24 0.24 0.25	×
	0.15				£ .0	0.17 0.17 0.16	0.16
	0.10				0.18	0.11 7 0.11	6 0.04
	0.065				0.12	0.067	690 O
	0100					0.074	0.042
	Q.0.0					0.0	0.027
	0.015					620.0	
	0.010			, ,	·		0.018
	Sample	8 m 8	• <u>-</u> 8	8 8 8	20 20 312 00 212	8 8 X	2000 3150
	Code Inter	< <u>ه</u> ب		9 = -	× -> =	K C D K	~ /
L		L	I	ł	L	L	

(... 11.4) Note: For the exact AOQL, the above values must be multiplied by (1 - Sample eize) -

Downloaded from http://www.everyspec.com

= 10 PercentTABLE VI-A—Limiting Quality(in percent defective) for which Pa (for Normal Inspection, Single sampling)

(9.11	
(See	

Г					T						T						
(See 11.6)		10		85	54	44	42	34	23	24	3						
(See		6.5	89		41	36	30	27	22	19	16	14					
		4.0	1	5 4		27	25	20	18	14	12	10	9.0				
		2.5		37			18	16	13	11	9.4	7.7	6.4	5.6			
		1.5			25			12	10	8.2	7.4	5.9	4.9	4.0	3.5		
		1.0				16			7.6	6.5	5.4	4.6	3.7	3.1	2.5	2.3	
	-	0.65					11			4.8	4.3	3.3	2.9	2.4	1.9	1.6	1.4
	Acceptable Quality Level	0.40						6.9			3.1	2.7	2.1	1.9	1.5	1.2	1.0
	ble Qua	0.25							4.5			2.0	1.7	1.3	1.2	0.94	0.77
	Accepta	0.15								2.8			1.2	1.1	0.84	0.74	0.59
		0.10	 					**===			1.8			0.78	0.67	0.53	0.46
		0.065						<u></u>	<u>.</u> ,		_	1.2			0.49	0.43	0.33
		0.040	<u> </u>										0.73			0.31	0.27
		0.025												0.46			0.20
		0.015													0.29		
		0.010	1													0.18	
	Sample	<u> </u>	5	ε	•	0 [20	62	2 02	80 8	125	200	315	200	800	1250	2000
	Sai	<u></u>	<u> </u>							<u> </u>							
	Code	letter	<	ස ප	2	2 L	<u>.</u> 12			:	<u> </u>	:	7	2	: =		=

24

LQ (DEFECTIVES) 10.0%

TABLE VI-B—Limiting Quality (in defects per hundred units) for which P_a = 10 Percent (for Normal Inspection, Single sampling)

ł

!

4

	1000	<u>1906</u>	1800														
	650	1400		1100								-					
	84	0001	940 1300	770	670												
	220	022	670	560	984	410											
	150	28	510	6 4	350	80											
	001	9	390	310	250	220		<u> </u>									
	65	330	310	240	190	160	140		<u></u>								
	Ş	270	22	190	150	120	100	8									· :
	22	ଛ	180	130	120	16	4	8	ß					=			
	15		130	110	84	71	65	Ş	\$	35							-
	10			78	67	51	\$	37	31	ĸ	3						
level	6.5	120			49	41	33	8	24	19	16	14					
Acceptable Quality Level	4.0	1	11			8	z	21	19	15	12	10	9.0				
ble Qu	2.5			46			ଛ	17	13	12	9.4	7.7	6.4	5.6			
Acceptu	1.5				3			12	=	8.4	7.4	5.9	4.9	4.0	3.5		
•	1.0					18			7.8	6.7	5.4	4.6	3.7	3.1	2.5	2.3	
	0.65						12			4.9	4.3	3.3	2.9	2.4	1.9	1.6	
	0.40							7.2			3.1	2.7	2.1	1.9	1.5	1.2	1.0
	0.25								4.6			2.0	1.7	1.3	1.2	0.94	0.77
	0.15									2.9			1.2	:	0.84	0.74	0.59
	0.10										1.8			0.78	0.67	0.53	0.46
	0.065											1.2			0.49	0.43	0.33
	0.040												0.73			0.31	0.27
	0.025													0.46			0.20
	0.010 0.015 0.025 0.040 0.065														0.29		
	0.010															0.18	
Sample	3126	2	'n	5	8	13	20	32	<u>8</u>	80	125	200	315	200	800	1250	2000
Code	riter	•	æ	ن ن	a	ш	F	9	Ŧ	ſ	¥		7	z	ے	0	=

25

LQ (DEFECTS) 10%

TABLE VII-A—Limiting Quality (in percent defective) for which P_a = 5 Percent (for Normal Inspection, Single sampling)

(See 11.6)

	10			99	60	50	46	37	32	26	24						
	6.5	82			47	41	\$	3 0	Я	50	18	15					
	4.0		63			32	28	33	8:	16	14	11	9.6				
	2.5			45			22	18	15	13	Ш	8.5	7.0	6.1			
	1.5				31	-		14	12	9.4	8.4	6.6	5.4	4.4	3.8	<u> </u>	
	1.0					21			9.1	7.7	6.2	5.3	4.2	3.4	2.7	2.4	
	0.65						14			5.8	5.0	3.9	3.3	2.6	2.1	1.8	1.5
_	0.40							8.9			3.8	3.2	2.5	2.1	1.6	1.4	1.1
Acceptable Quality Level	0.25								5.8			2.4	2.0	1.6	1.3	1.1	0.85
ble Qual	0.15									3.7			1.5	1.3	0.97	0.84	0.66
Accepta	0.10										2.4			0.95	0.79	0.62	0.53
	0.065											1.5			0.59	0.50	0.39
	0.040												0.95			0.38	0.32
	0.025													0.60	-		0.24
	0.015														0.38		
	0.010															0.24	
Sample	size	2	Э	5	œ	13	20	32	50	80	125	200	315	500	800	1250	2000
Code	letter	۷	8	υ	Ω	ы	٤.	5	Ŧ	J	К	<u>ر</u>	æ	z	4	ð	В

LQ (DEFECTIVES) 5.0%

26

)

	0001	2000					
	650	1500 1400 1100					
	400	1100 1000 810	710				
	250	850 730 610	510 440				
	150	570 440	380 310				
	001	530 440 340	270 230				
	65	390 350 260	210 170 150				
	40	320 260 210	160 130 110	8			
	ß	240 210 160	96 100 S8	5 8 53	·	<u></u>	
	15	991 971	97 81 82	828			
	2	Å	£ 8 3	34 4	54	······	
	6.5	150	39 48 29	5 28 33	18 12		
	4.0	8	32	24 21 16	14 11 9.6		
Level	2.5	8	58	13 16 28	11 8.5 7.0	6.1	
buality	1.5			15 13 9.7	8.4 6.6 5.4	4.4 3.8	
Acceptable Quality Level	1.0		ສ	9.5	6.2 5.3 4.2	3.4 2.7 2.4	
Accep	0.65		15	5.9	5.0 3.9 3.3	2.6 2.1 1.8	1.5
	0.40		<u> </u>	*.	3.8 3.2 2.5	2.1 1.6 1.4	=
	0.25			6.0	2.4	1.6 1.3 1.1	0.85
	0.15			3.8	1.5	1.3 0.97 0.84	0.66
	0.10				2.4	0.95 0.79 0.62	0.53
	0.065				1.5	0.59 0.50	0.39
	0.040				0.95	0.38	0.32
	0.025					0.60	0.24
	0.010 0.015 0.025 0.040 0.065					0.38	
	0.010					0.24	
Sample	size	64 65 65	8 50 20	23 25 58	125 200 315	500 800 1250	3000
Code .	lattar	< # U	<u>с ж ғ</u>	υ Ξ ¬	¥ -	z 1 D	÷

į

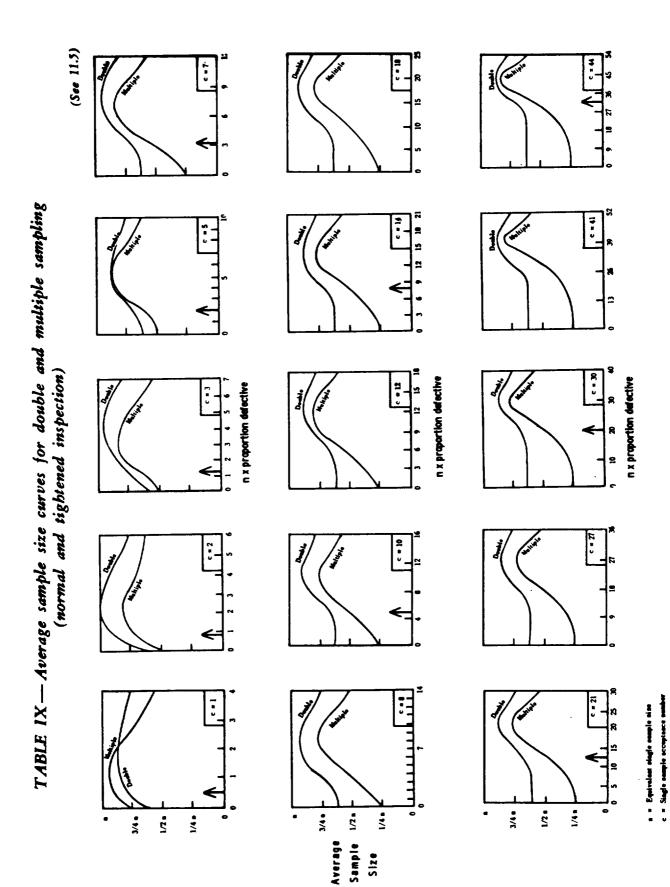
f

LQ (DEFECTS) 5%

.

TABLE VIII -- Limit Numbers for Reduced Inspection

(See 8.3.3)


80 ≣£ 81 I I I I ŝ \$ <u>5</u> 5 5 ŝ 9 G S 181 301 8 883 3 201 172 = 8 = 10 SE ğ • = x 222 2 3 . 2 2 3 * ~ 2 ≘ ≣ \$ ~ ~ ~ = X 3 **3** 2 2 ង * 3 % 2 0 - 0 ~ ≘ ສ 2 * ~ 2 000 **ನ ೪ ೮** <u></u> 2 • • ~ + = = X V s <u>s</u> s 6.S . Acceptable Quality Level ¥ 8 Ξ 0 N 4 8 I 8 ē 0 ç * ~ 2 2 3 3 2 🖬 2.5 • • • 2 00 - - ~ = N 8 2 <u>2</u> 2 • . . . 0 N 4 ... n = 5 9 **8** 2 Ē 2 . ٠ ~ 0 0 8 2 8 0.65 • 2 301 100 • • • 0.60 2 - -2 2 9 S = e 0.25 ••• 0 N 4 ~ **=** ≈ 959 0.15 00-- - I 883 0.10 **~~ ~** ~ 239 0.065 • • • • • • • ≍ K . . . 0.040 0 0 N • 1 0.025 • • • • • • ~ * ~ ٠ • • 0.015 0 - 0 • 0.010 5000 - 7999 8000 - 12499 1.2500 - 19999 20000 - 31499 31500 - 49999 30000 & Uver Number of sample units from last 10 lots or batches 320 - 199 50C - 799 800 - 1249 1250 - 1999 2000 - 3149 3150 - 1999 80 - 12º 130 - 199 200 - 319 8.9.8. 8.8.8

Presses that the number of sample wits from the last ten lots or batches is not sufficient for reduced inspection for this AUL. Is this instance more than ten lots or batches may be used for the calculation, provided that the lots or batches used are the most recent oces in arquesce, that they have all bern on one allots of bern or and for the calculation, provided that none has bern rejected while on original inspection.

