# 

# By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document

CERTIFICATE

By the Authority Vested By Part 5 of the United States Code § 552(a) and Part 1 of the Code of Regulations § 51 the attached document has been duly INCORPORATED BY REFERENCE and shall be considered legally binding upon all citizens and residents of the United States of America. <u>HEED THIS NOTICE</u>: Criminal penalties may apply for noncompliance.



Document Name: API 650: Welded Steel Tanks for Oil Storage

**CFR Section(s):** 195.132(b)(3)

Standards Body: American Petroleum Institute



Official Incorporator:

THE EXECUTIVE DIRECTOR OFFICE OF THE FEDERAL REGISTER WASHINGTON, D.C.

# **Welded Tanks for Oil Storage**

API STANDARD 650 ELEVENTH EDITION, JUNE 2007

ADDENDUM 1: NOVEMBER 2008 ADDENDUM 2: NOVEMBER 2009 ADDENDUM 3: AUGUST 2011 ERRATA, OCTOBER 2011

EFFECTIVE DATE: FEBRUARY 1, 2012



AMERICAN PETROLEUM INSTITUTE

# <sup>18</sup>| Welded Tanks for Oil Storage

**Downstream Segment** 

API STANDARD 650 ELEVENTH EDITION, JUNE 2007

ADDENDUM 1: NOVEMBER 2008 ADDENDUM 2: NOVEMBER 2009 ADDENDUM 3: AUGUST 2011 ERRATA, OCTOBER 2011

EFFECTIVE DATE: FEBRUARY 1, 2012



AMERICAN PETROLEUM INSTITUTE

### SPECIAL NOTES

API publications necessarily address problems of a general nature. With respect to particular circumstances, local, state, and federal laws and regulations should be reviewed.

Neither API nor any of API's employees, subcontractors, consultants, committees, or other assignees make any warranty or representation, either express or implied, with respect to the accuracy, completeness, or usefulness of the information contained herein, or assume any liability or responsibility for any use, or the results of such use, of any information or process disclosed in this publication. Neither API nor any of API's employees, subcontractors, consultants, or other assignees represent that use of this publication would not infringe upon privately owned rights.

Classified areas may vary depending on the location, conditions, equipment, and substances involved in any given jurisdiction. Users of this Standard should consult with the appropriate authorities having jurisdiction.

Users of this Standard should not rely exclusively on the information contained in this document. Sound business, scientific, engineering, and safety judgment should be used in employing the information contained herein.

API is not undertaking to meet the duties of employers, manufacturers, or suppliers to warn and properly train and equip their employees, and others exposed, concerning health and safety risks and precautions, nor undertaking their obligations to comply with authorities having jurisdiction.

Information containing safety and health risks and proper precautions with respect to particular materials and conditions should be obtained from the employer, the manufacturer or supplier of that material, or the material safety data sheet.

API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any authorities having jurisdiction with which this publication may conflict.

API publications are published to facilitate the broad availability of proven, sound engineering and operating practices. These publications are not intended to obviate the need for applying sound engineering judgment regarding when and where these publications should be utilized. The formulation and publication of API publications is not intended in any way to inhibit anyone from using any other practices.

Any manufacturer marking equipment or materials in conformance with the marking requirements of an API standard is solely responsible for complying with all the applicable requirements of that standard. API does not represent, warrant, or guarantee that such products do in fact conform to the applicable API standard.

All rights reserved. No part of this work may be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher. Contact the Publisher, API Publishing Services, 1220 L Street, N.W., Washington, D.C. 20005.

Copyright © 2007, 2008, 2009, 2011 American Petroleum Institute

# NOTICE

# INSTRUCTIONS FOR SUBMITTING A PROPOSED REVISION TO THIS STANDARD UNDER CONTINUOUS MAINTENANCE

This Standard is maintained under continuous maintenance procedures by the American Petroleum Institute for which the Standards Department. These procedures establish a documented program for regular publication of addenda or revisions, including timely and documented consensus action on requests for revisions to any part of the Standard. Proposed revisions shall be submitted to the Director, Standards Department, American Petroleum Institute, 1220 L Street, NW, Washington, D.C. 20005-4070, standards@api.org.

# FOREWORD

This Standard is based on the accumulated knowledge and experience of Purchasers and 07 Manufacturers of welded oil storage tanks of various sizes and capacities for internal pressures not more than 17.2 kPa (2<sup>1</sup>/<sub>2</sub> pounds per square inch) gauge. This Standard is meant to 07 be a purchase specification to facilitate the manufacture and procurement of storage tanks for the petroleum industry.

If the tanks are purchased in accordance with this Standard, the Purchaser is required to specify certain basic requirements. The Purchaser may want to modify, delete, or amplify sections of this Standard, but reference to this Standard shall not be made on the nameplates of or on the Manufacturer's certification for tanks that do not fulfill the minimum requirements of this Standard or that exceed its limitations. It is strongly recommended that any modifications, deletions, or amplifications be made by supplementing this Standard rather than by rewriting or incorporating sections of it into another complete standard.

The design rules given in this Standard are minimum requirements. More stringent design rules specified by the Purchaser or furnished by the Manufacturer are acceptable when mutually agreed upon by the Purchaser and the Manufacturer. This Standard is not to be interpreted as approving, recommending, or endorsing any specific design or as limiting the method of design or construction.

Shall: As used in a standard, "shall" denotes a minimum requirement in order to conform to the specification.

Should: As used in a standard, "should" denotes a recommendation or that which is advised but not required in order to conform to the specification.

 This Standard is not intended to cover storage tanks that are to be erected in areas subject to regulations more stringent than the specifications in this Standard. When this Standard is specified for such tanks, it should be followed insofar as it does not conflict with local requirements. The Purchaser is responsible for specifying any jurisdictional requirements applicable to the design and construction of the tank.

After revisions to this Standard have been issued, they may be applied to tanks that are to be completed after the date of issue. The tank nameplate shall state the date of the edition of the Standard and any revision to that edition to which the tank has been designed and constructed.

- Each edition, revision, or addenda to this API Standard may be used beginning with the date of issuance shown on the cover page for that edition, revision, or addenda. Each edition, revision, or addenda to this API Standard becomes effective six months after the date
- of issuance for equipment that is certified as being constructed, and tested per this Standard. During the six-month time between the date of issuance of the edition, revision, or addenda and the effective date, the Purchaser and the Manufacturer shall specify to which
- edition, revision, or addenda the equipment is to be constructed and tested. 07

#### DELETED 11

Suggested revisions are invited and should be submitted to the Downstream Segment, American Petroleum Institute, 1220 L Street, N.W., Washington, D.C. 20005.

# IMPORTANT INFORMATION CONCERNING USE OF ASBESTOS OR ALTERNATIVE MATERIALS

Asbestos is specified or referenced for certain components of the equipment described in some API standards. It has been of extreme usefulness in minimizing fire hazards associated with petroleum processing. It has also been a universal sealing material, compatible with most refining fluid services.

Certain serious adverse health effects are associated with asbestos, among them the serious and often fatal diseases of lung cancer, asbestosis, and mesothelioma (a cancer of the chest and abdominal linings). The degree of exposure to asbestos varies with the product and the work practices involved.

Consult the most recent edition of the Occupational Safety and Health Administration (OSHA), U.S. Department of Labor, Occupational Safety and Health Standard for Asbestos, Tremolite, Anthophyllite, and Actinolite, 29 *Code of Federal Regulations* Section 1910.1001; the U.S. Environmental Protection Agency, National Emission Standard for Asbestos, 40 *Code of Federal Regulations* Sections 61.140 through 61.156; and the U.S. Environmental Protection Agency (EPA) rule on labeling requirements and phased banning of asbestos products (Sections 763.160-179).

There are currently in use and under development a number of substitute materials to replace asbestos in certain applications. Manufacturers and users are encouraged to develop and use effective substitute materials that can meet the specifications for, and operating requirements of, the equipment to which they would apply.

SAFETY AND HEALTH INFORMATION WITH RESPECT TO PARTICULAR PROD-UCTS OR MATERIALS CAN BE OBTAINED FROM THE EMPLOYER, THE MANU-FACTURER OR SUPPLIER OF THAT PRODUCT OR MATERIAL, OR THE MATERIAL SAFETY DATA SHEET.

# Contents

|                                      | Page                                                                                                                                                          |                |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 1<br>1.1<br>1.2<br>1.3<br>1.4        | Scope       1-1         General       1-1         Limitations       1-3         Responsibilities       1-3         Documentation Requirements       1-4       | 09<br>07       |
| 1.5                                  | Formulas                                                                                                                                                      | 09             |
| 2                                    | References 2-1                                                                                                                                                | 08             |
| 3                                    | Definitions                                                                                                                                                   | 07             |
| 4<br>4.1<br>4.2<br>4.3               | Materials       4-1         General       4-1         Plates       4-1         Sheets       4-7                                                               | 09<br>07<br>08 |
| 4.4<br>4.5<br>4.6<br>4.7<br>4.8      | Structural Shapes       4-8         Piping and Forgings       4-8         Flanges       4-15         Bolting       4-15         Welding Electrodes       4-15 | 09<br>07       |
| 4.9<br>-                             | Gaskets                                                                                                                                                       | 07             |
| 5<br>5.1<br>5.2<br>5.3               | Design       5-1         Joints.       5-1         Design Considerations       5-6         Special Considerations       5-7                                   | 09<br>08<br>11 |
| 5.3<br>5.4<br>5.5<br>5.6             | Special Considerations       5-7         Bottom Plates       5-8         Annular Bottom Plates       5-10         Shell Design       5-12                     | 08<br>11<br>11 |
| 5.7<br>5.8<br>5.9                    | Shell Openings.       5-19         Shell Attachments and Tank Appurtenances.       5-49         Top and Intermediate Stiffening Rings       5-58              | 11             |
| 5.11                                 | Roofs.5-70Wind Load on Tanks (Overturning Stability)5-77Tank Anchorage.5-79                                                                                   | 11             |
| 6<br>6.1<br>6.2                      | Fabrication       6-1         General       6-1         Shop Inspection       6-1                                                                             | 07             |
| 7<br>7.1<br>7.2<br>7.3<br>7.4<br>7.5 | Erection.7-1General7-1Details of Welding7-1Inspection, Testing, and Repairs7-4Repairs to Welds7-7Dimensional Tolerances7-8                                    | 08             |
| 8<br>8.1<br>8.2<br>8.3<br>8.4        | Methods of Inspecting Joints.8-1Radiographic Method8-1Magnetic Particle Examination8-4Ultrasonic Examination.8-4Liquid Penetrant Examination8-5               | 08<br>08       |

| 8.5<br>8.6        | Visual Examination                                                                                                                           | 07 |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----|
| 9<br>9.1          | Welding Procedure and Welder Qualifications       9-1         Definitions       9-1                                                          | 08 |
| 9.2<br>9.3<br>9.4 | Qualification of Welding Procedures.       9-1         Qualification of Welders       9-2         Identification of Welded Joints.       9-2 | 08 |
| 10.2              | Marking10-1Nameplates10-1Division of Responsibility10-2Certification10-2                                                                     | 09 |
| App               | endix A Optional Design Basis for Small TanksA-1                                                                                             | 09 |
| App               | endix AL Aluminum Storage TanksAL-1                                                                                                          |    |
|                   | endix B Recommendations for Design and Construction of Foundations for Aboveground Oil                                                       |    |
| Stor              | age TanksB-1                                                                                                                                 | 08 |
| Арр               | endix C External Floating RoofsC-1                                                                                                           |    |
| Арр               | endix D Technical InquiriesD-1                                                                                                               | 07 |
| Арр               | endix E Seismic Design of Storage Tanks E-1                                                                                                  |    |
| Арр               | endix EC Commentary on Appendix E EC-1                                                                                                       |    |
| Арр               | endix F Design of Tanks for Small internal Pressures F-1                                                                                     | ſ  |
| Арр               | endix G Structurally-Supported Aluminum Dome RoofsG-1                                                                                        |    |
| Арр               | endix H Internal Floating Roofs                                                                                                              |    |
| Арр               | endix I Undertank Leak Detection and Subgrade Protection I-1                                                                                 | 07 |
| Арр               | endix J Shop-Assembled Storage Tanks J-1                                                                                                     |    |
| Арр               | endix K Sample Application of the Variable-Design-Point Method to Determine Shell-Plate Thickness K-1                                        | 09 |
| Арр               | endix L API Std 650 Storage Tank Data Sheet L-1                                                                                              | 09 |
| Арр               | endix M Requirements for Tanks Operating at Elevated Temperatures                                                                            |    |
| Арр               | endix N Use of New Materials That Are Not IdentifiedN-1                                                                                      |    |
| Арр               | endix O Recommendations for Under-Bottom Connections                                                                                         | 08 |
| Арр               | endix P Allowable External Loads on Tank Shell Openings P-1                                                                                  |    |
| Арр               | endix R Load CombinationsR-1                                                                                                                 | 09 |
| Арр               | endix S Austenitic Stainless Steel Storage TanksS-1                                                                                          |    |
| Арр               | endix SC Stainless and Carbon Steel Mixed Materials Storage Tanks                                                                            |    |
| Арр               | endix T NDE Requirements Summary                                                                                                             | 07 |
| Арр               | endix U Ultrasonic Examination In Lieu of Radiography                                                                                        |    |
| Арр               | endix V Design of Storage Tanks for External PressureV-1                                                                                     | 88 |
| Арр               | endix W Commercial and Documentation Recommendations                                                                                         | 07 |
| Арр               | endix X Duplex Stainless Steel Storage TanksX-1                                                                                              | 08 |
| Арр               | endix Y API Monogram                                                                                                                         | ι  |

|                    | Pag                                                                                                        | le       |
|--------------------|------------------------------------------------------------------------------------------------------------|----------|
| Figures            | (CI) Minimum Demainsible Design Matel Temperature for Materials Lload in Tenk Shalls                       |          |
| 4-1a               | (SI) Minimum Permissible Design Metal Temperature for Materials Used in Tank Shells without Impact Testing | 6        |
| 4-1b               | (USC) Minimum Permissible Design Metal Temperature for Materials Used in Tank Shells                       | 09       |
| 4-10               | without Impact Testing                                                                                     | 7        |
| 4-2                | Isothermal Lines of Lowest One-Day Mean Temperatures                                                       | 9        |
| 4- <u>2</u><br>4-3 | Governing Thickness for Impact Test Determination of Shell Nozzle and Manhole Materials 4-14               | 4 09     |
| 4-3<br>5-1         | Typical Vertical Shell Joints                                                                              |          |
| 5-2                | Typical Horizontal Shell Joints                                                                            |          |
| 5-2<br>5-3A        | Typical Roof and Bottom Joints                                                                             |          |
| 5-3A<br>5-3B       | Method for Preparing Lap-Welded Bottom Plates under Tank Shell                                             |          |
| 5-3C               | Detail of Double Fillet-Groove Weld for Annular Bottom Plates with a Nominal Thickness Greater             | 5        |
| 5-30               | Than 13 mm ( $^{1}/_{2}$ in.)                                                                              | л        |
| 5-5D               | Spacing of Three-Plate Welds at Annular Plates                                                             |          |
| 5-3D<br>5-4        | Storage Tank Volumes and Levels                                                                            |          |
| 5-4<br>5-5         | Drip Ring (Suggested Detail)                                                                               |          |
| 5-6                | Minimum Weld Requirements for Openings in Shells According to 5.7.3                                        |          |
| 5-7A               | Shell Manhole                                                                                              |          |
| 5-7R<br>5-7B       | Details of Shell Manholes and Nozzles                                                                      |          |
| 5-8                | Shell Nozzles                                                                                              |          |
| 5-8<br>5-9         | Minimum Spacing of Welds and Extent of Related Radiographic Examination                                    |          |
| 5-10               | Shell Nozzle Flanges                                                                                       |          |
| 5-10<br>5-11       | Area Coefficient for Determining Minimum Reinforcement of Flush-Type Cleanout Fittings 5-4                 |          |
| 5-11               | Flush-Type Cleanout Fittings                                                                               |          |
| 5-12               | Flush-Type Cleanout-Fitting Supports                                                                       |          |
| 5-13<br>5-14       | Flush-Type Shell Connection                                                                                | 3  <br>7 |
| 5-14               | Rotation of Shell Connection                                                                               |          |
| 5-15<br>5-16       | Roof Manholes                                                                                              |          |
| 5-10               | Rectangular Roof Openings with Flanged Covers                                                              |          |
| 5-17<br>5-18       | Rectangular Roof Openings with Hinged Cover                                                                |          |
| 5-10<br>5-19       | Flanged Roof Nozzles                                                                                       |          |
| 5-20               | Threaded Roof Nozzles                                                                                      |          |
| 5-20               | Drawoff Sump                                                                                               |          |
| 5-22               | Scaffold Cable Support                                                                                     |          |
| 5-23               | Grounding Lug                                                                                              |          |
| 5-24               | Typical Stiffening-Ring Sections for Tank Shells                                                           | A .      |
| 5-25               | Stairway Opening through Stiffening Ring                                                                   |          |
| 5-26               | Some Acceptable Column Base Details                                                                        | 5 07     |
| 5-27               | DELETED.                                                                                                   |          |
| 6-1                | Shaping of Plates                                                                                          | 8        |
| 8-1                | Radiographic Requirements for Tank Shells                                                                  |          |
| 10-1               | Manufacturer's Nameplate                                                                                   | 11       |
| 10-2               | Manufacturer's Certification Letter                                                                        |          |
| AL-1               | Cover Plate Thickness for Shell Manholes and Cleanout Fittings                                             |          |
| AL-2               | Flange Plate Thickness for Shell Manholes and Cleanout Fittings                                            |          |
| AL-3               | Bottom Reinforcing Plate Thickness for Cleanout Fittings                                                   |          |
| AL-4               | Stresses in Roof Plates                                                                                    |          |
| B-1                | Example of Foundation with Concrete Ringwall.                                                              |          |
| B-2                | Example of Foundation with Crushed Stone Ringwall                                                          |          |
| E-1                | Coefficient $C_i$                                                                                          |          |
| EC-1               | Maximum Earthquake Response SpectrumEC-                                                                    |          |
| EC-2               | Earthquake Response Spectrum NotationEC-                                                                   |          |
| EC-3               | Site Specific Response Spectrum                                                                            |          |
| -                  | · · · · · · · · · · · · · · · · · · ·                                                                      | •        |

| EC-4             | Deterministic Lower Limit on MCE Response SpectrumEC-5                                                    |    |
|------------------|-----------------------------------------------------------------------------------------------------------|----|
| EC-5             | Relationship of Probabilistic and Deterministic Response SpectraEC-5                                      |    |
| EC-6             | Sloshing Factor, K <sub>s</sub> EC-6                                                                      |    |
| EC-7             | Design Response Spectra for Ground-Supported Liquid Storage TanksEC-7                                     |    |
| EC-8             | Effective Weight of Liquid Ratio                                                                          | 11 |
| EC-9             | Center of Action of Effective Forces                                                                      |    |
| EC-10            | Overturning Moment                                                                                        |    |
| EC-11            | Anchor Strap Attachment to Shell                                                                          |    |
| F-1              | Appendix F Decision Tree                                                                                  |    |
| F-2              | Permissible Details of Compression Rings                                                                  | 1  |
| G-1              | Data Sheet for a Structurally-Supported Aluminum Dome Added to an Existing Tank                           | 11 |
| G-2              | Typical Roof Nozzle                                                                                       |    |
| I-1              | Concrete Ringwall with Undertank Leak Detection at the Tank Perimeter (Typical Arrangement). I-1          |    |
| I-2              | Crushed Stone Ringwall with Undertank Leak Detection at the Tank Perimeter                                |    |
| 1-2              | (Typical Arrangement)                                                                                     |    |
| I-3              | Earthen Foundation with Undertank Leak Detection at the Tank Perimeter                                    |    |
| 1-5              | (Typical Arrangement)                                                                                     |    |
| 1-4              | Double Steel Bottom with Leak Detection at the Tank Perimeter (Typical Arrangement)                       |    |
| I-4<br>I-5       | Double Steel Bottom with Leak Detection at the Tank Perimeter (Typical Arrangement)                       |    |
|                  |                                                                                                           |    |
| I-6              | Reinforced Concrete Slab with Leak Detection at the Perimeter (Typical Arrangement)                       |    |
| I-7              | Reinforced Concrete Slab with Radial Grooves for Leak Detection (Typical Arrangement)                     |    |
| I-8              | Typical Drawoff Sump                                                                                      |    |
| 1-9              | Center Sump for Downward-Sloped BottomI-5                                                                 |    |
| I-10             | Typical Leak Detection Wells                                                                              |    |
| I-11             | Tanks Supported by Grillage Members (General Arrangement)                                                 |    |
| 0-1              | Example of Under-Bottom Connection with Concrete Ringwall Foundation                                      |    |
| 0-2              | Example of Under-Bottom Connection with Concrete Ringwall Foundation and Improved Tank                    |    |
|                  | Bottom and Shell Support                                                                                  |    |
| O-3              | Example of Under-Bottom Connection with Earth-Type Foundation                                             |    |
| P-1              | Nomenclature for Piping Loads and DeformationP-4                                                          |    |
| P-2A             | Stiffness Coefficient for Radial Load: Reinforcement on Shell (L/2a = 1.0)                                |    |
| P-2B             | Stiffness Coefficient for Longitudinal Moment: Reinforcement on Shell (L/2a = 1.0) P-5                    |    |
| P-2C             | Stiffness Coefficient for Circumferential Moment: Reinforcement on Shell (L/2a = 1.0)                     |    |
| P-2D             | Stiffness Coefficient for Radial Load: Reinforcement on Shell (L/2a = 1.5)                                |    |
| P-2E             | Stiffness Coefficient for Longitudinal Moment: Reinforcement on Shell (L/2a = 1.5) P-7                    |    |
| P-2F             | Stiffness Coefficient for Circumferential Moment: Reinforcement on Shell (L/2a = 1.5) P-7                 |    |
| P-2G             | Stiffness Coefficient for Radial Load: Reinforcement in Nozzle Neck Only (L/2a = 1.0)                     |    |
| P-2H             | Stiffness Coefficient for Longitudinal Moment: Reinforcement in Nozzle Neck Only (L/2a = 1.0) P-8         |    |
| P-2I             | Stiffness Coefficient for Circumferential Moment: Reinforcement in Nozzle Neck Only (L/2a = 1.0) . P-9    |    |
| P-2J             | Stiffness Coefficient for Radial Load: Reinforcement in Nozzle Neck Only (L/2a = 1.5)                     |    |
| P-2K             | Stiffness Coefficient for Longitudinal Moment: Reinforcement in Nozzle Neck Only (L/2a = 1.5). P-10       | 11 |
| P-2L             | Stiffness Coefficient for Circumferential Moment: Reinforcement in Nozzle Neck Only ( $L/2a = 1.5$ ) P-10 |    |
| P-3A             | Construction of Nomogram for $b_1$ , $b_2$ , $c_1$ , $c_2$ Boundary                                       |    |
| P-3B             | Construction of Nomogram for $b_1$ , $c_3$ Boundary                                                       |    |
| P-4A             | Obtaining Coefficients $Y_F$ and $Y_L$                                                                    |    |
| P-4B             | Obtaining Coefficient $Y_C$                                                                               |    |
| P-5A             | Determination of Allowable Loads from Nomogram: $F_R$ and $M_L$                                           |    |
| P-5B             | Determination of Allowable Loads from Nomogram: $F_R$ and $M_L$                                           |    |
| P-6              | Low-Type Nozzle with Reinforcement in Shell                                                               |    |
| P-0<br>P-7       | Allowable-Load Nomograms for Sample Problem                                                               |    |
| P-7<br>P-8A-H    | DELETED                                                                                                   |    |
| Р-8А-Н<br>Р-9А-Н | DELETED                                                                                                   | L  |
| г-эм-п           |                                                                                                           |    |

| P-10A-H<br>P-11<br>V-1A<br>V-1B | DELETED                                                                                                                                                                                | 09<br>08 |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Tables<br>1-1<br>4-1<br>4-2     | Status of Appendices to API Std 650       1-2         Maximum Permissible Alloy Content       4-3         Acceptable Grades of Plate Material Produced to National Standards       4-4 | 09<br>08 |
| 4-3a                            | (SI) Linear Equations for Figure 4-1a 4-8                                                                                                                                              |          |
| 4-3b                            | (USC) Linear Equations for Figure 4-1b                                                                                                                                                 |          |
| 4-4a                            | (SI) Material Groups                                                                                                                                                                   |          |
| 4-4b                            | (USC) Material Groups                                                                                                                                                                  |          |
| 4-5a                            | (SI) Minimum Impact Test Requirements for Plates                                                                                                                                       | 09       |
| 4-5b                            | (USC) Minimum Impact Test Requirements for Plates                                                                                                                                      |          |
| 5-1a                            | (SI) Annular Bottom-Plate Thicknesses (t <sub>b</sub> )                                                                                                                                |          |
| 5-1b                            | (USC) Annular Bottom-Plate Thicknesses (t <sub>b</sub> )                                                                                                                               |          |
| 5-2a                            | (SI) Permissible Plate Materials and Allowable Stresses                                                                                                                                |          |
| 5-2b                            | (USC) Permissible Plate Materials and Allowable Stresses                                                                                                                               |          |
| 5-3a                            | (SI) Thickness of Shell Manhole Cover Plate and Bolting Flange                                                                                                                         |          |
| 5-3b                            | (USC) Thickness of Shell Manhole Cover Plate and Bolting Flange                                                                                                                        |          |
| 5-4a                            | (SI) Dimensions for Shell Manhole Neck Thickness                                                                                                                                       | 08       |
| 5-4b                            | (USC) Dimensions for Shell Manhole Neck Thickness                                                                                                                                      | 00       |
| 5-5a                            | (SI) Dimensions for Bolt Circle Diameter $D_b$ and Cover Plate Diameter $D_c$ for Shell Manholes . 5-27                                                                                |          |
| 5-5b                            | (USC) Dimensions for Bolt Circle Diameter $\tilde{D}_b$ and Cover Plate Diameter $\tilde{D}_c$ for Shell Manholes. 5-27                                                                |          |
| 5-6a                            | (SI) Dimensions for Shell Nozzles (mm)                                                                                                                                                 |          |
| 5-6b                            | (USC) Dimensions for Shell Nozzles (in.)                                                                                                                                               | 09       |
| 5-7a                            | (SI) Dimensions for Shell Nozzles: Pipe, Plate, and Welding Schedules (mm)                                                                                                             |          |
| 5-7b                            | (USC) Dimensions for Shell Nozzles: Pipe, Plate, and Welding Schedules (in.)                                                                                                           |          |
| 5-8a                            | (SI) Dimensions for Shell Nozzle Flanges (mm)                                                                                                                                          |          |
| 5-8b                            | (USC) Dimensions for Shell Nozzle Flanges (in.)                                                                                                                                        |          |
| 5-9a                            | (SI) Dimensions for Flush-Type Cleanout Fittings (mm) 5-34                                                                                                                             |          |
| 5-9b                            | (USC) Dimensions for Flush-Type Cleanout Fittings (in.)                                                                                                                                |          |
| 5-10a                           | (SI) Minimum Thickness of Cover Plate, Bolting Flange, and Bottom Reinforcing Plate for                                                                                                |          |
|                                 | Flush-Type Cleanout Fittings (mm) 5-35                                                                                                                                                 |          |
| 5-10b                           | (USC) Minimum Thickness of Cover Plate, Bolting Flange, and Bottom Reinforcing Plate for                                                                                               | 08       |
|                                 | Flush-Type Cleanout Fittings (in.)                                                                                                                                                     |          |
| 5-11a                           | (SI) Thicknesses and Heights of Shell Reinforcing Plates for Flush-Type Cleanout Fittings (mm) 5-36                                                                                    | 09       |
| 5-11b                           | (USC) Thicknesses and Heights of Shell Reinforcing Plates for Flush-Type Cleanout Fittings (in.) 5-36                                                                                  | 00       |
| 5-12a                           | (SI) Dimensions for Flush-Type Shell Connections (mm)                                                                                                                                  |          |
| 5-12b                           | (USC) Dimensions for Flush-Type Shell Connections (in.) 5-46                                                                                                                           |          |
| 5-13a                           | (SI) Dimensions for Roof Manholes (mm) 5-53                                                                                                                                            |          |
| 5-13b                           | (USC) Dimensions for Roof Manholes (in.) 5-53                                                                                                                                          |          |
| 5-14a                           | (SI) Dimensions for Flanged Roof Nozzles (mm) 5-54                                                                                                                                     | 08       |
| 5-14b                           | (USC) Dimensions for Flanged Roof Nozzles (in.)                                                                                                                                        |          |
| 5-15a                           | (SI) Dimensions for Threaded Roof Nozzles (mm)                                                                                                                                         |          |
| 5-15b                           | (USC) Dimensions for Threaded Roof Nozzles (in.)                                                                                                                                       |          |
| 5-16a                           | (SI) Dimensions for Drawoff Sumps                                                                                                                                                      |          |
| 5-16b                           | (USC) Dimensions for Drawoff Sumps                                                                                                                                                     |          |
| 5-17                            | Requirements for Platforms and Walkways 5-60                                                                                                                                           | 07       |
| 5-18                            | Requirements for Stairways                                                                                                                                                             |          |
| 5-19a                           | (SI) Rise, Run, and Angle Relationships for Stairways                                                                                                                                  | 08       |

| 5-19b        | (USC) Rise, Run, and Angle Relationships for Stairways 5-62                                                 | 08 |
|--------------|-------------------------------------------------------------------------------------------------------------|----|
| 5-20a        | (SI) Section Moduli (cm <sup>3</sup> ) of Stiffening-Ring Sections on Tank Shells                           | 00 |
| 5-20b        | (USC) Section Moduli (in. <sup>3</sup> ) of Stiffening-Ring Sections on Tank Shells                         |    |
| 5-21a        | (SI) Uplift Loads                                                                                           | 09 |
| 5-21b        | (USC) Uplift Loads                                                                                          |    |
| 7-1a         | (SI) Minimum Preheat Temperatures                                                                           |    |
| 7-1b         | (USC) Minimum Preheat Temperatures                                                                          |    |
| A-1a         | (SI) Typical Sizes and Corresponding Nominal Capacities (m <sup>3</sup> ) for Tanks with 1800-mm            |    |
|              | Courses                                                                                                     |    |
| A-1b         | (USC) Typical Sizes and Corresponding Nominal Capacities (barrels) for Tanks with 72-in.                    |    |
| A 0          | Courses                                                                                                     |    |
| A-2a<br>A-2b | (SI) Shell-Plate Thicknesses (mm) for Typical Sizes of Tanks with 1800-mm Courses                           |    |
| A-20<br>A-3a | (USC) Shell-Plate Thicknesses (in.) for Typical Sizes of Tanks with 72-in. Courses                          |    |
| A-3a         | (SI) Typical Sizes and Corresponding Nominal Capacities (m <sup>3</sup> ) for Tanks with 2400-mm<br>Courses | 08 |
| A-3b         | (USC) Typical Sizes and Corresponding Nominal Capacities (barrels) for Tanks with 96-in.                    |    |
|              | Courses                                                                                                     |    |
| A-4a         | (SI) Shell-Plate Thicknesses (mm) for Typical Sizes of Tanks with 2400-mm Courses                           |    |
| A-4b         | (USC) Shell-Plate Thicknesses (in.) for Typical Sizes of Tanks with 96-in. Courses                          |    |
| AL-1         | Material SpecificationsAL-3                                                                                 |    |
| AL-2         | Joint Efficiency                                                                                            |    |
| AL-3a        | (SI) Minimum Mechanical PropertiesAL-4                                                                      |    |
| AL-3b        | (USC) Minimum Mechanical PropertiesAL-5                                                                     |    |
| AL-4a        | (SI) Annular Bottom Plate Thickness                                                                         |    |
| AL-4b        | (USC) Annular Bottom Plate Thickness                                                                        |    |
| AL-5a        | (SI) Minimum Shell Thickness                                                                                |    |
| AL-5b        | (USC) Minimum Shell Thickness                                                                               |    |
| AL-6a        | (SI) Allowable Tensile Stresses for Tank Shell (for Design and Test)AL-9                                    |    |
| AL-6b        | (USC) Allowable Tensile Stresses for Tank Shell (for Design and Test)                                       |    |
| AL-7a        | (SI) Allowable Stresses for Roof Plates                                                                     |    |
| AL-7b        | (USC) Allowable Stresses for Roof Plates                                                                    |    |
| AL-8a        | (SI) Compressive Moduli of Elasticity $E$ (MPa) at Temperature (°C) AL-17                                   |    |
| AL-8b        | (USC) Compressive Moduli of Elasticity <i>E</i> (ksi) at Temperature (°F) AL-17                             |    |
| AL-9a        | (SI) Shell Nozzle Welding Schedule                                                                          |    |
| AL-9b        | (USC) Shell Nozzle Welding ScheduleAL-19                                                                    |    |
| E-1          | Value of $F_a$ as a Function of Site Class E-7                                                              |    |
| E-2          | Value of $F_{\nu}$ as a Function of Site Class E-7                                                          | _  |
| E-3          | Site Classification                                                                                         | 08 |
| E-4          | Response Modification Factors for ASD Methods                                                               | _  |
| E-5          | Importance Factor (I) and Seismic Use Group Classification E-13                                             |    |
| E-6          | Anchorage Ratio Criteria E-18                                                                               | 08 |
| E-7          | Minimum Required Freeboard                                                                                  |    |
| E-8          | Design Displacements for Piping Attachments E-23                                                            |    |
| G-1a         | (SI) Bolts and Fasteners                                                                                    | 08 |
| G-1b         | (USC) Bolts and Fasteners                                                                                   | Ű  |
| J-1a         | (SI) Minimum Roof Depths for Shop-Assembled Dome-Roof Tanks J-2                                             | 09 |
| J-1b         | (USC) Minimum Roof Depths for Shop-Assembled Dome-Roof Tanks                                                |    |
| K-1a         | (SI) Shell-Plate Thicknesses Based on the Variable-Design-Point Method Using 2400-mm                        | 08 |
|              | Courses and an Allowable Stress of 159 MPa for the Test Condition                                           | 00 |
| K-1b         | (USC) Shell-Plate Thicknesses Based on the Variable-Design-Point Method Using 96-in.                        |    |
|              | Courses and an Allowable Stress of 23,000 lbf/in. <sup>2</sup> for the Test Condition                       |    |
| K-2a         | (SI) Shell-Plate Thicknesses Based on the Variable-Design-Point Method Using 2400-mm                        |    |

|             | Construction of the Allowed Line Construction of 2000 MDs. Construction of Constructions                                                                  |     |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| K-2b        | Courses and an Allowable Stress of 208 MPa for the Test Condition                                                                                         |     |
| K-20        |                                                                                                                                                           |     |
| K 2a        | Courses and an Allowable Stress of 30,000 lbf/in. <sup>2</sup> for the Test Condition                                                                     |     |
| K-3a        | (SI) Shell-Plate Thicknesses Based on the Variable-Design-Point Method Using 2400-mm<br>Courses and an Allowable Stress of 236 MPa for the Test Condition | . [ |
| 1/ 21-      |                                                                                                                                                           |     |
| K-3b        | (USC) Shell-Plate Thicknesses Based on the Variable-Design-Point Method Using 96-in.                                                                      | . [ |
|             | Courses and an Allowable Stress of 34,300 lbf/in. <sup>2</sup> for the Test Condition                                                                     |     |
| L-1         | Index of Decisions or Actions Which may be Required of the Tank Purchaser L-22                                                                            |     |
| M-1a        | (SI) Yield Strength Reduction Factors                                                                                                                     |     |
| M-1b        | (USC) Yield Strength Reduction Factors                                                                                                                    |     |
| M-2a        | (SI) Modulus of Elasticity at the Maximum Design Temperature                                                                                              |     |
| M-2b        | (USC) Modulus of Elasticity at the Maximum Design Temperature                                                                                             |     |
| 0-1a        | (SI) Dimensions of Under-Bottom Connections0-2                                                                                                            |     |
| 0-1b        | (USC) Dimensions of Under-Bottom Connections0-2                                                                                                           |     |
| P-1a        | (SI) Modulus of Elasticity and Thermal Expansion Coefficient at the Design Temperature P-2                                                                |     |
| P-1b        | (USC) Modulus of Elasticity and Thermal Expansion Coefficient at the Design Temperature P-2                                                               |     |
| P-2         | DELETED                                                                                                                                                   | 2   |
| P-3         | DELETED                                                                                                                                                   |     |
| P-4         | DELETED                                                                                                                                                   |     |
| P-5         | DELETED                                                                                                                                                   |     |
| P-6         | DELETED                                                                                                                                                   |     |
| P- <b>7</b> | DELETED                                                                                                                                                   |     |
| S-1a        | (SI) ASTM Materials for Stainless Steel Components                                                                                                        | 09  |
| S-1b        | (USC) ASTM Materials for Stainless Steel Components                                                                                                       | 2   |
| S-2a        | (SI) Allowable Stresses for Tank Shells                                                                                                                   | 5   |
| S-2b        | (USC) Allowable Stresses for Tank Shells                                                                                                                  |     |
| S-3a        | (SI) Allowable Stresses for Plate Ring Flanges                                                                                                            | 7   |
| S-3b        | (USC) Allowable Stresses for Plate Ring Flanges                                                                                                           |     |
| S-4         | Joint Efficiencies                                                                                                                                        |     |
| S-5a        | (SI) Yield Strength Values in MPa (psi)                                                                                                                   |     |
| S-5b        | (USC) Yield Strength Values in MPa (psi)                                                                                                                  |     |
| S-6a        | (SI) Modulus of Elasticity at the Maximum Design Temperature                                                                                              |     |
| S-6b        | (USC) Modulus of Elasticity at the Maximum Design Temperature                                                                                             |     |
| U-1a        | (SI) Flaw Acceptance Criteria for UT Indications May be Used for All Materials                                                                            |     |
| U-1b        | (USC) Flaw Acceptance Criteria for UT Indications May be Used for All Materials                                                                           |     |
| X-1         | ASTM Materials for Duplex Stainless Steel Components                                                                                                      |     |
| X-2a        | (SI) Allowable Stresses for Tank Shells                                                                                                                   |     |
| X-2b        | (USC) Allowable Stresses for Tank Shells                                                                                                                  |     |
| X-3         | Joint Efficiencies                                                                                                                                        |     |
| X-4a        | (SI) Yield Strength Values in MPa                                                                                                                         |     |
| X-4b        | (USC) Yield Strength Values in psi                                                                                                                        |     |
| X-5a        | (SI) Modulus of Elasticity at the Maximum Operating Temperature                                                                                           |     |
| X-5b        | (USC) Modulus of Elasticity at the Maximum Operating Temperature                                                                                          |     |
| X-6a        | (SI) Hot Form Temperatures                                                                                                                                |     |
| X-6b        | (USC) Hot Form Temperatures                                                                                                                               |     |
|             |                                                                                                                                                           | ' I |

# **SECTION 1—SCOPE**

#### 1.1 GENERAL

1.1.1 This Standard establishes minimum requirements for material, design, fabrication, erection, and testing for vertical, cylindrical, aboveground, closed- and open-top, welded storage tanks in various sizes and capacities for internal pressures approximating atmospheric pressure (internal pressures not exceeding the weight of the roof plates), but a higher internal pressure is permitted when additional requirements are met (see 1.1.12). This Standard applies only to tanks whose entire bottom is uniformly supported and to tanks in non-refrigerated service that have a maximum design temperature of 93°C (200°F) or less (see 1.1.19).

• **1.1.2** This Standard is designed to provide industry with tanks of adequate safety and reasonable economy for use in the storage of petroleum, petroleum products, and other liquid products. This Standard does not present or establish a fixed series of allowable tank sizes; instead, it is intended to permit the Purchaser to select whatever size tank may best meet his needs. This Standard is intended to help Purchasers and Manufacturers in ordering, fabricating, and erecting tanks; it is not intended to prohibit Purchasers and Manufacturers from purchasing or fabricating tanks that meet specifications other than those contained in this Standard.

Note: A bullet (•) at the beginning of a paragraph indicates that there is an expressed decision or action required of the Purchaser. The Purchaser's responsibility is not limited to these decisions or actions alone. When such decisions and actions are taken, they are to be specified in documents such as requisitions, change orders, data sheets, and drawings.

- **1.1.3** This Standard has requirements given in two alternate systems of units. The Manufacturer shall comply with either:
  - 1. all of the requirements given in this Standard in SI units, or
  - 2. all of the requirements given in this Standard in US Customary units.

The selection of which set of requirements (SI or US Customary) to apply shall be a matter of mutual agreement between the Manufacturer and Purchaser and indicated on the Data Sheet, Page 1.

- **1.1.4** All tanks and appurtenances shall comply with the Data Sheet and all attachments.
- **1.1.5** Field-erected tanks shall be furnished completely erected, tested, and ready for service connections, unless specified otherwise. Shop-fabricated tanks shall be furnished tested and ready for installation.
- **1.1.6** The appendices of this Standard provide a number of design options requiring decisions by the Purchaser, standard requirements, recommendations, and information that supplements the basic standard. Except for Appendix L, an appendix becomes a requirement only when the Purchaser specifies an option covered by that appendix or specifies the entire appendix. See Table 1-1 for the status of each appendix.

**1.1.7** Appendix A provides alternative simplified design requirements for tanks where the stressed components, such as shell plates and reinforcing plates, are limited to a maximum nominal thickness of 12.5 mm (1/2 in.), including any corrosion allowance, and whose design metal temperature exceeds the minimums stated in the appendix.

- **1.1.8** Appendix AL provides requirements for aluminum tanks.
- **1.1.9** Appendix B provides recommendations for the design and construction of foundations for flat-bottom oil storage tanks.
- **1.1.10** Appendix C provides minimum requirements for pontoon-type and double-deck-type external floating roofs.
- **1.1.11** Appendix D provides requirements for submission of technical inquiries regarding this Standard.
- **1.1.12** Appendix E provides minimum requirements for tanks subject to seismic loading. An alternative or supplemental design may be mutually agreed upon by the Manufacturer and the Purchaser.
  - **1.1.13** Appendix F provides requirements for the design of tanks subject to a small internal pressure.
  - **1.1.14** Appendix G provides requirements for aluminum dome roofs.

07

08

| Appendix | Title                                                                                        | Status               |
|----------|----------------------------------------------------------------------------------------------|----------------------|
| А        | Optional Design Basis for Small Tanks                                                        | Purchaser's Option   |
| AL       | Aluminum Storage Tanks                                                                       | Requirements         |
| В        | Recommendations for Design and Construction of Foundations for Aboveground Oil Storage Tanks | Recommendations      |
| • C      | External Floating Roofs                                                                      | Requirements         |
| D        | Technical Inquiries                                                                          | Required Procedures  |
| • E      | Seismic Design of Storage Tanks                                                              | Purchaser's Option   |
| EC       | Commentary on Appendix E                                                                     | Information          |
| F        | Design of Tanks for Small Internal Pressures                                                 | Requirements         |
| • G      | Structurally-Supported Aluminum Dome Roofs                                                   | Requirements         |
| Н        | Internal Floating Roofs                                                                      | Requirements         |
| • I      | Undertank Leak Detection and Subgrade Protection                                             | Purchaser's Option   |
| J        | Shop-Assembled Storage Tanks                                                                 | Requirements         |
| К        | Sample Application of the Variable-Design-Point Method to<br>Determine Shell-Plate Thickness | Information          |
| • L      | API Std 650 Storage Tank Data Sheets                                                         | Required Information |
| М        | Requirements for Tanks Operating at Elevated Temperatures                                    | Requirements         |
| Ν        | Use of New Materials That are Not Identified                                                 | Requirements         |
| • 0      | Recommendation for Under-Bottom Connections                                                  | Purchaser's Option   |
| • P      | Allowable External Load on Tank Shell Openings                                               | Purchaser's Option   |
| R        | Load Combinations                                                                            | Requirements         |
| S        | Austenitic Stainless Steel Storage Tanks                                                     | Requirements         |
| SC       | Stainless Steel and Carbon Steel Mixed Material Storage Tanks                                | Requirements         |
| Т        | NDE Requirements Summary                                                                     | Requirements         |
| U        | Ultrasonic Examination in Lieu of Radiography                                                | Purchaser's Option   |
| • V      | Design of Storage Tanks for External Pressure                                                | Purchaser's Option   |
| • W      | Commercial and Documentation Recommendations                                                 | Recommendations      |
| Х        | Duplex Stainless Steel Tanks                                                                 | Requirements         |
|          |                                                                                              |                      |

Table 1-1—Status of Appendices to API Std 650

**1.1.15** Appendix H provides minimum requirements that apply to an internal floating roof in a tank with a fixed roof at the top of the tank shell.

• **1.1.16** Appendix I provides acceptable construction details that may be specified by the Purchaser for design and construction of tank and foundation systems that provide leak detection and subgrade protection in the event of tank bottom leakage, and provides for tanks supported by grillage.

1.1.17 Appendix J provides requirements covering the complete shop assembly of tanks that do not exceed 6 m (20 ft) in diameter.

1.1.18 Appendix K provides a sample application of the variable-design-point method to determine shell-plate thicknesses.

**1.1.19** Appendix L provides the Data Sheet and the Data Sheet instructions for listing required information to be used by the Purchaser and the Manufacturer. The use of the Data Sheet is mandatory, unless waived by the Purchaser.

**1.1.20** Appendix M provides requirements for tanks with a maximum design temperature exceeding 93°C (200°F) but not exceeding 260°C (500°F).

**1.1.21** Appendix N provides requirements for the use of new or unused plate and pipe materials that are not completely identified as complying with any listed specification for use in accordance with this Standard.

11

08

08

09

**1.1.22** Appendix O provides recommendations for the design and construction of under-bottom connections for storage tanks.

- **1.1.23** Appendix P provides requirements for design of shell openings that conform to Tables 5-6a and 5-6b that are subject to external piping loads. An alternative or supplemental design may be agreed upon by the Purchaser or Manufacturer.
  - **1.1.24** Appendix R provides a description of the load combinations used for the design equations appearing in this Standard.

**1.1.25** Appendix S provides requirements for stainless steel tanks.

**1.1.26** Appendix SC provides requirements for mixed material tanks using stainless steel (including austenitic and duplex) and carbon steel in the same tank for shell rings, bottom plates, roof structure, and other parts of a tank requiring high corrosion resistance.

**1.1.27** Appendix T summarizes the requirements for inspection by method of examination and the reference sections within the Standard. The acceptance standards, inspector qualifications, and procedure requirements are also provided. This appendix is not intended to be used alone to determine the inspection requirements within this Standard. The specific requirements listed within each applicable section shall be followed in all cases.

**1.1.28** Appendix U provides requirements covering the substitution of ultrasonic examination in lieu of radiographic examination.

**1.1.29** Appendix V provides additional requirements for tanks that are designed to operate under external pressure (vacuum) conditions.

• **1.1.30** Appendix W provides recommendations covering commercial and documentation issues. Alternative or supplemental requirements may be mutually agreed upon by the Manufacturer and the Purchaser.

**1.1.31** Appendix X provides requirements for duplex stainless steel tanks.

#### **1.2 LIMITATIONS**

The rules of this Standard are not applicable beyond the following limits of piping connected internally or externally to the roof, shell, or bottom of tanks constructed according to this Standard:

- a. The face of the first flange in bolted flanged connections, unless covers or blinds are provided as permitted in this Standard.
- b. The first sealing surface for proprietary connections or fittings.
- c. The first threaded joint on the pipe in a threaded connection to the tank shell.
- d. The first circumferential joint in welding-end pipe connections if not welded to a flange.

#### **1.3 RESPONSIBILITIES**

**1.3.1** The Manufacturer is responsible for complying with all provisions of this Standard. Inspection by the Purchaser's inspector does not negate the Manufacturer's obligation to provide quality control and inspection necessary to ensure such compliance. The Manufacturer shall also communicate specified requirements to relevant subcontractors or suppliers working at the request of the Manufacturer.

- **1.3.2** The Purchaser shall specify on the Data Sheet, Line 23, the applicable jurisdictional regulations and owner requirements that may affect the design and construction of the tank and those that are intended to limit the evaporation or release of liquid contents from the tank. Which regulations/requirements, if any, apply depend on many factors such as the business unit the tank is assigned to, the vapor pressure of the liquids stored in the tank, the components of the liquid stored in the tank, the geographic location of the tank, the date of construction of the tank, the capacity of the tank, and other considerations. These rules may affect questions such as 1) which tanks require floating roofs and the nature of their construction; 2) the types and details of seals used in the floating roof annular rim space and at openings in the roof, 3) details of tank vents, and 4) requirements regarding release prevention barriers.
- **1.3.3** The Purchaser shall provide any jurisdictional site permits that may be required to erect the tank(s), including permits for disposal of the hydro-test water. The Manufacturer shall provide all other permits that may be required to complete or transport the tank.

**1.3.4** The Purchaser retains the right to provide personnel to observe all shop and job site work within the scope of the contracted work (including testing and inspection). Such individuals shall be afforded full and free access for these purposes, subject to safety and schedule constraints.

07

09

08

**1.3.5** In this Standard, language indicating that the Purchaser accepts, agrees, reviews, or approves a Manufacturer's design, work process, manufacturing action, etc., shall not limit or relieve the Manufacturer's responsibility to conform to specified design codes, project specifications and drawings, and professional workmanship.

**1.3.6** The Manufacturer shall advise the Purchaser of any identified conflicts between this Standard and any Purchaser-referenced document and request clarification.

**1.3.7** In this Standard, language indicating that any particular issue is subject to agreement between the Purchaser and the Manufacturer shall be interpreted to require any such agreement to be documented in writing.

# • 1.4 DOCUMENTATION REQUIREMENTS

See Appendix W and the Data Sheet for the requirements covering the various documents to be developed for the tank.

# 1.5 FORMULAS

Where units are not defined in formulas in this standard, use consistent units (e.g. in., in.<sup>2</sup>, in.<sup>3</sup>, lbf/in.<sup>2</sup>).

07

# **SECTION 2—REFERENCES**

The following standards, codes, specifications, and publications are cited in this Standard. The most recent edition shall be used unless otherwise specified.

API

| RP 582           | Welding Guidelines for the Chemical, Oil and Gas Industries                                                   | 08 |
|------------------|---------------------------------------------------------------------------------------------------------------|----|
| Std 620          | Design and Construction of Large, Welded, Low-Pressure Storage Tanks                                          |    |
| RP 651           | Cathodic Protection of Aboveground Petroleum Storage Tanks                                                    |    |
| RP 652           | Lining of Aboveground Petroleum Storage Tank Bottoms                                                          |    |
| Publ 937         | Evaluation of the Design Criteria for Storage Tanks with Frangible Roofs                                      |    |
| Publ 937-A       | Study to Establish Relations for the Relative Strength of API 650 Cone Roof, Roof-to-Shell, and Shell-to-Bot- | 08 |
|                  | tom Joints                                                                                                    |    |
| Std 2000         | Venting Atmospheric and Low-Pressure Storage Tanks: Non-refrigerated and Refrigerated                         |    |
| RP 2003          | Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents                             |    |
| Publ 2026        | Safe Access/Egress Involving Floating Roofs of Storage Tanks in Petroleum Service                             |    |
| RP 2350          | Overfill Protection for Storage Tanks in Petroleum Facilities                                                 |    |
| Spec 5L          | Specification for Line Pipe                                                                                   |    |
| Manual of Petrol | eum Measurements Standards (MPMS)                                                                             |    |
| Chapter 19       | "Evaporative Loss Measurement"                                                                                |    |

### $AAI^1$

| Aluminum Design Manual                                                |
|-----------------------------------------------------------------------|
| Aluminum Standards and Data                                           |
| Specifications for Aluminum Sheet Metal Work in Building Construction |

# ACI<sup>2</sup>

| 318 | Building Code Requirements for Reinforced Concrete (ANSI/ACI 318) |
|-----|-------------------------------------------------------------------|
| 350 | Environmental Engineering Concrete Structures                     |

#### AISC<sup>3</sup>

Manual of Steel Construction, Allowable Stress Design

#### AISI<sup>4</sup>

T-192 Steel Plate Engineering Data Series—Useful Information—Design of Plate Structures, Volumes I &II

11

07

11

# ANSI<sup>5</sup>

ANSI/AISC 360 Specification for Structural Steel Buildings

# ASCE<sup>6</sup>

ASCE Std. 7-05 Minimum Design Loads for Buildings and Other Structures

# ASME7

| B1.20.1 | Pipe Threads, General Purpose (Inch) (ANSI/ASME B1.20.1)      |
|---------|---------------------------------------------------------------|
| B16.1   | Cast Iron Pipe Flanges and Flanged Fittings (ANSI/ASME B16.1) |
| B16.5   | Pipe Flanges and Flanged Fittings (ANSI/ASME B16.5)           |
| B16.21  | Nonmetallic Flat Gaskets for Pipe Flanges                     |

<sup>&</sup>lt;sup>1</sup>The Aluminum Association Inc., 1525 Wilson Boulevard, Suite 600, Arlington, Virginia 22209, <u>www.aluminum.org</u>.

<sup>&</sup>lt;sup>2</sup>American Concrete Institute, P.O. Box 9094, Farmington Hills, Michigan 48333, <u>www.aci-int.org</u>. <sup>3</sup>American Institute of Steel Construction, One East Wacker Drive, Suite 3100, Chicago, Illinois 60601-2001, <u>www.aisc.org</u>.

 <sup>&</sup>lt;sup>4</sup>American Iron and Steel Institute, 1540 Connecticut Avenue, N.W., Suite 705, Washington, D.C. 20036, <u>www.atsc.org</u>.
 <sup>5</sup>American National Standards Institute, 25 West 43<sup>rd</sup> Street, 4<sup>th</sup> Floor, New York, New York 10036, <u>www.ansi.org</u>.
 <sup>6</sup>American Society of Civil Engineers, 1801 Alexander Bell Drive, Reston, Virginia 20191-4400, <u>www.asce.org</u>.

<sup>&</sup>lt;sup>7</sup>ASME International, 3 Park Avenue, New York, New York 10016-5990, <u>www.asme.org</u>.

| B16.47 | Large Diameter | Steel Flanges: | NPS 26 Through | NPS 60 (ANSI/ASM | 1E B16.47) |
|--------|----------------|----------------|----------------|------------------|------------|
|        |                |                |                |                  |            |

# 08 Reference Deleted

*Boiler and Pressure Vessel Code*, Section V, "Nondestructive Examination;" Section VIII, "Pressure Vessels," Division 1; and Section IX, "Welding and Brazing Qualifications"

# 11 ASNT<sup>8</sup>

CP-189 Standard for Qualification and Certification of Nondestructive Testing Personnel RP SNT-TC-1A Personnel Qualification and Certification in Nondestructive Testing

# 11 ASTM<sup>9</sup>

- A 6M/A 6 General Requirements for Rolled Steel Plates, Shapes, Sheet Piling, and Bars for Structural Use
- A 20M/A 20 General Requirements for Steel Plates for Pressure Vessels
- A 27M/A 27 Steel Castings, Carbon, for General Application
- A 36M/A 36 Structural Steel
- A 53 Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless
- A 105M/A 105 Forgings, Carbon Steel, for Piping Components
- A 106 Seamless Carbon Steel Pipe for High-Temperature Service
- A 131M/A 131 Structural Steel for Ships
- A 181M/A 181 Forgings, Carbon Steel, for General-Purpose Piping
- A 182M/A 182 Forged or Rolled Alloy-Steel Pipe Flanges, Forged Fittings, and Valves and Parts for High-Temperature Service
- A 193M/A 193 Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service
- A 194M/A 194 Carbon and Alloy Steel Nuts for Bolts for High-Pressure and High-Temperature Service
- A 213M/A 213 Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes
- A 216M/A 216 Standard Specifications for Steel Castings for High-Temperature Service
- A 234M/A 234 Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High-Temperature Service
- A 240M/A 240 Heat-Resisting Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels
- A 276 Stainless Steel Bars and Shapes
- A 283M/A 283 Low and Intermediate Tensile Strength Carbon Steel Plates
- A 285M/A 285 Pressure Vessel Plates, Carbon Steel, Low- and Intermediate-Tensile Strength
- A 307 Carbon Steel Bolts and Studs, 60,000 lbf/in.<sup>2</sup> Tensile Strength
- A 312M/A 312 Seamless and Welded Austenitic Stainless Steel Pipes
  - A 320M/A 320 Alloy Steel Bolting Materials for Low-Temperature Service
  - A 333M/A 333 Seamless and Welded Steel Pipe for Low-Temperature Service
  - A 334M/A 334 Seamless and Welded Carbon and Alloy-Steel Tubes for Low-Temperature Service
  - A 350M/A 350 Forgings, Carbon and Low-Alloy Steel, Requiring Notch Toughness Testing for Piping Components
  - A 351M/A 351 Castings, Austenitic, Austenitic-Ferritic (Duplex), for Pressure-Containing Parts
  - A 358M/A 358 Electric-Fusion-Welded Austenitic Chromium-Nickel Alloy Steel Pipe for High-Temperature Service
  - A 370 Test Methods and Definitions for Mechanical Testing of Steel Products
  - A 380 Cleaning, Descaling, and Passivation of Stainless Steel Parts, Equipment, and Systems
  - A 403M/A 403 Wrought Austenitic Stainless Steel Piping Fittings
  - A 420M/A 420 Piping Fittings of Wrought Carbon Steel and Alloy Steel for Low-Temperature Service
  - A 479M/A 479 Stainless Steel Bars and Shapes for Use in Boilers and Other Pressure Vessels
  - A 480M/A 480 Flat-Rolled Stainless and Heat-Resisting Steel Plate, Sheet, and Strip
  - A 516M/A 516 Pressure Vessel Plates, Carbon Steel, for Moderate- and Lower-Temperature Service
  - A 524 Seamless Carbon Steel Pipe for Atmospheric and Lower Temperatures
  - A 537M/A 537 Pressure Vessel Plates, Heat-Treated, Carbon-Manganese-Silicon Steel
  - A 573M/A 573 Structural Carbon Steel Plates of Improved Toughness

<sup>&</sup>lt;sup>8</sup>American Society for Nondestructive Testing, 1711 Arlingate Lane, Columbus, Ohio 43228-0518, <u>www.asnt.org</u>.
<sup>9</sup>ASTM, 100 Barr Harbor Drive, West Conshohocken, Pennsylvania 19428-2959, <u>www.astm.org</u>.

|                  | A 633M/A 63         | 33 Normalized High-Strength Low-Alloy Structural Steel                                                                                                                    |      |
|------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                  | A 662M/A 6          | 62 Pressure Vessel Plates, Carbon-Manganese, for Moderate and Lower Temperature Service                                                                                   |      |
|                  | A 671               | Electric-Fusion-Welded Steel Pipe for Atmospheric and Lower Temperatures                                                                                                  |      |
|                  |                     | 78 Quenched and Tempered Carbon-Steel and High-Strength Low-Alloy Steel Plates for Structural Applications                                                                |      |
|                  |                     | 37 Pressure Vessel Plates, High-Strength, Low-Alloy Steel                                                                                                                 |      |
|                  | A 841M/A 84         | 41 Standard Specification for Steel Plates for Pressure Vessels, Produced by the Thermo-Mechanical Control Process (TMCP)                                                 |      |
|                  | A 924M/A 92         | 24 General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process                                                                                           |      |
|                  |                     | 92 Steel for Structural Shapes for Use in Building Framing                                                                                                                |      |
|                  | A 1011M/A           | 1011 Standard Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-<br>Alloy and High-Strength Low-Alloy with Improved Formability |      |
|                  | C 509               | Cellular Electrometric Preformed Gasket and Sealing Material                                                                                                              | 07   |
|                  | D 3453              | Flexible Cellular Materials—Urethane for Furniture and Automotive Cushioning, Bedding, and Similar<br>Applications                                                        |      |
|                  | E 84                | Test Method for Surface Burning Characteristics of Building Materials                                                                                                     | 07   |
| AW               | s10                 |                                                                                                                                                                           | 11   |
| PIVV             | A5.1                | Specification for Carbon Steel Covered Arc-Welding Electrodes (ANSI/AWS A5.1)                                                                                             | 11   |
|                  | A5.5                | Specification for Low-Alloy Steel Covered Arc-Welding Electrodes (ANSI/AWS A5.5)                                                                                          |      |
|                  | D1.2                | Structural Welding Code—Aluminum (ANSI/AWS D1.2)                                                                                                                          |      |
| 00               | . 11                |                                                                                                                                                                           | _    |
| CSA              |                     | Characterization of the standard standard the National Devide to Contract Contract                                                                                        | 11   |
|                  | G40.21              | Structural Quality Steels, Supplement to National Building Code of Canada                                                                                                 |      |
| EN <sup>1</sup>  | 2                   |                                                                                                                                                                           | 11   |
|                  | EN 10025            | Hot Rolled Products of Structural Steels                                                                                                                                  | -    |
| ISO              | 13                  |                                                                                                                                                                           | 1 11 |
| 100              | 630                 | Structural Steels                                                                                                                                                         | 11   |
|                  |                     |                                                                                                                                                                           |      |
| NFI              |                     |                                                                                                                                                                           |      |
|                  | NFPA 11             | Standard for Low Expansion Foam                                                                                                                                           |      |
|                  | NFPA 30             | Flammable and Combustible Liquids Code                                                                                                                                    |      |
|                  | NFPA 780            | Standard for the Installation of Lightning Protection Systems                                                                                                             |      |
| Pro              | ess Industry P      | Practices <sup>15</sup>                                                                                                                                                   |      |
|                  | PIP STF0550         | 01 Fixed Ladders and Cages Details                                                                                                                                        |      |
|                  |                     | 20 Pipe Railing for Walking and Working Surface Details                                                                                                                   |      |
|                  | PIP STF0552         | 21 Details for Angle Railings for Walking and Working Surfaces                                                                                                            | 07   |
| U.S              | . EPA <sup>16</sup> |                                                                                                                                                                           |      |
|                  | 40 CFR Part         | 63 National Emission Standards for Hazardous Air Pollutants for Source Categories (HON)                                                                                   |      |
|                  | Subpart             |                                                                                                                                                                           |      |
| 10 .             | nerican Wolding     | Society 550 N.W. Loloupo Road, Miami, Florida 22126, Nauru aug arg                                                                                                        |      |
| <sup>11</sup> Ca | nadian Standard     | g Society, 550 N.W. LeJeune Road, Miami, Florida 33126, <u>www.aws.org</u> .<br>Is Association, 178 Rexdale Boulevard, Rexdale, Ontario M9W 1R3, <u>www.csa.ca</u> .      |      |
| $^{12}E\iota$    | ropean Commit       | tee for Standardization, Avenue Marnix 17, B-1000, Brussels, Belgium, <u>www.cen.eu</u> .                                                                                 | 11   |

 <sup>&</sup>lt;sup>12</sup>European Committee for Standardization, Avenue Marnix 17, B-1000, Brussels, Belgium, <u>www.cen.eu</u>.
 <sup>13</sup>International Organization for Standardization. ISO publications can be obtained from the American National Standards Institute (ANSI) and national standards organizations such as the British Standards Institute (BSI), Japanese Industrial Standards (JIS), and Deutsches Institut fuer Normung (German Institute for Standardization [DIN]), www.iso.ch.

 <sup>&</sup>lt;sup>14</sup>National Fire Protection Agency, 1 Batterymarch Park, Quincy, Massachusetts 02169-7474, <u>www.nfpa.org</u>.
 <sup>15</sup>Process Industry Practices, 3925 West Braker Lane (R4500), Austin, Texas 78759, <u>www.pip.org</u>.

<sup>&</sup>lt;sup>16</sup>U.S. Environmental Protection Agency, Ariel Rios Building, 1200 Pennsylvania Avenue, Washington, D.C. 20460, <u>www.epa.gov</u>.

| Subpart G               | National Emission Standards for Organic Hazardous Air Pollutants from the Synthetic Organic Chemi-<br>cal Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operators, and Waste Water |  |  |  |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subpart H               | National Emission Standards for Organic Hazardous Air Pollutants for Equipment Leaks                                                                                                                     |  |  |  |  |
| 40 <i>CFR</i> Part 68   | Chemical Accident Prevention Provisions                                                                                                                                                                  |  |  |  |  |
| Subpart G               | Risk Management Plan (RMP)                                                                                                                                                                               |  |  |  |  |
| 40 CFR Part 264         | Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities (RCRA)                                                                                                 |  |  |  |  |
| Subpart J               | Tank Systems                                                                                                                                                                                             |  |  |  |  |
| U.S. Federal Specificat | ions <sup>17</sup>                                                                                                                                                                                       |  |  |  |  |
| TT-S-00230C Se          | ealing Compound Electrometric Type, Single Component for Caulking, Sealing, and Glazing in Buildings nd Other Structures                                                                                 |  |  |  |  |
| ZZ-R-765C R             | ubber, Silicone (General Specification)                                                                                                                                                                  |  |  |  |  |
| U.S. OSHA <sup>18</sup> |                                                                                                                                                                                                          |  |  |  |  |
| 29 CFR 1910             | Subpart D: Walking-Working Surfaces                                                                                                                                                                      |  |  |  |  |
| 29 <i>CFR</i> 1910.119  |                                                                                                                                                                                                          |  |  |  |  |
| Other Government Doc    | cuments                                                                                                                                                                                                  |  |  |  |  |

**API STANDARD 650** 

Hershfield, D. M. 1961.

"Rainfall Frequency Atlas of the United States for Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years," Technical Paper No. 40, Weather Bureau, U.S. Department of Commerce, Washington, D.C., 115 pp.

# WRC<sup>19</sup>

Bulletin 297 Local Stresses in Cylindrical Shells Due to External Loadings—Supplement to WRC Bulletin No. 107

2-4

# 07

 <sup>&</sup>lt;sup>17</sup>Specifications Unit (WFSIS), 7th and D Streets, S.W., Washington, D.C. 20407.
 <sup>18</sup>U.S Department of Labor, Occupational Safety and Health Administration, 200 Constitution Avenue, N.W., Washington, D.C. 20210 <u>www.osha.gov</u>.
 <sup>19</sup> The Welding Research Council, 3 Park Avenue, 27<sup>th</sup> Floor, New York, New York 10016-5902, <u>www.forengineers.org</u>.

# **SECTION 3—DEFINITIONS**

**3.1 centerline-stacked**: The mid-thickness centerlines of plates in all shell courses coincide.

**3.2 coating:** A term that includes protective materials applied to or bonded to tank surfaces, including paint, protective metals (e.g., galvanizing or cadmium plating), adhered plastic or polyolefin materials. Coatings are used for atmospheric, immersion, or vapor-space service.

**3.3 contract:** The commercial instrument, including all attachments, used to procure a tank.

**3.4** corroded thickness: A design condition equal to the nominal thickness less any specified corrosion allowance.

**3.5** corrosion allowance: Any additional thickness specified by the Purchaser for corrosion during the tank service life. Refer to 5.3.2.

**3.6** design metal temperature: The lowest temperature considered in the design, which, unless experience or special local conditions justify another assumption, shall be assumed to be 8°C (15°F) above the lowest one-day mean ambient temperature of the locality where the tank is to be installed. Isothermal lines of lowest one-day mean temperature are shown in Figure 4-2. The temperatures are not related to refrigerated-tank temperatures (see 1.1.1).

**3.7** design thickness: The thickness necessary to satisfy tension and compression strength requirements by this Standard or, in the absence of such expressions, by good and acceptable engineering practice for specified design conditions, without regard to construction limitations or corrosion allowances.

**3.8** double-deck floating roof: The entire roof is constructed of closed-top flotation compartments.

**3.9** floating suction line: Internal piping assembly that allows operator to withdraw product from the upper levels of the tank.

**3.10** flush-stacked on the inside: The inside surfaces of plates in all shell courses coincide.

**3.11** inlet diffusers: Internal fill line piping with impingement plate, baffles, slots, or lateral openings to reduce the velocity of the flow entering a tank.

11

**3.12** inspector: The person(s) designated by the Purchaser to perform inspections.

**3.13 liner:** A protective material used as a barrier but not adhered, nor bonded, to the protected surface. Typically used (1) inside a tank to protect steel, (2) under a tank for leak detection (as a "release prevention barrier"). (3) in a dike yard, or (4) on the dikes as secondary containment. Common examples are sheeting made from lead, rubber, plastic, polyolefin, or geosynthetic clay (bentonite). A liner is not a coating.

**3.14 lining:** An internal coating that consists of an applied liquid material which dries and adheres to the substrate, or a sheet material that is bonded to the substrate. It is designed for immersion service or vapor-space service. A lining can be reinforced or unreinforced.

**3.15** mandatory: Required sections of the Standard become mandatory if the Standard has been adopted by a Legal Jurisdiction or if the Purchaser and the Manufacturer choose to make reference to this Standard on the nameplate or in the Manufacturer's certification.

**3.16** Manufacturer: The party having the primary responsibility to construct the tank (see 1.3 and 10.2).

**3.17** maximum design temperature: The highest temperature considered in the design, equal to or greater than the highest expected operating temperature during the service life of the tank.

**3.18 nominal thickness:** The ordered thickness of the material. This thickness includes any corrosion allowance. and is used for determination of PWHT requirements, weld spacing, minimum and maximum thickness limitations, etc.

Note: The thickness used in the final structure is the nominal thickness plus or minus any tolerance allowed by this standard.

**3.19 Purchaser:** The owner or the owner's designated agent, such as an engineering contractor.

**3.20 Purchaser's option:** A choice to be selected by the Purchaser and indicated on the Data Sheet. When the Purchaser specifies an option covered by an appendix, the appendix then becomes a requirement.

**API STANDARD 650** 

**3.21** recommendation: The criteria provide a good acceptable design and may be used at the option of the Purchaser and the Manufacturer.

**3.22** requirement: The criteria must be used unless the Purchaser and the Manufacturer agree upon a more stringent alternative design.

**3.23** single-deck pontoon floating roof: The outer periphery of the roof consists of closed-top pontoon compartments, with the inner section of the roof constructed of a single deck without floation means.

# 3.24 Welding Terms

The terms defined in 3.24.1 through 3.24.21 are commonly used welding terms mentioned in this standard. See 5.1.5.2 for descriptions of fusion-welded joints.

**3.24.1 automatic welding:** Welding with equipment which performs the welding operation without adjustment of the controls by a welding operator. The equipment may or may not perform the loading and unloading of the work.

**3.24.2** backing: The material—metal, weld metal, carbon, granular flux, and so forth—that backs up the joint during welding to facilitate obtaining a sound weld at the root.

3.24.3 base metal: The metal or alloy that is welded or cut.

3.24.4 depth of fusion: The distance that fusion extends into the base metal from the surface melted during welding.

3.24.5 filler metal: Metal or alloy to be added in making a weld.

**3.24.6** fusion: The melting together of filler metal and base metal, or the melting of base metal only, which results in coalescence.

**3.24.7** heat-affected zone: The portion of the base metal that has not been melted but whose mechanical properties or microstructures have been altered by the heat of welding or cutting.

**3.24.8** joint penetration: The minimum depth a groove weld extends from its face into a joint, exclusive of reinforcement.

**3.24.9** lap joint: A joint between two overlapping members. An overlap is the protrusion of weld metal beyond the bond at the toe of the weld.

**3.24.10** machine welding: Welding with equipment that performs the welding operation under constant observation and control of a welding operator. The equipment may or may not perform the loading and unloading of the work.

3.24.11 manual welding: Welding wherein the entire welding operation is performed and controlled by hand.

**3.24.12** oxygen cutting: A group of cutting processes wherein the severing of metals is effected by means of the chemical reaction of oxygen with the base metal at elevated temperatures. In case of oxidation-resistant metals, the reaction is facilitated by the use of a flux.

**3.24.13** porosity: The existence of gas pockets or voids in metal.

**3.24.14** reinforcement of weld: Weld metal on the face of a groove weld in excess of the metal necessary for the specified weld size.

**3.24.15** semiautomatic arc welding: Arc welding with equipment that controls only the filler metal feed. The advance of the welding is manually controlled.

**3.24.16** slag inclusion: Nonmetallic solid material entrapped in weld metal or between weld metal and base metal.

3.24.17 undercut: A groove melted into the base metal adjacent to the toe of a weld and left unfilled by weld metal.

3.24.18 weld metal: The portion of a weld that has been melted during welding.

**3.24.19** welded joint: A union of two or more members produced by the application of a welding process.

**3.24.20** welder: One who performs manual or semiautomatic welding.

**3.24.21** welding operator: One who operates automatic or machine welding equipment.

3-2

# **SECTION 4—MATERIALS**

# 4.1 GENERAL

#### 4.1.1 Miscellaneous

- **4.1.1.1** See the Data Sheet for material specifications.
- **4.1.1.2** Rimmed or capped steels are not permitted.
- **4.1.1.3** Use of cast iron for any pressure part or any part attached to the tank by welding is prohibited.
- **4.1.1.4** Because of hydrogen embrittlement and toxicity concerns, cadmium-plated components shall not be used without the expressed consent of the Purchaser.
- 4.1.2 Materials used in the construction of tanks shall conform to the specifications listed in this section, subject to the modifications and limitations indicated in this Standard. Material produced to specifications other than those listed in this section may be employed, provided that the material is certified to meet all of the requirements of an applicable material specification listed in this Standard does not address material requirements for miscellaneous items and appurtenances, the Purchaser and/or the Manufacturer shall supply additional material requirements using a supplement to the Data Sheet.
- **4.1.3** When any new or unused plate and pipe material cannot be completely identified by records that are satisfactory to the Purchaser as material conforming to a specification listed in this Standard, the material or product may be used in the construction of tanks covered by this Standard only if the material passes the tests prescribed in Appendix N.

**4.1.4** Where materials of construction are used that are certified to two or more material specifications, the material specification chosen for the design calculations shall also be used consistently in the application of all other provisions of this Standard. The Purchaser shall be notified of this choice and receive confirmation that the material fully complies with the chosen material specification in all respects.

**4.1.5** When a tank is designed to the requirements of this Standard using plate material from Group-I through Group-IIIA steels, the tank Manufacturer responsible for any proposed material substitution to use Group-IV through Group-VI steels must:

- a. Maintain all of the original design criteria for the lower stress Group-I through Group IIIA steels.
- b. Obtain the prior written approval of the Purchaser.

c. Ensure that all of the design, fabrication, erection and inspection requirements for the material being substituted will meet the lower stress Group-I through Group IIIA specifications for items including but not limited to:

- 1. Material properties and production process methods.
- 2. Allowable stress levels.
- 3. Notch toughness.
- 4. Welding procedures and consumables.
- 5. Thermal stress relief.
- 6. Temporary and permanent attachment details and procedures.
- 7. Nondestructive examinations.

d. Include the pertinent information in the documents provided to the Purchaser, including a certification statement that the substituted material fully complies with 4.1.5 in all respects, and provide all other records covered by the work processes applied to 11 the material such as impact testing, weld procedures, nondestructive examinations, and heat treatments.

#### 4.2 PLATES

#### 4.2.1 General

**4.2.1.1** Except as otherwise provided for in 4.1, plates shall conform to one of the specifications listed in 4.2.2 through 4.2.6, **1** subject to the modifications and limitations in this Standard.

**4.2.1.2** Plate for shells, roofs, and bottoms may be ordered on an edge-thickness basis or on a weight  $(kg/m^2 [lb/ft^2])$  basis, as specified in 4.2.1.2.1 through 4.2.1.2.3.

**4.2.1.2.1** The edge thickness ordered shall not be less than the computed design thickness or the minimum permitted thickness.

**4.2.1.2.2** The weight ordered shall be great enough to provide an edge thickness not less than the computed design thickness or the minimum permitted thickness.

- **4.2.1.2.3** Whether an edge-thickness or a weight basis is used, an underrun not more than 0.3 mm (0.01 in.) from the computed design thickness or the minimum permitted thickness is acceptable.
  - **4.2.1.3** All plates shall be manufactured by the open-hearth, electric-furnace, or basic oxygen process. Steels produced by the thermo-mechanical control process (TMCP) may be used, provided that the combination of chemical composition and integrated controls of the steel manufacturing is mutually acceptable to the Purchaser and the Manufacturer, and provided that the specified mechanical properties in the required plate thicknesses are achieved. Copper-bearing steel shall be used if specified by the Purchaser.

**4.2.1.4** Shell plates are limited to a maximum thickness of 45 mm (1.75 in.) unless a lesser thickness is stated in this Standard or in the plate specification. Plates used as inserts or flanges may be thicker than 45 mm (1.75 in.). Plates, as designated in 4.2.9.1 and thicker than 40 mm (1.5 in.), shall be normalized or quench tempered, killed, made to fine-grain practice, and impact tested.

**4.2.1.5** Plate components not listed in Section 4.2.9.1 (i.e., nonpressure boundary compression components) shall be limited to the maximum thickness as designated by ASTM, CSA, ISO, EN, or other recognized national standard.

#### 4.2.2 ASTM Specifications

Plates that conform to the following ASTM specifications are acceptable as long as the plates are within the stated limitations:

a. ASTM A 36M/A 36 for plates to a maximum thickness of 40 mm (1.5 in.). None of the specifications for the appurtenant materials listed in Table 1 of ASTM A 36M/A 36 are considered acceptable for tanks constructed under this Standard unless it is expressly stated in this Standard that the specifications are acceptable.

b. ASTM A 131M/A 131, Grade A, for plates to a maximum thickness of 13 mm (0.5 in.); Grade B for plates to a maximum thickness of 25 mm (1 in.); and Grade EH36 for plates to a maximum thickness of 45 mm (1.75 in.) (insert plates and flanges to a maximum thickness of 50 mm [2 in.]).

- c. ASTM A 283M/A 283, Grade C, for plates to a maximum thickness of 25 mm (1 in.).
- d. ASTM A 285M/A 285, Grade C, for plates to a maximum thickness of 25 mm (1 in.).

e. ASTM A 516M Grades 380, 415, 450, 485/A 516, Grades 55, 60, 65, and 70, for plates to a maximum thickness of 40 mm (1.5 in.) (insert plates and flanges to a maximum thickness of 100 mm [4 in.]).

f. ASTM A 537M/A 537, Class 1 and Class 2, for plates to a maximum thickness of 45 mm (1.75 in.) (insert plates to a maximum thickness of 100 mm [4 in.]).

g. ASTM A 573M Grades 400, 450, 485/A 573, Grades 58, 65, and 70, for plates to a maximum thickness of 40 mm (1.5 in.).

h. ASTM A 633M/A 633, Grades C and D, for plates to a maximum thickness of 45 mm (1.75 in.) (insert plates to a maximum thickness of 100 mm [4.0 in.]).

i. ASTM A 662M/A 662, Grades B and C, for plates to a maximum thickness of 40 mm (1.5 in.).

j. ASTM A 678M/A 678, Grade A, for plates to a maximum thickness of 40 mm (1.5 in.) (insert plates to a maximum thickness of 65 mm [2.5 in.]) and Grade B for plates to a maximum thickness of 45 mm (1.75 in.) (insert plates to a maximum thickness of 65 mm [2.5 in.]). Boron additions are not permitted.

k. ASTM A 737M/A 737, Grade B, for plates to a maximum thickness of 40 mm (1.5 in.).

1. ASTM A 841M/A 841 Grade A, Class 1 and Grade B, Class 2 for plates to a maximum thickness of 40 mm (1.5 in.) (insert plates to a maximum thickness of 65 mm [2.5 in.]).

4-2

#### 4.2.3 CSA Specifications

Plate furnished to CSA G40.21 in Grades 260W/(38W), 300W(44W), and 350W/(50W) is acceptable within the limitations stated below. (If impact tests are required, Grades 260W/[38W], 300W/[44W], and 350W/[50W] are designated as Grades 260WT/[38WT], 300WT/[44WT], and 350WT/[50WT], respectively.) Imperial unit equivalent grades of CSA Specification G40.21, shown in parenthesis, are also acceptable.

- a. The W grades may be semi-killed or fully killed.
- b. Fully killed steel made to fine-grain practice must be specified when required.
- c. Elements added for grain refining or strengthening shall be restricted in accordance with Table 4-1.
- d. Plates shall have tensile strengths that are not more than 140 MPa (20 ksi) above the minimum specified for the grade.

e. Grades 260W/(38W) and 300W(44W) are acceptable for plate to a maximum thickness of 25 mm (1 in.) if semi-killed and to a maximum thickness of 40 mm (1.5 in.) if fully killed and made to fine-grain practice.

Grade 350W(50W) is acceptable for plate to a maximum thickness of 45 mm (1.75 in.) (insert plates to a maximum thickness of 100 mm [4 in.]) if fully killed and made to fine-grain practice.

| Alloy                    | Heat Analysis (%) | Notes   |
|--------------------------|-------------------|---------|
| Columbium                | 0.05              | 1, 2, 3 |
| Vanadium                 | 0.10              | 1, 2, 4 |
| Columbium (≤ 0.05%) plus |                   |         |
| Vanadium                 | 0.10              | 1, 2, 3 |
| Nitrogen                 | 0.015             | 1, 2, 4 |
| Copper                   | 0.35              | 1, 2    |
| Nickel                   | 0.50              | 1, 2    |
| Chromium                 | 0.25              | 1, 2    |
| Molybdenum               | 0.08              | 1, 2    |

Table 4-1—Maximum Permissible Alloy Content

When the use of these alloys or combinations of them is not included in the material specification, their use shall be at the option of the plate producer, subject to the approval of the Purchaser. These elements shall be reported when requested by the Purchaser. When more restrictive limitations are included in the material specification, those shall govern.
 On product analysis, the material shall conform to these requirements, subject to the product analysis tolerances of the

specification. 3. When columbium is added either singly or in combination with vanadium, it shall be restricted to plates of 13 mm

(0.50 in.) maximum thickness unless combined with 0.15% minimum silicon.

4. When nitrogen ( $\leq 0.015\%$ ) is added as a supplement to vanadium, it shall be reported, and the minimum ratio of vanadium to nitrogen shall be 4:1.

#### 4.2.4 ISO Specifications

Plate furnished to ISO 630 in Grades E 275 and E 355 is acceptable within the following limitations:

a. Grade E 275 in Qualities C and D for plate to a maximum thickness of 40 mm (1.5 in.).

b. Grade E 355 in Qualities C and D for plate to a maximum thickness of 45 mm (1.75 in.) (insert plates to a maximum thickness of 50 mm [2 in.]).

#### 4.2.5 EN Specifications

Plate furnished to EN 10025 in Grades S 275 and S 355 is acceptable within the following limitations:

a. Grade S 275 in Qualities J0 and J2 for plate to a maximum thickness of 40 mm (1.5 in.).

b. Grade S 355 in Qualities J0, J2 and K2 for plate to a maximum thickness of 45 mm (1.75 in.) [insert plates to a maximum thickness of 50 mm (2 in.)].

4-3

08

08

# 11 • 4.2.6 National Standards

Plates produced and tested in accordance with the requirements of a recognized national standard and within the mechanical and chemical limitations of one of the grades listed in Table 4-2 are acceptable when approved by the Purchaser. The require-

11 ments of this group do not apply to the ASTM, CSA, ISO, and EN specifications listed in 4.2.2, 4.2.3, 4.2.4, and 4.2.5. For the purposes of this Standard, a *national standard* is a standard that has been sanctioned by the government of the country from which the standard originates.

| 11  | 8 |
|-----|---|
|     |   |
| ~ ~ | 8 |

| Table 10 Acco  | eptable Grades of Plate Mat | torial Draduaad to Nation | al Ctandarda (Caa 1 2 C)  |
|----------------|-----------------------------|---------------------------|---------------------------|
| 1201e 4-7-ACCE | inable Grades of Plate Mar  | ienal Produced to Nation  | al Sianuarus i See 4.7.01 |
|                |                             |                           |                           |

|                    | Mechanical Properties |                  |                       |     |                                           |     |           |      | Chemical C | ompositio | on            |         |      |                    |  |                                      |  |
|--------------------|-----------------------|------------------|-----------------------|-----|-------------------------------------------|-----|-----------|------|------------|-----------|---------------|---------|------|--------------------|--|--------------------------------------|--|
|                    |                       | Tensile S        | Strength <sup>a</sup> |     | Minimum<br>Yield<br>Strength <sup>c</sup> |     |           |      | Yield      |           | Yield Maximum |         | imum | Maximum<br>Percent |  | Maximum<br>Percent<br>Phosphorus and |  |
|                    | Minin                 | num <sup>c</sup> | Maxi                  | mum |                                           |     | Thickness |      | Carbon     |           | Sulfur        |         |      |                    |  |                                      |  |
| Grade <sup>b</sup> | MPa                   | ksi              | MPa                   | ksi | MPa                                       | ksi | mm        | in.  | Heat       | Product   | Heat          | Product |      |                    |  |                                      |  |
| 235 <sup>d</sup>   | 360                   | 52               | 510                   | 74  | 235                                       | 34  | 20        | 0.75 | 0.20       | 0.24      | 0.04          | 0.05    |      |                    |  |                                      |  |
| 250                | 400                   | 58               | 530                   | 77  | 250                                       | 36  | 40        | 1.5  | 0.23       | 0.27      | 0.04          | 0.05    |      |                    |  |                                      |  |
| 275                | 430                   | 62               | 560                   | 81  | 275                                       | 40  | 40        | 1.5  | 0.25       | 0.29      | 0.04          | 0.05    |      |                    |  |                                      |  |

<sup>a</sup>The location and number of test specimens, elongation and bend tests, and acceptance criteria are to be in accordance with the appropriate national standard, ISO standard, or ASTM specification.

11 bSemi-killed or fully killed quality; as rolled or TMCP (20 mm [0.75 in.] maximum when TMCP is used in place of normalized steel), or normalized.

• CYield strength  $\div$  tensile strength  $\le$  0.75, based on the minimum specified yield and tensile strength unless actual test values are required by the Purchaser.

<sup>d</sup>Nonrimming only.

# 4.2.7 General Requirements for Delivery

**4.2.7.1** The material furnished shall conform to the applicable requirements of the listed specifications but is not restricted with respect to the location of the place of manufacture.

**4.2.7.2** This material is intended to be suitable for fusion welding. Welding technique is of fundamental importance, and welding procedures must provide welds whose strength and toughness are consistent with the plate material being joined. All welding performed to repair surface defects shall be done with low-hydrogen welding electrodes compatible in chemistry, strength, and quality with the plate material.

**4.2.7.3** When specified by the plate purchaser, the steel shall be fully killed. When specified by the plate purchaser, fully killed steel shall be made to fine-grain practice.

**4.2.7.4** For plate that is to be made to specifications that limit the maximum manganese content to less than 1.60%, the limit of the manganese content may be increased to 1.60% (heat) at the option of the plate producer to maintain the required strength level, provided that the maximum carbon content is reduced to 0.20% (heat) and the weldability of the plate is given consideration. The material shall be marked "Mod" following the specification listing. The material shall conform to the product analysis tolerances of Table B in ASTM A 6M/A 6.

**4.2.7.5** The use or presence of columbium, vanadium, nitrogen, copper, nickel, chromium, or molybdenum shall not exceed the limitations of Table 4-1 for all Group VI materials (see Table 4-4a and Table 4-4b) and ISO 630, Grade E 355.

# 4.2.8 Heat Treatment of Plates

**4.2.8.1** When specified by the plate purchaser, fully killed plates shall be heat treated to produce grain refinement by either normalizing or heating uniformly for hot forming. If the required treatment is to be obtained in conjunction with hot forming, the temperature to which the plates are heated for hot forming shall be equivalent to and shall not significantly exceed the normalizing temperature. If the treatment of the plates is not specified to be done at the plate producer's plant, testing shall be carried out in

11 accordance with 4.2.8.2.

4-4

**4.2.8.2** When a plate purchaser elects to perform the required normalizing or fabricates by hot forming (see 4.2.8.1), the plates shall be accepted on the basis of mill tests made on full-thickness specimens heat treated in accordance with the plate purchaser's order. If the heat-treatment temperatures are not indicated on the contract, the specimens shall be heat treated under conditions considered appropriate for grain refinement and for meeting the test requirements. The plate producer shall inform the plate purchaser of the procedure followed in treating the specimens at the steel mill.

**4.2.8.3** On the purchase order, the plate purchaser shall indicate to the plate producer whether the producer shall perform the heat treatment of the plates.

**4.2.8.4** The tensile tests shall be performed on each plate as heat treated.

4.2.8.5 Deleted.

### 4.2.9 Impact Testing of Plates

• **4.2.9.1** When required by the Purchaser or by 4.2.8.4 and 4.2.10, a set of Charpy V-notch impact specimens shall be taken from plates after heat treatment (if the plates have been heat treated), and the specimens shall fulfill the stated energy requirements. Test coupons shall be obtained adjacent to a tension-test coupon. Each full-size impact specimen shall have its central axis as close to the plane of one-quarter plate thickness as the plate thickness will permit.

**4.2.9.2** When it is necessary to prepare test specimens from separate coupons or when plates are furnished by the plate producer in a hot-rolled condition with subsequent heat treatment by the fabricator, the procedure shall conform to ASTM A 20.