_ }

LIMIT NUMBERS

28

29

AVERAGE SAMPLE SIZE

- AQL for second inspection

1

i

	ξ.
NS	
PLA	
ING	
MPL 9	
E SA	
R SI osely	
5 I O	
RVES atched	
STIC	
OPERATING CHARACTERISTIC CURVES FOR SINGLE SAME (Curves for double and multiple sampling are matched as closely as practicable)	20 20 20 20 20 20 20 20 20 20
E E	
ING .	
ERAT Ves lo	
- OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sempling are matched as closely as practicable)	
• <	\$ ±
CHART	
	<u>8</u>
PENCENT OF LOTS ENCECTED TO NE ACCENTED (P _a)	
	6 8 8 8 8 8 9 8 1 1 1 2 7

TABLE X-A-Tables for sample size code letter: A

A

					Acceptat	sle (Juality	Levels (no	Acceptable (Juality Levels (normal inspection)	ion)						
£ •	, 65	65	25	40	65	100	150	Х	250	Х	00†	Х	650	Х	1000
	p (in percent defective)						p (i	p (in defects per hundred units)	r hundred :	units)					
0.66	105.0	0.51	7.45	21.8	41.2	89.2	145	175	239	305	374	S17	629	859	226
95.0	2 53	2.56	17.8	40.9	68.3	131	661	235	308	385	462	2 3	745	566	1122
0.09	5 13	5.25	26.6	55.1	87.3	158	233	272	351	432	515	1 89	812	1073	1206
75.0	13.4	14.4	481	86.8	127	211	298	342	431	521	612	795	934	1314	1354
20.05	29 3	34.7	83.9	134	184	284	383	613	533	633	133	933	1083	1383	1533
25.0	30 0	69 3	135	196	256	371	484	240	651	192	870	1087	1248	1568	8721
10.0	4:49	115	195	266	334	464	5 8 6	650	170	889	1006	1238	1409	1748	9161
5.0	77 6	150	237	315	348	526	657	722	848	972	1094	1334	1512	1862	2035
1.0	0.00	230	332	420	502	655	800	870	1007	1141	1272	1529	1718	2068	2270
	Х	X	40	65	100	150	Х	250	Χ	400	Х	650	Χ	0001	Х
					Accepta	the Quality	Levels (ti	Acceptable Quality Levels (tightened inspection)	section)						
		Neter	Teres of the]		active compari	Ż	Noice: Rissendal disaritation and far parcent defective compatibility. Polimen for defects per hundred units.		i i					

-)

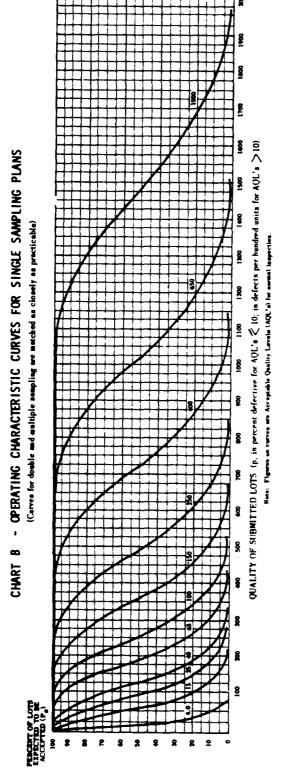
30

TABLE X-A-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: A

ì

(

					<u> </u>]	
Cumu	size		2				
	1000	å	31	Û	•	X	
		Re Ac	R R			8	
	Ň	۸c	53	•	•	2	
	650	Ac Re	21 22	e	•	X	
	Χ	Ac Re	18 19	£	•	650	
	400	Re	15	Ē	•	X	
	V	Re Ac	13 14		•	_∕∖ ≩	
	\land	Ac Ac	12	<u> </u>		¥	
(220	Ac Re	11 01	E	•	Х	tion)
Acceptable Quality Levels (normal inspection)	Х	Ac Re	6 8	ĩ	•	520	Acceptable Quality Levels (tightened inspection)
normel i	150	Re	80	£	•	X	lightene
evels (i	8	Re Ac	6 7	Ē	•	150	,evels (I
ality L		Re Ac	• 2				ality [
able Qu	8	٩c	m	£	•	8	ble Qu
Accepti	9	Ac Re	2 3	E	•	ઝ	Accept
	ĸ	Ac Re	2	£	•	3	
	15	R.	-	Letter 1	£	ĸ	-
		ReAc				15	
	9	۲c		<u>_</u>	ບ 	-	
	X	Ac Re		Letter	<u>م</u>	<u>e</u>	
	6.5	Ac Re	- 0	•	•	X	
	Less then 6.5	Ac Re	D	⊳	⊳	Less than 10	
J	lative sample tire		2				
	Type of sampling 'plan		Single	Double	M ultiple		


31

•

- 0
- Rejection number N
- Use single sampling plan above (or alternatively use letter D). Use single sampling (or alternatively use letter B). H ٥٩٤. ٤
 - H

A

8
letter:
code
size
sample
for
Tables
Х-В—
TABLE

TABLE X-B-1 - TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

						Acce	ptable Our	Acceptable Quality Levels (normal inspection)	s (somal i	nspection)							
a "	4.0	4.0	15	ĸ	\$	65	8	Х	150.	X	520	X	ş	X	650	X	0001
	p (in percent defective)							p (in	p (in defects per hundred units)	hundred u	nits)]]]			
99.0	0.33	0.34	4.97	14.5	27.4	59.5	96.9	117	159	ŝ	249	345	614	573	651	542	6201
%	1.70	1.71	8.11	27.3	45.5	87.1	133	157	206	%	8	415	8	3	345	1065	1152
0.06	3.45	3.50	17.7	36.7	58.2	105	155	181	12	3882	26	\$	2	716	ŝ	1131	1222
75.0	9.14	9.60	32.0	57.6	84.5	141	199	228	287	347	\$	290	53	8	ŝ	1249	1344
5 0.0	20.6	2.1	S 5.9	89.1	122	180	x	66 2	8	ផ្	8	623	22	226	1022	1380	6891
25.0 25	37.0	\$6.2	8.68	131	170	247	323	990	3	ŝ	9 5	24	832	1046	1152	1539	1644
10.0	S3.6	76.8	90	177	23	309	392	EE.	514	593	671	825	666	1165	1277	1683	1793
5.0	63.2	6.66	156	210	258	350	864	19	S 8	5	730	068	80 01	1241	1356	1773	1886
1.0	78.4	151	ធ	280	335	437	533	8 9	672	192	33	1019	1165	1392	1513	1951	3069
	6.5	6.5	ĸ	ş	65	8	Х	150	Х	220	Х	8	Х	33	Х	1000	Х
						Acc	eptable ()u	Acceptable Quality Levels (tightened inspection)	ls (tighten	nd inspecti	(W						

Poisson for defects per bushed usits

Note: Bisemial distribution wed for porcess defective

B

TABLE X-B-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: B

ł

Ĩ **~**..

<u>-</u>			T	T)		
Cumu-	lative sample rize		m	~ ~			
	8	Ac Re	4 45	25 31 56 57	‡	Х	
	X	Re Ac Re /	1 42 44	23 29 25 23 29 25	‡	1000	
ŀ	3		0 31 41	7 22 23	‡	X	
ł	X	c ReAc	7 28 30	5 20 17 4 35 37	+	650	
	8	c Re Ac	2 2	1 16 15 6 27 34	‡	X	
	X	c Re Ac	18 19 21	9 14 11 23 24 26	+	ŝ	
Acceptable Quality Levels (normal inspection)	52	c Re Ac	14 15 11	1 2	‡	Х	tion)
mal ins	Х	Ac Re Ac Re	12 13 1	6 10 7 15 16 18	‡	250	Acceptable (Juality Levels (tightened inspection)
els (nor	<u>8</u>	Ac Re A	11	9 13	‡	Х	ightened
ity Lev	X	Ac Re A	9 10	3 7 5 11 12 12	‡	150	vels (t
le Qual	8	Re	80	37	‡	Х	ality Le
cceptab	S	c ReAc	6 7	3 2	‡	001	eble Qu
<	40	Re Ac	دن ج	م به	‡	65	Accept
	25	c Re Ac	3	3 1 4 4	\$	40	
	15	Re Ac	2 2	2 0 2 3	‡	25	
	01	ReAc	-	Cetter 0	· · · · · · · · · · · · · · · · · · ·	15	
	Y	Re Ac	· · · · · · · · · · · · · · · · · · ·	etter C	<u> </u>	<u> </u>	
	6.5	Re Ac		 	<	X	
	4 0	He Ac Re Ac Re Ac Re Ac			•	6.5	
		He Ac	0			L	
	Less than 4.0	Ac	⊳		⊳	Less than 6.5	
	Cumu- lative sample	size	e	4 3			
	Type of sampling	ne lq	Single	Double	K ultiple		

33

lise next subsequent sample size code letter for which acceptance and rejection numbers are available. H

Acceptance number ļŧ

Rejection number 11 H H

Use single sampling plan above (or alternatively use letter E). $\triangleright \neq \pm$.

B

		—	, ,			r		т-	η		T1	r		
	<u> </u>		જુ		618	169	733 Bek	893	286	1076	1131	1241	Х	
	<u>8</u>		Х		568	629	679 740	83	923	1010	1064	1171	650	
	BLANS BLANS		8	i	391	699	482 542	613	169	766	814	908	Х	
S			Х		34	86	<u>8</u> 8	553	627	669	745	835	8	
IG PLAN			ชู		ឆ	8		R.	8	264	S	687	Х	
SAMPLING PLANS	S SINGLE		X	ļ	207	249	273 318	373	5	4 95	534	612	220	
SINGLE S y as practicat	VES FOR		150	nits)	150	88	8 8	5	348	403	8	205	Х	
FOR SI clowely a	10. in defects p	tion)	Х	p (in defects per hundred units)	122	154	50 I 27	ŝ	304	356	389	456	130	spection)
URVES		mal inspec	<u>8</u>	efects per	8 .4	123	9	213	260	80 £	685	403	X	khtened in
STIC C pling are 1	and and and and and and and and	evels (nor	Х	p (in d	70.1	93.9	8 5	173	216	360	580		ŝ	Levels (1)
ACTER	Preserve of LOR Accession of Lor Accession of the second o	Acceptable Quality Levels (normal inspection)	ß		. 88	9. R	93.1	153	194	235	263	320	Х	Acceptable (Juality Levels (tightened inspection)
G CHAR ble and m	Ξ ^ω ΄	Acceptable	07		35.7	52.3	0.38 1.4	61	148	196	210	262	8	Arreptat
OPERATING CHARACTERISTIC CURVES FOR SINGLE SAN (Current for double and multiple sampling are matched as closely as practicable)	The values For (R		16.5	27.3	8.7 8.7	73.4	102	134	155	201	ę	
I	AFED VALUES		15		8.72	16.4	34 S 0	53.5	78.4	106	শ্ব	92	ĸ	
CHART C			0		2.89	2.10	10.6	33.6	53.9	8.77	9.9	131	15	
0			2.5		0.20	1.01	2.10 5.76	13.9	21.7	46.1	59.9	92.1	0. 4	
			0	defective)	J.28	7.63	11.2	1.15	45.4	58.4	65.8	8.77	X	
			2.5	p (in percent defective)	0.20	1.02	2 30 2 30 2 30	12.9	24.2	36.9	\$.1	60.2	4.0	
			ل_ا •ِ) d	0.69	95.0	0.08	50.0	25.0		5.0	1.0		
	-	L			Ľ	^	<u> </u>						ł	

34

(

TABLE X-C-Tables for sample size code letter: C

-

Use double sampling plan above (or alternatively use letter D).

Ħ

‡

- Rejection number.

Acceptance number.

▷ ৼ ৼ .

11

Use next aubsequent sample size code letter for which acceptance and rejection numbers are available.

- 11 11 11
- Use single sampling plan above (or alternatively use letter F).
- Cume-lative sample size ŝ m 9 Letter <u>00</u> Re 80 Use U æ <u>ac relac relac</u> X 57 ¥ 31 ŧ જુ 8 \$ 29 25 8 **S** ß ŧ Х 38 52 11 16 2223 X ‡ ŝ ខ្ល 17 37 ŧ Ş 8 35 8 X ы 15 3 Х ŧ ង 16 2 ន្ត 14 11 8 13 14 15 18 19 21 **‡** 3 ž o ន X 19 п ‡ Acceptable Quality Levels (tightened inspection) 150 16 18 2 150 10 ŧ Х 13 15 11 12 Q Х 6 ‡ 8 9 10 12 ŝ 100 ŧ 12 2 æ e 11 Х 8 ~ 6 ŧ \$ œ ŝ ~ 2 9 S ‡ જ \$ ŝ ø è + ŝ ţ 4 Ş Ю + ŝ _ m 4 **‡** m Я 15 0 m 2 3 2 2 ŧ 15 2 --0 Letter 2 6.5 ۵ Use U Ac Re Ac ReAc Re 6.5 Letter 3 ω. Λ Lener Cee C **9** æ -**0**; 2:5 ٠ • 0 Re Less then A.D Less then 2 \triangleright \triangleright \triangleright Cumu-lative sample size ŝ e ø Type of sampling plan Multiple Single Double

TABLE X-C-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: C

:

~ ;

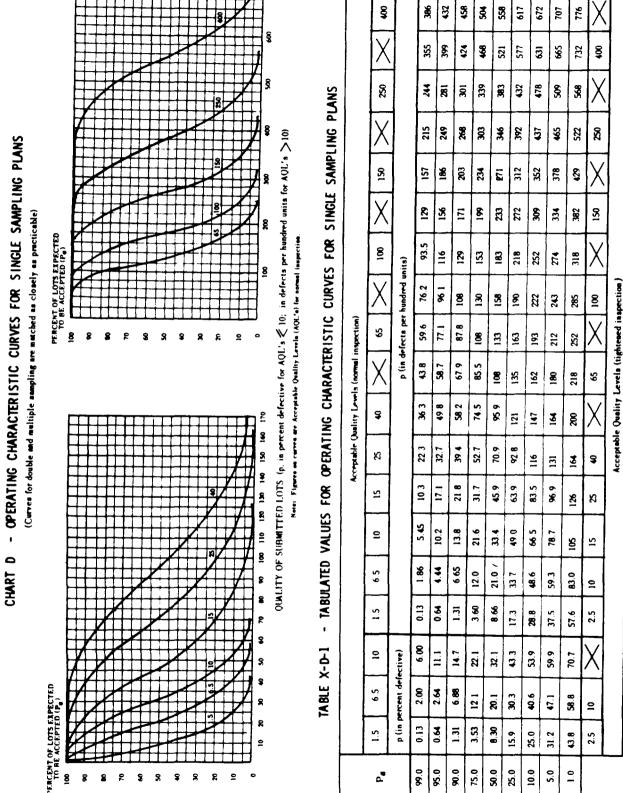


TABLE X-D-Tables for sample size code letter: D

D

- SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: D TABLE X-D-2

ŕ

_ (

Cume-lative sample size œ ŝ 2 ~ Ś æ 2 13 = å Higher than 400 4 4 4 Ac ReAc 6 16 17 27 65 68 \$ 83 83 31 57 8 Ş 77 78 Х ŝ ห 8 \$ 33 \$ Re Be 15 3 S3 54 72 73 42 8 S 22 8 \$ S ŝ Yc 31 41 4 12 6 11 19/16 27 26 <u>64</u>04 ន 34 37 45 47 61 3 æ ន 38 ន្ត ¥ 6 8 17 3 5 8 2 \$ 2 17 8 æ 31 3 ង ន ង ន្ល e 2 \$ Ş Ac ReAc 2 15 đ 1 2 R 7 14 1 0 ន 14 11 16 17 13 19 ß 8 ខ 37 38 5 3 2 6 ห Э 19 21 8 g 80 12 Re 24 ដ 8 ង 3 • 8 13 11 ٩c 18 ø 32 -13 10 15 12 17 16 ន ង 2 4 10 Ac Re 7 11 15 19 7 ຂ 22 25 26 18 20 21 23 8 Acceptable Quality Levels (tightened inspection) 13 14 16 18 Acceptable Quality Levels (normal inspection) _ 15 14 17 17 7 12 6 10 9 \$ Ac Re 8 11 12 e 15 0 21 14 17 13 18 19 å 0 S 2 8 \$ ¥ 9 Ξ 2 ŝ 2 0 ŝ œ 11 15 ş 9 ~ 12 + 7 0 12 1 3 ٩c Ś o 1 æ m Ξ 0 2 -ដ 13 14 X 10 12 Re 8 7 9 + 6 8 2 7 11 \$ ۷c 2 æ m ŝ m 0 Re 6 ~ ŝ ø ~ æ ŝ -¢ 2 \$ З Ÿ • ŝ ø m ŝ 2 ~ ~ ž • + ŝ m • ŝ Ŷ ø ~ ŝ З 15 ۲ç + 9 e . 0 _ ~ m • ž m ŝ + 2 m e • ŝ ŝ • 15 2 Ÿ e 0 2 0 . 0 -~ m å 2 2 2 2 2 2 e ŝ 3 ŝ 6.5 9 ¥ _ _ 0 . . • 0 ~ ž Letter **9** 6.5 Use ŝ ۷ Ac Re Letter Ľ. **0 4** <u>L-</u> Ac Re Letter ň 2.5 υ æ -2.5 1.5 ٠ ٠ ¥ 0 ess then 1.5 ž eas than 2.5 \triangleright \triangleright D Ŷ Cumu-lative aample aize œ ŝ 2 8 2 ø 2 12 = Type of sampling plan Double Multiple Single

- Use next subsequent sample size code letter for which acceptance and rejection numbers are available. II ⊲⊳ะะ
 - Acceptance number Ð
 - **Rejection number** II
- Use single sampling plan above (or alternatively use letter G). .
- Acceptance not permitted at this sample size. H H .

D

OF ENALING CLANNACIENT 2010 CUNVED FOR JINGLE JAMIELING FLAND (Curves for iduable and multiple sampling are matched as closely as practicable)	• TABUATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANE	Acceptable (Juality Levels (normal inspection)	15 25 \times 40 \times 65 \times 100 \times 150 \times 250	p (in defects per humbred units)	13.7 22.4 27.0 36.7 46.9 57.5 79.6 96.7 132 150 219 238	20.1 30.6 36.1 47.5 59.2 71.1 95.7 115 153 173 246 266	24.2 35.8 41.8 54.0 66.5 79.2 105 125 165 185 261 282	32.5 45.8 52.6 66.3 80.2 94.1 122 144 187 208 288 310	43.6 59.0 66.7 82.1 97.5 113 144 168 213 236 321 344	57.1 74.5 83.1 100 117 134 167 192 241 266 355 379	71.3 90.5 100 119 137 155 190 217 269 295 388 414	90.9 101 111 130 150 168 205 233 296 313 409 435	101 123 134 155 176 196 235 264 321 349 450 477	$25 \times 40 \times 65 \times 100 \times 150 \times 250 \times$	Acceptable Quality Lovels (tightened inspection)	
ves for chuble a	ALUES FOR	νu	6.5 10		5 3.35 6.33	3 6.29 10.5	9 8.48 13.4	9 13.3 19.5	20.6 28.2	30.2 39.3	40.9 51.4	48.4 59.6	64.7 77.3	10 15		
5	ATED VALUES		4.0		78 1.15	395 2.73	08 4.09	2 7.39	33 12.9	20.7	20.9	36.5	21.1	6.5		
			1.0		0.078	o	0.808	2.22	5.	10.7	17.7	23.0	35.4	1.5		
Ē			10	ive)	1 7.00	11.3	14.2	19.9	21.5	36.2	2.2	49.5	58.7	Х		
	TABLE X-E-1		6.5	nt defect	3.63	6.61	8.80	13.4	20.0	28.0	36.0	41.0	50.6	0(
			0.4 -	p (in percent defective)	1.19	2.81	4.16	7.41	12.6	19.4	26.8	31.6	41.5	6.5		
			0	<u>د</u>	0.077	0.394	0.807	2.19	5.19	1.01	16.2	20.6	8.0%	1.5		J
PERCENT OF LOTS EXPECTED OF NO RE- WOLTTED OF	<u>E</u> F E F E F E F E F E F E F E F E F E F E		e •	<u>.</u>	0'6h	92.0 0	0.06	75.0	50.0	25.0	10.01	5.0	e. -	J		

38

ational Poissons for defects per bunded units. Note: Blassial distribution and far percent defertive compar-

E

TABLE X-E-Tables for sample size code letter: E

CHART E - OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

Downloaded from http://www.everyspec.com

TABLE X-E-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: E

1

í

	Į									<	coelt	ble	J	Lew	ja (po	Acceptable Quality Levels (normal inspection)		tion ({				
		119	0. 	2	X	52	5 4.0	<u>├</u>	6.5	2	2		8	X	\$		X	8	$ \land $	X	8	X		150	X	R N		1 . S	Cumu- lative sample
		Ÿ	ReAc	Hen	Reke	ReAc	ReAc	- Ye	ReAc	ی م	ž	ReAc	Я	Ac Re	ې د	ReAc	8 2	۷c	Re Ac	ReAc	le Re	¥	ReAc	Re	Ac R	Че Че	14 14 14	ž	\$1ZE
Single	13	Þ		:				3	<u></u>	•	Ś	6 7	80	8	9 10	11 12	13	1	15 18	192	21 22	2	00 52	ЭI	41 42	3	\$	4	13
	8	D	ļ	<u>s</u> T		a	0	2 0	3		2	m S	-	3 7	~ ~	•	6 10	~	•	1	11 16	24		8	8	<u>1</u>	31	4	60
Double	16		•	Lette	r Leit	Letter Letter Letter	<u>-</u>	2 3	*	2	<u>v</u>	88 ~	6	11 12	2 12	13 15	5 16	18	19 23	24 26	2 8	æ	35 37	8	S2 S3	32	57	. <u></u>	16
	3	D	•	₽ 	9	<u>ba.</u>	•	• •	~			•	-	•	0	s	0	-		~	2	e	•	<u></u>	6 15	<u>د</u>	1 2		3
	s						•	2	e	0 3	-	5 1	ø	2 7	6	60 60	6	*	10 6	12	7 14	2	17 11	191	16 25	5 17	Z		6
	6						<u> </u>	2 0		•	2	6	6 0	4	•	10 7	7 12	80	13 11	17 13	3 19	17	24 19	272	26 36	3	8		6
Multiple	12						•	3 1	•	2 5	e	7 5	10	6 11	••	13 10	0 15	12	17 16	81	52	3	31 27	34	37 46	3	40		12
	15						-	3	+	ه ۳	s	8	11	9 12	12 11	15 14	17	17	8	22	8	R	37 36	\$	69 SS	8	55		15
	18		. <u> </u>				-	е С	Ś	4 6	1	6 10	12 1	12 14		17 18	8	21	23 27	29 31	11 33	\$	5	47 6	61 64	8	3		18
	7						8	•	s.	6 7	•	10 13	14	14 15	8	19 21	2	Я	33	8	37 38	\$	40	5	72 73	37	82		21
		Less then L.S	1.5	X	2.5	?	6.5	\vdash	9	2	ĸ	$ \land $	\mathbf{V}	\$	즈		8	X	8	e i	X	150		X	ង	$ \land$		Higher 1500 250	
										Yea	-pt abli		lity La	evela	(ti gh ta	Acceptable Quality Levela (tightened inspection)	nspect	lion)								ļ	{		

39

•

- Use next aubacquent sample size code letter for which acceptance and rejection numbers are available. H
- Acceptance number. .
 - Rejection number. .
- Use single sampling plas above (or alternatively use letter H).
 - Acceptance not permitted at this sample size. ĸ .

E

TABLE X-F-Tables for sample size code letter: FCHART F. OFRAHING CHARACTERISTIC CURVER SIGL SAMPLING PLANSCHART F. OFRAHING CHARACTERISTIC CURVER SIGL SAMPLING PLANSCHART F. OFRAHING CHARACTERISTIC CURVER SIGL SAMPLING PLANSCHART F. OFRAHING CURVER SIGL SAMPLING PLANSCHART F. OFRAHING CURVER SIGL SAMPLING PLANSCHART F. OFRAHING CURVER SIGL SAMPLING PLANSIntervention of the colspan="2">Intervention of the colspan="2" Sign of the							5							·	Ī
TABLE X-F-Tables for sample size code letter: FTABLE X-F-Tables for sample size code letter: FCHART C CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS ("created and angine medicine		F∓∓∓∓∓∓∓∓∓∓A ^s		\$		62.9	74.5	81.2	93.4	8 01	<u>8</u>	Ŧ	151	172	ŀ
TABLE X-F—Tables for sample size code I TABLE X-F—Tables for sample size code I Curves for duality and antitipic amplituge are matched as closely as practicableCHART F - OPERATING CHARACTERISTIC CURVES FOR SINGLE SAM (curves for duality and antitipic amplitude are matched as closely as practicableOPERATING CHARACTERISTIC CURVES FOR SINGLE SAM (curves for duality and antitipic amplitude are matched as closely as practicableImportant for the sample size code I (curves for duality for the matched antitipic antitipic antitipic active and antitipic active antitipic active antitipic active				Х		51.7	62.2	* 88	79.5	93.3	<u>8</u>	124	133	153	
TABLE X-F—Tables for sample size code I TABLE X-F—Tables for sample size code I Curves for duality and antitipic amplituge are matched as closely as practicableCHART F - OPERATING CHARACTERISTIC CURVES FOR SINGLE SAM (curves for duality and antitipic amplitude are matched as closely as practicableOPERATING CHARACTERISTIC CURVES FOR SINGLE SAM 				ş		37.4	46.2	51.5	61.2	73.3	87.0	101	<u>8</u>	121	ļ
TABLE X-F—Tables for sample size code I TABLE X-F—Tables for sample size code I Curves for duality and antitipic amplituge are matched as closely as practicableCHART F - OPERATING CHARACTERISTIC CURVES FOR SINGLE SAM (curves for duality and antitipic amplitude are matched as closely as practicableOPERATING CHARACTERISTIC CURVES FOR SINGLE SAM (curves for duality and antitipic amplitude are matched as closely as practicableImportant for the sample size code I (curves for duality for the matched antitipic antitipic antitipic active and antitipic active antitipic active antitipic active				Х	:	30.5	38.5	43.2	52.1	63.3	76.1	88.9	97.2	114	
TABLE X-F—Tables for sample size code I TABLE X-F—Tables for sample size code I Curves for duality and antitipic amplituge are matched as closely as practicableCHART F - OPERATING CHARACTERISTIC CURVES FOR SINGLE SAM (curves for duality and antitipic amplitude are matched as closely as practicableOPERATING CHARACTERISTIC CURVES FOR SINGLE SAM (curves for duality and antitipic amplitude are matched as closely as practicableImportant for the sample size code I (curves for duality for the matched antitipic antitipic antitipic active and antitipic active antitipic active antitipic active		NGLE SA WGLE		ស	nits)	23.9	30.8	35.1	43.1	53.3	65.1	0.77	84.8	101	ļ
10 25 4.0 10 25 4.0 10 25 4.0 11 12.9 13.1 12.9 13.1 8.5 28.9 35.6 28.9 35.6	le lett	I TOWN		Х	r hundred u	17.5	23.5	27.2	34.2	43.3	54.0	65.0	72.2	87.0	
10 25 4.0 10 25 4.0 10 25 4.0 11 12.9 13.1 12.9 13.1 8.5 28.9 35.6 28.9 35.6	ize cot	SINGLE and a second sec	ction)	15	n defects pe	14.5	19.9	23.3	29.8	38 .3	48.4	58.9	65.7	80.0	•
10 25 4.0 10 25 4.0 10 25 4.0 11 12.9 13.1 12.9 13.1 8.5 28.9 35.6 28.9 35.6	ple si	ES FOR hed as close of the second second second mediated second s	ormal inspe	01	i) d	8.92	13.1	15.8	21.1	28.4	37.1	46.4	52.6	65.5	
10 25 4.0 10 25 4.0 10 25 4.0 11 12.9 13.1 12.9 13.1 8.5 28.9 35.6 28.9 35.6	or san	C CURV	y Levels (n	6.5		4.12	6.83	8.73	12.7	18.4	25.5	33.4	38.8	50.2	
10 25 4.0 10 25 4.0 10 25 4.0 11 12.9 13.1 12.9 13.1 8.5 28.9 35.6 28.9 35.6	bles fo	TTER I STIT	tahle (Jualit	4.0		2.18	4.09	5.51	8.68	13.4	19.6	3 6.6	31.5	42.0	
10 25 4.0 10 25 4.0 10 25 4.0 11 12.9 13.1 12.9 13.1 8.5 28.9 35.6 28.9 35.6	— Ta	CHARA(ble and multi in percent	Accep	2.5		0.75	1.78	2.66	4.81	8.39	13.5	19.5	23.7	33.2	
10 25 4.0 10 25 4.0 10 25 4.0 11 12.9 13.1 12.9 13.1 8.5 28.9 35.6 28.9 35.6	E X-F	LES FOR		0.65		0.051	0.257	0.527	1.44	3.47	6.93	11.5	15.0	23.0	
10 25 4.0 10 25 4.0 10 25 4.0 11 12.9 13.1 12.9 13.1 8.5 28.9 35.6 28.9 35.6	TABLI			0		9.75	14.0	16.6	21.6	27.9	34.8	41.5	45.6	53.4	Ī
10 25 4.0 10 25 4.0 10 25 4.0 11 12.9 13.1 12.9 13.1 8.5 28.9 35.6 28.9 35.6	•			6.5	ctive)	4 31	7.13	9.03	12.8	18.1	24.2	¥:05	34.4	42.0	
				•.0	ercent defe	2.25	4.22	5.64	8.70	13.1	18.7	24.5	28.3	35.6	
				2.5	p (in p	0.75	1.80	2.69	4.81	8.25	12.9	18.1	21.6	6 82	ſ
ATTRECENT				0.65		0:050	0.256	0.525	1.43	3.41	6.70	10.9	13.9	20.6	
		Construction of the state of t		ď		0.8	95.0	90.06	75.0	20.0	22.0 22	10.0	5.0	1.0	