**4.2.9.3** An impact test shall be performed on three specimens taken from a single test coupon or test location. The average value of the specimens (with no more than one specimen value being less than the specified minimum value) shall comply with the specified minimum value. If more than one value is less than the specified minimum value, or if one value is less than two-thirds the specified minimum value, three additional specimens shall be tested, and each of these must have a value greater than or equal to the specified minimum value.

**4.2.9.4** The test specimens shall be Charpy V-notch Type A specimens (see ASTM A 370), with the notch perpendicular to the surface of the plate being tested.

**4.2.9.5** For a plate whose thickness is insufficient to permit preparation of full-size specimens [10 mm  $\times$  10 mm (0.394 in.  $\times$  0.394 in.], tests shall be made on the largest subsize specimens that can be prepared from the plate. Subsize specimens shall have a width along the notch of at least 80% of the material thickness.

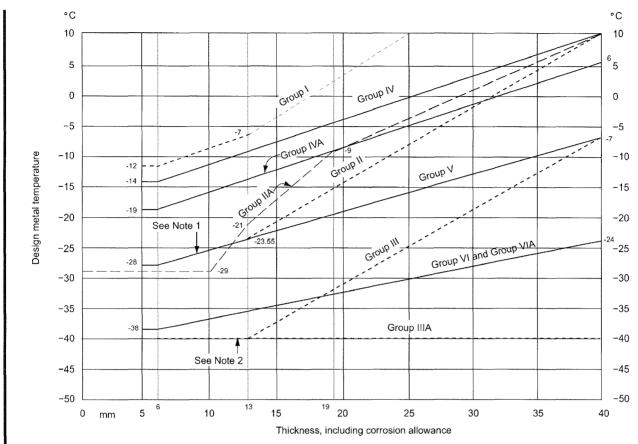
**4.2.9.6** The impact energy values obtained from subsize specimens shall not be less than values that are proportional to the energy values required for full-size specimens of the same material.

**4.2.9.7** The testing apparatus, including the calibration of impact machines and the permissible variations in the temperature of specimens, shall conform to ASTM A 370 or an equivalent testing apparatus conforming to national standards or ISO standards.

#### 4.2.10 Toughness Requirements

**4.2.10.1** The thickness and design metal temperature of all shell plates, shell reinforcing plates, shell insert plates, bottom plates welded to the shell, plates used for manhole and nozzle necks, plate-ring shell-nozzle flanges, blind flanges, and manhole cover plates shall be in accordance with Figures 4-1a and 4-1b. Notch toughness evaluation of plate-ring flanges, blind flanges, and manhole cover plates shall be based on "governing thickness" as defined in 4.5.4.3. In addition, plates more than 40 mm (1.5 in.) thick shall be of killed steel made to fine-grain practice and heat treated by normalizing, normalizing and tempering, or quenching and tempering, and each plate as heat treated shall be impact tested according to 4.2.11.2. Each TMCP A 841 plate-asrolled shall be impact tested. Impact test temperature and required energy shall be in accordance with 4.2.11.2 in lieu of the default temperature and energy given in A 841.

**4.2.10.2** Subject to the Purchaser's approval, thermo-mechanical-control-process (TMCP) plates (plates produced by a mechanical-thermal rolling process designed to enhance notch toughness) may alternatively be used where heat treated plates are normally required by 4.2.10.1 because of thickness over 40 mm (1.5 in.). In this case, each TMCP plate-as-rolled shall receive Charpy V-notch impact energy testing in accordance with 4.2.9, 4.2.10, and 4.2.11. When TMCP steels are used, consideration should be given to the service conditions outlined in 5.3.3.


11

11

11

08

4-5



#### Notes:

1. The Group II and Group V lines coincide at thicknesses less than 13 mm.

- 2. The Group III and Group IIIA lines coincide at thicknesses less than 13 mm.
- 3. The materials in each group are listed in Table 4-4a and Table 4-4b.

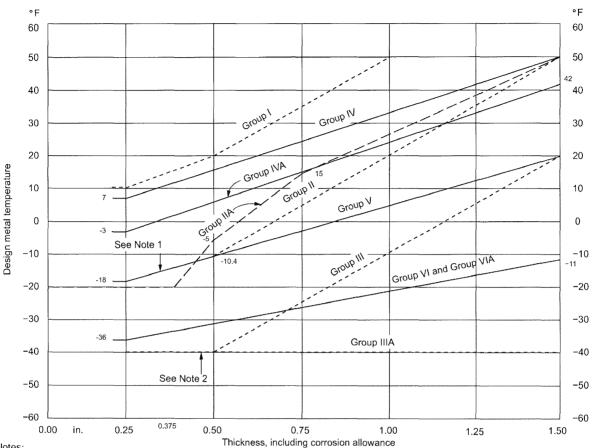
#### 11 4. Note 4 deleted.

- 5. Use the Group IIA and Group VIA curves for pipe and flanges (see 4.5.4.2 and 4.5.4.3).
  - 6. Linear equations provided in Table 4-3a can be used to calculate Design Metal Temperature (DMT) for each API material group and the thickness range.

# Figure 4-1a— (SI) Minimum Permissible Design Metal Temperature for Materials Used in Tank Shells without Impact Testing

• 4.2.10.3 Plates less than or equal to 40 mm (1.5 in.) thick may be used at or above the design metal temperatures indicated in Figures 4-1a and 4-1b without being impact tested. To be used at design metal temperatures lower than the temperatures indicated in Figures 4-1a and 4-1b, plates shall demonstrate adequate notch toughness in accordance with 4.2.11.3 unless 4.2.11.2 or 4.2.11.4 has been specified by the Purchaser. For heat-treated material (normalized, normalized and tempered, or quenched and tempered), notch toughness shall be demonstrated on each plate as heat treated when 4.2.11.2 requirements are specified. Isothermal lines of lowest one-day mean temperature are shown in Figure 4-2.

**4.2.10.4** Plate used to reinforce shell openings and insert plates shall be of the same material as the shell plate to which they are attached or shall be of any appropriate material listed in Table 4-4a, Table 4-4b, Figure 4-1a, and Figure 4-1b. Except for nozzle and manway necks, the material shall be of equal or greater yield and tensile strength and shall be compatible with the adjacent shell material (see 4.2.10.1 and 5.7.2.3, Item d).


**4.2.10.5** The requirements in 4.2.10.4 apply only to shell nozzles and manholes. Materials for roof nozzles and manholes do not require special toughness.

#### 4.2.11 Toughness Procedure

**4.2.11.1** When a material's toughness must be determined, it shall be done by one of the procedures described in 4.2.11.2 through 4.2.11.4, as specified in 4.2.10.

4-6

09



Notes:

1. The Group II and Group V lines coincide at thicknesses less than 1/2 in.

2. The Group III and Group IIIA lines coincide at thicknesses less than <sup>1</sup>/<sub>2</sub> in.

3. The materials in each group are listed in Table 4-4a and Table 4-4b.

4. Note 4 deleted.

5. Use the Group IIA and Group VIA curves for pipe and flanges (see 4.5.4.2 and 4.5.4.3).

6. Linear equations provided in Table 4-3b can be used to calculate Design Metal Temperature (DMT) for each API material group and the thickness range.

Figure 4-1b—(USC) Minimum Permissible Design Metal Temperature for Materials Used in Tank Shells without Impact Testing

**4.2.11.2** Each plate as rolled or heat treated shall be impact tested in accordance with 4.2.9 at or below the design metal temperature to show Charpy V-notch longitudinal (or transverse) values that fulfill the minimum requirements of Table 4-5a and Table 4-5b (see 4.2.9 for the minimum values for one specimen and for subsize specimens). As used here, the term plate as rolled refers to the unit plate rolled from a slab or directly from an ingot in its relation to the location and number of specimens, not to the condition of the plate.

**4.2.11.3** For plate in the as-rolled condition, the thickest plate from each heat shall be impact tested. For TMCP material, each plate-as-rolled shall be impact tested. Impact testing shall be in accordance with 4.2.9 and shall fulfill the impact requirements of 4.2.11.2 at the design metal temperature.

• **4.2.11.4** The Manufacturer shall submit to the Purchaser test data for plates of the material demonstrating that based on past production from the same mill, the material has provided the required toughness at the design metal temperature.

#### 4.3 SHEETS

Sheets for fixed and floating roofs shall conform to ASTM A 1011M, Grade 33. They shall be made by the open-hearth or basic oxygen process. Copper-bearing steel shall be used if specified on the purchase order. Sheets may be ordered on either a weight or a thickness basis, at the option of the tank Manufacturer.

11

11

09

Table 4-3a—(SI) Linear Equations for Figure 4-1a

Table 4-3b—(USC) Linear Equations for Figure 4-1b

| API<br>Group # | Thickness Range   | Equation             |
|----------------|-------------------|----------------------|
| Ι              | $6 \le X < 13$    | Y = 0.714X - 16.286  |
| Ι              | $13 \le X \le 25$ | Y = 1.417X - 25.417  |
| II             | $6 \le X < 13$    | Y = 0.634X - 31.81   |
| Π              | $13 \le X \le 40$ | Y = 1.243X - 39.72   |
| IIA            | $10 \le X < 13$   | Y = 2.667X - 55.667  |
| IIA            | $13 \le X \le 19$ | Y = 2X - 47          |
| IIA            | $19 \le X \le 40$ | Y = 0.905X - 26.19   |
| III            | $6 \leq X < 13$   | Y = - 40             |
| III            | $13 \le X < 40$   | Y = 1.222X - 55.89   |
| IIIA           | $6 \le X \le 40$  | Y = - 40             |
| IV             | $6 \le X \le 40$  | Y = 0.7059X - 18.235 |
| IVA            | $6 \le X \le 40$  | Y = 0.7353X - 23.412 |
| V              | $6 \le X \le 40$  | Y = 0.6176X - 31.71  |
| VI, VIA        | $6 \le x \le 40$  | Y = 0.4112X - 40.471 |
|                |                   |                      |

| API<br>Group # | Thickness Range            | Equation         |
|----------------|----------------------------|------------------|
| I              | $0.25 \le X < 0.5$         | Y = 40X          |
| Ι              | $0.5 \le X \le 1.0$        | Y = 60X - 10     |
| II             | $0.25 \leq X < 0.5$        | Y = 30.4X - 25.6 |
| II             | $0.5 \le X \le 1.5$        | Y = 60.4X - 40.6 |
| IIA            | $0.375 \leq X < 0.5$       | Y = 120X - 65    |
| IIA            | $0.5 \le {\sf X} \le 0.75$ | Y = 80X - 45     |
| IIA            | $0.75 \le X \le 1.5$       | Y = 46.667X - 20 |
| III            | $0.25 \leq X < 0.5$        | Y = - 40         |
| III            | $0.5 \le X \le 1.5$        | Y = 60X - 70     |
| IIIA           | $0.25 \le X \le 1.5$       | Y = - 40         |
| IV             | $0.25 \le X \le 1.5$       | Y = 34.4X - 1.6  |
| IVA            | $0.25 \le X \le 1.5$       | Y = 36X - 12     |
| V              | $0.25 \leq X \leq 1.5$     | Y = 30.4X - 25.6 |
| VI, VIA        | $0.25 \leq X \leq 1.5$     | Y = 20X - 41     |
|                |                            |                  |

Y = Design Metal Temperature (°C)

X = Thickness including corrosion (mm)

Y = Design Metal Temperature (°F)

X = Thickness including corrosion (in.)

#### 4.4 STRUCTURAL SHAPES

**4.4.1** Structural steel shall conform to one of the following:

a. ASTM A 36M/A 36.

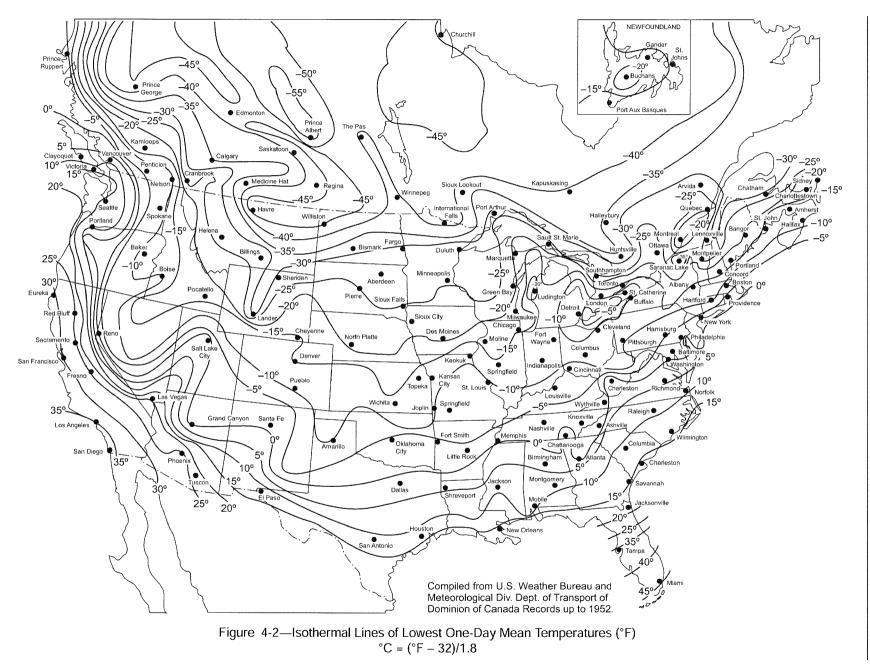
b. ASTM A 131M/A 131.

c. ASTM A 992M/ A 992.

d. Structural Steels listed in AISC Specification for Structural Steel Buildings, Allowable Stress Design.

e. CSA G40.21, Grades 260W(38W), 300W(44W), 350W(50W), 260WT(38WT), 300WT(44WT), and 350WT(50WT). Imperial unit equivalent grades of CSA Specification G40.21, shown in parenthesis, are also acceptable.

f. ISO 630, Grade E 275, Qualities B, C, and D.


11 g. EN 10025, Grade S 275, Qualities JR, J0, and J2.

 h. Recognized national standards. Structural steel that is produced in accordance with a recognized national standard and that meets the requirements of Table 4-2 is acceptable when approved by the Purchaser.

• 4.4.2 All steel for structural shapes shall be made by the open-hearth, electric-furnace, or basic oxygen process. Copper-bearing steel is acceptable when approved by the Purchaser.

**4.4.3** Not all of the structural steel shapes listed in AISC (4.4.1 [d]) and other national standards (4.4.1[h]) are well suited for welding. Material selection for structural shapes requiring welded connections shall include confirmation of the material's weld-ability from the structural shape Manufacturer, other reputable sources, or by weld testing. Structural steel shapes having poor weldability shall only be used for bolted connection designs.

**4.4.4** Weldable-quality pipe that conforms to the physical properties specified in any of the standards listed in 4.5.1 may be used for structural purposes with the allowable stresses stated in 5.10.3.



4-9

| 09 |  |
|----|--|

4-10

Grade 250

5

### Table 4-4a-(SI) Material Groups (See Figure 4-1a and Note 1 Below)

| Group I<br>As Rolled,<br>Semi-Killed |       | Group II<br>As Rolled,<br>Killed or Semi-Killed |       | Group<br>As Rolled,<br>Fine-Grain I | Killed | Group II<br>Normalized,<br>Fine-Grain P | Killed |
|--------------------------------------|-------|-------------------------------------------------|-------|-------------------------------------|--------|-----------------------------------------|--------|
| Material                             | Notes | Material                                        | Notes | Material                            | Notes  | Material                                | Notes  |
| A 283M C                             | 2     | A 131M B                                        | 6     | A 573M-400                          |        | A 573M-400                              | 9      |
| A 285M C                             | 2     | A 36M                                           | 2, 5  | A 516M-380                          |        | A 516M-380                              | 9      |
| A 131M A                             | 2     | G40.21-260W                                     |       | A 516M-415                          |        | A 516M-415                              | 9      |
| A 36M                                | 2, 3  | Grade 250                                       | 7     | G40.21-260W                         | 8      | G40.21-260W                             | 8, 9   |
| Grade 235                            | 3     |                                                 |       | Grade 250                           | 8      | Grade 250                               | 8,9    |

| Group<br>As Rolled,<br>Fine-Grain I | Killed      | As Rolled, H     | Group IVA Group V Quen<br>As Rolled, Killed Normalized, Killed Killed |             | Group VI<br>Normalized c<br>Quenched and Tem<br>Killed Fine-Grain F<br>Reduced Carb | ipered,<br>Practice                                  |       |
|-------------------------------------|-------------|------------------|-----------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------|------------------------------------------------------|-------|
| Material                            | Notes       | Material         | Notes                                                                 | Material    | Notes                                                                               | Material                                             | Notes |
| A 573M-450                          |             | A 662M C         |                                                                       | A 573M-485  | 9                                                                                   | A 131M EH 36                                         |       |
| A 573M-485                          |             | A 573M-485       | 10                                                                    | A 516M-450  | 9                                                                                   | A 633M C                                             |       |
| A 516M-450                          |             | G40.21-300W      | 8,10                                                                  | A 516M-485  | 9                                                                                   | A 633M D                                             |       |
| A 516M-485                          |             | G40.21-350W      | 8,10                                                                  | G40.21-300W | 8, 9                                                                                | A 537M Class 1                                       |       |
| A 662M B                            |             | E 275 D          |                                                                       | G40.21-350W | 8, 9                                                                                | A 537M Class 2                                       | 12    |
| G40.21-300W                         | 8           | E 355 D          |                                                                       |             |                                                                                     | A 678M A                                             |       |
| G40.21-350W                         | 8           | S 275 J2         | 8                                                                     |             |                                                                                     | A 678M B                                             | 12    |
| E 275 C                             | 8           | S 355 (J2 or K2) | 8                                                                     |             |                                                                                     | A 737M B                                             |       |
| E 355 C<br>S 275 J0<br>S 355 J0     | 8<br>8<br>8 |                  |                                                                       |             |                                                                                     | A 841M, Grade A, Class 1<br>A 841M, Grade B, Class 2 |       |
| Grade 275                           | 4, 8        |                  |                                                                       |             |                                                                                     |                                                      |       |

#### Notes:

11

1. Most of the listed material specification numbers refer to ASTM specifications (including Grade or Class); there are, however, some exceptions: G40.21 (including Grade) is a CSA specification; Grades E 275 and E 355 (including Quality) are contained in ISO 630; Grades S 275 and S 355 (including quality) are contained in EN10025; and Grade 235, Grade 250, and Grade 275 are related to national standards (see 4.2.6).

2. Must be semi-killed or killed.

3. Thickness  $\leq 20$  mm.

4. Deleted.

5. Manganese content shall be 0.80% - 1.2% by heat analysis for thicknesses greater than 20 mm, except that for each reduction of 0.01% below the specified carbon maximum, an increase of 0.06% manganese above the specified maximum will be permitted up to the maximum of 1.35%. Thicknesses  $\leq 20$  mm shall have a manganese content of 0.80% - 1.2% by heat analysis.

6. Thickness  $\leq 25$  mm.

7. Must be killed.

8. Must be killed and made to fine-grain practice.

9. Must be normalized.

10. Must have chemistry (heat) modified to a maximum carbon content of 0.20% and a maximum manganese content of 1.60% (see 4.2.7.4).

11. Produced by the thermo-mechanical control process (TMCP).

12. See 5.7.4.6 for tests on simulated test coupons for material used in stress-relieved assemblies.

13. See 4.2.10 for impact test requirements (each plate-as-rolled tested).

| Group<br>As Rol<br>Semi-ki | led,  | Group II<br>As Rolled,<br>Killed or Semi-killed |       | Group<br>As Rolled,<br>Fine-Grain | Killed | Group II<br>Normalized,<br>Fine-Grain P | Killed |
|----------------------------|-------|-------------------------------------------------|-------|-----------------------------------|--------|-----------------------------------------|--------|
| Material                   | Notes | Material                                        | Notes | Material                          | Notes  | Material                                | Notes  |
| A 283 C                    | 2     | A 131 B                                         | 6     | A 573-58                          |        | A 573-58                                | 9      |
| A 285 C                    | 2     | A 36                                            | 2, 5  | A 516-55                          |        | A 516-55                                | 9      |
| A 131 A                    | 2     | G40.21-38W                                      |       | A 516-60                          |        | A 516-60                                | 9      |
| A 36                       | 2, 3  | Grade 250                                       | 7     | G40.21-38W                        | 8      | G40.21-38W                              | 8, 9   |
| Grade 235                  | 3     |                                                 |       | Grade 250                         | 8      | Grade 250                               | 8, 9   |
| Grade 250                  | 5     |                                                 |       |                                   |        |                                         |        |
|                            |       |                                                 |       |                                   |        | Group V<br>Normalize                    |        |

## Table 4-4b-(USC) Material Groups (See Figure 4-1b and Note 1 Below)

| Group<br>As Rolled,<br>Fine-Grain | Killed      | Group IV<br>As Rolled, I<br>Fine-Grain P | Killed | Group<br>Normalized<br>Fine-Grain | l, Killed | Quenched and Te<br>Killed Fine-Grain<br>Reduced Car | mpered,<br>Practice |
|-----------------------------------|-------------|------------------------------------------|--------|-----------------------------------|-----------|-----------------------------------------------------|---------------------|
| Material                          | Notes       | Material                                 | Notes  | Material                          | Notes     | Material                                            | Notes               |
| A 573-65                          |             | A 662 C                                  |        | A 573-70                          | 9         | A 131 EH 36                                         |                     |
| A 573-70                          |             | A 573-70                                 | 10     | A 516-65                          | 9         | A 633 C                                             |                     |
| A 516-65                          |             | G40.21-44W                               | 8, 10  | A 516-70                          | 9         | A 633 D                                             |                     |
| A 516-70                          |             | G40.21-50W                               | 8,10   | G40.21-44W                        | 8, 9      | A 537 Class 1                                       |                     |
| A 662 B                           |             | E 275 D                                  |        | G40.21-50W                        | 89        | A 537 Class 2                                       | 12                  |
| G40.21-44W                        | 8           | E 355 D                                  |        |                                   |           | A 678 A                                             |                     |
| G40.21-50W                        | 8           | S 275 J2                                 | 8      |                                   |           | A 678 B                                             | 12                  |
| E 275 C                           | 8           | S355 (J2 or K2)                          | 8      |                                   |           | A 737 B                                             |                     |
| E 355 C<br>S 275 J0<br>S 355 J0   | 8<br>8<br>8 |                                          |        |                                   |           | A 841, Grade A, Class 1<br>A 841, Grade B, Class 2  |                     |
| Grade 275                         | 4, 8        |                                          |        |                                   |           |                                                     |                     |

Notes:

1. Most of the listed material specification numbers refer to ASTM specifications (including Grade or Class); there are, however, some exceptions: G40.21 (including Grade) is a CSA specification; Grades E 275 and E 355 (including Quality) are contained in ISO 630; Grades S 275 and S 355 (including quality) are contained in EN10025; and Grade 235, Grade 250, and Grade 275 are related to national standards (see 4.2.6).

2. Must be semi-killed or killed.

3. Thickness  $\leq 0.75$  in.

4. Deleted.

5. Manganese content shall be 0.80% - 1.2% by heat analysis for thicknesses greater than 0.75 in., except that for each reduction of 0.01% below the specified carbon maximum, an increase of 0.06% manganese above the specified maximum will be permitted up to the maximum of 1.35%. Thicknesses  $\leq 0.75$  in. shall have a manganese content of 0.80% - 1.2% by heat analysis.

6. Thickness  $\leq 1$  in.

7. Must be killed.

8. Must be killed and made to fine-grain practice.

9. Must be normalized.

10. Must have chemistry (heat) modified to a maximum carbon content of 0.20% and a maximum manganese content of 1.60% (see 4.2.7.4). 11. Produced by the thermo-mechanical control process (TMCP).

12. See 5.7.4.6 for tests on simulated test coupons for material used in stress-relieved assemblies.

13. See 4.2.10 for impact test requirements (each plate-as-rolled tested).

4-11

08

|                                                                                | Thickness                                                      | Average Impact Value of<br>Three Specimens <sup>b</sup> |                      |
|--------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|----------------------|
|                                                                                |                                                                | Longitudinal                                            | Transverse           |
| Plate Material <sup>a</sup> and Thickness ( <i>i</i> ) in mm                   | mm                                                             | J                                                       | J                    |
| Groups I, II, III, and IIIA $t \le maximum$ thicknesses in 4.2.2 through 4.2.5 |                                                                | 20                                                      | 18                   |
| Groups IV, IVA, V, and VI (except quenched and tempered and TMCP)              | $t \le 40 \\ 40 < t \le 45 \\ 45 < t \le 50 \\ 50 < t \le 100$ | 41<br>48<br>54<br>68                                    | 27<br>34<br>41<br>54 |
| Group VI (quenched and tempered and TMCP)                                      | $t \le 40  40 < t \le 45  45 < t \le 50  50 < t \le 100$       | 48<br>54<br>61<br>68                                    | 34<br>41<br>48<br>54 |

## Table 4-5a—(SI) Minimum Impact Test Requirements for Plates (See Note)

<sup>a</sup>See Table 4-4a.

<sup>b</sup>Interpolation is permitted to the nearest joule.

Note: For plate ring flanges, the minimum impact test requirements for all thicknesses shall be those for  $t \le 40$  mm.

08

Table 4-5b—(USC) Minimum Impact Test Requirements for Plates (See Note)

|                                                                                |                                                            | Average Impact Value of<br>Three Specimens <sup>b</sup> |                      |
|--------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|----------------------|
|                                                                                | Thickness                                                  | Longitudinal                                            | Transverse           |
| Plate Material <sup>a</sup> and Thickness ( <i>i</i> ) in Inches               | in.                                                        | ft-lbf                                                  | ft-lbf               |
| Groups I, II, III, and IIIA $t \le maximum$ thicknesses in 4.2.2 through 4.2.5 |                                                            | 15                                                      | 13                   |
| Groups IV, IVA, V, and VI (except quenched and tempered and TMCP)              | $t \le 1.5  1.5 < t \le 1.75  1.75 < t \le 2  2 < t \le 4$ | 30<br>35<br>40<br>50                                    | 20<br>25<br>30<br>40 |
| Group VI (quenched and tempered and TMCP)                                      | t≤1.5<br>1.5 < t≤1.75<br>1.75 < t≤2<br>2 < t≤4             | 35<br>40<br>45<br>50                                    | 25<br>30<br>35<br>40 |

<sup>a</sup>See Table 4-4b.

<sup>b</sup>Interpolation is permitted to the nearest ft-lbf.

Note: For plate ring flanges, the minimum impact test requirements for all thicknesses shall be those for  $t \le 1.5$  in.

## 4.5 PIPING AND FORGINGS

**4.5.1** Unless otherwise specified in this Standard, pipe and pipe couplings and forgings shall conform to the specifications listed in 4.5.1.1 and 4.5.1.2 or to national standards equivalent to the specifications listed.

**4.5.1.1** The following specifications are acceptable for pipe and pipe couplings:

a. API Spec 5L, Grades A, B, and X42.

b. ASTM A 53M/A 53, Grades A and B.

c. ASTM A 106 M/A 106, Grades A and B.

- d. ASTM A 234M/A 234, Grade WPB.
- e. ASTM A 333M/A 333, Grades 1 and 6.
- f. ASTM A 334M/A 334, Grades 1 and 6.
- g. ASTM A 420M/A 420, Grade WPL6.
- h. ASTM A 524, Grades I and II.
- i. ASTM A 671 (see 4.5.3).

**4.5.1.2** The following specifications are acceptable for forgings:

a. ASTM A 105M/A 105.

b. ASTM A 181M/A 181.

c. ASTM A 350M/A 350, Grades LF1 and LF2.

**4.5.2** Unless ASTM A 671 pipe is used (electric-fusion-welded pipe) (see 4.5.3), material for shell nozzles and shell manhole necks shall be seamless pipe, seamless forging, or plate material as specified in 4.2.9.1. When shell materials are Group IV, IVA, V, or VI, seamless pipe shall comply with ASTM A 106, Grade B; ASTM A 524; ASTM A 333M/ A 333, Grade 6; or ASTM A 334M/A 334, Grade 6.

**4.5.3** When ASTM A 671 pipe is used for shell nozzles and shell manhole necks, it shall comply with the following:

a. Material selection shall be limited to Grades CA 55, CC 60, CC 65, CC 70, CD 70, CD 80, CE 55, and CE 60.

b. The pipe shall be pressure tested in accordance with 8.3 of ASTM A 671.

c. The plate specification for the pipe shall satisfy the requirements of 4.2.7, 4.2.8, and 4.2.9 that are applicable to that plate specification.

d. Impact tests for qualifying the welding procedure for the pipe longitudinal welds shall be performed in accordance with 9.2.2.

**4.5.4** Except as covered in 4.5.3, the toughness requirements of pipe and forgings to be used for shell nozzles and manholes shall be established as described in 4.5.4.1 through 4.5.4.4.

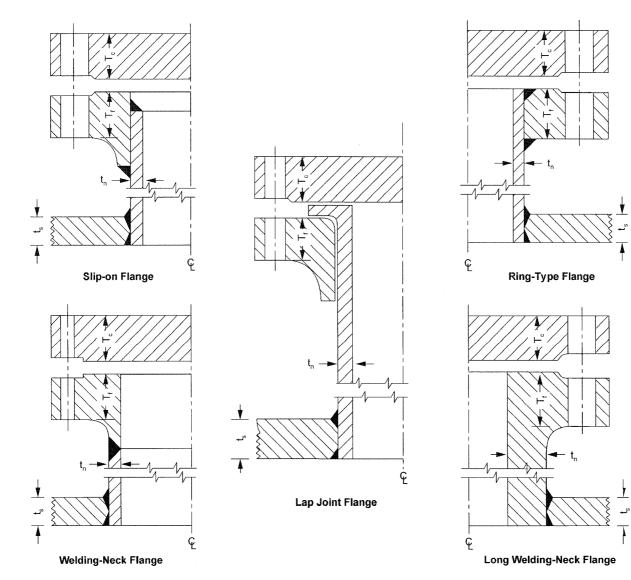
**4.5.4.1** Piping materials made according to ASTM A 333M/A 333, A 334M/A 334, A 350M/A 350, and A 420, Grade WPL6 may be used at a design metal temperature no lower than the impact test temperature required by the ASTM specification for the applicable material grade without additional impact tests (see 4.5.4.4).

**4.5.4.2** Other pipe and forging materials shall be classified under the material groups shown in Figures 4-1a and 4.1b as follows:

a. Group IIA—API Spec 5L, Grades A, B, and X42; ASTM A 106M/A106, Grades A and B; ASTM A 53M/A 53, Grades A and B; ASTM A 181M/A 181; ASTM A 105M/A 105; and A 234M/A234, Grade WPB.

b. Group VIA—ASTM A 524, Grades I and II.

**4.5.4.3** The materials in the groups listed in 4.5.4.2 may be used at nominal thicknesses, including corrosion allowance, at a design metal temperature no lower than those shown in Figures 4-1a and 4-1b without impact testing (see 4.5.4.4 and Figure 4-3). The governing thicknesses to be used in Figures 4-1a and 4.1b shall be as follows:


a. For butt-welded joints, the nominal thickness of the thickest welded joint.

b. For corner or lap welds, the thinner of the two parts joined.

c. For nonwelded parts such as bolted blind flanges and manhole covers,  $\frac{1}{4}$  of their nominal thickness.

**4.5.4.4** When impact tests are required by 4.5.4.1 or 4.5.4.3, they shall be performed in accordance with the requirements, including the minimum energy requirements, of ASTM A 333M/A 333, Grade 6, for pipe or ASTM A 350M/A 350, Grade LF1, for forgings at a test temperature no higher than the design metal temperature. Except for the plate specified in 4.2.9.2, the materials specified in 4.5.1 and 4.5.2 for shell nozzles, shell manhole necks, and all forgings used on shell openings shall have a minimum Charpy V-notch impact strength of 18 J (13 ft-lbf) (full-size specimen) at a temperature no higher than the design metal temperature.

09 07



4-14

Notes:

1. Shell reinforcing plate is not included in these illustrations.

- 2.  $t_s$  = shell thickness;  $t_n$  = nozzle neck thickness;  $T_f$  = flange thickness;  $T_c$  = bolted cover thickness.
- 3. The governing thickness for each component shall be as follows:

| Components                          | Governing Thickness<br>(thinner of) |
|-------------------------------------|-------------------------------------|
| Nozzle neck at shell                | t <sub>n</sub> or t <sub>s</sub>    |
| Slip-on flange and nozzle neck      | $t_n$ or $T_f$                      |
| Ring-type flange and nozzle neck    | t <sub>n</sub> or T <sub>f</sub>    |
| Welding-neck flange and nozzle neck | tn                                  |
| Long welding-neck flange            | $t_n$ or $t_s$                      |
| Nonwelded bolted cover              | $^{1}/_{4}T_{c}$                    |
| Lap-type joint flange               | $t_n$ or $T_f$                      |

## Figure 4-3—Governing Thickness for Impact Test Determination of Shell Nozzle and Manhole Materials (See 4.5.4.3)

## 4.6 FLANGES

- **4.6.1** Slip on, ring-type, welding neck, long welding neck and lap joint flanges shall conform to the material requirements of ASME B16.5 for forged carbon steel flanges. Plate material used for nozzle flanges shall have physical properties better than or equal to those required by ASME B16.5. Shell-nozzle flange material shall conform to 4.2.10.1 and 4.2.10.2. Lap joint flanges shall not be used without the approval of the Purchaser.
- **4.6.2** For nominal pipe sizes greater than NPS 24, flanges that conform to ASME B16.47, Series B, may be used, subject to the Purchaser's approval. Particular attention should be given to ensuring that mating flanges of appurtenances are compatible.

## 4.7 BOLTING

• a. Unless otherwise specified on the Data Sheet, Table 2, flange bolting shall conform to ASTM A 193 B7 and the dimensions specified in ASME B18.2.1. Nuts shall conform to ASTM A 194 Grade 2H and the dimensions specified in ASME B18.2.2. Both shall be heavy hex pattern. All bolts and nuts shall be threaded in accordance with ASME B1.13M (SI), or with ASME B1.1(US) as follows:

| 1. Bolts up to and including 1 in. diameter:          | UNC Class 2A fit |
|-------------------------------------------------------|------------------|
| 2. Nuts for bolts up to and including 1 in. diameter: | UNC Class 2B fit |
| 3. Bolts 1.125 in. diameter and larger:               | 8N Class 2A fit  |
| 4. Nuts for bolts 1.125 in. diameter and larger:      | 8N Class 2B fit  |

- b. Unless otherwise specified on the Data Sheet, Table 2, all anchors shall be threaded, galvanized ASTM A 36 round bar with galvanized heavy hex nuts.
- c. All other bolting shall conform to ASTM A 307 or A 193M/A 193. A 325M/A 325 may be used for structural purposes only. The Purchaser should specify on the order what shape of bolt heads and nuts is desired and whether regular or heavy dimensions are desired.

## 4.8 WELDING ELECTRODES

**4.8.1** For the welding of materials with a minimum tensile strength less than 550 MPa (80 ksi), the manual arc-welding electrodes shall conform to the E60 and E70 classification series (suitable for the electric current characteristics, the position of welding, and other conditions of intended use) in AWS A5.1 and shall conform to 7.2.1.10 as applicable.

**4.8.2** For the welding of materials with a minimum tensile strength of 550 MPa – 585 MPa (80 ksi – 85 ksi), the manual arc-welding electrodes shall conform to the E80XX-CX classification series in AWS A5.5.

## 4.9 GASKETS

#### 4.9.1 General

• **4.9.1.1** Gasket materials shall be specified in Table 3 on the Data Sheet. Unless otherwise specified by the Purchaser, gasket materials shall not contain asbestos.

**4.9.1.2** Sheet gaskets shall be continuous. Metal gaskets made continuous by welding are acceptable if the weld is ground flush and finished the same as the unwelded portion of the gasket. Rope or tape gaskets shall have overlapped ends.

**4.9.1.3** Each gasket shall be made with an integral centering or positioning device.

- **4.9.1.4** No joint sealing compound, gasket adhesive, adhesive positioning tape, or lubricant shall be used on the sealing surfaces of gaskets, or flanges during joint make-up unless specifically allowed by the Purchaser. When these materials are approved by the Purchaser, consideration should be given to chemical compatibility with the gasket and flange materials.
- **4.9.1.5** Spare gaskets are not required unless specified in the Data Sheet, Line 23.

### 4.9.2 Service

• When service gaskets are designated to be furnished by the Manufacturer, the gaskets provided shall be as specified in the Data Sheet, Table 3.

11

# 4.9.3 Test

• 4.9.3.1 Test gaskets must have comparable dimensions and compressibility characteristics as service gaskets. Descriptions of gaskets for temporary use only as test gaskets shall be submitted for Purchaser's approval.

**4.9.3.2** For joints that will not be disassembled after testing, the test gasket must be the specified service gasket.

**4.9.3.3** Except for stainless steel bolting, flange bolts and nuts used for testing are acceptable for use in the completed tank.

.\*

1

# **SECTION 5—DESIGN**

## 5.1 JOINTS

### 5.1.1 Definitions

The definitions in 5.1.1.1 through 5.1.1.8 apply to tank joint designs (see 9.1 for definitions that apply to welders and welding procedures. Also see Section 3 for additional definitions).

**5.1.1.1 butt-weld:** A weld placed in a groove between two abutting members. Grooves may be square, V-shaped (single or double), or U-shaped (single or double), or they may be either single or double beveled.

**5.1.1.2 double-welded butt joint:** A joint between two abutting parts lying in approximately the same plane that is welded from both sides.

**5.1.1.3 double-welded lap joint:** A joint between two overlapping members in which the overlapped edges of both members are welded with fillet welds.

**5.1.1.4** fillet weld: A weld of approximately triangular cross-section that joins two surfaces at approximately right angles, as in a lap joint, tee joint, or corner joint.

**5.1.1.5** full-fillet weld: A fillet weld whose size is equal to the thickness of the thinner joined member.

**5.1.1.6** single-welded butt joint with backing: A joint between two abutting parts lying in approximately the same plane that is welded from one side only with the use of a strip bar or another suitable backing material.

**5.1.1.7** single-welded lap joint: A joint between two overlapping members in which the overlapped edge of one member is welded with a fillet weld.

**5.1.1.8** tack weld: A weld made to hold the parts of a weldment in proper alignment until the final welds are made.

#### 5.1.2 Weld Size

**5.1.2.1** The size of a groove weld shall be based on the joint penetration (that is, the depth of chamfering plus the root penetration when specified).

**5.1.2.2** The size of an equal-leg fillet weld shall be based on the leg length of the largest isosceles right triangle that can be inscribed within the cross-section of the fillet weld. The size of an unequal-leg fillet weld shall be based on the leg lengths of the largest right triangle that can be inscribed within the cross-section of the fillet weld.

## 5.1.3 Restrictions on Joints

**5.1.3.1** Restrictions on the type and size of welded joints are given in 5.1.3.2 through 5.1.3.8.

07

11

**5.1.3.2** Tack welds shall not be considered as having any strength value in the finished structure.

**5.1.3.3** The minimum size of fillet welds shall be as follows: On plates 5 mm  $(^{3}/_{16} \text{ in.})$  thick, the weld shall be a full-fillet weld, and on plates more than 5 mm  $(^{3}/_{16} \text{ in.})$  thick, the weld thickness shall not be less than one-third the thickness of the thinner plate at the joint and shall be at least 5 mm  $(^{3}/_{16} \text{ in.})$ .

5.1.3.4 Single-welded lap joints are permissible only on bottom plates and roof plates.

**5.1.3.5** Lap-welded joints, as tack-welded, shall be lapped at least five times the nominal thickness of the thinner plate joined; however, with double-welded lap joints, the lap need not exceed 50 mm (2 in.), and with single-welded lap joints, the lap need not exceed 25 mm (1 in.).

**5.1.3.6** Weld passes are restricted as follows:

• **5.1.3.6.1** For bottom plate welds and roof plate welds for all materials, and for shell-to-bottom welds for Groups I, II, III, and IIIA materials, the following weld size requirements apply:

a. For manual welding processes, fillet weld legs or groove weld depths greater than 6 mm (1/4 in.) shall be multipass, unless otherwise specified on the Data Sheet, Line 15.

b. For semi-automatic, machine, and automatic welding processes, with the exception for electro-gas welding in 7.2.3.4, fillet weld legs or groove weld depths greater than 10 mm ( $\frac{3}{8}$  in.) shall be multipass, unless otherwise specified on the Data Sheet, Line 15.

**5.1.3.6.2** For Groups IV, IVA, V, or VI shell-to-bottom welds for all welding processes, all welds shall be made using a minimum of two passes.

**5.1.3.7** All attachments to the exterior of the tank shall be completely seal welded. Intermittent welding is not permitted. The only exception to this requirement are wind girders as permitted in 5.1.5.8.

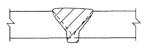
**5.1.3.8** Except as permitted in 5.1.5.5 and 5.1.5.6, permanent weld joint backing strips are permitted only with the approval of the Purchaser.

## 5.1.4 Welding Symbols

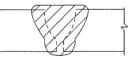
Welding symbols used on drawings shall be the symbols of the American Welding Society.

#### 5.1.5 Typical Joints

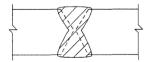
### 5.1.5.1 General


a. Typical tank joints are shown in Figures 5-1, 5-2, 5-3A, 5-3B, and 5-3C.

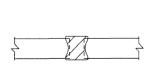
b. The top surfaces of bottom welds (butt-welded annular plates, butt-welded sketch plates, or Figure 5-3B joints) shall be ground flush where they will contact the bottoms of the shell, insert plates, or reinforcing plates.

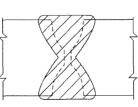

### 5.1.5.2 Vertical Shell Joints

a. Vertical shell joints shall be butt joints with complete penetration and complete fusion attained by double welding or other means that will obtain the same quality of deposited weld metal on the inside and outside weld surfaces to meet the requirements of 7.2.1 and 7.2.3. The suitability of the plate preparation and welding procedure shall be determined in accordance with 9.2.


b. Vertical joints in adjacent shell courses shall not be aligned, but shall be offset from each other a minimum distance of 5t, where t is the plate thickness of the thicker course at the point of offset.




Single-V butt joint

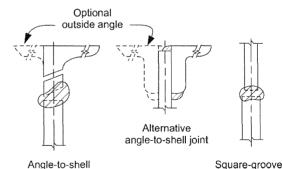




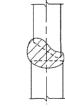



Double-V butt joint






Square-groove butt joint


Double-U butt joint

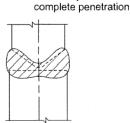
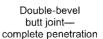

Note: See 5.1.5.2 for specific requirements for vertical shell joints.

Figure 5-1—Typical Vertical Shell Joints



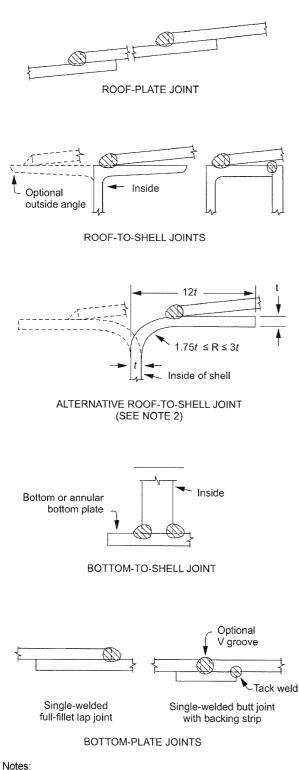

butt joint-





butt joint-






Note: See 5.1.5.3 for specific requirements for horizontal shell joints.

Figure 5-2—Typical Horizontal Shell Joints

07

07



1. See 5.1.5.4 - 5.1.5.9 for specific requirements for roof and bottom joints.

2. The alternative roof-to-shell joint is subject to the limitations of 5.1.5.9, Item f.

Figure 5-3A—Typical Roof and Bottom Joints

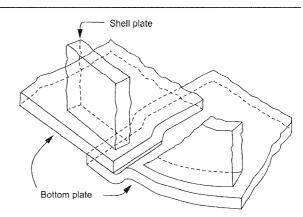
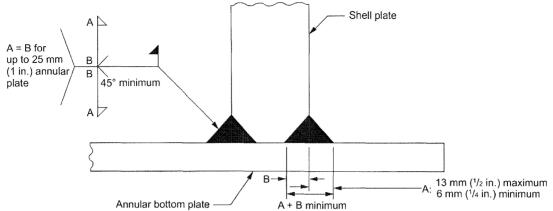



Figure 5-3B—Method for Preparing Lap-Welded Bottom Plates under Tank Shell (See 5.1.5.4)

#### 5.1.5.3 Horizontal Shell Joints

a. Horizontal shell joints shall have complete penetration and complete fusion; however, as an alternative, top angles may be attached to the shell by a double-welded lap joint. The suitability of the plate preparation and welding procedure shall be determined in accordance with 9.2.


 b. Unless otherwise specified, abutting shell plates at horizontal joints shall have a common vertical centerline.

## 5.1.5.4 Lap-Welded Bottom Joints

• **5.1.5.4.1** Lap-welded bottom plates shall be reasonably rectangular. Additionally, plate may be either square cut or may have mill edges. Mill edges to be welded shall be relatively smooth and uniform, free of deleterious deposits, and have a shape such that a full fillet weld can be achieved. Unless otherwise specified by the Purchaser, lap welded plates on sloped bottoms shall be overlapped in a manner to reduce the tendency for liquid to puddle during draw-down.

**5.1.5.4.2** Three-plate laps in tank bottoms shall be at least 300 mm (12 in.) from each other, from the tank shell, and from joints between annular plates and the bottom. A three-plate lap is created where three plates come together and all plates are joined to one another by lap welds. A location where a pair of bottom plates are lap-welded to each other and are lapped onto an annular plate constitutes a three-plate lap, but lapping a single bottom plate onto a butt-welded annular plate splice does not constitute a three-plate lap weld since the two annular plates are not joined together by a lap weld. These lap joint connections to the butt-weld annular plate are illustrated in Figure 5-3D.

**5.1.5.4.3** When annular plates are used or are required by 5.5.1, they shall be butt-welded and shall have a radial width that provides at least 600 mm (24 in.) between the inside of the shell and any lap-welded joint in the remainder of the bottom. Bottom plates need to be welded on the top side only, with a continuous full-fillet weld on all seams. Unless annular bottom plates are used, the bottom plates under the bottom shell ring shall have the outer ends of the joints fitted and lap-welded to form a smooth bearing surface for the shell plates, as shown in Figure 5-3B. Lap-welded bottom plates shall be seal-welded to each other on the exposed outer periphery of their lapped edges.



Notes:

- 1. A = Fillet weld size limited to 13 mm ( $^{1}/_{2}$  in.) maximum.
- 2. A + B = Thinner of shell or annular bottom plate thickness
- 3. Groove weld B may exceed fillet size A only when annular plate is thicker than 25 mm (1 in.).

Figure 5-3C—Detail of Double Fillet-Groove Weld for Annular Bottom Plates with a Nominal Thickness Greater Than 13 mm ( $^{1}/_{2}$  in.) (See 5.1.5.7, Item b)

### 5.1.5.5 Butt-Welded Bottom Joints

Butt-welded bottom plates shall have their parallel edges prepared for butt welding with either square or V grooves. Butt-welds shall be made using an appropriate weld joint configuration that yields a complete penetration weld. Typical permissible bottom butt-welds without a backing strip are the same as those shown in Figure 5-1. The use of a backing strip at least 3 mm ( $^{1}/_{8}$  in.) thick tack welded to the underside of the plate is permitted. Butt-welds using a backing strip are shown in Figure 5-3A. If square grooves are employed, the root openings shall not be less than 6 mm ( $^{1}/_{4}$  in.). A metal spacer shall be used to maintain the root opening between the adjoining plate edges unless the Manufacturer submits another method of butt-welding the bottom for the Purchaser's approval. Three-plate joints in the tank bottom shall be at least 300 mm (12 in.) from each other and from the tank shell.

### 5.1.5.6 Bottom Annular-Plate Joints

Bottom annular-plate radial joints shall be butt-welded in accordance with 5.1.5.5 and shall have complete penetration and complete fusion. The backing strip, if used, shall be compatible for welding the annular plates together.

#### 5.1.5.7 Shell-to-Bottom Fillet Welds

- a. For bottom and annular plates with a nominal thickness 13 mm (1/2 in.), and less, the attachment between the bottom edge of the lowest course shell plate and the bottom plate shall be a continuous fillet weld laid on each side of the shell plate. The size of
- each weld shall not be more than 13 mm  $(\frac{1}{2}$  in.) and shall not be less than the nominal thickness of the thinner of the two plates joined (that is, the shell plate or the bottom plate immediately under the shell) or less than the following values:

| Nominal Thickness of Shell Plate |                  | Minimum Size | of Fillet Weld               |
|----------------------------------|------------------|--------------|------------------------------|
| (mm)                             | (in.)            | (mm)         | (in.)                        |
| 5                                | 0.1875           | 5            | 3/16                         |
| > 5 to 20                        | > 0.1875 to 0.75 | 6            | <sup>1</sup> / <sub>4</sub>  |
| > 20 to 32                       | > 0.75 to 1.25   | 8            | <sup>5</sup> / <sub>16</sub> |
| > 32 to 45                       | > 1.25 to 1.75   | 10           | <sup>3</sup> /8              |

b. For annular plates with a nominal thickness greater than 13 mm (1/2 in.), the attachment welds shall be sized so that either the legs of the fillet welds or the groove depth plus the leg of the fillet for a combined weld is of a size equal to the annular-plate thickness (see Figure 5-3C), but shall not exceed the shell plate thickness.

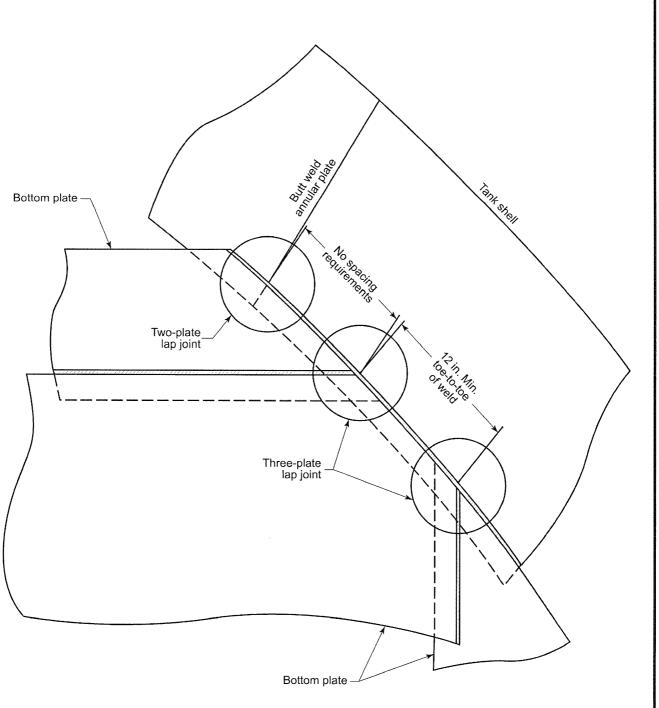



Figure 5-3D—Spacing of Three-Plate Welds at Annular Plates

c. Shell-to-bottom fillet weld around low-type reinforcing pads shown in Figure 5-8 Details a and b or around shell insert plates that extend beyond the outside surface of the adjacent tank shell shall be sized as required by paragraphs a or b above.

d. The bottom or annular plates shall be sufficient to provide a minimum 13 mm (1/2 in.) from the toe of the fillet weld referenced in 5.1.5.7c to the outside edge of the bottom or annular plates.

## 5.1.5.8 Wind Girder Joints

a. Full-penetration butt-welds shall be used for joining ring sections.

• b. Continuous welds shall be used for all horizontal top-side joints and for all vertical joints. Horizontal bottom-side joints shall be seal-welded unless specified otherwise by the Purchaser.

## 5.1.5.9 Roof and Top-Angle Joints

a. Roof plates shall, as a minimum, be welded on the top side with a continuous full-fillet weld on all seams. Butt-welds are also permitted.

b. For frangible roofs, roof plates shall be attached to the top angle of a tank with a continuous fillet weld on the top side only, as specified in 5.10.2.6. For non-frangible roofs, alternate details are permitted.

c. The top-angle sections, tension rings, and compression rings shall be joined by butt-welds having complete penetration and fusion. Joint efficiency factors need not be applied when conforming to the requirements of 5.10.5 and 5.10.6.

d. At the option of the Manufacturer, for self-supporting roofs of the cone, dome, or umbrella type, the edges of the roof plates may be flanged horizontally to rest flat against the top angle to improve welding conditions.

• e. Except as specified for open-top tanks in 5.9, for tanks with frangible joints per 5.10.2.6, for self-supporting roofs in 5.10.5 and 5.10.6, and for tanks with the flanged roof-to-shell detail described in Item f below, tank shells shall be supplied with top angles of not less than the following sizes:

| Tank Diameter<br>(D)                                                       | Minimum Top Angle Size <sup>a</sup><br>(mm) | Minimum Top Angle Size <sup>a</sup><br>(in.) |
|----------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------|
| $D \le 11 \text{ m}, (D \le 35 \text{ ft})$                                | $50 \times 50 \times 5$                     | $2 \times 2 \times \frac{3}{16}$             |
| $11 \text{ m} < D \le 18 \text{ m}, (35 \text{ ft} < D \le 60 \text{ ft})$ | $50 \times 50 \times 6$                     | $2 \times 2 \times 1/4$                      |
| D > 18  m, (D > 60  ft)                                                    | 75 	imes 75 	imes 10                        | $3 \times 3 \times {}^{3}/_{8}$              |

08

08

07

<sup>a</sup>Approximate equivalent sizes may be used to accommodate local availability of materials.

For fixed roof tanks equipped with full shell height insulation or jacketing, the horizontal leg of the top shell stiffener shall project outward. For insulation system compatibility, the Purchaser shall specify if the horizontal leg is to be larger than specified above. f. For tanks with a diameter less than or equal to 9 m (30 ft) and a supported cone roof (see 5.10.4), the top edge of the shell may be flanged in lieu of installing a top angle. The bend radius and the width of the flanged edge shall conform to the details of Figure 5-3A. This construction may be used for any tank with a self-supporting roof (see 5.10.5 and 5.10.6) if the total cross-sectional area of the junction fulfills the stated area requirements for the construction of the top angle. No additional member, such as an angle or a bar, shall be added to the flanged roof-to-shell detail.

## 5.2 DESIGN CONSIDERATIONS

## 5.2.1 Loads

Loads are defined as follows:

• a. Dead Load (D<sub>L</sub>): The weight of the tank or tank component, including any corrosion allowance unless otherwise noted.

• b. **Design External Pressure** ( $P_e$ ): Shall not be less than 0.25 kPa (1 in. of water) except that External Pressure ( $P_e$ ) shall be considered as 0 kPa (0 in. of water) for tanks with circulation vents meeting Appendix H requirements. Refer to Appendix V for

external pressure greater than 0.25 kPa (1 in. of water). Design requirements for vacuum exceeding this value and design requirements to resist flotation and external fluid pressure shall be a matter of agreement between the Purchaser and the Manufacturer (see Appendix V).

c. Design Internal Pressure (P<sub>i</sub>): Shall not exceed 18 kPa (2.5 lbf/in.<sup>2</sup>).

d. Hydrostatic Test  $(H_t)$ : The load due to filling the tank with water to the design liquid level.

## • e. Internal Floating Roof Loads:

1. Dead load of internal floating roof  $(D_f)$  including the weight of the floation compartments, seal and all other floating roof and attached components.

- 2. Internal floating roof uniform live load  $(L_{fl})$  (0.6 kPa [12.5 lbf/ft<sup>2</sup>]) if no automatic drains are provided, (0.24 kPa [5 lbf/f<sup>2</sup>]) if automatic drains are provided).
- 3. Internal floating roof point load  $(L_{f2})$  of at least two men walking anywhere on the roof. One applied load of 2.2 kN [500 lbf] over 0.1 m<sup>2</sup> [1 ft<sup>2</sup>] applied anywhere on the roof addresses two men walking.
- 4. Internal floating roof design external pressure ( $P_{fe}$ ) of (0.24 kPa [5 lbf/ft<sup>2</sup>]) minimum.

f. Minimum Roof Live Load ( $L_r$ ): 1.0 kPa (20 lb/ft<sup>2</sup>) on the horizontal projected area of the roof. The minimum roof live load may alternatively be determined in accordance with ASCE 7, but shall not be less than 0.72 kPa (15 psf). The minimum roof live load shall be reported to the Purchaser.

• g. Seismic (E): Seismic loads determined in accordance with E.1 through E.6 (see Data Sheet, Line 8).

• h. **Snow (S):** The ground snow load shall be determined from ASCE 7, Figure 7-1 or Table 7-1 unless the ground snow load that equals or exceeds the value based on a 2% annual probability of being exceeded (50-year mean recurrence interval) or a national standard (such as the National Building Code of Canada) is specified by the Purchaser.

1. The balanced design snow load  $(S_b)$  shall be 0.84 times the ground snow load. Alternately, the balanced design snow load  $(S_b)$  shall be determined from the ground snow load in accordance with ASCE 7. The balanced design snow load shall be reported to the Purchaser.

2. The unbalanced design snow load  $(S_u)$  for cone roofs with a slope of 10° or less shall be equal to the balanced snow load. The unbalanced design snow load  $(S_u)$  for all other roofs shall be 1.5 times the balanced design snow load. Unbalanced design snow load shall be applied over a 135° sector of the roof plan with no snow on the remaining 225° sector. Alternately, the unbalanced snow load shall be determined from the ground snow load in accordance with ASCE 7

- 3. The balanced and unbalanced design snow loads shall be reported to the Purchaser.
- i. Stored Liquid (F): The load due to filling the tank to the design liquid level (see 5.6.3.2) with liquid with the design specific gravity specified by the Purchaser.
- j. Test Pressure (P<sub>t</sub>): As required by F.4.4 or F.7.6.
- k. Wind (*W*): The design wind speed (*V*) shall be 190 km/hr (120 mph), the 3-sec gust design wind speed determined from ASCE 7, Figure 6-1, or the 3-sec gust design wind speed specified by the Purchaser (this specified wind speed shall be for a 3-sec gust based on a 2% annual probability of being exceeded [50-year mean recurrence interval]). The design wind pressure shall be  $0.86 \text{ kPa} (V/190)^2$ , ([18 lbf/ft<sup>2</sup>][*V*/120]<sup>2</sup>) on vertical projected areas of cylindrical surfaces and 1.44 kPa (V/190)<sup>2</sup>, ([30 lbf/ft<sup>2</sup>][*V*/120]<sup>2</sup>) uplift (see item 2 below) on horizontal projected areas of conical or doubly curved surfaces, where *V* is the 3-sec gust wind speed. The 3-sec gust wind speed used shall be reported to the Purchaser.
  - •1. These design wind pressures are in accordance with ASCE 7 for wind exposure Category C. As an alternative, pressures may be determined in accordance with ASCE 7 (exposure category and importance factor provided by Purchaser) or a national standard for the specific conditions for the tank being designed.

2. The design uplift pressure on the roof (wind plus internal pressure) need not exceed 1.6 times the design pressure P determined in F.4.1.

3. Windward and leeward horizontal wind loads on the roof are conservatively equal and opposite and therefore they are not included in the above pressures.

4. Fastest mile wind speed times 1.2 is approximately equal to 3-sec gust wind speed.

## • 5.2.2 Design Factors

The Purchaser shall state the design metal temperature (based on ambient temperatures), the maximum design temperature, the design specific gravity, the corrosion allowance (if any), and the seismic factors.

## 5.2.3 External Loads

- a. The Purchaser shall state the magnitude and direction of external loads or restraint, if any, for which the shell or shell connections must be designed. The design for such loadings shall be a matter of agreement between the Purchaser and the Manufacturer.
- b. Unless otherwise specified, seismic design shall be in accordance with Appendix E.
- c. Design for localized wind induced forces on roof components shall be a matter of agreement between the Purchaser and the Manufacturer.
  - d. Localized loads resulting from items such as ladders, stairs, platforms, etc., shall be considered.

e. The Purchaser shall state the magnitude and direction of any external loads other than normal personnel access for which the roof manholes and openings shall be designed. The design for such loadings shall be a matter of agreement between the Purchaser and the Manufacturer.

08

11

## • 5.2.4 Protective Measures

The Purchaser shall consider foundations, corrosion allowance, hardness testing, and any other protective measures deemed necessary. For example, for insulated tanks, means to prevent infiltration of water into the insulation shall be specified, especially around penetrations of the insulation and at the roof-to-shell junction.

## 5.2.5 External Pressure

See Appendix V for the provisions for the design of tanks subject to partial internal vacuum exceeding 0.25 kPa (1 in. of water). Tanks that meet the requirements of this Standard may be subjected to a partial vacuum of 0.25 kPa (1 in. of water), without the need to provide any additional supporting calculations.

## 5.2.6 Tank Capacity

• **5.2.6.1** The Purchaser shall specify the maximum capacity and the overfill protection level (or volume) requirement (see API RP 2350).

**5.2.6.2** Maximum capacity is the volume of product in a tank when the tank is filled to its design liquid level as defined in 5.6.3.2 (see Figure 5-4).

**5.2.6.3** The net working capacity is the volume of available product under normal operating conditions. The net working capacity is equal to the maximum capacity (see 5.2.6.2) less the minimum operating volume remaining in the tank, less the overfill protection level (or volume) requirement (see Figure 5-4).

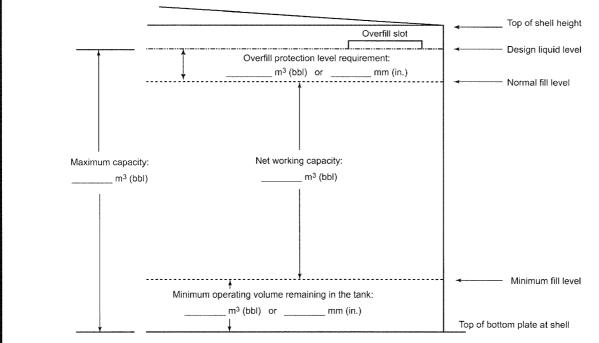



Figure 5-4—Storage Tank Volumes and Levels

# 5.3 SPECIAL CONSIDERATIONS

## 5.3.1 Foundation

07

• 5.3.1.1 The selection of the tank site and the design and construction of the foundation shall be given careful consideration, as outlined= in Appendix B, to ensure adequate tank support. The adequacy of the foundation is the responsibility of the Purchaser. Foundation loading data shall be provided by the Manufacturer on the Data Sheet, Line 13.

**5.3.1.2** Sliding friction resistance shall be verified for tanks subject to lateral wind loads or seismic loads (see 5.11.4 and E.7.6).

# 5.3.2 Corrosion Allowances

• **5.3.2.1** The Purchaser, after giving consideration to the total effect of the liquid stored, the vapor above the liquid, and the atmospheric environment, shall specify in the Data Sheet, Tables 1 and 2, any corrosion allowances to be provided for all components, including each shell course, for the bottom, for the roof, for nozzles and manholes, and for structural members.

5-8

5.3.2.2 Excluding nozzle necks, corrosion allowances for nozzles, flush-type cleanouts, manholes, and self-supporting roofs shall be added to the design thickness, if calculated, or to the minimum specified thickness.

- 5.3.2.3 For nozzle necks, any specified nozzle neck corrosion allowance shall, by agreement between the Purchaser and the Manufacturer, be added to either the nominal neck thickness shown in Tables 5-6a and 5-6b (or Tables 5-7a and 5-7b), or to the 08 minimum calculated thickness required for pressure head and mechanical strength. In no case shall the neck thickness provided be less than the nominal thickness shown in the table.
  - **5.3.2.4** Corrosion allowance for anchor bolts shall be added to the nominal diameter.
- **5.3.2.5** Corrosion allowance for anchor straps and brackets shall be added to the required strap and bracket thickness.
- 5.3.2.6 For internal structural members, the corrosion allowance shall be applied to the total thickness unless otherwise specified.

#### • 5.3.3 Service Conditions

The Purchaser shall specify any applicable special metallurgical requirements pertaining to the selection of materials and the fabrication processes as required by any anticipated service conditions. When the service conditions might include the presence of hydrogen sulfide or other conditions that could promote hydrogen-induced cracking, notably near the bottom of the shell at the shell-to-bottom connections, care should be taken to ensure that the materials of the tank and details of construction are adequate to resist hydrogen-induced cracking. The Purchaser should consider limits on the sulfur content of the base and weld metals as well as appropriate quality control procedures in plate and tank fabrication. The hardness of the welds, including the heat-affected zones, in contact with these conditions should be considered. The weld metal and adjacent heat-affected zone often contain a zone of hardness well in excess of Rockwell C 22 and can be expected to be more susceptible to cracking than unwelded metal is. Any hardness criteria should be a matter of agreement between the Purchaser and the Manufacturer and should be based on an evaluation of the expected hydrogen sulfide concentration in the product, the possibility of moisture being present on the inside metal surface, and the strength and hardness characteristics of the base metal and weld metal. See the Data Sheet, Line 5.

### 5.3.4 Weld Hardness

a. Weld metal and Heat Affected Zone (HAZ) hardnesses shall comply with the H<sub>2</sub>S Supplemental Specification listed on the Data Sheet, Line 5, when specified by the Purchaser.

b. When specified by the Purchaser, the hardness of the weld metal for shell materials in Group IV, IVA, V, or VI shall be evaluated by one or both of the following methods:

1. The welding-procedure qualification tests for all welding shall include hardness tests of the weld metal and heat-affected zone of the test plate. The methods of testing and the acceptance standards shall be agreed upon by the Purchaser and the Manufacturer.

2. All welds deposited by machine or an automatic process shall be hardness tested on the product-side surface. Unless other-11 wise specified, one test shall be conducted for each vertical weld, and one test shall be conducted for each 30 m (100 ft) of circumferential weld. The methods of testing and the acceptance standards shall be agreed upon by the Purchaser and the Manufacturer. 07

### • 5.3.5 Thickness

When 6 mm (1/4) in.) thick material is specified, 0.236 in. thick material may be used in the US Customary rule set with Purchaser 08 approval. Similarly when 5 mm  $(^{3}/_{16} \text{ in.})$  thick material is specified, 4.8 mm. thick material may be used in the SI rule set with Purchaser approval. The design calculations shall be based on thickness used.

#### 5.4 BOTTOM PLATES

All bottom plates shall have a corroded thickness of not less than 6 mm (0.236 in.) [49.8 kg/m<sup>2</sup> (9.6 lbf/ft<sup>2</sup>) (see 4.2.1.2)]. • 5.4.1 11 Unless otherwise agreed to by the Purchaser, all rectangular and sketch plates (bottom plates on which the shell rests that have one end rectangular) shall have a nominal width of not less than 1800 mm (72 in.).

5.4.2 Bottom plates of sufficient size shall be ordered so that, when trimmed, at least a 50 mm (2 in.) width will project outside the shell or meet requirements given in 5.1.5.7 d whichever is greater.

**5.4.3** Bottom plates shall be welded in accordance with 5.1.5.4 or 5.1.5.5.

07

07

07

07

• 5.4.4 Unless otherwise specified on the Data Sheet, Line 12, tank bottoms requiring sloping shall have a minimum slope of 1:120 upwards toward center of the tank.

• 5.4.5 If specified on the Data Sheet, Line 12, a foundation drip ring shall be provided to prevent ingress of water between the tank bottom and foundation. Unless the Purchaser specifies otherwise, the ring shall meet the following requirements (see Figure 5-5):

1. Material shall be carbon steel,  $3 \text{ mm} (\frac{1}{8} \text{-in.})$  minimum thickness.

2. All radial joints between sections of the drip rings, as well as between the drip ring and the annular plate or bottom, shall be continuously seal-welded.

3. The drip ring shall extend at least 75 mm (3 in.) beyond the outer periphery of the foundation ringwall and then turn down (up to  $90^{\circ}$ ) at its outer diameter.

4. The top and bottom of the drip ring, and the top of the tank bottom edge projection beyond the shell, and a portion of the tank shell shall be coated if specified by the Purchaser.

### 5.5 ANNULAR BOTTOM PLATES

**5.5.1** When the bottom shell course is designed using the allowable stress for materials in Group IV, IVA, V, or VI, butt-welded annular bottom plates shall be used (see 5.1.5.6). When the bottom shell course is of a material in Group IV, IVA, V, or VI and the maximum product stress (see 5.6.2.1) for the first shell course is less than or equal to 160 MPa (23,200 lbf/in.<sup>2</sup>) or the maximum hydrostatic test stress (see 5.6.2.2) for the first shell course is less than or equal to 171 MPa (24,900 lbf/in.<sup>2</sup>), lap-welded bottom plates (see 5.1.5.4) may be used in lieu of butt-welded annular bottom plates.

**5.5.2** Annular bottom plates shall have a radial width that provides at least 600 mm (24 in.) between the inside of the shell and any lap-welded joint in the remainder of the bottom. Annular bottom plate projection outside the shell shall meet the requirements of 5.4.2. A greater radial width of annular plate is required when calculated as follows:

In SI units:

$$\frac{215t_b}{\left(HG\right)^{0.5}}$$

where

 $t_b$  = thickness of the annular plate (see 5.5.3), in mm,

H = maximum design liquid level (see 5.6.3.2), in m,

G = design specific gravity of the liquid to be stored.

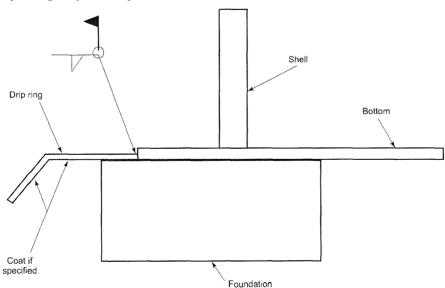



Figure 5-5-Drip Ring (Suggested Detail)

07

11

08

In US Customary units:

where

 $t_b$  = thickness of the annular plate (see 5.5.3), (in.),

- H = maximum design liquid level (see 5.6.3.2), (ft),
- G = design specific gravity of the liquid to be stored.

**5.5.3** The thickness of the annular bottom plates shall not be less than the greater thickness determined using Tables 5-1a and 5-1b for product design (plus any specified corrosion allowance) or for hydrostatic test design. Tables 5-1a and 5-1b are applicable for effective product height of  $H \times G \le 23$  m (75 ft). Beyond this height an elastic analysis must be made to determine the annular plate thickness.

| Plate Thickness <sup>a</sup> of First |       | Stress <sup>b</sup> in First Sl | nell Course (MPa) |       |
|---------------------------------------|-------|---------------------------------|-------------------|-------|
| Shell Course (mm)                     | ≤ 190 | ≤ 210                           | ≤ 220             | ≤ 250 |
| <i>t</i> ≤ 19                         | 6     | 6                               | 7                 | 9     |
| $19 \le t \le 25$                     | 6     | 7                               | 10                | 11    |
| $25 \le t \le 32$                     | 6     | 9                               | 12                | 14    |
| $32 < t \le 40$                       | 8     | 11                              | 14                | 17    |
| $40 < t \le 45$                       | 9     | 13                              | 16                | 19    |

<sup>a</sup>Plate thickness refers to the corroded shell plate thickness for product design and nominal thickness for hydrostatic test design. <sup>b</sup>The stress to be used is the maximum stress in the first shell course (greater of product or hydrostatic test stress). The stress may be determined using the required thickness divided by the thickness from "a" then multiplied by the applicable allowable stress:

Product Stress =  $(t_d - CA/\text{corroded } t)(S_d)$ 

Hydrostatic Test Stress =  $(t_t / \text{nominal } t) (S_t)$ 

Note: The thicknesses specified in the table, as well as the width specified in 5.5.2, are based on the foundation providing uniform support under the full width of the annular plate. Unless the foundation is properly compacted, particularly at the inside of a concrete ringwall, settlement will produce additional stresses in the annular plate.

| Plate Thickness <sup>a</sup> of First | Stress <sup>b</sup> in First Shell Course (lbf/in. <sup>2</sup> ) |                               |                              |                               |  |  |  |
|---------------------------------------|-------------------------------------------------------------------|-------------------------------|------------------------------|-------------------------------|--|--|--|
| Shell Course (in.)                    | ≤ 27,000                                                          | ≤ 30,000                      | ≤ 32,000                     | ≤ 36,000                      |  |  |  |
| $t \le 0.75$                          | 0.236                                                             | 0.236                         | 9/32                         | 11/32                         |  |  |  |
| $0.75 \le t \le 1.00$                 | 0.236                                                             | <sup>9</sup> / <sub>32</sub>  | 3/8                          | 7/16                          |  |  |  |
| $1.00 \le t \le 1.25$                 | 0.236                                                             | <sup>11</sup> / <sub>32</sub> | 15/32                        | <sup>9</sup> / <sub>16</sub>  |  |  |  |
| $1.25 \le t \le 1.50$                 | <sup>5</sup> /16                                                  | 7/16                          | <sup>9</sup> / <sub>16</sub> | <sup>11</sup> / <sub>16</sub> |  |  |  |
| $1.50 < t \le 1.75$                   | 11/32                                                             | 1/2                           | 5/8                          | 3/1                           |  |  |  |

Table 5-1b—(USC) Annular Bottom-Plate Thicknesses  $(t_b)$ 

<sup>a</sup>Plate thickness refers to the corroded shell plate thickness for product design and nominal thickness for hydrostatic test design. <sup>b</sup>The stress to be used is the maximum stress in the first shell course (greater of product or hydrostatic test stress). The stress may be determined using the required thickness divided by the thickness from "a" then multiplied by the applicable allowable stress:

Product Stress =  $(t_d - CA/\text{corroded } t) (S_d)$ Hydrostatic Test Stress =  $(t_t / \text{nominal } t) (S_t)$ 

Note: The thicknesses specified in the table, as well as the width specified in 5.5.2, are based on the foundation providing uniform support under the full width of the annular plate. Unless the foundation is properly compacted, particularly at the inside of a concrete ringwall, settlement will produce additional stresses in the annular plate.

08 07

09

11

API STANDARD 650

**5.5.4** The ring of annular plates shall have a circular outside circumference, but may have a regular polygonal shape inside the tank shell, with the number of sides equal to the number of annular plates. These pieces shall be welded in accordance with 5.1.5.6 and 5.1.5.7, Item b.

**5.5.5** In lieu of annular plates, the entire bottom may be butt-welded provided that the requirements for annular plate thickness, welding, materials, and inspection are met for the annular distance specified in 5.5.2.

## 5.6 SHELL DESIGN

## 5.6.1 General

**5.6.1.1** The required shell thickness shall be the greater of the design shell thickness, including any corrosion allowance, or the hydrostatic test shell thickness, but the shell thickness shall not be less than the following:

| 07 | Nominal Ta | ank Diameter | Nominal Plate Thickness |          |  |
|----|------------|--------------|-------------------------|----------|--|
|    | (m)        | (ft)         | (mm)                    | (in.)    |  |
| 07 | < 15       | < 50         | 5                       | 3/16     |  |
|    | 15 to < 36 | 50  to < 120 | 6                       | $1_{/4}$ |  |
|    | 36 to 60   | 120 to 200   | 8                       | 5/16     |  |
|    | > 60       | > 200        | 10                      | 3/8      |  |

Notes:

• 1. Unless otherwise specified by the Purchaser, the nominal tank diameter shall be the centerline diameter of the bottom shell-course plates. 2. The thicknesses specified are based on erection requirements.

• 3. When specified by the Purchaser, plate with a nominal thickness of 6 mm may be substituted for <sup>1</sup>/4-in. plate.

4. For diameters less than 15 m (50 ft) but greater than 3.2 m (10.5 ft), the nominal thickness of the lowest shell course shall not be less than  $6 \text{ mm}(^{1}/_{4} \text{ in.})$ .

• **5.6.1.2** Unless otherwise agreed to by the Purchaser, the shell plates shall have a minimum nominal width of 1800 mm (72 in.). Plates that are to be butt-welded shall be properly squared.

**5.6.1.3** The calculated stress for each shell course shall not be greater than the stress permitted for the particular material used for the course. When the allowable stress for an upper shell course is lower than the allowable stress of the next lower shell course, then either a or b shall be satisfied.

08

07

a. The lower shell course thickness shall be no less than the thickness required of the upper shell course for product and hydrostatic test loads by 5.6.3 or 5.6.4.

b. The thickness of all shell courses shall be that determined from an elastic analysis per 5.6.5 using final plate thicknesses.

The inside of an upper shell course shall not project beyond the inside surface of the shell course below (except within tolerances provided in 7.2.3.2).

**5.6.1.4** The tank shell shall be checked for stability against buckling from the design wind speed in accordance with 5.9.7. If required for stability, intermediate girders, increased shell-plate thicknesses, or both shall be used.

**5.6.1.5** Isolated radial loads on the tank shell, such as those caused by heavy loads on platforms and elevated walkways between tanks, shall be distributed by rolled structural sections, plate ribs, or built-up members.

#### 5.6.2 Allowable Stress

- **5.6.2.1** The maximum allowable product design stress,  $S_d$ , shall be as shown in Tables 5-2a and 5-2b. The corroded plate thicknesses shall be used in the calculation. The design stress basis,  $S_d$ , shall be either two-thirds the yield strength or two-fifths the tensile strength, whichever is less.
- 11 **5.6.2.2** The maximum allowable hydrostatic test stress,  $S_t$ , shall be as shown in Tables 5-2a and 5-2b. The nominal plate thicknesses shall be used in the calculation. The hydrostatic test basis shall be either three-fourths the yield strength or three-sevenths the tensile strength, whichever is less.

**5.6.2.3** Appendix A permits an alternative shell design with a fixed allowable stress of 145 MPa (21,000 lbf/in.<sup>2</sup>) and a joint efficiency factor of 0.85 or 0.70. This design may only be used for tanks with shell thicknesses less than or equal to 13 mm ( $^{1}/_{2}$  in.).

5.6.2.4 Structural design stresses shall conform to the allowable working stresses given in 5.10.3.

5-12

| Plate<br>Specification | Grade             | Nominal Plate<br>Thickness <i>t</i><br>mm                   | Minimum<br>Yield Strength<br>Mpa | Minimum<br>Tensile Strength<br>Mpa                       | Product<br>Design Stress <i>S<sub>d</sub></i><br>Mpa | Hydrostatic<br>Test Stress <i>S<sub>t</sub></i><br>Mpa |
|------------------------|-------------------|-------------------------------------------------------------|----------------------------------|----------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|
|                        |                   |                                                             | ASTM Spec                        |                                                          |                                                      |                                                        |
| A 283M                 | С                 |                                                             | 205                              | 380                                                      | 137                                                  | 154                                                    |
| A 285M                 | С                 |                                                             | 205                              | 380                                                      | 137                                                  | 154                                                    |
| A 131M                 | A, B              |                                                             | 235                              | 400                                                      | 157                                                  | 171                                                    |
| A 36M                  | —                 |                                                             | 250                              | 400                                                      | 160                                                  | 171                                                    |
| A 131M                 | EH 36             |                                                             | 360                              | 490 <sup>a</sup>                                         | 196                                                  | 210                                                    |
| A 573M                 | 400               |                                                             | 220                              | 400                                                      | 147                                                  | 165                                                    |
| A 573M                 | 450               |                                                             | 240                              | 450                                                      | 160                                                  | 180                                                    |
| A 573M                 | 485               |                                                             | 290                              | 485 <sup>a</sup>                                         | 193                                                  | 208                                                    |
| A 516M                 | 380               |                                                             | 205                              | 380                                                      | 137                                                  | 154                                                    |
| A 516M                 | 415               |                                                             | 220                              | 415                                                      | 147                                                  | 165                                                    |
| A 516M                 | 450               |                                                             | 240                              | 450                                                      | 160                                                  | 180                                                    |
| A 516M                 | 485               |                                                             | 260                              | 485                                                      | 173                                                  | 195                                                    |
| A 662M                 | В                 |                                                             | 275                              | 450                                                      | 180                                                  | 193                                                    |
| 4 662M                 | С                 |                                                             | 295                              | 485 <sup>a</sup>                                         | 194                                                  | 208                                                    |
| 4 537M                 | 1                 | $\begin{array}{c} t \leq 65 \\ 65 < t \leq 100 \end{array}$ | 345<br>310                       | $485^{a}$<br>$450^{b}$                                   | 194<br>180                                           | 208<br>193                                             |
| A 537M                 | 2                 | $\begin{array}{c} t \leq 65 \\ 65 < t \leq 100 \end{array}$ | 415<br>380                       | $\frac{550^a}{515^b}$                                    | 220<br>206                                           | 236<br>221                                             |
| A 633M                 | C, D              | $\begin{array}{c} t \leq 65 \\ 65 < t \leq 100 \end{array}$ | 345<br>315                       | 485 <sup>a</sup><br>450 <sup>b</sup>                     | $\begin{array}{c} 194 \\ 180 \end{array}$            | 208<br>193                                             |
| 4 678M                 | А                 |                                                             | 345                              | 485 <sup>a</sup>                                         | 194                                                  | 208                                                    |
| A 678M                 | В                 |                                                             | 415                              | 550 <sup>a</sup>                                         | 220                                                  | 236                                                    |
| A 737M                 | В                 |                                                             | 345                              | 485 <sup>a</sup>                                         | 194                                                  | 208                                                    |
| 4 841M                 | Class 1           |                                                             | 345                              | 485 <sup>a</sup>                                         | 194                                                  | 208                                                    |
| 4 841M                 | Class 2           |                                                             | 415                              | 550 <sup>a</sup>                                         | 220                                                  | 236                                                    |
|                        |                   |                                                             | CSA Speci                        |                                                          |                                                      |                                                        |
| G40.21M                | 260W              |                                                             | 260                              | 410                                                      | 164                                                  | 176                                                    |
| G40.21M                | 260 WT            |                                                             | 260                              | 410                                                      | 164                                                  | 176                                                    |
| G40.21M                | 300W              |                                                             | 300                              | 450                                                      | 180                                                  | 193                                                    |
| G40.21M                | 300WT             |                                                             | 300                              | 450                                                      | 180                                                  | 193                                                    |
| G40.21M                | 350W              |                                                             | 350                              | 450                                                      | 180                                                  | 193                                                    |
| G40.21M                | 350WT             | $\begin{array}{c} t \leq 65 \\ 65 < t \leq 100 \end{array}$ | 350<br>320                       | $480^{a}$<br>$480^{a}$                                   | 192<br>192                                           | 206<br>206                                             |
|                        |                   |                                                             | National St                      |                                                          |                                                      |                                                        |
|                        | 235               |                                                             | 235                              | 365                                                      | 137                                                  | 154                                                    |
|                        | 250               |                                                             | 250                              | 400                                                      | 157                                                  | 171                                                    |
|                        | 275               |                                                             | 275                              | 430                                                      | 167                                                  | 184                                                    |
|                        |                   |                                                             | ISO Specif                       |                                                          |                                                      |                                                        |
| SO 630                 | E 355C, D         | $\begin{array}{c} t \leq 16\\ 16 < t \leq 40 \end{array}$   | 275<br>265                       | 410<br>410                                               | $\frac{164}{164}$                                    | 176<br>176                                             |
|                        | E 355, D          | $t \le 16$<br>$16 < t \le 40$<br>$40 < t \le 50$            | 355<br>345<br>335                | $490^{a} \\ 490^{a} \\ 490^{a}$                          | 196<br>196<br>196                                    | 210<br>210<br>210                                      |
|                        |                   | $-10 < t \ge 30$                                            | EN Specif                        |                                                          | 130                                                  | 210                                                    |
| EN 10025               | S 355J0, J2       | <i>t</i> ≤16                                                | 275                              | 410                                                      | 164                                                  | 176                                                    |
| -1N 10020              | 3 33 310, 32      | $16 < t \le 10$<br>$16 < t \le 1^{1/2}$                     | 265                              | 410                                                      | 164                                                  | 176                                                    |
|                        | S355J0, J2,<br>K2 | $t \le 16$<br>$16 < t \le 40$<br>$40 < t \le 50$            | 355<br>345<br>335                | 470 <sup>a</sup><br>470 <sup>a</sup><br>470 <sup>a</sup> | 188<br>188                                           | 201<br>201                                             |

| Table 5-2a—(SI) | Permissible Plate | Materials and | Allowable Stresses |
|-----------------|-------------------|---------------|--------------------|
|-----------------|-------------------|---------------|--------------------|

aBy agreement between the Purchaser and the Manufacturer, the tensile strength of ASTM A 537M, Class 2, A 678M, Grade B, and A 841M, Class 2 materials may be increased to 515 MPa minimum and 620 MPa maximum. The tensile strength of the other listed materials may be increased to 515 MPa minimum and 620 MPa maximum. When this is done, the allowable stresses shall be determined as stated in 5.6.2.1 and 5.6.2.2.
<sup>b</sup>By agreement between the Purchaser and the Manufacturer, the tensile strength of ASTM A 537M, Class 2 materials may be increased to 550 MPa minimum and 620 MPa maximum. The tensile strength of ASTM A 537M, Class 2 materials may be increased to 550 MPa minimum and 620 MPa maximum. The tensile strength of ASTM A 537M, Class 2 materials may be increased to 550 MPa minimum and 690 MPa maximum. The tensile strength of the other listed materials may be increased to 485 MPa minimum and 620 MPa maximum. When this is done, the allowable stresses shall be determined as stated in 5.6.2.1 and 5.6.2.2.