F

Neer. Disortal distribution and he privat defective computations: Poinces to defects per burdeed who.

Acceptable Quality Levels (tightened inspection)

3

Ş

Я

Х

15

01

6.5

0.4

1.0

9

6.5

0.4

1.0

١

-1

ł

1

Cumu.	lative sample	5	30	13	~~~~ %	T	ŝ	10	15	20	ß	R	£		
ට්															
	Higher than 65	Ac Re	⊲	۵			۵							Higher than 65	
		ž	3	91	27		6	=	61	32	8	33	38	$\left[\right]$	-
	\$	Ϋ́	21	=	8		8	2	13	61	ĸ	31	37	X	
	\mathbf{V}	ž	19	=	2	\uparrow	80	12	17	ន	8	8	33		
	$ \wedge $	¥	18	•	33		-	9	Ξ	16	ដ	2	33	જ	
	ę	Re	15	=	19		7	10	13	17	8	ន	8	$ \mathbf{Y} $	
	-	ž	14	~	18		-	*	æ	12	11	51	8	\square	
	$ \mathbf{Y} $	*	13	2	16		\$	6	12	15	17	8	2	\$	
	\land	۲	12	•	15	_	•	<u>~</u>	~	2	=	18	21		
	ĸ	ř	П	6	13		ŝ	80	10	13	15	17	10	X	
		¥ ۲	01	7 5	2 12	\downarrow	•		6	8	12 11	14 14	15 18		Ê
(wo	X	Re			12		0		-	6 11	6	12 1	1	Я	pectic
pecti		Re Ac		7 3		+				<u></u>	=	13			d ins
al ins	15		2		80		0	-	e	5	2	01	13	X	htene
Elou)		Re Ac		s.	~	+	*	s	9	2	a ¢		-01		ls (tig
vels	9		5	3	9			_	2	m	S	2	•	15	Level
Acceptable Quality Levels (normal inspection)		Re Ac	*	-		+	m		-	5	9		2	1	Acceptable Quality Levels (tightened inspection)
Quality	6.5	Ac I	Ē	_	-		*	0	-	7		+	Ŷ	2	<u>ہ</u> ا
table		*	m	m	•		7	ŝ	ñ	*	-	ŝ	Ś	5	eptab
Accep	4.0	Υu	2	0	e		•	0	0	-	7	e	*	°	Acc
	2	Ъ.	63	3	2		2	2	2	e.	3	ŝ	3	0	
	~	۷c	-	0	-		*	*	•	•	-		3	-	
	1.5	Ac Re			[,etter	IJ								2.5	
	1	× ۲		•	t									5	1
	X	Ϋ́		l)se	Letter	I								1.5	
	0.1	ž		t] se	,etter	ır.								X	
		ReAc	-	1		Τ									1
	0.65	Ϋ́	0	•			•							°-	
	2 8 10	1.				╈	~							these these	
	Less then 0.65	۷u	▷				▶							- ت ق	
	Cumu- lative sample	size	50	13	26		S	01	15	8	ĸ	8	x		
	Type of sampling clan	L	Single		Double					W ultiple					

Use next preceding sample size code letter for which acceptance and rejection numbers are available.

lise next subsequent sample size code letter for which acceptance and rejection numbers are available. H

Acceptance number B li ⊲⊳ ≈ ±

Rejection number ţI

Use single sampling plan above (or alternatively use letter J). •

Acceptance not permitted at this sample size. 11 B .

F

OFERATING CHARACTERISTIC CURVES FOR SINCLE SAMPLING PLANS Curves for double and unliple ampling are muched as closely as proceeded Curves for double and unliple ampling are muched as closely as proceeded Image: Curves for double and unliple ampling are muched as closely as proceeded Image: Curves for double ampling are muched as closely as proceeded Image: Curves for double ampling are muched as closely as proceeded Image: Curves for double ampling are muched as closely as proceeded Image: Curves for double amplitude Image: Curves for double for double amplitude Image: Curves for double		X 15 X 25 X 40	p (in defects per hundred units)	11.0 14.9 19.1 23.4 32.3 39.3	14.7 19.3 24.0 28.9 38.9 46.5	42.7	21.4 26.9 32.6 38.2 49.7 58.4	27.1 33.3 39.6 45.8 58.3 67.7	33.8 40.7 47.6 54.4 67.9 78.0	40.6 48.1 55.6 62.9 77.4 88.1	45.1 53.0 60.8 68.4 83.4 94.5	54.4 63.0 71.3 79.5 95.6 107	
FOR SII	-	0	tefects per	9.08	12.4	14.6	18.6	24.0	30.3	36.8	41.1	50.0	Х
TING CHARACTERISTIC CURVES FOR SINGL or double and multiple sampling are matched as closely as pre or or or or or or or or or or	Acceptable Quality Levels (normal inspection)	6.5	p (in c	5.57	8.16	9.85	13.2	17.7	23.2	29.0	32.9	41.0	10
	ls (normal	4.0		2.57	4.26	5.45	7.92	11.5	16.0	20.9	24.2	31.4	6.5
ACTER I unitiple and the second secon	uality Love	2.5		1.36	2.55	3.44	5.39	8.35	12.3	16.6	19.7	26.3	4 .0
	reptable ()	1.5		0.466	1.10	1.66	3.00	5.24	8.41	12.2	14.8	20.7	2.5
HART G - OPERATING CHARACTERISTIC CURVES FOR SINGLE (Curves for double and multiple sampling are matched as closely as preci- (Curves for double and multiple sampling are matched as closely as preci- tion of the second	Acc	0.40		0.032	0.160	0.328	0.900	2.16	4.33	7.19	9.36	14.4	0.65
		01		9.75	13.1	15.1	19.0	23.7	29.0	34.1	37.2	43.3	Х
CHART G - 0 (C (C (C (C (C (C (C (C (C (C (C (C (C		6.5		5.94	8.50	10.2	13.4	17.5	22.3	27.1	30.1	35.9	10
	-	4.0	defective)	2.63	4.39	5.56	7.98	4.11	15.4	19.7	22.5	28.0	6.5
		2.5	(in percent	1.38	2.59	3.50	5.42	8.27	11.9	15.8	18.4	23.7	0.4
		1.5	ā	0.475	1.13	1.67	3.01	5.19	8.19	11.6	14.0	19.0	2.5
TAB		04.0		0.032	0.161	0.329	0.895	2.14	4.23	6 9	8.8	13.5	0.65
Ž.S≺				0.69	95.0	0'06	75.0	<u>50.0</u>	25.0	10.0	5.0	0.1	

Acceptable Quality Levels (tightened inspection) 6.5

G

TABLE X-G-Tables for sample size code letter: G

ŧ

••• 4

, , , , , , , , , , , , , , , , , , ,	Cumu-							Aco	ept ab)	Acceptable (Juality Levels (normal inspection)	ty Lew	els (n	ormal i	nspect	(uoi									J
a yee of sampling plan	lative sample	Leas than 0.40	0.40	0.65	Х	1.0	1.5	5	2.5	4.0	6.5		10	Х	F	15	X	Ļ.	ы	X	E.	\$	Higher than 40	lative
		Ac Re	Ac Re	Re Ac Re	Ac Re	Ac Re	Ac Re	e Ac	Re /	Ac Re	Ac	Re Ac	Re	Ac F	Re Ac	r R	Ac Re	۲ ۲	ž	Ac R	Re Ac	۳ ۳	<u> </u>	8126
Single	32	⊳	0 1				-	2 2	E.	3 4	s	6 7	8 /	8	9 10	Ħ	12 13	1	SI	18	19 21	22	٥	32
Prette	8	⊳	•	Use	Clae	Use I	0	2	m	-	5	3	2 1	m	7 5	6	10	~	=	6	=	16	⊲	8
	ş			1 1 1		H	1 2	3	4	4 5	ę	8	<u>~</u>	Ξ	12 12	13	15 16	16 18	19	53	24 26	21		\$
	60	۵	•	-	•		* 3	•	5	•	•	•	*	0	•	Ś	0	- 0	~	1	8	6	4	æ
	16						* 2	•	m	0 3	-	5 1	Ŷ	7	7 3	œ	3	4	10	6 12	2 7	2		16
	5						0 2	•	Ē	1 4	2	6 3	80	+	9 6	10	7 12	8	13	11 17	7 13	19		24
Multiple	32						0	-	*	25	~	7 5	0	6 1	11 8	13	10 15	2 12	17	16 23	2 19	Ю		32
	ş						1 3	3	*	3 6	ŝ	8 7	Ξ	6	12 11	15	14 17	7 17	8	22 ZS	<u>8</u>	8		Ş
	\$						1 3	<u> </u>	s	• •	~	6 10	12	12 1	11	12	18 20	0 21	8	27 29	59 3I	33		8
	35						2 3	-	Ś	6 7	6	10 13	1	14	15 18	61	21 22	<u>8</u>	8	32 33	3 37	R		8
		Less than 0.65	0.65	Х	1.0	1.5	2.5	4 .0		6.5	10		X	15	$ \wedge $	V	25		Y	\$	\uparrow	X	Higher than 40	
								Accept	able (Acceptable (Juality Levels (tightened inspection)	Levels	(tight	i bara	nspect	ion)									

43

= Use next preceding sample size code letter for which acceptance and rejection numbers are available.

•

- Be next subsequent sample size code letter for which acceptance and rejection numbers are available.
- $\Delta = Use next preceding aan$ $<math>\nabla = Use next subsequent si$ Ac = Acceptance number.Re = Hejection number.
- Use single sampling plan above (or alternatively use letter K). ł . .
 - Acceptance not permitted at this sample size. .