11

09

11

| Plate<br>Specification | Grade          | Nominal Plate<br>Thickness <i>t</i><br>in.                                                                          | Minimum<br>Yield Strength<br>psi | Minimum<br>Tensile Strength<br>psi         | Product<br>Design Stress S <sub>d</sub><br>psi | Hydrostatic<br>Test Stress S <sub>t</sub><br>psi |
|------------------------|----------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------|------------------------------------------------|--------------------------------------------------|
|                        |                |                                                                                                                     | ASTM Specif                      |                                            | <b>I</b>                                       | 1                                                |
| A 283                  | С              |                                                                                                                     | 30,000                           | 55,000                                     | 20,000                                         | 22,500                                           |
| A 285                  | С              |                                                                                                                     | 30,000                           | 55,000                                     | 20,000                                         | 22,500                                           |
| A 131                  | A, B           |                                                                                                                     | 34,000                           | 58,000                                     | 22,700                                         | 24,900                                           |
| A 36                   |                |                                                                                                                     | 36,000                           | 58,000                                     | 23,200                                         | 24,900                                           |
| A 131                  | EH 36          |                                                                                                                     | 51,000                           | 71,000 <sup>a</sup>                        | 28,400                                         | 30,400                                           |
| A 573                  | 58             |                                                                                                                     | 32,000                           | 58.000                                     | 21,300                                         | 24,000                                           |
| A 573                  | 65             |                                                                                                                     | 35,000                           | 65,000                                     | 23,300                                         | 26,300                                           |
| A 573                  | 70             |                                                                                                                     | 42,000                           | 70,000 <sup>a</sup>                        | 28,000                                         | 30,000                                           |
| A 516                  | 55             |                                                                                                                     | 30,000                           | 55,000                                     | 20,000                                         | 22,500                                           |
| A 516                  | 60             |                                                                                                                     | 32,000                           | 60,000                                     | 21,300                                         | 24,000                                           |
| A 516                  | 65             |                                                                                                                     | 35,000                           | 65,000                                     | 23,300                                         | 26,300                                           |
| A 516                  | 70             |                                                                                                                     | 38,000                           | 70,000                                     | 25,300                                         | 28,500                                           |
| A 662                  | B              |                                                                                                                     | 40,000                           | 65,000                                     | 26,000                                         | 28,500                                           |
| A 662                  | C              |                                                                                                                     | 43,000                           | 70,000 <sup>a</sup>                        | 28,000                                         | 30,000                                           |
| A 537                  | 1              | 1-211                                                                                                               | 43,000<br>50,000                 | 70,000ª                                    | 28,000                                         | 30,000                                           |
| A 337                  | 1              | $\begin{array}{c} t \leq 2^{1} /_{2} \\ 2^{1} /_{2} < t \leq 4 \end{array}$                                         | 45,000                           | 65,000 <sup>b</sup>                        | 26,000                                         | 27,900                                           |
| A 537                  | 2              | $t \le 2^{1}/_{2} \\ 2^{1}/_{2} < t \le 4$                                                                          | 60,000<br>55,000                 | 80,000 <sup>a</sup><br>75,000 <sup>b</sup> | 32,000<br>30,000                               | 34,300<br>32,100                                 |
| A 633                  | C, D           | $t \le 2^{1/2}$<br>$2^{1/2} < t \le 4$                                                                              | $50,000 \\ 46.000$               | 70,000 <sup>a</sup><br>65,000 <sup>b</sup> | 28,000<br>26,000                               | 30,000<br>27,900                                 |
| A 678                  | А              | _                                                                                                                   | 50,000                           | 70,000 <sup>a</sup>                        | 28,000                                         | 30,000                                           |
| A 678                  | В              |                                                                                                                     | 60,000                           | $80,000^{a}$                               | 32,000                                         | 34,300                                           |
| A 737                  | В              |                                                                                                                     | 50,000                           | 70,000 <sup>a</sup>                        | 28,000                                         | 30,000                                           |
| A 841                  | Class 1        |                                                                                                                     | 50,000                           | 70,000 <sup>a</sup>                        | 28,000                                         | 30,000                                           |
| A 841                  | Class 2        |                                                                                                                     | 60,000                           | 80,000 <sup>a</sup>                        | 32,000                                         | 34,300                                           |
|                        |                |                                                                                                                     | CSA Specifi                      | cations                                    | ••••••••••••••••••••••••••••••••••••••         |                                                  |
| G40.21                 | 38W            |                                                                                                                     | 38,000                           | 60,000                                     | 24,000                                         | 25,700                                           |
| G40.21                 | 38WT           |                                                                                                                     | 38,000                           | 60,000                                     | 24,000                                         | 25,700                                           |
| G40.21                 | 44W            |                                                                                                                     | 44,000                           | 65,000                                     | 26,000                                         | 27,900                                           |
| G40.21                 | 44WT           |                                                                                                                     | 44,000                           | 65,000                                     | 26,000                                         | 27,900                                           |
| G40.21                 | 50W            |                                                                                                                     | 50,000                           | 65,000                                     | 26,000                                         | 27,900                                           |
| G40.21                 | 50WT           | $t \le 2^{1/2}$<br>$2^{1/2} < t \le 4$                                                                              | $50,000 \\ 46,000$               | 70,000 <sup>a</sup><br>70,000 <sup>a</sup> | 28,000<br>28,000                               | 30,000<br>30,000                                 |
|                        |                | L                                                                                                                   | National Sta                     |                                            | · · · · · · · · · · · · · · · · · · ·          |                                                  |
|                        | 235            |                                                                                                                     | 34,000                           | 52,600                                     | 20,000                                         | 22,500                                           |
|                        | 250            |                                                                                                                     | 36,000                           | 58,300                                     | 22,700                                         | 25,000                                           |
|                        | 275            |                                                                                                                     | 40,000                           | 62,600                                     | 24,000                                         | 26,800                                           |
|                        |                |                                                                                                                     | ISO Specific                     |                                            |                                                |                                                  |
| ISO 630                | E 355C, D      | $t \le \frac{5}{8}$<br>$5/8 < t \le \frac{11}{2}$                                                                   | 39,900<br>38,400                 | 59,500<br>59,500                           | 23,800<br>23,800                               | 25,500<br>25,500                                 |
|                        | E 355C, D      | $t \le \frac{5}{8}$                                                                                                 | 51,500<br>50,000                 | $71,000^{a}$<br>$71,000^{a}$               | 28,400<br>28,400                               | $30,400 \\ 30,400$                               |
|                        |                | $ \begin{array}{c} t \leq \frac{5}{8} \\ \frac{5}{8} < t \leq \frac{11}{2} \\ \frac{11}{2} < t \leq 2 \end{array} $ | 48,600                           | 71,000 <sup>a</sup>                        | 28,400<br>28,400                               | 30,400                                           |
| 771 10000              | 0.05510.10     |                                                                                                                     | EN Specific                      |                                            | 00.000                                         | 05 500                                           |
| EN 10025               | S 355J0, J2    | $t \le \frac{5}{8}$<br>$\frac{5}{8} < t \le 1^{1}/2$                                                                | 39,900<br>38,400                 | 59,500<br>59,500                           | 23,800<br>23,800                               | 25,500<br>25,500                                 |
|                        | S355J0, J2, K2 |                                                                                                                     |                                  | 68.100 <sup>a</sup>                        | 27,200<br>27,200                               | 29,200<br>29,200<br>29,200                       |
|                        |                | $\begin{array}{c} t \leq {}^{5}\!/\!8 \\ {}^{5}\!/\!8 < t \leq 1^{1}\!/\!2 \\ 1^{1}\!/\!2 < t \leq 2 \end{array}$   | $51,500 \\ 50,000 \\ 48,600$     | 68,100 <sup>a</sup><br>68,100 <sup>a</sup> | 27,200<br>27,200                               | 29,200                                           |

• <sup>a</sup>By agreement between the Purchaser and the Manufacturer, the tensile strength of ASTM A 537M, Class 2, A 678M, Grade B, and A 841M, Class 2 materials may be increased to 85,000 psi minimum and 100,000 psi maximum. The tensile strength of the other listed materials may be increased to 75,000 psi minimum and 90,000 psi maximum. When this is done, the allowable stresses shall be determined as stated in 5.6.2.1 and 5.6.2.2.

• bBy agreement between the Purchaser and the Manufacturer, the tensile strength of ASTM A 537M, Class 2 materials may be increased to 80,000 psi minimum and 100,000 psi maximum. The tensile strength of the other listed materials may be increased to 70,000 psi minimum and 90,000 psi maximum. When this is done, the allowable stresses shall be determined as stated in 5.6.2.1 and 5.6.2.2.

## 5.6.3 Calculation of Thickness by the 1-Foot Method

**5.6.3.1** The 1-foot method calculates the thicknesses required at design points 0.3 m (1 ft) above the bottom of each shell course. Appendix A permits only this design method. This method shall not be used for tanks larger than 61 m (200 ft) in diameter.

• 5.6.3.2 The required minimum thickness of shell plates shall be the greater of the values computed by the following formulas:

In SI units:

$$t_{d} = \frac{4.9D(H-0.3)G}{S_{d}} + CA$$
$$t_{t} = \frac{4.9D(H-0.3)}{S_{t}}$$

where

 $t_d$  = design shell thickness, in mm,

- $t_t$  = hydrostatic test shell thickness, in mm,
- D = nominal tank diameter, in m (see 5.6.1.1, Note 1),
- H = design liquid level, in m,
  - = height from the bottom of the course under consideration to the top of the shell including the top angle, if any; to the bottom of any overflow that limits the tank filling height; or to any other level specified by the Purchaser, restricted by an internal floating roof, or controlled to allow for seismic wave action,
- G = design specific gravity of the liquid to be stored, as specified by the Purchaser,
- CA = corrosion allowance, in mm, as specified by the Purchaser (see 5.3.2),
  - $S_d$  = allowable stress for the design condition, in MPa (see 5.6.2.1),
  - $S_t$  = allowable stress for the hydrostatic test condition, in MPa (see 5.6.2.2).

In US Customary units:

$$t_d = \frac{2.6D(H-1)G}{S_d} + CA$$
$$t_t = \frac{2.6D(H-1)}{S_t}$$

where

- $t_d$  = design shell thickness (in.),
- $t_t$  = hydrostatic test shell thickness (in.),
- D = nominal tank diameter, in ft (see 5.6.1.1, Note 1),
- H = design liquid level, (ft),
  - = height from the bottom of the course under consideration to the top of the shell including the top angle, if any; to the bottom of any overflow that limits the tank filling height; or to any other level specified by the Purchaser, restricted by an internal floating roof, or controlled to allow for seismic wave action,
- G = design specific gravity of the liquid to be stored, as specified by the Purchaser,
- CA = corrosion allowance, (in.), as specified by the Purchaser (see 5.3.2),
  - $S_d$  = allowable stress for the design condition, (lbf/in.<sup>2</sup>) (see 5.6.2.1),
  - $S_t$  = allowable stress for the hydrostatic test condition, (lbf/in.<sup>2</sup>) (see 5.6.2.2).

#### 5.6.4 Calculation of Thickness by the Variable-Design-Point Method

Note: This procedure normally provides a reduction in shell-course thicknesses and total material weight, but more important is its potential to permit construction of larger diameter tanks within the maximum plate thickness limitation. For background information, see L.P. Zick and R.V. McGrath, "Design of Large Diameter Cylindrical Shells."<sup>18</sup>

• **5.6.4.1** Design by the variable-design-point method gives shell thicknesses at design points that result in the calculated stresses being relatively close to the actual circumferential shell stresses. This method may only be used when the Purchaser has not specified that the 1-foot method be used and when the following is true:

In SI units:

$$\frac{L}{H} \le \frac{1000}{6}$$

where

$$L = (500 Dt)^{0.5}$$
, in mm,

D = tank diameter, in m,

11

- t = bottom-course corroded shell thickness, in mm,
- H = maximum design liquid level (see 5.6.3.2), in m.

In US Customary units:

 $\frac{L}{H} \leq 2$ 

where

 $L = (6 Dt)^{0.5}, (in.),$ 

D =tank diameter, (ft),

11

t = bottom-course corroded shell thickness, (in.), H = maximum design liquid level (see 5.6.3.2), (ft).

11

07

**5.6.4.2** The minimum plate thicknesses for both the design condition and the hydrostatic test condition shall be determined as outlined. Complete, independent calculations shall be made for all of the courses for the design condition and for the hydrostatic test condition. The required shell thickness for each course shall be the greater of the design shell thickness plus any corrosion allowance or the hydrostatic test shell thickness, but the total shell thickness shall not be less than the shell thickness required by 5.6.1.1, 5.6.1.3, and 5.6.1.4. When a greater thickness is used for a shell course, the greater thickness may be used for subsequent calculations of the thicknesses of the shell courses above the course that has the greater thickness, provided the greater thickness is shown as the required design thickness on the Manufacturer's drawing (see W.3).

**5.6.4.3** To calculate the bottom-course thicknesses, preliminary values  $t_{pd}$  and  $t_{pt}$  for the design and hydrostatic test conditions shall first be calculated from the formulas in 5.6.3.2.

**5.6.4.4** The bottom-course thicknesses  $t_{1d}$  and  $t_{1t}$  for the design and hydrostatic test conditions shall be calculated using the following formulas:

In SI units:

$$t_{1d} = \left(1.06 - \frac{0.0696D}{H} \sqrt{\frac{HG}{S_d}}\right) \left(\frac{4.9HDG}{S_d}\right) + CA$$

<sup>&</sup>lt;sup>18</sup>L.P. Zick and R.V. McGrath, "Design of Large Diameter Cylindrical Shells," *Proceedings*—Division of Refining, American Petroleum Institute, New York, 1968, Volume 48, pp. 1114 – 1140.

In US Customary units:

$$t_{1d} = \left(1.06 - \frac{0.463D}{H} \sqrt{\frac{HG}{S_d}}\right) \left(\frac{2.6HDG}{S_d}\right) + CA$$

Note: For the design condition,  $t_{1d}$  need not be greater than  $t_{pd}$ . In SI units:

$$t_{1t} = \left(1.06 - \frac{0.0696D}{H} \sqrt{\frac{H}{S_t}}\right) \left(\frac{4.9HD}{S_t}\right)$$

In US Customary units:

$$t_{1t} = \left(1.06 - \frac{0.463D}{H} \sqrt{\frac{H}{S_t}}\right) \left(\frac{2.6HD}{S_t}\right)$$

Note: For the hydrostatic test condition,  $t_{1t}$  need not be greater than  $t_{pt}$ .

**5.6.4.5** To calculate the second-course thicknesses for both the design condition and the hydrostatic test condition, the value of the following ratio shall be calculated for the bottom course:

$$\frac{h_1}{\left(rt_1\right)^{0.5}}$$

where

 $h_1$  = height of the bottom shell course, in mm (in.),

r = nominal tank radius, in mm (in.),

 $t_1$  = calculated corroded thickness of the bottom shell course, in mm (in.), used to calculate  $t_2$  (design). The calculated hydrostatic thickness of the bottom shell course shall be used to calculate  $t_2$  (hydrostatic test).

If the value of the ratio is less than or equal to 1.375:

 $t_2 = t_1$ 

If the value of the ratio is greater than or equal to 2.625:

 $t_2 = t_{2a}$ 

If the value of the ratio is greater than 1.375 but less than 2.625,:

$$t_2 = t_{2a} + (t_1 - t_{2a}) \left[ 2.1 - \frac{h_1}{1.25(rt_1)^{0.5}} \right]$$

where

 $t_2$  = minimum design thickness of the second shell course, in mm (in.),

 $t_{2a}$  = corroded thickness of the second shell course, in mm (in.), as calculated for an upper shell course as described in 5.6.4.6 to 5.6.4.8. In calculating second shell course thickness ( $t_2$ ) for design case and hydrostatic test case, applicable values of  $t_{2a}$  and  $t_1$ shall be used.

The preceding formula for  $t_2$  is based on the same allowable stress being used for the design of the bottom and second courses. For tanks where the value of the ratio is greater than or equal to 2.625, the allowable stress for the second course may be lower than the allowable stress for the bottom course when the methods described in 5.6.4.6 through 5.6.4.8 are used.

5.6.4.6 To calculate the upper-course thicknesses for both the design condition and the hydrostatic test condition, a preliminary value  $t_u$  for the upper-course corroded thickness shall be calculated using the formulas in 5.6.3.2, and then the distance x of the variable design point from the bottom of the course shall be calculated using the lowest value obtained from the following:

In SI units:

$$x_1 = 0.61 (rt_u)^{0.5} + 320 CH$$
  

$$x_2 = 1000 CH$$
  

$$x_3 = 1.22 (rt_u)^{0.5}$$

where

 $t_u =$  corroded thickness of the upper course at the girth joint, in mm, 11

$$C = [K^{0.5} (K-1)]/(1 + K^{1.5}),$$
  

$$K = t_L / t_{u,}$$

 $t_L$  = corroded thickness of the lower course at the girth joint, in mm, 11

H = design liquid level (see 5.6.3.2), in m.

In US Customary units:

$$x_1 = 0.61 (rt_u)^{0.5} + 3.84 CH$$
  

$$x_2 = 12 CH$$
  

$$x_3 = 1.22 (rt_u)^{0.5}$$

where

 $t_u$  = corroded thickness of the upper course at the girth joint, (in.), 11

> $C = [K^{0.5} (K-1)]/(1+K^{1.5}),$ K

$$K = t_L / t_{u_i}$$

 $t_L$  = corroded thickness of the lower course at the girth joint, (in.), 11

H = design liquid level (see 5.6.3.2), (ft).

**5.6.4.7** The minimum thickness  $t_x$  for the upper shell courses shall be calculated for both the design condition  $(t_{dx})$  and the hydrostatic test condition  $(t_{tx})$  using the minimum value of x obtained from 5.6.4.6:

In SI units:

$$t_{dx} = \frac{4.9D\left(H - \frac{x}{1000}\right)G}{S_d} + CA$$
$$t_{tx} = \frac{4.9D\left(H - \frac{x}{1000}\right)}{S_t}$$

In US Customary units:

$$t_{dx} = \frac{2.6D\left(H - \frac{x}{12}\right)G}{S_d} + CA$$
$$t_{tx} = \frac{2.6D\left(H - \frac{x}{12}\right)}{S_t}$$

**5.6.4.8** The steps described in 5.6.4.6 and 5.6.4.7 shall be repeated using the calculated value of  $t_x$  as  $t_u$  until there is little difference between the calculated values of  $t_x$  in succession (repeating the steps twice is normally sufficient). Repeating the steps provides a more exact location of the design point for the course under consideration and, consequently, a more accurate shell thickness.

**5.6.4.9** There are two examples provided in Appendix K. Example #1 are step-by-step calculations illustrating an application of the variable-design-point method to a tank with a diameter of 85 m (280 ft) and a height of 19.2 m (64 ft) to determine shell-plate thicknesses for the first three courses for the hydrostatic test condition only. Example #2 demonstrates the variable-design-point design method in US Customary units for a tank with a diameter of 280 ft and a height of 40 ft with varying corrosion allow-ances and varying materials for both the design and hydrostatic test conditions.

### 5.6.5 Calculation of Thickness by Elastic Analysis

For tanks where L/H is greater than 1000/6 (2 in US Customary units), the selection of shell thicknesses shall be based on an elastic analysis that shows the calculated circumferential shell stresses to be below the allowable stresses given in Tables 5-2a and 5-2b. The boundary conditions for the analysis shall assume a fully plastic moment caused by yielding of the plate beneath the shell and zero radial growth.

### 5.7 SHELL OPENINGS

## 5.7.1 General

**5.7.1.1** The following requirements for shell openings are intended to restrict the use of appurtenances to those providing for attachment to the shell by welding. See Figure 5-6.

**5.7.1.2** The shell opening designs described in this Standard are required, except for alternative designs allowed in 5.7.1.8.

**5.7.1.3** Flush-type cleanout fittings and flush-type shell connections shall conform to the designs specified in 5.7.7 and 5.7.8.

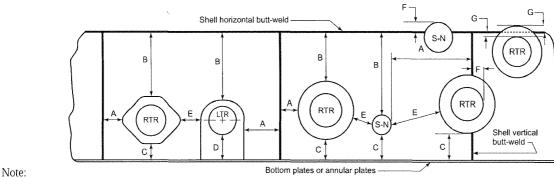
• **5.7.1.4** When a size intermediate to the sizes listed in Tables 5-3a through 5-12b is specified by the Purchaser, the construction details and reinforcements shall conform to the next larger opening listed in the tables. The size of the opening or tank connection shall not be larger than the maximum size given in the appropriate table.

**5.7.1.5** Openings near the bottom of a tank shell will tend to rotate with vertical bending of the shell under hydrostatic loading. Shell openings in this area that have attached piping or other external loads shall be reinforced not only for the static condition but also for any loads imposed on the shell connections by the restraint of the attached piping to the shell rotation. The external loads shall be minimized, or the shell connections shall be relocated outside the rotation area. Appendix P provides a method for evaluating openings that conform to Tables 5-6a and 5-6b.

**5.7.1.6** Sheared or oxygen-cut surfaces on manhole necks, nozzle necks, reinforcing plates, and shell-plate openings shall be made uniform and smooth, with the corners rounded except where the surfaces are fully covered by attachment welds.

**5.7.1.7** Shell openings may be reinforced by the use of an insert plate per Figure 5-7B. The insert plate may have the same thickness as an adjacent shell plate or may be thicker to provide reinforcing. A rectangular insert plate shall have rounded corners (except for edges terminating at the tank bottom or at joints between shell courses) with a radius which is greater than or equal to the larger of 150 mm (6 in.) or 6t where t is the thickness of the shell course containing the insert plate. The insert plate may contain multiple shell openings. The thickness and dimensions of insert plate shall provide the reinforcing required per 5.7.2. The weld spacing shall meet requirements of 5.7.3. The periphery of insert plates shall have a 1:4 tapered transition to the thickness of the adjacent shell plates when the insert plate thickness exceeds the adjacent shell thickness by more than 3 mm ( $\frac{1}{8}$  in.).

• **5.7.1.8** The shape and dimensions of the shell opening reinforcement, illustrated in Figures 5-7A, 5-7B,and 5-8 and dimensioned in the related tables may be altered as long as the reinforcement meets the area, welding, and weld spacing requirements outlined in 5.7.2 and 5.7.3. For reinforcing plates greater than <sup>1</sup>/<sub>2</sub> in. thick, with approval of the Purchaser, reinforcement and welding (excluding weld spacing) of shell openings that comply with API Std 620 Section 5 are acceptable. These statements of permissible alternatives of shell opening reinforcement and welding do not apply to flush-type cleanout fittings, flush-type shell connections or similar configurations.


**5.7.1.9** The flange facing shall be suitable for the gasket and bolting employed. Gaskets shall be selected to meet the service environment so that the required seating load is compatible with the flange rating and facing, the strength of the flange, and its bolting (see 4.9).

11

08

08

11



08

RTR Regular-Type Reinforced Opening (nozzle or manhole) with diamond or circular shape reinforcing plate or insert plate that ---does not extend to the bottom (see Figure 5-7A and Figure 5-8).

LTR Low-Type Reinforced Opening (nozzle or manhole) using tombstone type reinforcing plate or insert plate that extends to the = bottom [see Figure 5-8, Detail (a) and Detail (b)].

S-N Shell openings with neither a reinforcing plate nor with a thickened insert plate (i.e., integrally reinforced shell openings; or === openings not requiring reinforcing).

|    | Varial                                               | oles                       | Reference                         | Ν                                | /linimum Dimens                  | ion Between Wel                                                       | ld Toes or W                    | /eld Centerline (              | (1)(3)                                             |            |
|----|------------------------------------------------------|----------------------------|-----------------------------------|----------------------------------|----------------------------------|-----------------------------------------------------------------------|---------------------------------|--------------------------------|----------------------------------------------------|------------|
|    | Shell t                                              | Condition                  | Paragraph<br>Number               | A (2)                            | B (2)                            | C (2)                                                                 | D (3)                           | E (2)                          | F (4)                                              | G (4       |
| l  | $t \le 12.5 \text{ mm}$<br>$(t \le 1/2 \text{ in.})$ | As<br>welded<br>or<br>PWHT | 5.7.3.2<br>5.7.3.3                | 150 mm (6 in.)                   | 75 mm (3 in.) or $2^{1/2}t$      | 75 mm (3 in.)<br>or 2 <sup>1</sup> / <sub>2</sub> t                   |                                 | 75 mm (3 in.) or $2^{1}/_{2}t$ |                                                    |            |
|    |                                                      |                            | 5.7.3.3                           |                                  |                                  | 75 mm (3 in.)<br>for S-N                                              |                                 |                                |                                                    |            |
| I  |                                                      |                            | 5.7.3.3<br>• 5.7.3.4<br>• 5.7.3.4 |                                  |                                  |                                                                       | Table 5-6a<br>and<br>Table 5-6b |                                | $8t  { m or}  {}^{1/2} r$                          | 8 <i>t</i> |
|    | t > 12.5  mm<br>(t > 1/2  in.)                       | As<br>Welded               | 5.7.3.1.a<br>5.7.3.1.b            | 8 <i>W</i> or<br>250 mm (10 in.) | 8 <i>W</i> or<br>250 mm (10 in.) |                                                                       |                                 | 8Wor                           |                                                    |            |
|    |                                                      |                            | 5.7.3.3                           |                                  |                                  | 8Wor                                                                  |                                 | 150 mm (6 in.)                 |                                                    |            |
|    |                                                      |                            | 5.7.3.3                           |                                  |                                  | 250 mm (10 in.)<br>75 mm (3 in.)<br>for S-N                           |                                 |                                |                                                    |            |
|    |                                                      |                            | 5.7.3.3<br>• 5.7.3.4<br>• 5.7.3.4 |                                  |                                  |                                                                       | Table 5-6a<br>and<br>Table 5-6b |                                | 8t  or  1/2 r                                      | 8 <i>t</i> |
|    | t > 12.5  mm<br>(t > 1/2  in.)                       | PWHT                       | 5.7.3.2<br>5.7.3.3                | 150 mm (6 in.)                   | 75 mm (3 in.) or $2^{1/2}t$      | 75 mm (3 in.)                                                         |                                 | 75 mm (3 in.) or $2^{1/2}t$    |                                                    |            |
|    |                                                      |                            | 5.7.3.3                           |                                  |                                  | or 2 <sup>1</sup> / <sub>2</sub> <i>t</i><br>75 mm (3 in.)<br>for S-N |                                 |                                |                                                    |            |
| ١. |                                                      |                            | 5.7.3.3<br>• 5.7.3.4<br>• 5.7.3.4 |                                  |                                  |                                                                       | Table 5-6a<br>and<br>Table 5-6b |                                | 8 <i>t</i> or <sup>1</sup> / <sub>2</sub> <i>r</i> | 8 <i>t</i> |

11

08

If two requirements are given, the minimum spacing is the greater value, except for dimension "*F*." See Note 4.
 *t* = shell nominal thickness. 8*W* = 8 times the largest weld size for reinforcing plate or insert plate periphery weld (fillet or butt-weld) from the toe of the periphery weld to the centerline of the shell butt-weld.
 *D* = spacing distance established by minimum elevation for low-type reinforced openings from Tables 5-6a and 5-6b, column 9.
 Purchaser option to allow shell openings to be located in horizontal or vertical shell butt-welds. See Figure 5-9.

t = shell nominal thickness, r = radius of opening. Minimum spacing for dimension F is the lesser of 8t or 1/2 r.

11

Figure 5-6—Minimum Weld Requirements for Openings in Shells According to 5.7.3

| Column 1               | Column 2                     | Column 3          | Column 4          | Column 5                      | Column 6          | Column 7          | Column 8           | Column 9          | Column 10                                            |
|------------------------|------------------------------|-------------------|-------------------|-------------------------------|-------------------|-------------------|--------------------|-------------------|------------------------------------------------------|
| Max. Design            | Eminator                     | Mir               | imum Thickness    | s of Cover Plate <sup>b</sup> | $P(t_c)$          | Minimum Th        | nickness of Boltin | ng Flange After   | lange After Finishing <sup>b</sup> (t <sub>f</sub> ) |
| Liquid Level<br>m<br>H | Pressure <sup>a</sup><br>kPa | 500 mm<br>Manhole | 600 mm<br>Manhole | 750 mm<br>Manhole             | 900 mm<br>Manhole | 500 mm<br>Manhole | 600 mm<br>Manhole  | 750 mm<br>Manhole | 900 mm<br>Manhole                                    |
| 5.2                    | 51                           | 8                 | 10                | 11                            | 13                | 6                 | 6                  | 8                 | 10                                                   |
| 6.7                    | 66                           | 10                | 11                | 13                            | 14                | 6                 | 8                  | 10                | 11                                                   |
| 8.0                    | 78                           | 10                | 11                | 14                            | 16                | 6                 | 8                  | 11                | 13                                                   |
| 9.9                    | 97                           | 11                | 13                | 16                            | 18                | 8                 | 10                 | 13                | 14                                                   |
| 11.1                   | 109                          | 13                | 14                | 16                            | 19                | 10                | 11                 | 13                | 16                                                   |
| 13.4                   | 131                          | 13                | 14                | 18                            | 21                | 10                | 11                 | 14                | 18                                                   |
| 16.1                   | 158                          | 14                | 16                | 19                            | 22                | 11                | 13                 | 16                | 19                                                   |
| 18.6                   | 182                          | 16                | 18                | 21                            | 24                | 13                | 14                 | 18                | 21                                                   |
| 22.9                   | 224                          | 18                | 19                | 24                            | 25                | 13                | 14                 | 18                | 24                                                   |
|                        |                              |                   |                   |                               |                   |                   |                    |                   |                                                      |

Table 5-3a-(SI) Thickness of Shell Manhole Cover Plate and Bolting Flange

<sup>a</sup>Equivalent pressure is based on water loading. <sup>b</sup>For addition of corrosion allowance, see 5.7.5.2. <sup>c</sup>Cover Plate and Flange thickness given can be used on Manholes dimensioned to ID or OD.

Note: See Figure 5-7A.

| Column 1    | Column 2                                      | Column 3          | Column 4                     | Column 5                      | Column 6          | Column 7                                                                           | Column 8                     | Column 9          | Column 10         |
|-------------|-----------------------------------------------|-------------------|------------------------------|-------------------------------|-------------------|------------------------------------------------------------------------------------|------------------------------|-------------------|-------------------|
| Max. Design | Equivalent -                                  | Mir               | nimum Thicknes               | s of Cover Plate <sup>b</sup> | $r(t_c)$          | Minimum Thickness of Bolting Flange After Finishing <sup>b</sup> (1 <sub>f</sub> ) |                              |                   |                   |
| ft<br>H     | Pressure <sup>a</sup><br>lbf/in. <sup>2</sup> | 20 in.<br>Manhole | 24 in.<br>Manhole            | 30 in.<br>Manhole             | 36 in.<br>Manhole | 20 in.<br>Manhole                                                                  | 24 in.<br>Manhole            | 30 in.<br>Manhole | 36 in.<br>Manhole |
| 17.1        | 7.4                                           | 5/16              | 3/8                          | 7/16                          | 1/2               | 1/4                                                                                | 1/4                          | 5/16              | 3/8               |
| 21.9        | 9.5                                           | 3/8               | 7/16                         | 1/2                           | <sup>9</sup> /16  | 1/4                                                                                | 5/16                         | 3/8               | 7/16              |
| 26.1        | 11.3                                          | 3/8               | 7/16                         | <sup>9</sup> / <sub>16</sub>  | 5/8               | 1/4                                                                                | <sup>5</sup> / <sub>16</sub> | 7/ <sub>16</sub>  | 1/2               |
| 32.6        | 14.1                                          | 7/16              | 1/2                          | 5/8                           | 11/16             | 5/16                                                                               | 3/8                          | 1/2               | <sup>9</sup> /16  |
| 36.5        | 15.8                                          | 1/2               | <sup>9</sup> / <sub>16</sub> | 5/8                           | 3/4               | 3/8                                                                                | 7/ <sub>16</sub>             | 1/2               | 5/8               |
| 43.9        | 19                                            | 1/2               | <sup>9</sup> /16             | 11/16                         | 13/16             | 3/8                                                                                | 7/16                         | <sup>9</sup> /16  | 11/16             |
| 52.9        | 22.9                                          | <sup>9</sup> /16  | 5/8                          | 3/4                           | 7/8               | 7/16                                                                               | 1/2                          | <sup>5</sup> /8   | 3/4               |
| 61.0        | 26.4                                          | 5/8               | 11/16                        | 13/16                         | 15/16             | 1/2                                                                                | 9/16                         | 11/16             | 13/16             |
| 75.1        | 32.5                                          | 11/16             | 3/4                          | 15/16                         | 1                 | 1/2                                                                                | 9/16                         | 11/16             | 15/16             |

Table 5-3b-(USC) Thickness of Shell Manhole Cover Plate and Bolting Flange

<sup>a</sup>Equivalent pressure is based on water loading. <sup>b</sup>For addition of corrosion allowance, see 5.7.5.2. <sup>c</sup>Cover Plate and Flange thickness given can be used on Manholes dimensioned to ID or OD. Note: See Figure 5-7A.

08

| Thickness of Shell and                                |                                | Minimum Neck T                 | hickness <sup>b,c</sup> t <sub>n</sub> mm |                               |
|-------------------------------------------------------|--------------------------------|--------------------------------|-------------------------------------------|-------------------------------|
| Manhole Reinforcing<br>Plate <sup>a</sup> $t$ and $T$ | For Manhole Diameter<br>500 mm | For Manhole Diameter<br>600 mm | For Manhole Diameter<br>750 mm            | For Manhole Diamete<br>900 mm |
| 5                                                     | 5                              | 5                              | 5                                         | 5                             |
| 6                                                     | 6                              | 6                              | 6                                         | 6                             |
| 8                                                     | 6                              | 6                              | 8                                         | 8                             |
| 10                                                    | 6                              | 6                              | 8                                         | 10                            |
| 11                                                    | 6                              | 6                              | 8                                         | 10                            |
| 12.5                                                  | 6                              | 6                              | 8                                         | 10                            |
| 14                                                    | 6                              | 6                              | 8                                         | 10                            |
| 16                                                    | 6                              | 6                              | 8                                         | 10                            |
| 18                                                    | 6                              | 6                              | 8                                         | 10                            |
| 19                                                    | 6                              | 6                              | 8                                         | 10                            |
| 21                                                    | 8                              | 6                              | 8                                         | 10                            |
| 22                                                    | 10                             | 8                              | 8                                         | 10                            |
| 24                                                    | 11                             | 11                             | 11                                        | 11                            |
| 25                                                    | 11                             | 11                             | 11                                        | 11                            |
| 27                                                    | 11                             | 11                             | 11                                        | 11                            |
| 28                                                    | 13                             | 13                             | 13                                        | 13                            |
| 30                                                    | 14                             | 14                             | 14                                        | 14                            |
| 32                                                    | 16                             | 14                             | 14                                        | 14                            |
| 33                                                    | 16                             | 16                             | 16                                        | 16                            |
| 35                                                    | 17                             | 16                             | 16                                        | 16                            |
| 36                                                    | 17                             | 17                             | 17                                        | 17                            |
| 38                                                    | 20                             | 20                             | 20                                        | 20                            |
| 40                                                    | 21                             | 21                             | 21                                        | 21                            |
| 41                                                    | 21                             | 21                             | 21                                        | 21                            |
| 43                                                    | 22                             | 22                             | 22                                        | 22                            |
| 45                                                    | 22                             | 22                             | 22                                        | 22                            |

Table 5-4a (SI)-Dimensions for Shell Manhole Neck Thickness

<sup>a</sup>If a shell plate thicker than required is used for the product and hydrostatic loading (see 5.6), the excess shell-plate thickness, within a vertical distance both above and below the centerline of the hole in the tank shell plate equal to the vertical dimension of the hole in the tank shell plate equal to the vertical dimension of the hole in the tank shell plate, may be considered as reinforcement, and the thickness T of the manhole reinforcing plate may be decreased accordingly. In such cases, the reinforcement and the attachment welding shall conform to the design limits for reinforcement of shell openings specified in 5.7.2. <sup>b</sup>Reinforcement shall be added if the neck thickness is less than that shown in the column. The minimum neck thickness shall be the thickness of the shell plate or the allowable finished thickness of the bolting flange (see Table 5-3a), whichever is thinner, but in no case shall the neck in a built-up manhole be thinner than the thicknesses given. If the neck thickness on a built-up manhole is greater than the the decreased accordingly within the limits specified in 5.7.2.

the required minimum, the manhole reinforcing plate may be decreased accordingly within the limits specified in 5.7.2. •For addition of corrosion allowance, see 5.7.5.2.

| Thickness of Shell and                            | Minimum Neck Thickness <sup>b,c</sup> $t_n$ in. |                              |                              |                              |  |  |  |  |
|---------------------------------------------------|-------------------------------------------------|------------------------------|------------------------------|------------------------------|--|--|--|--|
| Manhole Reinforcing<br>Plate <sup>a</sup> t and T | For Manhole Diameter 20 in.                     | For Manhole Diameter 24 in.  | For Manhole Diameter 30 in.  | For Manhole Diameter 36 in.  |  |  |  |  |
| <sup>3</sup> / <sub>16</sub>                      | <sup>3</sup> / <sub>16</sub>                    | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub> |  |  |  |  |
| $1_{4}$                                           | $1_{4}$                                         | $1_{/_{4}}$                  | 1/ <sub>4</sub>              | <sup>1</sup> / <sub>4</sub>  |  |  |  |  |
| <sup>5</sup> / <sub>16</sub>                      | 1/4                                             | $1_{4}$                      | <sup>5</sup> / <sub>16</sub> | <sup>5</sup> /16             |  |  |  |  |
| <sup>3</sup> / <sub>8</sub>                       | 1/4                                             | 1/4                          | <sup>5</sup> / <sub>16</sub> | <sup>3</sup> /8              |  |  |  |  |
| 7/ <sub>16</sub>                                  | 1/4                                             | 1/4                          | <sup>5</sup> / <sub>16</sub> | 3/8                          |  |  |  |  |
| 1/2                                               | 1/4                                             | 1/4                          | <sup>5</sup> / <sub>16</sub> | <sup>3</sup> / <sub>8</sub>  |  |  |  |  |
| <sup>9</sup> / <sub>16</sub>                      | 1/4                                             | 1/4                          | <sup>5</sup> / <sub>16</sub> | <sup>3</sup> / <sub>8</sub>  |  |  |  |  |
| 5/8                                               | $1_{4}$                                         | 1/4                          | <sup>5</sup> / <sub>16</sub> | <sup>3</sup> /8              |  |  |  |  |
| <sup>11</sup> / <sub>16</sub>                     | 1/4                                             | $1_{4}$                      | 5/16                         | 3/8                          |  |  |  |  |
| 3/4                                               | 1/4                                             | 1/4                          | <sup>5</sup> / <sub>16</sub> | <sup>3</sup> / <sub>8</sub>  |  |  |  |  |
| <sup>13</sup> / <sub>16</sub>                     | 5/16                                            | $1_{4}$                      | 5/ <sub>16</sub>             | 3/8                          |  |  |  |  |
| 7/8                                               | 3/8                                             | <sup>5</sup> / <sub>16</sub> | <sup>5</sup> / <sub>16</sub> | <sup>3</sup> / <sub>8</sub>  |  |  |  |  |

| Thickness of Shell and                            |                               | Minimum Neck T                | Thickness <sup>b,c</sup> $t_n$ in. |                               |
|---------------------------------------------------|-------------------------------|-------------------------------|------------------------------------|-------------------------------|
| Manhole Reinforcing<br>Plate <sup>a</sup> t and T | For Manhole Diameter 20 in.   | For Manhole Diameter 24 in.   | For Manhole Diameter 30 in.        | For Manhole Diameter 36 in.   |
| <sup>15</sup> / <sub>16</sub>                     | 7/16                          | $7_{16}$                      | 7/ <sub>16</sub>                   | 7 <sub>/16</sub>              |
| 1                                                 | <sup>7</sup> / <sub>16</sub>  | <sup>7</sup> / <sub>16</sub>  | <sup>7</sup> / <sub>16</sub>       | 7/ <sub>16</sub>              |
| $1^{1}/_{16}$                                     | 7/ <sub>16</sub>              | 7/ <sub>16</sub>              | 7/ <sub>16</sub>                   | 7/ <sub>16</sub>              |
| $1^{1}/_{8}$                                      | 1/2                           | 1/2                           | 1/2                                | 1/2                           |
| $1^{3}/_{16}$                                     | 9/ <sub>16</sub>              | <sup>9</sup> / <sub>16</sub>  | <sup>9</sup> / <sub>16</sub>       | <sup>9</sup> / <sub>16</sub>  |
| $1^{5}/_{16}$                                     | 5/8                           | <sup>9</sup> / <sub>16</sub>  | <sup>9</sup> / <sub>16</sub>       | <sup>9</sup> / <sub>16</sub>  |
| $1^{3}/_{8}$                                      | 5/ <sub>8</sub>               | 5/8                           | <sup>5</sup> /8                    | 5/ <sub>8</sub>               |
| $1^{3}/_{8}$                                      | <sup>11</sup> / <sub>16</sub> | 5/8                           | <sup>5</sup> /8                    | <sup>5</sup> /8               |
| 1 <sup>7</sup> / <sub>16</sub>                    | $^{11}/_{16}$                 | <sup>11</sup> / <sub>16</sub> | 11/16                              | $11/_{16}$                    |
| $1^{1}/_{2}$                                      | <sup>3</sup> / <sub>4</sub>   | <sup>3</sup> / <sub>4</sub>   | <sup>3</sup> / <sub>4</sub>        | 3/4                           |
| $1^{9}/_{16}$                                     | <sup>13</sup> / <sub>16</sub> | <sup>13</sup> / <sub>16</sub> | <sup>13</sup> / <sub>16</sub>      | <sup>13</sup> / <sub>16</sub> |
| $1^{5}/_{8}$                                      | <sup>13</sup> / <sub>16</sub> | <sup>13</sup> / <sub>16</sub> | <sup>13</sup> / <sub>16</sub>      | $^{13}/_{16}$                 |
| $1^{11}/_{16}$                                    | 7/ <sub>8</sub>               | 7/ <sub>8</sub>               | 7/ <sub>8</sub>                    | <sup>7</sup> /8               |
| $1^{3}/_{4}$                                      | 7/ <sub>8</sub>               | 7/ <sub>8</sub>               | 7/8                                | 7/8                           |

Table 5-4b—(USC) Dimensions for Shell Manhole Neck Thickness (Continued)

<sup>a</sup>If a shell plate thicker than required is used for the product and hydrostatic loading (see 5.6), the excess shell-plate thickness, within a vertical distance both above and below the centerline of the hole in the tank shell plate equal to the vertical dimension of the hole in the tank shell plate, may be considered as reinforcement, and the thickness T of the manhole reinforcing plate may be decreased accordingly. In such cases, the reinforcement and the attachment welding shall conform to the design limits for reinforcement of shell openings specified in 5.7.2.

<sup>b</sup>Reinforcement shall be added if the neck thickness is less than that shown in the column. The minimum neck thickness shall be the thickness of the shell plate or the allowable finished thickness of the bolting flange (see Table 5-3b), whichever is thinner, but in no case shall the neck in a built-up manhole be thinner than the thicknesses given. If the neck thickness on a built-up manhole is greater than the required minimum, the manhole reinforcing plate may be decreased accordingly within the limits specified in 5.7.2. For addition of corrosion allowance, see 5.7.5.2.

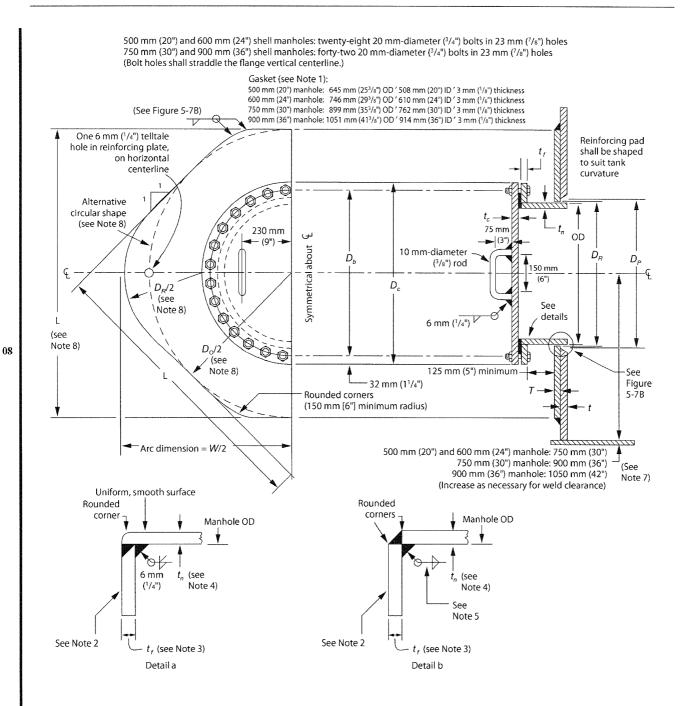
#### 5.7.2 Reinforcement and Welding

**5.7.2.1** Openings in tank shells larger than required to accommodate a NPS 2 flanged or threaded nozzle shall be reinforced. The minimum cross-sectional area of the required reinforcement shall not be less than the product of the vertical diameter of the hole cut in the shell and the nominal plate thickness, but when calculations are made for the maximum required thickness considering all design and hydrostatic test load conditions, the required thickness may be used in lieu of the nominal plate thickness. The cross-sectional area of the reinforcement shall be measured vertically, coincident with the diameter of the opening.

•5.7.2.2 The only shell openings that may utilize welds having less than full penetration through the shell are those that do not require reinforcement and those that utilize a thickened insert plate as shown in Figures 5-7B and 5-8. However, any openings listed in Table 3 of the Data Sheet that are marked "yes" under "Full Penetration on Openings" shall utilize welds that fully penetrate the shell and the reinforcement, if used.

**5.7.2.3** Except for flush-type openings and connections, all effective reinforcements shall be made within a distance above and below the centerline of the shell opening equal to the vertical dimension of the hole in the tank shell plate. Reinforcement may be provided by any one or any combination of the following:

a. The attachment flange of the fitting.

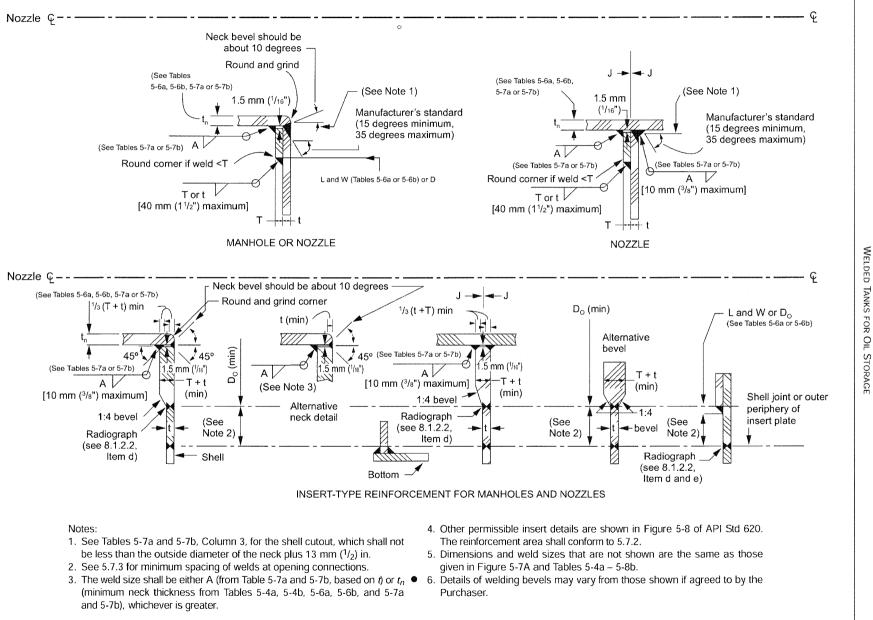

• b. The reinforcing plate. Reinforcing plates for manholes, nozzles, and other attachments shall be of the same nominal composition (i.e., same ASME P-number and Group Number) as the tank part to which they are attached, unless approved otherwise by • the Purchaser.

c. The portion of the neck of the fitting that may be considered as reinforcement according to 5.7.2.4.

d. Excess shell-plate thickness. Reinforcement may be provided by any shell-plate thickness in excess of the thickness required by the governing load condition within a vertical distance above and below the centerline of the hole in the shell equal to the vertical dimension of the hole in the tank shell plate as long as the extra shell-plate thickness is the actual plate thickness used less the required thickness, calculated at the applicable opening, considering all load conditions and the corrosion allowance.

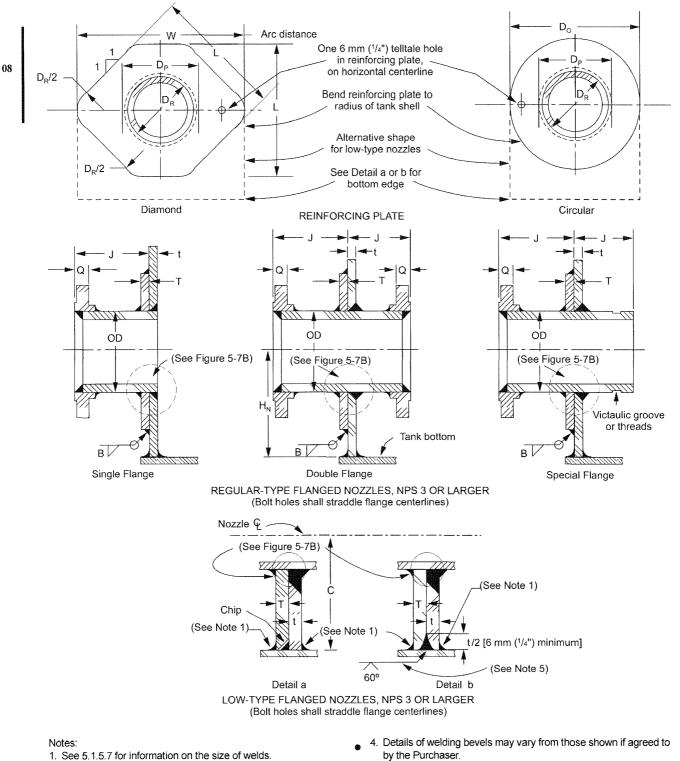
e. The material in the nozzle neck. The strength of the material in the nozzle neck used for reinforcement should preferably be the same as the strength of the tank shell, but lower strength material is permissible as reinforcement as long as the neck material has minimum specified yield and tensile strengths not less than 70% and 80%, respectively, of the shell-plate minimum specified

07




#### Notes:

- 1. Gasket material shall be specified by the Purchaser. See 5.7.5.4.
- The gasketed face shall be machine-finished to provide a minimum gasket-bearing width of 19 mm (<sup>3</sup>/4 in.).
- 3. See Tables 5-3a and 5-3b.
- 4. See Tables 5-4a and 5-4b.
- 5. The size of the weld shall equal the thickness of the thinner member joined.
- 6. The shell nozzles shown in Figure 5-8 may be substituted for manholes.
- 7. The minimum centerline elevations allowed by Tables 5-6a and 5-6b and Figure 5-6 may be used when approved by the Purchaser.
  - For dimensions for OD, D<sub>R</sub>, D<sub>o</sub>, L, and W, see Tables 5-6a and 5-6b, Columns 2, 4, 5, and 6. For Dimension D<sub>P</sub> see Tables 5-7a and 5-7b, Column 3.
  - 9. At the option of the Manufacturer, the manhole ID may be set to the OD dimension listed in Tables 5-6a and 5-6b, Column 2. Reinforcement area and weld spacing must meet 5.7.2 and 5.7.3 requirements respectively.

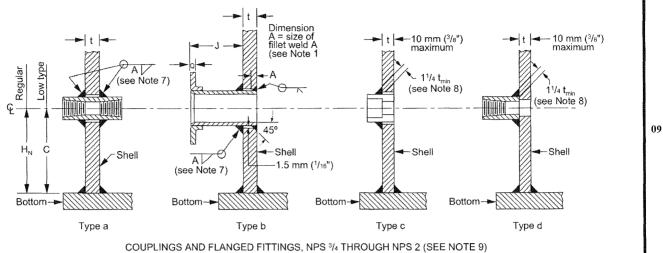

Figure 5-7A—Shell Manhole

5-24



### Figure 5-7B—Details of Shell Manholes and Nozzles

5-25




- 5. Shop weld not attached to bottom plate.
- 6. See 5.7.6.2 for information on supplying nozzles flush or with an internal projection.

Figure 5-8—Shell Nozzles (See Tables 5-6a, 5-6b, 5-7a, 5-7b, 5-8a and 5-8b)

2. See 5.8.9 for information on the couplings used in shell nozzles.

3. Nozzles NPS 3 or larger require reinforcement.



#### Notes: (continued)

7. See Tables 5-7a and 5-7b, Column 6.

8.  $t_{min}$  shall be 19 mm ( $^{3}/_{4}$  in.) or the thickness of either part joined by the fillet weld, whichever is less.

9. The construction details apply to unreinforced threaded, non-threaded, and flanged nozzles.

Figure 5-8—Shell Nozzles (continued)

Table 5-5a—(SI) Dimensions for Bolt Circle Diameter D<sub>b</sub> and Cover Plate Diameter D<sub>c</sub> for Shell Manholes

| Column 1                  | Column 2                                  | Column 3                         |  |  |
|---------------------------|-------------------------------------------|----------------------------------|--|--|
| Manhole Diameter OD<br>mm | Bolt Circle Diameter D <sub>b</sub><br>mm | Cover Plate Diameter $D_c$<br>mm |  |  |
| 500                       | 667                                       | 730                              |  |  |
| 600                       | 768                                       | 832                              |  |  |
| 750                       | 921                                       | 984                              |  |  |
| 900                       | 1073                                      | 1137                             |  |  |

Note: See Figure 5-7A.

## Table 5-5b—(USC) Dimensions for Bolt Circle Diameter D<sub>b</sub> and Cover Plate Diameter D<sub>c</sub> for Shell Manholes

| Column 1                   | Column 2                       | Column 3                       |
|----------------------------|--------------------------------|--------------------------------|
| Manhole Diameter OD<br>in. | Bolt Circle Diameter $D_b$ in. | Cover Plate Diameter $D_c$ in. |
| 20                         | 26 <sup>1</sup> / <sub>4</sub> | 28 <sup>3</sup> / <sub>4</sub> |
| 24                         | $30^{1}/_{4}$                  | 32 <sup>3</sup> / <sub>4</sub> |
| 30                         | 36 <sup>1</sup> /4             | 38 <sup>3</sup> / <sub>4</sub> |
| 36                         | $42^{1}/_{4}$                  | 44 <sup>3</sup> / <sub>4</sub> |

Note: See Figure 5-7A.

5-27

08

5-28

#### **API STANDARD 650**

|    |                                      |          | Iable                  | e p-6a-(SI) | Dimensions to         | or Shell Nozz | zies (mm)       |                           |                       |
|----|--------------------------------------|----------|------------------------|-------------|-----------------------|---------------|-----------------|---------------------------|-----------------------|
|    | Column 1                             | Column 2 | Column 3               | Column 4    | Column 5              | Column 6      | Column 7        | Column 8                  | Column 9 <sup>c</sup> |
|    |                                      |          | Nominal                | Diameter of | Length of Side        |               | Minimum         | Minimum Distan            | ce from Bottom        |
| 09 |                                      | Outside  | Thickness of           | Hole in     | of Reinforcing        | Width of      | Distance from   | of Tank to Cen            | ter of Nozzle         |
|    | NPS                                  |          | Flanged Nozzle         | Reinforcing | Plate <sup>b</sup> or | Reinforcing   | Shell-to-Flange |                           |                       |
|    | (Size of                             | Pipe     | Pipe Wall <sup>a</sup> | Plate       | Diameter              | Plate         | Face            | Regular Type <sup>d</sup> | Low Type              |
|    | Nozzle)                              | OD       | $t_n$                  | $D_R$       | $L = D_o$             | W             | J               | $H_N$                     | $C^{-1}$              |
|    |                                      |          |                        |             | Flanged Fittin        | gs            |                 |                           |                       |
|    | 60                                   | 1524.0   | e                      | 1528        | 3068                  | 3703          | 400             | 1641                      | 1534                  |
| 11 | 54                                   | 1371.6   | e                      | 1375        | 2763                  | 3341          | 400             | 1488                      | 1382                  |
|    | 52                                   | 1320.8   | e                      | 1324        | 2661                  | 3214          | 400             | 1437                      | 1331                  |
|    | 50                                   | 1270.0   | e                      | 1274        | 2560                  | 3093          | 400             | 1387                      | 1280                  |
|    | 48                                   | 1219.2   | e                      | 1222        | 2455                  | 2970          | 400             | 1334                      | 1230                  |
|    | 46                                   | 1168.4   | e                      | 1172        | 2355                  | 2845          | 400             | 1284                      | 1180                  |
|    | 44                                   | 1117.6   | e                      | 1121        | 2255                  | 2725          | 375             | 1234                      | 1125                  |
|    | 42                                   | 1066.8   | е                      | 1070        | 2155                  | 2605          | 375             | 1184                      | 1075                  |
|    | 40                                   | 1016.0   | е                      | 1019        | 2050                  | 2485          | 375             | 1131                      | 1025                  |
|    | 38                                   | 965.2    | e                      | 968         | 1950                  | 2355          | 350             | 1081                      | 975                   |
|    | 36                                   | 914.4    | e                      | 918         | 1850                  | 2235          | 350             | 1031                      | 925                   |
|    | 34                                   | 863.6    | e                      | 867         | 1745                  | 2115          | 325             | 979                       | 875                   |
|    | 32                                   | 812.8    | е                      | 816         | 1645                  | 1995          | 325             | 929                       | 820                   |
|    | 30                                   | 762.0    | e                      | 765         | 1545                  | 1865          | 300             | 879                       | 770                   |
|    | 28                                   | 711.2    | e                      | 714         | 1440                  | 1745          | 300             | 826                       | 720                   |
|    | 26                                   | 660.4    | e                      | 664         | 1340                  | 1625          | 300             | 776                       | 670                   |
|    | 24                                   | 609.6    | 12.7                   | 613         | 1255                  | 1525          | 300             | 734                       | 630                   |
|    | 22                                   | 558.8    | 12.7                   | 562         | 1155                  | 1405          | 275             | 684                       | 580                   |
|    | 20                                   | 508.0    | 12.7                   | 511         | 1055                  | 1285          | 275             | 634                       | 525                   |
|    | 18                                   | 457.2    | 12.7                   | 460         | 950                   | 1160          | 250             | 581                       | 475                   |
|    | 16                                   | 406.4    | 12.7                   | 410         | 850                   | 1035          | 250             | 531                       | 425                   |
|    | 10                                   | 355.6    | 12.7                   | 359         | 750                   | 915           | 250             | 481                       | 375                   |
|    | 12                                   | 323.8    | 12.7                   | 327         | 685                   | 840           | 225             | 449                       | 345                   |
| 09 | 10                                   | 273.0    | 12.7                   | 276         | 585                   | 720           | 225             | 399                       | 290                   |
|    | 8                                    | 219.1    | 12.7                   | 222         | 485                   | 590           | 200             | 349                       | 240                   |
|    | 6                                    | 168.3    | 10.97                  | 171         | 400                   | 495           | 200             | 306                       | 200                   |
|    | 4                                    | 114.3    | 8.56                   | 117         | 305                   | 385           | 175             | 259                       | 150                   |
|    | 3                                    | 88.9     | 7.62                   | 92          | 265                   | 345           | 175             | 239                       | 135                   |
|    | $2^{f}$                              | 60.3     | 5.54                   | 63          |                       |               | 150             | 175                       | h                     |
|    | $\frac{1}{1^{1}/2^{f}}$              | 48.3     | 5.08                   | 51          |                       |               | 150             | 150                       | ĥ                     |
|    | 1',2<br>1f                           | 33.4     | 6.35                   |             |                       |               | 150             | 150                       | ĥ                     |
|    | $3_{/4}^{1}$ f                       | 26.7     | 5.54                   |             |                       | -             | 150             | 150                       | ĥ                     |
|    | Threaded and Socket-Welded Couplings |          |                        |             |                       |               |                 |                           |                       |
|    | 3g                                   | 108.0    | Coupling               | 111.1       | 285                   | 360           |                 | 245                       | 145                   |
|    | 2 <sup>f</sup>                       | 76.2     | Coupling               | 79.4        |                       |               |                 | 175                       | h                     |
|    | 2<br>1 <sup>1</sup> /2 <sup>f</sup>  | 63.5     | Coupling               | 66.7        |                       |               |                 | 150                       | h                     |
|    | 1',2<br>1 <sup>f</sup>               | 44.5     | Coupling               | 47.6        |                       |               |                 | 150                       | h                     |
|    | 3/4f                                 | 35.0     | Coupling               | 38.1        |                       |               |                 | 150                       | h                     |
|    | <u> </u>                             |          | couping                | 20.1        |                       |               |                 | 120                       |                       |

Table 5-6a—(SI) Dimensions for Shell Nozzles (mm)

<sup>a</sup>For extra-strong pipe, see ASTM A 53M or A 106M for other wall thicknesses; however, piping material must conform to 4.5.

<sup>b</sup>The width of the shell plate shall be sufficient to contain the reinforcing plate and to provide clearance from the girth joint of the shell course. <sup>c</sup>Low type reinforced nozzles shall not be located lower than the minimum distance shown in Column 9. The minimum distance from the bottom shown in Column 9 complies with spacing rules of 5.7.3 and Figure 5-6.

<sup>d</sup>Regular type reinforced nozzles shall not be located lower than the minimum distance H<sub>N</sub> shown in Column 8 when shell thickness is equal to or less than 12.5 mm. Greater distances may be required for shells thicker than 12.5 mm to meet the minimum weld spacing of 5.7.3 and Figure 5-6.

eSee Table 5-7a, Column 2.

<sup>f</sup>Flanged nozzles and couplings in pipe sizes NPS 2 or smaller do not require reinforcing plates.  $D_R$  will be the diameter of the hole in the shell plate, and Weld A will be as specified in Table 5-7a, Column 6. Reinforcing plates may be used if the construction details comply with reinforced nozzle details.

gA coupling in an NPS 3 requires reinforcement.

<sup>h</sup>See 5.7.3 and Figure 5-6.

Note: See Figure 5-8.

|                  |                                |                        | ,                                   | ,                              |                                       | · · /           |                           |                                     | 1  |
|------------------|--------------------------------|------------------------|-------------------------------------|--------------------------------|---------------------------------------|-----------------|---------------------------|-------------------------------------|----|
| Column 1         | Column 2                       | Column 3               | Column 4                            | Column 5                       | Column 6                              | Column 7        | Column 8                  | Column 9 <sup>c</sup>               |    |
|                  |                                | Nominal                | Diameter of                         | Length of Side                 |                                       | Minimum         | Minimum Distan            | ce from Bottom                      | 09 |
|                  | Outside                        | Thickness of           | Hole in                             | of Reinforcing                 | Width of                              | Distance from   |                           | ter of Nozzle                       |    |
| NPS              |                                | Flanged Nozzle         | Reinforcing                         | Plate <sup>b</sup> or          | Reinforcing                           | Shell-to-Flange |                           |                                     |    |
| (Size of         | Pipe                           | Pipe Wall <sup>a</sup> | Plate                               | Diameter                       | Plate                                 | Face            | Regular Type <sup>d</sup> | Low Type                            |    |
| Nozzle)          | OD                             | <i>t</i> <sub>n</sub>  | $D_R$                               | $L = D_o$                      | W                                     | J               | $H_N$                     | <i>C</i>                            |    |
|                  |                                |                        | _                                   | Flanged Fittin                 |                                       |                 | _                         | _                                   | 1  |
| 60               | 60                             | e                      | $60^{1}/_{8}$                       | $120^{3}/_{4}$                 | 145 <sup>3</sup> / <sub>4</sub>       | 16              | 64 <sup>5</sup> /8        | $60^{3}/_{8}$                       |    |
| 54               | 54                             | e                      | 54 <sup>1</sup> /8                  | $108^{3}/_{4}$                 | $131^{1/2}$                           | 16              | 58 <sup>5</sup> /8        | 54 <sup>3</sup> /8                  |    |
| 52               | 52                             | e                      | 52 <sup>1</sup> /8                  | $104^{3}/_{4}$                 | $126^{1/2}$                           | 16              | 56 <sup>5</sup> /8        | $52^{3}/_{8}$                       | 11 |
| 50               | 50                             | e                      | $50^{1}/_{8}$                       | $100^{3}/_{4}$                 | $121^{3}/_{4}$                        | 16              | 54 <sup>5</sup> /8        | $50^{3}/_{8}$                       |    |
| 48               | 48                             | e                      | $48^{1/8}$                          | $96^{3}/_{4}$                  | 117                                   | 16              | 52 <sup>5</sup> /8        | $48^{3}/_{8}$                       |    |
| 46               | 46                             | e                      | $46^{1/8}$                          | $92^{3}/_{4}$                  | 112                                   | 16              | $50^{5}/_{8}$             | $46^{3}/_{8}$                       | 1  |
| 44               | 44                             | e                      | $44^{1/8}$                          | 88 <sup>3</sup> /4             | $107^{1}/_{4}$                        | 15              | 48 <sup>5</sup> /8        | $44^{3}/_{8}$                       |    |
| 42               | 42                             | e                      | $42^{1}/_{8}$                       | 84 <sup>3</sup> / <sub>4</sub> | $102^{1/2}$                           | 15              | 46 <sup>5</sup> /8        | $42^{3}/_{8}$                       |    |
| 40               | 40                             | e                      | $40^{1}/_{8}$                       | 80 <sup>3</sup> / <sub>4</sub> | 97 <sup>3</sup> /4                    | 15              | 44 <sup>5</sup> /8        | $40^{3}/_{8}$                       |    |
| 38               | 38                             | e                      | 38 <sup>1</sup> /8                  | $76^{3}/_{4}$                  | $92^{3}/_{4}$                         | 14              | $42^{5/8}$                | 38 <sup>3</sup> /8                  |    |
| 36               | 36                             | e                      | $36^{1}/_{8}$                       | $72^{3}/_{4}$                  | 88                                    | 14              | $40^{5}/_{8}$             | $36^{3}/_{8}$                       |    |
| 34               | 34                             | e                      | $34^{1}/_{8}$                       | $68^{3}/_{4}$                  | 83 <sup>1</sup> / <sub>4</sub>        | 13              | 38 <sup>5</sup> /8        | 343/8                               |    |
| 32               | 32                             | e                      | $32^{1}/_{8}$                       | $64^{3}/_{4}$                  | $78^{1}/_{2}$                         | 13              | 36 <sup>5</sup> /8        | $32^{3}/_{8}$                       |    |
| 30               | 30                             | e                      | $30^{1}/_{8}$                       | $60^{3}/_{4}$                  | $73^{1}/_{2}$                         | 13              | $34^{5}/_{8}$             | $30^{3}/_{8}$                       |    |
| 28               | 28                             | e                      | $\frac{30}{8}$                      | 56 <sup>3</sup> /4             | $68^{3}/_{4}$                         | 12              | $32^{5}/_{8}$             | $28^{3}/_{8}$                       |    |
| 26               | 26                             | e                      | $\frac{26}{8}$                      | $50^{7}_{4}$                   | 64                                    | 12              | $32^{78}$<br>$30^{5/8}$   | $26^{3}/_{8}$                       |    |
| 20               | 20<br>24                       | 0.50                   | $\frac{20^{7}}{24^{1}}$             | $\frac{32^{0}}{49^{1}}$        | 60                                    | 12              | 29                        | $\frac{20^{3}}{8}$<br>$24^{3}/_{4}$ |    |
| 24               | 24                             | 0.50                   | $\frac{24^{1}}{8}$<br>$22^{1}/_{8}$ | $49^{2}/_{2}$<br>$45^{1}/_{2}$ | $55^{1}/_{4}$                         | 12              | 29<br>27                  | 243/4                               |    |
|                  |                                |                        |                                     | 451/2                          |                                       |                 |                           | $\frac{22^{3}}{4}$                  |    |
| 20               | 20                             | 0.50                   | $20^{1}/_{8}$                       | $41^{1/2}$                     | $50^{1/2}$                            | 11              | 25                        | $20^{3}/_{4}$                       |    |
| 18               | 18                             | 0.50                   | $18^{1}/_{8}$                       | 371/2                          | $45^{3}/_{4}$                         | 10              | 23                        | 18 <sup>3</sup> / <sub>4</sub>      |    |
| 16               | 16                             | 0.50                   | 16 <sup>1</sup> /8                  | $33^{1/2}$                     | 40 <sup>3</sup> / <sub>4</sub>        | 10              | 21                        | 16 <sup>3</sup> / <sub>4</sub>      |    |
| 14               | 14                             | 0.50                   | $14^{1/8}$                          | 29 <sup>1</sup> / <sub>2</sub> | 36                                    | 10              | 19                        | 14 <sup>3</sup> / <sub>4</sub>      |    |
| 12               | $12^{3}/_{4}$                  | 0.50                   | $12^{7}/_{8}$                       | 27                             | 33                                    | 9               | $17^{3}/_{4}$             | 131/2                               |    |
| 10               | 10 <sup>3</sup> / <sub>4</sub> | 0.50                   | 107/8                               | 23                             | $28^{1}/_{4}$                         | 9               | $15^{3}/_{4}$             | $11^{1/2}$                          |    |
| 8                | 8 <sup>5</sup> /8              | 0.50                   | 8 <sup>3</sup> /4                   | 19                             | $23^{1}/_{4}$                         | 8               | 13 <sup>3</sup> /4        | 9 <sup>1</sup> / <sub>2</sub>       |    |
| 6                | 6 <sup>5</sup> /8              | 0.432                  | $6^{3}/_{4}$                        | $15^{3}/_{4}$                  | <b>19</b> <sup>1</sup> / <sub>2</sub> | 8               | $12^{1/8}$                | 7 <sup>7</sup> /8                   |    |
| 4                | $4^{1}/_{2}$                   | 0.337                  | 4 <sup>5</sup> /8                   | 12                             | $15^{1}/_{4}$                         | 7               | $10^{1/4}$                | 6                                   | 09 |
| 3                | $3^{1/2}$                      | 0.300                  | 3 <sup>5</sup> /8                   | $10^{1}/_{2}$                  | $13^{1}/_{2}$                         | 7               | $9^{1}/_{2}$              | $5^{1}/_{4}$                        |    |
| $2^{f}$          | $2^{3}/_{8}^{-}$               | 0.218                  | $2^{1}/_{2}$                        |                                |                                       | 6               | 7                         | h                                   |    |
| $1^{1}/_{2}^{f}$ | 1.90                           | 0.200                  | 2                                   |                                |                                       | 6               | 6                         | h                                   |    |
| $1^{f}$          | 1.315                          | 0.250                  |                                     |                                | _                                     | 6               | 6                         | h                                   |    |
| $^{3}/_{4}^{f}$  | 1.05                           | 0.218                  | 1001000                             |                                |                                       | 6               | 6                         | h                                   |    |
|                  |                                |                        | Threade                             | d and Socket-Wel               | ded Couplings                         |                 |                           |                                     |    |
| 3g               | 4.250                          | Coupling               | 4 <sup>3</sup> /8                   | $11^{1}/_{4}$                  | $14^{1}/_{4}$                         | -               | 9 <sup>5</sup> /8         | 5 <sup>5</sup> /8                   |    |
| $2^{f}$          | 3.000                          | Coupling               | $3^{1}/_{8}$                        | · · · · · ·                    | ·                                     |                 | 7                         | h                                   |    |
| $1^{1/2}$ f      | 2.500                          | Coupling               | $2^{5}/8$                           |                                |                                       |                 | 6                         | ĥ                                   |    |
| 1 <sup>f</sup>   | 1.750                          | Coupling               | 17/8                                |                                |                                       |                 | ő                         | h                                   |    |
| $3/_4 f$         | 1.375                          | Coupling               | $1^{1}/_{2}$                        |                                |                                       |                 | 5                         | h                                   |    |
|                  |                                |                        | - 12                                |                                |                                       |                 | 5                         | **                                  | 1  |

Table 5-6b—(USC) Dimensions for Shell Nozzles (in.)

<sup>a</sup>For extra-strong pipe, see ASTM A 53 or A 106 for other wall thicknesses; however, piping material must conform to 4.5.

<sup>b</sup>The width of the shell plate shall be sufficient to contain the reinforcing plate and to provide clearance from the girth joint of the shell course. <sup>c</sup>Low type reinforced nozzles shall not be located lower than the minimum distance shown in Column 9. The minimum distance from the bottom shown in Column 9 complies with spacing rules of 5.7.3 and Figure 5-6.

<sup>d</sup>Regular type reinforced nozzles shall not be located lower than the minimum distance  $H_N$  shown in Column 8 when shell thickness is equal to or less than 1/2 in. Greater distances may be required for shells thicker than 1/2 in. to meet the minimum weld spacing of 5.7.3 and Figure 5-6.

eSee Table 5-7b, Column 2.

<sup>f</sup>Flanged nozzles and couplings in pipe sizes NPS 2 or smaller do not require reinforcing plates.  $D_R$  will be the diameter of the hole in the shell plate, and Weld A will be as specified in Table 5-7b, Column 6. Reinforcing plates may be used if the construction details comply with reinforced nozzle details.

<sup>g</sup>A coupling in an NPS 3 requires reinforcement.

<sup>h</sup>See 5.7.3 and Figure 5-6.

Note: See Figure 5-8.

| Column 1                                  | Column 2             | Column 3                                                         | Column 4                 | Column 5                     | Column 6                                        |
|-------------------------------------------|----------------------|------------------------------------------------------------------|--------------------------|------------------------------|-------------------------------------------------|
| Thickness of Shell and                    |                      | Maximum Diameter of<br>Hole in Shell Plate                       |                          | Size of Fille                | t Weld A                                        |
| Reinforcing Plate <sup>a</sup><br>t and T | Nozzles <sup>b</sup> | ( <i>D<sub>p</sub></i> ) Equals Outside<br>Diameter of Pipe Plus | Size of Fillet<br>Weld B | Nozzles Larger Than<br>NPS 2 | NPS <sup>3</sup> / <sub>4</sub> to 2<br>Nozzles |
| 5                                         | 12.7                 | 16                                                               | 5                        | 6                            | 6                                               |
| 6                                         | 12.7                 | 16                                                               | 6                        | 6                            | 6                                               |
| 8                                         | 12.7                 | 16                                                               | 8                        | 6                            | 6                                               |
| 10                                        | 12.7                 | 16                                                               | 10                       | 6                            | 6                                               |
| 11                                        | 12.7                 | 16                                                               | 11                       | 6                            | 6                                               |
| 13                                        | 12.7                 | 16                                                               | 13                       | 6                            | 8                                               |
| 14                                        | 12.7                 | 20                                                               | 14                       | 6                            | 8                                               |
| 16                                        | 12.7                 | 20                                                               | 16                       | 8                            | 8                                               |
| 17                                        | 12.7                 | 20                                                               | 18                       | 8                            | 8                                               |
| 20                                        | 12.7                 | 20                                                               | 20                       | 8                            | 8                                               |
| 21                                        | 12.7                 | 20                                                               | 21                       | 10                           | 8                                               |
| 22                                        | 12.7                 | 20                                                               | 22                       | 10                           | 8                                               |
| 24                                        | 12.7                 | 20                                                               | 24                       | 10                           | 8                                               |
| 25                                        | 12.7                 | 20                                                               | 25                       | 11                           | 8                                               |
| 27                                        | 14                   | 20                                                               | 27                       | 11                           | 8                                               |
| 28                                        | 14                   | 20                                                               | 28                       | 11                           | 8                                               |
| 30                                        | 16                   | 20                                                               | 30                       | 13                           | 8                                               |
| 32                                        | 16                   | 20                                                               | 32                       | 13                           | 8                                               |
| 33                                        | 18                   | 20                                                               | 33                       | 13                           | 8                                               |
| 35                                        | 18                   | 20                                                               | 35                       | 14                           | 8                                               |
| 36                                        | 20                   | 20                                                               | 36                       | 14                           | 8                                               |
| 38                                        | 20                   | 20                                                               | 38                       | 14                           | 8                                               |
| 40                                        | 21                   | 20                                                               | 40                       | 14                           | 8                                               |
| 41                                        | 21                   | 20                                                               | 40                       | 16                           | 8                                               |
| 43                                        | 22                   | 20                                                               | 40                       | 16                           | 8                                               |
| 45                                        | 22                   | 20                                                               | 40                       | 16                           | 8                                               |
|                                           |                      |                                                                  |                          |                              |                                                 |

Table 5-7a-(SI) Dimensions for Shell Nozzles: Pipe, Plate, and Welding Schedules (mm)

<sup>a</sup>If a shell plate thicker than required is used for the product and hydrostatic loading (see 5.6), the excess shell-plate thickness, within a vertical distance both above and below the centerline of the hole in the tank shell plate equal to the vertical dimension of the hole in the tank shell plate, may be considered as reinforcement, and the thickness T of the nozzle reinforcing plate may be decreased accordingly. In such cases, the reinforcement and the attachment welding shall conform to the design limits for reinforcement of shell openings specified in 5.7.2.

<sup>b</sup>This column applies to flanged nozzles NPS 26 and larger. See 4.5 for piping materials.

°Note: See Figure 5-8.

11

5-30

| Column 1                                  | Column 2                                           | Column 3                                                         | Column 4                        | Column 5                     | Column 6                                        |
|-------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|---------------------------------|------------------------------|-------------------------------------------------|
|                                           |                                                    | Maximum Diameter of                                              |                                 | Size of Fille                | t Weld A                                        |
| Reinforcing Plate <sup>a</sup><br>t and T | Thickness of Flanged Nozzles <sup>b</sup><br>$t_n$ | Hole in Shell Plate $(D_p)$ Equals Outside Diameter of Pipe Plus | Size of Fillet<br>Weld <i>B</i> | Nozzles Larger Than<br>NPS 2 | NPS <sup>3</sup> / <sub>4</sub> to 2<br>Nozzles |
| <sup>3</sup> / <sub>16</sub>              | 1/2                                                | 5/ <sub>8</sub>                                                  | 3/16                            | 1/4                          | 1/4                                             |
| <sup>1</sup> / <sub>4</sub>               | 1/2                                                | 5/ <sub>8</sub>                                                  | $^{1}_{4}$                      | 1/4                          | 1/4                                             |
| <sup>5</sup> / <sub>16</sub>              | 1/2                                                | <sup>5</sup> /8                                                  | <sup>5</sup> / <sub>16</sub>    | 1/4                          | 1/4                                             |
| <sup>3</sup> / <sub>8</sub>               | 1/2                                                | 5/ <sub>8</sub>                                                  | 3/8                             | 1/4                          | 1/4                                             |
| <sup>7</sup> / <sub>16</sub>              | 1/2                                                | 5/ <sub>8</sub>                                                  | 7/ <sub>16</sub>                | 1/4                          | $1/_{4}$                                        |
| 1/2                                       | 1/ <sub>2</sub>                                    | 5/ <sub>8</sub>                                                  | 1/2                             | 1/4                          | <sup>5</sup> / <sub>16</sub>                    |
| <sup>9</sup> / <sub>16</sub>              | 1/2                                                | <sup>3</sup> / <sub>4</sub>                                      | <sup>9</sup> / <sub>16</sub>    | 1/4                          | <sup>5</sup> / <sub>16</sub>                    |
| <sup>5</sup> /8                           | 1/2                                                | <sup>3</sup> / <sub>4</sub>                                      | <sup>5</sup> /8                 | <sup>5</sup> / <sub>16</sub> | <sup>5</sup> / <sub>16</sub>                    |
| <sup>11</sup> / <sub>16</sub>             | 1/2                                                | 3/4                                                              | <sup>11</sup> / <sub>16</sub>   | <sup>5</sup> / <sub>16</sub> | <sup>5</sup> / <sub>16</sub>                    |
| 3/4                                       | 1/2                                                | <sup>3</sup> / <sub>4</sub>                                      | 3/4                             | <sup>5</sup> / <sub>16</sub> | <sup>5</sup> / <sub>16</sub>                    |
| <sup>13</sup> / <sub>16</sub>             | 1/2                                                | 3/4                                                              | <sup>13</sup> / <sub>16</sub>   | 3/8                          | <sup>5</sup> / <sub>16</sub>                    |
| 7/8                                       | 1/2                                                | <sup>3</sup> / <sub>4</sub>                                      | 7/8                             | <sup>3</sup> / <sub>8</sub>  | <sup>5</sup> / <sub>16</sub>                    |
| <sup>15</sup> / <sub>16</sub>             | 1/2                                                | <sup>3</sup> / <sub>4</sub>                                      | <sup>15</sup> / <sub>16</sub>   | <sup>3</sup> / <sub>8</sub>  | <sup>5</sup> / <sub>16</sub>                    |
| 1                                         | 1/2                                                | <sup>3</sup> / <sub>4</sub>                                      | 1                               | <sup>7</sup> / <sub>16</sub> | <sup>5</sup> / <sub>16</sub>                    |
| $1^{1}/_{16}$                             | <sup>9</sup> / <sub>16</sub>                       | <sup>3</sup> / <sub>4</sub>                                      | $1^{1}/_{16}$                   | <sup>7</sup> / <sub>16</sub> | <sup>5</sup> / <sub>16</sub>                    |
| $1^{1}/_{8}$                              | <sup>9</sup> / <sub>16</sub>                       | <sup>3</sup> / <sub>4</sub>                                      | $1^{1}/_{8}$                    | <sup>7</sup> / <sub>16</sub> | <sup>5</sup> / <sub>16</sub>                    |
| 1 <sup>3</sup> / <sub>16</sub>            | <sup>5</sup> /8                                    | 3/4                                                              | 1 <sup>3</sup> / <sub>16</sub>  | 1/2                          | <sup>5</sup> / <sub>16</sub>                    |
| $1^{1}/_{4}$                              | <sup>5</sup> /8                                    | <sup>3</sup> / <sub>4</sub>                                      | 11/4                            | 1/2                          | <sup>5</sup> / <sub>16</sub>                    |
| 1 <sup>5</sup> / <sub>16</sub>            | 11/16                                              | <sup>3</sup> / <sub>4</sub>                                      | 1 <sup>5</sup> / <sub>16</sub>  | 1/2                          | <sup>5</sup> / <sub>16</sub>                    |
| 1 <sup>3</sup> /8                         | 11/16                                              | <sup>3</sup> / <sub>4</sub>                                      | 1 <sup>3</sup> / <sub>8</sub>   | <sup>9</sup> / <sub>16</sub> | <sup>5</sup> / <sub>16</sub>                    |
| 1 <sup>7</sup> / <sub>16</sub>            | 3/4                                                | 3/4                                                              | 17/16                           | <sup>9</sup> / <sub>16</sub> | <sup>5</sup> / <sub>16</sub>                    |
| $1^{1}/_{2}$                              | 3/4                                                | <sup>3</sup> / <sub>4</sub>                                      | 11/2                            | <sup>9</sup> / <sub>16</sub> | <sup>5</sup> / <sub>16</sub>                    |
| 1 <sup>9</sup> / <sub>16</sub>            | <sup>13</sup> / <sub>16</sub>                      | <sup>3</sup> / <sub>4</sub>                                      | $1^{1}/_{2}$                    | <sup>9</sup> / <sub>16</sub> | <sup>5</sup> / <sub>16</sub>                    |
| 1 <sup>5</sup> /8                         | <sup>13</sup> / <sub>16</sub>                      | <sup>3</sup> / <sub>4</sub>                                      | 1 <sup>1</sup> / <sub>2</sub>   | <sup>5</sup> /8              | <sup>5</sup> / <sub>16</sub>                    |
| 111/16                                    | 7/8                                                | <sup>3</sup> / <sub>4</sub>                                      | 1 <sup>1</sup> / <sub>2</sub>   | <sup>5</sup> /8              | <sup>5</sup> / <sub>16</sub>                    |
| 13/4                                      | 7/8                                                | <sup>3</sup> / <sub>4</sub>                                      | $1^{1/2}$                       | <sup>5</sup> /8              | <sup>5</sup> / <sub>16</sub>                    |

Table 5-7b-(USC) Dimensions for Shell Nozzles: Pipe, Plate, and Welding Schedules (in.)

<sup>a</sup>If a shell plate thicker than required is used for the product and hydrostatic loading (see 5.6), the excess shell-plate thickness, within a vertical distance both above and below the centerline of the hole in the tank shell plate equal to the vertical dimension of the hole in the tank shell plate, may be considered as reinforcement, and the thickness T of the nozzle reinforcing plate may be decreased accordingly. In such cases, the reinforcement and the attachment welding shall conform to the design limits for reinforcement of shell openings specified in 5.7.2.

<sup>b</sup>This column applies to flanged nozzles NPS 26 and larger. See 4.5 for piping materials.

°Note: See Figure 5-8.

#### API STANDARD 650

|    | Calerra                       | <u>Calars</u> 2                                     |                                       | Table 5-8a-                        |                                    |                       |                         |                         |                                                           | C-1 10                                                 | 0.1. 11                           | 0-1                                                     |
|----|-------------------------------|-----------------------------------------------------|---------------------------------------|------------------------------------|------------------------------------|-----------------------|-------------------------|-------------------------|-----------------------------------------------------------|--------------------------------------------------------|-----------------------------------|---------------------------------------------------------|
|    | Column 1                      | Column 2                                            | Column 3                              | Column 4                           | Column 5                           | Column 6              | Column 7                | Column 8                | Column 9                                                  | Column 10                                              |                                   | Column 12                                               |
|    |                               |                                                     |                                       |                                    |                                    |                       |                         |                         | Diameter                                                  | of Bore                                                | Minimum<br>Hub at Po              | Diameter of<br>int of Weld                              |
| 08 | NPS<br>(Size of<br>Nozzle)    | Minimum<br>Thickness<br>of Flange <sup>d</sup><br>Q | Outside<br>Diameter<br>of Flange<br>A | Diameter<br>of Raised<br>Face<br>D | Diameter<br>of Bolt<br>Circle<br>C | Number<br>of<br>Holes | Diameter<br>of<br>Holes | Diameter<br>of<br>Bolts | Slip-On<br>Type: Outside<br>Diameter of<br>Pipe Plus<br>B | Welding<br>Neck<br>Type <sup>a</sup><br>B <sub>1</sub> | Slip-On<br>Type <sup>b</sup><br>E | Welding-<br>Neck<br>Type <sup>c</sup><br>E <sub>1</sub> |
| I  | 60                            | 79.4                                                | 1854                                  | 1676                               | 1759                               | 52                    | 48                      | 45                      | 6.4                                                       | a                                                      | b                                 | с                                                       |
|    | 54                            | 76.2                                                | 1683                                  | 1511                               | 1594                               | 44                    | 48                      | 45                      | 6.4                                                       | а                                                      | b                                 | с                                                       |
| 11 | 52                            | 73                                                  | 1626                                  | 1461                               | 1537                               | 44                    | 48                      | 45                      | 6.4                                                       | а                                                      | b                                 | с                                                       |
|    | 50                            | 70                                                  | 1569                                  | 1410                               | 1480                               | 44                    | 48                      | 45                      | 6.4                                                       | а                                                      | b                                 | с                                                       |
|    | 48                            | 70                                                  | 1510                                  | 1360                               | 1426                               | 44                    | 42                      | 40                      | 6.4                                                       | а                                                      | b                                 | c                                                       |
|    | 46                            | 68                                                  | 1460                                  | 1295                               | 1365                               | 40                    | 42                      | 40                      | 6.4                                                       | а                                                      | b                                 | с                                                       |
|    | 44                            | 67                                                  | 1405                                  | 1245                               | 1315                               | 40                    | 42                      | 40                      | 6.4                                                       | а                                                      | b                                 | с                                                       |
|    | 42                            | 67                                                  | 1345                                  | 1195                               | 1257                               | 36                    | 42                      | 40                      | 6.4                                                       | а                                                      | b                                 | с                                                       |
|    | 40                            | 65                                                  | 1290                                  | 1125                               | 1200                               | 36                    | 42                      | 40                      | 6.4                                                       | а                                                      | b                                 | с                                                       |
|    | 38                            | 60                                                  | 1240                                  | 1075                               | 1150                               | 32                    | 42                      | 40                      | 6.4                                                       | а                                                      | b                                 | с                                                       |
|    | 36                            | 60                                                  | 1170                                  | 1020                               | 1036                               | 32                    | 42                      | 40                      | 6.4                                                       | a                                                      | b                                 | с                                                       |
|    | 34                            | 59                                                  | 1110                                  | 960                                | 1029                               | 32                    | 42                      | 40                      | 6.4                                                       | а                                                      | b                                 | с                                                       |
|    | 32                            | 57                                                  | 1060                                  | 910                                | 978                                | 28                    | 42                      | 40                      | 6.4                                                       | а                                                      | b                                 | с                                                       |
|    | 30                            | 54                                                  | 985                                   | 855                                | 914                                | 28                    | 33                      | 30                      | 6.4                                                       | а                                                      | b                                 | с                                                       |
| 08 | 28                            | 52                                                  | 925                                   | 795                                | 864                                | 28                    | 33                      | 30                      | 6.4                                                       | а                                                      | b                                 | c                                                       |
|    | 26                            | 50                                                  | 870                                   | 745                                | 806                                | 24                    | 33                      | 30                      | 6.4                                                       | а                                                      | b                                 | с                                                       |
|    | 24                            | 48                                                  | 815                                   | 690                                | 750                                | 20                    | 33                      | 30                      | 4.8                                                       | а                                                      | b                                 | c                                                       |
|    | 22                            | 46                                                  | 750                                   | 640                                | 692                                | 20                    | 33                      | 30                      | 4.8                                                       | а                                                      | b                                 | с                                                       |
|    | 20                            | 43                                                  | 700                                   | 585                                | 635                                | 20                    | 30                      | 27                      | 4.8                                                       | а                                                      | b                                 | с                                                       |
|    | 18                            | 40                                                  | 635                                   | 535                                | 577                                | 16                    | 30                      | 27                      | 4.8                                                       | а                                                      | b                                 | с                                                       |
|    | 16                            | 36                                                  | 595                                   | 470                                | 540                                | 16                    | 27                      | 24                      | 4.8                                                       | а                                                      | b                                 | с                                                       |
|    | 14                            | 35                                                  | 535                                   | 415                                | 476                                | 12                    | 27                      | 24                      | 4.8                                                       | а                                                      | b                                 | с                                                       |
|    | 12                            | 32                                                  | 485                                   | 380                                | 432                                | 12                    | 25                      | 22                      | 3.2                                                       | а                                                      | b                                 | с                                                       |
|    | 10                            | 30                                                  | 405                                   | 325                                | 362                                | 12                    | 25                      | 22                      | 3.2                                                       | а                                                      | b                                 | с                                                       |
|    | 8                             | 28                                                  | 345                                   | 270                                | 298                                | 8                     | 23                      | 20                      | 3.2                                                       | а                                                      | b                                 | с                                                       |
|    | 6                             | 25                                                  | 280                                   | 216                                | 241                                | 8                     | 23                      | 20                      | 2.4                                                       | а                                                      | b                                 | с                                                       |
|    | 4                             | 24                                                  | 230                                   | 157                                | 190                                | 8                     | 19                      | 16                      | 1.6                                                       | а                                                      | ь                                 | с                                                       |
|    | 3                             | 24                                                  | 190                                   | 127                                | 152                                | 4                     | 19                      | 16                      | 1.6                                                       | а                                                      | b                                 | с                                                       |
|    | 2                             | 20                                                  | 150                                   | 92                                 | 121                                | 4                     | 19                      | 16                      | 1.6                                                       | а                                                      | b                                 | с                                                       |
|    | 1 <sup>1</sup> / <sub>2</sub> | 17                                                  | 125                                   | 73                                 | 98                                 | 4                     | 16                      | 12                      | 1.6                                                       | a                                                      | b                                 | с                                                       |
|    | 1/2                           | 17                                                  | 1 <del>4</del> J                      | 15                                 | 20                                 | -                     |                         | 12                      | 1.0                                                       | -*                                                     | 0                                 | č                                                       |

#### Table 5-8a—(SI) Dimensions for Shell Nozzle Flanges (mm)

 $^{a}B_{1}$  = inside diameter of pipe.

 $^{b}E$  = outside diameter of pipe +  $2t_{n}$ .

 $^{c}E_{1}$  = outside diameter of pipe.

<sup>d</sup>Corrosion allowance, if specified, need not be added to flange and cover thicknesses complying with ASME B16.5 Class 150, ASME B16.1 Class 125, and ASME B16.47 flanges.

Note: See Figure 5-8. The facing dimensions for slip-on and welding-neck flanges in NPS  $1^{1}_{2}$  through 20 and NPS 24 are identical to those specified in ASME B16.5 for Class 150 steel flanges. The facing dimensions for flanges in NPS 30, 36, 42, 48, 50, 52, 54, and 60 are in agreement with ASME B16.1 for Class 125 cast iron flanges. The dimensions for large flanges may conform to Series B of ASME B16.47.