G

<i>eucr</i> : 11	ING PLANS	Solution (10, 12, 2) (10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
I ABLE X-H I ables for sample size coue tester. II	- OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curres for double and multiple sampling are matched as closely as practicable)	yu. Figure a correct of the A011, a file a new line for A01. a file a new
BLE A-H - I apres	DERATING CHARACTERISTIC urves for double and multiple sampling	Var. Figure as correct and Acceptable Quality Lords (10). In Architecture for AU(14) \$(0). In Archi
V I	CHART H - OP	

H

								Acce	Acceptable (Juality Levels (normal inspection)	ality Leve	els (norma	l inspecti	(je	Ī	ľ					T
4	0.25	1.0	1.5	2.5	0.4	6.5	Х	0]	0.25	0.1	1.5	2.5	0 •	6.5	Х	0	Х	15	X	ង
			ľ	(in percer	p (in percent defective)	. .							•	p (in defects per hundred units)	s per hund	Ind units				
8	0000	906.0	888.0	1.69	3.66	9 9	1.1	1.11	0.020	0.298	0.872	1.65	3.57	5.81	10.7	9.54	12.2	15.0	20.7	22.I
0.50	0.103	0.712	8	2.77	5.34	8.2	9.7.6	12.9	0.103	0.710	1.64	2.73	5.23	7.96	9.39	12.3	15.4	18.5	24.9	29.8
0.8	0.210	201	22	3.54	6.42	9.53	11.2	14.5	0.210	8	2.20	3.49	6.30	16.9	10.9	14.0	17.3	20.6	27.3	32.5
75.0	0.574	8	\$	s 8	8.51	12.0	13.8	17.5	0.576	1.92	3.45	5.07	8.44	11.9	13.7	17.2	20.8	24.5	31.8	37.4
9	8	R	5.31	06.7	1.3	15.2	17.2	21.2	1.39	3.36	5.35	7.34	11.3	15.3	17.3	21.6	25.3	29.3	37.3	43.3
	7 6	8	0, 1	0 01	14.5	18.8	21.0	25.2	2.77	5.39	7.84	10.2	14.8	19.4	21.6	26.0	30.4	34.8	43.5	49.9
	5	3 5		13.0	17.8	2.4	24.7	1.62	4.61	7.78	10.6	13.4	18.6	23.5	26.0	30.8	35.6	40.3	49.5	56.4
		6 19	12.1		661	24.7	27.0	31.6	5.99	9.49	12.6	15.5	21.0	26.3	28.9	33.9	38.9	43.8	53.4	60.5
		12.5	15.9	18.8	24.3	29.2	31.7	36.3	9.21	13.3	16.8	20.1	26.2	32.0	34.8	40.3	45.6	50.9	61.1	68.7
	9	-	2.5	•	6.5	X	2	X	0+0	1.5	2.5	0.4	6.5	Х	01	Х	15	Х	ъ	Х
								Ĭ	Acceptable (Juality Levels (tightened inspection)	builty Le	vels (tight	ened insp	ection)							

Noie: Bisausial distribution used for parront defective computational. Poisson for defects per booked milia.

^{>...}(

.

•

ţ

	Com								Acce	ptabl	Acceptable Quality Levels (normal inspection)	ity Le	evels	Both	l inst	pectio	<u> </u>		ł		ł		ľ	ļ			-	Cumu
l ype of sempling plan	lative aample aize	Less than 0.25	0.25	04.0	X		0.65	1.0		1.5	2.5		4 .0	••	S	X	$\overline{\mathbf{h}}$	2	\vdash	X	15		X	5	Я	Higher 255 m er	.	lative sample size
		Ac Re	Ac	Re Ac	Re Ac	Re Ac	Re	Ac R	Re Ac	Re	Ac	Re A	Ac R	Re Ac	R.	Ÿ	R A	Ac Re	ې ۲	R	۷	2	Ac B	<u>ح</u> چ	Ac Re	y e	2	
Single	8	Δ	1 0	:				1 2	5	ŝ	m	•	ŝ	6 7	so .	•	- •	10 11	1 12	13	=	1 21	18	19 21		۵ 8		ន
Druble	32	D	•					0 2	•					9 2	~	m	~	S .	e 6	10	~	=	6	=		۱۶ م ۱۶	+	32
	3			ט 				1 2	m •	-	-	s	s.	7 8	6		12 1	12 13	3 15	16	18	19 2	23	28		z		3
	13	٥	٠				 •	۲ ۲	•	7	•	m		•	4	0	•	0	5 0	6	-	~	_	8	2	♦		13
	×							*	0	3	0		_	2	9	7	~		8	6	-	10	6 1	12	7	14		26
	£							0 2	•	ñ		•	3	9	80	•	•	6 10	~	12	80	13 1	1 1	17 13		19		36
M ultiple	23							0		4	7	ŝ	m	7 5	10	v	Ξ	8 13	3 10	15	12	17	16 2	22 19	9 25	<u>.</u>		52
	8							1 3	~	4	<u>۳</u>		5	8 7	Ξ	•	12 11	1 IS	=	17	12	8	3	22		8		65
	82				-			. 1	3	3	+	\$ \$	~	6 10	12	13		1	17 18	8	21	8	27 2	29 31		33		78
	16							2 3	*	S	Q	~	5 6	10 13	1	1	12 1	18 19	51	ន	ĸ	8	32 3	33 37	33	e		16
		Less than 0.40	070	Х	°	8	1.0	1.5		2.5	4.0		6.5	X		2		IX		15	X	$\overline{\mathbf{v}}$	ы	\uparrow	X	Higher 25	ų e	
									<	ccept	Acceptable (Juality Levels (tightened inspection)	hullin	y Leve	ils (ti	khten	Ed ins	pecti	(WO				1	ľ	1	·			

.

Luse next preceding sample size code letter for which acceptance and rejection numbers are available.
Luse next subsequent sample size code letter for which acceptance and rejection numbers are available.
A cceptance number

Re 🛥 Hejection number

= (ise single sampling plan above (or alternatively use letter L). •

* Acceptance not permitted at this sample size. .

H

-
letter:
code
size
sample
for
Tables
×
TABLE

!

							ļ		Acre	-ptable ()	wality Le	rveis (no	Acceptable (Juality Levels (normal inspection)	rction)								
,	0.15	0.65	1.0	1.5	2.5	0.4	X	6.5	X	10	0.15	0.65	1.0	1.5	2.5	0.4	X	6.5	Χ	10	Х	15
				Ĩ	p (in percent	t defective)	Ę.								p (in def	p (in defects per hundred units)	hundred .	mits)				
0 8	0.013	0.188	0.550	1.05	2.30	3.72	93. ♦	6.13	7.888	9.75	0.013	0.186	0.545	1.03	2.23	3.63	8 . 1	5. %	7.62	9.35	12.9	15.7
95.0	0.064	0.444	1.03	1.73	3.32	5.06	5.8	1672	68.6	11.9	0.064	0.444	1.02	1.71	3.27	4.98	5.87	7.71	9.61	11.6	15.6	18.6
0.06	0.132	0.666	86.1	2.20	3.98	5.91	6.91	8.95	11.0	13.2	0.131	0.665	1.38	2.18	3.94	5.82	6.79	8.78	10.8	12.9	17.1	20.3
75 0	0.354	1.202	2.16	3.18	5.30	7.50	8.62	6.01	13.2	15.5	0.360	1 20	2.16	3.17	5.27	7.45	8.55	10.8	13.0	15.3	19.9	23.4
50.0	0.863	2.09	3.33	4.57	2.06	9.55	10.8	13.3	15.8	18.3	9980	2.10	3.34	€:5	7.09	9.59	10.8	13.3	15.8	18.3	23.3	27.1
25.0	2.1	3.33	4 84	6.31	9.14	11.9	13.3	16.0	18.6	21.3	1.73	3.37	8.₹	6.39	9.28	12.1	13.5	16.3	0.61	21.8	27.2	31.2
10.0	2.84	4.78	6.52	8.16	113	14.2	15.7	18.6	21.4	24.2	2.88	*	6 65	8.35	11.6	14.7	16.2	19.3	22.2	25.2	30.9	35.2
5.0	3.68	5.80	2.66	9.9	12.7	15.8	17.3	20.3	23.2	26.0	3.75	5.93	787	69 6	13.1	16.4	18.0	21.2	24.3	27.4	33.4	37.8
0 1	5.59	8.00	10.1	12.0	156	6 81	20 5	23.6	26.5	29.5	5.76	8 30	10 5	12.6	16.4	20.0	21.8	25.2	28.5	31.8	38.2	42.9
	0.25	0.1	1.5	2.5	0.4	Х	6.5	Х	10	Х	0.25	1.0	1.5	2.5	0.4	Х	6.5	X	2	Х	S.	X
									Acce	ptable ()	uality Le	vels (tig	Acceptable Quality Levels (tightened inspection)	spection								

							¥ci	sept ab	8	lity Le	Acceptable Quality Levels (normal inspection)	lem	apec	tiom)											C
Type of sempling	lative sample	Less then 0.15	0.15	0.25	Х	0.40	0.65		•	1.5	2.5	\vdash	•	Х	$\overline{}$	6.5	\wedge	\vee	10	\sim	χ	15		Higher 15 15	lative sample
	aire	Ac Re Ac	L R	Re Ac	Rc Ac Re	Ac Re	Ac Re	× ۲	2 2 2	Ac Re	٩c	Re Ac	Re	Ac R	Re Ac	Re	٩c	Re	Ac R	Re Ac	Re	Ÿ	Re A	Ac Re	
Single	8	D	0				1	8		•	Ś	6 7	60	8	9 10	11 0	12	13 1	14 1	15 18	19	21	8	4	8
	3	Þ	•		Dee U	Use	0	0		-	~	2 2	2	m	~	s -	•	2	~	6 11	=	=	9	⊲	ន
Double	99			Letter	Letter	<u> </u>	1	<u> </u>	*	4 V	<u>ب</u>	8	6	n	12 12	2 13	15	16	18	10 X	3 24	×	ĸ		8
	8	Þ	•	≖ 	ب 	¥		*	7		•	•	+	•	+	0 5	0	Ŷ	-	-	•	8	6	۵	8
	\$						•	0 5	ñ	0	1	5 1	ø	7	~	9 9	<u></u>	0		10	6 12	~	1		\$
	8						0	5	n	1	5	9	60	-	•	6 10	-	12	ب	13 11	1 17	13	19		8
Nultiple	8						•	3 1	*	2 5	m	7 5	2	•	Π	8 13	10	15	12	17 16	В Ф	19	ង	_	8
	8							3 2	+	3 6	s	8	11	6	12 1	11 15	*	17	17	2 8	22 72	ß	8		901
	130						_	3	s	4	~	9 10	0 12	12	14	14 17	7 18	8	21	23 27	8 2	31	R		120
	140						8	•	Ś	6 7	•	10 13	3 14	<u>.</u>	15 1	18 19	9 21	ន	8	33	33	37	8		140
		Less then 0.25	0.22	X	9	0.65			1.5	2.5	•	$\frac{1}{2}$	X	فه ا	s	X		10	X	$\overline{\mathbf{\nabla}}$	15	$ \Delta $	ΙV	Higher them 15	
							¥	ept abl	0 m	lity Lei	Acceptable Quality Levela (tightened inspection)	chtene	inap	ection	-							ſ	l	1	

.

Acceptance number Rejection number I H

Use next subsequent sample size code letter for which acceptance and rejection numbers are available. Use next preceding sample size code letter for which acceptance and rejection numbers are available.

> II .

- Use single sampling plan above (or alternatively use letter M) 8 N
 - Acceptance not permitted at this sample size. .

TABLE X-K-Tables for sample size code letter: K	C - DETAILIC CUARCIER SIGLE SAMPLINE (neuron environmentation of the static	Acceptable Unality Levels (normal inspection)	$\left[\begin{array}{c c c c c c c c c c c c c c c c c c c $	d r ed units)	0.658 1.43 2.33 2.81 3.82 4.88 5.98 8.28 10.1	1 09 2.09 3.19 3.76 4.94 6.15 7.40 9.95 11.9	1.40 2.52 3.73 4.35 5.62 6.92 8.24 10.9 13.0	
LE X-K-	FRATING CHA irres for double and and and and and and and and and and		1.0	units)	0.658	1.09	1.40	
TAB			0.65	p (in perc ent defective or defects per hund re d units)	696.0	0.654	0.882	
	CH CH CH CH CH CH CH CH CH CH CH CH CH C		0.40	t defective or de	611.0	0.284	0.426	
		1	0.10	p (in percen	1900.0	0.0410	0.0840	
			<u>-</u>		0.66	95.0	0.06	

K

4
]
ă.
1
ŧ
į
F
i
ł
t
1
ł
1
i
Ē
1
Ŧ
ī
ŧ
Ş
Nete

Acceptable Quality Levels (tightened inspection)

8.24 9.79

14.9 17.3

12.7 14.9

8.34 10.1 12.2

6.9 8.53 10.4

4.35 5.47 6.9 8.64

2.52 3.38 **1**.54 5.94

0.882 0.382 2.14 3.14 2 4 2 4

0.426 0.769 1.34 2.15 3.1 3.80

90.06 75.0

0.230

50.0 25.0 0.01

1.84 2.40 3.68 0.15

> 5.0 1.0

П

2.03 2.94

4.77

6.14 7.75 34.6

22.5

19.8

16.1 17.5

14.2

12.3 13.6

10.4 11.5

10.5 12.8 X

7.42

4.09 5.3S 6.20 27.5 Х

24.5

8.4

18.3 6.5

16.1

18.3 4

10.5 2.5

8.04 1.5

6.73 0

0.65 5.31

X|

2

Х

20.0

17.4

13.9

11.7

.

Acceptance number Rejection number

. .

.