5-32

11

.

| Column 1                   | Column 2                                            | Column 3                              | Column 4                           | Column 5                           | Column 6              | Column 7                      | Column 8                | Column 9                                                  | Column 10                                              | Column 11                         | Column 12                                      |
|----------------------------|-----------------------------------------------------|---------------------------------------|------------------------------------|------------------------------------|-----------------------|-------------------------------|-------------------------|-----------------------------------------------------------|--------------------------------------------------------|-----------------------------------|------------------------------------------------|
|                            |                                                     |                                       |                                    |                                    |                       |                               |                         | Diameter                                                  | of Bore                                                |                                   | Diameter of<br>int of Weld                     |
| NPS<br>(Size of<br>Nozzle) | Minimum<br>Thickness<br>of Flange <sup>d</sup><br>Q | Outside<br>Diameter<br>of Flange<br>A | Diameter<br>of Raised<br>Face<br>D | Diameter<br>of Bolt<br>Circle<br>C | Number<br>of<br>Holes | Diameter<br>of<br>Holes       | Diameter<br>of<br>Bolts | Slip-On Type:<br>Outside<br>Diameter of<br>Pipe Plus<br>B | Welding<br>Neck<br>Type <sup>a</sup><br>B <sub>1</sub> | Slip-On<br>Type <sup>b</sup><br>E | Welding-<br>Neck<br>Type <sup>c</sup><br>$E_1$ |
| 60                         | 31/8                                                | 73                                    | 66                                 | 69 <sup>1</sup> / <sub>4</sub>     | 52                    | 17/8                          | 13/4                    | 0.25                                                      | а                                                      | b                                 | с                                              |
| 54                         | 3                                                   | 66 <sup>1</sup> / <sub>4</sub>        | 59 <sup>1</sup> / <sub>2</sub>     | $62^{3}/_{4}$                      | 44                    | 17/8                          | $1^{3}/_{4}$            | 0.25                                                      | а                                                      | b                                 | с                                              |
| 52                         | 2 <sup>7</sup> /8                                   | 64                                    | $57^{1}/_{2}$                      | 60 <sup>1</sup> / <sub>2</sub>     | 44                    | 17/8                          | $1^{3}/_{4}$            | 0.25                                                      | а                                                      | b                                 | с                                              |
| 50                         | 2 <sup>3</sup> / <sub>4</sub>                       | 61 <sup>3</sup> / <sub>4</sub>        | 55 <sup>1</sup> / <sub>2</sub>     | 58 <sup>1</sup> / <sub>4</sub>     | 44                    | 17/8                          | $1^{3}/_{4}$            | 0.25                                                      | а                                                      | b                                 | с                                              |
| 48                         | $2^{3}/_{4}$                                        | $59^{1}/_{2}$                         | 531/2                              | 56                                 | 44                    | 1 <sup>5</sup> / <sub>8</sub> | $1^{1}/_{2}$            | 0.25                                                      | a                                                      | b                                 | c                                              |
| 46                         | $2^{11}/_{16}$                                      | $57^{1}/_{2}$                         | 51                                 | 53 <sup>3</sup> / <sub>4</sub>     | 40                    | 1 <sup>5</sup> /8             | $1^{1}/_{2}$            | 0.25                                                      | а                                                      | b                                 | с                                              |
| 44                         | 2 <sup>5</sup> /8                                   | 551/4                                 | 49                                 | 51 <sup>3</sup> / <sub>4</sub>     | 40                    | 1 <sup>5</sup> / <sub>8</sub> | $1^{1}/_{2}$            | 0.25                                                      | а                                                      | b                                 | с                                              |
| 42                         | 2 <sup>5</sup> /8                                   | 53                                    | 47                                 | 49 <sup>1</sup> / <sub>2</sub>     | 36                    | 1 <sup>5</sup> /8             | $1^{1}/_{2}$            | 0.25                                                      | а                                                      | b                                 | с                                              |
| 40                         | $2^{1}/_{2}$                                        | $50^{3}/_{4}$                         | $44^{1}/_{4}$                      | $47^{1}/_{4}$                      | 36                    | 1 <sup>5</sup> /8             | 11/2                    | 0.25                                                      | а                                                      | b                                 | с                                              |
| 38                         | 2 <sup>3</sup> / <sub>8</sub>                       | 48 <sup>3</sup> / <sub>4</sub>        | $42^{1}/_{4}$                      | 45 <sup>1</sup> / <sub>4</sub>     | 32                    | 1 <sup>5</sup> /8             | $1^{1}/_{2}$            | 0.25                                                      | а                                                      | b                                 | с                                              |
| 36                         | 2 <sup>3</sup> / <sub>8</sub>                       | 46                                    | $40^{1}/_{4}$                      | $42^{3}/_{4}$                      | 32                    | 1 <sup>5</sup> / <sub>8</sub> | $1^{1/2}$               | 0.25                                                      | а                                                      | b                                 | с                                              |
| 34                         | 2 <sup>5</sup> / <sub>16</sub>                      | 43 <sup>3</sup> / <sub>4</sub>        | $37^{3}/_{4}$                      | $40^{1}/_{2}$                      | 32                    | $1^{5}/_{8}$                  | $1^{1}/_{2}$            | 0.25                                                      | а                                                      | b                                 | с                                              |
| 32                         | $2^{1}/_{4}$                                        | $41^{3}/_{4}$                         | 35 <sup>3</sup> / <sub>4</sub>     | 381/2                              | 28                    | 1 <sup>5</sup> /8             | $1^{1}/_{2}$            | 0.25                                                      | а                                                      | b                                 | с                                              |
| 30                         | $2^{1}/_{8}$                                        | 38 <sup>3</sup> / <sub>4</sub>        | 333/4                              | 36                                 | 28                    | 1 <sup>3</sup> / <sub>8</sub> | $1^{1}/_{4}$            | 0.25                                                      | а                                                      | b                                 | с                                              |
| 28                         | 2 <sup>1</sup> / <sub>16</sub>                      | 36 <sup>1</sup> / <sub>2</sub>        | 31 <sup>1</sup> / <sub>4</sub>     | 34                                 | 28                    | 13/8                          | $1^{1}/_{4}$            | 0.25                                                      | а                                                      | b                                 | с                                              |
| 26                         | 2                                                   | $34^{1}/_{4}$                         | $29^{1}/_{4}$                      | 31 <sup>3</sup> / <sub>4</sub>     | 24                    | 1 <sup>3</sup> / <sub>8</sub> | $1^{1}/_{4}$            | 0.25                                                      | a                                                      | b                                 | с                                              |
| 24                         | 17/8                                                | 32                                    | $27^{1}/_{4}$                      | $29^{1/2}$                         | 20                    | 1 <sup>3</sup> / <sub>8</sub> | $1^{1}/_{4}$            | 0.19                                                      | a                                                      | b                                 | с                                              |
| 22                         | $1^{13}/_{16}$                                      | $29^{1}/_{2}$                         | 251/4                              | $27^{1}/_{4}$                      | 20                    | 1 <sup>3</sup> / <sub>8</sub> | $1^{1}/_{4}$            | 0.19                                                      | а                                                      | b                                 | с                                              |
| 20                         | $1^{11}/_{16}$                                      | $27^{1}/_{2}$                         | 23                                 | 25                                 | 20                    | $1^{1}/_{4}$                  | $1^{1}/_{8}$            | 0.19                                                      | а                                                      | b                                 | с                                              |
| 18                         | 1 <sup>9</sup> / <sub>16</sub>                      | 25                                    | 21                                 | $22^{3}/_{4}$                      | 16                    | $1^{1}/_{4}$                  | 11/8                    | 0.19                                                      | a                                                      | ь                                 | с                                              |
| 16                         | 17/16                                               | 23 <sup>1</sup> / <sub>2</sub>        | 18 <sup>1</sup> / <sub>2</sub>     | $21^{1}/_{4}$                      | 16                    | 11/8                          | 1                       | 0.19                                                      | а                                                      | b                                 | с                                              |
| 14                         | 1 <sup>3</sup> /8                                   | 21                                    | 16 <sup>1</sup> / <sub>4</sub>     | 18 <sup>3</sup> / <sub>4</sub>     | 12                    | 11/8                          | 1                       | 0.19                                                      | а                                                      | b                                 | с                                              |
| 12                         | $1^{1}/_{4}$                                        | 19                                    | 15                                 | 17                                 | 12                    | 1                             | 7/8                     | 0.13                                                      | а                                                      | b                                 | с                                              |
| 10                         | 1 <sup>3</sup> / <sub>16</sub>                      | 16                                    | $12^{3}/_{4}$                      | $14^{1}/_{4}$                      | 12                    | 1                             | 7/8                     | 0.13                                                      | a                                                      | b                                 | с                                              |
| 8                          | $1^{1}/_{8}$                                        | $13^{1/2}$                            | 10 <sup>5</sup> /8                 | 11 <sup>3</sup> /4                 | 8                     | 7/8                           | 3/4                     | 0.10                                                      | а                                                      | b                                 | с                                              |
| 6                          | 1                                                   | 11                                    | 81/2                               | 9 <sup>1</sup> / <sub>2</sub>      | 8                     | 7/8                           | 3/4                     | 0.10                                                      | а                                                      | b                                 | с                                              |
| 4                          | <sup>15</sup> / <sub>16</sub>                       | 9                                     | 6 <sup>3</sup> / <sub>16</sub>     | $7^{1}/_{2}$                       | 8                     | <sup>3</sup> / <sub>4</sub>   | <sup>5</sup> /8         | 0.06                                                      | a                                                      | b                                 | с                                              |
| 3                          | 15/16                                               | $7^{1}/_{2}$                          | 5                                  | 6                                  | 4                     | 3/4                           | 5/8                     | 0.06                                                      | a                                                      | b                                 | с                                              |
| 2                          | <sup>3</sup> /4                                     | 6                                     | 3 <sup>5</sup> /8                  | $4^{3}/_{4}$                       | 4                     | 3/4                           | <sup>5</sup> /8         | 0.07                                                      | а                                                      | b                                 | с                                              |
| $1^{1}/_{2}$               | <sup>11</sup> / <sub>16</sub>                       | 5                                     | 2 <sup>7</sup> / <sub>8</sub>      | 37/8                               | 4                     | 5/8                           | 1/2                     | 0.07                                                      | а                                                      | b                                 | с                                              |

| able | 5-8b( | (USC) | Dimensions | for | Shell | Nozzle | Flanges | (in.) |  |
|------|-------|-------|------------|-----|-------|--------|---------|-------|--|
|------|-------|-------|------------|-----|-------|--------|---------|-------|--|

 $^{a}B_{1}$  = inside diameter of pipe.

 $^{b}E$  = outside diameter of pipe +  $2t_{n}$ .

 $^{c}E_{1}$  = outside diameter of pipe.

dCorrosion allowance, if specified, need not be added to flange and cover thicknesses complying with ASME B16.5 Class 150, ASME B16.1 Class 125, and . ASME B16.47 flanges.

Note: See Figure 5-8. The facing dimensions for slip-on and welding-neck flanges in NPS  $1^{1}_{2}$  through 20 and NPS 24 are identical to those specified in ASME B16.5 for Class 150 steel flanges. The facing dimensions for flanges in NPS 30, 36, 42, 48, 50, 52, 54, and 60 are in agreement with ASME B16.1 for Class 125 cast iron flanges. The dimensions for large flanges may conform to Series B of ASME B16.47. 11

5-33

API STANDARD 650

|    |           |          | Table (               |                 | Binonolono                      |          | i jpo oloan                  | out i itting | 0 (11111)            |           |           |
|----|-----------|----------|-----------------------|-----------------|---------------------------------|----------|------------------------------|--------------|----------------------|-----------|-----------|
|    | Column 1  | Column 2 | Column 3              | Column 4        | Column 5                        | Column 6 | Column 7                     | Column 8     | Column 9             | Column 10 | Column 11 |
|    |           |          | Arc Width<br>of Shell | Upper<br>Corner | Upper Corner<br>Radius of Shell | Edge     | Flange<br>Width <sup>a</sup> | Bottom       |                      |           |           |
| 08 | Height of | Width of | Reinforcing           | Radius of       | Reinforcing                     | Distance | (Except at                   | Flange       | Special Bolt         | Number    | Diameter  |
|    | Opening   | Opening  | Plate                 | Opening         | Plate                           | of Bolts | Bottom)                      | Width        | Spacing <sup>b</sup> | of        | of        |
|    | h         | b        | W                     | $r_1$           | $r_2$                           | е        | f3                           | $f_2$        | g                    | Bolts     | Bolts     |
|    | 203       | 406      | 1170                  | 100             | 360                             | 32       | 102                          | 89           | 83                   | 22        | 20        |
| J  | 610       | 610      | 1830                  | 300             | 740                             | 38       | 102                          | 95           | 89                   | 36        | 20        |
|    | 914       | 1219     | 2700                  | 610             | 1040                            | 38       | 114                          | 121          | 108                  | 46        | 24        |
| 11 | 1219°     | 1219     | 3200                  | 610             | 1310                            | 38       | 114                          | 127          | 114                  | 52        | 24        |

Table 5-9a—(SI) Dimensions for Flush-Type Cleanout Fittings (mm)

<sup>a</sup>For neck thicknesses greater than 40 mm, increase  $f_3$  as necessary to provide a 1.5 mm clearance between the required neck-to-flange weld and the head of the bolt.

<sup>b</sup>Refers to spacing at the lower corners of the cleanout-fitting flange.

<sup>c</sup>Only for Group I, II, III, or IIIA shell materials (see 5.7.7.2).

Note: See Figure 5-12.

| Table 5-9b—(USC) Dimensions for Flush-Type Cleanout Fittings (in.) |
|--------------------------------------------------------------------|
|--------------------------------------------------------------------|

|    | Column 1        | Column 2 | Column 3              | Column 4        | Column 5                        | Column 6     | Column 7                     | Column 8          | Column 9                      | Column 10 | Column 11                   |
|----|-----------------|----------|-----------------------|-----------------|---------------------------------|--------------|------------------------------|-------------------|-------------------------------|-----------|-----------------------------|
|    |                 |          | Arc Width<br>of Shell | Upper<br>Corner | Upper Corner<br>Radius of Shell | Edge         | Flange<br>Width <sup>a</sup> | Bottom            |                               |           |                             |
| 08 | Height of       | Width of | Reinforcing           | Radius of       | Reinforcing                     | Distance     | (Except at                   | Flange            | Special Bolt                  | Number    | Diameter                    |
|    | Opening         | Opening  | Plate                 | Opening         | Plate                           | of Bolts     | Bottom)                      | Width             | Spacing <sup>b</sup>          | of        | of                          |
|    | h               | b        | W                     | $r_1$           | $r_2$                           | е            | $f_3$                        | $f_2$             | g                             | Bolts     | Bolts                       |
|    | 8               | 16       | 46                    | 4               | 14                              | $1^{1}/_{4}$ | 4                            | 31/2              | 31/4                          | 22        | 3/4                         |
|    | 24              | 24       | 72                    | 12              | 29                              | $1^{1}/_{2}$ | 4                            | $3^{3}/_{4}$      | 3 <sup>1</sup> / <sub>2</sub> | 36        | <sup>3</sup> / <sub>4</sub> |
| 11 | 36              | 48       | 106                   | 24              | 41                              | $1^{1/2}$    | $4^{1}/_{2}$                 | 4 <sup>3</sup> /4 | $4^{1}/_{4}$                  | 46        | 1                           |
|    | 48 <sup>c</sup> | 48       | 125                   | 24              | 51 <sup>1</sup> / <sub>2</sub>  | $1^{1/2}$    | $4^{1}/_{2}$                 | 5                 | 4 <sup>1</sup> / <sub>2</sub> | 52        | 1                           |

<sup>a</sup>For neck thicknesses greater than  $1^{9}/_{16}$  in., increase  $f_3$  as necessary to provide a  $1/_{16}$  in. clearance between the required neck-to-flange weld and the head of the bolt.

<sup>b</sup>Refers to spacing at the lower corners of the cleanout-fitting flange.

<sup>c</sup>Only for Group I, II, III, or IIIA shell materials (see 5.7.7.2).

Note: See Figure 5-12.

yield and tensile strengths. When the material strength is greater than or equal to the 70% and 80% minimum values, the area in the neck available for reinforcement shall be reduced by the ratio of the allowable stress in the neck, using the governing stress factors, to the allowable stress in the attached shell plate. No credit may be taken for the additional strength of any reinforcing material that has a higher allowable stress than that of the shell plate. Neck material that has a yield or tensile strength less than the 70% or 80% minimum values may be used, provided that no neck area is considered as effective reinforcement.

**5.7.2.4** The following portions of the neck of a fitting may be considered part of the area of reinforcement, except where prohibited by 5.7.2.3, Item e:

a. The portion extending outward from the outside surface of the tank shell plate to a distance equal to four times the neck-wall thickness or, if the neck-wall thickness is reduced within this distance, to the point of transition.

b. The portion lying within the shell-plate thickness.

c. The portion extending inward from the inside surface of the tank shell plate to the distance specified in Item a.

**5.7.2.5** The aggregate strength of the weld attaching a fitting to the shell plate, an intervening reinforcing plate, or both shall at least equal the proportion of the forces passing through the entire reinforcement that is calculated to pass through the fitting.

**5.7.2.6** The aggregate strength of the welds attaching any intervening reinforcing plate to the shell plate shall at least equal the proportion of the forces passing through the entire reinforcement that is calculated to pass through the reinforcing plate.

5-34

07

| Table 5-10a-(SI) Minimum Thi | ickness of Cover Plate, | Bolting Flange,              | and Bottom Reinforcing Plate for |
|------------------------------|-------------------------|------------------------------|----------------------------------|
|                              | Flush-Type Cleanou      | t Fittings (mm) <sup>f</sup> |                                  |

| Column 1    | Column 2              | Column 3    | Column 4    | Column 5       | Column 6              | Column 7            | Column 8    | Column 9    | Column 10   |
|-------------|-----------------------|-------------|-------------|----------------|-----------------------|---------------------|-------------|-------------|-------------|
|             |                       |             |             | Size           | of Opening $h \times$ | b (Height $	imes$ W | /idth)      |             |             |
|             |                       | 200 :       | < 400       | 600 :          | × 600                 | 900 ×               | < 1200      | 1200 :      | × 1200      |
| Maximum     |                       | Thickness   | Thickness   | Thickness      | Thickness             | Thickness           | Thickness   | Thickness   | Thickness   |
| Design      |                       | of Bolting  | of Bottom   | of Bolting     | of Bottom             | of Bolting          | of Bottom   | of Bolting  | of Bottom   |
| LiquidLevel | Equivalent            | Flange and  | Reinforcing | Flange and     | Reinforcing           | Flange and          | Reinforcing | Flange and  | Reinforcing |
| m           | Pressure <sup>a</sup> | Cover Plate | Plateb      | Cover Plate    | Platec                | Cover Plate         | Plated      | Cover Plate | Platee      |
| H           | kPa                   | $t_c$       | $t_b$       | t <sub>c</sub> | $t_b$                 | $t_c$               | $t_b$       | $t_c$       | $t_b$       |
| 6.1         | 60                    | 10          | 13          | 10             | 13                    | 16                  | 21          | 16          | 22          |
| 10.4        | 101                   | 10          | 13          | 13             | 13                    | 19                  | 25          | 21          | 28          |
| 12.5        | 123                   | 10          | 13          | 13             | 14                    | 22                  | 28          | 22          | 30          |
| 16.1        | 159                   | 10          | 13          | 14             | 16                    | 24                  | 32          | 25          | 33          |
| 18.3        | 179                   | 11          | 13          | 16             | 18                    | 25                  | 33          | 28          | 35          |
| 19.5        | 191                   | 11          | 13          | 16             | 18                    | 27                  | 35          | 28          | 36          |
| 21.9        | 215                   | 11          | 13          | 18             | 19                    | 28                  | 36          | 30          | 40          |

<sup>a</sup>Equivalent pressure is based on water loading.

<sup>b</sup>Maximum of 25 mm.

<sup>c</sup>Maximum of 28 mm.

<sup>d</sup>Maximum of 40mm.

<sup>e</sup>Maximum of 45 mm. <sup>f</sup>See 5.7.7.7 when corrosion allowance is specified.

Note: See Figure 5-12.

# Table 5-10b—(USC) Minimum Thickness of Cover Plate, Bolting Flange, and Bottom Reinforcing Plate for Flush-Type Cleanout Fittings (in.)<sup>f</sup>

| Column 1                               | Column 2                            | Column 3                                             | Column 4                                                    | Column 5                                             | Column 6                                                    | Column 7                                             | Column 8                                                    | Column 9                                             | Column 10                                                   |
|----------------------------------------|-------------------------------------|------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|
|                                        |                                     |                                                      |                                                             | Size                                                 | of Opening $h \times$                                       | $ < b $ (Height $ \times $ W                         | 'idth)                                                      |                                                      |                                                             |
|                                        |                                     | 8 ×                                                  | : 16                                                        | 24 >                                                 | × 24                                                        | 36>                                                  | < 48                                                        | 48:                                                  | × 48                                                        |
| Maximum<br>Design<br>LiquidLevel<br>ft | Equivalent<br>Pressure <sup>a</sup> | Thickness<br>of Bolting<br>Flange and<br>Cover Plate | Thickness<br>of Bottom<br>Reinforcing<br>Plate <sup>b</sup> | Thickness<br>of Bolting<br>Flange and<br>Cover Plate | Thickness<br>of Bottom<br>Reinforcing<br>Plate <sup>c</sup> | Thickness<br>of Bolting<br>Flange and<br>Cover Plate | Thickness<br>of Bottom<br>Reinforcing<br>Plate <sup>d</sup> | Thickness<br>of Bolting<br>Flange and<br>Cover Plate | Thickness<br>of Bottom<br>Reinforcing<br>Plate <sup>e</sup> |
| Н                                      | psi                                 | t <sub>c</sub>                                       | t <sub>b</sub>                                              | $t_c$                                                | $t_b$                                                       | $t_c$                                                | $t_b$                                                       | $t_c$                                                | $t_b$                                                       |
| 20                                     | 8.7                                 | 3/8                                                  | 1/2                                                         | 3/8                                                  | 1/2                                                         | <sup>5</sup> / <sub>8</sub> )                        | <sup>13</sup> / <sub>16</sub>                               | <sup>5</sup> /8                                      | 7/8                                                         |
| 34                                     | 14.7                                | <sup>3</sup> / <sub>8</sub>                          | 1/2                                                         | 1/2                                                  | 1/ <sub>2</sub>                                             | <sup>3</sup> / <sub>4</sub>                          | 1                                                           | <sup>13</sup> / <sub>16</sub>                        | $1^{1}/_{8}$                                                |
| 41                                     | 17.8                                | <sup>3</sup> /8                                      | 1/2                                                         | 1/2                                                  | <sup>9</sup> / <sub>16</sub>                                | 7/8                                                  | $1^{1}/_{8}$                                                | 7/ <sub>8</sub>                                      | $1^{3}/_{16}$                                               |
| 53                                     | 23                                  | <sup>3</sup> /8                                      | 1/2                                                         | <sup>9</sup> / <sub>16</sub>                         | <sup>5</sup> /8                                             | <sup>15</sup> / <sub>16</sub>                        | $1^{1}/_{4}$                                                | 1                                                    | $1^{5}/_{16}$                                               |
| 60                                     | 26                                  | 7/ <sub>16</sub>                                     | 1/2                                                         | 5/ <sub>8</sub>                                      | <sup>11</sup> / <sub>16</sub>                               | 1                                                    | 1 <sup>5</sup> / <sub>16</sub>                              | $1^{1}/_{8}$                                         | $1^{3}/_{8}$                                                |
| 64                                     | 27.8                                | 7/ <sub>16</sub>                                     | 1/2                                                         | 5/8                                                  | <sup>11</sup> / <sub>16</sub>                               | $1^{1}/_{16}$                                        | 1 <sup>3</sup> /8                                           | 1 <sup>1</sup> /8                                    | 1 <sup>7</sup> / <sub>16</sub>                              |
| 72                                     | 31.2                                | 7/ <sub>16</sub>                                     | 1/2                                                         | <sup>11</sup> / <sub>16</sub>                        | <sup>3</sup> / <sub>4</sub>                                 | $1^{1}/_{8}$                                         | 17/16                                                       | $1^{3}/_{16}$                                        | 1 <sup>1</sup> / <sub>2</sub>                               |

<sup>a</sup>Equivalent pressure is based on water loading.

<sup>c</sup>Maximum of  $1^{1}/_{8}$  in.

<sup>d</sup>Maximum of  $1^{1}/_{2}$  in.

<sup>e</sup>Maximum of  $1^{3}/_{4}$  in. <sup>f</sup>See 5.7.7.7 when corrosion allowance is specified. Note: See Figure 5-12.

**5.7.2.7** The attachment weld to the shell along the outer periphery of a reinforcing plate or proprietary connection that lap welds to the shell shall be considered effective only for the parts lying outside the area bounded by vertical lines drawn tangent to the shell opening; however, the outer peripheral weld shall be applied completely around the reinforcement. See 5.7.2.8 for allowable stresses. All of the inner peripheral weld shall be considered effective. The strength of the effective attachment weld shall be considered as the weld's shear resistance at the stress value given for fillet welds in 5.7.2.8. The size of the outer peripheral weld shall be equal to the thickness of the shell plate or reinforcing plate, whichever is thinner, but shall not be greater than 40 mm  $(1^{1}/_{2} \text{ in.})$ . When low-type nozzles are used with a reinforcing plate that extends to the tank bottom (see Figure 5-8), the size of the portion of the peripheral weld shall be large enough to sustain the remainder of the loading.

08

08

11

07

08

07

<sup>&</sup>lt;sup>b</sup>Maximum of 1 in.

| Thickness of Lowest<br>Shell Course<br>$t, t_d^a$ | Maximum Design<br>Liquid Level <sup>c</sup> | Height of Shell Reinforcing Plate for<br>Size of Opening $h \times b$ (Height $\times$ Width)<br>mm |                  |            |                        |  |  |  |
|---------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------|------------|------------------------|--|--|--|
| mm                                                | m                                           | $200 \times 400$                                                                                    | $600 \times 600$ | 900 × 1200 | $1200 \times 1200^{b}$ |  |  |  |
| All                                               | < 22                                        | 350                                                                                                 | 915              | 1372       | 1830                   |  |  |  |

#### Table 5-11a—(SI) Thicknesses and Heights of Shell Reinforcing Plates for Flush-Type Cleanout Fittings (mm)

Notes:

09

07

08

07

<sup>a</sup>Dimensions  $t_d$  and L may be varied within the limits defined in 5.7.7.

 $^{b}$ 1200 × 1200 flush-type cleanout fittings are not permitted for tanks with greater than 38 mm lowest shell course thickness. <sup>c</sup>See 5.6.3.2.

#### Table 5-11b—(USC) Thicknesses and Heights of Shell Reinforcing Plates for Flush-Type Cleanout Fittings (in.)

| Thickness of Lowest<br>Shell Course | Maximum Design<br>Liquid Level <sup>c</sup><br>H | Height of Shell Reinforcing Plate for<br>Size of Opening $h \times b$ (Height $\times$ Width)<br>in. |                |         |                    |  |  |
|-------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------|---------|--------------------|--|--|
| $t, t_d^{\mathbf{a}}$ in.           | ft                                               | 8×16                                                                                                 | $24 \times 24$ | 36 × 48 | $48 \times 48^{b}$ |  |  |
| All                                 | < 72                                             | 14                                                                                                   | 36             | 54      | 72                 |  |  |

Notes:

<sup>a</sup>Dimensions  $t_d$  and L may be varied within the limits defined in 5.7.7.

 $^{b}48 \times 48$  flush-type cleanout fittings are not permitted for tanks with greater than  $1^{1}/_{2}$  in. lowest shell course thickness. <sup>c</sup>See 5.6.3.2.

**5.7.2.8** The reinforcement and welding shall be configured to provide the required strength for the forces covered in 5.7.2.5 and 5.7.2.6.

#### The allowable stresses for the attachment elements are:

a. For outer reinforcing plate-to-shell and inner reinforcing plate-to-nozzle neck fillet welds:  $S_d \times 0.60$ .

b. For tension across groove welds:  $S_d \times 0.875 \times 0.70$ 

c. For shear in the nozzle neck:  $S_d \times 0.80 \times 0.875$ 

where

 $S_d$  = the maximum allowable design stress (the lesser value of the base materials joined) permitted by 5.6.2.1 for carbon steel, or by Tables S-2a and S-2b for stainless steel.

Stress in fillet welds shall be considered as shear on the throat of the weld. The throat of the fillet shall be assumed to be 0.707 times the length of the shorter leg. Tension stress in the groove weld shall be considered to act over the effective weld depth.

**5.7.2.9** When two or more openings are located so that the outer edges (toes) of their normal reinforcing-plate fillet welds are closer than eight times the size of the larger of the fillet welds, with a minimum of 150 mm (6 in.), they shall be treated and reinforced as follows:

a. All such openings shall be included in a single reinforcing plate that shall be proportioned for the largest opening in the group.

b. If the normal reinforcing plates for the smaller openings in the group, considered separately, fall within the area limits of the solid portion of the normal plate for the largest opening, the smaller openings may be included in the normal plate for the largest opening without an increase in the size of the plate, provided that if any opening intersects the vertical centerline of another opening, the total width of the final reinforcing plate along the vertical centerline of either opening is not less than the sum of the widths of the normal plates for the openings involved.

c. If the normal reinforcing plates for the smaller openings in the group, considered separately, do not fall within the area limits of the solid portion of the normal plate for the largest opening, the group reinforcing-plate size and shape shall include the outer limits of the normal reinforcing plates for all the openings in the group. A change in size from the outer limits of the normal plate for the largest opening to the outer limits of that for the smaller opening farthest from the largest opening shall be accomplished by uniform straight taper unless the normal plate for any intermediate opening would extend beyond these limits, in which case uniform straight tapers shall join the outer limits of the several normal

plates. The provisions of Item b with respect to openings on the same or adjacent vertical centerlines also apply in this case.

**5.7.2.10** Reinforcing plates for shell openings, or each segment of the plates if they are not made in one piece, shall be provided with a 6 mm ( $^{1}/_{4}$  in.) diameter telltale hole. Such holes shall be located on the horizontal centerline and shall be open to the atmosphere.

#### 5.7.3 Spacing of Welds around Connections

See Figure 5-6 for spacing requirements listed in 5.7.3.1 through 5.7.3.4.

Note 1: Additional weld spacing requirements exist in this Standard. Other paragraphs and tables dealing with nozzles and manholes may increase the minimum spacing.

Note 2: Whenever stress relief or thermal stress relief is used in this Standard, it shall mean post-weld heat treatment.

**5.7.3.1** For non-stress-relieved welds on shell plates over 13 mm (1/2 in.) thick, the minimum spacing between penetration connections and adjacent shell-plate joints shall be governed by the following:

a. The outer edge or toe of fillet around a penetration, around the periphery of a thickened insert plate, or around the periphery of a reinforcing plate shall be spaced at least the greater of eight times the weld size or 250 mm (10 in.) (dimension A or B in Figure 5-6) from the centerline of any butt-welded shell joints.

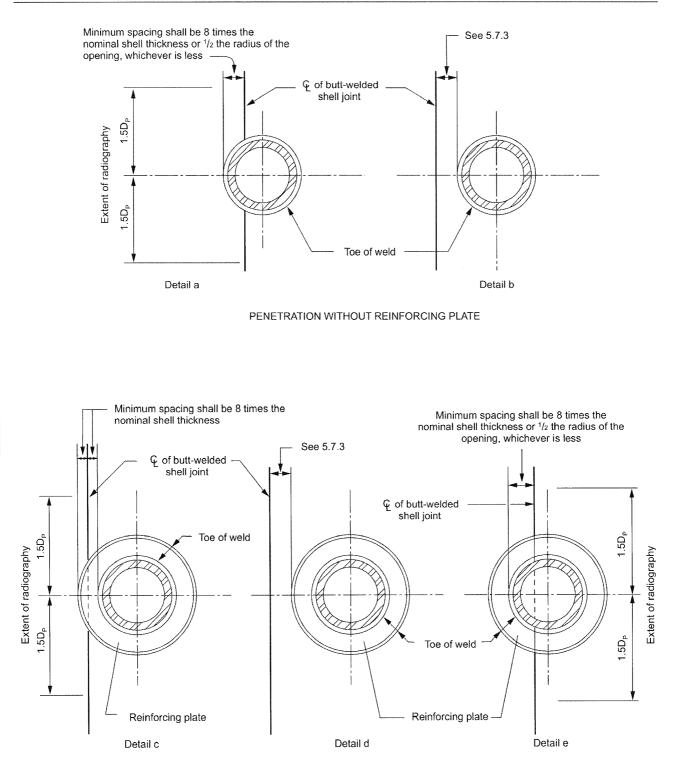
b. The welds around the periphery of a thickened insert plate, around a reinforcing insert plate, or around a reinforcing plate shall be spaced at least the greater of eight times the larger weld size or 150 mm (6 in.) (dimension E in Figure 5-6) from each other.

**5.7.3.2** Where stress-relieving of the periphery weld has been performed prior to welding of the adjacent shell joint or where a non-stress-relieved weld is on a shell plate less than or equal to 13 mm (1/2 in.) thick, the spacing may be reduced to 150 mm (6 in.) (dimension A in Fig. 5-6) from vertical joints or to the greater of 75 mm (3 in.) or  $2^{1}/_{2}$  times the shell thickness (dimension B in Fig. 5-6) from horizontal joints. The spacing between the welds around the periphery of a thickened insert plate or around a reinforcing plate shall be the greater of 75 mm (3 in.) or  $2^{1}/_{2}$  times the shell thickness (dimension E in Figure 5-6).

**5.7.3.3** The rules in 5.7.3.1 and 5.7.3.2 shall also apply to the bottom-to-shell joint (dimension C in Figure 5-6) unless, as an alternative, the insert plate or reinforcing plate extends to the bottom-to-shell joint and intersects it at approximately 90 degrees (dimension D in Figure 5-6). A minimum distance of 75 mm (3 in.) shall be maintained between the toe of a weld around a nonreinforced penetration (see 5.7.2.1) and the toe of the shell-to-bottom weld.

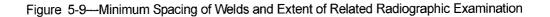
• 5.7.3.4 Nozzles and manholes should not be placed in shell weld seams and reinforcing pads for nozzles and manholes should not overlap plate seams (i.e., Figure 5-9, Details a, c, and e should be avoided). If there is no other feasible option and the Purchaser accepts the design, circular shell openings and reinforcing plates (if used) may be located in a horizontal or vertical butt-welded shell joint provided that the minimum spacing dimensions are met and a radiographic examination of the welded shell joint is conducted. The welded shell joint shall be fully radiographed for a length equal to three times the diameter of the opening, but the weld seam being removed need not be radiographed. Radiographic examination shall be in accordance with 8.1.3 through 8.1.8.

#### 5.7.4 Thermal Stress Relief


**5.7.4.1** All flush-type cleanout fittings and flush-type shell connections shall be thermally stress-relieved as an assembly prior to installation in the tank shell or after installation into the tank shell if the entire tank is stress-relieved. The stress relief shall be carried out within a temperature range of  $600^{\circ}$ C –  $650^{\circ}$ C ( $1100^{\circ}$ F –  $1200^{\circ}$ F) (see 5.7.4.3 for quenched and tempered materials) for 1 hour per 25 mm (1 in.) of shell thickness. The assembly shall include the bottom reinforcing plate (or annular plate) and the flange-to-neck weld.

**5.7.4.2** When the shell material is Group I, II, III, or IIIA, all opening connections NPS 12 or larger in nominal diameter in a shell plate or thickened insert plate more than 25 mm (1 in.) thick shall be prefabricated into the shell plate or thickened insert plate, and the prefabricated assembly shall be thermally stress-relieved within a temperature range of  $600^{\circ}$ C -  $650^{\circ}$ C ( $1100^{\circ}$ F -  $1200^{\circ}$ F) for 1 hour per 25 mm (1 in.) of thickness prior to installation. The stress-relieving

07


08

08



PENETRATION WITH REINFORCING PLATE

Note: Dp = diameter of opening.



5-38

requirements need not include the flange-to-neck welds or other nozzle-neck and manhole-neck attachments, provided the following conditions are fulfilled:

a. The welds are outside the reinforcement (see 5.7.2.4).

b. The throat dimension of a fillet weld in a slip-on flange does not exceed 16 mm ( ${}^{5}/{}_{8}$  in.), or the butt joint of a weldingneck flange does not exceed 19 mm ( ${}^{3}/{}_{4}$  in.). If the material is preheated to a minimum temperature of 90°C (200°F) during welding, the weld limits of 16 mm ( ${}^{5}/{}_{8}$  in.) and 19 mm ( ${}^{3}/{}_{4}$  in.) may be increased to 32 mm and 40 mm ( ${}^{1}/{}_{4}$  in. and  ${}^{1}/{}_{2}$  in.), **108** respectively.

**5.7.4.3** When the shell material is Group IV, IVA, V, or VI, all opening connections requiring reinforcement in a shell plate or thickened insert plate more than 13 mm ( $^{1}/_{2}$  in.) thick shall be prefabricated into the shell plate or thickened insert plate, and the prefabricated assembly shall be thermally stress relieved within a temperature range of 600°C – 650°C (1100°F – 1200°F) for 1 hour per 25 mm (1 in.) of thickness prior to installation.

When connections are installed in quenched and tempered material, the maximum thermal stress-relieving temperature shall not exceed the tempering temperature for the materials in the prefabricated stress-relieving assembly. The stress-relieving requirements do not apply to the weld to the bottom annular plate, but they do apply to flush-type cleanout openings when the bottom reinforcing plate is an annular-plate section. The stress-relieving requirements need not include the flange-to-neck welds or other nozzle-neck and manhole-neck attachments, provided the conditions of 5.7.4.2 are fulfilled.

**5.7.4.4** Examination after stress relief shall be in accordance with 7.2.3.6 or 7.2.3.7.

• **5.7.4.5** When it is impractical to stress relieve at a minimum temperature of 600°C (1100°F), it is permissible, subject to the Purchaser's agreement, to carry out the stress-relieving operation at lower temperatures for longer periods of time in accordance with the tabulation below. The lower temperature/longer time PWHT may not provide material toughness and residual stresses equivalent to that using the higher temperature/shorter time PWHT; therefore, a review by a knowledgeable metallurgist and possible verification by mill testing of heat-treated coupons and/or testing of welded plates shall be considered. See Line 23 of the Data Sheet for any Purchaser-specified requirements applicable to this heat-treatment option.

| Minimum Stress-Re | lieving Temperature | Holding Time<br>(hours per 25 mm [1 in.] |          |  |
|-------------------|---------------------|------------------------------------------|----------|--|
| (°C)              | (°F)                | of thickness)                            | See Note |  |
| 600               | 1100                | 1                                        | 1        |  |
| 570               | 1050                | 2                                        | 1        |  |
| 540               | 1000                | 4                                        | 1        |  |
| 510               | 950                 | 10                                       | 1, 2     |  |
| 480 (min.)        | 900 (min.)          | 20                                       | 1, 2     |  |

Notes:

1. For intermediate temperatures, the time of heating shall be determined by straight line interpolation.

2. Stress relieving at these temperatures is not permitted for A 537 Class 2 material.

**5.7.4.6** When used in stress-relieved assemblies, the material of quenched and tempered steels A 537, Cl 2 and A 678, Grade B, and of TMCP steel A 841 shall be represented by test specimens that have been subjected to the same heat treatment as that used for the stress relieved assembly.

#### 5.7.5 Shell Manholes

**5.7.5.1** Shell manholes shall conform to Figures 5-7A and 5-7B and Tables 5-3a through 5-5b (or Tables 5-6a through 5-8b), **1** 08 but other shapes are permitted by 5.7.1.8. Manhole reinforcing plates or each segment of the plates if they are not made in one piece shall be provided with a 6 mm ( $^{1}/_{4}$  in.) diameter telltale hole (for detection of leakage through the interior welds). Each hole shall be located on the horizontal centerline and shall be open to the atmosphere.

• **5.7.5.2** Manholes shall be of built-up welded construction. The dimensions are listed in Tables 5-3a through 5-5b. The dimensions are based on the minimum neck thicknesses listed in Tables 5-4a and 5-4b. When corrosion allowance is specified to be applied to shell manholes, corrosion allowance is to be added to the minimum neck, cover plate, and bolting flange thicknesses of Tables 5-3a, 5-3b, 5-4a and 5-4b.

07

**5.7.5.3** The maximum diameter  $D_p$  of a shell cutout shall be as listed in Column 3 of Tables 5-7a and 5-7b. Dimensions for required reinforcing plates are listed in Tables 5-6a and 5-6b.

5.7.5.4 The gasket materials shall meet service requirements based on the product stored, maximum design temperature, and fire resistance. Gasket dimensions, when used in conjunction with thin-plate flanges described in Figure 5-7A, have proven effective when used with soft gaskets, such as non-asbestos fiber with suitable binder. When using hard gaskets, such as solid metal, corrugated metal, metal-jacketed, and spiral-wound metal, the gasket dimensions, manhole flange, and manhole cover shall be designed per API Std 620, Sections 3.20 and 3.21. See 4.9 for additional requirements.

5.7.5.5 In lieu of using Figure 5-7A or design per API Std 620, forged flanges and forged blind flanges may be furnished per 4.6.

# 5.7.6 Shell Nozzles and Flanges

• 5.7.6.1.a Unless otherwise specified, shell nozzle flanges, excluding manholes, in sizes NPS 1<sup>1</sup>/<sub>2</sub> through NPS 20 and NPS 24 shall meet the requirements of ASME B16.5. For sizes larger than NPS 24 but not greater than NPS 60, flanges shall meet the requirements of ASME B16.47, Series A or Series B. Series A and Series B flanges are not compatible in all sizes and must be carefully selected to match the mating flange. If diameters, materials of construction, and flange styles of ASME B16.47 are unavailable, fabricated flanges with drilling template (bolt circle diameter, number of holes, and hole diameter) matching Series A or Series B shall be used. These fabricated flanges shall be designed in accordance with the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, Section UG-34 and Appendix 2. The allowable stresses for design shall be a matter of agreement between the Purchaser and the Manufacturer. Bolt holes shall straddle the vertical centerline of the flange.

• 5.7.6.1.b Shell nozzles (and flanges, if specified by the Purchaser as an alternate to a. above) shall conform to Figures 5-7B. 5-8, and 5-10 and Tables 5-6a through 5-8b, but other shapes are permitted by 5.7.1.8. An alternative connection design is permissible for the nozzle end that is not welded to the shell, if it provides equivalent strength, toughness, leak tightness, and utility and if the Purchaser agrees to its use in writing.

07

07

08

08

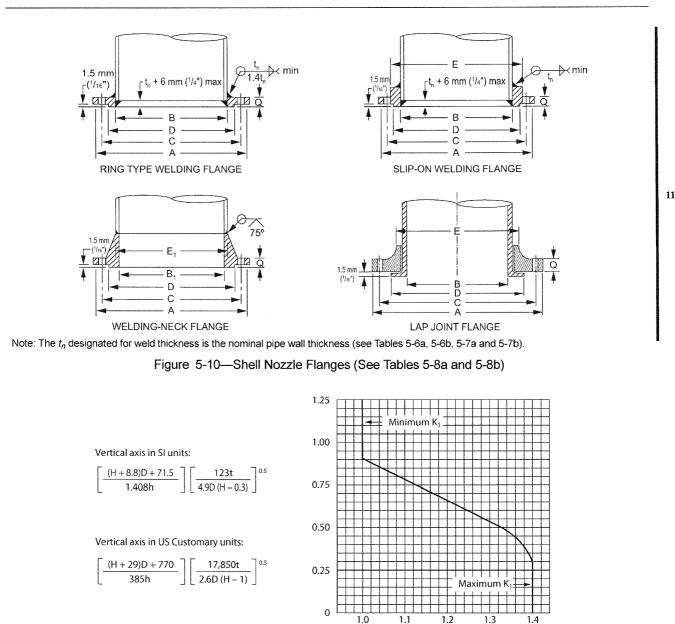
07

• 5.7.6.2 Unless shell nozzles are specified to be flush on the inside of the tank shell by the Purchaser, shell nozzles without internal piping in a tank without a floating roof may be supplied flush or with an internal projection at the option of the Manufacturer. In floating roof tanks, shell nozzles without internal piping within operating range of the floating roof shall be supplied flush on the inside of the tank shell unless agreed otherwise between the Manufacturer and the Purchaser.

• 5.7.6.3 The details and dimensions specified in this Standard are for nozzles installed with their axes perpendicular to the shell plate. A nozzle may be installed at an angle other than 90 degrees to the shell plate in a horizontal plane, provided the width of the reinforcing plate (W or Do in Figure 5-8 and Tables 5-6a and 5-6b) is increased by the amount that the horizontal chord of the 08 opening cut in the shell plate ( $D_p$  in Figure 5-8 and Tables 5-7a and 5-7b) increases as the opening is changed from circular to elliptical for the angular installation. In addition, nozzles not larger than NPS 3-for the insertion of thermometer wells, for sampling connections, or for other purposes not involving the attachment of extended piping—may be installed at an angle of 15 degrees or less off perpendicular in a vertical plane without modification of the nozzle reinforcing plate.

5.7.6.4 The minimum nominal thickness of nozzle necks to be used shall be equal to the required thickness as identified by the 11 term  $t_n$  in Tables 5-6a and 5-6b, Column 3. 08

#### Flush-Type Cleanout Fittings 5.7.7


• 5.7.7.1 Flush-type cleanout fittings shall conform to the requirements of 5.7.7.2 through 5.7.7.12 and to the details and dimensions shown in Figures 5-12 and 5-13 and Tables 5-9a through 5-11b. When a size intermediate to the sizes given in Tables 5-9a through 5-11b is specified by the Purchaser, the construction details and reinforcements shall conform to the next larger opening listed in the tables. The size of the opening or tank connection shall not be larger than the maximum size given in the appropriate table.

**5.7.7.2** The opening shall be rectangular, but the upper corners of the opening shall have a radius  $(r_1)$  as shown in Tables 5-9a 11 and 5-9b. When the shell material is Group I, II, III, or IIIA, the width or height of the clear opening shall not exceed 1200 mm (48 in.); when the shell material is Group IV, IVA, V, or VI, the height shall not exceed 900 mm (36 in.).

**5.7.7.3** The reinforced opening shall be completely preassembled into a shell plate, and the completed unit, including the shell plate at the cleanout fitting, shall be thermally stress-relieved as described in 5.7.4 (regardless of the thickness or strength of the material).

5-40

08

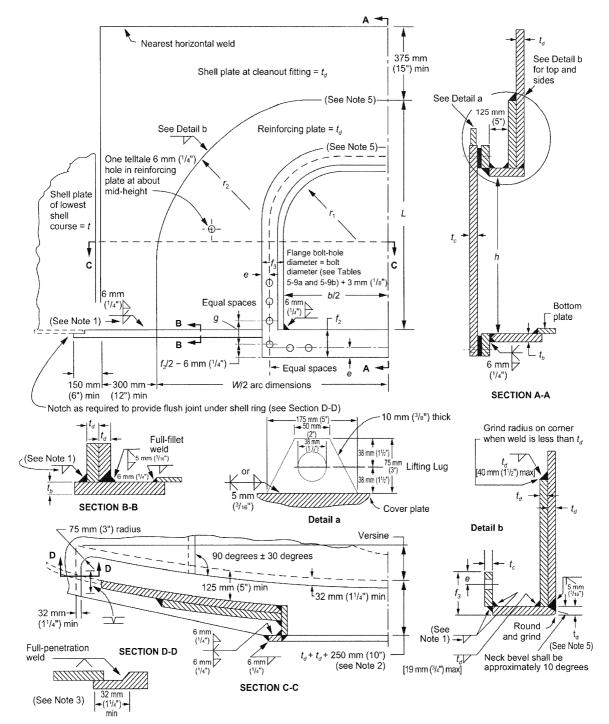




K<sub>1</sub> coefficient

**5.7.7.4** The required cross-sectional area of the reinforcement over the top of the opening shall be calculated for Design Condition as well as Hydrostatic Test Condition as follows:

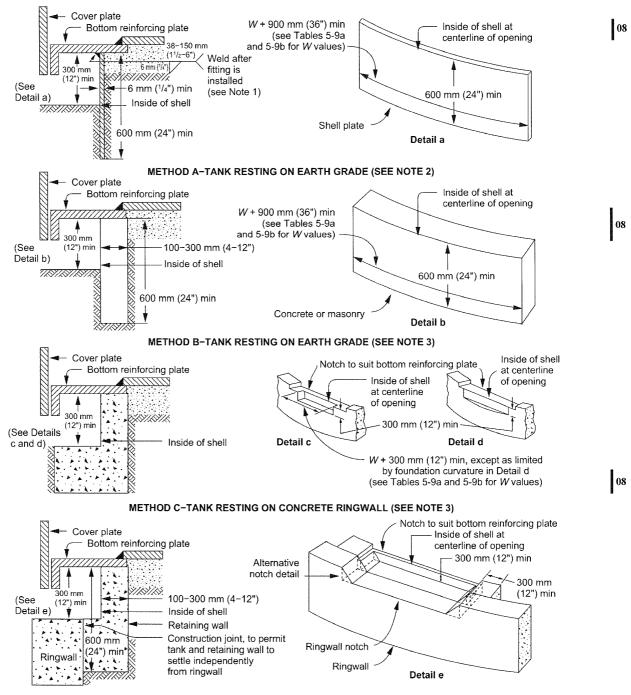
$$A_{cs} \ge \frac{K_1 h t}{2}$$


where

 $A_{cs}$  = required cross-sectional area of the reinforcement over the top of the opening, in mm<sup>2</sup> (in.<sup>2</sup>),

 $K_1$  = area coefficient from Figure 5-11,

- h = vertical height of clear opening, in mm (in.),
- t = calculated thickness of the lowest shell course, in mm (in.), required by the formulas of 5.6.3, 5.6.4, or A.4.1 (with joint efficiency E = 1.0), including corrosion allowance, where applicable.


08



- 1. Thickness of thinner plate joined (13 mm [1/2] in.] maximum).
- When an annular plate is provided, the reinforcing plate shall be
   regarded as a segment of the annular plate and shall be the same
   width as the annular plate.
- 3. When the difference between the thickness of the annular ring and that of the bottom reinforcing plate is less than 6 mm (<sup>1</sup>/<sub>4</sub> in.), the radial joint between the annular ring and the bottom reinforcing plate

may be butt-welded with a weld joint suitable for complete penetration and fusion.

- 4. Gasket material shall be specified by the Purchaser. The gasket material shall meet service requirements based on product stored, design metal temperature, maximum design temperature and fire resistance.
- 5. The thickness ( $t_d$ ) of the shell plate at the cleanout opening, the reinforcing plate, and the neck plate, shall be equal to or greater than the thickness (t) of the shell plate of the lowest shell course.
- Figure 5-12—Flush-Type Cleanout Fittings (See Tables 5-9a, 5-9b, 5-10a, 5-10b, 5-11a and 5-11b)



#### METHOD D-TANK RESTING ON EARTH GRADE INSIDE CONCRETE RINGWALL (SEE NOTE 3)

Notes:

1. This weld is not required if the earth is stabilized with portland cement at a ratio of not more than 1:12 or if the earth fill is replaced with concrete for a lateral distance and depth of at least 300 mm (12 in.).

2. When Method A is used, before the bottom plate is attached to the bottom reinforcing plate, (a) a sand cushion shall be placed flush with the top of the bottom reinforcing plate, and (b) the earth fill and sand cushion shall be thoroughly compacted.

3. When Method B, C, or D is used, before the bottom plate is attached to the bottom reinforcing plate, (a) a sand cushion shall be placed flush with the top of the bottom reinforcing plate, (b) the earth fill and sand cushion shall be thoroughly compacted, and (c) grout shall be placed under the reinforcing plate (if needed) to ensure a firm bearing.

Figure 5-13—Flush-Type Cleanout-Fitting Supports (See 5.7.7)

5-43

**5.7.7.5** The nominal thickness of the shell plate in the flush-type cleanout fitting assembly shall be at least as thick as the adjacent shell plate nominal thickness in the lowest shell course. The nominal thickness of the shell reinforcing plate and the neck plate shall be, as a minimum, the thickness of the shell plate in the cleanout-opening assembly.

The reinforcement in the plane of the shell shall be provided within a height *L* above the bottom of the opening. *L* shall not exceed 1.5*h* except that, in the case of small openings, L - h shall not be less than 150 mm (6 in.). Where this exception results in an *L* that is greater than 1.5*h*, only the portion of the reinforcement that is within the height of 1.5*h* shall be considered effective. The reinforcement required may be provided by any one or any combination of the following:

a. The shell reinforcing plate.

b. Any thickness of the shell plate in the flush-type cleanout fitting assembly that is greater than the required thickness of lowest shell course, as determined by 5.6.3, 5.6.4 or A.4.1 (with joint efficiency E = 1.0).

c. The portion of the neck plate having a length equal to the nominal thickness of the reinforcing plate.

08 Reinforcing area provided shall be adequate for Design Conditions as well as Hydrostatic test Conditions.

**5.7.7.6** The minimum width of the tank-bottom reinforcing plate at the centerline of the opening shall be 250 mm (10 in.) plus the combined nominal thickness of the shell plate in the cleanout-opening assembly and the shell reinforcing plate.

The nominal thickness of the bottom reinforcing plate shall be not less than that determined by the following equation:

In SI units:

11

11

$$t_b = \frac{h^2}{360,000} + \frac{b}{170}\sqrt{HG} + CA$$

where

 $t_b$  = minimum thickness of the bottom reinforcing plate, in mm,

h = vertical height of clear opening, in mm,

b = horizontal width of clear opening, in mm,

H = maximum design liquid level (see 5.6.3.2), in m,

G = specific gravity, not less than 1.0.

In US Customary units:

$$t_b = \frac{h^2}{14,000} + \frac{b}{310}\sqrt{HG} + CA$$

where

 $t_b$  = minimum thickness of the bottom reinforcing plate, (in.),

h = vertical height of clear opening, (in.),

b = horizontal width of clear opening, (in.),

H = maximum design liquid level (see 5.6.3.2), (ft),

G = specific gravity, not less than 1.0.

**5.7.7.7** The dimensions of the cover plate, bolting flange, bolting, and bottom-reinforcing plate shall conform to Tables 5-9a, 5-9b, 5-10a and 5-10b. When corrosion allowance is specified, it is to be added to the cover plate, bolting flange thicknesses, and bottom-reinforcing plate.

**5.7.7.8** All materials in the flush-type cleanout fitting assembly shall conform to the requirements in Section 4. The shell plate containing the cleanout assembly, the shell reinforcing plate, the neck plate, and the bottom reinforcing plate shall meet the impact test requirements of 4.2.9 and Figure 4-1 for the respective thickness involved at the design metal temperature for the tank. The notch toughness of the bolting flange and the cover plate shall be based on the governing thickness as defined in 4.5.5.3 using

Tables 4-3a, 4-3b, and Figure 4-1. Additionally, the yield strength and the tensile strength of the shell plate at the flush-type cleanout fitting, the shell reinforcing plate, and the neck plate shall be equal to, or greater than, the yield strength and the tensile strength of the adjacent lowest shell course plate material.

**5.7.7.9** The dimensions and details of the cleanout-opening assemblies covered by this section are based on internal hydrostatic loading with no external-piping loading.

**5.7.7.10** When a flush-type cleanout fitting is installed on a tank that is resting on an earth grade without concrete or masonry walls under the tank shell, provision shall be made to support the fitting and retain the grade by either of the following methods:

a. Install a vertical steel bulkhead plate under the tank, along the contour of the tank shell, symmetrical with the opening, as shown in Figure 5-13, Method A.

b. Install a concrete or masonry retaining wall under the tank with the wall's outer face conforming to the contour of the tank shell as shown in Figure 5-13, Method B.

**5.7.7.11** When a flush-type cleanout fitting is installed on a tank that is resting on a ringwall, a notch with the dimensions shown in Figure 5-13, Method C, shall be provided to accommodate the cleanout fitting.

**5.7.7.12** When a flush-type cleanout fitting is installed on a tank that is resting on an earth grade inside a foundation retaining wall, a notch shall be provided in the retaining wall to accommodate the fitting, and a supplementary inside retaining wall shall be provided to support the fitting and retain the grade. The dimensions shall be as shown in Figure 5-13, Method D.

#### 5.7.8 Flush-Type Shell Connections

• **5.7.8.1** Tanks may have flush-type connections at the lower edge of the shell. Each connection may be made flush with the flat bottom under the following conditions (see Figure 5-14):

a. The shell uplift from the internal design and test pressures (see Appendix F) and wind and earthquake loads (see Appendix E) shall be counteracted so that no uplift will occur at the cylindrical-shell/flat-bottom junction.

b. The vertical or meridional membrane stress in the cylindrical shell at the top of the opening for the flush-type connection shall not exceed one-tenth of the circumferential design stress in the lowest shell course containing the opening.

c. The maximum width, b, of the flush-type connection opening in the cylindrical shell shall not exceed 900 mm (36 in.).

d. The maximum height, h, of the opening in the cylindrical shell shall not exceed 300 mm (12 in.).

e. The thickness,  $t_a$ , of the bottom-transition plate in the assembly shall be 13 mm (1/2 in.) minimum or, when specified, the same **108** as the thickness of the tank annular plate.

**5.7.8.2** The details of the connection shall conform to those shown in Figure 5-14, and the dimensions of the connection shall conform to Tables 5-12a and 5-12b and to the requirements of 5.7.8.3 through 5.7.8.11.

**5.7.8.3** The reinforced connection shall be completely preassembled into a shell plate. The completed assembly, including the shell plate containing the connection, shall be thermally stress-relieved at a temperature of  $600^{\circ}\text{C} - 650^{\circ}\text{C}$  ( $1100^{\circ}\text{F} - 1200^{\circ}\text{F}$ ) for 1 hour per 25 mm (1 in.) of shell-plate thickness,  $t_d$  (see 5.7.4.1 and 5.7.4.2).

**5.7.8.4** The reinforcement for a flush-type shell connection shall meet the following requirements:

a. The cross-sectional area of the reinforcement over the top of the connection shall not be less than  $K_1 h t/2$  (see 5.7.7.4).

b. The nominal thickness of the shell plate,  $t_d$ , for the flush-connection assembly shall be at least as thick as the adjacent shell plate nominal thickness, t, in the lowest shell course.

c. The nominal thickness of the shell reinforcing plate shall be, as a minimum, the nominal thickness of the shell plate in the flush-connection assembly.

d. The reinforcement in the plane of the shell shall be provided within a height *L* above the bottom of the opening. *L* shall not exceed 1.5*h* except that, in the case of small openings, L - h shall not be less than 150 mm (6 in.). Where this exception results in an *L* that is greater than 1.5*h*, only the portion of the reinforcement that is within the height of 1.5*h* shall be considered effective.

e. The required reinforcement may be provided by any one or any combination of the following:

1. the shell reinforcing plate;

2. any thickness of the shell plate in the flush-type shell connection assembly that is greater than the required thickness of lowest shell course, as determined by 5.6.3, 5.6.4, or A.4.1 (with joint efficiency E = 1.0); and

3. the portion of the neck plate having a length equal to the thickness of the reinforcing plate.

Reinforcing area provided shall be adequate for Design Conditions as well as Hydrostatic Test Conditions.

f. The width of the tank-bottom reinforcing plate at the centerline of the opening shall be 250 mm (10 in.) plus the combined nominal thickness of the shell plate in the flush-connection assembly and the shell reinforcing plate. The thickness of the bottom 11 reinforcing plate shall be calculated by the following equation (see 5.7.7.6):

11

| Class 150<br>Nominal Height<br>of Flange Size | Height of Opening<br>h | Width of Opening<br>b | Arc Width of Shell<br>Reinforcing Plate<br>W | Upper Corner Radius<br>of Opening<br>$r_1$ | Lower Corner Radius of<br>Shell Reinforcing Plate<br>$r_2$ |
|-----------------------------------------------|------------------------|-----------------------|----------------------------------------------|--------------------------------------------|------------------------------------------------------------|
| 8                                             | 200                    | 200                   | 950                                          | OD of 8 NPS <sup>a</sup>                   | 350                                                        |
| 12                                            | 300                    | 300                   | 1300                                         | OD of 12 NPS <sup>a</sup>                  | 450                                                        |
| 16                                            | 300                    | 500                   | 1600                                         | 150                                        | 450                                                        |
| 18                                            | 300                    | 550                   | 1650                                         | 150                                        | 450                                                        |
| 20                                            | 300                    | 625                   | 1725                                         | 150                                        | 450                                                        |
| 24                                            | 300                    | 900                   | 2225                                         | 150                                        | 450                                                        |

#### Table 5-12a-(SI) Dimensions for Flush-Type Shell Connections (mm)

<sup>a</sup>For circular openings, this value will be 1/2 of the ID based on the nozzle neck specified. Note: See Figure 5-14.

Table 5-12b—(USC) Dimensions for Flush-Type Shell Connections (in.)

| Class 150<br>Nominal Height<br>of Flange Size | Height of Opening<br>h | Width of Opening<br>b | Arc Width of Shell<br>Reinforcing Plate<br>W | Upper Corner Radius<br>of Opening<br>$r_1$ | Lower Corner Radius of<br>Shell Reinforcing Plate<br>r <sub>2</sub> |
|-----------------------------------------------|------------------------|-----------------------|----------------------------------------------|--------------------------------------------|---------------------------------------------------------------------|
| 8                                             | 8 <sup>5</sup> /8      | 8 <sup>5</sup> /8     | 38                                           | 4 <sup>a</sup>                             | 14                                                                  |
| 12                                            | $12^{3}/_{4}$          | $12^{3}/_{4}$         | 52                                           | 4 <sup>a</sup>                             | 18                                                                  |
| 16                                            | 12                     | 20                    | 64                                           | 6                                          | 18                                                                  |
| 18                                            | 12                     | 22                    | 66                                           | 6                                          | 18                                                                  |
| 20                                            | 12                     | 25                    | 69                                           | 6                                          | 18                                                                  |
| 24                                            | 12                     | 36                    | 89                                           | 6                                          | 18                                                                  |

<sup>a</sup>For circular openings, this value will be 1/2 of the ID based on the nozzle neck specified. Note: See Figure 5-14.

In SI units:

# $t_b = \frac{h^2}{360,000} + \frac{b}{170}\sqrt{HG} + CA$

#### where

 $t_b$  = minimum thickness of the bottom reinforcing plate, in mm,

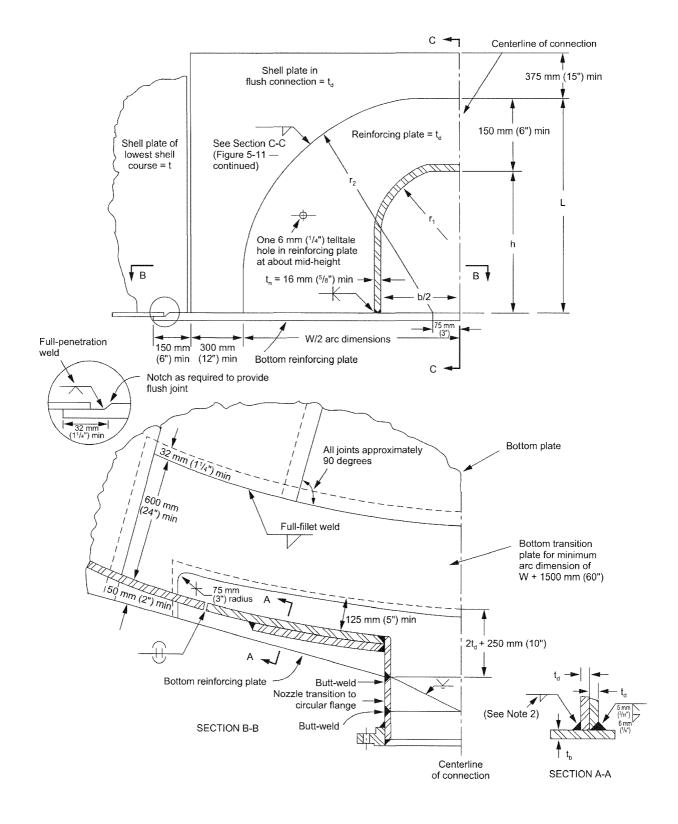
- h = vertical height of clear opening, in mm,
- b = horizontal width of clear opening, in mm,
- H = maximum design liquid level (see 5.6.3.2), in m,
- G = specific gravity, not less than 1.0.

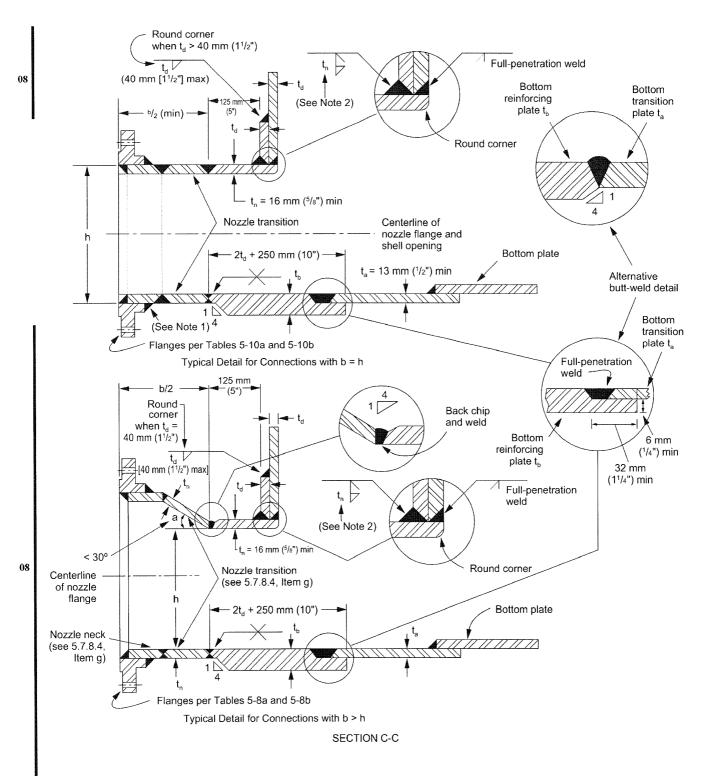
In US Customary units:

08

11

$$t_b = \frac{h^2}{14,000} + \frac{b}{310}\sqrt{HG} + CA$$


where


 $t_b$  = minimum thickness of the bottom reinforcing plate, (in.),

h = vertical height of clear opening, (in.),

- H = maximum design liquid level (see 5.6.3.2), (ft),
- G = specific gravity, not less than 1.0.

b = horizontal width of clear opening, (in.),





Note 1: Flange weld sizes shall be the smaller of the available hub material for  $t_n$  Note 2: Thickness of thinner plate joined 13 mm (1/2 in.) maximum.

Figure 5-14—Flush-Type Shell Connection (continued)

5-48

The minimum value of  $t_b$  shall be:

16 mm ( $^{5}/_{8}$  in.) for  $HG \le 14.4$  m (48 ft)

 $17 \text{ mm} (^{11}/_{16} \text{ in.}) \text{ for } 14.4 \text{ m} (48 \text{ ft}) < HG \le 16.8 \text{ m} (56 \text{ ft})$ 

19 mm  $(^{3}/_{4}$  in.) for 16.8 m (56 ft)  $\leq$  *HG*  $\leq$  19.2 m (64 ft)

g. The corroded thickness of the nozzle neck and transition piece,  $t_n$ , shall be not less than 16 mm ( $^{5}/_{8}$  in.). External loads applied 11 to the connection may require  $t_n$  to be greater than 16 mm ( $^{5}/_{8}$  in.).

**5.7.8.5** All materials in the flush-type shell connection assembly shall conform to the requirements in Section 4. The material of the shell plate in the connection assembly, the shell reinforcing plate, the nozzle neck attached to the shell, the transition piece, and the bottom reinforcing plate shall conform to 4.2.9 and Figure 4-1 for the respective thickness involved at the design metal temperature for the tank. The notch toughness of the bolting flange and the nozzle neck attached to the bolting flange shall be based on the governing thickness as defined in 4.5.5.3 and used in Figure 4-1. Additionally, the yield strength and the tensile strength of the shell plate at the flush-type shell connection and the shell reinforcing plate shall be equal to, or greater than, the yield strength and the tensile strength of the adjacent lowest shell course plate material.

**5.7.8.6** The nozzle transition between the flush connection in the shell and the circular pipe flange shall be designed in a manner consistent with the requirements of this Standard. Where this Standard does not cover all details of design and construction, the Manufacturer shall provide details of design and construction that will be as safe as the details provided by this Standard.

**5.7.8.7** Where anchoring devices are required by Appendices E and F to resist shell uplift, the devices shall be spaced so that they will be located immediately adjacent to each side of the reinforcing plates around the opening.

**5.7.8.8** Adequate provision shall be made for free movement of connected piping to minimize thrusts and moments applied to the shell connection. Allowance shall be made for the rotation of the shell connection caused by the restraint of the tank bottom-to-shell expansion from stress and temperature as well as for the thermal and elastic movement of the piping. Rotation of the shell connection is shown in Figure 5-15.

**5.7.8.9** The foundation in the area of a flush-type connection shall be prepared to support the bottom reinforcing plate of the connection. The foundation for a tank resting on a concrete ringwall shall provide uniform support for both the bottom reinforcing plate and the remaining bottom plate under the tank shell. Different methods of supporting the bottom reinforcing plate under a flush-type connection are shown in Figure 5-13.

**5.7.8.10** Flush-type connections may be installed using a common reinforcing pad; however, when this construction is employed, the minimum distance between nozzle centerlines shall not be less than  $1.5[b_1 + b_2 + 65 \text{ mm } (2^{1}/_2 \text{ in.})]$ , where  $b_1$  and  $b_2$  are the widths of adjacent openings, or 600 mm (24 in.), whichever is greater. The width of each opening, *b*, shall be obtained from Tables 5-12a and 5-12b for the respective nominal flange size. Adjacent shell flush-type connections that do not share a common reinforcing plate shall have at least a 900 mm (36 in.) clearance between the ends of their reinforcing plates.

**5.7.8.11** All longitudinal butt-welds in the nozzle neck and transition piece, if any, and the first circumferential butt-weld in the neck closest to the shell, excluding neck-to-flange weld, shall receive 100% radiographic examination (see 8.1). The nozzle-to-tank-shell and reinforcing plate welds and the shell-to-bottom reinforcing plate welds shall be examined for their complete length by magnetic particle examination (see 8.2). The magnetic particle examination shall be performed on the root pass, on every 13 mm ( $^{1}/_{2}$  in.) of deposited weld metal while the welds are made, and on the completed welds. The completed welds shall also be visually examined. The examination of the completed welds shall be performed after stress-relieving but before hydrostatic testing (see 8.2 and 8.5 for the appropriate inspection and repair criteria).

#### 5.8 SHELL ATTACHMENTS AND TANK APPURTENANCES

#### 5.8.1 Shell Attachments

**5.8.1.1** Shell attachments shall be made, inspected, and removed in conformance with Section 7.

a. Permanent attachments are items welded to the shell that will remain while the tank is in its intended service. These include items such as wind girders, stairs, gauging systems, davits, walkways, tank anchors, supports for internal items such as heating coils and other piping supports, ladders, floating roof supports welded to the shell, exterior piping supports, grounding clips, insu-



Figure 5-15—Rotation of Shell Connection

lation rings, and electrical conduit and fixtures. Items installed above the maximum liquid level of the tank are not permanent attachments.

b. Temporary attachments are items welded to the shell that will be removed prior to the tank being commissioned into its intended service. These include items such as alignment clips, fitting equipment, stabilizers, and lifting lugs.

**5.8.1.2** When attachments are made to shell courses of material in Group IV, IVA, V, or VI, the movement of the shell (particularly the movement of the bottom course) under hydrostatic loading shall be considered, and the attachments shall meet the following requirements:

a. Permanent attachments may be welded directly to the shell with fillet welds having a maximum leg dimension of 13 mm (1/2 in.). The edge of any permanent attachment welds shall be at least 75 mm (3 in.) from the horizontal joints of the shell and at least 150 mm (6 in.) from the vertical joints, insert-plate joints, or reinforcing-plate fillet welds. Permanent attachment welds may cross shell horizontal or vertical butt welds providing the welds are continuous within these limits and the angle of incidence between the two welds is greater than or equal to 45 degrees. Additionally, any splice weld in the permanent attachment shall be located a minimum of 150 mm (6 in.) from any shell weld unless the splice weld is kept from intersecting the shell weld by acceptable modifications to the attachment.

b. The welding and inspection of permanent attachments to these shell courses shall conform to 7.2.3.5.

c. Temporary attachments to shell courses shall preferably be made prior to welding of the shell joints. Weld spacing for temporary attachments made after welding of the shell joints shall be the same as that required for permanent attachments. Temporary attachments to shell courses shall be removed, and any resulting damage shall be repaired and ground to a smooth profile.

#### 5.8.2 Bottom Connections

Connections to the tank bottom are permitted subject to agreement between the Purchaser and the Manufacturer with respect to details that provide strength, tightness, and utility equal to the details of shell connections specified in this Standard.

#### 5.8.3 Cover Plates

**5.8.3.1** Unreinforced openings less than or equal to NPS 2 pipe size are permissible in flat cover plates without increasing the cover plate thickness if the edges of the openings are not closer to the center of the cover plate than one-fourth the height or diameter of the opening. Requirements for openings NPS 2 pipe size and smaller that do not satisfy the location requirement and for larger reinforced openings are given in 5.8.3.2 through 5.8.3.4.

5.8.3.2 Reinforced openings in the cover plates of shell manholes and flush-type clean outs shall be limited to one-half the diameter of the manhole or one-half the least dimension of the flush-type clean out opening but shall not exceed NPS 12 pipe size. The reinforcement added to an opening may be a reinforcing plate or an increased thickness of the cover plate, but in either case, the reinforcement shall provide an added reinforcing area no less than the cutout area of the opening in the cover plate.

A cover plate with a nozzle attachment for product-mixing equipment shall have a thickness at least 1.4 times greater than the thickness required by Tables 5-3a and 5-3b. The added thickness (or pad plate) for replacement of the opening cutout in the cover plate shall be based on Tables 5-3a and 5-3b. The 40% increase in thickness within a radius of one diameter of the opening may be included as part of the area of replacement required. The mixer-nozzle attachment to the cover plate shall be a full-penetration weld. The manhole bolting-flange thickness shall not be less than 1.4 times the thickness required by Tables 5-3a and 5-3b. The 108 manhole nozzle neck shall be designed to support the mixer forces with a minimum thickness not less than the requirements of Tables 5-4a and 5-4b without comparison to the increased bolting-flange thickness noted in this section.

5.8.3.3 When cover plates (or blind flanges) are required for shell nozzles, the minimum thickness shall be that given for flanges in Tables 5-8a and 5-8b. Reinforced openings in the cover plates (or blind flanges) of shell nozzles shall be limited to one-08 half the diameter of the nozzle. The reinforcement added to an opening may be an added pad plate or an increased thickness of the cover plate, but in either case, the reinforcement shall provide an added reinforcing area no less than 50% of the cutout area of the opening in the cover plate. Mixer nozzles may be attached to cover plates.

**5.8.3.4** Openings in the cover plates of flush-type cleanout fittings shall be located on the vertical centerline of the cover plate and shall be in accordance with 5.8.3.1 and 5.8.3.2. Adequate provisions should be made for free movement of connected piping 09 to minimize thrusts and moments on the cover plate to 2225 N (500 lbs) and 60 N-m (500 ft-lbs). Analysis or load leak test may be used to accept greater loads or moments.

**5.8.3.5** Shell manhole covers shall have two handles. Those covers weighing more than 34 kg (75 lb) shall be equipped with either a hinge or davit to facilitate the handling of the manhole cover plate. The davit support arm shall not be welded directly to 07 the shell without a reinforcing plate.

#### 5.8.4 Roof Manholes

Roof manholes shall conform to Figure 5-16 and Tables 5-13a and 5-13b. The effects of loads (other than normal personnel access) applied at the roof manhole and supporting roof structure shall be considered. Examples of such loads may include fall protection anchorage, hoisting, or personnel retrieval. The roof structure and plate around the manhole shall be reinforced as necessary.

#### 5.8.5 Roof Venting

**5.8.5.1** Tanks designed in accordance with this Standard and having a fixed roof shall be vented for both normal conditions (resulting from operational requirements, including maximum filling and emptying rates, and atmospheric temperature changes) and emergency conditions (resulting from exposure to an external fire). Tanks with both a fixed roof and a floating roof satisfy these requirements when they comply with the circulation venting requirements of Appendix H. All other tanks designed in accordance with this Standard and having a fixed roof shall meet the venting requirements of 5.8.5.2 and 5.8.5.3.

**5.8.5.2** Normal venting shall be adequate to prevent internal or external pressure from exceeding the corresponding tank design pressures and shall meet the requirements specified in API Std 2000 for normal venting.

• 5.8.5.3 Emergency venting requirements are satisfied if the tank is equipped with a weak roof-to-shell attachment (frangible joint) in accordance with 5.10.2.6, or if the tank is equipped with pressure relief devices meeting the requirements specified in API Std

08

09

08

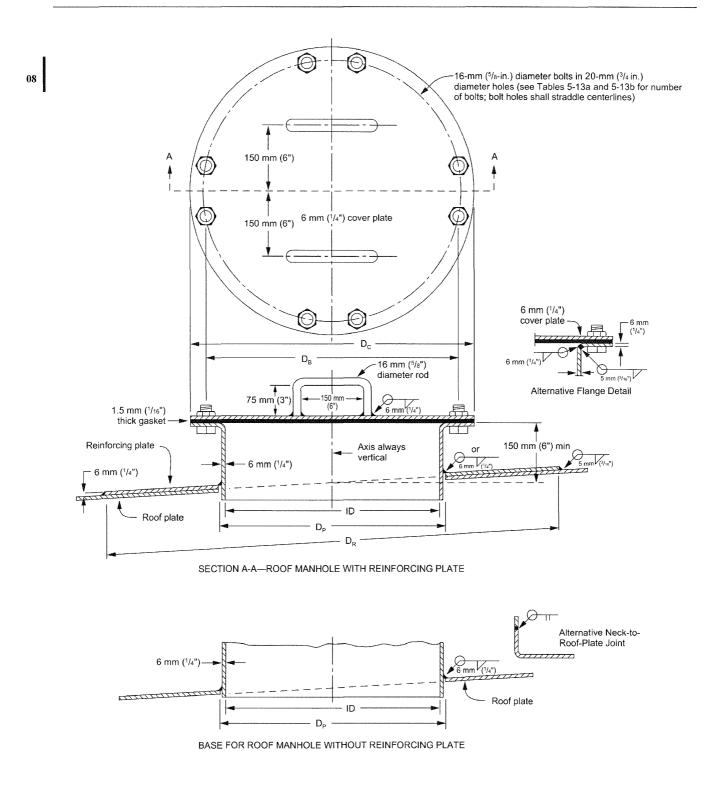



Figure 5-16—Roof Manholes (See Tables 5-13a and 5-13b)

5-52

WELDED TANKS FOR OIL STORAGE

| Column 1 | Column 2            | Column 3                      | Column 4                      | Column 5 | Column 6 | Column 7  | Column 8                                                          | Column 9                                       |
|----------|---------------------|-------------------------------|-------------------------------|----------|----------|-----------|-------------------------------------------------------------------|------------------------------------------------|
| Size of  | Diameter<br>of Neck | Diameter<br>of Cover<br>Plate | Diameter<br>of Bolt<br>Circle | Number   | Diameter | of Gasket | Diameter of<br>Hole in Roof<br>Plate or<br>Reinforcing<br>- Plate | Outside<br>Diameter of<br>Reinforcing<br>Plate |
| Manhole  | ID <sup>a</sup>     | $D_C$                         | $D_B$                         | of Bolts | Inside   | Outside   | $D_P$                                                             | $D_R$                                          |
| 500      | 500                 | 660                           | 597                           | 16       | 500      | 660       | 524                                                               | 1050                                           |
| 600      | 600                 | 762                           | 699                           | 20       | 600      | 762       | 625                                                               | 1150                                           |

### Table 5-13a—(SI) Dimensions for Roof Manholes (mm)

<sup>a</sup>Pipe may be used for neck, providing the minimum nominal wall thickness is 6 mm (*ID* and  $D_p$  shall be adjusted accordingly.) Note: See Figure 5-18.

| Column 1           | Column 2               | Column 3             | Column 4            | Column 5           | Column 6 | Column 7  | Column 8                                               | Column 9                              |
|--------------------|------------------------|----------------------|---------------------|--------------------|----------|-----------|--------------------------------------------------------|---------------------------------------|
| o: 6               | Diameter               | Diameter<br>of Cover | Diameter<br>of Bolt |                    | Diameter | of Gasket | Diameter of<br>Hole in Roof<br>Plate or<br>Reinforcing | Outside<br>Diameter of<br>Reinforcing |
| Size of<br>Manhole | of Neck<br><i>ID</i> ª | Plate $D_C$          | Circle $D_B$        | Number<br>of Bolts | Inside   | Outside   | - Plate $D_P$                                          | Plate $D_R$                           |
| 20                 | 20                     | 26                   | 231/2               | 16                 | 20       | 26        | 20 <sup>5</sup> /8                                     | 42                                    |
| 24                 | 24                     | 30                   | $27^{1}/_{2}$       | 20                 | 24       | 30        | 24 <sup>5</sup> /8                                     | 46                                    |

#### Table 5-13b-(USC) Dimensions for Roof Manholes (in.)

<sup>a</sup>Pipe may be used for neck, providing the minimum nominal wall thickness is 1/4 in. (*ID* and  $D_p$  shall be adjusted accordingly.) Note: See Figure 5-18.

2000 for emergency venting. When pressure relief devices are used to satisfy the emergency venting requirements, they shall achieve the flow rates specified in API Std 2000 without exceeding the following limits on internal pressure:

a. For unanchored tanks, the pressure relief devices shall be adequate to prevent internal pressure from exceeding the tank design pressure as determined in F.4.1 (subject to the limitations in F.4.2 and F.4.3, as applicable). In calculating limitations per F.4.2, use M = 0.

b. For anchored tanks, except those designed to F.1.3, the pressure relief devices shall be adequate to prevent internal pressure from exceeding the tank design pressure as determined in F.4.1 (subject to the limitations in F.4.3, as applicable).

c. For tanks designed to F.1.3 (anchored tanks), the pressure relief devices shall be adequate to prevent internal pressure from exceeding the design pressure specified by the Purchaser.

• **5.8.5.4** The filling and emptying rates are specified on the Data Sheet, Line 7. See the Data Sheet, Table 3 for venting devices, which shall be specified by the Purchaser and verified by the Manufacturer.

**5.8.5.5** Corrosion-resistant coarse-mesh bird screens (13 mm  $\lfloor 1/2 \rfloor$  in.] nominal openings) shall protect all free vents.

**5.8.5.6** Flanged roof nozzles shall conform to Figure 5-19 and Tables 5-14a and 5-14b. Slip-on flanges and weld neck flanges shall conform to the requirements of ASME B16.5 for Class 150 plate-ring flanges shall conform to all of the dimensional requirements for slip-on welding flanges with the exception that it is acceptable to omit the extended hub on the back of the slip-on or weld neck flanges. Raised face flanges shall be provided for nozzles with attached piping. Flat face flanges shall be provided for roof nozzles used for the mounting of tank accessories.

**5.8.5.7** Threaded roof nozzles shall conform to Figure 5-20 and Tables 5-15a and 5-15b.

### 5.8.6 Rectangular Roof Openings

**5.8.6.1** Rectangular roof openings shall conform to Figures 5-17 and 5-18 and/or this section. The effects of loads (other than normal personnel access) applied at the roof opening and supporting roof structure shall be considered. Examples of such loads may include fall protection anchorage, hoisting, or personnel retrieval. The roof structure and plate around the opening shall be reinforced as necessary.

07

08

| Column 1                      | Column 2                         | Column 3                                                        | Column 4                                                                        | Column 5                                                 |
|-------------------------------|----------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------|
| Nozzle<br>NPS                 | Outside Diameter<br>of Pipe Neck | Diameter of Hole in Roof Plate<br>or Reinforcing Plate<br>$D_P$ | $\begin{array}{c} \text{Minimum Height} \\ \text{of Nozzle} \\ H_R \end{array}$ | Outside Diameter of Reinforcing Plate <sup>a</sup> $D_R$ |
| 1 <sup>1</sup> / <sub>2</sub> | 48.3                             | 50                                                              | 150                                                                             | 125                                                      |
| 2                             | 60.3                             | 65                                                              | 150                                                                             | 175                                                      |
| 3                             | 88.9                             | 92                                                              | 150                                                                             | 225                                                      |
| 4                             | 114.3                            | 120                                                             | 150                                                                             | 275                                                      |
| 6                             | 168.3                            | 170                                                             | 150                                                                             | 375                                                      |
| 8                             | 219.1                            | 225                                                             | 150                                                                             | 450                                                      |
| 10                            | 273.0                            | 280                                                             | 200                                                                             | 550                                                      |
| 12                            | 323.8                            | 330                                                             | 200                                                                             | 600                                                      |

#### Table 5-14a-(SI) Dimensions for Flanged Roof Nozzles (mm)

<sup>a</sup>Reinforcing plates are not required on nozzles NPS 6 or smaller but may be used if desired. Note: See Figure 5-19.

#### Table 5-14b—(USC) Dimensions for Flanged Roof Nozzles (in.)

| Column 1      | Column 2                         | Column 3                                                        | Column 4                             | Column 5                                                       |
|---------------|----------------------------------|-----------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------|
| Nozzle<br>NPS | Outside Diameter<br>of Pipe Neck | Diameter of Hole in Roof Plate<br>or Reinforcing Plate<br>$D_P$ | Minimum Height<br>of Nozzle<br>$H_R$ | Outside Diameter of<br>Reinforcing Plate <sup>a</sup><br>$D_R$ |
| 11/2          | 1.900                            | 2                                                               | 6                                    | 5                                                              |
| 2             | $2^{3}/_{8}$                     | $2^{1}/_{2}$                                                    | 6                                    | 7                                                              |
| 3             | 31/2                             | 3 <sup>5</sup> /8                                               | 6                                    | 9                                                              |
| 4             | $4^{1}/_{2}$                     | 4 <sup>5</sup> /8                                               | 6                                    | 11                                                             |
| 6             | 6 <sup>5</sup> /8                | 6 <sup>3</sup> / <sub>4</sub>                                   | 6                                    | 15                                                             |
| 8             | 8 <sup>5</sup> /8                | 8 <sup>7</sup> /8                                               | 6                                    | 18                                                             |
| 10            | 10 <sup>3</sup> / <sub>4</sub>   | 11                                                              | 8                                    | 22                                                             |
| 12            | $12^{3}/_{4}$                    | 13                                                              | 8                                    | 24                                                             |

<sup>a</sup>Reinforcing plates are not required on nozzles NPS 6 or smaller but may be used if desired. Note: See Figure 5-19.

**5.8.6.2** The cover plate thickness and/or structural support shall be designed to limit maximum fiber stresses in accordance with this Standard, however, cover plate thickness shall not be less than 5 mm  $({}^{3}/{}_{16}$  in.). In addition to other expected design loads, consider a 112 kg (250 lb) person standing in the center of the installed/closed cover. The designer shall consider wind in the design of hinged openings and how removed covers will be handled without damage (adequate rigidity).

**5.8.6.3** Rectangular openings, other than shown in Figures 5-17 and 5-18, and openings larger than indicated shall be designed by an engineer experienced in tank design in accordance with this Standard. Hinged covers prescribed in Figure 5-18 may not be used on roofs designed to contain internal pressure. Flanged covers prescribed in Figure 5-17 may not be used on tanks with internal pressures (acting across the cross sectional area of the tank roof) that exceed the weight of the roof plates. This section applies only to fixed steel roofs.

# • 5.8.7 Water Drawoff Sumps

08 Water drawoff sumps shall be as specified in Figure 5-21 and Tables 5-16a and 5-16b) unless otherwise specified by the Purchaser.

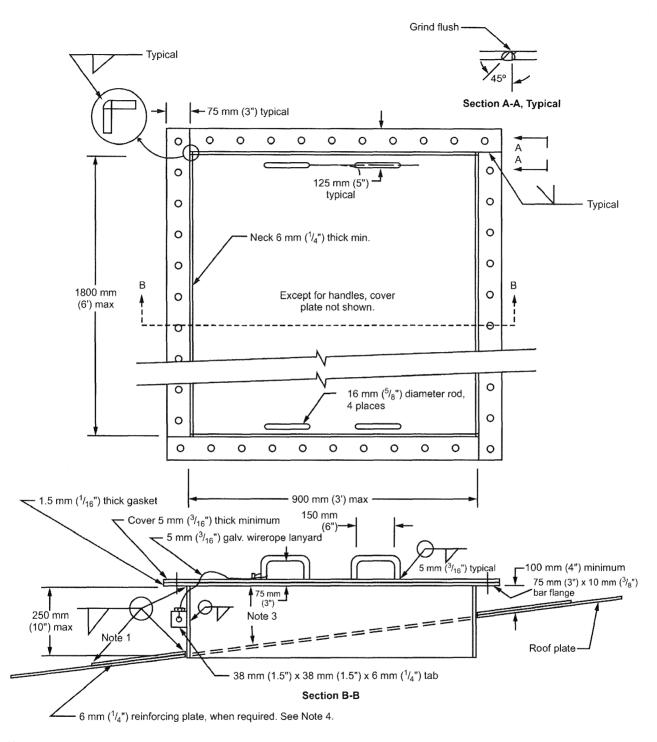
|               | ( )             |                                                                 |                                                          |
|---------------|-----------------|-----------------------------------------------------------------|----------------------------------------------------------|
| Column 1      | Column 2        | Column 3                                                        | Column 4                                                 |
| Nozzle<br>NPS | Coupling<br>NPS | Diameter of Hole in Roof Plate<br>or Reinforcing Plate<br>$D_P$ | Outside Diameter of Reinforcing Plate <sup>a</sup> $D_R$ |
| 3/4           | 3/4             | 36                                                              | 100                                                      |
| 1             | 1               | 44                                                              | 110                                                      |
| 11/2          | $1^{1/2}$       | 60                                                              | 125                                                      |
| 2             | 2               | 76                                                              | 175                                                      |
| 3             | 3               | 105                                                             | 225                                                      |
| 4             | 4               | 135                                                             | 275                                                      |
| 6             | 6               | 192                                                             | 375                                                      |
| 8             | 8               | 250                                                             | 450                                                      |
| 10            | 10              | 305                                                             | 550                                                      |
| 12            | 12              | 360                                                             | 600                                                      |
|               |                 |                                                                 |                                                          |

# Table 5-15a-(SI) Dimensions for Threaded Roof Nozzles (mm)

<sup>a</sup>Reinforcing plates are not required on nozzles NPS 6 or smaller but may be used if desired. Note: See Figure 5-20.

| Column 1                      | Column 2        | Column 3                                                        | Column 4                                                 |
|-------------------------------|-----------------|-----------------------------------------------------------------|----------------------------------------------------------|
| Nozzle<br>NPS                 | Coupling<br>NPS | Diameter of Hole in Roof Plate<br>or Reinforcing Plate<br>$D_P$ | Outside Diameter of Reinforcing Plate <sup>a</sup> $D_R$ |
| 3/4                           | 3/4             | 17/16                                                           | 4                                                        |
| 1                             | 1               | 1 <sup>23</sup> / <sub>32</sub>                                 | 4 <sup>1</sup> / <sub>2</sub>                            |
| 1 <sup>1</sup> / <sub>2</sub> | $1^{1}/_{2}$    | 2 <sup>11</sup> / <sub>32</sub>                                 | 5                                                        |
| 2                             | 2               | 3                                                               | 7                                                        |
| 3                             | 3               | $4^{1}/_{8}$                                                    | 9                                                        |
| 4                             | 4               | 5 <sup>11</sup> / <sub>32</sub>                                 | 11                                                       |
| 6                             | 6               | 7 <sup>17</sup> / <sub>32</sub>                                 | 15                                                       |
| 8                             | 8               | 9 <sup>7</sup> / <sub>8</sub>                                   | 18                                                       |
| 10                            | 10              | 12                                                              | 22                                                       |
| 12                            | 12              | $14^{1}/_{4}$                                                   | 24                                                       |

#### Table 5-15b—(USC) Dimensions for Threaded Roof Nozzles (in.)

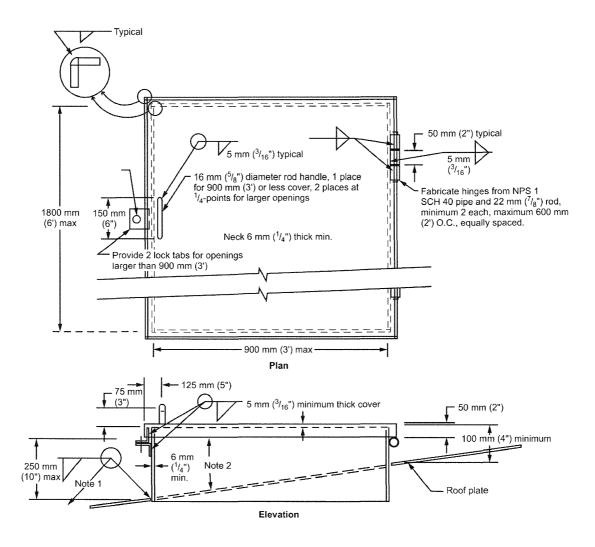

<sup>a</sup>Reinforcing plates are not required on nozzles NPS 6 or smaller but may be used if desired. Note: See Figure 5-20.

#### 5.8.8 Scaffold-Cable Support

The scaffold-cable support shall conform to Figure 5-22. Where seams or other attachments are located at the center of the tank roof, the scaffold support shall be located as close as possible to the center.

# 5.8.9 Threaded Connections

Threaded piping connections shall be female and tapered. The threads shall conform to the requirements of ASME B1.20.1 for tapered pipe threads.




### Notes:

1. Weld size shall be the smaller of the plate thicknesses being joined.

- 2. Cover may be either parallel to roof or horizontal. Opening may be oriented as desired.
- 3. Bolts shall be 16-mm ( ${}^{5/}_{8}$ -in.) diameter in 20-mm ( ${}^{3/}_{4}$ -in.) holes, which shall be equally spaced and shall not exceed 125-mm (5 in.) on center. 4. When required, provide 6-mm ( ${}^{1/}_{4}$ -in.) reinforcing plate. Width at least  ${}^{1/}_{2}$  smallest opening dimension. Round outside corners with 75 mm (3 in.) radius, minimum. Seams shall be square groove butt-welded.

Figure 5-17-Rectangular Roof Openings with Flanged Covers



#### Notes:

1. Weld size shall be the smaller of the plate thicknesses being joined.

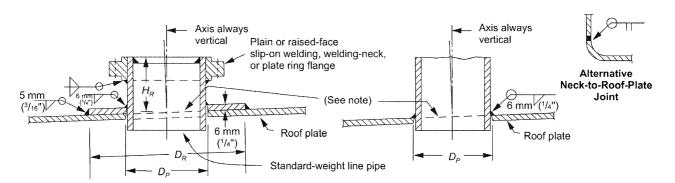
2. Cover may be either parallel to roof or horizontal. Opening may be oriented as desired.

3. Reinforcement, when required, shall be as shown in Figure 5-19.

4. Not for use on roofs designed to contain internal pressure.



#### 5.8.10 Platforms, Walkways, and Stairways


a. Platforms, walkways, and stairways shall be in accordance with Tables 5-17, 5-18, 5-19a, and 5-19b, and OSHA 29 *CFR* 1910, Subpart D, or equivalent national safety standard and the requirements herein, except as noted herein.

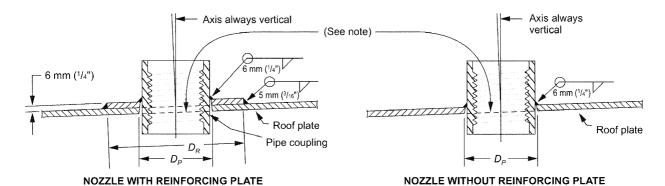
b. For examples of acceptable details, see Process Industry Practices standard details PIP STF05501, PIP STF05520, and PIP STF05521 (see www.pip.org).

c. Unless declined on the Data Sheet, Line 24, a roof edge landing or gauger's platform shall be provided at the top of all tanks.

#### 5.8.11 Other Appurtenances and Attachments

**5.8.11.1** Floating suction lines shall be provided when specified on the Data Sheet, Table 4. Floating suction lines using rigid articulated (having one or more swing joints) pipe shall be designed to travel in a vertical plane and prevent damage to the floating




#### NOZZLE WITH REINFORCING PLATE

#### BASE FOR NOZZLE WITHOUT REINFORCING PLATE

Note: When the roof nozzle is used for venting, the neck shall be trimmed flush with the roofline.

#### 08

#### Figure 5-19—Flanged Roof Nozzles (See Tables 5-14a and 5-14b)



Note: See 5.8.9 for requirements for threaded connections. When the roof nozzle is used for venting, the neck shall be trimmed flush with the roofline.

#### 08

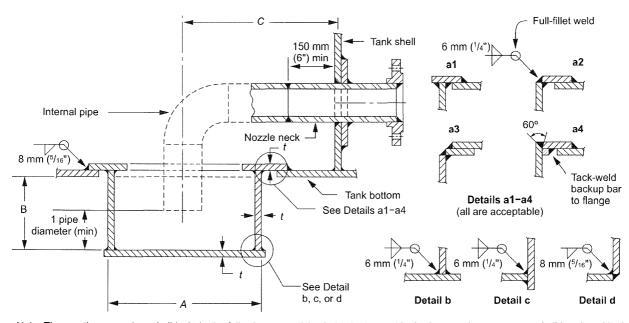
07

#### Figure 5-20—Threaded Roof Nozzles (See Tables 5-15a and 5-15b)

roof and the suction line through its design range of travel. These lines shall be designed so that the vertical plane is as close as possible to, and in no case greater than 10 degrees off, a radial line from the tank centerline to the nozzle. Adjustments shall be made to clear internal structures.

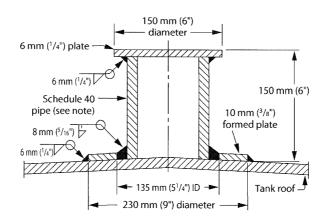
• **5.8.11.2** Inlet diffusers shall be provided if requested in the Other Tank Appurtenances section of the Data Sheet, Table 4. (See API RP 2003 and Appendix H for additional information.)

• **5.8.11.3** If required by the Purchaser, grounding lugs shall be provided in the quantity specified on the Data Sheet, Table 4, and comply with Figure 5-23. The lugs shall be equally spaced around the base of the tank. Provide a minimum of four lugs. The suggested maximum lug spacing is 30 m (100 ft).


Note: Tanks that rest directly on a foundation of soil, asphalt or concrete are inherently grounded for purposes of dissipation of electrostatic charges. The addition of grounding rods or similar devices will not reduce the hazard associated with electrostatic charges in the stored product. API RP 2003 and NFPA-780 contain additional information about tank grounding issues as well as comments about lightning protection.

**5.8.11.4** All non-circular miscellaneous pads shall have rounded corners with a minimum radius of 50 mm (2 in.). Pads that must cover shell seams shall be provided with a 6 mm (1/4 in.) telltale hole (see 5.7.3.4).

# 5.9 TOP AND INTERMEDIATE STIFFENING RINGS


#### 5.9.1 General

An open-top tank shall be provided with stiffening rings to maintain roundness when the tank is subjected to wind loads. The stiffening rings shall be located at or near the top of the top course, preferably on the outside of the tank shell. This design for rings



Note: The erection procedure shall include the following steps: (a) a hole shall be cut in the bottom plate or a sump shall be placed in the foundation before bottom placement; (b) a neat excavation shall be made to conform to the shape of the drawoff sump, the sump shall be put in place, and the foundation shall be compacted around the sump after placement; and (c) the sump shall be welded to the bottom.

Figure 5-21—Drawoff Sump (See Tables 5-16a and 5-16b)



(wall thickness = 6.02 mm [0.237 in.]; outside diameter = 114.3 mm [4.5 in.]).

Note: NPS 4 Schedule 40 pipe

Figure 5-22—Scaffold Cable Support

used as wind girders also applies to floating-roof tanks covered in Appendix C. The top angle and the wind girders shall conform, in material and size, to the requirements of this Standard.

### 5.9.2 Types of Stiffening Rings

Stiffening rings may be made of structural sections, formed plate sections, sections built up by welding, or combinations of such types of sections assembled by welding. The outer periphery of stiffening rings may be circular or polygonal (see Figure 5-24).

# 5.9.3 Restrictions on Stiffening Rings

**5.9.3.1** The minimum size of angle for use alone or as a component in a built-up stiffening ring shall be  $65 \times 65 \times 6 \text{ mm} (2^{1}/_{2} \times 2^{1}/_{2} \times 1/_{4} \text{ in.})$ . The minimum nominal thickness of plate for use in formed or built-up stiffening rings shall be 6 mm (0.236 in.).

| NPS | Diameter of Sump<br>mm<br>A | Depth of Sump<br>mm<br>B | Distance from<br>Center Pipe to Shell<br>m<br>C | Thickness of Plates<br>in Sump<br>mm<br>t | Minimum Internal<br>Pipe Thickness<br>mm | Minimum Nozzle<br>Neck Thickness<br>mm |
|-----|-----------------------------|--------------------------|-------------------------------------------------|-------------------------------------------|------------------------------------------|----------------------------------------|
| 2   | 610                         | 300                      | 1.1                                             | 8                                         | 5.54                                     | 5.54                                   |
| 3   | 910                         | 450                      | 1.5                                             | 10                                        | 6.35                                     | 7.62                                   |
| 4   | 1220                        | 600                      | 2.1                                             | 10                                        | 6.35                                     | 8.56                                   |
| 6   | 1520                        | 900                      | 2.6                                             | 11                                        | 6.35                                     | 10.97                                  |

# Table 5-16a-(SI) Dimensions for Drawoff Sumps

Note: See Figure 5-19.

08

# Table 5-16b—(USC) Dimensions for Drawoff Sumps

| NPS | Diameter of Sump<br>in.<br>A | Depth of Sump<br>in.<br>B | Distance from<br>Center Pipe to Shell<br>ft<br>C | Thickness of Plates<br>in Sump<br>in.<br>t | Minimum Internal<br>Pipe Thickness<br>in. | Minimum Nozzle<br>Neck Thickness<br>in. |
|-----|------------------------------|---------------------------|--------------------------------------------------|--------------------------------------------|-------------------------------------------|-----------------------------------------|
| 2   | 610 (24)                     | 12                        | 31/2                                             | <sup>5</sup> / <sub>16</sub>               | 0.218                                     | 0.218                                   |
| 3   | 910 (36)                     | 18                        | 5                                                | 3/8                                        | 0.250                                     | 0.300                                   |
| 4   | 1220 (48)                    | 24                        | 6 <sup>3</sup> / <sub>4</sub>                    | 3/8                                        | 0.250                                     | 0.337                                   |
| 6   | 1520 (60)                    | 36                        | 81/2                                             | 7/ <sub>16</sub>                           | 0.250                                     | 0.432                                   |

Note: See Figure 5-19.

# Table 5-17-Requirements for Platforms and Walkways

|    | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | All parts shall be made of metal.                                                                              |  |  |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 07 | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The minimum width of the walkway shall be 610 mm (24 in.), after making adjustments at all projections.        |  |  |  |  |  |
|    | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flooring shall be made of grating or nonslip material.                                                         |  |  |  |  |  |
|    | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The height of the top railing above the floor shall be 1070 mm (42 in.). <sup>a</sup>                          |  |  |  |  |  |
|    | 5. The minimum height of the toeboard shall be 75 mm (3 in.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |  |  |  |  |  |
|    | The maximum space between the top of the floor and the bottom of the toeboard shall be 6 mm $(1/4 \text{ in.})$ .                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |  |  |  |  |  |
|    | 7. The height of the midrail shall be approximately one-half the distance from the top of the walkway to the top of the railing                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                |  |  |  |  |  |
|    | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The maximum distance between railing posts shall be 2400 mm (96 in.).                                          |  |  |  |  |  |
|    | 9. The completed structure shall be capable of supporting a moving concentrated load of 4450 N (1000 lbf), and the has shall be capable of withstanding a load of 900 N (200 lbf) applied in any direction at any point on the top rail.                                                                                                                                                                                                                                                                                          |                                                                                                                |  |  |  |  |  |
|    | 10. Handrails shall be on both sides of the platform but shall be discontinued where necessary for access.                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |  |  |  |  |  |
|    | 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | At handrail openings, any space wider than 150 mm (6 in.) between the tank and the platform should be floored. |  |  |  |  |  |
|    | A tank runway that extends from one part of a tank to any part of an adjacent tank, to the ground, or to another structure shall be sup-<br>ported so that free relative movement of the structures joined by the runway is permitted. This may be accomplished by firm attachment<br>of the runway to one tank and the use of a slip joint at the point of contact between the runway and the other tank. (This method permits<br>either tank to settle or be disrupted by an explosion without the other tank being endangered. |                                                                                                                |  |  |  |  |  |
| 07 | <sup>a</sup> This handrail height is required by OSHA specifications.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |  |  |  |  |  |

| Table | 5-18—Requirements for Stairways | s |
|-------|---------------------------------|---|
|-------|---------------------------------|---|

| 1.                 | All parts shall be made of metal.                                                                                                                                                                                                                                                                                                                 |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.                 | The minimum width of the stairs shall be 710 mm (28 in.).                                                                                                                                                                                                                                                                                         |
| 3.                 | The maximum angle <sup>a</sup> of the stairway with a horizontal line shall be 50 degrees.                                                                                                                                                                                                                                                        |
| 4.                 | The minimum width of the stair treads shall be 200 mm (8 in.). (The sum of twice the rise of the stair treads plus the run [defined as the horizontal distance between the noses of successive tread pieces] shall not be less than 610 mm [24 in.] or more than 660 mm [26 in.]. Rises shall be uniform throughout the height of the stairway.]) |
| 5.                 | Treads shall be made of grating or nonslip material.                                                                                                                                                                                                                                                                                              |
| 6.                 | The top railing shall join the platform handrail without offset, and the height measured vertically from tread level at the nose of the tread shall be 760 mm $-$ 860 mm $(30 \text{ in} 34 \text{ in}.)$ .                                                                                                                                       |
| 7.                 | The maximum distance between railing posts, measured along the slope of the railing, shall be 2400 mm (96 in.).                                                                                                                                                                                                                                   |
| 8.                 | The completed structure shall be capable of supporting a moving concentrated load of 4450 N (1000 lbf), and the handrail structure shall be capable of withstanding a load of 900 N (200 lbf) applied in any direction at any point on the top rail.                                                                                              |
| 9.                 | Handrails shall be on both sides of straight stairs; handrails shall also be on both sides of circular stairs when the clearance between the tank shell and the stair stringer exceeds 200 mm (8 in.).                                                                                                                                            |
| 10.                | Circumferential stairways shall be completely supported on the shell of the tank, and the ends of the stringers shall be clear of the ground. Stairways shall extend from the bottom of the tank up to a roof edge landing or gauger's platform.                                                                                                  |
| <sup>a</sup> It is | recommended that the same angle be employed for all stairways in a tank group or plant area.                                                                                                                                                                                                                                                      |

07

08

|                | 2 <i>R</i>   | +r = 610  mm |         | 2R + r = 660  mm |         |         |  |
|----------------|--------------|--------------|---------|------------------|---------|---------|--|
| Height of Rise | Width of Run | Angle        |         | Width of Run     | Angle   |         |  |
| $\frac{mm}{R}$ | mm<br>r      | Degrees      | Minutes | mm<br>r          | Degrees | Minutes |  |
| 135            | 340          | 21           | 39      |                  |         |         |  |
| 140            | 330          | 22           | 59      | 380              | 20      | 13      |  |
| 145            | 320          | 24           | 23      | 370              | 21      | 24      |  |
| 150            | 310          | 25           | 49      | 360              | 22      | 37      |  |
| 155            | 300          | 27           | 19      | 350              | 23      | 53      |  |
| 165            | 280          | 30           | 31      | 330              | 26      | 34      |  |
| 170            | 270          | 32           | 12      | 320              | 27      | 59      |  |
| 180            | 250          | 35           | 45      | 300              | 30      | 58      |  |
| 185            | 240          | 37           | 38      | 290              | 32      | 32      |  |
| 190            | 230          | 39           | 34      | 280              | 34      | 10      |  |
| 195            | 220          | 41           | 33      | 270              | 35      | 50      |  |
| 205            | 200          | 45           | 42      | 250              | 39      | 21      |  |
| 210            | 190          | 47           | 52      | 240              | 41      | 11      |  |
| 215            |              |              |         | 230              | 43      | 4       |  |
| 220            |              |              |         | 220              | 45      | 0       |  |
| 225            |              |              |         | 210              | 46      | 58      |  |

# Table 5-19a-(SI) Rise, Run, and Angle Relationships for Stairways

5-61

|                                   | 2R + r = 24 in.                |         |         | 2R + r = 26 in.                |         |        |  |
|-----------------------------------|--------------------------------|---------|---------|--------------------------------|---------|--------|--|
| Height of Rise<br>in.<br><i>R</i> | Width of Run                   | Angle   |         | Width of Run                   | Angle   |        |  |
|                                   | in.<br><i>r</i>                | Degrees | Minutes | in.<br><i>r</i>                | Degrees | Minute |  |
| 51/2                              | 13 <sup>1</sup> / <sub>2</sub> | 21      | 39      |                                |         |        |  |
| 5 <sup>1</sup> / <sub>2</sub>     | 13                             | 22      | 59      | 15                             | 20      | 13     |  |
| 5 <sup>3</sup> / <sub>4</sub>     | 12 <sup>1</sup> / <sub>2</sub> | 24      | 23      | 14 <sup>1</sup> / <sub>2</sub> | 21      | 24     |  |
| 6                                 | 12                             | 25      | 49      | 14                             | 22      | 37     |  |
| $6^{1}/_{4}$                      | $11^{1}/_{2}$                  | 27      | 19      | 13 <sup>1</sup> / <sub>2</sub> | 23      | 53     |  |
| 6 <sup>1</sup> / <sub>2</sub>     | 11                             | 30      | 31      | 13                             | 26      | 34     |  |
| 6 <sup>3</sup> / <sub>4</sub>     | $10^{1}/_{2}$                  | 32      | 12      | $12^{1}/_{2}$                  | 27      | 59     |  |
| 7                                 | 10                             | 35      | 45      | 12                             | 30      | 58     |  |
| $7^{1}/_{4}$                      | 9 <sup>1</sup> / <sub>2</sub>  | 37      | 38      | 1111/2                         | 32      | 32     |  |
| 7 <sup>1</sup> / <sub>2</sub>     | 9                              | 39      | 34      | 11                             | 34      | 10     |  |
| $7^{3}/_{4}$                      | 8 <sup>1</sup> / <sub>2</sub>  | 41      | 33      | 10 <sup>1</sup> / <sub>2</sub> | 35      | 50     |  |
| 8                                 | 8                              | 45      | 42      | 10                             | 39      | 21     |  |
| 8 <sup>1</sup> / <sub>4</sub>     | $7^{1}/_{2}$                   | 47      | 52      | $9^{1}/_{2}$                   | 41      | 11     |  |
| 8 <sup>1</sup> / <sub>2</sub>     |                                | —       |         | 9                              | 43      | 4      |  |
| 8 <sup>3</sup> / <sub>4</sub>     | _                              | _       |         | 8 <sup>1</sup> / <sub>2</sub>  | 45      | 0      |  |
| 9                                 |                                |         | -       | 8                              | 46      | 58     |  |

Table 5-19b-(USC) Rise, Run, and Angle Relationships for Stairways

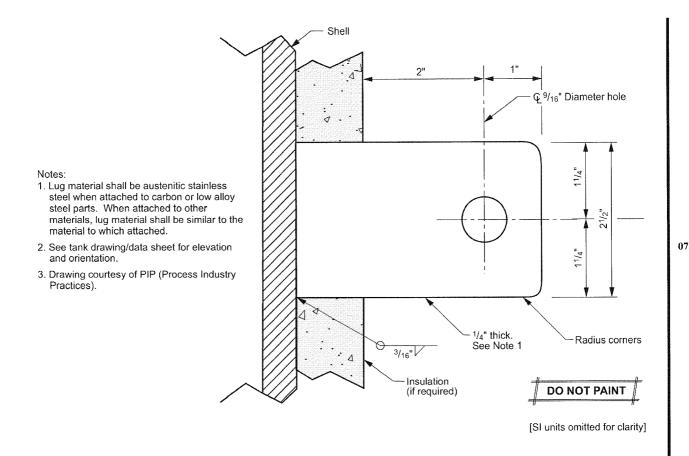
**5.9.3.2** When the stiffening rings are located more than 0.6 m (2 ft) below the top of the shell, the tank shall be provided with a  $65 \times 65 \times 6 \text{ mm} (2^{1}/_2 \times 2^{1}/_2 \times 3^{1}/_{16} \text{ in.})$  top curb angle for shells 5 mm ( $3^{1}/_{16}$  in.) thick, with a  $75 \times 75 \times 6 \text{ mm} (3 \times 3 \times 1^{1}/_{4} \text{ in.})$  angle for shells more than 5 mm ( $3^{1}/_{16}$  in.) thick, or with other members of equivalent section modulus.

• 5.9.3.3 Rings that may trap liquid shall be provided with adequate drain holes. Uninsulated tanks having rings shall have small water-shedding slopes and/or drain holes or slots unless the Purchaser approves an alternate means of drainage. If drain holes are provided, they shall be at least 25 mm (1 in.) diameter (or slot width) on 2400 mm (8 ft) centers or less. Insulated tanks where the rings function as insulation closures shall have no drain holes or slots.

**5.9.3.4** Welds joining stiffening rings to the tank shell may cross vertical tank seam welds. Any splice weld in the ring shall be located a minimum of 150 mm (6 in.) from any vertical shell weld. Stiffening rings may also cross vertical tank seam welds with the use of coping (rat hole) of the stiffening ring at the vertical tank seam. Where the coping method is used, the required section modulus of the stiffening ring and weld spacing must be maintained.

# 5.9.4 Stiffening Rings as Walkways

A stiffening ring or any portion of it that is specified as a walkway shall have a width not less than 710 mm (28 in.) clear of projections including the angle on the top of the tank shell. The clearance around local projections shall not be less than 610 mm (24 in.). Unless the tank is covered with a fixed roof, the stiffening ring (used as a walkway) shall be located 1100 mm (42 in.) below the top of the curb angle and shall be provided with a standard railing on the unprotected side and at the ends of the section used as a walkway.


### 5.9.5 Supports for Stiffening Rings

Supports shall be provided for all stiffening rings when the dimension of the horizontal leg or web exceeds 16 times the leg or web thickness. The supports shall be spaced at the intervals required for the dead load and vertical live load; however, the spacing shall not exceed 24 times the width of the outside compression flange.

### 5.9.6 Top Wind Girder

**5.9.6.1** The required minimum section modulus of the stiffening ring shall be determined by the following equation:

1



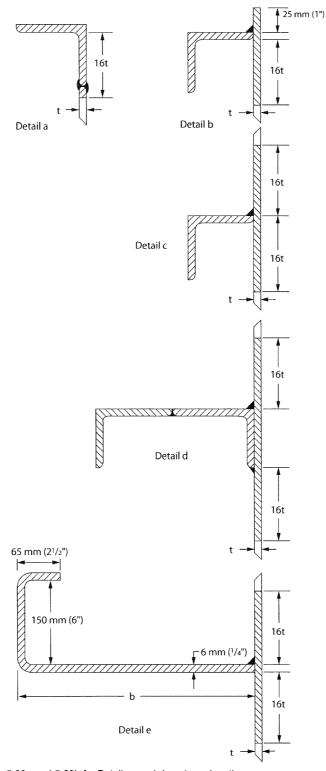


 $Z = \frac{D^2 H_2}{17} \left(\frac{V}{190}\right)^2$ 

In SI units:

where

- Z = required minimum section modulus (cm<sup>3</sup>),
- D = nominal tank diameter (m),
- $H_2$  = height of the tank shell (m), including any freeboard provided above the maximum filling height as a guide for a floating roof.
- V = design wind speed (3-sec gust) (km/h) (see 5.2.1[k]).


In US Customary units:

$$Z = 0.0001 \ D^2 \ H_2 \ \left(\frac{V}{120}\right)^2$$

where

- Z = required minimum section modulus (in.<sup>3</sup>),
- D = nominal tank diameter (ft),
- $H_2$  = height of the tank shell (ft), including any freeboard provided above the maximum filling height as a guide for a floating roof,
- V = design wind speed (3-sec gust) (mph) (see 5.2.1[k]).
- Note: For tank diameters over 60 m (200 ft), the section modulus required by the equation may be reduced by agreement between the Purchaser and the Manufacturer, but the modulus may not be less than that required for a tank diameter of 61 m (200 ft). (A description of the loads on the tank shell that are included in the design wind speed can be found in Item a of the note to 5.9.7.1.)

08



Note: The section moduli given in Tables 5-20a and 5-20b for Details c and d are based on the longer leg being located horizontally (perpendicular to the shell) when angles with uneven legs are used.

09

Figure 5-24—Typical Stiffening-Ring Sections for Tank Shells (See Tables 5-20a and 5-20b)

| Column 1                               | Column 2    | Column 3               | Column 4                | Column 5   | Column 6 |
|----------------------------------------|-------------|------------------------|-------------------------|------------|----------|
| Member Size                            |             | As-                    | Built Shell Thickness ( | (mm)       |          |
| mm                                     | 5           | 6                      | 8                       | 10         | 11       |
|                                        |             | Top Angle: Figu        | re 5-24, Detail a       |            |          |
| $55 \times 65 \times 6$                | 6.58        | 6.77                   | ,<br>                   |            |          |
| $55 \times 65 \times 8$                | 8.46        | 8.63                   |                         | _          |          |
| $75 \times 75 \times 10$               | 13.82       | 13.97                  |                         |            |          |
|                                        |             | Curb Angle: Figu       | re 5-24, Detail b       |            |          |
| $5 \times 65 \times 6$                 | 27.03       | 28.16                  | _                       |            |          |
| $55 \times 65 \times 8$                | 33.05       | 34.67                  | advanture:              |            |          |
| $75 \times 75 \times 6$                | 35.98       | 37.49                  |                         |            |          |
| 75 	imes 75 	imes 10                   | 47.24       | 53.84                  |                         | Sequences. | ******** |
| $100 \times 100 \times 7$              | 63.80       | 74.68                  |                         |            |          |
| $00 \times 100 \times 10$              | 71.09       | 87.69                  |                         |            |          |
| ······································ |             | One Angle: Figure 5-2  | 4, Detail c (See Note)  |            |          |
| $5 \times 65 \times 6$                 | 28.09       | 29.15                  | 30.73                   | 32.04      | 32.69    |
| $65 \times 65 \times 8$                | 34.63       | 36.20                  | 38.51                   | 40.32      | 41.17    |
| $00 \times 75 \times 7$                | 60.59       | 63.21                  | 66.88                   | 69.48      | 70.59    |
| $02 \times 75 \times 8$                | 66.97       | 70.08                  | 74.49                   | 77.60      | 78.90    |
| $25 \times 75 \times 8$                | 89.41       | 93.71                  | 99.86                   | 104.08     | 105.78   |
| $25 \times 75 \times 10$               | 105.20      | 110.77                 | 118.97                  | 124.68     | 126.97   |
| $50 \times 75 \times 10$               | 134.14      | 141.38                 | 152.24                  | 159.79     | 162.78   |
| $50 \times 100 \times 10$              | 155.91      | 171.17                 | 184.11                  | 193.08     | 196.62   |
|                                        |             | Two Angles: Figure 5-2 | 24, Detail d (See Note) |            |          |
| $00 \times 75 \times 8$                | 181.22      | 186.49                 | 195.15                  | 201.83     | 204.62   |
| $00 \times 75 \times 10$               | 216.81      | 223.37                 | 234.55                  | 243.41     | 247.16   |
| $25 \times 75 \times 8$                | 249.17      | 256.84                 | 269.59                  | 279.39     | 283.45   |
| $25 \times 75 \times 10$               | 298.77      | 308.17                 | 324.40                  | 337.32     | 342.77   |
| $50 \times 75 \times 8$                | 324.97      | 335.45                 | 353.12                  | 366.82     | 372.48   |
| $50 \times 75 \times 10$               | 390.24      | 402.92                 | 425.14                  | 443.06     | 450.61   |
| $50 \times 100 \times 10$              | 461.11      | 473.57                 | 495.62                  | 513.69     | 521.41   |
|                                        |             | Formed Plate: Fig      | ure 5-24. Detail e      |            |          |
| = 250                                  | _           | 341                    | 375                     | 392        | 399      |
| = 300                                  |             | 427                    | 473                     | 496        | 505      |
| = 350                                  |             | 519                    | 577                     | 606        | 618      |
| = 400                                  |             | 615                    | 687                     | 723        | 737      |
| = 450                                  |             | 717                    | 802                     | 846        | 864      |
| = 500                                  |             | 824                    | 923                     | 976        | 996      |
| = 550                                  |             | 937                    | 1049                    | 1111       | 1135     |
| = 600                                  | <del></del> | 1054                   | 1181                    | 1252       | 1280     |
| = 650                                  |             | 1176                   | 1317                    | 1399       | 1432     |
| = 700                                  |             | 1304                   | 1459                    | 1551       | 1589     |
| = 750                                  |             | 1436                   | 1607                    | 1709       | 1752     |
| = 800                                  |             | 1573                   | 1759                    | 1873       | 1921     |
| = 850                                  |             | 1716                   | 1917                    | 2043       | 2096     |
| = 900                                  |             | 1864                   | 2080                    | 2218       | 2276     |
| = 950                                  |             | 2016                   | 2248                    | 2398       | 2463     |
| = 1000                                 |             | 2174                   | 2421                    | 2584       | 2654     |

# Table 5-20a-(SI) Section Moduli (cm<sup>3</sup>) of Stiffening-Ring Sections on Tank Shells

Note: The section moduli for Details c and d are based on the longer leg being located horizontally (perpendicular to the shell) when angles with uneven legs are used.

5-65

| Column 1                                                                            | Column 2 | Column 3              | Column 4                     | Column 5       | Column 6        |
|-------------------------------------------------------------------------------------|----------|-----------------------|------------------------------|----------------|-----------------|
| Member Size                                                                         |          | As                    | Built Shell Thickness (      | in.)           |                 |
| in.                                                                                 | 3/16     | 1/4                   | <sup>5</sup> / <sub>16</sub> | 3/8            | 7/16            |
|                                                                                     |          | Top Angle: Figu       | re 5-24, Detail a            |                |                 |
| $2^{1}/_{2} \times 2^{1}/_{2} \times {}^{1}/_{4}$                                   | 0.41     | 0.42                  |                              |                |                 |
| $2^{1/2} \times 2^{1/2} \times 5/16$                                                | 0.51     | 0.52                  |                              |                |                 |
| $3 \times 3 \times \frac{3}{8}$                                                     | 0.89     | 0.91                  |                              | -              |                 |
|                                                                                     |          | Curb Angle: Figu      | re 5-24, Detail b            |                |                 |
| $2^{1}/_{2} \times 2^{1}/_{2} \times {}^{1}/_{4}$                                   | 1.61     | 1.72                  | _                            |                |                 |
| $2^{1}/_{2} \times 2^{1}/_{2} \times /_{16}$                                        | 1.89     | 2.04                  |                              |                |                 |
| $3 \times 3 \times \frac{1}{4}$                                                     | 2.32     | 2.48                  |                              |                |                 |
| $3 \times 3 \times \frac{14}{3}$                                                    | 2.78     | 3.35                  |                              |                |                 |
| $4 \times 4 \times \frac{1}{4}$                                                     | 3.64     | 4.41                  |                              |                |                 |
| $4 \times 4 \times \frac{3}{8}$                                                     | 4.17     | 5.82                  |                              |                |                 |
|                                                                                     |          | One Angle: Figure 5-2 | A Deteil a (See Note)        |                |                 |
| $2^{1/2} \times 2^{1/2} \times {}^{1/4}$                                            | 1.68     | 1.79                  | 1.87                         | 1.93           | 2.00            |
| $2^{1/2} \times 2^{1/2} \times 7^{4}$<br>$2^{1/2} \times 2^{1/2} \times 5^{1/16}$   | 1.98     | 2.13                  | 2.23                         | 2.32           | 2.00            |
| $\frac{2}{4} \times 3 \times \frac{1}{4}$                                           | 3.50     | 3.73                  | 3.89                         | 4.00           | 2.40<br>4.10    |
| $4 \times 3 \times \frac{7}{4}$<br>$4 \times 3 \times \frac{5}{16}$                 | 4.14     | 4.45                  | 4.66                         | 4.00           | 4.10            |
| $5 \times 3 \times \frac{5}{16}$                                                    | 5.53     | 5.96                  | 6.25                         | 6.47           | 6.64            |
| $5 \times 3^{1}/_{2} \times 5^{1}/_{16}$                                            | 6.13     | 6.60                  | 6.92                         | 7.16           | 7.35            |
| $5 \times 3^{1}/_{2} \times 3^{1}/_{16}$<br>$5 \times 3^{1}/_{2} \times 3^{1}/_{8}$ | 7.02     | 7.61                  | 8.03                         | 8.33           | 8.58            |
| $5 \times 3^{-1/2} \times \sqrt{8}$<br>$6 \times 4 \times \sqrt{3}/8$               | 9.02     | 10.56                 | 11.15                        | 11.59          | 11.93           |
|                                                                                     |          |                       | 24, Detail d (See Note)      |                | 11.55           |
| $4 \times 3 \times {}^{5}/_{16}$                                                    | 11.27    | 11.78                 | 12.20                        | 12.53          | 12.81           |
| $4 \times 3 \times \frac{16}{4}$<br>$4 \times 3 \times \frac{3}{8}$                 | 13.06    | 13.67                 | 14.18                        | 14.60          | 14.95           |
| $5 \times 3 \times \frac{5}{16}$                                                    | 15.48    | 16.23                 | 16.84                        | 17.34          | 17.74           |
| $5 \times 3 \times \frac{1}{16}$<br>$5 \times 3 \times \frac{3}{8}$                 | 18.00    | 18.89                 | 19.64                        | 20.26          | 20.77           |
| $5 \times 3^{1}/_{2} \times 5^{1}/_{16}$                                            | 16.95    | 17.70                 | 18.31                        | 18.82          | 19.23           |
| $5 \times 3^{1}/_{2} \times 3^{1}/_{8}$                                             | 19.75    | 20.63                 | 21.39                        | 22.01          | 22.54           |
| $\frac{5 \times 3^{1}/2 \times 3^{1}/8}{6 \times 4 \times 3^{1}/8}$                 | 27.74    | 20.03                 | 29.95                        | 30.82          | 31.55           |
|                                                                                     | 27.14    | Formed Plate: Fig     |                              |                |                 |
| b = 10                                                                              |          | 23.29                 | 24.63                        | 25.61          | 26.34           |
| b = 10<br>b = 12                                                                    |          | 29.27                 | 31.07                        | 32.36          | 33.33           |
| b = 12<br>b = 14                                                                    |          | 35.49                 | 37.88                        | 39.53          | 40.78           |
| b = 14<br>b = 16                                                                    |          | 42.06                 | 45.07                        | 47.10          | 48.67           |
| b = 10<br>b = 18                                                                    |          | 42.00                 | 52.62                        | 55.07          | 48.07<br>56.99  |
| b = 18<br>b = 20                                                                    |          | 56.21                 | 60.52                        | 63.43          | 65.73           |
| b = 20<br>b = 22                                                                    |          | 63.80                 | 68.78                        | 72.18          | 74.89           |
|                                                                                     |          | 71.72                 | 77.39                        | 81.30          | 74.89<br>84.45  |
| b = 24                                                                              | _        | 79.99                 | 86.35                        | 81.30<br>90.79 | 84.43<br>94.41  |
| b = 26                                                                              |          | 79.99<br>88.58        | 80.35<br>95.66               | 100.65         | 94.41<br>104.77 |
| b = 28                                                                              |          |                       |                              |                |                 |
| b = 30                                                                              |          | 97.52                 | 105.31                       | 110.88         | 115.52          |
| b = 32                                                                              |          | 106.78                | 115.30                       | 121.47         | 126.66          |
| b = 34                                                                              |          | 116.39                | 125.64                       | 132.42         | 138.17          |
| b = 36                                                                              | —        | 126.33                | 136.32                       | 143.73         | 150.07          |
| b = 38                                                                              |          | 136.60                | 147.35                       | 155.40         | 162.34          |
| b = 40                                                                              |          | 147.21                | 158.71                       | 167.42         | 174.99          |


## Table 5-20b-(USC) Section Moduli (in.<sup>3</sup>) of Stiffening-Ring Sections on Tank Shells

Note: The section moduli for Details c and d are based on the longer leg being located horizontally (perpendicular to the shell) when angles with uneven legs are used.

**5.9.6.2** The section modulus of the stiffening ring shall be based on the properties of the applied members and may include a portion of the tank shell for a distance of 16t below and, if applicable, above the shell-ring attachment where t is the as-built shell thickness, unless otherwise specified. When curb angles are attached to the top edge of the shell ring by butt-welding, this distance shall be reduced by the width of the vertical leg of the angle (see Figure 5-24 and Tables 5-20a and 5-20b).

**5.9.6.3** When a stair opening is installed through a stiffening ring, the section modulus of the portion of the ring outside the opening, including the transition section, shall conform to the requirements of 5.9.6.1. The shell adjacent to the opening shall be stiffened with an angle or a bar, the wide side of which is placed in a horizontal plane. The other sides of the opening shall also be stiffened with an angle or a bar, the wide side of which is placed in a vertical plane. The cross-sectional area of these rim stiffeners shall be greater than or equal to the cross-sectional area of the portion of shell included in the section-modulus calculations for the stiffening ring. These rim stiffeners or additional members shall provide a suitable toe board around the opening.

The stiffening members shall extend beyond the end of the opening for a distance greater than or equal to the minimum depth of the regular ring sections. The end stiffening members shall frame into the side stiffening members, and the end and side stiffening members shall be connected to ensure that their full strength is developed. Figure 5-25 shows the opening described in this section. Alternative details that provide a load-carrying capacity equal to that of the girder cross-section away from the opening may be provided.



#### Notes:

- The cross-sectional area of a, c, d, and e must equal 32t<sup>2</sup>. The section of the figure designated "a" may be a bar or an angle whose wide leg is horizontal. The other sections may be bars or angles whose wide legs are vertical.
- 2. Bars c, d, and e may be placed on the top of the girder web, provided they do not create a tripping hazard.
- 3. The section modulus of Sections A-A, B-B, C-C, and D-D shall conform to 5.9.6.1.
- 4. The stairway may be continuous through the wind girder or may be offset to provide a landing.
- 5. See 5.9.6.3 for toeboard requirements.

Figure 5-25—Stairway Opening through Stiffening Ring

09

### 5.9.7 Intermediate Wind Girders

**5.9.7.1** The maximum height of the unstiffened shell shall be calculated as follows:

In SI units:

$$H_1 = 9.47t \sqrt{\left(\frac{t}{D}\right)^3} \left(\frac{190}{V}\right)^2$$

where

 $H_1$  = vertical distance, in m, between the intermediate wind girder and the top angle of the shell or the top wind girder of an open-top tank,

t = nominal thickness, unless otherwise specified, of the thinnest shell course (mm) (see Note 1),

D = nominal tank diameter (m),

$$V = \text{design wind speed (3-sec gust) (km/h) (see 5.2.1[k])}$$

In US Customary units:

$$H_1 = 600,000 t \sqrt{\left(\frac{t}{D}\right)^3} \left(\frac{120}{V}\right)^2$$

where

 $H_1$  = vertical distance, in ft, between the intermediate wind girder and the top angle of the shell or the top wind girder of an open-top tank,

t = nominal thickness, unless otherwise specified, of the thinnest shell course (in.) (see Note 1),

D = nominal tank diameter (ft),

08

V = design wind speed (3-sec gust) (mph) (see 5.2.1[k]).

Note 1: The structural stability check of wind girder stiffened shells in accordance with 5.9.6 and 5.9.7, shall be based upon nominal dimensions of the shell course and the wind girders irrespective of specified corrosion allowances whenever the "No" option is selected for "Check Buckling in Corroded Cond.?" on the Data Sheet, Line 9. Whenever the "Yes" option is selected, the check must be based upon the nominal dimensions minus the specified corrosion allowance.

Note 2: This formula is intended to cover tanks with either open tops or closed tops and is based on the following factors (for the background for the factors given in this note, see ASCE 7 and R. V. McGrath's "Stability of API Standard 650 Tank Shells"):<sup>19</sup>

a. The velocity pressure is:

$$p = 0.00256K_z K_{zt} K_d V^2 I G = 1.48 \text{ kPa} (31 \text{ lbf/ft}^2)$$

where

08

 $K_{z}$  = velocity pressure exposure coefficient = 1.04 for exposure C at a height of 40 ft,

 $K_{\tau t} = 1.0$  for all structures except those on isolated hills or escarpments,

 $K_d$  = directionality factor = 0.95 for round tanks,

V = 3-second gust design wind speed = 190 km/h (120 mph) at 10 m (33 ft) above ground (see 5.2.1[k]),

- I = importance factor = 1.0 for Category II structures,
- G = gust factor = 0.85 for exposure C.

A 0.24 kPa (5  $lbf/ft^2$ ) internal vacuum is added for inward drag on open-top tanks or for external pressure on closed top tanks for a total of 1.72 kPa (36  $lbf/ft^2$ ).

<sup>&</sup>lt;sup>19</sup>R.V. McGrath, "Stability of API Standard 650 Tank Shells," *Proceedings of the American Petroleum Institute, Section III—Refining, American Petroleum Institute, New York, 1963, Vol. 43, pp. 458 – 469.* 

b. The wind pressure is uniform over the theoretical buckling mode of the tank shell, which eliminates the need for a shape factor for the wind loading.

c. The modified U.S. Model Basin formula for the critical uniform external pressure on thin-wall tubes free from end loadings, subject to the total pressure specified in Item a.

d. When other factors are specified by the Purchaser that are greater than the factors in Items a – c, the total load on the shell shall be modified accordingly, and  $H_1$  shall be decreased by the ratio of 1.72 kPa (36 lbf/ft<sup>2</sup>) to the modified total pressure.

**5.9.7.2** After the maximum height of the unstiffened shell,  $H_1$ , has been determined, the height of the transformed shell shall be calculated as follows:

a. With the following equation, change the actual width of each shell course into a transposed width of each shell course having the top shell thickness:

$$W_{tr} = W_{\sqrt{\left(\frac{t_{\text{uniform}}}{t_{\text{actual}}}\right)^5}}$$

where

 $W_{tr}$  = transposed width of each shell course, mm (in.),

W = actual width of each shell course, mm (in.),

- t<sub>uniform</sub> = nominal thickness, unless otherwise specified, of the thinnest shell course, mm (in.),
- $t_{\text{actual}} = \text{nominal thickness, unless otherwise specified, of the shell course for which the transposed width is being calculated, mm (in.).$

b. Add the transposed widths of the courses. The sum of the transposed widths of the courses will give the height of the transformed shell.

**5.9.7.3** If the height of the transformed shell is greater than the maximum height  $H_1$ , an intermediate wind girder is required.

**5.9.7.3.1** For equal stability above and below the intermediate wind girder, the girder should be located at the mid-height of the transformed shell. The location of the girder on the actual shell should be at the same course and same relative position as the location of the girder on the transformed shell, using the thickness relationship in 5.9.7.2.

**5.9.7.3.2** Other locations for the girder may be used, provided the height of unstiffened shell on the transformed shell does not exceed  $H_1$  (see 5.9.7.5).

**5.9.7.4** If half the height of the transformed shell exceeds the maximum height  $H_1$ , a second intermediate girder shall be used to reduce the height of unstiffened shell to a height less than the maximum.

**5.9.7.5** Intermediate wind girders shall not be attached to the shell within 150 mm (6 in.) of a horizontal joint of the shell. When the preliminary location of a girder is within 150 mm (6 in.) of a horizontal joint, the girder shall preferably be located 150 mm (6 in.) below the joint; however, the maximum unstiffened shell height shall not be exceeded.

**5.9.7.6** The required minimum section modulus of an intermediate wind girder shall be determined by the following equation: In SI units:

$$Z = \frac{D^2 H_1}{17} \left(\frac{V}{190}\right)^2$$

where

- Z = required minimum section modulus (cm<sup>3</sup>),
- D = nominal tank diameter (m),
- $H_1$  = vertical distance (m), between the intermediate wind girder and the top angle of the shell or the top wind girder of an open-top tank,
- V = design wind speed (3-sec gust) (km/h) (see 5.2.1[k]).

In US Customary units:

$$Z = \frac{D^2 H_1}{10\ 000} \left(\frac{V}{120}\right)^2$$

where

- Z = required minimum section modulus (in.<sup>3</sup>),
- D = nominal tank diameter (ft),
- $H_1$  = vertical distance (ft), between the intermediate wind girder and the top angle of the shell or the top wind girder of an open-top tank,
- V = design wind speed (3-sec gust) (mph) (see 5.2.1[k]).

Note: A description of the loads on the tank shell that are included in the design wind speed can be found in Item a of the note to 5.9.7.1.

**5.9.7.6.1** Where the use of a transformed shell permits the intermediate wind girder to be located at a height that is less than  $H_1$  calculated by the formula in 5.9.7.1, the spacing to the mid-height of the transformed shell, transposed to the height of the actual shell, may be substituted for  $H_1$  in the calculation for the minimum section modulus if the girder is attached at the transposed location.

**5.9.7.6.2** The section modulus of the intermediate wind girder shall be based on the properties of the attached members and may include a portion of the tank shell for a distance above and below the attachment to the shell, in mm (in.), of:

In SI units:

$$13.4 (Dt)^{0.5}$$

where

D = nominal tank diameter (m),

t = as-built shell thickness, unless otherwise specified, at the attachment (mm).

09 In US Customary units:

$$1.47 (Dt)^{0.5}$$

where

07

D = nominal tank diameter (ft),

t = as-built shell thickness, unless otherwise specified, at the attachment (in.).

• **5.9.7.7** An opening for a stairway in an intermediate stiffener is unnecessary when the intermediate stiffener extends no more than 150 mm (6 in.) from the outside of the shell and the nominal stairway width is at least 710 mm (28 in.). For greater outward extensions of a stiffener, the stairway shall be increased in width to provide a minimum clearance of 450 mm (18 in.) between the outside of the stiffener and the handrail of the stairway, subject to the Purchaser's approval. If an opening is necessary, it may be designed in a manner similar to that specified in 5.9.6.3 for a top wind girder with the exception that only a 560 mm (22 in.) width through the stiffener need be provided.

### 5.10 ROOFS

#### 5.10.1 Definitions

07 The following definitions apply to roof designs but shall not be considered as limiting the type of roof permitted by 5.10.2.8.

a. A supported cone roof is a roof formed to approximately the surface of a right cone that is supported principally either by rafters on girders and columns or by rafters on trusses with or without columns.

b. A self-supporting cone roof is a roof formed to approximately the surface of a right cone that is supported only at its periphery.

c. A self-supporting dome roof is a roof formed to approximately a spherical surface that is supported only at its periphery.

d. A self-supporting umbrella roof is a modified dome roof formed so that any horizontal section is a regular polygon with as many sides as there are roof plates that is supported only at its periphery.

#### 5.10.2 General

**5.10.2.1** *Loads*: All roofs and supporting structures shall be designed for load combinations (a), (b), (c), (e), (f) and (g) of **108** Appendix R.

5.10.2.2 Roof Plate Thickness: Roof plates shall have a nominal thickness of not less than 5 mm (<sup>3</sup>/<sub>16</sub> in.) or 7-gauge sheet. Increased thickness may be required for supported cone roofs (see 5.10.4.4). Any required corrosion allowance for the plates of self-supporting roofs shall be added to the calculated thickness unless otherwise specified by the Purchaser. Any corrosion allowance for the plates of supported roofs shall be added to the greater of the calculated thickness or the minimum thickness or [5 mm (<sup>3</sup>/<sub>16</sub> in.) or 7-gauge sheet]. For frangible roof tanks, where a corrosion allowance is specified, the design must have frangible characteristics in the nominal (uncorroded) condition.

**5.10.2.3** *Structural Member Attachment:* Roof plates of supported cone roofs shall not be attached to the supporting members unless otherwise approved by the Purchaser. Continuously attaching the roof to cone supporting members may be beneficial when interior lining systems are required, however, the tank roof cannot be considered frangible (see 5.10.2.6).

• **5.10.2.4** *Structural Member Thickness:* All internal and external structural members shall have a minimum nominal thickness (new) of 4.3 mm (0.17 in.), and a minimum corroded thickness of 2.4 mm (0.094 in.), respectively, in any component, except that the minimum nominal thickness shall not be less than 6 mm (0.236 in.) for columns which by design normally resist axial compressive forces.

**5.10.2.5** *Top Attachment:* Roof plates shall be attached to the top angle of the tank with a continuous fillet weld on the top side.

- **5.10.2.6** *Frangible Roof:* A roof is considered frangible (see 5.8.5 for emergency venting requirement) if the roof-to-shell joint will fail prior to the shell-to-bottom joint in the event of excessive internal pressure. When a Purchaser specifies a tank with a frangible roof, the tank design shall comply with a, b, c, or d, of the following:
  - a. For tanks 15 m (50 ft) in diameter or greater, the tank shall meet all of the following:
    - 1. The slope of the roof at the top angle attachment does not exceed 2:12.
    - 2. The roof support members shall not be attached to the roof plate.
    - 3. The roof is attached to the top angle with a single continuous fillet weld on the top side (only) that does not exceed 5 mm  $(^{3}/_{16} \text{ in.})$ . No underside welding of roof to top angle (including seal welding) is permitted.
    - 4. The roof-to-top angle compression ring is limited to details a e in Figure F-2.
    - 5. All members in the region of the roof-to-shell joint, including insulation rings, are considered as contributing to the roof-toshell joint cross-sectional area (A) and this area is less than the limit shown below:

$$A = \frac{DL_s}{2 \Pi F \gamma \tan \theta}$$

Notes: The terms for this equation are defined in Appendix F.

The top angle size required by 5.1.5.9.e may be reduced in size if required to meet the cross sectional area limit.

b. For self-anchored tanks with a diameter greater than or equal to 9 m (30 ft) but less than 15 m (50 ft), the tank shall meet all of the following:

11

08

- 1. The tank height is 9 m (30 ft) or greater.
- 2. The tank shall meet the requirements of 5.10.2.6.a.2-5
- 3. The slope of the roof at the top angle attachment does not exceed  $\frac{3}{4}$ :12.
- 4. Attachments (including nozzles and manholes) to the tank shall be designed to accommodate at least 100 mm (4 in.) of vertical shell movement without rupture.
- 5. The bottom is butt-welded.

c. Alternately, for self-anchored tanks less than 15 m (50 ft) diameter, the tank shall meet all of the following:

- 1. The tank shall meet the requirements of 5.10.2.6.a.1-5
- 2. An elastic analysis<sup>20</sup> shall be performed to confirm the shell to bottom joint strength is at least 1.5 times the top joint strength with the tank empty and 2.5 times the top joint strength with the tank full.
- 3. Attachments (including nozzles and manholes) to the tank shall be designed to accommodate at least 100 mm (4 in.) of vertical shell movement without rupture.
- 4. The bottom is butt-welded.

d. For anchored tanks of any diameter, the tank shall meet the requirements of 5.10.2.6.a and the anchorage and counterweight shall be designed for 3 times the failure pressure calculated by F.6 as specified in 5.12.

- **5.10.2.7** *Stiffeners:* For all types of roofs, the plates may be stiffened by sections welded to the plates. Refer to 5.10.2.3 for requirements for supported cone roofs.
- **5.10.2.8** *Alternate Designs:* These rules cannot cover all details of tank roof design and construction. With the approval of the Purchaser, the roof need not comply with 5.10.4, 5.10.5, 5.10.6, and 5.10.7. The Manufacturer shall provide a roof designed and constructed to be as safe as otherwise provided for in this Standard. In the roof design, particular attention should be given to preventing failure through instability.

**5.10.2.9** *Lateral Loads on Columns:* When the Purchaser specifies lateral loads that will be imposed on the roof-supporting columns, the columns must be proportioned to meet the requirements for combined axial compression and bending as specified in 5.10.3.

### 5.10.3 Allowable Stresses

### 5.10.3.1 General

The allowable strength of roof components shall be determined in accordance with the ANSI/AISC 360 using allowable strength design methodology (ASD).

## 5.10.3.2 DELETED

## 5.10.3.3 Maximum Slenderness Ratios

For columns, the value  $L/r_c$  shall not exceed 180. For other compression members, the value L/r shall not exceed 200. For all other members, except tie rods whose design is based on tensile force, the value L/r shall not exceed 300.

11

<sup>08</sup> 

 $<sup>^{20}</sup>$ A frangible roof satisfies the emergency venting requirement for tanks exposed to fire outside the tank. See API 2000. Frangible roofs are not intended to provide emergency venting for other circumstances such as a fire inside the tank, utility failures, chemical reactions, or overfill. See API Publication 937 and API Publication 937-A.

#### where

- L = unbraced length, mm (in.),
- $r_c$  = least radius of gyration of column, mm (in.),
- r = governing radius of gyration, mm (in.).

#### 5.10.3.4 DELETED

#### 5.10.4 Supported Cone Roofs

• 5.10.4.1 The slope of the roof shall be 1:16 or greater if specified by the Purchaser. If the rafters are set directly on chord girders, producing slightly varying rafter slopes, the slope of the flattest rafter shall conform to the specified or ordered roof slope.

**5.10.4.2** Main supporting members, including those supporting the rafters, may be rolled or fabricated sections or trusses. Although these members may be in contact with the roof plates, the compression flange of a member or the top chord of a truss shall be considered as receiving no lateral support from the roof plates and shall be laterally braced, if necessary, by other acceptable methods. The allowable stresses in these members shall be governed by 5.10.3.

**5.10.4.3** Structural members serving as rafters may be rolled or fabricated sections but in all cases shall conform to the rules of 5.10.2, 5.10.3, and 5.10.4. Rafters shall be designed for the dead load of the rafters and roof plates with the compression flange of the rafter considered as receiving no lateral support from the roof plates and shall be laterally braced if necessary (see 5.10.4.2). When considering additional dead loads or live loads, the rafters in direct contact with the roof plates applying the loading to the rafters may be considered as receiving adequate lateral support from the friction between the roof plates and the compression flanges of the rafters, with the following exceptions:

- a. Trusses and open-web joints used as rafters.
- b. Rafters with a nominal depth greater than 375 mm (15 in.).
- c. Rafters with a slope greater than 1:6.
- **5.10.4.4** Rafters shall be spaced to satisfy:

$$b = t(1.5Fy/p)^{\frac{1}{2}} \le 2100 \text{ mm} (84 \text{ in.})$$

where

- b = maximum allowable roof plate span, measured circumferentially from center-to-center of rafters.
- Fy = specified minimum yield strength of roof plate,
- t = corroded roof thickness,
- p = uniform pressure as determined from load combinations described in Appendix R.
- **5.10.4.5** Roof columns shall be made from either pipe or structural shapes as selected on the Data Sheet, Line 11. Pipe columns shall either be sealed or have openings on both the top and bottom of the column.
  - 5.10.4.6 Rafter clips for the outer row of rafters shall be welded to the tank shell.

**5.10.4.7** Roof support columns shall be provided at their bases with details that provide for the following:

a. *Load Distribution*: Column loads shall be distributed over a bearing area based on the specified soil bearing capacity or foundation design. Where an unstiffened horizontal plate is designed to distribute the load, it shall have a nominal thickness of not less than 12 mm ( $^{1}/_{2}$  in.). Alternatively, the column load may be distributed by an assembly of structural beams. The plate or members shall be designed to distribute the load without exceeding allowable stresses prescribed in 5.10.3.1.

b. Corrosion and Abrasion Protection: At each column a wear plate with a nominal thickness of not less than 6 mm (1/4 in.) shall be welded to the tank bottom with a 6 mm (1/4 in.) minimum fillet weld. A single adequate thickness plate may be designed for the dual functions of load distribution and corrosion/abrasion protection.

c. *Vertical Movement*: The design shall allow the columns to move vertically relative to the tank bottom without restraint in the event of tank overpressure or bottom settlement.

11

11

11

07

11

d. *Lateral Movement*: The columns shall be effectively guided at their bases to prevent lateral movement. The guides shall remain effective in the event of vertical movement of columns relative to tank bottom of up to 75 mm (3 in.). The guides shall be located such that they are not welded directly to the tank bottom plates.

**5.10.4.8** Three acceptable arrangements to provide the functions required by 5.10.4.7 are illustrated in Figure 5-26.

**5.10.4.9** For Appendix F tanks, when supporting members are attached to the roof plate, consideration shall be given to the design of the supporting members and their attachment details when considering internal pressure.

696969696060606061616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161<

### • 5.10.5 Self-Supporting Cone Roofs

Note: Self-supporting roofs whose roof plates are stiffened by sections welded to the plates need not conform to the minimum thickness requirements, but the nominal thickness of the roof plates shall not be less than  $4.8 \text{ mm} (^{3}/_{16} \text{ in.})$  when so designed by the Manufacturer, subject to the approval of the Purchaser.

**5.10.5.1** Self-supporting cone roofs shall conform to the following requirements:

```
\theta \leq 37 degrees (slope = 9:12)
```

 $\theta \ge 9.5$  degrees (slope = 2:12)

In SI units:

Nominal thickness shall not be less than the greatest of  $\frac{D}{4.8\sin\theta}\sqrt{\frac{T}{2.2}}$  + CA,  $\frac{D}{5.5\sin\theta}\sqrt{\frac{U}{2.2}}$  + CA, and 5 mm

Corroded thickness shall not be more than 13 mm

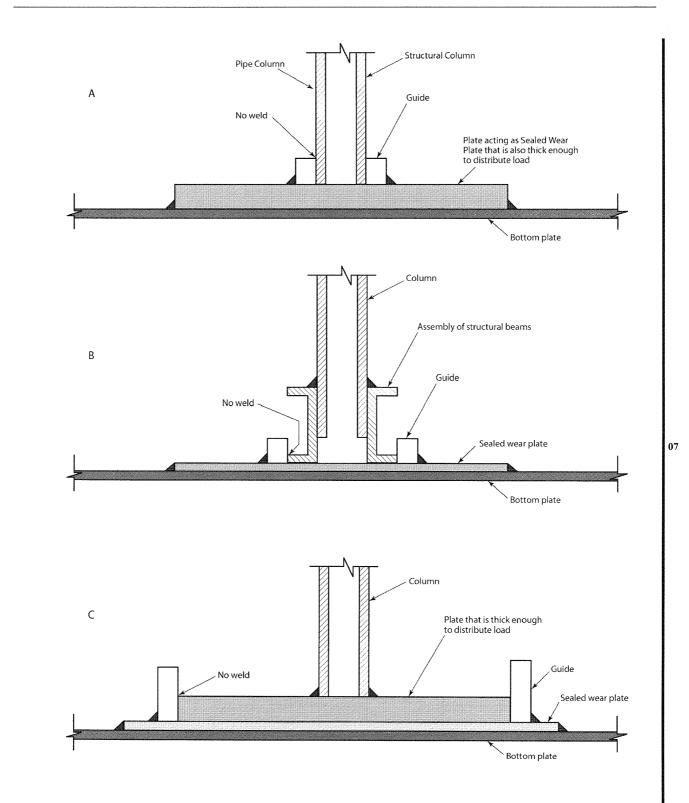
where

11

- D = nominal diameter of the tank (m),
- T = greater of Appendix R load combinations (e)(1) and (e)(2) with balanced snow load  $S_b$  (kPa),
- U = greater of Appendix R load combinations (e)(1) and (e)(2) with unbalanced snow load  $S_u$  (kPa),
- $\theta$  = angle of cone elements to the horizontal (deg),
- CA = corrosion allowance.

In US Customary units:

Nominal thickness shall not be less than the greatest of  $\frac{D}{400\sin\theta}\sqrt{\frac{T}{45}}$  + CA,  $\frac{D}{460\sin\theta}\sqrt{\frac{U}{45}}$  + CA, and  $\frac{3}{16}$  in.


11

Corroded thickness shall not be more than 1/2 in.

#### where

- D = nominal diameter of the tank shell (ft),
- T = greater of Appendix R load combinations (e)(1) and (e)(2) with balanced snow load S<sub>b</sub> (lbf/ft<sup>2</sup>),
- U = greater of Appendix R load combinations (e)(1) and (e)(2) with unbalanced snow load  $S_u$  (lbf/ft<sup>2</sup>),
- $\theta$  = angle of cone elements to the horizontal (deg),
- CA = corrosion allowance.

5-74



**5.10.5.2** The participating area at the roof-to-shell joint shall be determined using Figure F-2 and the nominal material thickness less any corrosion allowance shall equal or exceed the following:

$$\frac{pD^2}{8F_a \tan\theta}$$

where

p = greater of load combinations (e)(1) and (e)(2) of Appendix R,

D = nominal diameter of the tank shell,

 $\theta$  = angle of cone elements to the horizontal,

 $F_a$  = the least allowable tensile stress for the materials in the roof-to-shell joint determined in accordance with 5.10.3.1.

#### • 5.10.6 Self-Supporting Dome and Umbrella Roofs

Note: Self-supporting roofs whose roof plates are stiffened by sections welded to the plates need not conform to the minimum thickness requirements, but the thickness of the roof plates shall not be less than  $4.8 \text{ mm} (^{3}/_{16} \text{ in.})$  when so designed by the Manufacturer, subject to the approval of the Purchaser.

**5.10.6.1** Self-supporting dome and umbrella roofs shall conform to the following requirements:

Minimum radius = 0.8D (unless otherwise specified by the Purchaser)

Maximum radius = 1.2D

In SI units:

Nominal thickness shall not be less than the greatest of 
$$\frac{r_r}{2.4}\sqrt{\frac{T}{2.2}}$$
 + CA,  $\frac{r_r}{2.7}\sqrt{\frac{U}{2.2}}$  + CA, and 5 mm

Corroded thickness shall not be more than 13 mm

where

11

D = nominal diameter of the tank shell (m),

T = greater of Appendix R load combinations (e)(1) and (e)(2) with balanced snow load  $S_b$  (kPa),

U = greater of Appendix R load combinations (e)(1) and (e)(2) with unbalanced snow load  $S_u$  (kPa),

 $r_r = \text{roof radius (m)}.$ 

In US Customary units:

Nominal thickness shall not be less than the greatest of  $\frac{r_r}{200}\sqrt{\frac{T}{45}}$  + CA,  $\frac{r_r}{230}\sqrt{\frac{U}{45}}$  + CA,  $\frac{3}{16}$  in.

11

09

Corroded thickness shall not be more than 1/2 in.

where

D = nominal diameter of the tank shell (ft),

- T = greater of Appendix R load combinations (e)(1) and (e)(2) with balanced snow load  $S_b$  (lbf/ft<sup>2</sup>),
- U = greater of Appendix R load combinations (e)(1) and (e)(2) with unbalanced snow load  $S_u$  (lbf/ft<sup>2</sup>),

 $r_r = \text{roof radius (ft)}.$ 

**5.10.6.2** The participating area at the roof-to-shell joint determined using Figure F-2 and the nominal material thickness less any corrosion allowance shall equal or exceed:

$$\frac{pD^2}{8F_a \tan\theta}$$

where

p = greater of load combinations (e)(1) and (e)(2) of Appendix R,

D = nominal diameter of the tank shell,

 $\theta$  = angle of cone elements to the horizontal,

 $F_a$  = the least allowable tensile stress for the materials in the roof-to-shell joint determined in accordance with 5.10.3.1.

#### 5.10.7 Top-Angle Attachment for Self-Supporting Roofs

Information and certain restrictions on types of top-angle joints are provided in Item c of 5.1.5.9. Details of welding are provided in 7.2.

#### 5.11 WIND LOAD ON TANKS (OVERTURNING STABILITY)

#### 5.11.1 Wind Pressure

Overturning stability shall be calculated using the wind pressures given in 5.2.1(k).

#### 5.11.2 Unanchored Tanks

Unanchored tanks shall satisfy both of the following uplift criteria:

1. 
$$0.6M_w + M_{Pi} < M_{DL} / 1.5 + M_{DLR}$$

2. 
$$M_w + F_p(M_{Pi}) < (M_{DL} + M_F)/2 + M_{DLR}$$

where

 $F_P$  = pressure combination factor, see R.2,

- $M_{Pi}$  = moment about the shell-to-bottom joint from design internal pressure,
- $M_w$  = overturning moment about the shell-to-bottom joint from horizontal plus vertical wind pressure,
- $M_{DL}$  = moment about the shell-to-bottom joint from the nominal weight of the shell and roof structural supported by the shell that is not attached to roof plate,
- $M_F$  = moment about the shell-to-bottom joint from liquid weight,
- $M_{DLR}$  = moment about the shell-to-bottom joint from the nominal weight of the roof plate plus any attached structural. 11

The liquid weight  $(w_L)$  is the weight of a band of liquid at the shell using a specific gravity of 0.7 and a height of one-half the design liquid height *H*.  $w_L$  shall be the lesser of 140.8 *HD* for SI Units (0.90 *HD* for USC units) or the following:.

In SI units:

 $w_L = 59t_b \sqrt{FbyH}$  (N/m)

In US Customary units

 $w_L = 4.67 t_b \sqrt{FbyH}$  (lbf/ft)

09

08

11

10

where Fby = minimum specified yield stress of the bottom plate under the shell MPa (lbf/in.<sup>2</sup>), 09 H =design liquid height, m (ft), tank diameter, m (ft), D required corroded thickness of the bottom plate under the shell mm (in.) that is used to resist wind overturning. The th ---bottom plate shall have the following restrictions: 11 1. The corroded thickness,  $t_b$ , used to calculate  $w_L$  shall not exceed the first shell course corroded thickness less any shell corrosion allowance. 09 2. When the bottom plate under the shell is thicker due to wind overturning than the remainder of the tank bottom, the minimum projection of the supplied thicker annular ring inside the tank wall, L, shall be the greater of 450 mm (18 in.) or  $L_b$ , however, need not be more than 0.035D. In SI units:  $L_b = 0.0291 t_b \sqrt{F_{by}/H} \le 0.035D$  (m) In US Customary units  $L_b = 0.365 t_b \sqrt{F_{by}/H} \le 0.035 D$  (ft) Wind uplift load Internal pressure load  $D_{/2}$ Dead load roof (D<sub>LR</sub>) Wind load on shell 11 Н H/2 for uniform pressure on shell Moments about shell to bottom Joint Dead load shell (D<sub>LS</sub>) Liquid hold down weight (wa) Figure 5-27—Overturning Check for Unanchored Tanks

**API STANDARD 650** 

## 5.11.3 Anchored Tanks

09

When the requirements of 5.11.2 cannot be satisfied, anchor the tank per the requirements of 5.12

### 5.11.4 Sliding Friction

Unless otherwise required, tanks that may be subject to sliding due to wind shall use a maximum allowable sliding friction of 0.40 multiplied by the force against the tank bottom.

### 5.12 TANK ANCHORAGE

**5.12.1** When a tank is required to be anchored per 5.11, Appendix E, Appendix F, or when a tank is anchored for any other reason, the following minimum requirements shall be met.

**5.12.2** Anchorage shall be provided to resist each of the uplift load cases listed in Tables 5-21a and 5-21b. The load per anchor shall be:

 $t_b = U/N$ 

where

 $t_h = \text{load per anchor},$ 

$$U =$$
 net uplift load per Tables 5-21a and 5-21b,

N = number of anchors (a minimum of 4 is required),

Table 5-21a-(SI) Uplift Loads

| Uplift Load Case                       | Net Uplift Formula, U (N)                                                                                            | Allowable Anchor Bolt<br>Stress (MPa)                                                                                                                 | Allowable Shell<br>Stress at Anchor<br>Attachment (MPa) |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Design Pressure                        | $[(P-0.08t_h) \times D^2 \times 785] - W_1$                                                                          | 105                                                                                                                                                   | 140                                                     |
| Test Pressure                          | $[(P_t - 0.08t_h) \times D^2 \times 785] - W_1$                                                                      | 140                                                                                                                                                   | 170                                                     |
| Failure Pressure <sup>a</sup>          | $[(1.5 \times P_f - 0.08t_h) \times D^2 \times 785] - W_3$                                                           | $F_y$                                                                                                                                                 | F <sub>ty</sub>                                         |
| Wind Load                              | $P_{WR} \times D^2 \times 785 + [4 \times M_{WH}/D] - W_2$                                                           | $0.8 \times F_y$                                                                                                                                      | 170                                                     |
| Seismic Load                           | $[4 \times M_{rw}/D] - W_2 (1 - 0.4A_V)$                                                                             | $0.8 \times F_y$                                                                                                                                      | 170                                                     |
| Design Pressure <sup>b</sup> + Wind    | $[(0.4P + P_{WR} - 0.08t_h) \times D^2 \times 785] + [4 M_{WH}/D] - W_1$                                             | 140                                                                                                                                                   | 170                                                     |
| Design Pressure <sup>b</sup> + Seismic | $[(0.4P - 0.08t_h) \times D^2 \times 785] + [4 M_{rw}/D] - W_1 (1 - 0.4A_{\mu})$                                     | $(0.8 \times F_{\rm V})$                                                                                                                              | 170                                                     |
| Frangibility Pressure <sup>c</sup>     | $[(3 \times P_f - 0.08t_h) \times D^2 \times 785] - W_3$                                                             | $F_{v}$                                                                                                                                               | $F_{ty}$                                                |
|                                        | (m) minus at<br>rength of the bottom shell course (MPa) $W_2$ = dead loa<br>trength of the anchor bolt (MPa) any dea | d load other than roof plat<br>ny corrosion allowance (N)<br>ad of shell minus any corro<br>d load including roof plate<br>ny corrosion allowance (N) | osion allowance and<br>e acting on the shell            |

**5.12.3** The spacing between anchors shall not exceed 3 m (10 ft).

**5.12.4** Allowable stresses for anchor bolts shall be in accordance with Tables 5-21a and 5-21b for each load case. The allowable stress shall apply to the net (root) area of the anchor bolt.

• **5.12.5** The Purchaser shall specify any corrosion allowance that is to be added to the anchor dimensions. Unless otherwise specified, corrosion allowance for anchor bolts shall be applied to the nominal diameter. The minimum anchor bolt diameter is 1 in. plus any specified corrosion allowance.



#### API STANDARD 650

| 08 | Table 5-21b—(USC) Uplift Loads                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Uplift Load Case                                                                                                                                                                                                                                                                                                                                                                         | Net Uplift Formula, U (lbf)                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                    | Allowable Anchor<br>Bolt Stress (lbf/in. <sup>2</sup> )                                                                                                                                                                                                                                                                                    | Allowable Shell Stress<br>at Anchor Attachment<br>(lbf/in. <sup>2</sup> )                                                                                                                          |
|    | Design Pressure                                                                                                                                                                                                                                                                                                                                                                          | $[(P-8t_h) \times D^2 \times 4.08] - W_1$                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    | 15,000                                                                                                                                                                                                                                                                                                                                     | 20,000                                                                                                                                                                                             |
|    | Test Pressure                                                                                                                                                                                                                                                                                                                                                                            | $[(P_t - 8t_h) \times D^2 \times 4.08] - W_1$                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                    | 20,000                                                                                                                                                                                                                                                                                                                                     | 25,000                                                                                                                                                                                             |
| 09 | Failure Pressure <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                            | $[(1.5 \times P_f - 8t_h) \times D^2 \times 4.08] - W_3$                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                    | $F_y$                                                                                                                                                                                                                                                                                                                                      | F <sub>ty</sub>                                                                                                                                                                                    |
|    | Wind Load                                                                                                                                                                                                                                                                                                                                                                                | $P_{WR} \times D^2 \times 4.08 + [4 \times M_{WH}/D] - W_2$                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                    | $0.8 \times F_y$                                                                                                                                                                                                                                                                                                                           | 25,000                                                                                                                                                                                             |
|    | Seismic Load                                                                                                                                                                                                                                                                                                                                                                             | $[4 \times M_{rw}/D] - W_2 (1 - 0.4A_V)$                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                    | $0.8 \times F_y$                                                                                                                                                                                                                                                                                                                           | 25,000                                                                                                                                                                                             |
|    | Design Pressure <sup>b</sup> + Wind                                                                                                                                                                                                                                                                                                                                                      | $[(0.4P + P_{WR} - 8t_h) \times D^2 \times 4.08] + [4 M_{WH}/D]$                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    | 20,000                                                                                                                                                                                                                                                                                                                                     | 25,000                                                                                                                                                                                             |
|    |                                                                                                                                                                                                                                                                                                                                                                                          | $[(0.4P - 8t_h) \times D^2 \times 4.08] + [4 M_{rw}/D] - W_1 ($                                                                                                                                                                                                                                                                                                                          | $1 - 0.4A_V$                                                                                                                                                                                                                       | $0.8 \times F_y$                                                                                                                                                                                                                                                                                                                           | 25,000                                                                                                                                                                                             |
|    | Frangibility Pressure <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                       | $[(3 \times P_f - 8t_h) \times D^2 \times 4.08] - W_3$                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                    | $F_y$                                                                                                                                                                                                                                                                                                                                      | F <sub>ty</sub>                                                                                                                                                                                    |
| 11 | $D = \text{tank diameter i}$ $F_{IV} = \text{minimum yield}$ $F_{V} = \text{minimum yield}$ $H = \text{tank height in (}$ $M_{WH} = P_{WS} \times D \times H^{2/}$ $M_{TW} = \text{seismic momen}$ $P = \text{design pressur}$ $Appendix F)$ $P_{f} = \text{failure pressure in}$ $P_{WR} = \text{wind uplift pre}$ $P_{WS} = \text{wind pressure of}$ $t_{h} = \text{roof plate thick}$ | strength of the bottom shell course (psi) $W_2$ strength of the anchor bolt (psi)ft) $w_2$ (ft-lbs) $W_3$ $w_3$ (ft-lbs) (see Appendix E) $w_3$ re in inches of water column (see $a_{Failut}$ re in inches of water column (see $w_{Failut}$ re in inches of water column (see $w_{Failut}$ re in inches of water column (see $w_{Frang}$ ssure on roof in inches of water columnThe fr | any dead<br>minus an<br>= dead load<br>any dead<br>minus an<br>= dead load<br>dead load<br>dead load<br>nominal<br>re pressure ap<br>sure shall be o<br>to note R.2<br>ng the factor a<br>gibility pressure<br>angibility pressure | load other than roof<br>y corrosion allowance<br>d of shell minus any of<br>load including roof j<br>y corrosion allowance<br>d of the shell using nom<br>l other than roof plate<br>thicknesses (lbf)<br>plies to tanks falling u<br>calculated using nomin<br>in Appendix R for P<br>applied to the design pr<br>re applies only to tank | corrosion allowance and<br>plate acting on the shell<br>(lbf)<br>ninal thicknesses and any<br>acting on the shell using<br>nder F.1.3 only. The fail-<br>al thicknesses.<br>urchaser guidance when |

• 5.12.6 Attachment of the anchor bolts to the shell shall be through stiffened chair-type assemblies or anchor rings of sufficient size and height. An acceptable procedure for anchor chair design is given in AISI E-1, Volume II, Part VII "Anchor Bolt Chairs." When acceptable to the Purchaser, anchor straps may be used if the shell attachment is via chair-type assemblies or anchor rings of sufficient size and height.

5.12.7 Other evaluations of anchor attachments to the shell may be made to ensure that localized stresses in the shell will be adequately handled. An acceptable evaluation technique is given in ASME Section VIII Division 2, Appendix 4, using the allowable stresses given in this section for S<sub>m</sub>. The method of attachment shall take into consideration the effect of deflection and rotation of the shell.

5.12.8 Allowable stresses for anchorage parts shall be in accordance with 5.10.3. A 33% increase of the allowable stress may be used for wind or seismic loading conditions.

5.12.9 The maximum allowable local stress in the shell at the anchor attachment shall be in accordance with Tables 5-21a and 5-21b unless an alternate evaluation is made in accordance with 5.12.7.

5.12.10 When specified by the Purchaser, the anchors shall be designed to allow for thermal expansion of the tank resulting • from a temperature greater than 93°C (200°F).

**5.12.11** Any anchor bolts shall be uniformly tightened to a snug fit, and any anchor straps shall be welded while the tank is filled with test water but before any pressure is applied on top of the water. Measures such as peening the threads or adding locking nuts, shall be taken to prevent the nuts from backing off the threads.

5.12.12 The embedment strength of the anchor in the foundation shall be sufficient to develop the specified minimum yield strength of the anchor. Hooked anchors or end plates may be used to resist pullout.

5-80

**5.12.13** The foundation shall provide adequate counterbalancing weight to resist the design uplift loads in accordance with the following:

**5.12.13.1** The counterbalancing weight, such as a concrete ringwall, shall be designed so that the resistance to net uplift is in accordance with Tables 5-21a and 5-21b. When considering uplift due to a wind or seismic moment, an evaluation shall be made to insure overturning stability of the foundation and to insure soil-bearing pressures are within allowable stress levels as determined using the recommendations of Appendix B.

**5.12.13.2** When a footing is included in the ringwall design, the effective weight of the soil above the footing may be included in the counterbalancing weight.

# **SECTION 6—FABRICATION**

### 6.1 GENERAL

#### 6.1.1 Workmanship

• 6.1.1.1 All work of fabricating API Std 650 tanks shall be done in accordance with this Standard and with the permissible alternatives specified in the Purchaser's inquiry or order. The workmanship and finish shall be first class in every respect and subject to the closest inspection by the Manufacturer's inspector even if the Purchaser has waived any part of the inspection.

**6.1.1.2** When material requires straightening, the work shall be done by pressing or another noninjurious method prior to any layout or shaping. Heating or hammering is not permissible unless the material is maintained at forging temperature during straightening.

**6.1.1.3** Materials used to aid in the fabrication of tanks shall not have a detrimental effect on the structural integrity of the tank. Lubricants, crayons, adhesives, and anti-weld spatter compounds shall not contain materials that will be detrimental to the tank, e.g., sulfur and chloride compounds for stainless steel materials. Attachments that will be welded to the pressure boundary shall not have a zinc or cadmium coating in the weld area within 12 mm (0.5 in.) of the weld.

### 6.1.2 Finish of Plate Edges

The edges of plates may be sheared, machined, chipped, or machine gas cut. Shearing shall be limited to plates less than or equal to 10 mm ( $^{3}/_{8}$  in.) thick used for butt-welded joints and to plates less than or equal to 16 mm ( $^{5}/_{8}$  in.) thick used for lap-welded joints.

Note: With the Purchaser's approval, the shearing limitation on plates used for butt-welded joints may be increased to a thickness less than or equal to 16 mm (<sup>5</sup>/<sub>8</sub> in.).

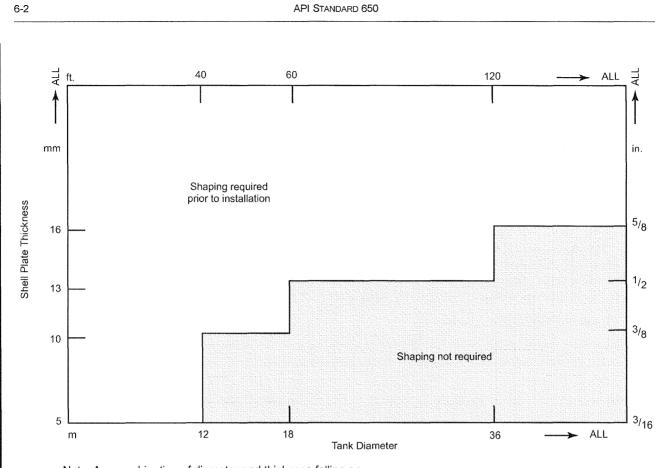
When edges of plates are gas cut, the resulting surfaces shall be uniform and smooth and shall be freed from scale and slag accumulations before welding. After cut or sheared edges are wire brushed, the fine film of rust adhering to the edges need not be removed before welding. Circumferential edges of roof and bottom plates may be manually gas cut.

#### • 6.1.3 Shaping of Shell Plates

Figure 6-1 provides criteria for shaping of plates to the curvature of the tank prior to installation in the tank. Shaping of plates concurrently with installation in the tank shell is permitted if the tank diameter exceeds the limit in Figure 6-1 or if the Manufacturer's alternate procedure for any diameter has been accepted by the Purchaser.

## 6.1.4 Marking

All special plates that are cut to shape before shipment as well as roof-supporting structural members shall be marked as shown on the Manufacturer's drawings.


### 6.1.5 Shipping

Plates and tank material shall be loaded in a manner that ensures delivery without damage. Bolts, nuts, nipples, and other small parts shall be boxed or put in kegs or bags for shipment. All flange faces and other machined surfaces shall be protected against corrosion and from physical damage.

### 6.2 SHOP INSPECTION

• **6.2.1** The Purchaser's inspector shall be permitted free entry to all parts of the Manufacturer's plant that are concerned with the contract whenever any work under the contract is being performed. The Manufacturer shall afford the Purchaser's inspector all reasonable facilities to assure the inspector that the material is being furnished in accordance with this Standard. Also, the Manufacturer shall furnish samples or specimens of materials for the purpose of qualifying welders in accordance with 9.3.

Unless otherwise specified, inspection shall be made at the place of manufacture prior to shipment. The Manufacturer shall give the Purchaser ample notice of when the mill will roll the plates and when fabrication will begin so that the Purchaser's inspector may be present when required. The usual mill test of plates shall be deemed sufficient to prove the quality of the steel furnished (except as noted in 6.2.2). Mill test reports or certificates of compliance, as provided for in the material specification, shall be furnished to the Purchaser only when the option is specified in the original contract that they be provided.



Note: Any combination of diameter and thickness falling on or above the solid line requires shaping prior to installation.

0

#### Figure 6-1—Shaping of Plates

**6.2.2** Mill and shop inspection shall not release the Manufacturer from responsibility for replacing any defective material and for repairing any defective workmanship that may be discovered in the field.

- **6.2.3** Any material or workmanship that in any way fails to meet the requirements of this Standard may be rejected by the Purchaser's inspector, and the material involved shall not be used under the contract. Material that shows injurious defects subsequent to its acceptance at the mill, subsequent to its acceptance at the Manufacturer's works, or during erection and testing of the tank will be rejected. The Manufacturer will be notified of this in writing and will be required to furnish new material promptly and make the necessary replacements or suitable repairs.
- 6.2.4 a. The Manufacturer shall visually inspect all edges of shell and roof plates before installing the plates in the tank or before inserting a nozzle into the plate to determine if laminations are present. If a lamination is visually detected, the Manufacturer shall ultrasonically test the area to determine the extent of the laminations and shall reject the plate or make repairs in accordance with 6.2.4b.
- b. For laminations found not exceeding 75 mm (3 in.) in length or 25 mm (1 in.) in depth, repairs may be made by edge gouging and rewelding to seal the lamination. The Manufacturer shall submit the edge repair procedure for Purchaser acceptance prior to the start of fabrication. For laminations exceeding these limits, the Manufacturer shall either reject the plate or repair the plate by entirely removing the lamination. Before making such repairs the Manufacturer shall document the extent of the lamination and submit a case-specific repair procedure for Purchaser approval.

# **SECTION 7—ERECTION**

#### 7.1 GENERAL

• 7.1.1 Required foundation and grade work shall be supplied by the Purchaser, unless otherwise specified in the Contract. The Manufacturer shall check level tolerances and contour before starting work, and shall notify the Purchaser of any deficiency discovered that might affect the quality of the finished work. Deficiencies noted shall be rectified by the Purchaser unless otherwise agreed by the Manufacturer.

**7.1.2** After the Purchaser has turned the tank foundation over to the Manufacturer, the Manufacturer shall maintain the grade under the tank in true profile and free of foreign materials such as clay, coal, cinders, metal scraps, or animal or vegetable matter of any sort. The Manufacturer shall repair any damage to either the foundation or grade surface caused by the Manufacturer's operations.

**7.1.3** Coating or foreign material shall not be used between surfaces in contact in the construction of the tank, except as permitted by 7.2.1.9.

• **7.1.4** Coating or other protection for structural work inside and outside of the tank shall be as specified in the contract and shall be applied by competent workers.

07

11

11

**7.1.5** All temporary attachments welded to the exterior of the tank shall be removed and any noticeable projections of weld metal shall be ground smooth with the surface of the plate. In the event of inadvertent tearing of the plate when attachments are removed, the damaged area shall be repaired by welding and subsequent grinding of the surface to a smooth condition.

**7.1.6** All temporary attachments welded to the interior of the tank, including the shell, roof, tank bottom, roof columns and other internal structures shall be removed and any noticeable projections of weld metal shall be ground smooth. In the event of inadvertent tearing of the plate when attachments are removed, the damaged area shall be repaired by welding and subsequent grinding of the surface to a smooth condition. This work must be completed before the application of internal linings, the air raising of a fixed roof, the initial floating of a floating roof, and any other circumstance whereby projections may cause damage.

#### 7.2 DETAILS OF WELDING

## 7.2.1 General

• **7.2.1.1** Tanks and their structural attachments shall be welded by the shielded metal-arc, gas metal-arc, gas tungsten-arc, oxy-fuel, flux-cored arc, submerged-arc, electroslag, or electrogas process using suitable equipment. Use of the oxyfuel, electroslag, or electrogas process shall be by agreement between the Manufacturer and the Purchaser. Use of the oxyfuel process is not permitted when impact testing of the material is required. All tank welding shall be performed by manual, semiautomatic arc, machine, or automatic welding in accordance with the requirements of Section 9 of this Standard and welding procedure specifications as described in Section IX of the ASME *Code*. Welding shall be performed in a manner that ensures complete fusion with the base metal. At the Purchaser's request, the Purchaser may designate applicable sections of API RP 582 for supplementary welding guidelines and practices.