K

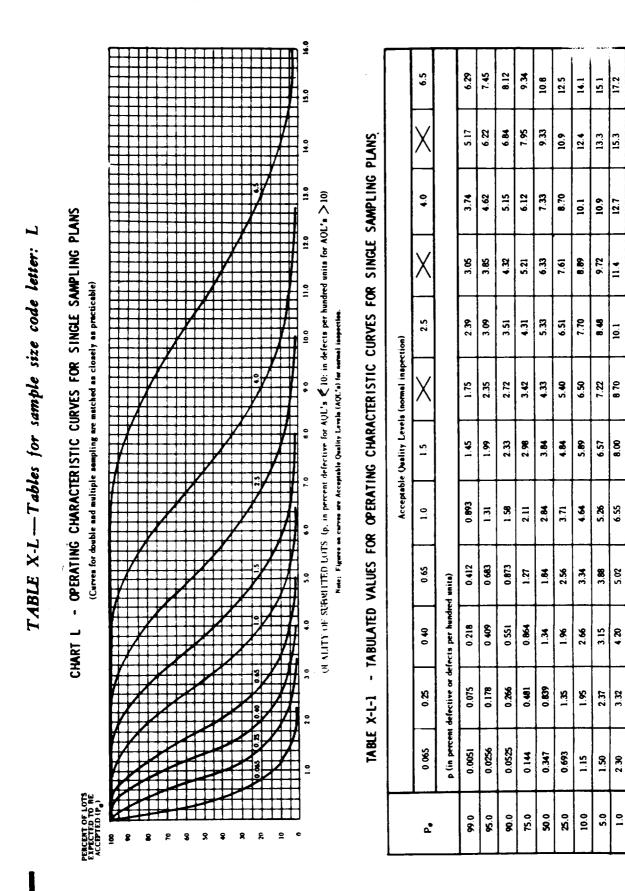
n 11

⊲⊳≈≝

M

Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Use next preceding sample size code letter for which acceptance and rejection numbers are available.


:

is ple 160 13 ผ 8 8 R 3 8 128 22 Re Higher then 10 Higher than 10 0 0 0 Ŷ 19 ĸ 2 33 8 0 14 å 16 27 ដ 2 Π 2 ~ 2 6 ង 31 37 8 ¥ 2 R ន Я 8 1 2 80 12 17 Re 19 2 ø ø Π 9 ង 5 22 ¥ 8 ន 26 19 1 2 13 17 8 33 æ 15 Ξ 6.5 Å + 2 ង Åc Ż ~ 8 80 1 21 12 15 17 ន ដ R. 13 16 9 0 10 6.5 X ŝ ~ 2 1 18 ដ 2 ø 15 0 ¥ 2 13 15 17 6 0 13 Ś àc R 11 Х 0.4 ø 80 1 8 0 m Ξ Ÿ 2 ŝ 12 Acceptable Quality Levels (tightened inspection) 1 15 12 Re 0 2 12 ~ 6 11 L **4**.0 Acceptable (Juality Levels (normal inspection) o 2 1 2 ø ۷ e П 0 80 Ħ Π 12 2 Re 8 7 6 9 œ Х 2.5 ŝ ~ 2 11 8 0 ŝ ~ m ¥ 2 \$ æ 6 ŝ ~ -5 6 7 8 2.5 1.5 ¥ ø . ~ e ŝ ~ o ŝ 2 S 9 7 ž S m 3 + 6 + + 1.5 1.0 Ÿ ø 4 . 0 ~ ŝ ŝ 4 S S Re + 2 3 e m e 1.0 0.65 ¥ . 0 0 ----~ m + 0 m N Re 2 2 2 m e 3 Э 2 2 2 0.65 9.0 Re Ac 2 0 0 ----0 ----. . _ Letter 0, \$0 Use 0.25 L Åc Letter å 0.25 Use * Х ¥ æ Letter 0.15 Х ů, -¥ Re 0.15 ----0.10 ٠ ٠ Ÿ 0 Less then 0.15 å Less than 0.10 \triangleright D D 2 Cana-lative somple size 8 **5**8 3 132 8 3 ន័ 8 3 22 Vultiple Type of sempling plan Double Single

(

- (

_ (

Nue. All mises give is down this bund on Poisson destinition on a symptotic is the Neural

)

)

Acceptable Quality Levels (tightened inspection)

6.5

0.4

2.5

1.5

1.0

0.65

9.0

01.0

)

TABLE X-L-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: L

1

(

1

	Cumu-						Ac	Acceptable Quality Levels (normal inspection)	Quality	Levels	(normi	ul inspe	sction)										Cumu-
Type of sampling plan	lative sample size	Less than 0.065	0.065	0.10	Х	0.15	0.25	0.40	0.65	1.0		1.5	X	5		X	-	0	IXI		6.5	Higher than 6.5	lative sample size
		Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	e Ac	Re Ac	c Re	Ac Re	e Ac	Re	Ac Re	۷c	Re	Ac Re	e Ac	Re	Ac Re	
Single	500	⊳	1 0				1 2	2 3	* E	ۍ د	4 1	7 8	6	6 10	1 11	12 13	11	15 1	18 19	21	22	Δ	200
				Use	Use	- Case					+-							-		4			
:	125	0		-			0 2	0 3	4	5	- vî	3 7	3 7	7 5	6	6 10	~	п	9 14	=	16	٥	125
Louble	250	>	•	Letter			1 2	•	•	0	2	8	11 12	2 12	13 1	15 16	18	19 2	23 24	8	21		250
	\$	D	•	۲ ۲	Z	F	•	- 5 	۳ ۳	•	-	*	0	•	s.	9 0	-	~	-	8	Ô	⊲	ß
	001						* 2	т 0	0 3	-	5	1 6	2	7 3	80	9 5	+	10	6 12	~	1		001
	130						0 2	0 3	-	01 ••	•	3 8	4	9 6	10	7 12	80	13 1	11 17	13	5		150
Nultiple	500						0 3	-	2	5	~	5 10	6 11	8	13 1	10 15	12	17	16 22	5 16	25		200
	ŝ						1 3	8		6 5	80	7 11	9 12	3 11	12	14 17	12	8	22 25	3	8	<u> </u>	250
	<u>8</u>						1 3	3	•	6 7	6	10 12	12 14	*	12	18 20	21	ន	27 29	9 31	33		300
	320						2 3	\$ •	Ŷ	6	101	13 14	14 13	15 18	19	21 22	ß	8	32 33	3 37	8		350
		Less than 0.10	0.10	Х	0.15	0. 25	0.40	0.65	1.0	-	5	Х	2.5	$ \wedge $	\vee	4 .0	$ \wedge $	\vee	6.5		X	Higher than 6.5	
								Acceptable Quality Levels (tightened inspection)	le Quali	ity Levi	els (tig	htened	inspect	(ion)									

 $\Delta = Use$ next preceding sample size code letter for which acceptance and rejection numbers are available. $\nabla = Use$ next subsequent sample size code letter for which acceptance and rejection numbers are available. Ac = Acceptance number

.

Re = Hejection number •. = Use single samplin

= Use single sampling plan above (or alternatively use letter P).

➡ Acceptance not permitted at this sample size. .

	F	IT	Π	T	L	П	Ŧ	T	Г	П	T	T		Į] ⁸
	H	⊞	\blacksquare	\pm	\vdash	Н	\pm	\pm	E	H		t	Н	1	
	H	$\left\{ \right\}$	₩	+	╞	H	╉	+-	╞	\mathbb{H}	+	╞	H	A	-
	Ħ		##	1	1	Ħ	1	t	t	Ħ	+	t		4	•
	H		H	\pm		H	+	+	\vdash	Н	+	t	И	+	-
	H	\square	Π	Ŧ	H	H	Ŧ	Ŧ	F	Н		Ł	H		
	Ħ		Ħ	1			+	1	E	Ħ	Ź	t	H	1	1 2
	\vdash		╉╋	╉	\vdash	H	╉	+	Ł	И	+	┝	┢┝		H
Antenningen an Antenningen og Sandame under sam sen annen for ess soor	F	T-	П	Ŧ	\square	Ħ	Ŧ		r	H	+	F	H	-#	7
			Ħ		Η	H	Ż	T						1	12
	\vdash	+	₽	┢		A	7	+-	\square	H	+	-		A	-
	Ħ		Ħ	Þ		Ħ	+	t		Ħ	1	E	Ż	1	I
	H	+		1	H	H	+	+	\vdash	H	÷.	Þ	4	+	93
	\square	+	4	╉╴	Н	H	+	-	Ц	Η	7	F	Π	₽	
	日		Ħ	1			1	t		Z	1	L	H	1	1
	H		╂╋	╀	Н	+	╉	\mathbf{b}	K	Η	+	H		4	f 3
	H	+	\mathbb{H}	Ŧ	Н		₹	Ŧ	F	Η	Ţ	F	q	Ŧ	N
		1	Ħ	Ļ	4	4	+	1			7	r		Ţ	
				Ł	Η		+		Η		4			A	3
			FF.	F	Н	+	Ŧ		P	Η	Ŧ	H	A	₩	9
	Π,	4	##	1			4	1			-	Ľ	Ħ	Į,	
	H		Ħ	Ż	Н	+	\pm	\pm	Н		4-		Z	\mathcal{H}	13
	Ĥ		K	+-	Н	H	Ŧ		P	Η	- 3	K	4	4	
	Ħ	4	Ħ	1	ロ	4	1	1			4	Ľ		4	4
	Ю		4	Ł	Η	H		Þ	K	H	- 3		4	X	12
	4	\mathbf{X}	\prod	F	\square	4	7	F			2		4	Ŧ]
	Z		2	T	Ħ		Ţ	Þ			Ľ			7	4
		+	t	Ł	H	1		Ł		H	2	ſ		Ł	12
-	H	E	4	┢	Ħ	7	╆	┢	P	A	.ة. نو		4	+	-
ACCEPTIND (P)		Ŧ	Ħ	Ł			+	Ħ	E		T	Þ		1	1
F	8 8		Ē	R	L]		3		LLI Ş	명	1	R	L 2		ŗ

TABLE X-M-1 - TABULATED VALUES FOR OPERATING CHARACTERSTIC CURVES FOR SINGLE SAMPLING PLANS

	4.0		3.99	5.4	5.16	5.93	6.88	7.92	8.95	9.60	10.9	Х	
	X		3.28	3.95	4.3	5.05	5.93	6.90	7.86	8.47	12.6	0.4	
	2.5		2.38	2.94	3.27	3.89	4.66	5.52	6.39	6.95	8 0.8	Х	
	Х		1.94	2.44	2.75	3.31	4.02	4.83	5.65	6.17	7.25	2.5	
	1.5		1.51	1.96	2.23	2.74	3.39	4.13	4.89	5.38	6.40	Х	
mal inspection)	Х		1.11	1.49	1.72	2.17	2.75	3.43	4.13	4 .58	5.53	1.5	
Acceptable Quality Levels (normal inspection)	1.0		0.922	1.26	1.48	1.89	2.43	3.07	3.74	4.17	5.08	Х	-
Acceptable Que	0.65		0.566	0.829	00.1	1.34	1.80	2.36	2.94	3.34	4.16	1.0	
	0.40	per hundred units)	0.261	0.433	0.533	0.804	1.17	1.62	2.12	2.46	3.19	0.65	
	0.25		0.138	0.259	0.349	0.580	0.845	1.24	1.69	2.00	2 67	0.40	
	0.15	p (in percent defective or in dejects	0.047	0.112	0.166	0.305	0.532	0.654	1.23	1.51	2.11	0.25	
	0.040	p (in percent	0.0032	0.0163	0.0333	0.0914	0.220	0.440	0.731	0.951	1.46	0.065	
	P.		0.66	9 .0	90.06	75.0	50.0	25.0	10.0	5.0	1.0		

Near: All ruless give in aires side band as Palenes distributes as a apprimeter in the Dismut

)

-)

1

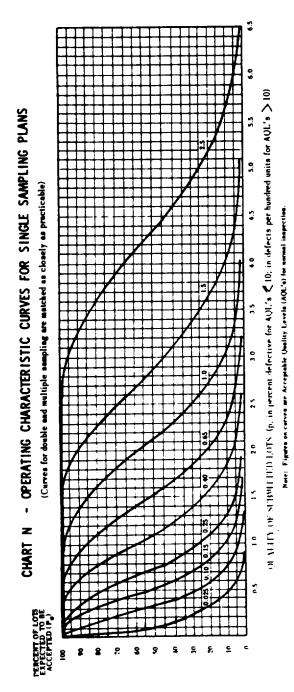
M

TABLE X-M-Tables for sample size code letter: M

	4			T								_	ר	
	Cumu- lative semple	8ize	315	<u>3</u>	8	8	160	240	320	8	8	260		
	Higher than 4.0	Ac Re	Δ	4		Δ							Higher then 4.0	
		 	8	2	51	•	1	19	R	କ୍ଷ	8	8	$\overline{\mathbf{F}}$	ł
	9	v	5	=	8		~	13 1	19 2	R	31	37 3	Χ	·
	$\overline{\nabla}$	2	2	-	<u>্</u> র		12	1	8	2	3	8	1	
	X	۲	e 🖻	0	ន	-	Ŷ				1	8	3	
	2.5	2	15	=	19	-	10	13 11	17 16	8	8	8	$\overline{\mathbf{V}}$	1
	~	×	1	~	18		-	•	12	17	12	Я	X	
	ΙX.	æ	13	2	16	•	•	12	15	17	8	ន	2.5	
		ReAc	11 12	•	15	•	~	~	10		8	5	<u> </u>	
	1.5			^	13	s	80	2	13	15	17	19	X	
(ion	\vdash	ReAc	9 10	2 2	12 12		7 3	-0	11 8	12 11	14 14	15 18		(F
apec	IX		60										1.5	pecti
Acceptable Quality Levels (normal inspection)		ReAc	80	-	6 11	•	6	*	10 6	6 11	12 12	1		Acceptable Quality Levels (tightened inspection)
шоч)	9	Ac	7		80		-	Ē	ŝ	~	9	13	X	hene
evela	8	Re	9	s l	2	-	Ś	9	2	80	6	201		i fig
14	0.65	Ÿ	ŝ	6	v	-	I	2	e	ŝ	2	•	1.0	leve
Quali	0.40	Re	•	-	Ś	m	ŝ	•	Ś	9	Ŷ	~	12	lity L
ble	0	۷¢	m	-	+	•	,o	1	7	e	•	÷	0.65	0
cept	0.22	ž	e	3	4	2	ŝ	3	4	4	s	s	0.40	a de la
~	<u> </u>	کر ۲	5	0	3	*	0 5	2		3		•	ľ	Accel
	0.15	Re	-	0	_			0				m	8. 27	-
		Re					*			-		~		
	0.10	Ϋ́	;	Letter Use	2	E							0.15	
	57	 ₽							•					
	Ň	Ÿ	:	Letter		L							0.10	
	0.045	문		Letter	-								$\overline{\mathbf{v}}$	
	ō	¥		ם ב 		-							Х	
	0.040	2	T	1									0.065	
	°	Re Re	•	•		•							ö	
	Coto 1 tess 0.040	æ	D	D		Þ							then 0.065 m	
	పేం	¥							-				243	
į	lative sample		315	3 0	0	8	160	240	320	Q	8	560		
	lype of sampling plan		Single		Double				Multiple					

TABLE X-M-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: M

1


- 1

- Use next preceding sample size code letter fir which acceptance and rejection numbers are available.
- Use next aubaequent aample size code letter for which acceptance and rejection numbers are available. 1 ł
- Acceptance number. 1 **4**₽₹₹.
 - Rejection number. ŧ
- Use single sampling plan above (or alternatively use letter ()). .