**7.2.1.2** No welding of any kind shall be performed when the surfaces to be welded are wet from rain, snow, or ice; when rain or snow is falling on such surfaces; or during periods of high winds unless the welder and the work are properly shielded. Also, preheat shall be applied when metal temperature is below the temperature required by Tables 7-1a and 7-1b. In that case the base metal shall be heated to at least the temperature indicated in Tables 7-1a and 7-1b within 75 mm (3 in.) of the place where welding is to be started and maintained 75 mm (3 in.) ahead of the arc.

| Material Group<br>per Table 4-4a | Thickness (1) of<br>Thicker Plate (mm) | Minimum Preheat<br>Temperature |
|----------------------------------|----------------------------------------|--------------------------------|
| Groups I, II, III                | <i>t</i> ≤ 32                          | <u>0°C</u>                     |
| & ША                             | $32 \le t \le 40$                      | 10°C                           |
|                                  | <i>t</i> > 40                          | 93°C                           |
| Groups IV, IVA,                  | $t \leq 32$                            | 10°C                           |
| V & VI                           | $32 < t \le 40$                        | 40°C                           |
|                                  | <i>t</i> > 40                          | 93℃                            |

## Table 7-1a—(SI) Minimum Preheat Temperatures

| Material Group<br>per Table 4-4b | Thickness (t) of<br>Thicker Plate (in.) | Minimum Preheat<br>Temperature |
|----------------------------------|-----------------------------------------|--------------------------------|
| Groups I, II, III                | <i>t</i> ≤ 1.25                         | 32°F                           |
| & IIIA                           | $1.25 \le t \le 1.50$                   | 50°F                           |
|                                  | <i>t</i> > 1.50                         | 200°F                          |
| Groups IV, IVA,                  | <i>t</i> ≤ 1.25                         | 50°F                           |
| V & VI                           | $1.25 < t \le 1.50$                     | 100°F                          |
|                                  | <i>t</i> > 1.50                         | 200°F                          |

| Table 7-1b—(USC) Minimum Preheat Tempe |
|----------------------------------------|
|----------------------------------------|

**7.2.1.3** Each layer of weld metal or multilayer welding shall be cleaned of slag and other deposits before the next layer is applied.

**7.2.1.4** The edges of all welds shall merge smoothly with the surface of the plate without a sharp angle.

**7.2.1.5** All welding shall be free from coarse ripples, grooves, overlaps, abrupt ridges, and valleys that interfere with interpretation of NDE results.

**7.2.1.6** During the welding operation, plates shall be held in close contact at all lap joints.

• **7.2.1.7** The method proposed by the Manufacturer for holding the plates in position for welding shall be submitted to the Purchaser's inspector for approval if approval has not already been given in writing by the Purchaser.

**7.2.1.8** Tack welds used during the assembly of vertical joints of tank shells shall be removed and shall not remain in the finished joints when the joints are welded manually. When such joints are welded by the submerged-arc process, the tack welds shall be thoroughly cleaned of all welding slag but need not be removed if they are sound and are thoroughly fused into the subsequently applied weld beads.

Whether tack welds are removed or left in place, they shall be made using a fillet-weld or butt-weld procedure qualified in accordance with Section IX of the ASME *Code*. Tack welds to be left in place shall be made by welders qualified in accordance with Section IX of the ASME *Code* and shall be visually examined for defects, which shall be removed if found (see 8.5 for criteria for visual examination).

**7.2.1.9** If protective coatings are to be used on surfaces to be welded, the coatings shall be included in welding-procedure qualification tests for the brand formulation and maximum thickness of coating to be applied.

**7.2.1.10** Low-hydrogen electrodes shall be used for all manual metal-arc welds in annular rings and shell courses, including the attachment of the first shell course to bottom or annular plates, as follows:

a. Where the plates are thicker than 12.5 mm (1/2 in.) (based on the thickness of the thicker member being joined) and made of material from Groups I–III.

b. For all thicknesses when the plates are made of material from Groups IV, IVA, V and VI.

**7.2.1.11** Non-structural small attachments such as insulation clips, studs and pins but not insulation support rings or bars may be welded by the arc stud, capacitor discharge or shielded metal arc process to the exterior of the shell including reinforcing plates or PWHT assemblies and roof either before or after hydrostatic testing is performed, but before the tank will be filled with product provided:

a. The attachment locations meet the spacing requirements of 5.8.1.2a.

b. The arc stud welding process is limited to 10 mm  $(^{3}/_{8}$  in.) maximum diameter studs or equivalent cross-section.

c. The maximum shielded metal arc electrode is limited to  $3 \text{ mm} (\frac{1}{8} \text{ in.})$  diameter and shall be a low-hydrogen type.

d. The attachment welds, except for those made by the capacitor discharge method, shall be inspected per 7.2.3.5. The attachment welds made by the capacitor discharge method shall be visually examined for all types and groups of shell materials.

e. All stud welding and capacitor discharge procedures have been qualified in accordance with ASME Section IX. Capacitor discharge procedures do not require procedure qualification provided the power output is 125 watt-sec or less.

The shielded metal arc weld procedures shall meet the requirements of Section 9 for qualification for use.

11

#### 7.2.2 Bottoms

**7.2.2.1** After the bottom plates are laid out and tacked, they shall be joined by welding the joints in a sequence that the Manufacturer has found to result in the least distortion from shrinkage and thus to provide as nearly as possible a plane surface.

**7.2.2.2** The welding of the shell to the bottom shall be practically completed before the welding of bottom joints that may have been left open to compensate for shrinkage of any welds previously made is completed.

**7.2.2.3** Shell plates may be aligned by metal clips attached to the bottom plates, and the shell may be tack welded to the bottom before continuous welding is started between the bottom edge of the shell plate and the bottom plates.

#### 7.2.3 Shells

**7.2.3.1** Plates to be joined by butt welding shall be matched accurately and retained in position during the welding operation. Misalignment in completed vertical joints for plates greater than 16 mm ( $^{5}/_{8}$  in.) thick shall not exceed 10% of the plate thickness or 3 mm ( $^{1}/_{8}$  in.), whichever is less; misalignment for plates less than or equal to 16 mm ( $^{5}/_{8}$  in.) thick shall not exceed 1.5 mm ( $^{1}/_{16}$  in.).

**7.2.3.2** In completed horizontal butt joints, the upper plate shall not project beyond the face of the lower plate at any point by more than 20% of the thickness of the upper plate, with a maximum projection of 3 mm ( $^{1}/_{8}$  in.); however, for upper plates less than 8 mm ( $^{5}/_{16}$  in.) thick, the maximum projection shall be limited to 1.5 mm ( $^{1}/_{16}$  in.). The upper plate at a horizontal butt joint shall have a 4:1 taper when its thickness is more than 3 mm ( $^{1}/_{8}$  in.) greater than the lower plate.

• 7.2.3.3 The reverse side of double-welded butt joints shall be thoroughly cleaned in a manner that will leave the exposed surface satisfactory for fusion of the weld metal to be added, prior to the application of the first bead to the second side. This cleaning may be done by chipping; grinding; melting out; or where the back of the initial bead is smooth and free from crevices that might entrap slag, another method that, upon field inspection, is acceptable to the Purchaser.

**7.2.3.4** For circumferential and vertical joints in tank shell courses constructed of material more than 40 mm  $(1^{1}/_{2} \text{ in.})$  thick (based on the thickness of the thicker plate at the joint), multipass weld procedures are required, with no pass over 19 mm  $({}^{3}/_{4} \text{ in.})$  thick permitted.

**7.2.3.5** The requirements of this section shall be followed when welding to Group IV, IVA, V, and VI materials. Permanent and temporary attachments (see 7.2.1.10 for information on shell-to-bottom welds) shall be welded with low-hydrogen electrodes. Both permanent and temporary attachments shall be welded in accordance with a procedure that minimizes the potential for underbead cracking. The welds of permanent attachments (not including shell-to-bottom welds) and areas where temporary attachments are removed, shall be examined visually and by either the magnetic particle method or by the liquid penetrant method (see 8.2, 8.4, or 8.5 for the appropriate inspection criteria).

**7.2.3.6** Completed welds of stress-relieved assemblies shall be examined by visual, as well as by magnetic particle or penetrant methods, after stress relief, but before hydrostatic test.

**7.2.3.7** Flush-type connections shall be inspected according to 5.7.8.11.

#### 7.2.4 Shell-to-Bottom Welds

- **7.2.4.1** The initial weld pass inside the shell shall have all slag and non-metals removed from the surface of the weld and then examined for its entire circumference prior to welding the first weld pass outside the shell (temporary weld fit-up tacks excepted), both visually and by one of the following methods to be agreed to by Purchaser and the Manufacturer:
  - a. Magnetic particle.

b. Applying a solvent liquid penetrant to the weld and then applying a developer to the gap between the shell and the bottom and examining for leaks after a minimum dwell time of one hour.

c. Applying a water-soluble liquid penetrant to either side of the joint and then applying a developer to the other side of the joint and examining for leaks after a minimum dwell time of one hour.

d. Applying a high flash-point penetrating oil such as light diesel to the gap between the shell and the bottom, letting stand for at least four hours, and examining the weld for evidence of wicking.

Note: Residual oil may remain on the surfaces yet to be welded even after the cleaning required below and contamination of the subsequent weld is possible.

e. Applying a bubble-forming solution to the weld, using a right angle vacuum box, and examining for bubbles.

Thoroughly clean all residual examination materials from the as yet to be welded surfaces and from the unwelded gap between the shell and bottom. Remove defective weld segments and reweld as required. Reexamine the repaired welds and a minimum of 150 mm (6 in.) to either side in the manner described above. Repeat this clean-remove-repair-examine-and-clean process until there is no evidence of leaking. Complete all welding passes of the joint both inside and outside the shell. Visually examine the finished weld surfaces of the joint both inside and outside the shell for their entire circumference.

**7.2.4.2** As an alternative to 7.2.4.1, the initial weld passes, inside and outside of the shell, shall have all slag and non-metals removed from the surface of the welds and the welds shall be examined visually. Additionally, after the completion of the inside and outside fillet or partial penetration welds, the welds may be tested by pressurizing the volume between the inside and outside

- welds with air pressure to 100 kPa (15 lbf/in.<sup>2</sup> gauge) and applying a solution film to both welds. To assure that the air pressure reaches all parts of the welds, a sealed blockage in the annular passage between the inside and outside welds must be provided by welding at one or more points. Additionally, a small pipe coupling communicating with the volume between the welds must be connected at one end and a pressure gauge connected to a coupling on the other end of the segment under test.
  - **7.2.4.3** By agreement between the Purchaser and the Manufacturer, the examinations of 7.2.4.1 may be waived if the following examinations are performed on the entire circumference of the weld(s):
    - a. Visually examine the initial weld pass (inside or outside).
    - b. Visually examine the finished joint welded surfaces, both inside and outside the shell.
    - c. Examine either side of the finished joint weld surfaces by magnetic particle, or liquid penetrant, or right angle vacuum box.

## 7.2.5 Roofs

Except for the stipulation that the structural framing (such as the rafters and girders) of the roof must be reasonably true to line and surface, this Standard does not include special stipulations for erection of the roof.

### 7.3 INSPECTION, TESTING, AND REPAIRS

## 7.3.1 General

**7.3.1.1** The Purchaser's inspector shall at all times have free entry to all parts of the job while work under the contract is being performed. The Manufacturer shall afford the Purchaser's inspector reasonable facilities to assure the inspector that the work is being performed in accordance with this Standard.

7.3.1.2 Any material or workmanship shall be subject to the replacement requirements of 6.2.3.

• **7.3.1.3** Material that is damaged by defective workmanship or that is otherwise defective will be rejected. The Manufacturer will be notified of this in writing and will be required to furnish new material promptly or to correct defective workmanship.

**7.3.1.4** Before acceptance, all work shall be completed to the satisfaction of the Purchaser's inspector, and the entire tank, when filled with oil, shall be tight and free from leaks.

### 7.3.2 Inspection of Welds

### • 7.3.2.1 Butt-Welds

07

Complete penetration and complete fusion are required for welds joining shell plates to shell plates. Inspection for the quality of the welds shall be made using either the radiographic method specified in 8.1 or alternatively, by agreement between the Purchaser and the Manufacturer, using the ultrasonic method specified in 8.3.1 (see Appendix U). In addition to the radiographic or ultrasonic examination, these welds shall also be visually examined. Furthermore, the Purchaser's inspector may visually inspect all butt-welds for cracks, arc strikes, excessive undercut, surface porosity, incomplete fusion, and other defects. Acceptance and repair criteria for the visual method are specified in 8.5.

## 7.3.2.2 Fillet Welds

Fillet welds shall be inspected by the visual method. The final weld shall be cleaned of slag and other deposits prior to inspection. Visual examination acceptance and repair criteria are specified in 8.5.

## 7.3.2.3 Responsibility

The Manufacturer shall be responsible for making radiographs and any necessary repairs; however, if the Purchaser's inspector requires radiographs in excess of the number specified in Section 6, or requires chip-outs of fillet welds in excess of one per 30 m (100 ft) of weld and no defect is disclosed the additional inspections and associated work shall be the responsibility of the Purchaser.

#### 7.3.3 Examination and Testing of the Tank Bottom

Upon completion of welding of the tank bottom, the bottom welds and plates shall be examined visually for any potential defects and leaks. Particular attention shall apply to areas such as sumps, dents, gouges, three-plate laps, bottom plate breakdowns, arc strikes, temporary attachment removal areas, and welding lead arc burns. Visual examination acceptance and repair criteria are specified in 8.5. In addition, all welds shall be tested by one of the following methods:

a. A vacuum-box test in accordance with 8.6.

b. A tracer gas test in accordance with 8.6.11.

c. After at least the lowest shell course has been attached to the bottom, water (to be supplied by the Purchaser) shall be pumped underneath the bottom. A head of 150 mm (6 in.) of liquid shall be maintained using a temporary dam to hold that depth around the edge of the bottom. The line containing water for testing may be installed temporarily by running it through a manhole to one or more temporary flange connections in the bottom of the tank, or the line may be installed permanently in the subgrade beneath the tank. The method of installation should be governed by the nature of the subgrade. Reasonable care shall be taken to preserve the prepared subgrade under the tank.

#### 7.3.4 Inspection of Reinforcing-Plate Welds

After fabrication is completed but before the tank is filled with test water, the reinforcing plates shall be tested by the Manufacturer by applying up to 100 kPa (15  $lbf/in.^2$ ) gauge pneumatic pressure between the tank shell and the reinforcement plate on each opening using the telltale hole specified in 5.7.5.1. While each space is subjected to such pressure, a soap film, linseed oil, or another material suitable for the detection of leaks shall be applied to all attachment welding around the reinforcement, both inside and outside the tank.

### • 7.3.5 Testing of the Shell

After the entire tank and roof structure is completed, the shell (except for the shell of tanks designed in accordance with Appendix F) shall be tested by one of the following methods, as specified on the Data Sheet, Line 14:

- 1. If water is available for testing the shell, the tank shall be filled with water as follows: (1) to the maximum design liquid level, *H*; (2) for a tank with a tight roof, to 50 mm (2 in.) above the weld connecting the roof plate or compression bar to the top angle or shell; (3) to a level lower than that specified in Subitem 1 or 2 when restricted by overflows, an internal floating roof, or other freeboard by agreement between the Purchaser and the Manufacturer, or 4) to a level of seawater producing a bottom of shell hoop stress equal to that produced by a full-height fresh water test. The tank shall be inspected frequently during the filling operation, and any welded joints above the test-water level shall be examined in accordance with Item 2 below. This test shall be conducted before permanent external piping is connected to the tank. Attachments to the shell defined in 5.8.1.1, located at least 1 m (3 ft) above the water level, and roof appurtenances may be welded during the filling of the tank. After completion of the hydro-test, only non-structural small attachments may be welded to the tank in accordance with 7.2.1.11.
  - 2. If sufficient water to fill the tank is not available, the tank may be tested by (1) painting all of the joints on the inside with a highly penetrating oil, such as automobile spring oil, and carefully examining the outside of the joints for leakage; (2) applying vacuum to either side of the joints or applying internal air pressure as specified for the roof test in 7.3.7 and carefully examining the joints for leakage; or (3) using any combination of the methods stipulated in 7.3.5, Subitems 1 and 2.

#### 7.3.6 Hydrostatic Testing Requirements

**7.3.6.1** This hydrostatic test of the tank shall be conducted before permanent external piping is connected to the tank. Attachments to the shell defined in 5.8.1.1, located at least 1 m (3 ft) above the water level, and roof appurtenances may be welded during the filling of the tank. After completion of the hydro-test, only non-structural small attachments may be welded to the tank in accordance with 7.2.1.11. Any welded joints above the test-water level shall be examined for leakage by one of the following methods:

11

08

07

- 1. applying a highly penetrating oil on all interior weld joints, e.g., automobile spring oil, and carefully examining the outside of the joints for leakage;
  - 2. applying vacuum to either side of the joints or applying internal air pressure as specified for the roof test in 7.3.7 and carefully examining the joints for leakage; or
  - 3. using any combination of the methods stipulated in Subitems 1 and 2.
- **7.3.6.2** The Manufacturer shall be responsible for:

1. Preparing the tank for testing. This shall include removal of all trash, debris, grease, oil, weld scale, weld spatter, and any other foreign matter from the interior and the roof(s) of the tank.

- 2. Furnishing, laying, and removing all lines from the water source tie-in location and to the water disposal point as prescribed on the Data Sheet, Line 14.
- 3. Filling and emptying the tank. (See 1.3 for Purchaser responsibility to obtain any required permits for disposal of water.)
- 4. Cleaning, rinsing, drying, or other prescribed activity, if specified on Data Sheet, Line 14, following the hydro-test to make the tank ready for operation.
- 5. Taking settlement measurements (unless explicitly waived by the Purchaser on the Data Sheet, Line 14).
  - 6. Furnishing all other test materials and facilities, including blinds, bolting, and gaskets (see 4.9).
- 7. Checking the wind girders for proper drainage during or following the hydro-test. If water is retained, additional drainage shall be provided subject to the Purchaser's approval.
- 7.3.6.3 The Purchaser shall be responsible for:
  - 1. Furnishing and disposing of the water for hydro-testing the tank from the water source tie-in location as designated on the Data Sheet, Line 14. If biocide or caustic additions are specified to the Manufacturer, the Purchaser is responsible for determining or identifying disposal restrictions on the treated water.
  - 2. Specifying the test water quality. Potable water is preferred for hydro-testing. This does not preclude the use of condensate, reverse osmosis water, well water, river water, or sea water. The Purchaser shall consider issues such as-low temperature brittle fracture, freeze damage, amount of suspended solids, sanitation issues, animal/plant incubation and/or growth, acid-ity, general corrosion, pitting, protecting against cathodic cells, microbiologically-induced corrosion, material dependent sensitivity to trace chemical attack, disposal, rinsing, and residuals left in the tank after emptying. If the Purchaser-supplied test water causes corrosion, the Purchaser is responsible for the required repairs.
  - 3. For the following metallurgies, describe on the Data Sheet, Line 14, (using a Supplemental Specification) any additional restrictions on the water quality:
    - a. Carbon Steel—For carbon steel equipment where water contact exceeds 14 days, including filling and draining (e.g., consider adding an oxygen scavenger and a biocide, and raise the pH by the addition of caustic).
    - b. Stainless Steel-See Appendix S.
    - c. Aluminum Components-See Appendix H.

**7.3.6.4** For carbon and low-alloy steel tanks, the tank metal temperature during hydrostatic testing shall not be colder than the design metal temperature per Figure 4-1, as long as the water is prevented from freezing. The Manufacturer is responsible for heating the test water, if heating is required, unless stated otherwise on the Data Sheet, Line 14.

**7.3.6.5** The minimum fill and discharge rate, if any, shall be specified by the Purchaser on the Data Sheet, Line 23. When settlement measurements are specified by the Purchaser, the maximum filling rates shall be as follows, unless otherwise restricted by the requirements in 5.8.5:

| Water Filling Rate                   |                                                                                                   |                                                         |
|--------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Bottom Course Thickness              | Tank Portion                                                                                      | Maximum Filling Rate                                    |
| Less than 22 mm $(^{7}/_{8}$ in.)    | - Top course<br>- Below top course                                                                | 300 mm (12 in.)/hr<br>460 mm (18 in.)/hr                |
| 22 mm ( $^{7}/_{8}$ in.) and thicker | <ul> <li>Top third of tank</li> <li>Middle third of tank</li> <li>Bottom third of tank</li> </ul> | 230 mm (9 in.)/hr<br>300 (12 in.)/hr<br>460 (18 in.)/hr |

## 7-6

11

Filling may continue while elevation measurements are being made as long as the change in water elevation for a set of readings does not exceed 300 mm (12 in.). Unless waived on the Data Sheet, the Manufacturer shall make shell elevation measurements in accordance with the following:

- 1. Shell elevation measurements shall be made at equally-spaced intervals around the tank circumference not exceeding 10 m (32 ft). The minimum number of shell measurement points shall be eight.
- 2. Observed elevations shall be referred to a permanent benchmark. The level instrument shall be set up at least  $1^{1/2}$  times tank diameter away from the tank when tank elevation readings are taken. Six sets of settlement readings are required:
  - a. Before start of the hydrostatic test
  - b. With tank filled to  $\frac{1}{4}$  test height (±600 mm [2 ft])
  - c. With tank filled to 1/2 test height (±600 mm [2 ft])
  - d. With tank filled to 3/4 test height (±600 mm [2 ft])
  - e. At least 24 hours after the tank has been filled to the maximum test height. This 24-hour period may be increased to duration specified on the data sheet if the Purchaser so requires for conditions such as:
    - i. The tank is the first one in the area.
    - ii. The tank has a larger capacity than any other existing tank in the area.
    - iii. The tank has a higher unit bearing load than any other existing tank in the area.
    - iv. There is a question regarding the rate or magnitude of settlement that will take place.
  - f. After tank has been emptied of test water
- Note: The three sets of settlement readings described in paragraphs b, c, and d above may be omitted if specified by the Purchaser.

**7.3.6.6** If settlement measurements are specified by the Purchaser, any differential settlement greater than 13 mm per 10 m  $(\frac{1}{2} \text{ in. per 32 ft})$  of circumference or a uniform settlement over 50 mm (2 in.) shall be reported to the Purchaser for evaluation. Filling of the tank shall be stopped until cleared by the Purchaser.

**7.3.6.7** For floating-roof tanks, the maximum and minimum annular space between the shell and the roof rim plate prior to initial flotation and at the maximum test fill height shall be measured and recorded.

**7.3.6.8** Internal bottom elevation measurements shall be made before and after hydrostatic testing. Measurements shall be made at maximum intervals of 3 m (10 ft) measured on diametrical lines across the tank. The diametrical lines shall be spaced at equal angles, with a maximum separation measured at the tank circumference of 10 m (32 ft). A minimum of four diametrical lines shall be used.

7.3.6.9 All elevation measurements shall be included in the Manufacturer's Post-Construction Document Package (see W.1.5).

#### 7.3.7 Testing of the Roof

**7.3.7.1** Upon completion, the roof of a tank designed to be gas-tight (except for roofs designed under 7.3.7.2, F.4.4, and F.7.6) shall be tested by one of the following methods:

a. Applying internal air pressure not exceeding the weight of the roof plates and applying to the weld joints a bubble solution or other material suitable for the detection of leaks.

b. Vacuum testing the weld joints in accordance with 8.6 to detect any leaks.

• **7.3.7.2** Upon completion, the roof of a tank not designed to be gas-tight, such as a tank with peripheral circulation vents or a tank with free or open vents, shall receive only visual inspection of its weld joints, unless otherwise specified by the Purchaser.

#### 7.4 REPAIRS TO WELDS

• **7.4.1** All defects found in welds shall be called to the attention of the Purchaser's inspector, and the inspector's approval shall be obtained before the defects are repaired. All completed repairs shall be subject to the approval of the Purchaser's inspector. Acceptance criteria are specified in 8.2, 8.4, and 8.5, as applicable.

**7.4.2** Pinhole leaks or porosity in a tank bottom joint may be repaired by applying an additional weld bead over the defective area. Other defects or cracks in tank bottom or tank roof (including floating roofs in Appendix C) joints shall be repaired as required by 8.1.7. Mechanical caulking is not permitted.

07

7.4.3 All defects, cracks, or leaks in shell joints or the shell-to-bottom joint shall be repaired in accordance with 8.1.7.

• 7.4.4 Repairs of defects discovered after the tank has been filled with water for testing shall be made with the water level at least 0.3 m (1 ft) below any point being repaired or, if repairs have to be made on or near the tank bottom, with the tank empty. Welding shall not be done on any tank unless all connecting lines have been completely blinded. Repairs shall not be attempted on a tank that is filled with oil or that has contained oil until the tank has been emptied, cleaned, and gas freed. Repairs on a tank that has contained oil shall not be attempted by the Manufacturer unless the manner of repair has been approved in writing by the Purchaser and the repairs are made in the presence of the Purchaser's inspector.

## 7.5 DIMENSIONAL TOLERANCES

### • 7.5.1 General

07

The purpose of the tolerances given in 7.5.2 through 7.5.7 is to produce a tank of acceptable appearance and to permit proper functioning of floating roofs. Measurements shall be taken prior to the hydrostatic water test. Unless waived or modified by the Purchaser on Data Sheet, Line 15, or established separately by agreement between the Purchaser and the Manufacturer, the following tolerances apply:

## 7.5.2 Plumbness

a. The maximum out-of-plumbness of the top of the shell relative to the bottom of the shell shall not exceed 1/200 of the total tank height. The out-of-plumbness in one shell course shall not exceed the permissible variations for flatness and waviness as specified in ASTM A 6M/A 6, ASTM A 20M/A 20, or ASTM A 480M/A 480, whichever is applicable.

b. The maximum out-of-plumbness of roof columns, guide poles, or other vertical internal components shall not exceed 1/200 of the total height. The 1/200 criteria shall also apply to fixed roof columns. For tanks with internal floating roofs, apply the criteria of this section or Appendix H, whichever is more stringent.

#### 7.5.3 Roundness

Radii measured at 0.3 m (1 ft) above the bottom corner weld shall not exceed the following tolerances:

| Tank Diameter<br>m (ft)     | Radius Tolerance<br>mm (in.) |
|-----------------------------|------------------------------|
| < 12 (40)                   | ± 13 (1/2)                   |
| From 12 (40) to < 45 (150)  | $\pm 19 (3/4)$               |
| From 45 (150) to < 75 (250) | ± 25 (1)                     |
| ≥75 (250)                   | $\pm 32 (1^{1}/_{4})$        |

#### 7.5.4 Local Deviations

Local deviations from the theoretical shape (for example, weld discontinuities and flat spots) shall be limited as follows:

a. Deviations (peaking) at vertical weld joints shall not exceed 13 mm ( $\frac{1}{2}$  in.). Peaking at vertical weld joints shall be determined using a horizontal sweep board 900 mm (36 in.) long. The sweep board shall be made to the nominal radius of the tank.

b. Deviations (banding) at horizontal weld joints shall not exceed 13 mm (1/2 in.). Banding at horizontal weld joints shall be determined using a straight edge vertical sweep board 900 mm (36 in.) long.

c. Flat spots measured in the vertical plane shall not exceed the appropriate plate flatness and waviness requirements given in 7.5.2.

#### 7.5.5 Foundations

**7.5.5.1** To achieve the tolerances specified in 7.5.2 through 7.5.4, it is essential that a foundation true to the plane be provided for the tank erection. The foundation should have adequate bearing to maintain the trueness of the foundation (see Appendix B).

**7.5.5.2** Where foundations true to a horizontal plane are specified, tolerances shall be as follows:

a. Where a concrete ringwall is provided under the shell, the top of the ringwall shall be level within  $\pm 3 \text{ mm} (\frac{1}{8} \text{ in.})$  in any 9 m (30 ft) of the circumference and within  $\pm 6 \text{ mm} (\frac{1}{4} \text{ in.})$  in the total circumference measured from the average elevation.

b. Where a concrete ringwall is not provided, the foundation under the shell shall be level within  $\pm 3 \text{ mm} (\frac{1}{8} \text{ in.})$  in any 3 m (10 ft) of the circumference and within  $\pm 13 \text{ mm} (\frac{1}{2} \text{ in.})$  in the total circumference measured from the average elevation.

c. Where a concrete slab foundation is provided, the first 0.3 m (1 ft) of the foundation (or width of the annular ring), measured from the outside of the tank radially towards the center, shall comply with the concrete ringwall requirement. The remainder of the foundation shall be within  $\pm 13 \text{ mm} (1/2 \text{ in.})$  of the design shape.

**7.5.5.3** Where a sloping foundation is specified, elevation differences about the circumference shall be calculated from the specified high point. Actual elevation differences about the circumference shall be determined from the actual elevation of the specified high point. The actual elevation differences shall not deviate from the calculated differences by more than the following tolerances:

a. Where a concrete ringwall is provided,  $\pm 3 \text{ mm} (\frac{1}{8} \text{ in.})$  in any 9 m (30 ft) of circumference and  $\pm 6 \text{ mm} (\frac{1}{4} \text{ in.})$  in the total circumference.

b. Where a concrete ringwall is not provided,  $\pm 3 \text{ mm} (\frac{1}{8} \text{ in.})$  in any 3 m (10 ft) of circumference and  $\pm 13 \text{ mm} (\frac{1}{2} \text{ in.})$  in the total circumference.

#### 7.5.6 Nozzles

Nozzles (excluding manholes) shall be installed within the following tolerances:

- a. Specified projection from outside of tank shell to extreme face of flange:  $\pm 5 \text{ mm} (^{3}/_{16} \text{ in.})$
- b. Elevation of shell nozzle or radial location of a roof nozzle:  $\pm 6 \text{ mm} (\frac{1}{4} \text{ in.})$
- c. Flange tilt in any plane, measured on the flange face:

 $\pm 1/2$  degree for nozzles greater than NPS 12 in nominal diameter

 $\pm 3 \text{ mm} (\frac{1}{8} \text{ in.})$  at the outside flange diameter for nozzles NPS 12 and smaller

d. Flange bolt hole orientation:  $\pm 3 \text{ mm} (1/8 \text{ in.})$ 

#### 7.5.7 Shell Manholes

Manholes shall be installed within the following tolerances:

- a. Specified projection from outside of shell to extreme face of flange,  $\pm 13 \text{ mm} (\frac{1}{2} \text{ in.})$
- b. Elevation and angular location,  $\pm 13 \text{ mm} (\frac{1}{2} \text{ in.})$
- c. Flange tilt in any plane, measured across the flange diameter,  $\pm 13 \text{ mm} (1/2 \text{ in.})$

# SECTION 8—METHODS OF INSPECTING JOINTS

Note: In this Standard, the term inspector, as used in Sections V and VIII of the ASME *Code*, shall be interpreted to mean the Purchaser's inspector.

## 8.1 RADIOGRAPHIC METHOD

For the purposes of this paragraph, plates shall be considered of the same thickness when the difference in their specified or design thickness does not exceed 3 mm ( $^{1}/_{8}$  in.).

## 8.1.1 Application

Radiographic inspection is required for shell butt-welds (see 8.1.2.2, 8.1.2.3, and 8.1.2.4), annular-plate butt-welds (see 8.1.2.9), and flush-type connections with butt-welds (see 5.7.8.11). Radiographic inspection is not required for the following: roof-plate welds, bottom-plate welds, welds joining the top angle to either the roof or shell, welds joining the shell plate to the bottom plate, welds in nozzle and manway necks made from plate, or appurtenance welds to the tank.

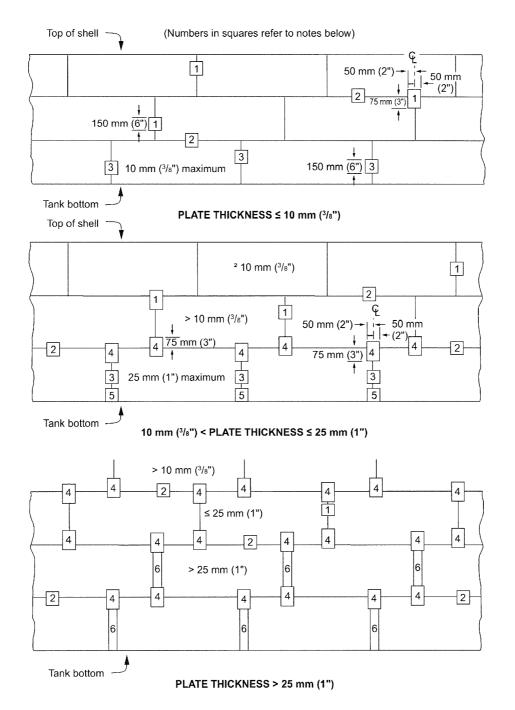
## 8.1.2 Number and Location of Radiographs

8.1.2.1 Except when omitted under the provisions of A.3.4, radiographs shall be taken as specified in 8.1.2 through 8.1.9.

**8.1.2.2** The following requirements apply to vertical joints:

a. For butt-welded joints in which the thinner shell plate is less than or equal to 10 mm ( $^{3}/_{8}$  in.) thick, one spot radiograph shall be taken in the first 3 m (10 ft) of completed vertical joint of each type and thickness welded by each welder or welding operator. The spot radiographs taken in the vertical joints of the lowest course may be used to meet the requirements of Note 3 in Figure 8-1 for individual joints. Thereafter, without regard to the number of welders or welding operators, one additional spot radiograph shall be taken in each additional 30 m (100 ft) (approximately) and any remaining major fraction of vertical joints, with a minimum of two such intersections per tank. In addition to the foregoing requirements, one random spot radiograph shall be taken in each vertical joint in the lowest course (see the top panel of Figure 8-1).

b. For butt-welded joints in which the thinner shell plate is greater than 10 mm ( $^{3}/_{8}$  in.) but less than or equal to 25 mm (1 in.) in thickness, spot radiographs shall be taken according to Item a. In addition, all junctions of vertical and horizontal joints in plates in this thickness range shall be radiographed; each film shall clearly show not less than 75 mm (3 in.) of vertical weld and 50 mm (2 in.) of weld length on each side of the vertical intersection. In the lowest course, two spot radiographs shall be taken in each vertical joint: one of the radiographs shall be as close to the bottom as is practicable, and the other shall be taken at random (see the center panel of Figure 8-1).


c. Vertical joints in which the shell plates are greater than 25 mm (1 in.) thick shall be fully radiographed. All junctions of vertical and horizontal joints in this thickness range shall be radiographed; each film shall clearly show not less than 75 mm (3 in.) of vertical weld and 50 mm (2 in.) of weld length on each side of the vertical intersection (see the bottom panel of Figure 8-1).

d. The butt-weld around the periphery of an insert plate that extends less than the adjacent shell course height and that contains shell openings (i.e. nozzle, manway, flush-type cleanout, flush type shell-connection) and their reinforcing elements shall be completely radiographed.

e. The butt-weld around the periphery of an insert plate which extends to match the adjacent shell course height shall have the vertical and the horizontal butt joints and the intersections of vertical and horizontal weld joints radiographed using the same rules that apply to the weld joints in adjacent shell plates in the same shell course.

**8.1.2.3** One spot radiograph shall be taken in the first 3 m (10 ft) of completed horizontal butt joint of the same type and thickness (based on the thickness of the thinner plate at the joint) without regard to the number of welders or welding operators. Thereafter, one radiograph shall be taken in each additional 60 m (200 ft) (approximately) and any remaining major fraction of horizontal joint of the same type and thickness. These radiographs are in addition to the radiographs of junctions of vertical joints required by Item c of 8.1.2.2 (see Figure 8-1).

**8.1.2.4** The number of spot radiographs required herein shall be applicable on a per tank basis, irrespective of the number of tanks being erected concurrently or continuously at any location.



#### Notes:

1. Vertical spot radiograph in accordance with 8.1.2.2, Item a: one in the first 3 m (10 ft) and one in each 30 m (100 ft) thereafter, 25% of which shall be at intersections.

2. Horizontal spot radiograph in accordance with 8.1.2.3: one in the first 3 m (10 ft) and one in each 60 m (200 ft) thereafter.

3. Vertical spot radiograph in each vertical seam in the lowest course (see 8.1.2.2, Item b). Spot radiographs that satisfy the requirements of Note 1 for the lowest course may be used to satisfy this requirement.

4. Spot radiographs of all intersections over 10 mm (3/8 in.) (see 8.1.2.2, Item b).

5. Spot radiograph of bottom of each vertical seam in lowest shell course over 10 mm (<sup>3</sup>/<sub>8</sub> in.) (see 8.1.2.2, Item b).

6. Complete radiograph of each vertical seam over 25 mm (1 in.). The complete radiograph may include the spot radiographs of the intersections if the film has a minimum width of 100 mm (4 in.) (see 8.1.2.2, Item c).

Figure 8-1—Radiographic Requirements for Tank Shells

**8.1.2.5** It is recognized that in many cases the same welder or welding operator does not weld both sides of a butt joint. If two welders or welding operators weld opposite sides of a butt joint it is permissible to inspect their work with one spot radiograph. If the radiograph is rejected, additional spot radiographs shall be taken to determine whether one or both of the welders or welding operators are at fault.

**8.1.2.6** An equal number of spot radiographs shall be taken from the work of each welder or welding operator in proportion to the length of joints welded.

**8.1.2.7** As welding progresses, radiographs shall be taken as soon as it is practicable. The locations where spot radiographs are to be taken may be determined by the Purchaser's inspector.

**8.1.2.8** Each radiograph shall clearly show a minimum of 150 mm (6 in.) of weld length. The film shall be centered on the weld and shall be of sufficient width to permit adequate space for the location of identification marks and an image quality indicator (IQI) penetrameter.

**8.1.2.9** When bottom annular plates are required by 5.5.1, or by M.4.1, the radial joints shall be radiographed as follows: (a) For double-welded butt joints, one spot radiograph shall be taken on 10% of the radial joints; (b) For single-welded butt joints with permanent or removable back-up bar, one spot radiograph shall be taken on 50% of the radial joints. Extra care must be exercised in the interpretation of radiographs of single-welded joints that have a permanent back-up bar. In some cases, additional exposures taken at an angle may determine whether questionable indications are acceptable. The minimum radiographic length of each radial joint shall be 150 mm (6 in.). Locations of radiographs shall preferably be at the outer edge of the joint where the shell plate and annular plate join.

#### 8.1.3 Technique

**8.1.3.1** Except as modified in this section, the radiographic examination method employed shall be in accordance with Section V, Article 2, of the ASME *Code*.

**8.1.3.2** Personnel who perform and evaluate radiographic examinations according to this section shall be qualified and certified by the Manufacturer as meeting the requirements of certification as generally outlined in Level II or Level III of ASNT SNT-TC-1A (including applicable supplements). Level-I personnel may be used if they are given written acceptance/rejection procedures prepared by Level-II or Level-III personnel. These written procedures shall contain the applicable requirements of Section V, Article 2, of the ASME *Code.* In addition, all Level-I personnel shall be under the direct supervision of Level-III or Level-III personnel.

**8.1.3.3** The requirements of T-285 in Section V, Article 2, of the ASME *Code* are to be used only as a guide. Final acceptance of radiographs shall be based on whether the prescribed penetrameter image and the specified hole can be seen.

**8.1.3.4** The finished surface of the weld reinforcement at the location of the radiograph shall either be flush with the plate or have a reasonably uniform crown not to exceed the following values:

| Plate Thickness<br>mm (in.)                    | Maximum Thickness of Reinforcement mm (in.) |
|------------------------------------------------|---------------------------------------------|
| $\leq 13 \ (^{1}/_{2})$                        | 1.5 (1/16)                                  |
| > 13 ( <sup>1</sup> / <sub>2</sub> ) to 25 (1) | 2.5 ( <sup>3</sup> / <sub>32</sub> )        |
| > 25 (1)                                       | 3 (1/8)                                     |

#### 8.1.4 Submission of Radiographs

Before any welds are repaired, the radiographs shall be submitted to the inspector with any information requested by the inspector regarding the radiographic technique used.

### 8.1.5 Radiographic Standards

Welds examined by radiography shall be judged as acceptable or unacceptable by the standards of Paragraph UW-51(b) in Section VIII of the ASME *Code*.

### 8.1.6 Determination of Limits of Defective Welding

When a section of weld is shown by a radiograph to be unacceptable under the provisions of 8.1.5 or the limits of the deficient welding are not defined by the radiograph, two spots adjacent to the section shall be examined by radiography; however, if the

original radiograph shows at least 75 mm (3 in.) of acceptable weld between the defect and any one edge of the film, an additional radiograph need not be taken of the weld on that side of the defect. If the weld at either of the adjacent sections fails to comply with the requirements of 8.1.5, additional spots shall be examined until the limits of unacceptable welding are determined, or the erector may replace all of the welding performed by the welder or welding operator on that joint. If the welding is replaced, the inspector shall have the option of requiring that one radiograph be taken at any selected location on any other joint on which the same welder or welding operator has welded. If any of these additional spots fail to comply with the requirements of 8.1.5, the limits of unacceptable welding shall be determined as specified for the initial section.

## 8.1.7 Repair of Defective Welds

**8.1.7.1** Defects in welds shall be repaired by chipping or melting out the defects from one side or both sides of the joint, as required, and rewelding. Only the cutting out of defective joints that is necessary to correct the defects is required.

• **8.1.7.2** All repaired welds in joints shall be checked by repeating the original inspection procedure and by repeating one of the testing methods of 7.3, subject to the approval of the Purchaser.

## 8.1.8 Record of Radiographic Examination

- **8.1.8.1** The Manufacturer shall prepare a radiograph map showing the final location of all radiographs taken along with the film identification marks.
  - **8.1.8.2** After the structure is completed, the films shall be the property of the Purchaser unless otherwise agreed upon by the Purchaser and the Manufacturer.

## 8.2 MAGNETIC PARTICLE EXAMINATION

**8.2.1** When magnetic particle examination is specified, the method of examination shall be in accordance with Section V, Article 7, of the ASME *Code*.

**8.2.2** Magnetic particle examination shall be performed in accordance with a written procedure that is certified by the Manufacturer to be in compliance with the applicable requirements of Section V of the ASME *Code*.

8.2.3 The Manufacturer shall determine that each magnetic particle examiner meets the following requirements:

a. Has vision (with correction, if necessary) to be able to read a Jaeger Type 2 standard chart at a distance of not less than 300 mm (12 in.) and is capable of distinguishing and differentiating contrast between the colors used. Examiners shall be checked annually to ensure that they meet these requirements.

b. Is competent in the technique of the magnetic particle examination method, including performing the examination and interpreting and evaluating the results; however, where the examination method consists of more than one operation, the examiner need only be qualified for one or more of the operations.

**8.2.4** Acceptance standards and the removal and repair of defects shall be in accordance with Section VIII, Appendix 6, Paragraphs 6-3, 6-4, and 6-5, of the ASME *Code*.

### 8.3 ULTRASONIC EXAMINATION

### 8.3.1 Ultrasonic Examination in Lieu of Radiography

When ultrasonic examination is applied in order to fulfill the requirement of 7.3.2.1, the provisions of Appendix U shall apply.

### 8.3.2 Ultrasonic Examination NOT in Lieu of Radiography

**8.3.2.1** When the radiographic method is applied in order to fulfill the requirement of 7.3.2.1, then any ultrasonic examination specified shall be in accordance with this section.

**8.3.2.2** The method of examination shall be in accordance with Section V, Article 4, of the ASME *Code*.

**8.3.2.3** Ultrasonic examination shall be performed in accordance with a written procedure that is certified by the Manufacturer to be in compliance with the applicable requirements of Section V of the ASME *Code*.

**8.3.2.4** Examiners who perform ultrasonic examinations under this section shall be qualified and certified by the Manufacturers as meeting the requirements of certification as generally outlined in Level II or Level III of ASNT SNT-TC-1A (including

applicable supplements). Level-I personnel may be used if they are given written acceptance/rejection criteria prepared by Level-II or Level-III personnel. In addition, all Level-I personnel shall be under the direct supervision of Level-III or Level-III personnel.

**8.3.2.5** Acceptance standards shall be agreed upon by the Purchaser and the Manufacturer.

### 8.4 LIQUID PENETRANT EXAMINATION

**8.4.1** When liquid penetrant examination is specified, the method of examination shall be in accordance with Section V, Article 6, of the ASME *Code*.

**8.4.2** Liquid penetrant examination shall be performed in accordance with a written procedure that is certified by the Manufacturer to be in compliance with the applicable requirements of Section V of the ASME *Code*.

**8.4.3** The Manufacturer shall determine and certify that each liquid penetrant examiner meets the following requirements:

a. Has vision (with correction, if necessary) to enable him to read a Jaeger Type 2 standard chart at a distance of not less than 300 mm (12 in.) and is capable of distinguishing and differentiating contrast between the colors used. Examiners shall be checked annually to ensure that they meet these requirements.

b. Is competent in the technique of the liquid penetrant examination method for which he is certified, including making the examination and interpreting and evaluating the results; however, where the examination method consists of more than one operation, the examiner may be certified as being qualified for one or more of the operations.

**8.4.4** Acceptance standards and the removal and repair of defects shall be in accordance with Section VIII, Appendix 8, Paragraphs 8-3, 8-4, and 8-5, of the ASME *Code*.

### 8.5 VISUAL EXAMINATION

**8.5.1** The Manufacturer shall determine and certify that each visual examiner meets the following requirements:

a. Has vision (with correction, if necessary) to be able to read a Jaeger Type 2 standard chart at a distance of not less than 300 mm (12 in.) and is capable of passing a color contrast test. Examiners shall be checked annually to ensure that they meet this requirement; and

b. Is competent in the technique of the visual examination, including performing the examination and interpreting and evaluating the results; however, where the examination method consists of more than one operation, the examiner performing only a portion of the test need only be qualified for the portion that the examiner performs.

**8.5.2** A weld shall be acceptable by visual inspection if the inspection shows the following:

a. There are no crater cracks, other surface cracks or arc strikes in or adjacent to the welded joints.

b. Maximum permissible undercut is 0.4 mm ( $^{1}/_{64}$  in.) in depth for vertical butt joints, vertically oriented permanent attachments, attachment welds for nozzles, manholes, flush-type openings, and the inside shell-to-bottom welds. For horizontal butt joints, horizontally oriented permanent attachments, and annular-ring butt joints, the maximum permissible undercut is 0.8 mm ( $^{1}/_{32}$  in.) in depth.

c. The frequency of surface porosity in the weld does not exceed one cluster (one or more pores) in any 100 mm (4 in.) of length, and the diameter of each cluster does not exceed 2.5 mm ( $\frac{3}{32}$  in.).

d. The reinforcement of the welds on all butt joints on each side of the plate shall not exceed the following thicknesses:

| Plate Thickness                                | Maximum Reinforcement Thickness<br>mm (in.) |                   |  |
|------------------------------------------------|---------------------------------------------|-------------------|--|
| mm (in.)                                       | Vertical Joints                             | Horizontal Joints |  |
| ≤ 13 ( <sup>1</sup> / <sub>2</sub> )           | 2.5 ( <sup>3</sup> / <sub>32</sub> )        | 3 (1/8)           |  |
| > 13 ( <sup>1</sup> / <sub>2</sub> ) to 25 (1) | 3 (1/8)                                     | 5 (3/16)          |  |
| > 25 (1)                                       | 5 ( <sup>3</sup> / <sub>16</sub> )          | 6 (1/4)           |  |

The reinforcement need not be removed except to the extent that it exceeds the maximum acceptable thickness or unless its removal is required by 8.1.3.4 for radiographic examination.

07

**8.5.3** A weld that fails to meet the criteria given in 8.5.1 shall be reworked before hydrostatic testing as follows:

a. Any defects shall be removed by mechanical means or thermal gouging processes. Arc strikes discovered in or adjacent to welded joints shall be repaired by grinding and rewelding as required. Arc strikes repaired by welding shall be ground flush with the plate.

b. Rewelding is required if the resulting thickness is less than the minimum required for design or hydrostatic test conditions. All defects in areas thicker than the minimum shall be feathered to at least a 4:1 taper.

c. The repair weld shall be visually examined for defects.

Notes:

- 1. Vertical spot radiograph in accordance with 8.1.2.2, Item a: one in the first 3 m (10 ft) and one in each 30 m (100 ft) thereafter, 25% of which shall be at intersections.
- 2. Horizontal spot radiograph in accordance with 8.1.2.3: one in the first 3 m (10 ft) and one in each 60 m (200 ft) thereafter.
- 3. Vertical spot radiograph in each vertical seam in the lowest course (see 8.1.2.2, Item b). Spot radiographs that satisfy the requirements of Note 1 for the lowest course may be used to satisfy this requirement.
- 4. Spot radiographs of all intersections over 10 mm  $(^{3}/_{8}$  in.) (see 8.1.2.2, Item b).
- 5. Spot radiograph of bottom of each vertical seam in lowest shell course over 10 mm  $(^{3}/_{8}$  in.) (see 8.1.2.2, Item b).
- 6. Complete radiograph of each vertical seam over 25 mm (1 in.). The complete radiograph may include the spot radiographs of the intersections if the film has a minimum width of 100 mm (4 in.) (see 8.1.2.2, Item c).

## 8.6 VACUUM TESTING

**8.6.1** Vacuum testing is performed using a testing box approximately 150 mm (6 in.) wide by 750 mm (30 in.) long with a clear window in the top, which provides proper visibility to view the area under inspection. During testing, illumination shall be adequate for proper evaluation and interpretation of the test. The open bottom shall be sealed against the tank surface by a suitable gasket. Connections, valves, lighting and gauges, as required, shall be provided. A soap film solution or commercial leak detection solution, applicable to the conditions, shall be used.

**8.6.2** Vacuum testing shall be performed in accordance with a written procedure prepared by the Manufacturer of the tank. The procedure shall require:

- a. Performing a visual examination of the bottom and welds prior to performing the vacuum-box test;
- b. Verifying the condition of the vacuum box and its gasket seals;
- c. Verifying that there is no quick bubble or spitting response to large leaks; and

d. Applying the film solution to a dry area, such that the area is thoroughly wetted and a minimum generation of application bubbles occurs.

8.6.3 A partial vacuum of 21 kPa (3 lbf/in.<sup>2</sup>, 6 in. Hg) to 35 kPa (5 lbf/in.<sup>2</sup>, 10 in Hg) gauge shall be used for the test. If specified by the Purchaser, a second partial vacuum test of 56 kPa (8 lbf/in.<sup>2</sup>, 16 in. Hg) to 70 kPa (10 lbf/in.<sup>2</sup>, 20 in. Hg) shall be performed for the detection of very small leaks.

**8.6.4** The Manufacturer shall determine that each vacuum-box operator meets the following requirements:

a. Has vision (with correction, if necessary) to be able to read a Jaeger Type 2 standard chart at a distance of not less than 300 mm (12 in.). Operators shall be checked annually to ensure that they meet this requirement; and

b. Is competent in the technique of the vacuum-box testing, including performing the examination and interpreting and evaluating the results; however, where the examination method consists of more than one operation, the operator performing only a portion of the test need only be qualified for that portion the operator performs.

8.6.5 The vacuum-box test shall have at least 50 mm (2 in.) overlap of previously viewed surface on each application.

**8.6.6** The metal surface temperature limits shall be between 4°C (40°F) and 52°C (125°F), unless the film solution is proven to work at temperatures outside these limits, either by testing or Manufacturer's recommendations.

**8.6.7** A minimum light intensity of 1000 Lux (100 fc) at the point of examination is required during the application of the examination and evaluation for leaks.

**8.6.8** The vacuum shall be maintained for the greater of either at least 5 seconds or the time required to view the area under test.

**8.6.9** The presence of a through-thickness leak indicated by continuous formation or growth of a bubble(s) or foam, produced by air passing through the thickness, is unacceptable. The presence of a large opening leak, indicated by a quick bursting bubble or spitting response at the initial setting of the vacuum box is unacceptable. Leaks shall be repaired and retested.

- **8.6.10** A record or report of the test including a statement addressing temperature and light intensity shall be completed and furnished to the Purchaser upon request.
- **8.6.11** As an alternate to vacuum-box testing, a suitable tracer gas and compatible detector can be used to test the integrity of welded bottom joints for their entire length. Where tracer gas testing is employed as an alternate to vacuum-box testing, it shall meet the following requirements:

a. Tracer gas testing shall be performed in accordance with a written procedure which has been reviewed and approved by the Purchaser and which shall address as a minimum: the type of equipment used, surface cleanliness, type of tracer gas, test pressure, soil permeability, soil moisture content, satisfactory verification of the extent of tracer gas permeation, and the method or technique to be used including scanning rate and probe standoff distance.

b. The technique shall be capable of detecting leakage of  $1 \times 10^{-4}$  Pa m<sup>3</sup>/<sub>s</sub> ( $1 \times 10^{-3}$  std cm<sup>3</sup>/<sub>s</sub>) or smaller

c. The test system parameters (detector, gas, and system pressure, i.e., level of pressure under bottom) shall be calibrated by placing the appropriate calibrated capillary leak, which will leak at a rate consistent with (b) above, in a temporary or permanent fitting in the tank bottom away from the tracer gas pressurizing point. Alternatively, by agreement between the Purchaser and the Manufacturer, the calibrated leak may be placed in a separate fitting pressurized in accordance with the system parameters.

d. While testing for leaks in the welded bottom joints, system parameters shall be unchanged from those used during calibration.

## SECTION 9-WELDING PROCEDURE AND WELDER QUALIFICATIONS

#### 9.1 **DEFINITIONS**

In this Standard, terms relating to welding shall be interpreted as defined in Section IX of the ASME *Code*. Additional terms are defined in 9.1.1 and 9.1.2.

**9.1.1** An angle joint is a joint between two members that intersect at an angle between 0 degrees (a butt joint) and 90 degrees (a corner joint).

**9.1.2** Porosity refers to gas pockets or voids in metal.

#### 9.2 QUALIFICATION OF WELDING PROCEDURES

#### 9.2.1 General Requirements

9.2.1.1 The erection Manufacturer and the fabrication Manufacturer if other than the erection Manufacturer, shall prepare welding procedure specifications and shall perform tests documented by procedure qualification records to support the specifications, as required by Section IX of the ASME *Code* and any additional provisions of this Standard. If the Manufacturer is part of an organization that has, to the Purchaser's satisfaction, established effective operational control of the qualification of welding procedures and of welder performance for two or more companies of different names, then separate welding procedure qualifications are not required, provided all other requirements of 9.2, 9.3, and Section IX of the ASME *Code* are met. Welding procedures for ladder and platform assemblies, handrails, stairways, and other miscellaneous assemblies, but not their attachments to the tank, shall comply with either AWS D1.1, AWS D1.6, or Section IX of the ASME *Code*, including the use of standard WPSs.

**9.2.1.2** The welding procedures used shall produce weldments with the mechanical properties required by the design.

**9.2.1.3** Material specifications listed in Section 4 of this Standard but not included in Table QW-422 of Section IX of the ASME *Code* shall be considered as P1 material with group numbers assigned as follows according to the minimum tensile strength specified:

- b. Equal to or greater than 485 MPa (70 ksi) but less than 550 MPa (80 ksi)—Group 2.
- c. Equal to or greater than 550 MPa (80 ksi)—Group 3.

Separate welding procedures and performance qualifications shall be conducted for A 841M/A 841 material.

**9.2.1.4** Welding variables (including supplementary essential variables when impact tests are required by 9.2.2), as defined by QW-250 of Section IX of the ASME *Code*, shall be used to determine the welding procedure specifications and the procedure qualification records to be instituted. In addition, when impact tests of the heat-affected zone are required, the heat-treated condition of the base material shall be a supplementary essential variable. Plates produced by the controlled-rolled process are not to be considered as having received any heat treatment. If a protective coating has been applied to weld edge preparations, the coating shall be included as an essential variable of the welding procedure specification, as required by 7.2.1.9.

#### 9.2.2 Impact Tests

**9.2.2.1** Impact tests for the qualification of welding procedures shall comply with the applicable provisions of 4.2.8 and shall be made at or below the design metal temperature.

**9.2.2.2** When impact testing of a material is required by 4.2.8, 4.2.9, or 4.5.5, impact tests of the heat-affected zone shall be made for all machine, automatic, and semiautomatic welding procedures.

**9.2.2.3** For all materials to be used at a design metal temperature below 10°C (50°F), the qualification of the welding procedure for vertical joints shall include impact tests of the weld metal. If vertical joints are to be made by a machine, automatic, or semiautomatic process, impact tests of the heat-affected zone shall also be made.

**9.2.2.4** When the design metal temperature is below  $-7^{\circ}$ C (20°F), impact tests of the weld metal shall be made for all procedures used for welding the components listed in 4.2.9.1, for welding attachments to these components, and for fabricating shell nozzles and manholes from pipe and forgings listed in 4.5.

11

a. Less than 485 MPa (70 ksi)-Group 1.

**9.2.2.5** Impact tests shall show minimum values for acceptance in accordance with 4.2.8.3 and the following:

a. For P1, Group 1, materials-20 J (15 ft-lbf), average of three specimens.

b. For P1, Group 2, materials-27 J (20 ft-lbf), average of three specimens.

c. For P1, Group 3, materials—34 J (25 ft-lbf), average of three specimens.

For shell plates thicker than 40 mm ( $1^{1}/_{2}$  in.), these values shall be increased by 7 J (5 ft-lbf) for each 13 mm ( $1^{1}/_{2}$  in.) over 40 mm ( $1^{1}/_{2}$  in.). Interpolation is permitted.

**9.2.2.6** Weld-metal impact specimens shall be taken across the weld with one face substantially parallel to and within 1.5 mm  $(^{1}/_{16} \text{ in.})$  of the surface of the material. The notch shall be cut normal to the original material surface and with the weld metal entirely within the fracture zone.

**9.2.2.7** Heat-affected-zone impact specimens shall be taken across the weld and as near the surface of the material as is practicable. Each specimen shall be etched to locate the heat-affected zone, and the notch shall be cut approximately normal to the original material surface and with as much heat-affected-zone material as possible included in the fracture zone.

**9.2.2.8** Production welding shall conform to the qualified welding procedure, but production-weld test plates need not be made.

#### 9.3 QUALIFICATION OF WELDERS

**9.3.1** The erection Manufacturer and the fabrication Manufacturer, if other than the erection Manufacturer, shall conduct tests for all welders assigned to manual and semiautomatic welding and all welding operators assigned to machine and automatic welding to demonstrate the welders' and welding operators' ability to make acceptable welds. Tests conducted by one Manufacturer shall not qualify a welder or welding operator to do work for another Manufacturer.

**9.3.2** The welders and welding operators who weld pressure parts and join nonpressure parts, such as all permanent and temporary clips and lugs, to pressure parts shall be qualified in accordance with Section IX of the ASME *Code*.

**9.3.3** The records of the tests for qualifying welders and welding operators shall include the following:

a. Each welder or welding operator shall be assigned an identifying number, letter, or symbol by the fabrication or erection Manufacturer.

b. The fabrication or erection Manufacturer shall maintain a record of the welders or welding operators employed that shows the date and results of the tests for each welder or operator and the identifying mark assigned to each welder or operator. This record shall be certified by the fabrication or erection Manufacturer and shall be accessible to the inspector.

#### 9.4 IDENTIFICATION OF WELDED JOINTS

The welder or welding operator's identification mark shall be hand- or machine-stamped adjacent to and at intervals not exceeding 1 m (3 ft) along the completed welds. In lieu of stamping, a record may be kept that identifies the welder or welding operator employed for each welded joint; these records shall be accessible to the inspector. Roof plate welds and flange-to-nozzle-neck welds do not require welder identification.

## SECTION 10—MARKING

#### **10.1 NAMEPLATES**

**10.1.1** A tank made in accordance with this Standard shall be identified by a nameplate similar to that shown in Figure 10-1. The nameplate shall indicate, by means of letters and numerals not less than 4 mm  $(^{5}/_{32}$  in.) high, the following information:

- a. API Standard 650.
- b. The applicable appendix to API Standard 650.
- c. The year the tank was completed.
- d. The edition and the addendum number of API Standard 650.
- e. The nominal diameter and nominal height, in meters (ft and in.).
- f. The maximum capacity (see 5.2.6.2), in m<sup>3</sup> (42-gallon barrels).
- g. The design liquid level (see 5.6.3.2), in meters (ft and in.).
  - h. The design specific gravity of the liquid.

i. The design pressure, which shall be shown as "atmospheric" unless Appendix F or Appendix V applies. If Appendix V applies, design pressure shall be shown as a negative number. If both Appendices F and V apply, the positive and negative pressures shall be separated by a forward slash and shall be followed by consistent units of measurement.

- j. The design metal temperature as described in 3.4 in °C (°F).
- k. The maximum design temperature, in °C (°F), which shall not exceed 93°C (200°F) except in cases where Appendix M, S, X, or AL applies.

1. The name of the fabrication Manufacturer if other than the erection Manufacturer. The Manufacturer's serial number or contract number shall be from the erection Manufacturer.

m. The material specification number for each shell course.

| APPENDIX                  |   | YEAR COMPLETED       |  |
|---------------------------|---|----------------------|--|
| EDITION                   |   | ADDENDUM NO.         |  |
| NOMINAL DIAMETER          |   | NOMINAL HEIGHT       |  |
| MAXIMUM CAPACITY          |   | DESIGN LIQUID LEVEL  |  |
| DESIGN SPECIFIC GRAVITY   |   | DESIGN METAL TEMP.   |  |
| DESIGN PRESSURE           |   | MAXIMUM DESIGN TEMP. |  |
| MANUFACTURER'S SERIAL NO. |   | STRESS RELIEF        |  |
| PRESS. COMBINATION FACTOR | 2 | PURCHASER'S TANK NO. |  |
| FABRICATED BY             |   |                      |  |
| ERECTED BY                |   |                      |  |
| SHELL COURSE              |   | MATERIAL             |  |
|                           |   |                      |  |

 Note: At the Purchaser's request or at the erection Manufacturer's discretion, additional pertinent information may be shown on the nameplate, and the size of the nameplate may be increased proportionately.

Figure 10-1—Manufacturer's Nameplate

09

08

09

11

n. When thermal stress-relief is performed to shell openings (nozzles, manholes, flush-type connections, and flush-type cleanout fittings) in accordance with the requirements of 5.7.4, or when applied to an entire tank, the following markings shall be used.

1. Use "SR1" when only flush-type cleanout fittings and flush-type shell connections have been thermally stress-relieved.

2. Use "SR2" when thermal stress-relief has been performed on flush-type cleanout fittings, flush-type shell connections and all shell openings NPS 12 and greater in size in shell plates (or insert plates) of Groups I through IIIA.

3. Use "SR3" when thermal stress-relief has been performed on flush-type cleanout fittings, flush-type shell connections and all shell openings greater than NPS 2 in size in shell plates (or insert plates) of Groups IV through VI.

4. Use "SR4" when thermal stress-relief has been performed on all flush-type cleanout fittings, flush-type shell connections and all shell openings.

5. Use "SR5" when the completed tank, including all shell openings and attachments, has been thermally stress-relieved as a special requirement by the Purchaser.

6. Use "NONE" when thermal stress-relief has not been performed on any tank appurtenances.

o. The Purchaser's tank number.

**10.1.2** The nameplate shall be attached to the tank shell adjacent to a manhole or to a manhole reinforcing plate immediately above a manhole. A nameplate that is placed directly on the shell plate or reinforcing plate shall be attached by continuous welding or brazing all around the nameplate. A nameplate that is riveted or otherwise permanently attached to an auxiliary plate of ferrous material shall be attached to the tank shell plate or reinforcing plate by continuous welding. The nameplate shall be of corrosion-resistant metal.

**10.1.3** When a tank is fabricated and erected by a single organization, that organization's name shall appear on the nameplate as both fabricator and erector.

**10.1.4** When a tank is fabricated by one organization and erected by another, the names of both organizations shall appear on the nameplate, or separate nameplates shall be applied by each.

### 10.2 DIVISION OF RESPONSIBILITY

Unless otherwise agreed upon, when a tank is fabricated by one Manufacturer and erected by another, the erection Manufacturer shall be considered as having the primary responsibility. The erection Manufacturer shall make certain that the materials used in the fabrication of the components and in the construction of the tank are in accordance with all applicable requirements.

### 10.3 CERTIFICATION

The Manufacturer shall certify to the Purchaser, by a letter such as that shown in Figure 10-2, that the tank has been constructed in accordance with the applicable requirements of this Standard. An as-built data sheet in accordance with Appendix L shall be attached to the certification letter.

Note: At the Purchaser's request or at the erection Manufacturer's discretion, additional pertinent information may be shown on the nameplate, and the size of the nameplate may be increased proportionately.

10-2

|                                      | NUFACTURER'S CERTIFICATION FOR<br>TANK BUILT TO API STANDARD 650                |    |
|--------------------------------------|---------------------------------------------------------------------------------|----|
| То                                   | (name and address of Purchaser)                                                 |    |
|                                      |                                                                                 |    |
|                                      | tructed for you at(location)                                                    |    |
|                                      | (location)                                                                      |    |
| and described as follows:            | (serial or contract number, diameter, height, capacity, floating or fixed roof) |    |
| meets all applicable requirements o  | API Standard 650, Edition,Addendum, Appendix                                    | x  |
| , dated                              | , including the requirements for design, materials, fabrication, and erection   | 1. |
| The tank is further described on the | attached as-built data sheet dated                                              |    |
|                                      | Manufacturer                                                                    |    |
|                                      | Authorized Representative                                                       |    |
|                                      | Date                                                                            |    |

Figure 10-2-Manufacturer's Certification Letter

## APPENDIX A-OPTIONAL DESIGN BASIS FOR SMALL TANKS

### A.1 Scope

• A.1.1 This appendix provides requirements for field-erected tanks of relatively small capacity in which the stressed components have a nominal thickness of no more than 13 mm (1/2 in.). The stressed components include the shell and reinforcing plates, shell reinforcing plates for flush-type cleanout fittings and flush-type shell connections, and bottom plates that are welded to the shell. The nominal thickness limit of 13 mm (1/2 in.) does not apply to:

07

08

- 1. bottom plates not welded to the shell,
- 2. the bottom reinforcing plate of flush-type cleanouts and flush-type shell connections,
- 3. flanges and cover plates of flush-type cleanouts,
- 4. flush-type shell connection necks attached to shell and flanges and cover plates of flush-type shell connections,
- 5. nozzle and manhole necks, their flanges and cover plates,
- 6. anchor bolt chair components and shell compression ring.
- A.1.2 This appendix is applicable only when specified by the Purchaser and is limited to design metal temperatures above  $-30^{\circ}C(-20^{\circ}F)$  (above  $-40^{\circ}C[-40^{\circ}F]$  when killed, fine-grain material is used).

**A.1.3** This appendix is applicable to any of the Section 4 materials, although the single allowable stress does not provide any advantage to higher strength steels.

**A.1.4** This appendix states only the requirements that differ from the basic rules in this Standard. When differing requirements are not stated, the basic rules must be followed; however, the overturning effect of a wind load should be considered.

**A.1.5** Typical sizes, capacities, and shell-plate thicknesses are listed in Tables A-1a through A-4b for a design in accordance 08 with A.4 (joint efficiency = 0.85; specific gravity = 1.0; and corrosion allowance = 0).

### A.2 Materials

**A.2.1** Shell-plate materials shall not be more than 13 mm (1/2 in.) thick, as stated in A.1.1.

**A.2.2** For stressed components, the Group-I and Group-II materials listed in Tables 4-3a and 4-3b may be used at a design metal temperature of  $-30^{\circ}$ C ( $-20^{\circ}$ F) or warmer but need not conform to the toughness requirements of 4.2.9, Figure 4-1, and 9.2.2. Group-III and Group-IIIA materials may be used at a design metal temperature of  $-40^{\circ}$ C ( $-40^{\circ}$ F) or warmer and shall conform to impact requirements of 9.2.2.

**A.2.3** Material used for shell nozzle and manhole necks and flanges shall conform to 4.5, 4.6, and Tables 4-3a and 4-3b but need not conform to the toughness requirements of 4.2.9, 4.5.5, and Figure 4-1.

**A.2.4** Bottom reinforcing plates in flush-type cleanouts and flush-type shell connections, and flush-type fitting necks attached to shell shall conform to toughness requirements of 4.2.9 and Figure 4-1 at design metal temperature.

### A.3 Design

A.3.1 The maximum tensile stress before the joint efficiency factor is applied shall be 145 MPa (21,000 lbf/in.<sup>2</sup>).

**A.3.2** Stresses shall be computed on the assumption that the tank is filled with water (specific gravity = 1.0) or with the liquid to be stored if it is heavier than water.

**A.3.3** The tension in each ring shall be computed 300 mm (12 in.) above the centerline of the lower horizontal joint of the course in question. When these stresses are computed, the tank diameter shall be taken as the nominal diameter of the bottom course.

• **A.3.4** The joint efficiency factor shall be 0.85 with the spot radiography required by A.5.3. By agreement between the Purchaser and the Manufacturer, the spot radiography may be omitted, and a joint efficiency factor of 0.70 shall be used.

API STANDARD 650

|                  |                                |          | · · · · · · · · · · · · · · · · · · · | for Tanks w | vith 1800-m  | m Courses     | 3             |               | ,                                                                                                              |             |
|------------------|--------------------------------|----------|---------------------------------------|-------------|--------------|---------------|---------------|---------------|----------------------------------------------------------------------------------------------------------------|-------------|
| Column 1         | Column 2                       | Column 3 | Column 4                              | Column 5    | Column 6     | Column 7      | Column 8      | Column 9      | Column 10                                                                                                      | Column 11   |
| Tank<br>Diameter | Capacity<br>per m of<br>Height |          |                                       | Tank Heig   | ht (m) / Num | ber of Course | es in Complet | ed Tank       |                                                                                                                |             |
| m                | Height m <sup>3</sup>          | 3.6/2    | 5.4/3                                 | 7.2 / 4     | 9/5          | 10.8 / 6      | 12.6 / 7      | 14.4 / 8      | 16.2 / 9                                                                                                       | 18 / 10     |
| 3                | 7.07                           | 25       | 38                                    | 51          | 64           | 76            |               |               |                                                                                                                |             |
| 4.5              | 15.9                           | 57       | 86                                    | 115         | 143          | 172           |               |               |                                                                                                                |             |
| 6                | 28.3                           | 102      | 153                                   | 204         | 254          | 305           | 356           | 407           |                                                                                                                |             |
| 7.5              | 44.2                           | 159      | 239                                   | 318         | 398          | 477           | 557           | 636           | 716                                                                                                            | 795         |
| 9                | 63.6                           | 229      | 344                                   | 458         | 573          | 687           | 802           | 916           | 1,031                                                                                                          | 1,145       |
|                  |                                |          |                                       |             |              |               |               |               |                                                                                                                |             |
| 10.5             | 86.6                           | 312      | 468                                   | 623         | 779          | 935           | 1,091         | 1,247         | 1,403                                                                                                          | 1,559       |
| 12               | 113                            | 407      | 611                                   | 814         | 1,018        | 1,221         | 1,425         | 1,629         | 1,832                                                                                                          | 2,036       |
| 13.5             | 143                            | 515      | 773                                   | 1,031       | 1,288        | 1,546         | 1,804         | 2,061         | 2,319                                                                                                          | 2,576       |
| 15               | 177                            | 636      | 954                                   | 1,272       | 1,590        | 1,909         | 2,227         | 2,545         | 2,863                                                                                                          | 3,181       |
| 18               | 254                            | 916      | 1,374                                 | 1,832       | 2,290        | 2,748         | 3,206         | 3,664         | 4,122                                                                                                          | 4,580       |
|                  |                                |          |                                       |             |              |               |               |               |                                                                                                                | D = 18      |
| 21               | 346                            | 1,247    | 1,870                                 | 2,494       | 3,117        | 3,741         | 4,364         | 4,988         | 5,089                                                                                                          | _           |
| 24               | 452                            | 1,629    | 2,443                                 | 3,257       | 4,072        | 4,886         | 5,700         | 5,474         | D = 20                                                                                                         |             |
| 27               | 573                            | 2,061    | 3,092                                 | 4,122       | 5,153        | 6,184         | 6,690         | <i>D</i> = 22 | And a second |             |
| 30               | 707                            | 2,545    | 3,817                                 | 5,089       | 6,362        | 7,634         | <i>D</i> = 26 |               | —                                                                                                              |             |
| 36               | 1,018                          | 3,664    | 5,497                                 | 7,329       | 9,161        | D = 30        |               |               |                                                                                                                | August 1000 |
|                  |                                |          |                                       |             | D = 36       |               |               |               |                                                                                                                |             |
| 42               | 1,385                          | 4,988    | 7,481                                 | 9,975       |              |               |               | _             | _                                                                                                              |             |
| 48               | 1,810                          | 6,514    | 9,772                                 | 11,966      |              |               |               |               |                                                                                                                |             |
| 54               | 2,290                          | 8,245    | 12,367                                | D = 46      |              |               |               | _             |                                                                                                                |             |
| 60               | 2,827                          | 10,179   | 15,268                                |             | —            |               |               |               |                                                                                                                | —           |
| 66               | 3,421                          | 12,316   | 16,303                                |             |              | ·             |               |               |                                                                                                                |             |
|                  |                                |          | <i>D</i> = 62                         |             |              |               |               |               |                                                                                                                |             |

Table A-1a-(SI) Typical Sizes and Corresponding Nominal Capacities (m<sup>3</sup>)

Note: The nominal capacities given in this table were calculated using the following formula:

In SI units:

 $C = 0.785 D^2 H$ 

where

07

 $C = \text{capacity of tank, in m}^3,$  D = diameter of tank, in m (see A.4.1), H = height of tank, in m (see A.4.1).

The capacities and diameters in italics (Columns 4 - 11) are the maximums for the tank heights given in the column heads, based on a maximum permissible shell-plate thickness of 13 mm, a maximum allowable design stress of 145 MPa, a joint efficiency of 0.85, and no corrosion allowance (see A.4.1).

A-2

| Column 1         | Column 2                        | Column 3 | Column 4 | Column 5  | Column 6       | Column 7      | Column 8      | Column 9 | Column 10 | Column 11 |
|------------------|---------------------------------|----------|----------|-----------|----------------|---------------|---------------|----------|-----------|-----------|
| Tank<br>Diameter | Capacity<br>per ft of<br>Height |          |          | Tank Heig | ght (ft) / Num | ber of Course | s in Complete | ed Tank  |           |           |
| ft               | barrels                         | 12 / 2   | 18/3     | 24 / 4    | 30 / 5         | 36/6          | 42 / 7        | 48 / 8   | 54 / 9    | 60 / 10   |
| 10               | 14.0                            | 170      | 250      | 335       | 420            | 505           |               |          |           |           |
| 15               | 31.5                            | 380      | 565      | 755       | 945            | 1,130         | -             |          |           | _         |
| 20               | 56.0                            | 670      | 1,010    | 1,340     | 1,680          | 2,010         | 2,350         | 2,690    | —         |           |
| 25               | 87.4                            | 1,050    | 1,570    | 2,100     | 2,620          | 3,150         | 3,670         | 4,200    | 4,720     | 5,250     |
| 30               | 126                             | 1,510    | 2,270    | 3,020     | 3,780          | 4,530         | 5,290         | 6,040    | 6,800     | 7,550     |
| 35               | 171                             | 2,060    | 3,080    | 4,110     | 5,140          | 6,170         | 7,200         | 8,230    | 9,250     | 10,280    |
| 40               | 224                             | 2,690    | 4,030    | 5,370     | 6,710          | 8,060         | 9,400         | 10,740   | 12,100    | 13,430    |
| 45               | 283                             | 3,400    | 5,100    | 6,800     | 8,500          | 10,200        | 11,900        | 13,600   | 15,300    | 17,000    |
| 50               | 350                             | 4,200    | 6,300    | 8,400     | 10,500         | 12,600        | 14,700        | 16,800   | 18,900    | 21,000    |
| 60               | 504                             | 6,040    | 9,060    | 12,100    | 15,110         | 18,130        | 21,150        | 24,190   | 37,220    | 28,260    |
|                  |                                 |          |          |           |                | ž             |               |          | ,         | D = 58    |
| 70               | 685                             | 8,230    | 12,340   | 16,450    | 20,580         | 24,700        | 28,800        | 32,930   | 30,970    |           |
| 80               | 895                             | 10,740   | 16,120   | 21,500    | 26,880         | 32,260        | 37,600        | 35,810   | D = 64    |           |
| 90               | 1,133                           | 13,600   | 20,400   | 27,220    | 34,030         | 40,820        | 40,510        | D = 73   | _         |           |
| 100              | 1,399                           | 16,800   | 25,200   | 33,600    | 42,000         | 48,400        | D = 83        |          |           |           |
| 120              | 2,014                           | 24,190   | 36,290   | 48,380    | 58,480         | D = 98        | _             |          |           |           |
|                  |                                 |          |          |           | D = 118        |               |               |          |           |           |
| 140              | 2,742                           | 32,930   | 49,350   | 65,860    | —              |               |               |          |           |           |
| 160              | 3,581                           | 43,000   | 64,510   | 74,600    | 11221000       |               |               |          | -         |           |
| 180              | 4,532                           | 54,430   | 81,650   | D = 149   |                |               | ******        |          |           |           |
| 200              | 5,595                           | 67,200   | 100,800  |           |                |               |               |          |           |           |
| 220              | 6,770                           | 81,310   | 102,830  |           |                |               |               |          |           |           |
|                  |                                 |          | D = 202  |           |                |               |               |          |           |           |

### Table A-1b-(USC) Typical Sizes and Corresponding Nominal Capacities (barrels) for Tanks with 72-in. Courses

Note: The nominal capacities given in this table were calculated using the following formula:

In US Customary units:

 $C = 0.14D^2H,$ 

where C = capacity of tank, in 42-gal barrels, D = diameter of tank, in ft (see A.4.1), H = height of tank, in ft (see A.4.1).

The capacities and diameters in italics (Columns 4 - 11) are the maximums for the tank heights given in the column heads, based on a maximum permissible shell-plate thickness of 1/2 in., a maximum allowable design stress of 21,000 lbf/in.<sup>2</sup>, a joint efficiency of 0.85, and no corrosion allowance (see A.4.1).

A-3

| Table A-2a—(SI) Shell-Plate Thicknesses (mm) for Typical Sizes of Tanks with 1800-mm Cour | Table A-2a- | (SI) S | hell-Plate | Thicknesses ( | (mm) fo | or Typic | cal Sizes of | Tanks with | 1800-mm Cours | es |
|-------------------------------------------------------------------------------------------|-------------|--------|------------|---------------|---------|----------|--------------|------------|---------------|----|
|-------------------------------------------------------------------------------------------|-------------|--------|------------|---------------|---------|----------|--------------|------------|---------------|----|

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 Column 8 Column 9 Column 10 Column 11 Column 12

| Tank            |         |       | Tanl  | (m) (m  | / Number | of Courses ir | 1 Completed | l Tank   |          |         | Maximum<br>Allowable<br>Height for |
|-----------------|---------|-------|-------|---------|----------|---------------|-------------|----------|----------|---------|------------------------------------|
| Diameter -<br>m | 1.8 / 1 | 3.6/2 | 5.4/3 | 7.2 / 4 | 9/5      | 10.8 / 6      | 12.6 / 7    | 14.4 / 8 | 16.2 / 9 | 18 / 10 | – Diameter <sup>a</sup><br>m       |
| 3               | 5.0     | 5.0   | 5.0   | 5.0     | 5.0      | 5.0           |             |          |          |         |                                    |
| 4.5             | 5.0     | 5.0   | 5.0   | 5.0     | 5.0      | 5.0           |             |          |          |         |                                    |
| 6               | 5.0     | 5.0   | 5.0   | 5.0     | 5.0      | 5.0           | 5.0         | 5.0      |          |         |                                    |
| 7.5             | 5.0     | 5.0   | 5.0   | 5.0     | 5.0      | 5.0           | 5.0         | 5.0      | 5.0      | 5.3     |                                    |
| 9               | 5.0     | 5.0   | 5.0   | 5.0     | 5.0      | 5.0           | 5.0         | 5.0      | 5.7      | 6.3     |                                    |
| 10.5            | 5.0     | 5.0   | 5.0   | 5.0     | 5.0      | 5.0           | 5.1         | 5.9      | 6.6      | 7.4     |                                    |
| 12              | 5.0     | 5.0   | 5.0   | 5.0     | 5.0      | 5.0           | 5.9         | 6.7      | 7.6      | 8.4     |                                    |
| 13.5            | 5.0     | 5.0   | 5.0   | 5.0     | 5.0      | 5.6           | 6.6         | 7.6      | 8.5      | 9.5     |                                    |
| 15              | 6.0     | 6.0   | 6.0   | 6.0     | 6.0      | 6.3           | 7.3         | 8.4      | 9.5      | 10.6    |                                    |
| 18              | 6.0     | 6.0   | 6.0   | 6.0     | 6.2      | 7.5           | 8.8         | 10.1     | 11.4     | —       | 17.8                               |
| 21              | 6.0     | 6.0   | 6.0   | 6.0     | 7.3      | 8.8           | 10.3        | 11.8     |          |         | 15.3                               |
| 24              | 6.0     | 6.0   | 6.0   | 6.6     | 8.3      | 10.0          | 11.7        |          |          |         | 13.4                               |
| 27              | 6.0     | 6.0   | 6.0   | 7.4     | 9.3      | 11.3          | —           |          | —        |         | 11.9                               |
| 30              | 6.0     | 6.0   | 6.0   | 8.2     | 10.4     | 12.5          | —           |          |          |         | 10.8                               |
| 36              | 8.0     | 8.0   | 8.0   | 9.9     | 12.5     |               |             |          |          |         | 9.0                                |
| 42              | 8.0     | 8.0   | 8.5   | 11.5    |          |               |             |          |          | _       | 7.8                                |
| 48              | 8.0     | 8.0   | 9.7   |         |          |               |             |          |          |         | 6.9                                |
| 54              | 8.0     | 8.0   | 10.9  |         |          |               |             |          |          |         | 6.1                                |
| 60              | 8.0     | 8.0   | 12.2  |         |          | -             |             |          |          |         | 5.5                                |
| 66              | 10.0    | 10.0  |       |         |          |               |             |          |          |         | 5.1                                |

08 Based on a maximum permissible shell-plate thickness of 13 mm, a maximum allowable design stress of 145 MPa, a joint efficiency of 0.85, and no corrosion allowance.

Note: The plate thicknesses shown in this table are based on a maximum allowable design stress of 145 MPa, a joint efficiency of 0.85, and no corrosion allowance (see A.4.1).

Table A-2b-(USC) Shell-Plate Thicknesses (in.) for Typical Sizes of Tanks with 72-in. Courses

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 Column 8 Column 9 Column 10 Column 11 Column 12

| Tank             |                              |                              | Tan                          | k Height (ft)                | ) / Number (                 | of Courses i                 | n Completed                  | 1 Tank                       |      |         | Maximum<br>Allowable<br>Height for |
|------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------|---------|------------------------------------|
| Diameter –<br>ft | 6 / 1                        | 12/2                         | 18/3                         | 24 / 4                       | 30 / 5                       | 36/6                         | 42 / 7                       | 48 / 8                       | 54/9 | 60 / 10 | – Diameter <sup>a</sup><br>ft      |
| 10               | <sup>3</sup> / <sub>16</sub> |                              |                              |      |         |                                    |
| 15               | <sup>3</sup> / <sub>16</sub> |                              |                              |      |         |                                    |
| 20               | <sup>3</sup> / <sub>16</sub> | —    |         |                                    |
| 25               | <sup>3</sup> / <sub>16</sub> | 0.20 | 0.22    |                                    |
| 30               | <sup>3</sup> / <sub>16</sub> | 0.21                         | 0.24 | 0.26    |                                    |
| 35               | <sup>3</sup> / <sub>16</sub> | 0.21                         | 0.24                         | 0.27 | 0.30    |                                    |
| 40               | <sup>3</sup> / <sub>16</sub> | 0.21                         | 0.24                         | 0.28                         | 0.31 | 0.35    |                                    |
| 45               | <sup>3</sup> / <sub>16</sub> | 0.23                         | 0.27                         | 0.31                         | 0.35 | 0.38    |                                    |
| 50               | <sup>1</sup> / <sub>4</sub>  | 1/4                          | <sup>1</sup> / <sub>4</sub>  | $^{1}/_{4}$                  | 1/4                          | 0.26                         | 0.30                         | 0.35                         | 0.39 | 0.43    |                                    |
| 60               | 1/4                          | 1/4                          | 1/4                          | 1/4                          | 0.26                         | 0.31                         | 0.36                         | 0.41                         | 0.47 |         | 58.2                               |
| 70               | 1/4                          | 1/ <sub>4</sub>              | 1/4                          | 1/4                          | 0.30                         | 0.36                         | 0.42                         | 0.48                         |      |         | 50.0                               |
| 80               | 1/4                          | 1/4                          | $1/_{4}$                     | 0.27                         | 0.34                         | 0.41                         | 0.48                         |                              |      |         | 43.9                               |
| 90               | <sup>1</sup> / <sub>4</sub>  | 1/4                          | $^{1}/_{4}$                  | 0.31                         | 0.38                         | 0.46                         |                              |                              |      | —       | 39.1                               |
| 100              | 1/4                          | 1/4                          | <sup>1</sup> / <sub>4</sub>  | 0.34                         | 0.43                         |                              | —                            | —                            |      |         | 35.3                               |
| 120              | <sup>5</sup> / <sub>16</sub> | <sup>5</sup> / <sub>16</sub> | <sup>5</sup> / <sub>16</sub> | 0.41                         |                              |                              |                              |                              | —    |         | 29.6                               |
| 140              | <sup>5</sup> / <sub>16</sub> | <sup>5</sup> / <sub>16</sub> | 0.35                         | 0.47                         |                              | _                            |                              |                              |      |         | 25.5                               |
| 160              | <sup>5</sup> / <sub>16</sub> | <sup>5</sup> / <sub>16</sub> | 0.40                         |                              |                              |                              |                              |                              |      |         | 22.5                               |
| 180              | <sup>5</sup> / <sub>16</sub> | <sup>5</sup> / <sub>16</sub> | 0.45                         |                              |                              |                              |                              |                              |      |         | 20.1                               |
| 200              | <sup>5</sup> / <sub>16</sub> | 0.32                         | 0.50                         |                              |                              |                              | <u></u>                      | —                            |      |         | 18.2                               |
| 220              | <sup>3</sup> / <sub>8</sub>  | 3/8                          |                              |                              |                              |                              |                              | —                            |      |         | 16.6                               |

<sup>a</sup>Based on a maximum permissible shell-plate thickness of 1/2 in., a maximum allowable design stress of 21,000 lbf/in.<sup>2</sup>, a joint efficiency of 0.85, and no corrosion allowance.

Note: The plate thicknesses shown in this table are based on a maximum allowable design stress of 21,000 lbf/in.<sup>2</sup>, a joint efficiency of 0.85, and no corrosion allowance (see A.4.1).

<sup>08</sup> 

**API STANDARD 650** 

|               |                                 |          | for lank | s with 2400-m    | nm Courses.     |                 |          |                                                                                                                 |
|---------------|---------------------------------|----------|----------|------------------|-----------------|-----------------|----------|-----------------------------------------------------------------------------------------------------------------|
| Column 1      | Column 2                        | Column 3 | Column 4 | Column 5         | Column 6        | Column 7        | Column 8 | Column 9                                                                                                        |
| Tank          | Capacity per                    |          | Tan      | k Height (m) / N | umber of Course | es in Completed | Fank     |                                                                                                                 |
| Diameter<br>m | m of Height -<br>m <sup>3</sup> | 4.8 / 2  | 7.2/3    | 9.6 / 4          | 12 / 5          | 14.4 / 6        | 16.8 / 7 | 19.2 / 8                                                                                                        |
| 3             | 7.07                            | 34       | 51       | 68               |                 |                 |          |                                                                                                                 |
| 4.5           | 15.9                            | 76       | 115      | 153              | 191             |                 |          |                                                                                                                 |
| 6             | 28.3                            | 136      | 204      | 272              | 339             | 407             |          |                                                                                                                 |
| 7.5           | 44.2                            | 212      | 318      | 424              | 530             | 636             | 742      | 848                                                                                                             |
| 9             | 63.6                            | 305      | 458      | 610              | 763             | 916             | 1,069    | 1,221                                                                                                           |
| 10.5          | 86.6                            | 416      | 623      | 831              | 1,039           | 1,247           | 1,455    | 1,663                                                                                                           |
| 12            | 113                             | 543      | 814      | 1085             | 1,357           | 1,629           | 1,900    | 2,171                                                                                                           |
| 13.5          | 143                             | 687      | 1,031    | 1373             | 1,718           | 2,061           | 2,405    | 2,748                                                                                                           |
| 15            | 177                             | 848      | 1,272    | 1696             | 2,121           | 2,545           | 2,969    | 3,393                                                                                                           |
| 18            | 254                             | 1,221    | 1,832    | 2442             | 3,054           | 3,664           | 4,275    | 4,358                                                                                                           |
|               |                                 |          |          |                  |                 |                 |          | D = 17                                                                                                          |
| 21            | 346                             | 1,663    | 2,494    | 3323             | 4,156           | 4,988           | 4,763    |                                                                                                                 |
| 24            | 452                             | 2,171    | 3,257    | 4341             | 5,429           | 5,474           | D = 19   |                                                                                                                 |
| 27            | 573                             | 2,748    | 4,122    | 5494             | 6,871           | <i>D</i> = 22   |          |                                                                                                                 |
| 30            | 707                             | 3,393    | 5,089    | 6782             | <i>D</i> = 27   |                 |          |                                                                                                                 |
| 36            | 1,018                           | 4,886    | 7,329    | 8712             |                 |                 | _        |                                                                                                                 |
|               |                                 |          |          | <i>D</i> = 34    |                 |                 |          |                                                                                                                 |
| 42            | 1,385                           | 6,650    | 9,975    |                  |                 |                 |          |                                                                                                                 |
| 48            | 1,810                           | 8,686    | 11,966   |                  |                 |                 |          | water and the second |
| 54            | 2,290                           | 10,993   | D = 46   |                  |                 |                 |          |                                                                                                                 |
| 60            | 2,827                           | 13,572   |          |                  | —               |                 |          |                                                                                                                 |
| 66            | 3,421                           | 16,422   |          |                  | -               |                 |          |                                                                                                                 |

#### Table A-3a-(SI) Typical Sizes and Corresponding Nominal Capacities (m<sup>3</sup>) for Tanks with 2400-mm Courses.

Note: The nominal capacities given in this table were calculated using the following formula:

In SI units:

 $C = 0.785D^2H$ 

where

 $C = \text{capacity of tank, in m}^3,$  D = diameter of tank, in m (see A.4.1), H = height of tank, in m (see A.4.1).