Downloaded from http://www.everyspec.com

7
letter:]
code
size
sample
for
N-Tables
N-X
TABLE

N

PLANS
SAMPLING
SINGLE
õ
CURVES
ABLE X-N-I - TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS
OPERATING
Ę
VALUES
- TABULATED
TABLE X-N-1

54

					Accepteb	Acceptable (Juality Levels (normal inspection)	s (normal inspe	ction)			,	
4	0.025	0.10	0 15	0.25	0*0	0.65	Х	1.0	Х	1.5	Х	2.5
	p (in percer	nt defective or in	p (in percent defective or in defects per hundred units)	ndred units)								
0.66	0.0020	0:030	0 067	0.165	0.357	0.581	0.701	0.954	1.22	1.50	2.07	2.51
95.0	0.0103	0.071	0.164	0.273	0.523	0.796	666 0	1.23	1.54	1.85	2.49	2.98
0.06	0.0210	0.106	0.220	0.349	0.630	0.931	1.09	1.40	1.73	2.06	2.73	3.25
75.0	0.0576	0.192	0 345	0.507	0.844	61.1	1.37	1.72	2.08	2.45	3.18	3.74
0.05	0.139	90.336	0.535	9.734	1.13	1.53	1.73	2.13	2.53	2.93	3.73	4.33
25.0	0.277	0.539	0 784	1.02	1.48	1.94	2.16	2.60	3.04	3.48	4.35	4.99
10.0	0.461	9/1/0	-1.08	1.34	1 86	2.35	2.60	3.08	3.56	4.03	4.95	5.64
5.0	0.599	616:0	1.26	1.55	2.10	2.63	2.89	3.39	3.89	4.38	5.34	6.05
01	0.921	1.328	1.68	2.01	2.62	3.20	3,48	£0: \	4.56	5.09	6 12	6.87
	0.040	0.15	0.25	0*0	0.65	Х	0.1	Х	1.5	Х	2.5	Х
					Accep	Acceptable (Juality Levels (tightened inspection)	vels (tightened	inspection)				
				tate: All values giv	es is above table	Nate: All values gives is above table based as Pisama distribution on an appresimation to the Bisconial	urburios es en app	recimention to the B				

)

-)

TABLE X-N-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: N

(

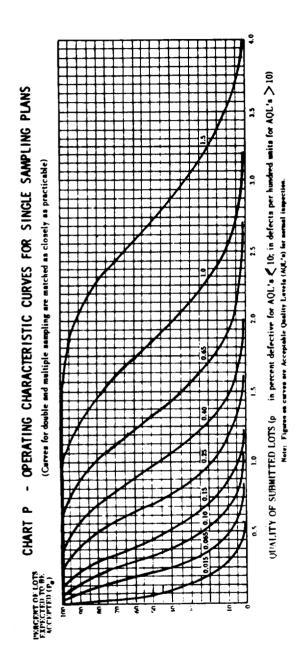
.

_ i

	į						Ň	ceptak	<u>-</u>	Acceptable Quality Levels (sormal inspection)	evel		l ing	pectio	7											j
Type of sempling	lative sample	Less the 0.025	0.025	0.040	Х	0.065	0.10	0.15	s	0.25	ò	0.40	0.45	\square	Y	0 1	\rightarrow	X	1.5	<u> </u>	X		2.5	Hind 2.5		
	2	Ac Re Ac	Re Re	Ac Re Ac	æ	Ac Re	Ac Re	Ac 2	ReA	Ac Re	Ac	ReA	Ac R	Re Ac	Re	Ac	Re Ac	Re	۸c	Re	Ac F	Re Ac	c Re	e Ac	ž	
Single	<u>8</u> 5	⊳	0 1				1 2	3	en	4	s	v	1 2	8	6	10 1	11 12	13	1	15	18 1	19 21	8	<u>م</u>		5
Double	315 630	⊳	•	Letter	Letter Use	Letter Letter	0 2 1 2	0 m	m 🔹	4 1 4 5 4	<u>v </u>	- 2	. m eo	7 3 9 11	7 12	5 12	9 6 13 15	16	18	1 2	6 8	24 28	1	2 19		315
	2	⊳	•	¥	•	٩	4	•	10			╡╺			-	•	2	•	-	~	-		~			ង
	X						•	•	e	е 0	-	S	1	6	7	m	e e	•	•	2	9	12	7 7	14		ន៍
	375						0 2	•	m	•	8	9	ñ	*	6	9	10 7	12	80	13	n	17 13		19		375
Multiple	8						0		· •	2 5	m	2	5 1	10 6	11	60	13 10	15	12	17	16	51 10		8		<u>8</u>
	អ្វ						1 3	8	-	3	s	•0	7 1	11 9	12	n	15 14	11	11	ន	ม เ	<u>ช</u>		8		5 3
	22						1 3	۳ ۳	Ś	9 4	~	•	2	12 12	14	1	17 16	8	21	ន	2	1E 62		ß		750
	513						3	•	s	6 7	•	10	13 1	11	15	8	19 21	ន	<u>8</u>	8	2	33		8		875
		Less then 0.040	0.040	X	0.065	0.10	0. 15		0.25	0.40		0.65	X		1.0	X	+	1.5	\square	V	2.5		X	Higher 2.5	ta ≣∧	
								Accel	X able	Acceptable Quality Levels (tightened inspection)	7	ela (ti	ghten	E I	pectio	1										
												ŀ											l]	

55

△ = Use sent preceding sample size code letter for which acceptance and rejection sumbers are available.
▽ = Use sent subsequent sample size code letter for which acceptance and rejection sumbers are available.
Acceptance number
Be = Rejection number
Coceptance and permitted at this annuple size.


•

- Acceptence not permitted at this sample size.

N

4
letter:
code
size
sample
for
- Tables
X-P
TABLE

P

			T	Τ	I									
	1.5		1.57	1.86	2.03	2.34	2.71	3.12	3.52	3.78	4.29	Х		
	Х		1.29	1.56	1.71	1.99	2.33	2.72	3.09	3.34	3.82	1.5		
	1.0		0.935	1.16	1.29	1.53	1.83	2.18	2.52	2.74	3.16	Х		
	Х		0.762	0.961	1.08	1.30	1.58	1.90	2.22	2.43	2.85	1.0		
ion)	0.65		0.596	0.771	0.878	1.06	1.33	1.63	1.93	2.12	2.52	Х	inspection)	
Acceptable (Juality Levels (normal inspection)	Х		0.438	0.587	0.679	0.855	1.06	1.35	1.62	1.80	2.18	0.65	Acceptable Quality Levels (tightened inspection)	Naul. All raises gives in above table based as Polasian distribution on a specularities to dis Discretial
. Uunlity Levels	0*0		0.363	0.498	0.582	0.745	0.959	1.21	1.47	1.64	2.00	Х	stable Quality L	
Acceptable	0.25		0.223	0.327	96.0	0.527	0.709	0.928	1.16	1.31	1.64	0+0	Yerny	
	0.15	mits)	0.103	0.171	0.218	716.0	0.459	0.639	0.835	6960	1.26	0.25		Runs Al
	0.10	ts per hundred units)	0.065	0.102	0.138	0.216	0.334	0.490	0.665	0.787	1.05	0.15		
	0.065	plin percent defective or defects per	0.0186	0.0444	0.0665	0.120	0.210	712.0	0.486	0.593	0.830	0.10		
	0.015	plin percent de	0.0013	0.0064	0.0131	0.0360	0.0866	6173	0.266	0.375	0.576	0.025		
	*ء		0.69	0 20 0	0.06	75.0	50.0	۶. ۲	10.0	5.0	1.0			-

١

TABLE X-P-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: P

1

•

•

_ (

	Ľ				Ceept	e e	ality	Acceptuble Quality Levels (normal inspection)			ction)	- I-			- ,			H		Higher	Come- Intive
••••••••••••••••••••••••••••••••••••••	98 98 //		- I	0.065	0.10	-+	0.15	8. 22	• 	9	XI	•	9.65	Хļ		9	ΧĮ		1.5	then 1.5	sample size
Ac Re Ac Re Ac Re Ac Re Ac Re Ac	Ac Re Ac Re	æ	Ÿ	æ	۲	ReAc	Re	۲	ReAc	å	Ac Re	¥_	ž	Ac R	۲ ۲	Å	۷c	Re Ac	ž	Ac Re	
:	:		-	3	2		4	- بر		æ		6 10	п	12 1	13 14	15	18	19 21	ន	٩	00
		L	1 T	7 0	•	т Г	-	2	3	~	m	2 5	Ô	- -	10 7	11	ð	11 11	16	٩	200
				12	3	•	s	Q	7 8	6	11 11	12 12	13	15 1	16 18	19	ន	24 26	27		1000
200 Σ		>		* 5	•	2 *	3	•	•	*	0	0 +	S	0	6 1	1	I	80	29	۵	200
009				•	•	9 9	e		2	9	2	7 3	80	e	*	10	9	12 7	14		8
009			· ·	0 2	•	3	4	7	9	80	•	6	10	2	12 8	13	п	17 13	61 1		899
008			0	ю 0	-	4	ŝ	ñ	7 5	10	6 11		13	10	15 12	17	16	20 20	8		808
1000				1 3	8	•	•	Ś	8	Ξ	6	12 11	IS	1	17 17	ຊ	ន	<u>к</u> к	8		1000
1200				1 3	ñ	* v	•	~	6 10	12	12 1	14 14	17	8	20 21	ន	z	29 31	33		1200
1400			2	5	*	2 2		•	10 13	14	14	15 18	19	3	22	8	R	33 37	R		1400
Less than 0.025 × 0.040 0.065	I	0.065	1 1	01.0	0.15	+	0.Z	9 9	+	X	8.0	╉╼╼┫	X	0.1	4	X	1.5		X	Higher then 1.5	
					Accept	ele O)uality	Acceptable Quality Levels (tightened inspection)	(tighte	ii par	abect.	(uo									

- Use next preceding sample size code letter for which acceptance and rejection numbers are available.
- Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

 - Acceptance number.
- Rejection number. ↓↓↓↓↓ ◇▷ヾ≗. .
- Acceptance not permitted at this sample size. Use single sampling plan above.
 - P

			1.0		10.1	1.19	1.30	1.49	1.73	
			Χ		0.828	0.995	1.09	1.27	1.49	
-			0.65		0.598	0.740	0.824	0.979	_ 1.17	
letter: Q	PLING PLAN		Х		0.488	0.615	0.692	0.834	1.01	
TABLE X-Q—Tables for sample size code letter: Q	Q - OFEATING CHARACTERISTIC CURVES FOR SINCLE SAMPLING PLANS Torres for dealer and antiple sampling are matched at closely as procession. The dealer and antiple sampling are matched at closely as procession. The dealer and antiple sampling are matched at closely as procession. The dealer and antiple sampling are matched at closely as the dealer and antiple sampling are matched at a closely as the dealer and antiple sampling are matched at a closely as the dealer and antiple sampling are are are are are an and antiple sampling are are are are and and an antiple sampling are are are are an antiple sampling are	ction)	0.40		0.382	161.0	0.562	0.690	0.853	
mple siz	OFERATING CHARACTERISTIC CURVES FOR SINGLE (Garves for double and anticple sampling are marched as closely as pre- (Garves for double and anticple sampling are marched as closely as pre- defined and anticple sampling are marched as closely as pre- able and anticple sampling are marched as closely and anticple and anticple sampling are marched as closely and anticple and anticple sampling are marched and anticple sampling are and and anticple sampling are marched and anticple sampling are are anticple sampling are and anticple sampling are and anticple sampling are and anticple sampling are are are are as a sample sampling are are anticple sampling are are are as a sample sampling are as a sampling are as a sample sample sample sampling are as a sample sampl	Acceptable Quality Levels (normal inspection)	Х		0.281	0.376	0.435	0.547	9 6970	
s for sa	STIC CURVES F angling are mucked and and and and and and and and and and	le Quality Leve	0.25		0.232	0.318	0.372	0.476	0.614	
— Table	CHARACTERISTIC Le ad antiple sapli de ad antiple sapli b b b b b b b b b b b b b b b b b b b	Acceptab	0 15		0.143	0.209	0.252	0.338	0.454	
LE X-Q	PERATING CH Carves for double Carves for double Carves for double Carves for double Carves for double		01.0	d units	0 0656	601.0	0.140	0.203	0.294	
TAB	CHART Q - OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Carves for deale and maining are marched as a foreign are practicable) (Carves for deale and maining are marched as a foreign are practicable) (Carves for deale and maining are marched as a foreign are practicable) (Carves for deale and maining are marched as a foreign are practicable) (Carves for deale and maining are marched as a foreign are practicable) (Carves for deale and and are foreign are marched and a foreign are marched are		0.065	n (in percent defective or defects per hundred units	0.0349	0.0654	0.0682	9:138	0.214	
			0.040	defective or def	6110.0	0.0284	0.0426	0.0769	0.134	
			0.010	n (in percent	0.00081	0.00410	0.00840	0.0230	0.0554	1

-

ed an Poisson distribution as an approximation to the Binamial
4
All values given in above to
Nete:

Acceptable Quality Levels (tightened inspection)

.