The capacities and diameters in italics (Columns 4 - 9) are the maximums for the tank heights given in the column heads, based on a maximum permissible shell-plate thickness of 13 mm, a maximum allowable design stress of 145 MPa, a joint efficiency of 0.85, and no corrosion allowance (see A.4.1).

08

#### A-6

| Column 1       | Column 2                  | Column 3 | Column 4       | Column 5           | Column 6        | Column 7       | Column 8      | Column 9 |
|----------------|---------------------------|----------|----------------|--------------------|-----------------|----------------|---------------|----------|
| Tank           | Capacity per              |          | Tan            | k Height (ft) / Ni | umber of Course | s in Completed | Fank          |          |
| Diameter<br>ft | ft of Height -<br>barrels | 16 / 2   | 24/3           | 32 / 4             | 40 / 5          | 48 / 6         | 56 / 7        | 64 / 8   |
| 10             | 14.0                      | 225      | 335            | 450                |                 |                |               |          |
| 15             | 31.5                      | 505      | 755            | 1,010              | 1,260           |                |               |          |
| 20             | 56.0                      | 900      | 1,340          | 1,790              | 2,240           | 2,690          | —             |          |
| 25             | 87.4                      | 1,400    | 2,100          | 2,800              | 3,500           | 4,200          | 4,900         | 5,600    |
| 30             | 126                       | 2,020    | 3,020          | 4,030              | 5,040           | 6,040          | 7,050         | 8,060    |
| 35             | 171                       | 2,740    | 4,110          | 5,480              | 6,850           | 8,230          | 9,600         | 10,980   |
| 40             | 224                       | 3,580    | 5,370          | 7,160              | 8,950           | 10,740         | 12,540        | 14,340   |
| 45             | 283                       | 4,530    | 6,800          | 9,060              | 11,340          | 13,600         | 15,880        | 18,140   |
| 50             | 350                       | 5,600    | 8,400          | 11,200             | 14,000          | 16,800         | 19,600        | 22,400   |
| 60             | 504                       | 8,060    | 12,100         | 16,130             | 20,160          | 24,190         | 28,220        | 26,130   |
|                |                           |          |                |                    |                 |                |               | D = 54   |
| 70             | 685                       | 10,960   | 16,450         | 21,950             | 27,440          | 32,930         | 30,140        |          |
| 80             | 895                       | 14,320   | 21,500         | 28,670             | 35,840          | 35,810         | <i>D</i> = 62 |          |
| 90             | 1,133                     | 18,130   | 27,220         | 36,290             | 45,360          | <i>D</i> = 73  |               |          |
| 100            | 1,399                     | 22,380   | 33,600         | 44,800             | D = 88          |                |               |          |
| 120            | 2,014                     | 32,250   | 48,380         | 54,200             | <u> </u>        |                |               | _        |
|                |                           |          |                | D = 110            |                 |                |               |          |
| 140            | 2,742                     | 43,900   | 65,860         |                    |                 |                |               | _        |
| 160            | 3,581                     | 57,340   | 74,600         |                    |                 |                |               |          |
| 180            | 4,532                     | 72,570   | <i>D</i> = 149 |                    |                 |                |               |          |
| 200            | 5,595                     | 89,600   |                |                    |                 |                |               |          |
| 220            | 6,770                     | 108,410  |                |                    |                 |                |               |          |

#### Table A-3b-(USC) Typical Sizes and Corresponding Nominal Capacities (barrels) for Tanks with 96-in. Courses

Note: The nominal capacities given in this table were calculated using the following formula:

#### In US Customary units:

 $C = 0.14 D^2 H,$ 

where

C = capacity of tank, in 42-gal barrels, D = diameter of tank, in ft (see A.4.1),

H = height of tank, in ft (see A.4.1).

The capacities and diameters in italics (Columns 4 - 9) are the maximums for the tank heights given in the column heads, based on a maximum permissible shell-plate thickness of  $1/_2$  in., a maximum allowable design stress of 21,000 lbf/in.<sup>2</sup>, a joint efficiency of 0.85, and no corrosion allowance (see A.4.1).

A-7

API STANDARD 650

| with 2400-mm Courses         |          |          |                |               |                |               |          |          |                                          |  |  |
|------------------------------|----------|----------|----------------|---------------|----------------|---------------|----------|----------|------------------------------------------|--|--|
| Column 1                     | Column 2 | Column 3 | Column 4       | Column 5      | Column 6       | Column 7      | Column 8 | Column 9 | Column 10                                |  |  |
|                              |          |          | Tank Height (1 | m) / Number o | f Courses in C | ompleted Tank | :        |          | Maximum<br>- Allowable                   |  |  |
| Tank Height<br>Diameter<br>m | 2.4 / 1  | 4.8 / 2  | 7.2/3          | 9.6/4         | 12 / 5         | 14.4 / 6      | 16.8 / 7 | 19.2 / 8 | Height for<br>Diameter <sup>a</sup><br>m |  |  |
| 3                            | 5.0      | 5.0      | 5.0            | 5.0           |                |               |          |          |                                          |  |  |
| 4.5                          | 5.0      | 5.0      | 5.0            | 5.0           | 5.0            |               |          |          |                                          |  |  |
| 6                            | 5.0      | 5.0      | 5.0            | 5.0           | 5.0            | 5.0           |          |          |                                          |  |  |
| 7.5                          | 5.0      | 5.0      | 5.0            | 5.0           | 5.0            | 5.0           | 5.0      | 5.0      |                                          |  |  |
| 9                            | 5.0      | 5.0      | 5.0            | 5.0           | 5.0            | 5.0           | 5.0      | 5.0      | —                                        |  |  |
| 10.5                         | 5.0      | 5.0      | 5.0            | 5.0           | 5.0            | 5.0           | 5.1      | 5.9      |                                          |  |  |
| 12                           | 5.0      | 5.0      | 5.0            | 5.0           | 5.0            | 5.0           | 5.9      | 6.7      |                                          |  |  |
| 13.5                         | 5.0      | 5.0      | 5.0            | 5.0           | 5.0            | 5.6           | 6.6      | 7.6      |                                          |  |  |
| 15                           | 6.0      | 6.0      | 6.0            | 6.0           | 6.0            | 6.3           | 7.3      | 8.4      |                                          |  |  |
| 18                           | 6.0      | 6.0      | 6.0            | 6.0           | 6.2            | 7.5           | 8.8      | 10.1     | 17.8                                     |  |  |
| 21                           | 6.0      | 6.0      | 6.0            | 6.0           | 7.3            | 8.8           | 10.3     | 11.8     | 15.3                                     |  |  |
| 24                           | 6.0      | 6.0      | 6.0            | 6.6           | 8.3            | 10.0          | 11.7     |          | 13.4                                     |  |  |
| 27                           | 6.0      | 6.0      | 6.0            | 7.4           | 9.3            | 11.3          |          |          | 11.9                                     |  |  |
| 30                           | 6.0      | 6.0      | 6.1            | 8.2           | 10.4           | 12.5          |          | _        | 10.8                                     |  |  |
| 36                           | 8.0      | 8.0      | 8.0            | 9.9           | 12.5           |               |          |          | 9.0                                      |  |  |
| 42                           | 8.0      | 8.0      | 8.5            | 11.5          | _              |               | _        |          | 7.8                                      |  |  |
| 48                           | 8.0      | 8.0      | 9.7            |               |                |               |          |          | 6.9                                      |  |  |
| 54                           | 8.0      | 8.0      | 10.9           |               |                |               |          |          | 6.1                                      |  |  |
| 60                           | 8.0      | 8.0      | 12.2           |               |                |               |          |          | 5.5                                      |  |  |
| 66                           | 10.0     | 10.0     |                |               |                |               |          |          | 5.1                                      |  |  |

Table A-4a-(SI) Shell-Plate Thicknesses (mm) for Typical Sizes of Tanks

<sup>08</sup> <sup>a</sup>Based on a maximum permissible shell-plate thickness of 13 mm, a maximum allowable design stress of 145 MPa, a joint efficiency of 0.85, and no corrosion allowance. Note: The plate thicknesses shown in this table are based on a maximum allowable design stress of 145 MPa, a joint efficiency of 0.85, and no corrosion allowance (see A.4.1).

A-8

|                         |                              |                              |                              |                                           | 1. 0001000                   |                              |          |          |                                  |
|-------------------------|------------------------------|------------------------------|------------------------------|-------------------------------------------|------------------------------|------------------------------|----------|----------|----------------------------------|
| Column 1                | Column 2                     | Column 3                     | Column 4                     | Column 5                                  | Column 6                     | Column 7                     | Column 8 | Column 9 | Column 10                        |
|                         |                              |                              | Tank Height (                | (ft) / Number of                          | f Courses in C               | Completed Tank               |          |          | Maximum<br>- Allowable           |
| Tank Height<br>Diameter |                              |                              |                              |                                           |                              |                              |          |          | Height for Diameter <sup>a</sup> |
| ft                      | 8 / 1                        | 16 / 2                       | 24/3                         | 32 / 4                                    | 40 / 5                       | 48 / 6                       | 56 / 7   | 64 / 8   | ft                               |
| 10                      | <sup>3</sup> / <sub>16</sub> | 3/16                         | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub>              | _                            |                              |          |          |                                  |
| 15                      | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub>              | <sup>3</sup> / <sub>16</sub> |                              |          |          |                                  |
| 20                      | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub>              | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub> |          |          |                                  |
| 25                      | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub>              | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub> | 0.20     | 0.23     |                                  |
| 30                      | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub>              | <sup>3</sup> / <sub>16</sub> | 0.21                         | 0.24     | 0.28     |                                  |
| 35                      | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub>              | 0.20                         | 0.24                         | 0.28     | 0.33     |                                  |
| 40                      | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub> | <sup>∞</sup> <sup>3</sup> / <sub>16</sub> | 0.23                         | 0.28                         | 0.32     | 0.37     |                                  |
| 45                      | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub> | <sup>3</sup> / <sub>16</sub> | 0.21                                      | 0.26                         | 0.31                         | 0.36     | 0.42     |                                  |
| 50                      | <sup>1</sup> / <sub>4</sub>  | <sup>1</sup> / <sub>4</sub>  | 1/ <sub>4</sub>              | 0.25                                      | 0.29                         | 0.35                         | 0.40     | 0.46     |                                  |
| 60                      | 1/4                          | <sup>1</sup> / <sub>4</sub>  | 1/4                          | 0.27                                      | 0.34                         | 0.41                         | 0.48     |          | 58.2                             |
| 70                      | 1/4                          | <sup>1</sup> / <sub>4</sub>  | <sup>1</sup> / <sub>4</sub>  | 0.32                                      | 0.40                         | 0.48                         |          | _        | 50.0                             |
| 80                      | <sup>1</sup> / <sub>4</sub>  | <sup>1</sup> / <sub>4</sub>  | 0.27                         | 0.37                                      | 0.46                         |                              |          | _        | 43.9                             |
| 90                      | <sup>1</sup> / <sub>4</sub>  | <sup>1</sup> / <sub>4</sub>  | 0.31                         | 0.41                                      |                              |                              |          |          | 39.1                             |
| 100                     | <sup>1</sup> / <sub>4</sub>  | <sup>1</sup> / <sub>4</sub>  | 0.34                         | 0.46                                      | _                            | _                            | —        |          | 35.3                             |
| 120                     | <sup>5</sup> / <sub>16</sub> | <sup>5</sup> / <sub>16</sub> | 0.41                         |                                           |                              |                              |          |          | 29.6                             |
| 140                     | <sup>5</sup> / <sub>16</sub> | <sup>5</sup> / <sub>16</sub> | 0.47                         |                                           |                              |                              |          |          | 25.5                             |
| 160                     | <sup>5</sup> / <sub>16</sub> | 0.35                         |                              |                                           |                              |                              |          |          | 22.5                             |
| 180                     | <sup>5</sup> / <sub>16</sub> | 0.40                         |                              |                                           |                              |                              |          |          | 20.1                             |
| 200                     | <sup>5</sup> / <sub>16</sub> | 0.44                         |                              |                                           |                              |                              |          |          | 18.2                             |
| 220                     | 3/8                          | 0.48                         |                              |                                           |                              |                              |          |          | 16.6                             |
|                         |                              |                              |                              |                                           |                              |                              |          |          |                                  |

### Table A-4b-(USC) Shell-Plate Thicknesses (in.) for Typical Sizes of Tanks with 96-in. Courses

<sup>a</sup>Based on a maximum permissible shell-plate thickness of 1/2 in., a maximum allowable design stress of 21,000 lbf/in.<sup>2</sup>, a joint efficiency of 0.85, and no corrosion allowance. Note: The plate thicknesses shown in this table are based on a maximum allowable design stress of 21,000 lbf/in.<sup>2</sup>, a joint efficiency of 0.85, and no corrosion allowance (see A.4.1).

### A.4 Thickness of Shell Plates

11 **A.4.1** The nominal thicknesses of shell plates shall not be less than that computed from the stress on the vertical joints, using the following formula:

In SI units:

$$t = \frac{4.9D(H-0.3)G}{(E)(145)} + CA$$

where

11 t = nominal thickness, in mm (see 5.6.1.1),

D = nominal diameter of the tank, in m (see 5.6.1.1, Note 1),

H = design liquid level, in m (see 5.6.3.2),

• G = specific gravity of the liquid to be stored, as specified by the Purchaser. The specific gravity shall not be less than 1.0,

E = joint efficiency, which is either 0.85 or 0.70 (see A.3.4),

CA = corrosion allowance, in mm, as specified by the Purchaser (see 5.3.2).

In US Customary units:

$$t = \frac{2.6D(H-1)G}{(E)(21,000)} + CA$$

where

11 t = nominal thickness (in.) (see 5.6.1.1),

D = nominal diameter of the tank (ft) (see 5.6.1.1, Note 1),

H = design liquid level (ft) (see 5.6.3.2),

• G = specific gravity of the liquid to be stored, as specified by the Purchaser. The specific gravity shall not be less than 1.0,

E = joint efficiency, which is either 0.85 or 0.70 (see A.3.4),

• CA = corrosion allowance (in.), as specified by the Purchaser (see 5.3.2).

A.4.2 The nominal thickness of shell plates (including shell extensions for floating roofs) shall not be less than that listed in
 5.6.1.1. The nominal thickness of shell plates refers to the tank shell as constructed. The nominal thicknesses given in 5.6.1.1 are based on erection requirements.

### A.5 Tank Joints

**A.5.1** Vertical and horizontal joints in the shell, bottom joints, shell-to-bottom joints, wind-girder joints, and roof and top-angle joints shall conform to 5.1.5.

**A.5.2** The requirements of 5.7.3 for the spacing of welds do not apply except for the requirement that the spacing between the toes of welds around a connection shall not be less than  $2^{1}/_{2}$  times the shell thickness at the connection (i.e., dimension A, B, C, or E in Figure 5-6 shall not be less than  $2^{1}/_{2}$  times the shell thickness).

**A.5.3** When radiographic inspection is required (joint efficiency = 0.85), the spot radiographs of vertical joints shall conform to 8.1.2.2, Item a only, excluding the 10 mm  $(^{3}/_{8}$  in.) shell-thickness limitation in Item a and excluding the additional random spot radiograph required by Item a. The spot radiographs of horizontal joints shall conform to 8.1.2.3.

### A.6 Intermediate Wind Girders

Calculations for and installation of intermediate wind girders are not required unless specified by the Purchaser.

#### A.7 Shell Manholes and Nozzles

**A.7.1** Except for other designs and shapes permitted by 5.7.1.2, shell manholes shall conform to 5.7.5, Figures 5-7A and 5-7B, and Tables 5-3a through 5-5b.

**A.7.2** Shell nozzles and flanges shall conform to 5.7.6; Figures 5-7B, 5-8, and 5-10; and Tables 5-6a through 5-8b. For regular type reinforced nozzles, minimum elevation dimension  $H_N$  shown in column 8 of Table 5-6 may be reduced when specified by the Purchaser provided the minimum weld spacing of A.5.2 is maintained.

**A.7.3** The radiographic requirements of 5.7.3.4 do not apply.

### A.8 Flush-Type Cleanout Fittings

**A.8.1** The details and dimensions of flush-type cleanout fittings shall conform to 5.7.7, Figures 5-12 and 5-13, and Tables 5-9a through 5-11b.

• **A.8.2** The provisions for stress relief specified in 5.7.4 and 5.7.7.3 are not required unless they are specified by the Purchaser or unless any plate in the unit has a thickness greater than 16 mm (<sup>5</sup>/<sub>8</sub> in.).

### A.9 Flush-Type Shell Connections

A.9.1 The details and dimensions of flush-type shell connections shall conform to 5.7.8, Figure 5-14, and Tables 5-12a and 5-12b. 108

• **A.9.2** The provisions for stress relief specified in 5.7.4 and 5.7.8.3 are not required unless they are specified by the Purchaser or unless any plate in the assembly has a thickness greater than  $16 \text{ mm} (\frac{5}{8} \text{ in.})$ .

A-11

08

### APPENDIX AL—ALUMINUM STORAGE TANKS

### AL.1 Scope

### AL.1.1 CONSTRUCTION

This appendix provides material, design, fabrication, erection, and testing requirements for vertical, cylindrical, aboveground, closed- and open top, welded aluminum storage tanks constructed of the alloys specified in AL.4.

#### AL.1.2 REQUIREMENTS

This appendix states only the requirements that differ from the rules in this standard. For requirements not stated, follow the rules of this standard.

#### AL.1.3 TEMPERATURE

This appendix applies for maximum design temperatures up to 200°C (400°F). Alloys 5083, 5086, 5154, 5183, 5254, 5356, 5456, 5556, and 5654 shall not be used if the maximum design temperature exceeds  $65^{\circ}$ C ( $150^{\circ}$ F). Ambient temperature tanks shall have a maximum design temperature of 40°C ( $100^{\circ}$ F).

For maximum design temperatures above 93°C (200°F) designers shall consider thermal stresses and fatigue.

#### AL.1.4 UNITS

Use consistent units in this appendix's equations. For example, in an equation, use inches for all lengths (stress in lb/in.<sup>2</sup> and tank diameter in inches) or use mm for all lengths (stress in N/mm<sup>2</sup> and tank diameter in mm).

08

#### AL.1.5 NOMENCLATURE

Variables used in this appendix have the following meanings:

- A = area of the roof-to-shell joint determined using Figure F-2
- $A_1 = 0.3 \text{ m} (1 \text{ ft})$
- CA = corrosion allowance, as specified by the Purchaser (see 5.3.2)
- D = nominal diameter of the tank (see 5.6.1.1)
- E = compressive modulus of elasticity (see Table AL-8a and Table AL-8b)
- $E_i$  = joint efficiency, 1.0, 0.85, or 0.70 (see Table AL-2)
- $F_{ty}$  = minimum tensile yield strength
- G = design specific gravity of the stored liquid
- H = design liquid level (see 5.6.3.2)
- $p_h$  = greater of Appendix R load combinations (e)(1) and (e)(2)
- $S_d$  = allowable stress for the design condition (see Table AL-6a and Table AL-6b)
- $S_t$  = allowable stress for hydrostatic test condition (see Table AL-6a and Table Al-6b)
- $t_b$  = nominal thickness of the annular bottom plate
- $t_h$  = nominal roof thickness
- $t_s$  = nominal shell thickness
- W = weight of the shell and any framing (but not roof plates) supported by the shell
- $\gamma_w$  = density of water
- $\theta$  = roof slope to horizontal at the shell
- $\rho_h$  = density of the roof plate

### AL.2 References

The following references are cited in this appendix. The latest edition shall be used.

AAI <sup>21</sup>

Aluminum Design Manual (ADM)

ASTM<sup>22</sup>

- A 193 Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High Temperature or High Pressure Service and Other Special Purpose Applications
- A 194 Standard Specification for Carbon and Alloy Steel Nuts for Bolts for High Pressure or High Temperature Service, or Both
- B 209 Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate
- B 209M Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate [Metric]
- B 210 Standard Specification for Aluminum and Aluminum-Alloy Drawn Seamless Tubes
- B 210M Standard Specification for Aluminum and Aluminum-Alloy Drawn Seamless Tubes [Metric]
- B 211 Standard Specification for Aluminum and Aluminum-Alloy Bar, Rod, and Wire
- B 211M Standard Specification for Aluminum and Aluminum-Alloy Bar, Rod, and Wire [Metric]
- B 221 Standard Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes
- B 221M Standard Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes [Metric]
- B 241/B 241M Standard Specification for Aluminum and Aluminum-Alloy Seamless Pipe and Seamless Extruded Tube
- B 247 Standard Specification for Aluminum and Aluminum-Alloy Die Forgings, Hand Forgings, and Rolled Ring Forgings
   B 247M Standard Specification for Aluminum and Aluminum-Alloy Die Forgings, Hand Forgings, and Rolled Ring Forgings
   [Metric]
- B 308/B 308M Standard Specification for Aluminum-Alloy 6061-T6 Standard Structural Profiles
- B 345/B 345M Standard Specification for Aluminum and Aluminum-Alloy Seamless Pipe and Seamless Extruded Tube for Gas and Oil Transmission and Distribution Piping Systems
- B 928 Standard Specification for High Magnesium Aluminum-Alloy Sheet and Plate for Marine Service and Similar Environments
- F 467 Standard Specification for Nonferrous Nuts for General Use
- F 467M Standard Specification for Nonferrous Nuts for General Use [Metric]
- F 468 Standard Specification for Nonferrous Bolts, Hex Cap Screws, and Studs for General Use
- F 468M Standard Specification for Nonferrous Bolts, Hex Cap Screws, and Studs for General Use [Metric]
- F 593 Standard Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs
- F 594 Standard Specification for Stainless Steel Nuts

AWS<sup>23</sup>

A5.10/A5.10M Specification for Bare Aluminum and Aluminum-Alloy Welding Electrodes and Rods D1.2 Structural Welding Code—Aluminum

## AL.3 Definitions

For the purposes of this appendix, the following definition applies:

AL3.1 aluminum: Aluminum and aluminum alloys.

### AL.4 Materials

### AL.4.1 GENERAL

Alloys shall be selected from Table AL-1. Dimensional tolerances shall meet the material specifications given in AL.4. Impact testing and toughness verification are not required.

<sup>22</sup>ASTM International, 100 Barr Harbor Drive, West Conshohocken, Pennsylvania 19428, www.astm.org.

В

<sup>&</sup>lt;sup>21</sup>Aluminum Association Inc., 1525 Wilson Blvd, Suite 600, Arlington, Virginia 22209, www.aluminum.org

<sup>&</sup>lt;sup>23</sup>American Welding Society, 550 N.W. LeJeune Road, Miami, Florida 33126, www.aws.org.

| Sheet an    | d Plate | Rod, Bar, | and Shapes | Pipe and    | l Tube | Fo    | rgings     |
|-------------|---------|-----------|------------|-------------|--------|-------|------------|
| Alloy       | Temper  | Alloy     | Temper     | Alloy       | Temper | Alloy | Temper     |
| 1060        | all     | 1060      | all        | 1060        | all    |       |            |
| 1100        | all     | 1100      | all        | 1100        | all    | 1100  | H112       |
| 3003        | all     | 2024      | T4         | 3003        | all    | 3003  | H112       |
| Alclad 3003 |         |           |            | Alclad 3003 | all    |       |            |
| 3004        | all     | 3004      | all        |             |        |       |            |
| Alclad 3004 | all     |           |            |             |        |       |            |
| 5050        | all     |           |            | 5050        | all    |       |            |
| 5052        | all     | 5052      | all        | 5052        | all    |       |            |
| 5083        | all     | 5083      | all        | 5083        | all    | 5083  | H111, H113 |
| 5086        | all     | 5086      | all        | 5086        | all    |       |            |
| 5154        | all     | 5154      | all        | 5154        | all    |       |            |
| 5254        | all     |           |            | 5254        | all    |       |            |
| 5454        | all     | 5454      | all        | 5454        | all    |       |            |
| 5456        | all     | 5456      | all        | 5456        | all    |       |            |
| 5652        | all     |           |            | 5652        | all    |       |            |
| 6061        | (1)     | 6061      | T6         | 6061        | T4, T6 | 6061  | T6         |
| Alclad 6061 | (1)     | 6063      | T5, T6     | 6063        | T5, T6 |       |            |

## Table AL-1—Material Specifications

(1) Includes T4, T42, T451, T6, T62, T651 tempers.

## Table AL-2—Joint Efficiency

| Joint Efficient<br>( <i>E</i> ) | y<br>Shell Radiography Requirements                                                                             |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 1.00                            | Full radiography required for all vertical joints. Horizontal joints per 0.85 joint efficiency requirements.    |
| 0.85                            | Radiography per 8.1.2 except additional random spot radiography in first course vertical seams is not required. |
| 0.70                            | No shell radiography required.                                                                                  |

API STANDARD 650

## Table AL-3a—(SI) Minimum Mechanical Properties

|                   | Ν             | /linimum Ter | nsile Yield Stren | igths $F_{ty}$ (MPa) | at Temperatu | res (°C)         |     |     |
|-------------------|---------------|--------------|-------------------|----------------------|--------------|------------------|-----|-----|
| Alloy             | Temper        | 40           | 65                | 90                   | 120          | 150              | 175 | 200 |
| 1060              | all           | 17           | 17                | 17                   | 15           | 13               | 12  | 11  |
| 1100              | all           | 24           | 24                | 24                   | 23           | 22               | 19  | 17  |
| 3003              | all           | 34           | 34                | 34                   | 34           | 32               | 30  | 26  |
| Alclad 3003       | all           | 31           | 31                | 31                   | 30           | 28               | 27  | 23  |
| 3004              | all           | 59           | 59                | 59                   | 59           | 59               | 55  | 51  |
| Alclad 3004       | all           | 55           | 55                | 55                   | 55           | 55               | 50  | 46  |
| 5050              | all           | 41           | 41                | 41                   | 41           | 41               | 40  | 39  |
| 5052, 5652        | all           | 66           | 66                | 66                   | 66           | 66               | 66  | 58  |
| 5083 (1)          | all           | 124          | 123               |                      | do           | not use above 68 | 5°C |     |
| 5083 (2)          | all           | 117          | 117               |                      | do           | not use above 65 | 5°C |     |
| 5086              | all           | 97           | 96                |                      | do           | not use above 65 | 5°C |     |
| 5154, 5254        | all           | 76           | 76                |                      | do           | not use above 65 | 5°C |     |
| 5454              | all           | 93           | 83                | 83                   | 83           | 82               | 80  | 77  |
| 5456 (1)          | all           | 131          | 130               |                      | do           | not use above 65 | 5°C |     |
| 5456 (2)          | all           | 124          | 123               |                      | do           | not use above 65 | 5°C |     |
| 6061, Alclad 6061 | T4, T6 welded | 103          | 103               | 103                  | 103          | 101              | 91  | 72  |
| 6061              | T6 extrusions | 240          | 240               | 232                  | 201          | 163              | 103 | 54  |
| 6063              | T5, T6 welded | 55           | 55                | 55                   | 55           | 52               | 31  | 23  |
| 6063              | Т6            | 172          | 172               | 159                  | 137          | 111              | 61  | 36  |
| 1060              | all           | 55           | 55                |                      |              |                  |     |     |
| 1100              | all           | 76           | 76                |                      |              |                  |     |     |
| 3003              | all           | 95           | 95                |                      |              |                  |     |     |
| Alclad 3003       | all           | 90           | 90                |                      |              |                  |     |     |
| 3004              | all           | 150          | 150               |                      |              |                  |     |     |
| Alclad 3004       | all           | 145          | 145               |                      |              |                  |     |     |
| 5050              | all           | 125          | 125               |                      |              |                  |     |     |
| 5052, 5652        | all           | 175          | 175               |                      |              |                  |     |     |
| 5083 (1)          | all           | 275          | 275               |                      | do           | not use above 65 | 5°C |     |
| 5083 (2)          | all           | 270          | 270               |                      | do           | not use above 65 | 5°C |     |
| 5086              | all           | 240          | 240               |                      | do           | not use above 65 | 5°C |     |
| 5154, 5254        | all           | 205          | 205               |                      | do           | not use above 68 | 5°C |     |
| 5454              | all           | 215          | 215               |                      |              |                  |     |     |
| 5456 (1)          | all           | 290          | 290               |                      | do           | not use above 65 | 5°C |     |
| 5456 (2)          | all           | 285          | 285               |                      | do           | not use above 65 | 5°C |     |
| 6061, Alclad 6061 | T4, T6 welded | 165          | 165               |                      |              |                  |     |     |
| 6061              | T6 extrusions | 260          | 260               | 243                  | 208          | 169              | 117 | 76  |
| 6063              | T5, T6 welded | 115          | 115               |                      |              |                  |     |     |
| 6063              | Т6            | 205          | 205               | 188                  | 160          | 130              | 83  | 53  |

Notes:

(1) up to 40 mm thick.
(2) > 40 mm and ≤ 75mm thick.
(3) strengths are for the –O temper for all alloys except 6061, Alclad 6061, and 6063 which are as noted.

| A 11 -            |               |     | e Yield Strengt |                     |      |                | 250  | 400  |  |  |
|-------------------|---------------|-----|-----------------|---------------------|------|----------------|------|------|--|--|
| Alloy             | Temper        | 100 | 150             | 200                 | 250  | 300            | 350  | 400  |  |  |
| 1060              | all           | 2.5 | 2.5             | 2.4                 | 2.2  | 1.9            | 1.8  | 1.6  |  |  |
| 1100              | all           | 3.5 | 3.5             | 3.5                 | 3.4  | 3.2            | 2.8  | 2.4  |  |  |
| 3003              | all           | 5.0 | 5.0             | 5.0                 | 4.9  | 4.6            | 4.3  | 3.7  |  |  |
| Alclad 3003       | all           | 4.5 | 4.5             | 4.5 4.4 4.1 3.9 3.3 |      |                |      |      |  |  |
| 3004              | all           | 8.5 | 8.5             | 8.5 8.5 8.5 8.0 7.4 |      |                |      |      |  |  |
| Alclad 3004       | all           | 8.0 | 8.0             | 8.0                 | 8.0  | 8.0            | 7.2  | 6.7  |  |  |
| 5050              | all           | 6.0 | 6.0             | 6.0                 | 6.0  | 6.0            | 5.8  | 5.6  |  |  |
| 5052, 5652        | all           | 9.5 | 9.5             | 9.5                 | 9.5  | 9.5            | 9.5  | 8.4  |  |  |
| 5083 (1)          | all           | 18  | 17.9            |                     | do n | ot use above 1 | 50°F |      |  |  |
| 5083 (2)          | all           | 17  | 16.9            |                     | do n | ot use above 1 | 50°F |      |  |  |
| 5086              | all           | 14  | 13.9            |                     | do n | ot use above 1 | 50°F |      |  |  |
| 5154, 5254        | all           | 11  | 11              |                     | do n | ot use above 1 | 50°F |      |  |  |
| 5454              | all           | 12  | 12              | 12                  | 12   | 11.9           | 11.6 | 11.1 |  |  |
| 5456 (1)          | all           | 19  | 18.8            |                     | do n | ot use above 1 | 50°F |      |  |  |
| 5456 (2)          | all           | 18  | 17.9            |                     | do n | ot use above 1 | 50°F |      |  |  |
| 6061, Alclad 6061 | T4, T6 welded | 15  | 15              | 15                  | 15   | 14.7           | 13.2 | 10.5 |  |  |
| 6061              | T6 extrusions | 35  | 35              | 33.6                | 29.1 | 23.6           | 14.9 | 7.9  |  |  |
| 6063              | T5, T6 welded | 8   | 8               | 8                   | 8    | 7.5            | 4.5  | 3.4  |  |  |
| 6063              | T6            | 25  | 25              | 23                  | 19.8 | 16.1           | 8.9  | 5.2  |  |  |
| 1060              | all           | 8.0 | 8.0             |                     |      |                |      |      |  |  |
| 1100              | all           | 11  | 11              |                     |      |                |      |      |  |  |
| 3003              | all           | 14  | 14              |                     |      |                |      |      |  |  |
| Alclad 3003       | all           | 13  | 13              |                     |      |                |      |      |  |  |
| 3004              | all           | 22  | 22              |                     |      |                |      |      |  |  |
| Alclad 3004       | all           | 21  | 21              |                     |      |                |      |      |  |  |
| 5050              | all           | 18  | 18              |                     |      |                |      |      |  |  |
| 5052, 5652        | all           | 25  | 25              |                     |      |                |      |      |  |  |
| 5083 (1)          | all           | 40  | 40              |                     | do n | ot use above 1 | 50°F |      |  |  |
| 5083 (2)          | all           | 39  | 39              |                     | do n | ot use above 1 | 50°F |      |  |  |
| 5086              | all           | 35  | 35              |                     | do n | ot use above 1 | 50°F |      |  |  |
| 5154, 5254        | all           | 30  | 30              |                     | do n | ot use above 1 | 50°F |      |  |  |
| 5454              | all           | 31  | 31              |                     |      |                |      |      |  |  |
| 5456 (1)          | all           | 42  | 42              |                     | do n | ot use above 1 | 50°F |      |  |  |
| 5456 (2)          | all           | 41  | 41              |                     | do n | ot use above 1 | 50°F |      |  |  |
| 6061, Alclad 6061 | T4, T6 welded | 24  | 24              |                     |      |                |      |      |  |  |
| 6061              | T6 extrusions | 38  | 38              | 35.3                | 30.2 | 24.5           | 16.9 | 11.0 |  |  |
| 6063              | T5, T6 welded | 17  | 17              |                     |      |                |      |      |  |  |
| 6063              | Т6            | 30  | 30              | 27.2                | 23.2 | 18.9           | 12.0 | 7.7  |  |  |
|                   |               |     |                 |                     |      |                |      |      |  |  |

### Table AL-3b—(USC) Minimum Mechanical Properties

Notes: (1) up to 1.500 in. thick. (2) > 1.500 in. thick,  $\leq$  3.000 in. thick. (3) strengths are for the -O temper for all alloys except 6061, Alclad 6061, and 6063 which are as noted.

### AL.4.2 SHEET AND PLATE

Sheet and plate shall meet ASTM B 209 or B 928. Tapered thickness plate may be used.

### AL.4.3 ROD, BAR, AND STRUCTURAL SHAPES

Rod, bar, and shapes shall meet ASTM B 211, ASTM B 221, or ASTM B 308.

### AL.4.4 PIPE AND TUBE

Pipe and tube shall meet ASTM B 210, ASTM B 241, or ASTM B 345.

### AL.4.5 FORGINGS

Forgings shall meet ASTM B 247.

### AL.4.6 FLANGES

#### AL4.6.1 Aluminum

Flanges shall meet ASTM B 247 and be 6061-T6. Flange dimensions shall meet ASME B16.5 or B16.47.

### AL4.6.2 Composite Lap Joint Flanges

For composite lap joint flanges, the aluminum stub ends shall be one of the alloys listed in Table AL-1 for sheet and plate or pipe and tube, and the steel, stainless steel, or galvanized steel flanges shall meet ASME B16.5.

### AL.4.7 BOLTING

0

#### AL4.7.1 Aluminum

Aluminum bolts shall meet ASTM F 468. Aluminum nuts shall meet ASTM F 467. Bolts and nuts of 2024 alloy shall have an anodic coating at least 0.005 mm [0.0002 in.] thick. Bolts shall not be welded. Aluminum threads tend to gall, so aluminum threaded parts shall not be used where they must be reinstalled.

### AL4.7.2 Stainless Steel

Stainless steel bolts shall meet ASTM F 593 alloy group 1 or 2, or ASTM A 193 B8. Stainless steel nuts shall meet ASTM F 594 alloy group 1 or 2 or ASTM A 194 Grade 8.

### AL4.7.3 Carbon Steel

Carbon steel bolts shall be galvanized.

### AL.4.8 WELDING ELECTRODES

Welding electrodes shall meet AWS A5.10/A5.10M and shall be chosen in accordance with AWS D1.2.

## AL.5 Design

### AL.5.1 JOINTS

Joints shall be as prescribed in 5.1.5 unless otherwise specified below.

### AL5.1.1 Bottom Joints

a. Bottom plates under the shell thicker than 8 mm (5/16 in.) shall be butt welded.

b. *Butt-Welded Bottom Joints.* The butt welds may be made from both sides or from one side and shall have full penetration and full fusion. In the latter case, a backing strip 5 mm ( $^{3}/_{16}$  in.) or thicker, of an aluminum alloy compatible with the bottom plate, shall be tacked to one of the plates, and the intersection joints of the strips shall be welded with full penetration and full fusion.

### AL5.1.2 Roof and Top Angle Joints

The moment of inertia of the top angle and contributing portion of the shell (see AL.5.5) shall equal or exceed that provided by the sizes listed below:

| Diameter (m)    | Size (mm)                                |
|-----------------|------------------------------------------|
| <i>D</i> < 11   | $65 \times 65 \times 6$                  |
| 11 < D < 18     | $65 \times 65 \times 8$                  |
| 18 < D          | $75 \times 75 \times 10$                 |
|                 |                                          |
| Diameter (ft)   | Size (in.)                               |
| D < 35          | $2^{1/2} \times 2^{1/2} \times {}^{1/4}$ |
| $35 < D \le 61$ | $2^{1/2} \times 2^{1/2} \times 5/16$     |
| 61 < D          | $3 \times 3 \times 3/8$                  |

#### AL.5.2 BOTTOMS

#### AL5.2.1 Annular Bottom Plate Width

Annular bottom plates shall have a radial width that meets the requirements of 5.5.2 except that the width must equal or exceed:

$$2t_b \sqrt{\frac{F_{ty}}{2\gamma_w GH}}$$

#### AL5.2.2 Annular Bottom Plate Thickness

The nominal thickness of annular bottom plates shall equal or exceed the requirements given in Table AL-4a and Table AL-4b.

### Table AL-4a-(SI) Annular Bottom Plate Thickness

| Nominal Thickness of    |    | Hydrostatic Test Stress in First Shell Course (MPa) |    |    |    |    |    |   |  |  |  |
|-------------------------|----|-----------------------------------------------------|----|----|----|----|----|---|--|--|--|
| First Shell Course (mm) | 14 | 28                                                  | 41 | 55 | 69 | 83 | 97 |   |  |  |  |
| <i>t</i> ≤12.7          | 6  | 6                                                   | 6  | 6  | 6  | 6  | 7  | - |  |  |  |
| $12.7 < t \le 19$       | 6  | 6                                                   | 6  | 6  | 7  | 9  | 10 |   |  |  |  |
| $19 < t \le 25$         | 6  | 6                                                   | 6  | 7  | 10 | 12 | 15 |   |  |  |  |
| $25 < t \le 32$         | 6  | 6                                                   | 7  | 10 | 13 | 16 | 19 |   |  |  |  |
| $32 < t \le 38$         | 6  | 6                                                   | 10 | 12 | 16 | 19 | 27 |   |  |  |  |
| $38 < t \le 51$         | 6  | 10                                                  | 11 | 16 | 21 | 25 | 31 |   |  |  |  |
|                         |    |                                                     |    |    |    |    |    |   |  |  |  |

#### Table AL-4b—(USC) Annular Bottom Plate Thickness

| Nominal Thickness of     |             | Hydrostatic Test Stress in First Shell Course (ksi) |                  |                 |                 |       |               |  |  |  |
|--------------------------|-------------|-----------------------------------------------------|------------------|-----------------|-----------------|-------|---------------|--|--|--|
| First Shell Course (in.) | 2.0         | 4.0                                                 | 6.0              | 8.0             | 10.0            | 12.0  | 14.0          |  |  |  |
| <i>t</i> ≤ 0.50          | 1/4         | 1/4                                                 | 1/4              | 1/4             | 1/4             | 1/4   | 9/32          |  |  |  |
| $0.50 < t \le 0.75$      | 1/4         | 1/4                                                 | 1/4              | 1/4             | 9/32            | 11/32 | 13/32         |  |  |  |
| $0.75 < t \le 1.00$      | $^{1}/_{4}$ | $^{1}/_{4}$                                         | $1/_{4}$         | 9/32            | 3/8             | 15/32 | 19/32         |  |  |  |
| $1.00 < t \le 1.25$      | 1/4         | 1/4                                                 | <sup>9</sup> /32 | 3/8             | <sup>1</sup> /2 | 5/8   | 3/4           |  |  |  |
| $1.25 < t \le 1.50$      | $1/_{4}$    | 1/4                                                 | 3/8              | 15/32           | 5/8             | 3/4   | $1 \ ^{1/16}$ |  |  |  |
| $1.50 < t \le 2.00$      | 1/4         | 3/8                                                 | 7/16             | <sup>5</sup> /8 | 13/16           | 1     | 1 7/32        |  |  |  |

08

11

#### AL.5.3 SHELLS

The nominal thickness of the shell plates shall be no less than the greatest of the calculated design shell thickness  $t_d$  including any corrosion allowance, the hydrostatic test shell thickness  $t_b$  and the thickness required by Table AL-5a and Table AL-5b:

$$t_d = \frac{\gamma_w GD(H - A_1)}{2E_j S_d} + CA$$
$$t_t = \frac{\gamma_w D(H - A_1)}{2E_j S_d}$$

Table AL-5a—(SI) Minimum Shell Thickness

 $2E_iS_t$ 

| Nominal Tank<br>Diameter<br>(m) | Nominal Plate<br>Thickness<br>(m) |
|---------------------------------|-----------------------------------|
| <i>D</i> < 6                    | 5                                 |
| $6 \le D < 36$                  | 6                                 |
| $36 \le D \le 60$               | 8                                 |
| <i>D</i> > 60                   | 10                                |

#### Table AL-5b—(USC) Minimum Shell Thickness

| Nominal Tank<br>Diameter<br>(ft) | Nominal Plate<br>Thickness<br>(in.) |
|----------------------------------|-------------------------------------|
| <i>D</i> < 20                    | 3/16                                |
| $20 \le D < 120$                 | 1/4                                 |
| $120 \le D \le 200$              | 5/16                                |
| D > 200                          | 3/8                                 |

#### AL.5.4 SHELL OPENINGS

#### AL5.4.1 Thermal Stress Relief

Thermal stress relief requirements of 5.7.4 do not apply.

#### AL5.4.2 Shell Manholes

Shell manholes shall meet 5.7.5 except the following.

a. *Cover Plate and Flange Thickness.* The cover plate and flange thickness shall comply with Figures AL-1 and AL-2. As an alternative to Figures AL-1 and AL-2, plate flanges may be designed in accordance with API 620 rules using the allowable stresses from Table AL-6a and Table AL-6b.

b. *Neck Thickness*. Where manhole neck thickness is controlled by thickness of the bolting flange (see note b of Table 5-4a and Table 5-4b), the flange thickness determined in item 1 above shall be used.

c. Weld Sizes: Fillet weld A shall comply with Table AL-9a and Table AL-9b.

#### AL5.4.3 Nozzles

Shell nozzles shall meet 5.7.6 except fillet weld A shall comply with AL-9a and Table AL-9b.

11

|                          | All                   | owable Stres                            | s (MPa) (5) S                             | d for Max | imum Desi | ign Temp | erature Not | Exceedin    | g      |       |                                  |
|--------------------------|-----------------------|-----------------------------------------|-------------------------------------------|-----------|-----------|----------|-------------|-------------|--------|-------|----------------------------------|
| Alloy                    | Temper                | Minimum<br>Yield<br>Strength<br>MPa (4) | Minimum<br>Tensile<br>Strength<br>MPa (4) | 40°C      | 65°C      | 90°      | 120°C       | 150°C       | 175°C  | 200°C | S <sub>t</sub><br>Ambient<br>(6) |
| 1060                     | all                   | 17                                      | 55                                        | 14        | 14        | 13       | 12          | 10          | 7      | 6     | 15                               |
| 1100                     | all                   | 24                                      | 76                                        | 19        | 19        | 19       | 19          | 12          | 9      | 7     | 21                               |
| 3003                     | all                   | 34                                      | 97                                        | 28        | 28        | 28       | 22          | 17          | 12     | 10    | 29                               |
| Alclad 3003              | all                   | 31                                      | 90                                        | 25        | 25        | 25       | 20          | 15          | 11     | 9     | 26                               |
| 3004                     | all                   | 59                                      | 152                                       | 47        | 47        | 47       | 47          | 40          | 26     | 16    | 50                               |
| Alclad 3004              | all                   | 55                                      | 145                                       | 44        | 44        | 44       | 44          | 40          | 26     | 16    | 47                               |
| 5050                     | all                   | 41                                      | 124                                       | 33        | 33        | 33       | 33          | 33          | 19     | 10    | 35                               |
| 5052, 5652               | all                   | 66                                      | 172                                       | 52        | 52        | 52       | 52          | 39          | 28     | 16    | 56                               |
| 5083 (1)                 | all                   | 124                                     | 276                                       | 90        | 90        |          | do not      | t use above | e 65°C |       | 91                               |
| 5083 (2)                 | all                   | 117                                     | 269                                       | 88        | 88        |          | do not      | t use above | e 65°C |       | 89                               |
| 5086                     | all                   | 97                                      | 241                                       | 77        | 77        |          | do not      | t use above | e 65°C |       | 80                               |
| 5154, 5254               | all                   | 76                                      | 207                                       | 61        | 60        |          | do not      | t use above | e 65°C |       | 64                               |
| 5454                     | all                   | 83                                      | 214                                       | 66        | 66        | 66       | 51          | 38          | 28     | 21    | 70                               |
| 5456 (1)                 | all                   | 131                                     | 290                                       | 96        | 96        |          | do not      | t use above | e 65°C |       | 96                               |
| 5456 (2)                 | all                   | 124                                     | 283                                       | 93        | 93        |          | do not      | t use above | e 65°C |       | 93                               |
| 6061, Alclad 6061<br>(3) | T4, T6,<br>T451, T651 |                                         | 165                                       | 55        | 55        | 55       | 54          | 51          | 42     | 30    | 55                               |

#### Table AL-6a-(SI) Allowable Tensile Stresses for Tank Shell (for Design and Test)

Notes:

(1) up to 40 mm thick.

 $(2) > 40 \text{ mm and} \le 80 \text{ mm thick}$ 

(2) > 40 mm and ≤ 80 mm mick
(3) Tempers T4 and T6 apply for thickness < 6 mm, T451 and T651 apply for thickness ≥ 6 mm.</li>
(4) Strengths are for the –O temper for all alloys except 6061, Alclad 6061, and 6063.
(5) The design stress shall be the lesser of <sup>2/</sup>3 of the minimum tensile strength, 0.8 of the minimum yield strength, the stress producing a secondary creep rate of 0.1% in 1000 hr, or 67% of the average stress for rupture at the end of 100,000 hr.
(6) The allowable test stress shall be the lesser of <sup>2/</sup>3 of the minimum tensile strength or 0.85 of the minimum yield strength at ambient terms.

temperature.

#### AL5.4.4 Flush Type Cleanouts

Flush-type cleanout fittings shall comply with Figures AL-1, AL-2, and AL-3.

#### AL.5.5 WIND GIRDERS

The length of the shell included in the area of wind girders shall be  $0.424\sqrt{Dt_s}$  except for unstiffened shell above top wind girders, the length shall be  $56 t_s \sqrt{F_{ty}}$ .

#### Table AL-6b-(USC) Allowable Tensile Stresses for Tank Shell (for Design and Test)

Allowable Stress (psi) (5) S<sub>d</sub> for Maximum Design Temperature Not Exceeding

| Alloy              | Temper                | Minimum<br>Yield<br>Strength<br>(psi) (4) | Minimum<br>Tensile<br>Strength<br>(psi) (4) | 100°F  | 150°F  | 200°F | 250°F  | 300°F     | 350°F | 400°F | S <sub>t</sub><br>Ambient<br>(6) |
|--------------------|-----------------------|-------------------------------------------|---------------------------------------------|--------|--------|-------|--------|-----------|-------|-------|----------------------------------|
| 1060               | all                   | 2,500                                     | 8,000                                       | 2,000  | 2,000  | 1,900 | 1.750  | 1,450     | 1,050 | 800   | 2,100                            |
| 1100               | all                   | 3,500                                     | 11,000                                      | 2,800  | 2,800  | 2,800 | 2,700  | 1,750     | 1,350 | 1,000 | 3,000                            |
| 3003               | all                   | 5,000                                     | 14,000                                      | 4,000  | 4,000  | 4,000 | 3,150  | 2,400     | 1,800 | 1,400 | 4,300                            |
| Alc 3003           | all                   | 4,500                                     | 13,000                                      | 3,600  | 3,600  | 3,600 | 2,850  | 2,150     | 1,600 | 1,250 | 3,800                            |
| 3004               | all                   | 8,500                                     | 22,000                                      | 6,800  | 6,800  | 6,800 | 6,800  | 5,750     | 3,800 | 2,350 | 7,200                            |
| Alc 3004           | all                   | 8,000                                     | 21,000                                      | 6,400  | 6,400  | 6,400 | 6,400  | 5,750     | 3,800 | 2,350 | 6,800                            |
| 5050               | all                   | 6,000                                     | 18,000                                      | 4,800  | 4,800  | 4,800 | 4,800  | 4,800     | 2,800 | 1,400 | 5,100                            |
| 5052, 5652         | all                   | 9,500                                     | 25,000                                      | 7,600  | 7,600  | 7,600 | 7,500  | 5,600     | 4,100 | 2,350 | 8,100                            |
| 5083 (1)           | all                   | 18,000                                    | 40,000                                      | 13,000 | 13,000 |       | do not | use above | 150°F |       | 13,200                           |
| 5083 (2)           | all                   | 17,000                                    | 39,000                                      | 12,800 | 12,800 |       | do not | use above | 150°F |       | 12,900                           |
| 5086               | all                   | 14,000                                    | 35,000                                      | 11,200 | 11,100 |       | do not | use above | 150°F |       | 11,600                           |
| 5154, 5254         | all                   | 11,000                                    | 30,000                                      | 8,800  | 8,700  |       | do not | use above | 150°F |       | 9,400                            |
| 5454               | all                   | 12,000                                    | 31,000                                      | 9,600  | 9,600  | 9,600 | 7,400  | 5,500     | 4,100 | 3,000 | 10,200                           |
| 5456 (1)           | all                   | 19,000                                    | 42,000                                      | 13,900 | 13,900 |       | do not | use above | 150°F |       | 13,900                           |
| 5456 (2)           | all                   | 18,000                                    | 41,000                                      | 13,500 | 13,500 |       | do not | use above | 150°F |       | 13,500                           |
| 6061, Alc 6061 (3) | T4, T6,<br>T451, T651 |                                           | 24,000                                      | 8,000  | 8,000  | 8,000 | 7,900  | 7,400     | 6,100 | 4,300 | 8,000                            |

08

Notes:

(1) up to 1.500 in. thick.

(2) > 1.500 in. and  $\leq 3.000$  in. thick.

(3) Temper T4 and T6 apply for thickness < 6 mm (0.25 in.), T451 and T651 apply for thickness  $\geq$  0.25 in.

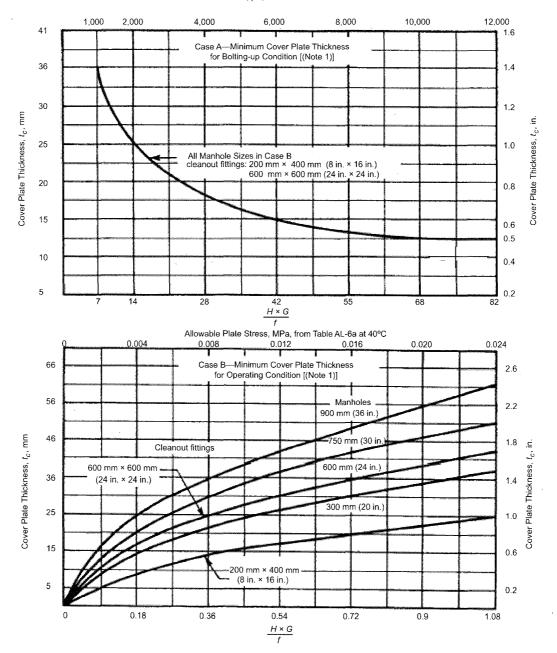
(4) Strengths are for the - O temper for all alloys except 6061, Alclad 6061, and 6063.

(5) The design stress shall be the lesser of  $\frac{2}{3}$  of the minimum tensile strength, 0.8 of the minimum yield strength, the stress producing a secondary creep rate of 0.1% in 1000 hr, or 67% of the average stress for rupture at the end of 100,000 hr. (6) The allowable test stress shall be the lesser of <sup>2/3</sup> of the minimum tensile strength or 0.85 of the minimum yield strength at ambient temperature.

## AL5.5.1 Wind Girders

The section modulus of wind girders shall equal or exceed

$$Z = \frac{pH_wD^3}{12Ec}$$


where

 $p = (1.48 \text{ kPa}) [V/(190 \text{ km/hr})]^2;$ 

 $p = (31 \text{ lb/ft}^2) [V/(120 \text{ mph})]^2;$ 

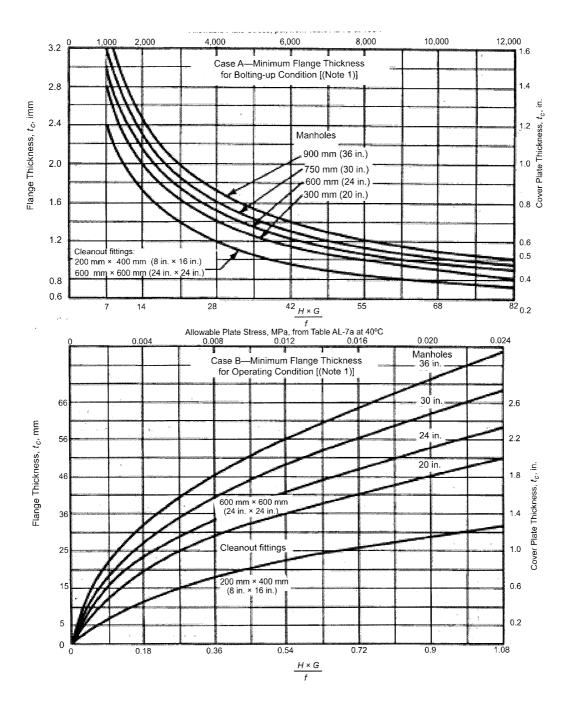
- V = 3-sec gust design wind speed [see 5.2.1(k)];
- $H_W$  = for top wind girders on tanks with no intermediate wind girder, the tank height; for tanks with intermediate wind girders, the vertical distance between the intermediate wind girder and the top angle of the shell or the top wind girder of an open-top tank;

c = lesser of the distances from the neutral axis to the extreme fibers of the wind girder.



Allowable Plate Stress, psi, from Table AL-6b at 100°F

G = specific gravity of liquid that determines the shell thickness;


H = height of design liquid level above centerline of manhole m (ft);

f = allowable tensile stress (S<sub>d</sub> or S<sub>b</sub>) from Table AL-6a and Table AL-6b at the temperature coincident with G, MPa (psi).

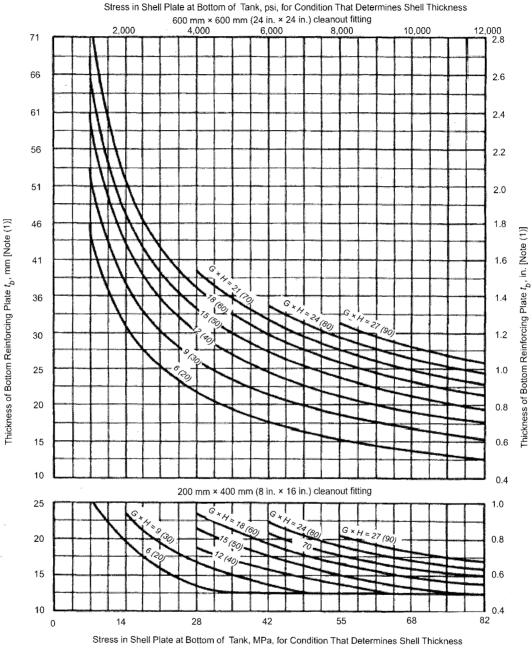
Note:

(1) the minimum cover plate thickness shall be a maximum of Case A or B values.

Figure AL-1—Cover Plate Thickness for Shell Manholes and Cleanout Fittings



G = specific gravity of liquid that determines the shell thickness;


H = height of design liquid level above centerline of manhole, m (ft);

f = allowable tensile stress ( $S_d$  or  $S_b$ ) from Table AL-6a and Table AL-6b at the temperature coincident with G, MPa (psi).

Note:

(1) the minimum cover plate thickness shall be a maximum of Case A or B values.

Figure AL-2—Flange Plate Thickness for Shell Manholes and Cleanout Fittings



G = specific gravity of liquid that determines the shell thickness;

H = design liquid level, m (ft);

#### Note:

(1) the bottom reinforcing plate shall be the same alloy and temper as the bottom shell plate.

Figure AL-3—Bottom Reinforcing Plate Thickness for Cleanout Fittings

#### AL5.5.2 Intermediate Wind Girders

The height of the unstiffened shell shall not exceed:

$$H_1 = 2400 t \sqrt{\left(\frac{1200 t}{D}\right)^3} \left(\frac{E_{MDT}}{E_{40}}\right)^3$$

where

08

11

08

- $H_1$  = vertical distance between the intermediate wind girder and the top angle of the shell or the top wind girder of an open-top tank;
- t = nominal thickness, unless otherwise specified, of the top shell course;

 $E_{MDT}$  = modulus of elasticity at the maximum design temperature;

 $E_{40}$  = modulus of elasticity at 40°C (100°F).

#### AL.5.6 ROOFS

#### AL5.6.1 Structural Members

The minimum nominal thickness of structural members shall be 4 mm (0.15 in.).

#### AL5.6.2 Frangible Roofs

Roofs required to be frangible shall meet the requirements of 5.10.2.6 except that the cross sectional area A of the roof-to-shell joint shall not exceed  $0.159 W/(F_{tv} \tan \theta)$  where  $F_{tv}$  = the greatest tensile yield strength of the materials in the joint.

#### AL5.6.3 Allowable Stresses

Roofs shall be proportioned so that stresses from the load combinations specified in 5.10.2.1 do not exceed the allowable stresses given in the *Aluminum Design Manual (ADM) Specification for Aluminum Structures—Allowable Stress Design for building type structures.* Allowable stresses for ambient temperature service shall be calculated using the minimum mechanical properties given in the ADM. Allowable stresses for elevated temperature service shall be calculated using the minimum mechanical properties given in Table AL-8a and Table AL-8b. Section 5.10.3.4 does not apply.

#### AL5.6.4 Supported Cone Roofs

a. The stresses determined from Figure AL-4 for dead load and dead and live loads for the thickness and span of roof plates shall not exceed the allowable stresses given in Table AL-7a and Table AL-7b.

b. The roof supporting structure shall be of 6061-T6 or 6063-T6 and proportioned so stresses do not exceed allowable stresses. Dead load stresses for temperatures over 120°C (250°F) shall not exceed 25% of allowable stresses.

c. Low cycle fatigue failures may occur at the roof-to-top-angle weld and at roof lap welds for roofs designed to the minimum requirements of this standard when:

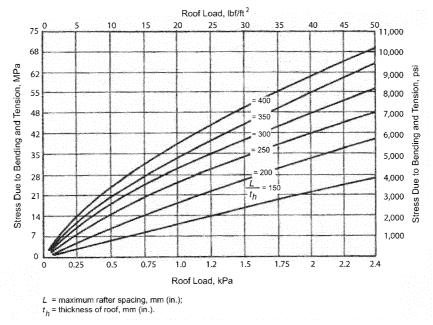
- 1. the internal pressure exceeds the weight of the roof plates; or
- 2. tanks larger than 15 m (50 ft) in diameter are subjected to steady wind speeds of 40 to 50 km/hr (25 to 30 mph) or greater.

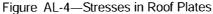
AL-14

|                  | Allow  | able Tensile Stresses (1 | MPa) at Ma | ximum Desig | gn Temperat | ures (°C) No | t Exceeding  |      |     |
|------------------|--------|--------------------------|------------|-------------|-------------|--------------|--------------|------|-----|
| Alloy            | Temper |                          | 40         | 65          | 90          | 120          | 150          | 175  | 200 |
| 3003             | all    | (dead load)              |            |             |             | 22           | 16           | 12   | 9.6 |
|                  |        | (dead + live load)       | 34         | 34          | 34          | 34           | 32           | 30   | 26  |
| Alclad 3003      | all    | (dead load)              |            |             |             | 20           | 15           | 11   | 8.6 |
|                  |        | (dead + live load)       | 31         | 31          | 31          | 30           | 29           | 27   | 23  |
| 3004             | all    | (dead load)              |            |             |             |              | 40           | 26   | 16  |
|                  |        | (dead + live load)       | 59         | 59          | 59          | 59           | 59           | 55   | 51  |
| Alclad 3004      | all    | (dead load)              |            |             |             |              | 36           | 23   | 17  |
|                  |        | (dead + live load)       | 55         | 55          | 55          | 55           | 55           | 50   | 46  |
| 5050             | all    | (dead load)              |            |             |             |              | 37           | 19   | 9.6 |
|                  |        | (dead + live load)       | 41         | 41          | 41          | 41           | 41           | 40   | 39  |
| 5052, 5652       | all    | (dead load)              |            |             |             |              | 43           | 28   | 16  |
|                  |        | (dead + live load)       | 66         | 66          | 66          | 66           | 66           | 66   | 58  |
| 5083             | all    | (dead + live load)       | 124        | 123         |             | do no        | ot use above | 65°C |     |
| 5086             | all    | (dead + live load)       | 97         | 96          |             | do no        | ot use above | 65°C |     |
| 5154, 5254       | all    | (dead + live load)       | 76         | 76          |             | do no        | ot use above | 65°C |     |
| 5454             | all    | (dead load)              |            |             | 81          | 51           | 38           | 28   | 21  |
|                  |        | (dead + live load)       | 83         | 83          | 83          | 83           | 82           | 80   | 77  |
| 5456             | all    | (dead + live load)       | 131        | 130         |             | do no        | ot use above | 65°C |     |
| 061, Alclad 6061 | T4, T6 | (dead load)              |            |             |             |              | 57           | 42   | 30  |
|                  |        | (dead + live load)       | 66         | 66          | 66          | 65           | 61           | 51   | 39  |

# Table AL-7a—(SI) Allowable Stresses for Roof Plates

Note: For non-heat treatable alloys, allowable stresses for dead + live loads are the lesser of the yield strength, the stress producing a secondary creep rate of 0.1% in 10,000 hr, 67% of the average stress for rupture after 100,000 hr. For heat treatable alloys, allowable stresses are 40% of the minimum strength of groove welds.


#### AL-15


API STANDARD 650

| Alloy            | Temper |                    | 100 | 150  | 200  | 250   | 300         | 350   | 400  |
|------------------|--------|--------------------|-----|------|------|-------|-------------|-------|------|
| 3003             | all    | (dead load)        |     |      |      | 3.15  | 2.4         | 1.8   | 1.4  |
|                  |        | (dead + live load) | 5.0 | 5.0  | 5.0  | 4.9   | 4.6         | 4.3   | 3.7  |
| Alclad 3003      | all    | (dead load)        |     |      |      | 2.85  | 2.15        | 1.6   | 1.25 |
|                  |        | (dead + live load) | 4.5 | 4.5  | 4.5  | 4.4   | 4.15        | 3.85  | 3.35 |
| 3004             | all    | (dead load)        |     |      |      |       | 5.75        | 3.8   | 2.35 |
|                  |        | (dead + live load) | 8.5 | 8.5  | 8.5  | 8.5   | 8.5         | 8.0   | 7.4  |
| Alclad 3004      | all    | (dead load)        |     |      |      |       | 5.15        | 3.4   | 2.4  |
|                  |        | (dead + live load) | 8.0 | 8.0  | 8.0  | 8.0   | 8.0         | 7.2   | 6.65 |
| 5050             | all    | (dead load)        |     |      |      |       | 5.35        | 2.8   | 1.4  |
|                  |        | (dead + live load) | 6.0 | 6.0  | 6.0  | 6.0   | 6.0         | 5.8   | 5.6  |
| 5052, 5652       | all    | (dead load)        |     |      |      |       | 6.25        | 4.1   | 2.35 |
|                  |        | (dead + live load) | 9.5 | 9.5  | 9.5  | 9.5   | 9.5         | 9.5   | 8.4  |
| 5083             | all    | (dead + live load) | 18  | 17.9 |      | do no | t use above | 150°F |      |
| 5086             | all    | (dead + live load) | 14  | 13.9 |      | do no | t use above | 150°F |      |
| 5154, 5254       | all    | (dead + live load) | 11  | 11   |      | do no | t use above | 150°F |      |
| 5454             | all    | (dead load)        |     |      | 11.7 | 7.4   | 5.5         | 4.1   | 3.0  |
|                  |        | (dead + live load) | 12  | 12   | 12   | 12    | 11.9        | 11.6  | 11.1 |
| 5456             | all    | (dead + live load) | 19  | 18.8 |      | do no | t use above | 150°F |      |
| 061, Alclad 6061 | T4, T6 | (dead load)        |     |      |      |       | 8.2         | 6.1   | 4.3  |
|                  |        | (dead + live load) | 9.6 | 9.6  | 9.6  | 9.45  | 8.85        | 7.45  | 5.65 |

#### Table AL-7b-(USC) Allowable Stresses for Roof Plates

Note: For non-heat treatable alloys, allowable stresses for dead + live loads are the lesser of the yield strength, the stress producing a secondary creep rate of 0.1% in 10,000 hr, 67% of the average stress for rupture after 100,000 hr. For heat treatable alloys, allowable stresses are 40% of the minimum strength of groove welds.





| ٢                 | 40     | 65     | 90                    | 120    | 150    | 175    | 200    |  |  |  |
|-------------------|--------|--------|-----------------------|--------|--------|--------|--------|--|--|--|
| 1060              | 69,600 | 68,300 | 66,900                | 64,800 | 63,400 | 60,700 | 57,900 |  |  |  |
| 1100              | 69,600 | 68,300 | 66,900                | 64,800 | 63,400 | 60,700 | 57,900 |  |  |  |
| 3003, Alclad 3003 | 69,600 | 68,300 | 66,900                | 64,800 | 63,400 | 60,700 | 57,900 |  |  |  |
| 3004, Alclad 3004 | 69,600 | 68,300 | 66,900                | 64,800 | 63,400 | 60,700 | 57,900 |  |  |  |
| 5050              | 69,600 |        |                       |        |        |        |        |  |  |  |
| 5052, 5652        | 71,000 | 68,900 | 67,600                | 64,800 | 62,700 | 59,300 | 55,800 |  |  |  |
| 5083              | 71,700 | 70,300 | do not use above 65°C |        |        |        |        |  |  |  |
| 5086              | 71,700 | 70,300 | do not use above 65°C |        |        |        |        |  |  |  |
| 5154, 5254        | 71,000 |        | do not use above 65°C |        |        |        |        |  |  |  |
| 5454              | 71,000 | 68,900 | 67,600                | 64,800 | 62,700 | 59,300 | 55,800 |  |  |  |
| 5456              | 71,700 | 70,300 | do not use above 65°C |        |        |        |        |  |  |  |
| 6061              | 69,600 | 68,300 | 66,900                | 65,500 | 64,100 | 62,700 | 60,700 |  |  |  |
| 6063              | 69,600 | 68,300 | 66,900                | 65,500 | 64,100 | 62,700 | 60,700 |  |  |  |
|                   |        |        |                       |        |        |        |        |  |  |  |

Table AL-8a—(SI) Compressive Moduli of Elasticity E (MPa) at Temperature (°C)

Note: (1) Tensile moduli = (compressive moduli)/1.02.

## Table AL-8b-(USC) Compressive Moduli of Elasticity E (ksi) at Temperature (°F)

| Alloy             | 100    | 150    | 200                    | 250   | 300   | 350   | 400   |  |  |  |
|-------------------|--------|--------|------------------------|-------|-------|-------|-------|--|--|--|
| 1060              | 10,100 | 9,900  | 9,700                  | 9,400 | 9,200 | 8,800 | 8,400 |  |  |  |
| 1100              | 10,100 | 9,900  | 9,700                  | 9,400 | 9,200 | 8,800 | 8,400 |  |  |  |
| 3003, Alclad 3003 | 10,100 | 9,900  | 9,700                  | 9,400 | 9,200 | 8,800 | 8,400 |  |  |  |
| 3004, Alclad 3004 | 10,100 | 9,900  | 9,700                  | 9,400 | 9,200 | 8,800 | 8,400 |  |  |  |
| 5050              | 10,100 |        |                        |       |       |       |       |  |  |  |
| 5052, 5652        | 10,300 | 10,000 | 9,800                  | 9,400 | 9,100 | 8,600 | 8,100 |  |  |  |
| 5083              | 10,400 | 10,200 | do not use above 150°F |       |       |       |       |  |  |  |
| 5086              | 10,400 | 10,200 | do not use above 150°F |       |       |       |       |  |  |  |
| 5154, 5254        | 10,300 |        | do not use above 150°F |       |       |       |       |  |  |  |
| 5454              | 10,300 | 10,000 | 9,800                  | 9,400 | 9,100 | 8,600 | 8,100 |  |  |  |
| 5456              | 10,400 | 10,200 | do not use above 150°F |       |       |       |       |  |  |  |
| 6061              | 10,100 | 9,900  | 9,700                  | 9,500 | 9,300 | 9,100 | 8,800 |  |  |  |
| 6063              | 10,100 | 9,900  | 9,700                  | 9,500 | 9,300 | 9,100 | 8,800 |  |  |  |
|                   |        |        |                        |       |       |       |       |  |  |  |

Note: (1) Tensile moduli = (compressive moduli)/1.02.

Table AL-9a-(SI) Shell Nozzle Welding Schedule

| . ,                                                      | 0                                                  |
|----------------------------------------------------------|----------------------------------------------------|
| Column 1                                                 | Column 5                                           |
| <br>Thickness of Shell and Reinforcing Plate $t$ and $T$ | Size of Fillet Weld A Nozzles<br>Larger Than NPS 2 |
| <br>mm                                                   | mm                                                 |
| 5                                                        | 6                                                  |
| 6                                                        | 6                                                  |
| 8                                                        | 6                                                  |
| 10                                                       | 6                                                  |
| 11                                                       | 6                                                  |
| 13                                                       | 6                                                  |
| 14                                                       | 6                                                  |
| 16                                                       | 8                                                  |
| 17                                                       | 8                                                  |
| 20                                                       | 10                                                 |
| 21                                                       | 11                                                 |
| 22                                                       | 11                                                 |
| 24                                                       | 13                                                 |
| 25                                                       | 13                                                 |
| 27                                                       | 14                                                 |
| 28                                                       | 14                                                 |
| 30                                                       | 14                                                 |
| 32                                                       | 16                                                 |
| 33                                                       | 16                                                 |
| 35                                                       | 17                                                 |
| 36                                                       | 17                                                 |
| 38                                                       | 20                                                 |
| 40                                                       | 21                                                 |
| 41                                                       | 21                                                 |
| 43                                                       | 22                                                 |
| 45                                                       | 22                                                 |
|                                                          |                                                    |

Table AL-9a and Table AL-9b are the same as Table 5-7a and Table 5-7b, respectively, with the following modifications:

| Column 1                                                       | Column 5                                           |
|----------------------------------------------------------------|----------------------------------------------------|
| Thickness of Shell and Reinforcing Plate <i>t</i> and <i>T</i> | Size of Fillet Weld A Nozzles<br>Larger Than NPS 2 |
| in.                                                            | in.                                                |
| 3/16                                                           | 1/4                                                |
| $^{1}/_{4}$                                                    | $^{1}/_{4}$                                        |
| 5/16                                                           | 1/4                                                |
| 3/8                                                            | 1/4                                                |
| 7/16                                                           | 1/4                                                |
| 1/2                                                            | 1/4                                                |
| 9/16                                                           | 1/4                                                |
| 5/8                                                            | 5/16                                               |
| 11/16                                                          | 5/16                                               |
| 3/4                                                            | 3/8                                                |
| 13/16                                                          | 7/16                                               |
| 7/8                                                            | 7/16                                               |
| 15/16                                                          | $1_{/2}$                                           |
| 1                                                              | 1/2                                                |
| $1 \frac{1}{16}$                                               | 9/16                                               |
| $1 \ ^{1/8}$                                                   | 9/16                                               |
| 1 3/16                                                         | 9/16                                               |
| $1 \ ^{1/4}$                                                   | 5/8                                                |
| $1 \frac{5}{16}$                                               | 5/8                                                |
| 1 3/8                                                          | 11/16                                              |
| 1 7/16                                                         | 11/16                                              |
| $1 \frac{1}{2}$                                                | 3/4                                                |
| 1 9/16                                                         | 13/16                                              |
| 1 5/8                                                          | 13/16                                              |
| $1 \ ^{11}/_{16}$                                              | 7/8                                                |
| 1 3/4                                                          | 7/8                                                |

# Table AL-9b-(USC) Shell Nozzle Welding Schedule

## AL5.6.5 Self-Supporting Cone Roofs

a. The minimum nominal roof thickness is  $t_h$ .

$$t_h = \frac{2D}{\sin\theta} \sqrt{\frac{p_h}{E}}$$

b. The minimum area of the roof-to-shell joint is A.

$$A = p_h D^2 / (8 f \tan \theta)$$

where

f = least allowable tensile stress of the materials in the roof-to-shell joint.

#### AL5.6.6 Self-Supporting Dome and Umbrella Roofs

a. The minimum nominal roof thickness is  $t_h$ .

$$t_h = 4.0 r_h \sqrt{\frac{p_h}{E}}$$

where

08

11

 $r_h = \text{roof radius}$ 

b. The minimum area of the roof-to-shell joint is A.

$$A = p_h D^2 / (8f \tan \theta)$$

where

f = least allowable tensile stress of the materials in the roof-to-shell joint.

#### AL5.6.7 Structurally Supported Aluminum Dome Roofs

Structurally supported aluminum dome roofs shall meet Appendix G.

#### AL.6 Fabrication

#### AL.6.1 FINISH OF PLATE EDGES

At least 3 mm ( $^{1}/_{8}$  in.) shall be mechanically removed from edges of heat treatable alloys that have been plasma arc cut. Oxygen cutting shall not be used.

#### AL.6.2 MARKING MATERIALS

Marking materials shall not contain carbon or heavy metal compounds.

# AL.7 Erection

#### AL.7.1 WELDING METHODS

Welding shall be gas metal arc welding, gas tungsten arc welding, plasma arc welding without using flux, or friction stir welding. The welding may be performed by the manual, machine, automatic, or semiautomatic welding processes according to procedures by welders or welding operators qualified in accordance with ASME Section IX or AWS D1.2.

AL-20

#### AL.7.2 PREHEATING

Parts to be welded shall not be preheated except to the extent needed to drive off moisture or bring base metal temperature up to minimum welding temperature per 7.2.1.2.

#### AL.7.3 PLUMBNESS

The plumbness requirements shall be per 7.5.2 except the out-of-plumbness in any shell course shall not exceed the flatness tolerance in ASTM B 209M (B 209).

#### AL.7.4 STORAGE

Aluminum parts shall not be stored in contact with one another when moisture is present. Aluminum shall not be stored or erected in contact with carbon steel or the ground.

# AL.8 Inspection of Welds

#### AL.8.1 LIQUID PENETRANT EXAMINATION

The following welds shall be examined by the liquid penetrant method before the hydrostatic test of the tank:

a. shell opening reinforcement and structural attachment plates, excluding lightly loaded attachments, that intersect a shell weld shall be examined for a distance of 150 mm (6 in.) on each side of the intersection and the butt weld for a distance of 50 mm (2 in.) beyond the pad weld;

b. all welds of openings in the shell that are not completely radiographed, including nozzle and manhole neck welds and neck-toflange welds;

c. all butt-welded joints in tank shell and annular plate on which backing strips are to remain.

## AL.8.2 MAGNETIC PARTICLE EXAMINATION

Section 8.2 does not apply.

# AL.9 Welding Procedures and Welder Qualifications

Weld procedures and welder qualifications shall meet Section 9 except that impact tests are not required.

# AL.10 Marking

## AL.10.1 MATERIAL

In addition to the requirements of Section 10, the bottom and roof alloys shall be shown on the nameplate.

# AL.11 Foundations

#### AL.11.1 CONCRETE

Aluminum shall not be placed in direct contact with concrete.

# AL.12 Internal Pressure

#### AL.12.1 GENERAL

Appendix F shall be met with the following exceptions.

#### AL.12.2 DESIGN PRESSURE

The design internal pressure *P* in F.4.1:

$$P = \frac{8AF_{ty}\tan\theta}{(SF)D^2} + \rho_h t_h$$

where

 $F_{tv}$  = tensile yield strength of the materials in the roof-to-shell joint;

SF = safety factor = 1.6;

A = area resisting the compressive force as illustrated in Figure F-2 except that 16*t* shall be replaced by  $56 t_s \sqrt{F_{ty}}$ .

# AL.12.3 MAXIMUM DESIGN PRESSURE

The maximum design pressure in F.4.2 shall be:

$$P_{\max} = \rho_h t_h + \frac{4W}{\pi D^2} - \frac{8(1.67)M}{\pi D^3}$$

where

08

 $P_{\text{max}}$  = maximum design pressure;

M = wind overturning moment.

#### AL.12.4 REQUIRED COMPRESSION AREA AT THE ROOF-TO-SHELL JUNCTION

The required area at the roof-to-shell joint in F.5.1 shall be:

$$A = \frac{(SF)D^2(P - \rho_h t_h)}{8F_{tv} \tan \theta}$$

#### AL.12.5 CALCULATED FAILURE PRESSURE

The calculated failure pressure in F.6 shall be:

$$P_f = 1.6P - 0.6\rho_h t_h$$

#### AL.12.6 ANCHORED TANKS

The allowable compressive stress in F.7.2 shall be  $F_{ty}/1.6$ .

#### AL.13 Seismic Design

# AL.13.1 GENERAL

Appendix E shall be met with the following exceptions.

#### AL.13.2 ALLOWABLE LONGITUDINAL MEMBRANE COMPRESSION STRESS IN SHELL

The allowable compressive stress in E.6.2.2.3 shall be determined in accordance with the ASME *Boiler and Pressure Vessel Code*, Section VIII, Division 1.

## AL.14 External Pressure

#### AL.14.1 GENERAL

Appendix V does not apply to aluminum tanks.

# APPENDIX B—RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION OF FOUNDATIONS FOR ABOVEGROUND OIL STORAGE TANKS

## B.1 Scope

**B.1.1** This appendix provides important considerations for the design and construction of foundations for aboveground steel oil storage tanks with flat bottoms. Recommendations are offered to outline good practice and to point out some precautions that should be considered in the design and construction of storage tank foundations.

**B.1.2** Since there is a wide variety of surface, subsurface, and climatic conditions, it is not practical to establish design data to cover all situations. The allowable soil loading and the exact type of subsurface construction to be used must be decided for each individual case after careful consideration. The same rules and precautions shall be used in selecting foundation sites as would be applicable in designing and constructing foundations for other structures of comparable magnitude.

## **B.2** Subsurface Investigation and Construction

**B.2.1** At any tank site, the subsurface conditions must be known to estimate the soil bearing capacity and settlement that will be experienced. This information is generally obtained from soil borings, load tests, sampling, laboratory testing, and analysis by an experienced geotechnical engineer familiar with the history of similar structures in the vicinity. The subgrade must be capable of supporting the load of the tank and its contents. The total settlement must not strain connecting piping or produce gauging inaccuracies, and the settlement should not continue to a point at which the tank bottom is below the surrounding ground surface. The estimated settlement shall be within the acceptable tolerances for the tank shell and bottom.

**B.2.2** When actual experience with similar tanks and foundations at a particular site is not available, the following ranges for factors of safety should be considered for use in the foundation design criteria for determining the allowable soil bearing pressures. (The owner or geotechnical engineer responsible for the project may use factors of safety outside these ranges.)

a. From 2.0 to 3.0 against ultimate bearing failure for normal operating conditions.

b. From 1.5 to 2.25 against ultimate bearing failure during hydrostatic testing.

c. From 1.5 to 2.25 against ultimate bearing failure for operating conditions plus the maximum effect of wind or seismic loads.

**B.2.3** Some of the many conditions that require special engineering consideration are as follows:

a. Sites on hillsides, where part of a tank may be on undisturbed ground or rock and part may be on fill or another construction or where the depth of required fill is variable.

b. Sites on swampy or filled ground, where layers of muck or compressible vegetation are at or below the surface or where unstable or corrosive materials may have been deposited as fill.

c. Sites underlain by soils, such as layers of plastic clay or organic clays, that may support heavy loads temporarily but settle excessively over long periods of time.

d. Sites adjacent to water courses or deep excavations, where the lateral stability of the ground is questionable.

e. Sites immediately adjacent to heavy structures that distribute some of their load to the subsoil under the tank sites, thereby reducing the subsoil's capacity to carry additional loads without excessive settlement.

f. Sites where tanks may be exposed to flood waters, possibly resulting in uplift, displacement, or scour.

g. Sites in regions of high seismicity that may be susceptible to liquefaction.

h. Sites with thin layers of soft clay soils that are directly beneath the tank bottom and that can cause lateral ground stability problems.

**B.2.4** If the subgrade is inadequate to carry the load of the filled tank without excessive settlement, shallow or superficial construction under the tank bottom will not improve the support conditions. One or more of the following general methods should be considered to improve the support conditions:

a. Removing the objectionable material and replacing it with suitable, compacted material.

b. Compacting the soft material with short piles.

c. Compacting the soft material by preloading the area with an overburden of soil. Strip or sand drains may be used in conjunction with this method.

d. Stabilizing the soft material by chemical methods or injection of cement grout.

e. Transferring the load to a more stable material underneath the subgrade by driving piles or constructing foundation piers. This involves constructing a reinforced concrete slab on the piles to distribute the load of the tank bottom.

f. Constructing a slab foundation that will distribute the load over a sufficiently large area of the soft material so that the load intensity will be within allowable limits and excessive settlement will not occur.

g. Improving soil properties by vibro-compaction, vibro-replacement, or deep dynamic-compaction.

h. Slow and controlled filling of the tank during hydrostatic testing. When this method is used, the integrity of the tank may be compromised by excessive settlements of the shell or bottom. For this reason, the settlements of the tank shall be closely monitored. In the event of settlements beyond established ranges, the test may have to be stopped and the tank releveled.

**B.2.5** The fill material used to replace muck or other objectionable material or to build up the grade to a suitable height shall be adequate for the support of the tank and product after the material has been compacted. The fill material shall be free of vegetation, organic matter, cinders, and any material that will cause corrosion of the tank bottom. The grade and type of fill material shall be capable of being compacted with standard industry compaction techniques to a density sufficient to provide appropriate bearing capacity and acceptable settlements. The placement of the fill material shall be in accordance with the project specifications prepared by a qualified geotechnical engineer.

# **B.3 Tank Grades**

**B.3.1** The grade or surface on which a tank bottom will rest should be constructed at least 0.3 m (1 ft) above the surrounding ground surface. This will provide suitable drainage, help keep the tank bottom dry, and compensate for some small settlement that is likely to occur. If a large settlement is expected, the tank bottom elevation shall be raised so that the final elevation above grade will be a minimum of 150 mm (6 in.) after settlement.

**B.3.2** There are several different materials that can be used for the grade or surface on which the tank bottom will rest. To minimize future corrosion problems and maximize the effect of corrosion prevention systems such as cathodic protection, the material in contact with the tank bottom should be fine and uniform. Gravel or large particles shall be avoided. Clean washed sand 75 mm – 100 mm (3 in. – 4 in.) deep is recommended as a final layer because it can be readily shaped to the bottom contour of the tank to provide maximum contact area and will protect the tank bottom from coming into contact with large particles and debris. Large foreign objects or point contact by gravel or rocks could cause corrosion cells that will cause pitting and premature tank bottom failure.

During construction, the movement of equipment and materials across the grade will mar the graded surface. These irregularities should be corrected before bottom plates are placed for welding.

Adequate provisions, such as making size gradients in sublayers progressively smaller from bottom to top, should be made to prevent the fine material from leaching down into the larger material, thus negating the effect of using the fine material as a final layer. This is particularly important for the top of a crushed rock ringwall.

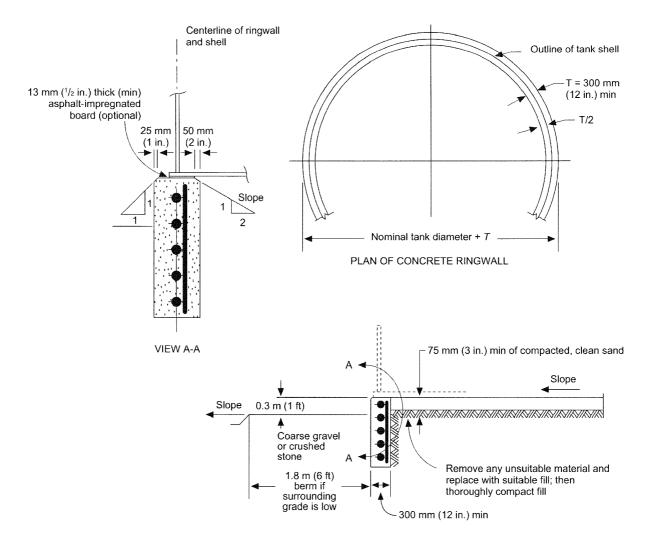
Note: For more information on tank bottom corrosion and corrosion prevention that relates to the foundation of a tank, see API RP 651.

- **B.3.3** Unless otherwise specified by the Purchaser, the finished tank grade shall be crowned from its outer periphery to its center at a slope of 1 in. in 10 ft. The crown will partly compensate for slight settlement, which is likely to be greater at the center. It will also facilitate cleaning and the removal of water and sludge through openings in the shell or from sumps situated near the shell. Because crowning will affect the lengths of roof-supporting columns, it is essential that the tank Manufacturer be fully informed of this feature sufficiently in advance. (For an alternative to this paragraph, see B.3.4.)
- **B.3.4** As an alternative to B.3.3, the tank bottom may be sloped toward a sump. The tank Manufacturer must be advised as required in B.3.3.

# **B.4 Typical Foundation Types**

## B.4.1 EARTH FOUNDATIONS WITHOUT A RINGWALL

**B.4.1.1** When an engineering evaluation of subsurface conditions that is based on experience and/or exploratory work has shown that the subgrade has adequate bearing capacity and that settlements will be acceptable, satisfactory foundations may be constructed from earth materials. The performance requirements for earth foundations are identical to those for more extensive foundations. Specifically, an earth foundation should accomplish the following:


a. Provide a stable plane for the support of the tank.

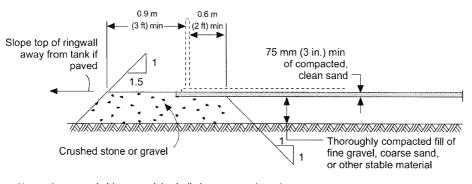
b. Limit overall settlement of the tank grade to values compatible with the allowances used in the design of the connecting piping.

c. Provide adequate drainage.

d. Not settle excessively at the perimeter due to the weight of the shell wall.