.

-1

2.25

2.14

1.61 1.75 2.04

1.36

1.15 1.83 040

1.05 1.28 Х

0.841

0.620 0.804

0.504

0.310 0.380 0.531

0.240

5.0

0.184

10.0

0.111

22.0

0.25

0 15

010

0.065

0.015

10

0.942

0.742

0.534

1.61

1.0

X

0.65

(X)

8

1.73

1.49

1.17

1.01 1.22 1.42 1.S 1.83

0.614 0.775

0.454 0.594

0.294 0.409

0.214 0.314 0.426

0.134 0.215

75.0 50.0

90.06

45.U

0.6

2

1.9 1.23

0.864

58

ţ

,

ť

Ture a	Cumu-							Acce	ptable	Acceptable Quality Levela (normal laspection)	r Leve	is (no	i i	bec	ţe										Cume
sampling plan	lative sample	Х	0.010	0.015	Х	0.025	0.040		0.065	0.10		0.15	0.25	5	X	Ö	\$	X	Ē	0.65	Ň	$\overline{\nabla}$	2	Higher 1.0 1.0	- •
		Ac Re	Re Ac Re	Re Ac Re	e Ac Re	Ac Re	۷c	Re Ac	ي م	۸c	Re Ac	Re	۸c	Re Ac	c Re	۷c	Re	Ac R	Re Ac	Re	۸c	Re /	Ac Re	<u> </u>	
Single	1250		1 0				-	2 2	e	3	4 5	9	2	~	6 8	<u> </u>	п	12 1	13 14	15	18	61	51	٩	1250
		Use		E	Use	Use					-+-	T				\square									_
	008		•				•	2 0	e	-	4	5	e	~	3 7	s	0	6 1	10 7	Ξ	•	1	11 16	Δ	800
noule	1600	Letter	•	Letter	Leller		1	2 3	•	-	5	7	80	6 11	1 12	12	13	15 1	16 18	61 1	8	5	26 27	~	1600
		×		۵.	s	~		+			-+	Ţ		+			1		-+						
	315		•				R	3	3	*	• •	4	•		•	•	ŝ	•		~	1	8	2	٩	315
	630						•	2 0	ŝ	0	3 1	2	1		2 7	ŝ	80	en	*	10	Ŷ	12	7 14		630
	28				•		0	2 0	ŝ	-	4	6	m	-	4	9	10	7 1	12 8	1 13	11	17	13 19		945
Wultiple	1260						0	3 1	•	7	2	2	5	2	6 11	æ	13	10 1	15 12	17	16	33	19 25		1260
	1575						-	3 2	4	m	6 5	80	~	=	9 12	=	15	1	17 17	8	ន	ĸ	22 72		1575
	1890						-	3 3	ŝ	-	6 7	6	2	12 1:	12 14	:	17	18	20 21	ន	2	8	31 33	~	1890
	ŝ						7	÷	ŝ	`	2 9	10	13	11 14	4 15	18	19	21 2	<u>ม</u> ม	8	32	33	37 38		2205
		0.010	0.015	X	0.025	0100	0.065	1	0.10	0.15		0. 25	Х	$\frac{1}{\sqrt{2}}$	0.40	X		0.65	+	X	-	1.0	X	Higher than 1.0	
			-					¥0	ceptab	Acceptable Quality Levels (tightened inspection)	ity Le	ivels (tighter	hed in	apecti	(ao									

Acceptance number

٩

- Rejection number . Use single sampling plan above. 11 11 11 11 °₽°.
- Acceptance not permitted at this sample size. .

	Ĩ Ĩ		0.65		0.629	0.745	0.812	0.934	1.08	1.25	1.41	1.51	1.72	
			Х		0.517	0.622	0.684	0.795	0.933	1.09	1.24	1.33	1.53	
R			0.40		0.374	0.462	0.515	0.612	0.733	0.870	1.01	1.09	1.27	
TABLE X-R—Tables for sample size code letter: R	CPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple ampling are matched as closely as proteicable) (Curves for double and multiple ampling are matched as closely as proteicable) (Curves for double and multiple ampling are matched as closely as proteicable) (Curves for double and multiple ampling are matched as closely as proteicable) (Curves for double and multiple ampling are matched as closely as proteicable) (Curves for double and multiple ampling are matched as closely as proteicable) (Curves for double and multiple ampling are matched as closely as proteicable) (Curves for other interest of the matched and the formation of the matched and the matched		Х		0.305	0.365	0.432	0.521	0.633	0.761	6489:0	0.972	1.14	
e size cou	OFERATING CHARACTERISTIC CURVES FOR SINGLE SAMP (Curves for double and multiple sampling are matched as closely as preciscable) (Curves for double and multiple sampling are matched as closely as preciscable) (Curves for double and multiple sampling or another and the sampling of the sa	ection)	0.25		0.239	0.309	0.351	0.431	0.533	0.651	0.770	0.848	1.02	
r sample	CURVES FO are matched as to a set matched as to a set of the set of the control of the set of the control of the set of the	els (normal inspe	Х		0.175	0.235	0.272	242.0	0.433	0.540	0.650	0.722	0.870	
Tables fo	ARACTERISTIC and multiple ampling and multiple amplitude amplitu	Acceptable Quality Levels (normal inspection)	0.15		0.145	0.199	0.233	0.298	0.384	0.484	0.589	0.657	0.800	
X-R-		Accept	0.10	(8)	0.0892	0.131	0.158	0.211	0.284	0.371	0.464	0.526	0.655	
TABLE			0.065	s per hundred units)	0.0412	0.0683	0.0873	0.127	0.184	0.256	0.334	0.388	0.502	
	CHART F		0.040	p (in percent defective or defects	0.0218	0.0409	0.0651	0.0868	0.134	0.196	0.266	0.315	0.420	
	All Control of Control		0.025	p (in percent d	0.0074	8210.0	0.0266	0.0481	0.0639	0.135	0.195	0.237	0.332	
	PERFECTED TO BE ACCEPTING OF LOTS ACCEPTING OF LO		4		0.66	92.0	0.06	75.0	50.05	25.0	10.0	5.0	1.0	

60

Kau: Al adam give is dere table hered as Paisson Barbaries as as appendimeter to the Bharaid.

Acceptable Quality Levels (tightened inspection)

0.65

0,40

Х

0.25

X

0.15

0.10

0.065

0.040

Downloaded from http://www.everyspec.com

R

TABLE X-R-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: R

4

- (

2200 100 1500 2000 3000 3500 200 120 200 8 ž than 0.65 than 66 4 4 ٩ Ÿ ž 16 ន 2 9 1 19 8 8 8 8 Х 0.65 ¥ Ξ 8 ~ ~ 13 6 ង 31 3 21 ន ž 19 2 28 12 17 R 80 8 R 0.65 Х 16 ន Š 2 • ន ø Ξ 3 32 ž 15 6 13 17 8 ន 8 10 Ξ 0**.**40 Х ¥ 2 2 15 12 17 17 3 4 60 21 ĸ R 12 13 10 16 0 8 ន 0.40 Х Re Ac 13 10 1 2 ø 3 0 ~ 8 ~ 31 11 6 13 ŝ 2 IS 17 19 <u>8</u> Х Acceptable Quality Levels (normal inspection) ž 2 ŝ 0 ø 80 Π 2 18 12 e Acceptable Quality Levels (tightened inspection) æ 9 2 12 12 2 15 Π • Х 87 O Ŷ 80 ŝ Ξ 0 2 ø ¢ 2 1 10 12 Re 80 7 6 6 8 П -Х 0.15 ¥ 0 Ś ~ 2 ~ ŝ æ ŝ 13 ž 6 ~ 80 0 Ś 7 2 6 10 • 0.15 0.10 Ž ŝ 2 ø ~ e n ŝ ~ ø, Ś , ŵ ø Re m -7 + + ŝ 0.065 0.10 ٩c e + ~ e 4 Ś 0 . Re + 3 2 + e + ŝ ŝ S S 0.040 0.065 ۷ 0 • 0 2 0 -~ m m Fe 3 3 2 3 3 3 2 2 3 3 0.040 0.025 ۷ç -0 -. • 0 0 _ 2 æ Letter 0.025 Х ŝ Ś ¥ ž Letter 0.015 Use ٩ Х ¥ Re 0.015 0.010 Letter ŝ 0 ¥ æ -0.010 • Ÿ 0 80 1500 2000 2200 3000 2500 8000 2000 1250 8 Type of sampling plan Multiple Single Double

61

= Use single sampling plan above. = Acceptance not permitted at this sample size.

Use sext preceding sample size code letter for which acceptance and rejection numbers are available.

Acceptance number

d ~ #

Rejection number.

:

R

TABLE X-S-Tables for sample size code letter: S

S

		Acceptable Quality (normal inspection)	ble Quality Level inspection)
Type of sampling clan	Lumu- lative semple		
	size	Ac	Re
Single	3150	1	2
	2000	o	2
Louble	4000	1	2
	008	¥	2
	1600	*	8
_	2400	0	7
Multiple	3200	0	£
	4000	1	ß
	4800	1	æ
	56 00	7	£
		0.025	2
		Acceptable Quality Level (tightened inspection)	uality Level ipection)

,

Acceptance number 11

Rejection number Acceptance not permitted at this sample size. 11 D

Ac He

62

)

)

)

Index of terms with special meanings

Term

į

.

-1

ţ

Paragraph

Acceptable Quality Level (AQL)	4.2 and 11.1
Acceptance number	9.4 and 10.1.1
Attributes	1.4
Average Outgoing Quality (AOQ)	11.3
Average Outgoing Quality Limit (AOQL)	11.4
Average sample size	11.5
Batch	51
Classification of defects	0.1 9 1
Code letters	-
Critical defect	2.1.1
Critical defective	2.2.1
Defect	2.1
Defective unit	2.2
Defects per hundred units	3.3
Double sampling plan	10.1.2
Inspection	1.3
Inspection by attributes	1.4
Inspection level	92
Inspection lot or inspection batch	51
Inspection lot of inspection batch	116
Isolated lot	11.0
Limiting Quality (LQ)	11.0
Lot	5.1
Lot or batch size	5.3
Major defect	2.1.2
Major defective	6.6.6
Minor defect	2.1.3
Minor defective	2.2.3
Multiple sampling plan	10.1.3
Normal inspection	8.1 and 8.2
Operating characteristic curve	11.1
Original inspection	11 2
Percent defective	32
Percent delective	4.6
Preferred AQLs	11 9
Process average	0.0 and 0.2.2
Reduced inspection	0.2 and 0.3.3
Rejection number	10.1.1
Responsible authority	1.1
Resubmitted lots or batches	6.4
Sample	7.1
Sample size	7.1
Sample size code letter	4.1 and 9.3
Sampling plan	9.5
Single sampling plan	
Small-sample inspection	9.2
Sman-sample inspection	
Switching procedures	
Tightened inspection	
Unit of product	T'1

63

÷

Copies of this standard may be obtained by directing requests to:

Commanding Officer U.S. Naval Supply Depot ATTN: Code DMD 5801 Tabor Avenue Philadelphia 20, Pennsylvania -)

÷

Copies of this <u>Military</u> Standard may be obtained for other than official use by individuals, firms, and contractors from the Superintendent of Documents, U.S. Government Printing Office, Washington 25, D. C.

Both the title and identifying symbol number should be stipulated when requesting copies of Military Standards.

Custodians:

Army - Munitions Command Navy - Bureau of Weapons Air Force - Air Force Logistics Command Defense Supply Agency

Preparing Activity:

Army - Munitions Command