**B.4.1.2** Many satisfactory designs are possible when sound engineering judgment is used in their development. Three designs are referred to in this appendix on the basis of their satisfactory long-term performance. For smaller tanks, foundations can consist of compacted crushed stone, screenings, fine gravel, clean sand, or similar material placed directly on virgin soil. Any unstable material must be removed, and any replacement material must be thoroughly compacted. Two recommended designs that include ringwalls are illustrated in Figures B-1 and B-2 and described in B.4.2 and B.4.3.




#### Notes:

1. See B.4.2.3 for requirements for reinforcement.

is not possible, see ACI 318 for additional development requirements.

- The top of the concrete ringwall shall be smooth and level. The concrete strength shall be at least 20 MPa (3000 lbf/in.<sup>2</sup>) after 28 days. Reinforcement splices must be staggered and shall be lapped to develop full strength in the bond. If staggering of laps
- 3. Ringwalls that exceed 300 mm (12 in.) in width shall have rebars distributed on both faces.
- 4. See B.4.2.2 for the position of the tank shell on the ringwall.

Figure B-1—Example of Foundation with Concrete Ringwall



Note: Any unsuitable material shall be removed and replaced with suitable fill; the fill shall then be thoroughly compacted.



#### **B.4.2 EARTH FOUNDATIONS WITH A CONCRETE RINGWALL**

**B.4.2.1** Large tanks and tanks with heavy or tall shells and/or self-supported roofs impose a substantial load on the foundation under the shell. This is particularly important with regard to shell distortion in floating-roof tanks. When there is some doubt whether a foundation will be able to carry the shell load directly, a concrete ringwall foundation should be used. As an alternative to the concrete ringwall noted in this section, a crushed stone ringwall (see B.4.3) may be used. A foundation with a concrete ringwall has the following advantages:

- a. It provides better distribution of the concentrated load of the shell to produce a more nearly uniform soil loading under the tank.
- b. It provides a level, solid starting plane for construction of the shell.
- c. It provides a better means of leveling the tank grade, and it is capable of preserving its contour during construction.
- d. It retains the fill under the tank bottom and prevents loss of material as a result of erosion.
- e. It minimizes moisture under the tank.

A disadvantage of concrete ringwalls is that they may not smoothly conform to differential settlements. This disadvantage may lead to high bending stresses in the bottom plates adjacent to the ringwall.

**B.4.2.2** When a concrete ringwall is designed, it shall be proportioned so that the allowable soil bearing is not exceeded. The ringwall shall not be less than 300 mm (12 in.) thick. The centerline diameter of the ringwall should equal the nominal diameter of the tank; however, the ringwall centerline may vary if required to facilitate the placement of anchor bolts or to satisfy soil bearing limits for seismic loads or excessive uplift forces. The depth of the wall will depend on local conditions, but the depth must be sufficient to place the bottom of the ringwall below the anticipated frost penetration and within the specified bearing strata. As a minimum, the bottom of the ringwall, if founded on soil, shall be located 0.6 m (2 ft) below the lowest adjacent finish grade. Tank foundations must be constructed within the tolerances specified in 7.5.5. Recesses shall be provided in the wall for flush-type cleanouts, drawoff sumps, and any other appurtenances that require recesses.

**B.4.2.3** A ringwall should be reinforced against temperature changes and shrinkage and reinforced to resist the lateral pressure of the confined fill with its surcharge from product loads. ACI 318 is recommended for design stress values, material specifications, and rebar development and cover. The following items concerning a ringwall shall be considered:

a. The ringwall shall be reinforced to resist the direct hoop tension resulting from the lateral earth pressure on the ringwall's inside face. Unless substantiated by proper geotechnical analysis, the lateral earth pressure shall be assumed to be at least 50% of the vertical pressure due to fluid and soil weight. If a granular backfill is used, a lateral earth pressure coefficient of 30% may be used.

b. The ringwall shall be reinforced to resist the bending moment resulting from the uniform moment load. The uniform moment load shall account for the eccentricities of the applied shell and pressure loads relative to the centroid of the resulting soil pressure. The pressure load is due to the fluid pressure on the horizontal projection of the ringwall inside the shell.

c. The ringwall shall be reinforced to resist the bending and torsion moments resulting from lateral, wind, or seismic loads applied eccentrically to it. A rational analysis, which includes the effect of the foundation stiffness, shall be used to determine these moments and soil pressure distributions.

d. The total hoop steel area required to resist the loads noted above shall not be less than the area required for temperature changes and shrinkage. The hoop steel area required for temperature changes and shrinkage is 0.0025 times the vertical cross-sectional area of the ringwall or the minimum reinforcement for walls called for in ACI 318, Chapter 14.

e. For ringwalls, the vertical steel area required for temperature changes and shrinkage is 0.0015 times the horizontal cross-sectional area of the ringwall or the minimum reinforcement for walls called for in ACI 318, Chapter 14. Additional vertical steel may be required for uplift or torsional resistance. If the ring foundation is wider than its depth, the design shall consider its behavior as an annular slab with flexure in the radial direction. Temperature and shrinkage reinforcement shall meet the ACI 318 provisions for slabs. (See ACI 318, Chapter 7.)

f. When the ringwall width exceeds 460 mm (18 in.), using a footing beneath the wall should be considered. Footings may also be useful for resistance to uplift forces.

g. Structural backfill within and adjacent to concrete ringwalls and around items such as vaults, undertank piping, and sumps requires close field control to maintain settlement tolerances. Backfill should be granular material compacted to the density and compacting as specified in the foundation construction specifications. For other backfill materials, sufficient tests shall be conducted to verify that the material has adequate strength and will undergo minimal settlement.

h. If the tank is designed and constructed for elevated temperature service, see B.6.

#### B.4.3 EARTH FOUNDATIONS WITH A CRUSHED STONE AND GRAVEL RINGWALL

**B.4.3.1** A crushed stone or gravel ringwall will provide adequate support for high loads imposed by a shell. A foundation with a crushed stone or gravel ringwall has the following advantages:

a. It provides better distribution of the concentrated load of the shell to produce a more nearly uniform soil loading under the tank.

b. It provides a means of leveling the tank grade, and it is capable of preserving its contour during construction.

c. It retains the fill under the tank bottom and prevents loss of material as a result of erosion.

d. It can more smoothly accommodate differential settlement because of its flexibility.

A disadvantage of the crushed stone or gravel ringwall is that it is more difficult to construct it to close tolerances and achieve a flat, level plane for construction of the tank shell.

**B.4.3.2** For crushed stone or gravel ringwalls, careful selection of design details is necessary to ensure satisfactory performance. The type of foundation suggested is shown in Figure B-2. Significant details include the following:

a. The 0.9 m (3 ft) shoulder and berm shall be protected from erosion by being constructed of crushed stone or covered with a permanent paving material.

- b. Care shall be taken during construction to prepare and maintain a smooth, level surface for the tank bottom plates.
- c. The tank grade shall be constructed to provide adequate drainage away from the tank foundation.

d. The tank foundation must be true to the specified plane within the tolerances specified in 7.5.5.

#### **B.4.4 SLAB FOUNDATIONS**

• **B.4.4.1** When the soil bearing loads must be distributed over an area larger than the tank area or when it is specified by the owner, a reinforced concrete slab shall be used. Piles beneath the slab may be required for proper tank support.

**B.4.4.2** The structural design of the slab, whether on grade or on piles, shall properly account for all loads imposed upon the slab by the tank. The reinforcement requirements and the design details of construction shall be in accordance with ACI 318.

#### B.5 Tank Foundations for Leak Detection

Appendix I provides recommendations on the construction of tank and foundation systems for the detection of leaks through the bottoms of storage tanks.

# B.6 Tank Foundations for Elevated Temperature Service

The design and construction of foundations for tanks operating at elevated temperatures  $[> 93^{\circ}C (200^{\circ}F)]$  should address the following considerations.

a. When subjected to elevated operating temperatures, an unanchored tank may tend to move in one or more directions over time. This movement must be accommodated in the design of the tank fittings and attachments.

b. Elevated temperature service may evaporate moisture in the soil supporting the tank and lead to increased, and possibly nonuniform, settlement. Such settlement may include differential settlement between the ringwall and soil under the tank bottom immediately adjacent to the ringwall resulting from non-uniform shrinkage of the soil with respect to the stone or concrete ringwall.

08

c. In cases where there is high groundwater table, elevated temperatures may vaporize groundwater and generate undesirable steam.

d. Attachments between the tank and the foundation must accommodate the thermal expansion and contraction of the tank without resulting in unacceptable stress levels.

e. The elevated temperature must be accounted for in the design of concrete ringwall foundations. The ringwall is subject to a moment due to the higher temperature at the top of the ringwall with respect to the temperature at the bottom of the ringwall. If not adequately accounted for in the design of the ringwall, this moment can lead to cracking of the concrete foundation and loss of tank support.

B-6

# APPENDIX C-EXTERNAL FLOATING ROOFS

# C.1 Scope

**C.1.1** This appendix provides minimum requirements that, unless otherwise qualified in the text, apply to single-deck pontoontype and double-deck-type floating roofs. See Section 3 for the definition of these roof types. This appendix is intended to limit only those factors that affect the safety and durability of the installation and that are considered to be consistent with the quality and safety requirements of this Standard. Numerous alternative details and proprietary appurtenances are available; however, agreement between the Purchaser and the Manufacturer is required before they are used.

11

07

07

**C.1.2** The type of roof and seal to be provided shall be as specified on the Data Sheet, Line 30. If the type is not specified, the Manufacturer shall provide a roof and seal that is cost-effective and suitable for the specified service. Pan-type floating roofs shall not be used.

**C.1.3** The Purchaser is required to provide all applicable jurisdictional requirements that apply to external floating roofs (see 1.3).

**C.1.4** See Appendix W for bid requirements pertaining to external floating roofs.

# C.2 Material

The material requirements of Section 4 shall apply unless otherwise stated in this appendix. Castings shall conform to any of the following specifications:

a. ASTM A 27M, grade 405-205 (ASTM A 27, grade 60-30), fully annealed.

b. ASTM A 27M, grade 450-240 (ASTM A 27, grade 65-35), fully annealed or normalized and tempered, or quenched and tempered.

c. ASTM A 216M (ASTM A 216) WCA, WCB, or WCC grades annealed and normalized, or normalized and tempered.

# C.3 Design

## C.3.1 GENERAL

- **C.3.1.1** The roof and accessories shall be designed and constructed so that the roof is allowed to float to the maximum design liquid level and then return to a liquid level that floats the roof well below the top of the tank shell without damage to any part of the roof, tank, or appurtenances. During such an occurrence, no manual attention shall be required to protect the roof, tank, or appurtenances. If a windskirt or top-shell extension is used, it shall contain the roof seals at the highest point of travel. The Purchaser shall provide appropriate alarm devices to indicate a rise of the liquid in the tank to a level above the normal and overfill protection levels (see NFPA 30 and API RP 2350). Overflow slots shall not be used as a primary means of detecting an overfill incident. If specified by the Purchaser (Table 4 of the Data Sheet), emergency overflow openings may be provided to protect the tank and floating roof from damage.
- **C.3.1.2** The application of corrosion allowances shall be a matter of agreement between the Purchaser and the Manufacturer. Corrosion allowance shall be added to the required minimum thickness or, when no minimum thickness is required, added to the minimum thickness required for functionality.

**C.3.1.3** Sleeves and fittings that penetrate the single deck or lower decks of annular pontoons or lower decks of double-deck roofs, except for automatic bleeder vents, rim space vents, and leg sleeves, shall have a minimum wall thickness of "Standard Wall" for pipe NPS 6 and larger and 6 mm (1/4 in.) for all other pipe and plate construction unless otherwise specified on the Data Sheet, Table 5. Such penetrations shall extend into the liquid.

**C.3.1.4** The annular space between the roof outer rim of the floating roof and the product side of the tank shell shall be designed for proper clearance of the peripheral seal (see C.3.13). All appurtenances and internal components of the tank shall have adequate clearance for the proper operation of the completed roof assembly.

• **C.3.1.5** For tanks greater than 60 m (200 ft) in diameter, the deck portion of single-deck pontoon floating roofs shall be designed to avoid flexural fatigue failure caused by design wind loads. Such designs shall be a matter of agreement between the Purchaser and the Manufacturer, using techniques such as underside stitch welding.

API STANDARD 650

**C.3.1.6** All conductive parts of the external floating roof shall be electrically interconnected and bonded to the outer tank structure. Bonding (grounding) shunts shall be provided on the external floating roof and shall be located above the uppermost seal. Shunts shall be 50-mm (2-in.) wide by 28-gauge (0.4-mm  $[^{1}/_{64}$ -in.] thick) austenitic stainless steel as a minimum, or shall provide equivalent corrosion resistance and current carrying capacity as stated in NFPA 780 and API RP 2003. Shunt spacing shall be no more than 3 m (10 ft). All movable cover accessories (hatches, manholes, pressure relief devices, and other openings) on the external floating roof shall be electrically bonded to the external floating roof to prevent static electricity sparking when they are opened.

# C.3.2 JOINTS

**07 C.3.2.1** Joints shall be designed as described in 5.1.

11 **C.3.2.2** If a lining is applied to the underside of the roof, all joints that will have a lining shall be seal-welded.

# C.3.3 DECKS

**C.3.3.1** Roofs in corrosive service, such as covering sour crude oil, should be the contact type designed to eliminate the presence of any air-vapor mixture under the deck.

**08** • **C.3.3.2** Unless otherwise specified by the Purchaser, all deck plates shall have a minimum nominal thickness of 48 mm  $(^{3}/_{16} \text{ in.})$  (permissible ordering basis—37.4 kg/m<sup>2</sup>, 7.65 lbf/ft<sup>2</sup> of plate, 0.180-in. plate, or 7-gauge sheet).

**C.3.3.3** Deck plates shall be joined by continuous full-fillet welds on the top side. On the bottom side, where flexure can be anticipated adjacent to girders, support legs, or other relatively rigid members, full-fillet welds not less than 50 mm (2 in.) long on 250 mm (10 in.) centers shall be used on any plate laps that occur within 300 mm (12 in.) of any such members. A minimum of three fillet welds shall be made.

**C.3.3.4** Top decks of double-deck roofs and of pontoon sections, which are designed with a permanent slope shall be designed, fabricated, and erected (with a minimum slope of 1 in 64) to minimize accumulation of standing water (e.g., pooling adjacent to a rolling ladder's track) when primary roof drains are open. This requirement is not intended to completely eliminate isolated puddles. When out of service, water shall flow freely to the primary roof drains. These decks shall preferably be lapped to provide the best drainage. Plate buckles shall be kept to a minimum.

**C.3.3.5** The deck of single-deck pontoon floating roofs shall be designed to be in contact with the liquid during normal operation, regardless of service. The design shall accommodate deflection of the deck caused by trapped vapor.

**C.3.3.6** All covers for roof openings, except roof drains and vents, shall have gaskets or other sealing surfaces and shall be provided with a liquid-tight cover.

# C.3.4 PONTOON DESIGN

**C.3.4.1** Floating roofs shall have sufficient buoyancy to remain afloat on liquid with a specific gravity of the lower of the product specific gravity or 0.7 and with primary drains inoperative for the following conditions:

a. 250 mm (10 in.) of rainfall in a 24-hour period over the full horizontal tank area with the roofs intact. This condition does not apply to double-deck roofs provided with emergency drains designed to keep water to a lesser volume that the roofs will safely support. Such emergency drains shall not allow the product to flow onto the roof.

Note: The rainfall rate for sizing the roof drains in C.3.8 may result in a larger accumulated rainfall.

• b. Single-deck and any two adjacent pontoon compartments punctured and flooded in single-deck pontoon roofs and any two adjacent compartments punctured and flooded in double-deck roofs, both roof types with no water or live load.

With agreement by the Purchaser, Item b may be replaced by the following for floating roofs 6 m (20 ft) in diameter or less: Any one compartment punctured and flooded in single-deck pontoon roofs or double-deck roofs, both roof types with no water or live load.

• **C.3.4.2** The pontoon portions of single-deck pontoon-type roofs shall be designed to have adequate strength to prevent permanent distortion when the center deck is loaded by its design rainwater (C.3.4.1, Item a) or when the center deck and two adjacent pontoons are punctured (C.3.4.1, Item b). The allowable stress and stability criteria shall be jointly established by the Purchaser and the Manufacturer as part of the inquiry. Alternatively, a proof test simulating the conditions of C.3.4.1, with the roof floating on water, may be performed on the roof or on one of similar design that is of equal or greater diameter.

C-2

07

07

**C.3.4.3** Any penetration of the floating roof shall not allow product to flow onto the roof under design conditions. The sag of the roof deck under design conditions and the minimum design specific gravity (0.7) of the stored liquid shall be considered in establishing the minimum elevations of all roof penetrations.

#### C.3.5 PONTOON OPENINGS

• Each compartment shall be provided with a liquid-tight manhole with a minimum nominal size of NPS 20. Manhole covers shall be provided with suitable hold-down fixtures (which may be of the quick-opening type) or with other means of preventing wind or fire-fighting hose streams from removing the covers. The top edge of the manhole necks shall be at an elevation that prevents liquid from entering the compartments under the conditions of C.3.4. With agreement by the Purchaser, floating roofs 6 m (20 ft) in diameter or less may be designed using a pontoon inspection port in place of a pontoon manhole.

Each compartment shall be vented to protect against internal or external pressure. Vents may be in the manhole cover, inspection port cover, or the top deck of the compartment. The vents shall be at an elevation that prevents liquid from entering the compartment under the conditions of C.3.4 and shall terminate in a manner that prevents entry of rain and fire-fighting liquids.

#### C.3.6 COMPARTMENTS

Compartment plates are radial or circumferential dividers forming compartments that provide flotation for the roof (see C.3.4). All internal compartment plates (or sheets) shall be single-fillet welded along all of their edges, and other welding shall be performed at junctions as required to make each compartment leak tight. Each compartment weld shall be tested for leak tightness using internal pressure or a vacuum box and a soap solution or penetrating oil.

#### C.3.7 LADDERS

• Unless otherwise specified by the Purchaser, the floating roof shall be supplied with a ladder that automatically adjusts to any roof position so that access to the roof is always provided. The ladder shall be designed for full-roof travel, regardless of the normal setting of the roof-leg supports. The ladder shall have full-length handrails on both sides and shall be designed for a 4450 N (1000 lbf) midpoint load with the ladder in any operating position. Step assemblies shall be of open type and have non-slip walking surfaces and self-leveling treads with a minimum width of 510 m (20 in.) and a 860 mm (34 in.) high handrail at the nose of the tread. When the roof is in its extreme low position, the slope of the rolling ladder shall not be less than 35 degrees to vertical, unless specified otherwise by the Purchaser. Wheels shall be provided at the lower end of the ladder, sized to prevent binding of the ladder, and provided with maintenance-free bearings. Ladders shall be grounded to both the roof and the gauger's platform with at least an AWG (American Wire Gage) 2/0 (67 sq. mm [0.104 sq. in.]), non-tangling cable. Cable shall be configured so that it will not freeze to adjacent surfaces in cold weather. Ladder and track design shall minimize ponding by using trussed runways or other details considering fatigue and stiffening effects resulting from supports. The Purchaser may elect to add requirements such as a wider stair width, lateral roof loading, and alternate runway designs that reduce ponding under the ladder.

#### C.3.8 ROOF DRAINS

#### C.3.8.1 Primary Roof Drains

• 1. Primary roof drains shall be sized and positioned to accommodate the rainfall rates specified on the Data Sheet, Line 33, while preventing the roof from accumulating a water level greater than design, without allowing the roof to tilt excessively or interfere with its operation. Roof drains shall be furnished attached to double-flanged, low-type nozzles on the tank shell with valves to be supplied by the Purchaser. A swing-type check valve shall be provided at the inlet of drains unless otherwise specified on the Data Sheet, Line 32. The drains shall be removable, if required by the Purchaser. Primary roof drains shall not be smaller than NPS 3 for roofs with a diameter less than or equal 36 m (120 ft) or smaller than NPS 4 for roofs with a diameter greater than 36 m (120 ft).

2. Primary roof drains shall be resistant to the tank's contents, or suitably coated, and shall be free from floating, kinking, or catching on any internal appurtenance or obstruction during operation, and from being crushed by landing legs on the bottom.

- 3. The Purchaser shall specify, on the Data Sheet, Line 32, the required primary roof drain. Acceptable types of primary roof drains are:
  - a. Manufacturer's standard drain,
  - b. Steel swing or pivot-jointed pipe drains, designed and packed for external pressure,
  - c. Stainless steel armored hose.

C-3

08

07

07

4. If supplied, rigid segments of drain piping attached to the bottom or the roof shall be guided, not rigidly attached, to allow for differential thermal expansion and plate flexing. The design shall avoid being damaged by the roof support legs or other obstructions.

5. Siphon-type and non-armored hose-type drains are not acceptable as primary roof drains.

6. Double-deck floating roofs up to 60 m (200 ft) in diameter shall have either a single center sump or a reversed-slope, topcenter deck with multiple sumps connected to a single drain line, depending on the design rainfall quantity and the roof configuration. Double-deck floating roofs larger than 60 m (200 ft) in diameter shall have a reversed-slope, top-center deck with multiple roof sumps having individual drain lines.

7. Inlets to single-deck primary roof drains shall have guarded trash stops or screens to stop debris from entering and obstructing the drain system. The Manufacturer shall provide isolation valves to stop product flow onto the roof when the check valve fails, unless specified otherwise on the Data Sheet, Line 32. Cut-off valves for this purpose shall have extension handles to permit actuation when puddles obstruct access to the valve.

8. When specified on the Data Sheet, Line 32, drains, sumps, check valves, and cut-off valves shall be protected from freeze damage by using special equipment designs. Any mechanically actuated cut-off valve shall permit actuation when the drain pipe is partially obstructed by chunk ice or slush (e.g., a ram valve or a metal-seated ball valve).

# C.3.8.2 Emergency Roof Drains

Double-deck roofs shall have a minimum of three open-ended emergency roof drains designed to provide drainage to prevent sinking the roof during severe rainfall events. Emergency drains are prohibited on single-deck floating roofs. Elevation of the emergency overflow drains shall be such that the outer rim cannot be completely submerged. These drains shall discharge at least 300 mm (1 ft) below the bottom of the roof and shall consist of open-ended pipes, braced as necessary to the roof structure. The drains shall be sized to handle the rainfall specified by the Purchaser, with a minimum diameter of NPS 4. The drains shall be sealed with a slit fabric seal or similar device that covers at least 90% of the opening that will reduce the product-exposed surfaces while permitting rainwater passage. The drains shall be fabricated from Schedule 80 pipe, or heavier, and fittings with 6 mm (1/4-in.) thick roof deck reinforcing plates.

## C.3.8.3 Out-of-Service Supplementary Drains

• Threaded pipe couplings and plugs with a 600-mm (24-in.) extension "T-bar" handle shall be provided as supplementary drains when the roof is resting on its legs and when the primary drains are inoperative. The number of drains shall be based on the specified rainfall rate (see Line 33 of the Data Sheet) and tank size. Fittings shall be at least NPS 4. Plugs shall have threads coated with a non-stick coating or anti-seize paste such as tetrafluoroethylene. One supplementary drain shall be located adjacent to the ladder track.

## C.3.9 VENTS

To prevent overstressing of the roof deck or seal membrane, automatic bleeder vents (vacuum breakers) shall be furnished for venting air to or from the underside of the deck when filling or emptying the tank. The Manufacturer shall determine and recommend the number and sizes of bleeder vents to be provided based on maximum filling and emptying rates specified. Each automatic bleeder vent (vacuum breaker vent) shall be closed at all times, except when required to be open to relieve excess pressure or vacuum, in accordance with the Manufacturer's design. Each automatic bleeder vent (vacuum breaker vent) shall be equipped with a gasketed lid, pallet, flapper, or other closure device.

# 07 C.3.10 SUPPORTING LEGS

• **C.3.10.1** Floating roofs shall be provided with either removable or non-removable legs. If removable legs are specified on the Data Sheet, Line 32, the legs shall be adjustable from the top side of the roof. and designed to be inserted through either fixed low legs or leg sleeves. Both low and high legs shall have cutouts (minimum of 19 mm  $[^{3}/_{4}$  in.] wide) at the bottom to permit drainage of trapped product. Removable covers shall be provided for leg sleeves or fixed low legs when the adjustable legs are removed. Adjustable legs shall be capped on top. If specified on the Data Sheet, Line 32, removable legs shall be provided with storage rack(s) on the top of the pontoon or deck appropriate for leg storage during normal operation or during maintenance. Rack quantity and location shall be determined by the Manufacturer to balance the roof live load and shall take into account the weight of the rolling ladder. The materials of construction shall be tabulated on the Data Sheet, Table 5. Removable legs shall be no smaller

C-4

than NPS 2. High legs shall have a stop to prevent their dropping through the low legs during installation. See C.1.3 regarding Purchaser specification of jurisdictional requirements.

**C.3.10.2** The legs and attachments shall be designed to support the roof and a uniform live load of at least 1.2 kPa (25 lbf/ft<sup>2</sup>). Where possible, the roof load shall be transmitted to the legs through bulkheads or diaphragms. Leg attachments to single decks shall be given particular attention to prevent failures at the points of attachment.

**C.3.10.3** Legs shall have settings for at least two levels:

a. A minimum setting determined by the Manufacturer to support the roof in the low-roof position while clearing mixers, nozzles, shell manholes, seals, and other components inside the tank by at least 75 mm (3 in.), and

• b. The minimum clearance of the roof in the high-roof position specified on the Data Sheet, Line 32.

When specified on the Data Sheet, Line 33, the two settings shall be field-adaptable to allow for uneven tank bottom settlement (i.e., constructed to permit small variations from the required positions for each leg).

• **C.3.10.4** Legs shall be Schedule 80 minimum and sleeves shall be Schedule 40 minimum unless specified otherwise on the Data Sheet, Table 5.

**C.3.10.5** Roof legs shall have matching steel landing pads continuous full-fillet welded to the tank bottom with minimum dimensions of 10-mm ( $^{3}/_{8}$ -in.) thickness by 350-mm (14-in.) diameter. The centerline of the legs shall coincide with the centerline of the landing pads.

**C.3.10.6** Roof support legs sleeves shall be installed plumb. Fixed legs or leg sleeves through single decks shall be reinforced.

**C.3.10.7** All fixed leg or leg sleeve penetrations through the deck plate (top and bottom for pontoon and double-deck roofs) shall be attached to the deck plate(s) with continuous fillet welds made from the top side, as a minimum.

- **C.3.10.8** If specified (see C.1.3 regarding Purchaser specification of jurisdictional requirements), covers and seals shall be provided at all openings.
- **C.3.10.9** When side entry mixers are specified and there is inadequate clearance between the roof and mixer components, rather than increasing the leg lengths, the pontoon (or double deck) shall be notched with a recessed pocket providing at least 75 mm (3 in.) mixer component clearance at the low-roof position.

#### C.3.11 ROOF MANHOLES

Roof manholes shall be provided for access to the tank interior and for ventilation when the tank is empty. Manholes shall be located around the roof to provide an effective pattern for access, lighting, and ventilation of the product storage interior. Each manhole shall have a minimum nominal diameter of 600 mm (24 in.) and shall have a liquid-tight gasketed, bolted cover equivalent to the cover shown in Figure 5-16.

| Nominal Tank Diameter D,<br>m (ft) | Minimum Number |
|------------------------------------|----------------|
| <i>D</i> ≤ 61 (200)                | 2              |
| 61 (200) < <i>D</i> ≤ 91 (300)     | 3              |
| 91 (300) < <i>D</i>                | 4              |

The minimum number of manholes shall be as follows:

# C.3.12 CENTERING AND ANTI-ROTATION DEVICES

**C.3.12.1** A guide pole shall be provided as an anti-rotation device for the floating roof. Locate the guide pole near the gauger's platform. The guide pole shall be capable of resisting the lateral forces imposed by the roof ladder, unequal snow loads, and wind loads.

**C.3.12.2** Guide pole sections shall be welded with full penetration butt welds. Backing strips are not permitted. Provision must be made for draining and venting of unslotted pipe. See 7.5.2 for guide pole erection tolerance requirements.

07

• **C.3.12.3** The guide pole shall have all required emission control devices around the well opening where it penetrates the roof, such as those described in C.3.14.1, Item (1) and specified on the Data Sheet, Line 32. (See C.1.3 regarding Purchaser specification of jurisdictional requirement.)

# C.3.13 PERIPHERAL SEALS

**C.3.13.1** See H.4.4 for descriptions of peripheral seal types, selection guidelines, and additional requirements. Peripheral seals are also referred to as rim seals.

- C.3.13.2 The Purchaser shall specify the seal materials in the Data Sheet, Table 5.
- **C.3.13.3** See C.1.3 regarding Purchaser specification of jurisdictional requirements. All seals shall be installed such that gaps between the seal and the shell of the tank meet the gap requirements of the jurisdiction for new construction, if any, and the Purchaser's gap requirements.

**C.3.13.4** Installation and removal of peripheral seals shall not require draining the tank.

C.3.13.5 The specific requirements for external floating roof peripheral seals are:

# 07 • Primary Seal

The type of primary seal may be controlled by jurisdiction regulations. Types generally used are mechanical shoe seals and liquidmounted (envelope) seals. Unless specified otherwise on the Data Sheet, Line 31, primary seals shall be the mechanical shoe type and shall be supplied and installed by the roof Manufacturer.

# Secondary Seal

The type of secondary seal may be controlled by jurisdiction regulations. If required by the Purchaser, a secondary seal shall be provided by the roof Manufacturer as specified on the Data Sheet, Line 31. Unless specified otherwise, secondary seals shall be the wiper type and shall be supplied and installed by the roof Manufacturer. The design of the secondary seal shall permit inspection of the primary seal without removal.

## **Mechanical Shoe Seals**

The following additional requirements apply to mechanical shoe seals, if used, and which may be used as primary or secondary seals:

The metal band (shoe) is typically formed as a series of sheets that are overlapped or joined together to form a ring that is held against the shell by a series of mechanical devices. For external floating roofs only, the mechanical shoe seal shoes shall extend at least 610 mm (24 in.) above and at least 100 mm (4 in.) into the liquid at the design flotation level, except when this type of seal is the secondary seal, installed above a primary seal. The "design flotation level" is defined as the roof position (under dead load conditions) for the specific gravity range from 0.7 to the design specific gravity on the Data Sheet.

# C.3.14 GAUGING DEVICE

07

• **C.3.14.1** Each roof shall be provided with gauging ports with caps (gauging wells or hatches) as indicated on the Data Sheet, Line 32 (see C.1.3 regarding Purchaser specification of jurisdictional requirement), with one port located adjacent to the gauger's platform and remote from regions of turbulent flow. These ports may be as follows:

• 1. Slotted guide pole gauge wells: These are vertical anti-rotation pipes that can be used for gauging. Unless specified otherwise by the Purchaser, the pipe shall have two rows of 25-mm by 300-mm (1-in. by 12-in.) vertical slots on staggered 280-mm (11-in.) centers located 180 degrees apart. Slots shall range from the maximum fill height to near the tank bottom. Holes may be provided in lieu of slots if holes are required by the Purchaser. Well and pole shall be equipped with all required emission control devices, which may include items such as a gasketed sliding well cover, and a pole wiper, as well as either a pole sleeve or a pole float and float wiper (see API *MPMS* 19.2 for requirements and illustrations of some of these devices). If there are no slots or holes located so as to allow the stored liquid to flow into the pole at liquid levels above the lowest operating level, then the pole is not considered slotted for purposes of air regulation compliance (even if there are slots or holes located below the lowest operating level).

2. Non-guide pole gauge wells: These shall be NPS 8 pipes projecting at least 150 mm (6 in.) above the roof's outer rim. For sample hatches without gauging apparatus, see C.3.15.3.

• **C.3.14.2** Each gauge well shall have a B16.5 Class 150 bolt pattern, flat-face pipe flange with a full-face gasket at its top, and shall be attached to a non-sparking cap. See C.1.3 regarding Purchaser specification of jurisdictional requirements.

**C.3.14.3** Each gauge well shall have a permanent gauge mark or tab just inside the cap on the pipe wall called a "reference point" or "knife edge."

- **C.3.14.4** When specified on the Data Sheet, Line 32, a datum plate shall be attached to the bottom of the slotted guide pole at the distance designated by the Purchaser.
- **C.3.14.5** If striking plates are specified on the Data Sheet, Line 32, they shall be provided on the tank bottom beneath the guide pole or under the gauge well if no guide pole is specified.
- **C.3.14.6** A gauger's platform shall be located at an elevation that remains above and clear of the roof, its sealing system, and foam dam even during an overflow event. The Purchaser shall specify the platform location on the Data Sheet Plan. The direction is typically upwind of the direction of the prevailing wind.

#### C.3.15 OTHER ROOF ACCESSORIES

#### C.3.15.1 Wax Scrapers

If wax scrapers are specified on the Data Sheet, Line 31, they shall be located such that the scraping action occurs below the liquid surface. Design of wax scrapers shall not interfere with bottom shell course accessories.

#### C.3.15.2 Foam Dams

• A foam dam, if specified on the Data Sheet, Line 32, shall be installed on top plates of pontoon or roof deck at least 300 mm (12 in.) but no more than 600 mm (24 in.) from the tank shell to contain foam fire-fighting solution. The foam dam shall be a minimum of 300 mm (12 in.) high and extend at least 50 mm (2 in.) above the lower of the secondary seal or any burnout panel, measured at its highest contact point with the shell. The dam shall be fabricated from 10 gauge (0.134 in.) or thicker steel plate with support braces installed on the side of the foam dam closest to the center of the tank at a circumferential spacing of approximately 1.5 m (5 ft) on center. Bottom of plate shall have 10-mm (<sup>3</sup>/<sub>8</sub>-in.) slotted weep holes. The dam shall be attached to the top deck plate by a continuous fillet weld on the foam side. See NFPA 11 for additional information regarding foam dams.

#### • C.3.15.3 Sample Hatches

If specified on the Data Sheet, Line 32, the Manufacturer shall install an NPS 8 sample hatch with funnel on the roof deck with remote access from the gauging platform. Manufacturer shall install a recoil reel on the gauging platform. The hatch shall be equipped with a self-closing liquid-tight cover that can be opened and closed from the gauger's platform.

#### C.3.15.4 Automatic Level Gauge

- a. Tanks shall have a ground-level reading, automatic float-level gauge, unless otherwise specified on the Data Sheet, Table 4.
  - b. Access for maintenance and repair shall be considered.
  - c. Level gauge shall be located such that the float well is away from any appurtenances that produce turbulence.
  - d. The bottom of the float well shall be approximately 150 mm (6 in.) above the tank bottom when the floating roof is at its lowest position.
- e. Gauge float wells shall be equipped with a gasketed cover that is bolted closed. See C.1.3 regarding Purchaser specification of jurisdictional requirements.

#### C.3.15.5 Side Entry Mixers

- a. Mixers shall conform to the Data Sheet, Line 26.
- b. Each mixer shall be installed in cover plates in dedicated shell nozzles or manholes.

#### C.4 Fabrication, Erection, Welding, Inspection, and Testing

**C.4.1** The applicable fabrication, erection, welding, inspection, and testing requirements of this Standard shall apply.

**C.4.2** Deck seams and other joints that are required to be liquid- or vapor-tight shall be tested for leaks by means of penetrating oil or any other method consistent with the methods described in this Standard for testing cone-roof seams and tank-bottom seams.

**C.4.3** The roof shall be given a flotation test while the tank is being filled with water and emptied. During this test, the upper side of the lower deck shall be examined for leaks. The appearance of a damp spot on the upper side of the lower deck shall be considered evidence of leakage.

**C.4.4** The upper side of the upper decks of pontoon and double-deck roofs shall be visually inspected for pinholes and defective welding.

**C.4.5** Drainpipe and hose systems of primary drains shall be tested with water at a pressure of 350 kPa (50 lbf/in.<sup>2</sup>) gauge. During the flotation test, the roof drain valves shall be kept open and observed for leakage of the tank contents into the drain lines.

# APPENDIX D—TECHNICAL INQUIRIES

# **D.1** Introduction

API will consider written requests for interpretations of API Std 650. API staff will make such interpretations in writing after consulting, if necessary, with the appropriate committee officers and committee members. The API committee responsible for maintaining API Std 650 meets regularly to consider written requests for interpretations and revisions and to develop new criteria dictated by technological development. The committee's activities in this regard are limited strictly to interpretations of the Std and to the consideration of revisions to the present standard on the basis of new data or technology. As a matter of policy, API does not approve, certify, rate, or endorse any item, construction, proprietary device, or activity, and accordingly, inquiries that require such consideration will be returned. Moreover, API does not act as a consultant on specific engineering problems or on the general understanding or application of the Standard. If, based on the inquiry information submitted, it is the opinion of the committee that the inquirer should seek other assistance, the inquiry will be returned with the recommendation that such assistance be obtained. All inquiries that cannot be understood because they lack information will be returned.

# D.2 Inquiry Format

**D.2.1** Inquiries shall be limited strictly to requests for interpretation of the current standard or to the consideration of revisions to the standard on the basis of new data or technology. Inquiries shall be submitted in the format described in D.2.2 through D.2.5.

**D.2.2** The scope of an inquiry shall be limited to a single subject or a group of closely related subjects. An inquiry concerning two or more unrelated subjects will be returned.

**D.2.3** An inquiry shall start with a background section that states the purpose of the inquiry, which would be either to obtain an interpretation of the Standard or to propose a revision to the Standard. The background section shall concisely provide the information needed for the committee's understanding of the inquiry (with sketches as necessary) and shall cite the applicable edition, revision, paragraphs, figures, and tables.

**D.2.4** After the background section, an inquiry's main section shall state the inquiry as a condensed, precise question, omitting superfluous background information and, where appropriate, posing the question so that the reply could take the form of "yes" or "no" (perhaps with provisos). This inquiry statement should be technically and editorially correct. The inquirer shall state what he or she believes the Standard requires. If the inquirer believes a revision to the Standard is needed, he or she shall provide recommended wording.

**D.2.5** The inquirer shall include his or her name and mailing address. The inquiry should be typed; however, legible handwritten inquiries will be considered. Inquiries should be submitted to the general manager of the Downstream Segment, American Petroleum Institute, 1220 L Street, N.W., Washington, D.C. 20005. Inquiries complying with the above format may be submitted by electronic mail to: <u>standards@api.org</u>.

# D.3 Technical Inquiry Responses

Following are selected responses to requests for interpretation API Std 650 requirements. A more extensive listing of interpretations can be found on the API website at <u>www.api.org</u> in the "Committees/Standards" section. The current version of API Std 650 may differ from the following inquiries, which were developed against prior editions/addenda, making the following inquiries possibly invalid. The paragraph references in the following have not been revised to the reflect the new paragraph numbering issued in the 11th Edition of API Std 650.

07

07

## SECTION 1.1 SCOPE

07 650-I-03/00 (Note: See 1.1.3 in the 11<sup>th</sup> Edition for revised rules pertaining to the use of SI units within the Standard.])

Question 1: Regarding the use of SI units, does API 650 allow either of the following?

- (1) Use of SI units throughout the design process.
- (2) Use the original U.S. Customary units with a hard conversion to SI units as a final step to the design process.

Reply 1: Yes, both are allowed.

- Question 2: When SI units are used, does API 650 require different dimensional details compared to previous API 650 Editions or USC unit details now specified in the 10th Edition?
- Reply 2: The committee currently has an agenda item to study this question. Any changes resulting from this agenda item will appear in a future addendum or edition to API 650.
- Question 3: When SI units are used, does API 650 require material thickness, material properties, configurations, etc. based solely on the SI units for a particular tank?
- Reply 3: The committee currently has an agenda item to study this question. Any changes resulting from this agenda item will appear in a future addendum or edition to API 650.
- Question 4: Does the wording of the Foreword to API 650 require a separate check of the USC results when SI unit are specified and after making such a check using the USC results if more restrictive?

Reply 4: No.

# SECTION 2.2 PLATES

# 650-I-09/01

| Question:   | For plate material certified by the Manufacturer to meet more than one specification, such as A 516 Grade 60 and A 516 Grade 70, which specification should be used when applying the rules in Table 2-3, Figure 2-1, and Section 2.2.9 of API 650? |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reply:      | Dual certification of material is not addressed in API 650, except in 2.1.4 and Appendix S.                                                                                                                                                         |
| 650-I-11/01 |                                                                                                                                                                                                                                                     |
| Question:   | Does API 650 require that the material in the bottom shell course and the annular plate be the same material specification?                                                                                                                         |
| Reply:      | API 650, Section 2.2.9.1, requires bottom plates welded to the shell to comply with Figure 2-1, but does not require the bottom shell course and annular plate to be the same material specification.                                               |
| 650-I-33/03 |                                                                                                                                                                                                                                                     |
| Question:   | Are roof materials required to meet the toughness requirements in 2.2.9?                                                                                                                                                                            |
| Reply:      | No. Refer to 2.2.9.1.                                                                                                                                                                                                                               |
| 650-I-06/04 |                                                                                                                                                                                                                                                     |
| Question 1: | Does the 0.01 in. thickness tolerance specified for plate in API 650, 2.2.1.2.3 apply to carbon and stainless coil product?                                                                                                                         |
| Reply 1:    | Yes. All requirements of the base document apply to an Appendix S tank unless specifically changed or waived by a statement in Appendix S. Refer to S.1.5.                                                                                          |
| Question 2: | When purchasing hot-rolled coil-processed steel for use as roof, shell, and/or bottom plate on a stainless tank, does the ASTM under-run tolerance apply?                                                                                           |
| Reply 2:    | The minimum of the ASTM tolerance or as specified in API 650, Sections 2.2.1.1, 2.2.1.2, or 2.2.1.3, shall apply.                                                                                                                                   |

## SECTION 2.5 PIPING AND FORGINGS

650-I-15/00

- Question: 1 For nozzles made from pipe materials, does API 650, Section 2.5.2 require that seamless pipe be used for nozzles in shells made from Group I, II, III, or IIIA materials?
- Reply 1: Yes, unless ASTM A 671 pipe is used.
- Question: 2: Does API 650, Section. 2.5.2 preclude the use of electric-resistance welded pipe meeting ASTM A 53, or electric-welded pipe meeting API 5L, for nozzles in shells made from Group IV, IVA, V, or VI materials, but allow use of electric-fusion-welded pipe nozzles made from ASTM A 671?

Reply 2: Yes.

# SECTION 3.1 JOINTS

| 650-I-11/02 |                                                                                                                                                                                                                                                                                                                                     |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question:   | Is there any allowance or provision to omit the top angle as required by API 650, 3.1.5.9e and 3.1.5.9f if we can show by calculation that the top compression area is sufficient.                                                                                                                                                  |
| Reply:      | No.                                                                                                                                                                                                                                                                                                                                 |
| 650-I-32/02 |                                                                                                                                                                                                                                                                                                                                     |
| Question:   | Referring to API 650, Section 3.1.5.3b, does the phrase "horizontal joints shall have a common vertical cen-<br>terline" mean that the mid-thickness of the plates align vertically?                                                                                                                                                |
| Reply:      | Yes. This is sometimes referred to as "centerline-stacked".                                                                                                                                                                                                                                                                         |
| 650-I-40/02 |                                                                                                                                                                                                                                                                                                                                     |
| Question:   | Does the lap weld of two bottom plates on the butt-welded annular plates have to be 12 in. away from the annular plates butt welds?                                                                                                                                                                                                 |
| Reply:      | No                                                                                                                                                                                                                                                                                                                                  |
| 650-I-37/03 |                                                                                                                                                                                                                                                                                                                                     |
| Question:   | Is it the intent of 3.1.3.5 to limit the maximum lap of a double welded lap joint to 2 in. and a single welded lap joint to 1 in. If not, is there a maximum lap requirement for single welded lap joint bottoms and roofs? Would this constraint, if any, also apply to bottom or roof repair or replacements governed by API 653. |
| Reply:      | No                                                                                                                                                                                                                                                                                                                                  |
| 650-I-49/03 |                                                                                                                                                                                                                                                                                                                                     |
| Question 1: | Section 3.1.3.5 of API 650 specifies minimum lap joint dimensions. Is there any limit on the maximum width of a lap joint?                                                                                                                                                                                                          |
| Reply 1:    | API Standard 650 does not address maximum lap.                                                                                                                                                                                                                                                                                      |
| Question 2: | Can a lap joint consisting of two (2) $1/4$ in. plates be lapped 3 in.?                                                                                                                                                                                                                                                             |
| Reply 2:    | Yes. Any lap that exceeds the minimum is acceptable. Refer to 3.1.3.5.                                                                                                                                                                                                                                                              |

# SECTION 3.5 ANNULAR BOTTOM PLATES

## 650-I-49/00

|    | Question:   | If a tank bottom slopes downward toward the center of the tank, are the annular plates required to lap over the bottom plates?                                                                                      |
|----|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 07 | Reply:      | This is not covered by API 650. (5.1.5.4 in the 11 <sup>th</sup> Edition covers this issue.)                                                                                                                        |
|    | 650-I-22/03 |                                                                                                                                                                                                                     |
|    | Question:   | Section 3.5.2 states the annular bottom plates shall have at least a 50 mm projection outside the shell. Is the reference point to calculate the projection located on the outside or inside diameter of the shell? |
|    | Reply:      | The reference point is on the outside diameter of the shell plate, as stated in 3.5.2.                                                                                                                              |

#### SECTION 3.6 SHELL DESIGN

#### 650-I-02/02

Background: On one recent contract, corrosion allowance of 0.25 in. was specified only on first shell course. The tank is 250 ft (diameter) by 53 ft high, with a liquid height of 48 ft 0 in. (external floater) and design specific gravity = 0.968. Detail design per the current edition shows that the second course thickness is controlled by hydrostatic test condition, which is incorrect. Investigation has proven that the current rules in API 650 for the variable design point method are not valid for variable corrosion allowance. The second course thickness calculated is more than the one-foot method will calculate, however, this is not stated in API 650. It is not unusual for a customer to specify variable corrosion allowance. The variable design point method is used only for large tanks and in some cases, as I have discovered, the second course will be calculated 1/16 in. thicker than needs to be when corrosion allowance is a significant percentage of first course. This extra thickness amounts to good some of money.

# Question: Is the variable design point method of shell design covered under API 650, Section 3.6.4 valid for tanks with variable corrosion allowance (i.e., different corrosion for each shell course)?

Reply: No.

# SECTION 3.7 SHELL OPENINGS

#### 650-I-33/99

| Question:   | Referring to API 650, Section 3.7.4, must all flush-type cleanouts and flush-type shell connections be stress-relieved regardless of the material used, the nozzle diameter, or the thickness of the shell insert plate?                                                                                    |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reply:      | Yes, see Section 3.7.4.1.                                                                                                                                                                                                                                                                                   |
| 650-I-53/99 |                                                                                                                                                                                                                                                                                                             |
| Question 1: | Per Section 3.7.4.2, for shell openings over NPS 12, if insert plates are not used to reinforce the shell opening, is the shell thickness a factor in determining if PWHT of the assembly is required?                                                                                                      |
| Reply 1:    | Yes.                                                                                                                                                                                                                                                                                                        |
| Question 2: | Regarding Section 3.7.4.2, is stress-relieving mandatory for the prefabricated assembly when the thickness of the thicknesd insert plate exceeds 1 in., irrespective of the shell opening size?                                                                                                             |
| Reply 2:    | No. The requirement applies only to NPS 12 or larger connections.                                                                                                                                                                                                                                           |
| 650-I-01/00 |                                                                                                                                                                                                                                                                                                             |
| Question:   | Does API 650, Section 3.7.4.3, allow stress-relieving nozzles, as described therein, after installation in the shell, using locally applied heaters?                                                                                                                                                        |
| Reply:      | No. The heat treatment must be performed prior to installation in the tank.                                                                                                                                                                                                                                 |
| 650-I-18/00 |                                                                                                                                                                                                                                                                                                             |
| Question 1: | Referencing Figure 3-14, does API 650 cover flush shell connections to be installed non-radially?                                                                                                                                                                                                           |
| Reply 1:    | No.                                                                                                                                                                                                                                                                                                         |
| Question 2: | Referencing Figure 3-15, are flush-type shell connections smaller than 8 in. covered in API 650?                                                                                                                                                                                                            |
| Reply 2:    | No.                                                                                                                                                                                                                                                                                                         |
| 650-I-20/00 |                                                                                                                                                                                                                                                                                                             |
| Question:   | Does API 650, Section 3.7.4, require that all flush-type cleanout fittings be stress-relieved?                                                                                                                                                                                                              |
| Reply:      | Yes, except as permitted by A.8.2.                                                                                                                                                                                                                                                                          |
| 650-I-32/00 |                                                                                                                                                                                                                                                                                                             |
| Question:   | Are square or rectangular manways allowed per API 650? If no, what specific section limits them?                                                                                                                                                                                                            |
| Reply:      | Yes. See Figure 3-14 for roof manway requirements.                                                                                                                                                                                                                                                          |
| 650-I-34/00 |                                                                                                                                                                                                                                                                                                             |
| Question:   | Does API 650, Section 3.7.4.2 require stress-relieving for materials in opening connections coming under Group I, II, III or III A, when the thickness of the shell is less than 1 in., but the sum of the shell plate thickness and the reinforcement plate thickness exceeds 1 in. for NPS 12 and larger? |
| Reply:      | No.                                                                                                                                                                                                                                                                                                         |
| 650-I-43/00 |                                                                                                                                                                                                                                                                                                             |
| Question:   | Referring to API 650, Section 3.7.4.2, must a prefabricated manhole assembly be stress relieved if the material is Group II (A 131, Grade B), the shell plate is 3/8 in. thick, and the opening is a 24-in. diameter manhole?                                                                               |
| Reply:      | No, because the shell is less than 1 in. thick.                                                                                                                                                                                                                                                             |

| 650-I-47/00 |                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question:   | Does API 650, Section 3.7.6.1, permit making a hot tapping connection on a blind flange on a nozzle in a tank?                                                                                                                                                                                                                                                                                                   |
| Reply:      | No. Refer to API 650, Section 3.8.3, for rules on installing a nozzle in a cover plate in a new tank. Refer to API 653, Section 7.14, for rules and guidance on hot tapping in an in-service tank.                                                                                                                                                                                                               |
| 650-I-48/00 |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Question:   | Does API 650 define a "neck" as piping or nozzle passing through the shell of the tank to the first flange, regard-<br>less of the length and configuration (such as an upturned pipe connected by an elbow and another short piece<br>pipe to the first flange) of this pipe?                                                                                                                                   |
| Reply:      | No. API does not define this term. Also, refer to Section 1.2, which defines the limits of applicability on piping.                                                                                                                                                                                                                                                                                              |
| 650-I-07/02 |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Question:   | Given a 2 in. nominal bore non-reinforced nozzle in a non stress-relieved shell greater than 0.5 in. thickness. Are the minimum distances for: (1) the outer edge of nozzle attachment weld to center line of a shell butt weld, either vertical or horizontal, and (2) the toe-to-toe distance of the fillet to the shell-to-bottom weld, required to be 10 in. (or 8x weld thickness) and 3 in., respectively? |
| Reply:      | Yes, for new tanks, see API 650, sections 3.7.3.1, 3.7.3.3, and Figure 3-22.                                                                                                                                                                                                                                                                                                                                     |
| 650-I-28/02 |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Question:   | When stress relieving the assembly defined in API 650 Sections 3.7.4.1, 3.7.4.2, and 3.7.4.3, is it permissible to perform a local heat treatment that includes part of a shell plate, instead of the whole shell plate, i.e., the portion around the connection at full width of shell plate?                                                                                                                   |
| Reply:      | No, however, there is no rule against shortening the plate length circumferentially, prior to installation of the fit-<br>ting or connection.                                                                                                                                                                                                                                                                    |
| 650-I-56/02 |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Question:   | Do the minimum thicknesses listed in Table 3-10, and calculated by the equations in section 3.7.7.6 have a corrosion allowance?                                                                                                                                                                                                                                                                                  |
| Reply:      | No. See Section 3.3.2.                                                                                                                                                                                                                                                                                                                                                                                           |
| 650-I-07/04 |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Question:   | Regarding Section 3.7.2 as it applies to Appendix F, when calculating the required shell thickness at the nozzle location is it necessary to use the joint efficiency factor that was used for calculating the required tank shell thickness?                                                                                                                                                                    |
| Reply:      | No.                                                                                                                                                                                                                                                                                                                                                                                                              |
| 650-I-09/04 |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Question 1: | Section 3.7.1.8 states "Reinforcement of shell openings that comply with API Standard 620 are acceptable alter-<br>natives." When using API 620 to calculate nozzle reinforcement does the entire API 620 standard apply?                                                                                                                                                                                        |
| Reply 1:    | No.                                                                                                                                                                                                                                                                                                                                                                                                              |
| Question 2: | API 620 limits the design temperature to 250°F. Can the rules for nozzle reinforcement be used for designing nozzle reinforcement for an API 650 Appendix M tank with a design temperature greater than 250°F?                                                                                                                                                                                                   |
| Reply 2:    | Yes.                                                                                                                                                                                                                                                                                                                                                                                                             |
| Question 3: | Can the rules for nozzle reinforcement in API 620 be used for designing nozzle reinforcement for a stainless steel API 650 Appendix S tank?                                                                                                                                                                                                                                                                      |
| Reply 3:    | Yes.                                                                                                                                                                                                                                                                                                                                                                                                             |

Question 4: When designing nozzle reinforcement for an API 650 tank using the rules of API 620, should the allowable stresses of API 650 be used?

Reply 4: Yes.

# SECTION 3.8 SHELL ATTACHMENTS AND TANK APPURTENANCES

| 650-I-51/00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question:   | API 650. Section 3.8.3.2, requires mixer manway bolting flanges to be 40% thicker than the values shown in Table 3-3. Footnote b under Table 3-4 requires the minimum manway neck thickness to be the lesser of the flange thickness or the shell plate. Is it therefore required that the minimum neck thickness on a mixer manway be the lesser of 140% of the flange thickness value in Table 3-3 or the shell thickness?                                                                                                                                                              |
| Reply:      | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 650-I-53/00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Question:   | Referring to API 650, is magnetic particle testing applicable for inspecting permanent attachments to the shell and at temporary attachment removal areas, when the material group is of Group I (A 283, Grade C)?                                                                                                                                                                                                                                                                                                                                                                        |
| Reply:      | No. See 3.8.1.2 and 5.2.3.5, in Addendum 1 to the 10th Edition of API 650.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 650-I-14/02 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Background: | Section 3.8.3.2 states: "a cover plate with a nozzle attachment for product-mixing equipment shall have a thickness at least 1.4 times greater than the thickness required by Table 3-3." Section 3.8.3.3 also states that "when cover plates (or blind flanges) are required for shell nozzles, the minimum thickness shall be that given for flanges in Table 3-8." There seems to be a conflict between these two sections in that when the thickness specified by Table 3-3 (at max liquid level) is increased by 40%, it is still thinner than the thickness specified by Table 3-8. |
| Question 1: | In determining the thickness of a cover plate and bolting flange in which product mixing equipment is installed, is there a conflict between 3.8.3.2 and 3.8.3.3.                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Reply 1:    | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Question 2: | If we are to adhere to 3.8.3.3, how are we to compute the new thickness of a cover plate whose integrity has been compromised by the addition of a hole into which a smaller adapter nozzle has been placed. Section 3.8.3.3 only directs the reader to Table 3-8 to find the thickness of unadulterated cover plates. No mention is made in 3.8.3.3 regarding how to compute the new thickness after a nozzle has been added.                                                                                                                                                            |
| Reply 2:    | API does not provide consulting on specific engineering problems or on the general understanding of its stan-<br>dards. We can only provide interpretations requirements that are stated in an API Standard or consider revisions<br>based on new data or technology.                                                                                                                                                                                                                                                                                                                     |

# SECTION 3.9 TOP AND INTERMEDIATE WIND GIRDERS

650-I-39/99

- Question 1: Is it acceptable for the primary (upper) bottom, of an API 650 Appendix I double-bottom tank to not project through the shell and to be attached only to the inside of the shell?
- Reply 1: No. API 650, Section 3.4.2 requires the bottom plate project at least 25 mm (1 in.) outside the toe of the outer shell-to-bottom weld. Section 3.5.2 requires the annular plate project at least 50 mm (2 in.) outside the shell. Furthermore, Section 3.1.5.7 requires the bottom be welded to the shell on both sides of the shell. The only way this can be accomplished is with a shell projection. Figure I-4 illustrates an acceptable double-bottom installation. (See the 11<sup>th</sup> Edition for revised rules.)

Question 2: What is the function of asphalt-impregnated board written as "optional"?

- Reply 2: The function of the asphalt-impregnated board is to minimize water infiltration underneath the tank bottom and corrosion of the portion of the tank bottom in direct contact with the concrete ringwall.
- Question 3: What is the expected effect on tank annular plates if the asphalt-impregnated board is not installed?
- Reply 3: See reply to Question 1.

# SECTION 3.10 ROOFS

#### 650-I-51/99

| Question 1: | In API 650, Section 3.10.5, is the calculated minimum thickness the actual required thickness that takes into |
|-------------|---------------------------------------------------------------------------------------------------------------|
|             | account the span of unstiffened cone plates with a total load of 45 lbf/ft <sup>2</sup> ?                     |

Reply 1: Yes, it is the minimum required thickness, exclusive of corrosion allowance, for the tank diameter and roof slope under consideration. It should be noted that the maximum allowable roof plate thickness limits the tank diameter as a function of the roof slope.

Question 2: How is the minimum thickness used?

Reply 2: API does not act as a consultant on specific engineering problems or on the general understanding or application of its standards. API's activities in regard to technical inquiries are limited strictly to interpretations of the standard and to the consideration of revisions to the present standard based on new data or technology.

#### 650-I-52/99

Question: Is welding of the main roof support members to the roof plates allowed by the standard?

Reply: No, see API 650, Section 3.10.2.3 that states that roof plates of supported cone roofs shall not be attached to the supporting members.

# SECTION 5.2 DETAILS OF WELDING

#### 650-I-11/00

| Question 1: | Does API 650 Section 5.2.1.10 require the use of low hydrogen electrodes when making manual horizontal welds between two shell plates when both plates are in Groups I-III, one plate is greater than 12.5 mm (0.5 in.) thick and the other plate is 12.5 mm (0.5 in.) thick or less?             |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reply 1:    | Yes.                                                                                                                                                                                                                                                                                              |
| Question 2: | Does API 650 Section 5.2.1.10 require the use of low hydrogen electrodes when making manual welds between the shell and bottom plates when both plates are in Groups I-III, the shell plate is greater than 12.5 mm (0.5 in.) thick and the tank bottom plate is 12.5 mm (0.5 in.) thick or less? |
| Reply 2:    | Yes. (The 11 <sup>th</sup> Edition modifies these rules.)                                                                                                                                                                                                                                         |
| Question 3: | Does API 650 Section 5.2.1.10 require low hydrogen electrodes when making welds between two annular plates that are 12.5 mm thick or less and are made of material in Groups I-III.                                                                                                               |
| Reply 3:    | No. This question will be referred to the appropriate Subcommittee to confirm this is the desired requirement.                                                                                                                                                                                    |
| 650-I-28/00 |                                                                                                                                                                                                                                                                                                   |
| Question 1: | Referring to API 650, Section 5.2.2.1, is the tank Manufacturer allowed to set the sequence of welding the floor plates, if the sequence has been found by the Manufacturer to yield the least distortion from shrinkage?                                                                         |
| Reply 1:    | Yes, see Section 5.2.2.1.                                                                                                                                                                                                                                                                         |
| Question 2: | If bottom plate seams are left open for shrinkage, then must the shell-to-bottom corner weld be practically com-<br>plete prior to making the welds left open for shrinkage compensation?                                                                                                         |
| Reply 2:    | Yes, see Section 5.2.2.2.                                                                                                                                                                                                                                                                         |
| 650-I-39/02 |                                                                                                                                                                                                                                                                                                   |
| Question:   | Can a tank be constructed when the ambient air temperature is less than 0°F?                                                                                                                                                                                                                      |
| Reply:      | Yes, providing that the base metal temperature meets the requirements of section 5.2.1.2.                                                                                                                                                                                                         |
| 650-I-04/04 |                                                                                                                                                                                                                                                                                                   |
| Question 1: | Can E-7024 electrodes be used to weld the shell-to-bottom weld when the thickness of the shell and bottom plates are both less than and both materials are from Groups I-III?                                                                                                                     |
| Reply 1:    | Yes. Refer to API 650, Section 5.2.1.10.                                                                                                                                                                                                                                                          |

#### SECTION 5.3 INSPECTING, TESTING, AND REPAIRS

650-I-16/00 **Ouestion:** Regarding the hydro-testing of a tank to be lined internally, does API 650 require the tank to be filled with water before and after the lining is installed, or only before the lining is installed, or only after the lining is installed? Reply: API 650 does not cover this issue. API does not provide consulting advice on issues that are not addressed in API 650. 650-I-21/00 Question 1: Does API 650 require any additional testing beyond the hydrostatic (water) test specified in Section 5.3.5 for a tank designed for product with specific gravity greater than 1? Reply 1: No. Section F.7.6 provides additional requirements for Appendix F tanks. The Purchaser may require more stringent testing as a supplemental requirement. **Ouestion 2**: Given the following conditions: nominal diameter of the tank-30 m, height of shell-18.4 m, roof-torospherical, specific gravity of content-1.32, top gauge pressure-0. Can the design calculation for test condition be executed on API 650 and Appendix F (design pressure on bottom level 233 CPA or more)? Reply 2: API does not provide consulting on specific engineering problems or on the general understanding and application of its standards. We can only provide interpretations of API 650 requirements. Please refer to Appendix D and restate your inquiry so that it poses a question on the meaning of a requirement in API 650. 650-I-22/00 Question: Referring to 5.3.6 and 5.3.7, is it permissible to weld insulation clips or pins, using a stud welding procedure, on a tank shell and/or roof after the hydrostatic test? Reply: No. 650-I-33/00 **Ouestion:** Does API 650, Section 5.3.5, prohibit starting the water filling for hydrostatic testing while completing some welded attachments on the last shell ring above the water level? No. (See 7.3.5(1) in the 11<sup>th</sup> Edition which gives new rules.) Reply: 650-I-12/01 Question 1: Does API 650 require that tolerances (plumbness/peaking bending/roundness) be checked after the construction of each shell course, rather than after the completion of the entire shell? These tolerances must be measured by the Purchaser's inspector at anytime prior to the hydrostatic test. See Sec-Reply 1: tions 4.2.3, 5.3.1.2, and 5.5.6 (7.5.1 in the 11<sup>th</sup> Edition). Question 2: If repairs are required to meet the specified tolerances, when must the repairs be made? Reply 2: API 650 does not address the timing of these repairs.

07

#### SECTION 5.4 REPAIRS TO WELDS

#### 650-I-48/99

- Question 1: If welds in a non-radiographed tank (e.g., per Appendix A) are examined by visual examination and determined to be defective, does API 650 permit the Purchaser to then require radiographic examination of the welds?
- Reply 1: Section 5.4.1 requires that the Purchaser's inspector approve the plan to resolve the problem. The ramifications of any upgrade to the NDE procedure originally required, such as radiographing the welds in this case, become a contractual matter.
- Question 2: For Purchaser-specified NDE, if required to resolve a visual finding, what acceptance criteria applies?
- Reply 2: This is a contractual matter not covered by API 650.

# SECTION 5.5 DIMENSIONAL TOLERANCES

| 650-I-24/00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Question:   | API 650 gives tolerances for plumbness and roundness, but these are related to the tank shell. Are there any defined tolerances on the tank roof, such as on the rim space dimension?                                                                                                                                                                                                                                                                                  |    |
| Reply:      | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| 650-I-29/00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| Question:   | Does the phrase in Section 5.5.5.2.a of API 650, "the top of the ring wall shall be level within $\pm 3$ mm ( $^{1}/_{8}$ in.) in any 9 m (30 ft) of the circumference", mean that the ring wall upper plane position is to be between two horizontal planes 6 mm apart or 3 mm apart?                                                                                                                                                                                 |    |
| Reply:      | 6 mm apart.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 650-I-40/00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| Question:   | For tanks built to API 650 and complying with Section 5.5 dimensional tolerances and subsequently commis-<br>sioned, do the minimum requirements of API 650 with respect to plumbness, banding, etc., still apply after a<br>tank has been placed in service?                                                                                                                                                                                                          |    |
| Reply:      | No. API 650 covers the design and construction of new tanks. Any tolerance rules that might apply after the tank has been placed in service, typically API 653 plus any supplemental owner requirements, are to be determined by the local jurisdiction and the tank owner. See API 653, 1.1.1, Section 8, and 10.5.2, for further information and for some examples.                                                                                                  |    |
| 650-I-07/01 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| Question 1: | API 650, Section 5.5.1, states that the tolerances as specified may be waived by (agreement between the Purchaser and the Manufacturer). If a tank does not meet the specified tolerance with regards to one specific area such as the roundness but has met the tolerance in relation to plumbness and local deviation as well as all the testing requirements such as radiography and hydro-testing, can the Manufacturer insist that the Purchaser accept the tank? |    |
| Reply 1:    | No. Agreement by both parties is required. (The Purchaser's waiver is required in the 11 <sup>th</sup> Edition.)                                                                                                                                                                                                                                                                                                                                                       | 07 |
| Question 2: | Since Section 5.5.1 states that the purpose of the tolerances as specified is for appearance and to permit proper functioning of floating roofs, is it therefore correct to conclude that the Purchaser has no right to refuse to accept a tank which has passed all tests required by API 650 but may have some out-of-tolerance in one or more areas?                                                                                                                |    |
| Reply 2:    | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Question 3: | An inspection measurement shows a maximum out of roundness of 28 mm on the uppermost shell course at three locations in a tank. Is this detrimental to the structural integrity of the tank?                                                                                                                                                                                                                                                                           |    |
| Reply 3:    | API can only provide interpretations of API 650 requirements or consider revisions to the standard based on new data or technology. API does not provide consulting on specific engineering problems or on the general understanding of its standards.                                                                                                                                                                                                                 |    |
| 650-I-08/01 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| Question:   | Does the 10th Edition of API 650 specify tolerances for the elevation and orientation of shell nozzles?                                                                                                                                                                                                                                                                                                                                                                |    |
| Reply:      | No. (See the 11 <sup>th</sup> Edition for elevation tolerances.)                                                                                                                                                                                                                                                                                                                                                                                                       | 07 |

### SECTION 6 METHODS OF INSPECTING JOINTS

650-I-47/99

- Question: Does API 650 allow the Purchaser to require radiographic examination as a requirement for acceptance after fabrication on a tank that is not required to be radiographed per API 650 rules?
- Reply: API 650 does not prohibit the Purchaser from specifying additional requirements. These are contractual issues outside the scope of the document.

# SECTION 6.1 RADIOGRAPHIC METHOD

| 650-I-10/02 |                                                                                                                                                                                                                                                                 |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question:   | For repaired regions made after spot radiography detects defective welding, is it correct that according to 6.1.7.2 that only the original spot radiography requirements apply no matter the number of original spot and tracer radiographs taken?              |
| Reply:      | Yes, because the post-repair inspection procedure is spot radiography as was the original inspection requirement.                                                                                                                                               |
| Section 7.2 | Qualification of Welding Procedures                                                                                                                                                                                                                             |
| 650-I-23/00 |                                                                                                                                                                                                                                                                 |
| Question:   | Referring to 7.2.2, 2.2.8, and 2.2.9, for the fabrication and welding of shell nozzles made from pipe and forgings meeting toughness requirements of 2.5.5, is it mandatory to have impact tests on weld procedure qualifications for welding these components? |
| Reply:      | Yes, if these materials are welded to any of the components listed in 2.2.9.1 and the design metal temperature is below $20^{\circ}$ F. See 7.2.2.4.                                                                                                            |
| 650-I-27/03 |                                                                                                                                                                                                                                                                 |
| Question:   | For the purposes of determining radiographic requirements for tanks can tank shell plate thickness of 0.5 inch thickness be considered to be 0.375 inch thick as outlined in 6.1?                                                                               |
| Reply:      | No. Refer to Section 6.1.2.2b.                                                                                                                                                                                                                                  |
| 650-I-34/03 |                                                                                                                                                                                                                                                                 |
| Question:   | Do the requirements of API 650 section 6.1.2.2 apply to welds that will be in the vertical position when the tank is in service, but are made in the flat or horizontal position?                                                                               |
| Reply:      | Yes. The requirements of 6.1.2.2 apply to welds that will be in the vertical position when the tank is in service.                                                                                                                                              |
| 650-I-42/03 |                                                                                                                                                                                                                                                                 |
| Question 1: | When annular plates are joined with single-welded butt joints, is one radiograph required at each of 50% of the total count of radial joints?                                                                                                                   |
| Reply 1:    | Yes. See Section 6.1.2.9 (b).                                                                                                                                                                                                                                   |
| Question 2: | When annular plates are joined with single-welded butt joints, is a radiograph required at each radial joint with the radiograph length covering 50% of the total length of the weld?                                                                           |
| Reply 2:    | No. The 50% factor is applied to the number of joints, not the length of joint. See Section 6.1.2.9 (b).                                                                                                                                                        |

### SECTION 8.1 NAMEPLATES

### 650-I-49/00

- Question: For a tank built to the 10th Edition, 1st Addendum, of API 650, is it acceptable to mark "November 1998" in the Edition box and "X" in the "Revision No." box on the nameplate?
- Reply: No. The marks should be the "month and year" of the Edition in the first box, and the number of the addendum revision in the second box (e.g., 0, 1, 2).

### SECTION 8.3 CERTIFICATION

Yes.

#### 650-I-16/02

Background: Secondary containment rules for petroleum tanks are almost universally applied. Most often these rules are satisfied by constructing dike or berm walls around a tank farm. However, due to space or other regulatory limitations, the owner may wish to install double wall tanks where the outer tank would contain the volume of the inner tank should a catastrophic failure occur. In this case, the outer wall would have to be designed to contain the hydrostatic pressure of the liquid from the inner tank. In addition, consideration of detailed design for piping flexibility passing through the outer wall would need to be made.

Question: Is it permissible to construct a tank within a tank and certify both tanks to API 650 Section 8.3?

Reply:

# APPENDIX C EXTERNAL FLOATING ROOFS

650-I-12/2

- Question 1: Referring to Section C.3.9, Must the thermal in-breathing/out-breathing requirements as per API Std 2000 also need to be considered during design of bleeder vents? (i.e., during deciding size and quantity of bleeder vents, so that there will not be any overstressing of roof deck or seal membrane).
- Reply 1: No, C.3.9 does not require venting per API Std 2000.
- Question 2: If answer to Question 2 is yes, would it not be worthwhile to clarify the same appropriately in Section C.3.9 of API 650?

Reply 2: See Reply 1.

### APPENDIX E SEISMIC DESIGN OF STORAGE TANKS

650-I-44/99 (See Appendix E in the 11<sup>th</sup> Edition for new rules pertaining to seismic design.])

- Question 1: Do the changes to Chapter 16, *Division IV Earthquake Design*, of the *1997 Uniform Building Code* affect API 650, Appendix E requirements?
- Reply 1: The committee is currently considering changes to Appendix E as a result of the revisions to the *Uniform Build-ing Code*. Approved changes will appear in future addenda of API 650.
- Question 2: Why is the Seismic Zone Map of the United States shown in API 650, Appendix E slightly different for that shown on page 2-37 of the *1997 Uniform Building Code*, Figure 16-2?
- Reply 2: The committee is currently considering changes to Appendix E as a result of the revisions to the *Uniform Build-ing Code*. Approved changes will appear in a future addendum or edition of API 650.

650-I-45/99 (See Appendix E in the 11<sup>th</sup> Edition for new rules pertaining to seismic design.])

- Question: Is the value obtained from the equation in E.4.2 equal to the dimension measured radially inward from the interior face of the shell to the end of the annular plate (the "end of the annular plate" is defined here as the inner edge/perimeter of the typical lap joint between the bottom and the annular plate)? (See E.6.2.1.2 in the 11<sup>th</sup> Edition.)
- Reply: No, the dimension is measured radially inward from the interior face of the shell to the end of the annular plate, defined as the inner edge of the annular plate. The extent of the overlap of the bottom plate on the annular plate is not a significant consideration.

650-I-25/00 (See Appendix E in the 11<sup>th</sup> Edition for new rules pertaining to seismic design.)

07

Question 1: Should the metric formula for calculating the natural period of the first sloshing mode in Section E.3.3.2 read:

$$T = k(D^{0.5}) \left(\frac{1}{0.5521}\right)$$

Reply 1:Yes. This correction will appear in Addendum 2 of API 650. (See E.4.5 in the 11<sup>th</sup> Edition.)07

Question 2: Should the metric formula for calculating the width of the thicker plate under the shell in Section E.4.2 read:

 $0.1745 \times 10^{-3} W_L / GH(m)$ 

Reply 2: Yes. This correction will appear in Addendum 2 of API 650.

Question 3:Is the following revision to Section E.5.1 appropriate?<br/>"When  $M/[D^2(w_f + w_I)]$  is greater than 1.57 or when b/1000t (b/12t) is greater than  $F_a$  (see E.5.3), the tank is<br/>structurally unstable."Reply 3:Yes. This correction will appear in Addendum 2 of API 650.Question 4:Is the following revision to Section E.5.3 appropriate?<br/>"The maximum longitudinal compressive stress in the shell b/1000t (b/12t), shall not exceed the maximum<br/>allowable stress,  $F_a$ , determined by the following formulas for  $F_a$ , which take in to account..."Papely 4:Yes. This correction was made in Addendum 1 of API 650, relevand in March 2000.

07

# APPENDIX F DESIGN OF TANKS FOR SMALL INTERNAL PRESSURES

|    | 650-I-12/00 |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Question:   | Assume a tank is to be designed to API 650, Appendix F.1.2, (the internal pressure will be greater than the weight of the roof plates but less than the weight of the shell, roof and framing). In addition, assume anchors are to be added for some reason other than internal pressure, for example: seismic, wind, sliding, overturning or user mandated. Does the tank have to be designed to API 650 Section F.7? |
| 07 | Reply:      | No, only Sections F.2 through F.6 apply. Section 3.11 applies to anchors that resist wind overturning when spec-<br>ified by the Purchaser. Appendix E applies to anchors provided for seismic. API's Subcommittee on Pressure<br>Vessels and Tanks is currently reviewing API 650 anchor requirements. (F.2 has been deleted.)                                                                                        |
|    | 650-I-15/02 |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | Question 1: | Is the " $W$ " in 3.10.2.5.3 referring to the same " $W$ " in F.4.2?                                                                                                                                                                                                                                                                                                                                                   |
| 07 | Reply 1:    | Yes. (Paragraph 3.10.2.5.3 has been deleted.)                                                                                                                                                                                                                                                                                                                                                                          |
| _  | Question 2: | Does "W" in F.4.2 include the weight of the bottom of the tank?                                                                                                                                                                                                                                                                                                                                                        |
| 07 | Reply 2:    | No. (" $W$ " has been revised to " $D_{LS}$ " in the 11 <sup>th</sup> Edition.)                                                                                                                                                                                                                                                                                                                                        |
|    | Question 3: | Is the "A" in 3.10.2.5.3 referring to the same "A" in F.4.1 and cross-hatched area shown in Figure F-2?                                                                                                                                                                                                                                                                                                                |
|    | Reply 3:    | Yes.                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | 650-I-25/03 |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | Question 1: | If internal pressure inside tank does not exceed the weight of the shell, roof, and attached framing, but exceeds the weight of the roof plates (Basic Design plus Appendix F.1 to F.6), must $H$ be increased by the quantity $P/12G$ ?                                                                                                                                                                               |
|    | Reply 1:    | No.                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | 650-I-30/03 |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | Question:   | For an anchored tank, can the $P_{max}$ calculation in F.4.2 be exceeded by the design pressure of the tank?                                                                                                                                                                                                                                                                                                           |
|    | Reply:      | Yes.                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    |             |                                                                                                                                                                                                                                                                                                                                                                                                                        |

# APPENDIX H INTERNAL FLOATING ROOFS

| 650-I-50/99<br>Question 1:<br>Reply 1:<br>Question 2:<br>Reply 2: | Does API 650 require that floating roof seals be installed prior to hydro-testing the tank?<br>No. (See H.4.4.4 in the 11 <sup>th</sup> Edition for revised rules.)<br>Is a roof seal considered a major component of the tank?<br>API 650 does not use the term "major component."                                                                                                                                                                    |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 650-I-10/00                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Question:                                                         | <ul> <li>Does API 650 provide a way to obtain a frangible roof connection on a small tank describe as follows?</li> <li>Diameter: 8 ft</li> <li>Height: 10 ft</li> <li>Cross sectional area of the roof-to-shell junction "A": larger than that allowed by the equation in Section 3.10.</li> </ul>                                                                                                                                                    |
| Reply:                                                            | No. The API Subcommittee on Pressure Vessels and Tanks is currently reviewing the design criteria for frangible roof joints. You may wish to review API Publ 937 <i>Evaluation of Design Criteria for Storage Tanks with Frangible Roof Joints.</i>                                                                                                                                                                                                    |
| 650-I-38/02                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Question 1:                                                       | Is the reference to NFPA 11 found in footnote number 1 under item H.2.1 meant to establish that non-perforated honeycomb floating roofs are the exclusively permitted type to be used if an H.2.2.f type floating roof is being considered?                                                                                                                                                                                                            |
| Reply 1:                                                          | No. The reference to NFPA 11 is solely related to the design of a fire suppression system (if used).                                                                                                                                                                                                                                                                                                                                                   |
| Question 2:                                                       | Per H.4.1.7 "Inspection openings shall be located above the liquid level and closed compartments shall be capable of being resealed in the field after periodic inspection (to prevent liquid or vapor entry)." In the case of float-<br>ing roofs type H.2.2.f, does "inspection openings" refer to screwed couplings, test plug or similar devices, or is it<br>implied by "inspection openings" the disassembling in the field of floation modules? |
| Reply 2:                                                          | Yes, "inspection openings" in Section H.4.1.7 refers to screwed couplings, test plugs or similar devices and not to the disassembling in the field of flotation modules.                                                                                                                                                                                                                                                                               |
| Question 3:                                                       | Does note c of API 650 Table 3-6 allow the customer to locate nozzles lower than allowed by the weld spacing requirements of 3.7.3?                                                                                                                                                                                                                                                                                                                    |
| Reply 3:                                                          | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 650-I-09/03                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Question:                                                         | Does H.4.2.2 require internal floating roofs be designed to support a uniform load of 500 lbf/in. <sup>2</sup> ?                                                                                                                                                                                                                                                                                                                                       |
| Reply:                                                            | The 500 lb force is to be applied as a moving concentrated load over one square foot located anywhere on the roof. Refer to H.4.2.5 for distributed uniform loading.                                                                                                                                                                                                                                                                                   |

### APPENDIX J SHOP-ASSEMBLED STORAGE TANKS

### 650-I-05/02

Question: Referencing Appendix J, does the roof plate material have to meet the same toughness requirements as the shell plate on tanks located in -40°F areas? (Assume F.7 is not applicable.)

Reply: This is not addressed in API 650.

### 650-I-18/02

Background: Many times small tanks with diameters less than 10 ft are specified for construction in accordance with API 650. A review of API 650, Section 3.6.1.1, shows the minimum thickness to be <sup>3</sup>/<sub>16</sub> in. and 3.6.1.2 indicates that the minimum shell plate width is 72 in. Appendix J states that the maximum tank diameter of a tank constructed to API 650 is 20 ft.
Question: Is there a minimum diameter or height or volume for which new tanks constructed to API 650 apply?
Response: No.

650-I-36/02

Question: On an API 650 shop-fabricated tank (Appendix J), can a reinforcing plate cross a shell weld?

Reply: Yes. See J.3.6.1 and 3.7.

### APPENDIX P ALLOWABLE EXTERNAL LOADS ON SHELL OPENINGS

#### 650-I-12/04

- Question 1: If the nozzle has a compensating pad to Table 3-6, does the code require a check to be made on stress levels at the edge of the pad and if so can WRC 297 be used with the stress reduction factor applied from P.3?
- Reply 1: No.
- Question 2: If the nozzle neck meets the requirements of Table 3-7, are any further checks required to find stress levels in the nozzle neck and if so can WRC 297 be used with the stress reduction factor applied from P.3?
- Reply 2: No.

# APPENDIX S AUSTENITIC STAINLESS STEEL STORAGE TANKS

### 650-I-19/00

| Question:   | In my opinion, the formulas given for shell thickness calculation for stainless steel materials in Appendix S, Par. S.3.2 include the corrosion allowance (CA) at the wrong place. The formulas should consist of two parts, the second part should be the CA without the division by. |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reply:      | Yes, you are correct. This typographical error was corrected in Addendum 1 to API 650, 10th Edition.                                                                                                                                                                                   |
| 650-I-28/03 |                                                                                                                                                                                                                                                                                        |
| Question:   | Should the bottom plates be for stainless tanks be $1/4$ in. thick?                                                                                                                                                                                                                    |
| Reply:      | No. The $3/_{16}$ in. minimum bottom plate thickness for stainless steel is intentional and is not related to the joint efficiency.                                                                                                                                                    |

# APPENDIX E—SEISMIC DESIGN OF STORAGE TANKS

# Part I—Provisions

# E.1 Scope

This appendix provides minimum requirements for the design of welded steel storage tanks that may be subject to seismic ground motion. These requirements represent accepted practice for application to welded steel flat-bottom tanks supported at grade. The fundamental performance goal for seismic design in this appendix is the protection of life and prevention of catastrophic collapse of the tank. Application of this Standard does not imply that damage to the tank and related components will not occur during seismic events.

This appendix is based on the allowable stress design (ASD) methods with the specific load combinations given herein. Application of load combinations from other design documents or codes is not recommended, and may require the design methods in this appendix be modified to produce practical, realistic solutions. The methods use an equivalent lateral force analysis that applies equivalent static lateral forces to a linear mathematical model of the tank based on a rigid wall, fixed based model.

The ground motion requirements in this appendix are derived from ASCE 7, which is based on a maximum considered earthquake ground motion defined as the motion due to an event with a 2% probability of exceedance within a 50-year period (a recurrence interval of approximately 2,500 years). Application of these provisions as written is deemed to meet the intent and requirements of ASCE 7. Accepted techniques for applying these provisions in regions or jurisdictions where the regulatory requirements differ from ASCE 7 are also included.

The pseudo-dynamic design procedures contained in this appendix are based on response spectra analysis methods and consider two response modes of the tank and its contents—impulsive and convective. Dynamic analysis is not required nor included within the scope of this appendix. The equivalent lateral seismic force and overturning moment applied to the shell as a result of the response of the masses to lateral ground motion are determined. Provisions are included to assure stability of the tank shell with respect to overturning and to resist buckling of the tank shell as a result of longitudinal compression.

The design procedures contained in this appendix are based on a 5% damped response spectra for the impulsive mode and 0.5% damped spectra for the convective mode supported at grade with adjustments for site-specific soil characteristics. Application to tanks supported on a framework elevated above grade is beyond the scope of this appendix. Seismic design of floating roofs is beyond the scope of this appendix.

Optional design procedures are included for the consideration of the increased damping and increase in natural period of vibration due to soil-structure interaction for mechanically-anchored tanks.

Tanks located in regions where  $S_1$  is less than or equal to 0.04 and  $S_S$  less than or equal to 0.15, or the peak ground acceleration for the ground motion defined by the regulatory requirements is less than or equal to 0.05*g*, need not be designed for seismic forces; however, in these regions, tanks in SUG III shall comply with the freeboard requirements of this appendix.

07

• Dynamic analysis methods incorporating fluid-structure and soil-structure interaction are permitted to be used in lieu of the procedures contained in this appendix with Purchaser approval and provided the design and construction details are as safe as otherwise provided in this appendix.

# E.2 Definitions and Notations

### E.2.1 DEFINITIONS

**E.2.1.1** active fault: A fault for which there is an average historic slip rate of 1 mm (0.4 in.) per year or more and geologic evidence of seismic activity within Holocene times (past 11,000 years).

**E.2.1.2** characteristic earthquake: An earthquake assessed for an active fault having a magnitude equal to the best-estimate of the maximum magnitude capable of occurring on the fault, but not less than the largest magnitude that has occurred historically on the fault.

**E.2.1.3 maximum considered earthquake (MCE):** The most severe earthquake ground motion considered in this appendix.

**E.2.1.4 mechanically-anchored tank:** Tanks that have anchor bolts, straps or other mechanical devices to anchor the tank to the foundation.

**E.2.1.5** self-anchored tank: Tanks that use the inherent stability of the self-weight of the tank and the stored product to resist overturning forces.

**E.2.1.6** site class: A classification assigned to a site based on the types of soils present and their engineering properties as defined in this appendix.

#### 07 E.2.2 NOTATIONS Lateral acceleration coefficient, %g A $A_c$ Convective design response spectrum acceleration coefficient, %g Acceleration coefficient for sloshing wave height calculation, %g 07 $A_{f}$ Impulsive design response spectrum acceleration coefficient, %g $A_i$ $A_{v}$ Vertical earthquake acceleration coefficient, %g Deflection amplification factor, $C_d = 2$ 07 $C_d$ $C_i$ Coefficient for determining impulsive period of tank system D Nominal tank diameter, m (ft) Total thickness $(100 - d_s)$ of cohesive soil layers in the top 30 m (100 ft) $d_c$ 07 Thickness of any soil layer i (between 0 and 30 m [100 ft]) $d_i$ Total thickness of cohesionless soil layers in the top 30 m (100 ft) $d_s$ Elastic Modulus of tank material, MPa (lbf/in.<sup>2</sup>) Ε 08 $F_a$ Acceleration-based site coefficient (at 0.2 sec period) $F_c$ Allowable longitudinal shell-membrane compression stress, MPa (lbf/in.<sup>2</sup>) 08 Minimum specified yield strength of shell course, MPa (lbf/in.<sup>2</sup>) 07 $F_{tv}$ $F_{v}$ Velocity-based site coefficient (at 1.0 sec period) Minimum specified yield strength of bottom annulus, MPa (lbf/in.<sup>2</sup>) 08 $F_{y}$ GSpecific gravity Acceleration due to gravity in consistent units, $m/sec^2$ (ft/sec<sup>2</sup>) g Effective specific gravity including vertical seismic effects = $G(1 - 0.4A_v)$ $G_e$ Maximum design product level, m (ft) HThickness of soil, m (ft) $H_S$ Ι Importance factor coefficient set by seismic use group JAnchorage ratio K Coefficient to adjust the spectral acceleration from 5% - 0.5% damping = 1.5 unless otherwise specified Required minimum width of thickened bottom annular ring measured from the inside of the shell m (ft) L Selected width of annulus (bottom or thickened annular ring) to provide the resisting force for self anchorage, measured $L_s$ from the inside of the shell m (ft) 08 Thickness, excluding corrosion allowance, mm (in.) of the bottom annulus under the shell required to provide the resistt<sub>a</sub> ing force for self anchorage. The bottom plate for this thickness shall extend radially at least the distance, L, from the inside of the shell. This term applies for self-anchored tanks only. Ringwall moment-Portion of the total overturning moment that acts at the base of the tank shell perimeter, Nm (ft-lb) $M_{rw}$ Slab moment (used for slab and pile cap design), Nm (ft-lb) $M_s$ 07 NStandard penetration resistance, ASTM D 1586 08 $\overline{N}$ Average field standard penetration test for the top 30 m (100 ft)

- Number of equally-spaced anchors around the tank circumference  $n_A$  $N_c$ Convective hoop membrane force in tank shell, N/mm (lbf/in.)  $N_{ch}$ Average standard penetration of cohesionless soil layers for the top 30 m (100 ft)  $N_h$ Product hydrostatic membrane force, N/mm (lbf/in.)  $N_i$ Impulsive hoop membrane force in tank shell, N/mm (lbf/in.)  $P_A$ Anchorage attachment design load, N (lbf) 07  $P_{AB}$ Anchor design load, N (lbf) Pf Overturning bearing force based on the maximum longitudinal shell compression at the base of shell, N/m (lbf/ft) PIPlasticity index, ASTM D 4318 0 Scaling factor from the MCE to the design level spectral accelerations; equals  $\frac{2}{3}$  for ASCE 7 R Force reduction coefficient for strength level design methods  $R_{wc}$ Force reduction coefficient for the convective mode using allowable stress design methods  $R_{wi}$ Force reduction factor for the impulsive mode using allowable stress design methods Mapped, maximum considered earthquake, 5% damped, spectral response acceleration parameter at a period of zero  $S_0$ seconds (peak ground acceleration for a rigid structure), %g  $S_1$ Mapped, maximum considered earthquake, 5% damped, spectral response acceleration parameter at a period of one second, %g  $S_a$ The 5% damped, design spectral response acceleration parameter at any period based on mapped, probabilistic procedures, %g  $S_{a}^{*}$ The 5% damped, design spectral response acceleration parameter at any period based on site-specific procedures, %g  $S_{a0}^{*}$ The 5% damped, design spectral response acceleration parameter at zero period based on site-specific procedures, %g  $S_{D1}$ The design, 5% damped, spectral response acceleration parameter at one second based on the ASCE 7 methods, equals  $QF_v S_1$ , %g 11  $S_{DS}$ The design, 5% damped, spectral response acceleration parameter at short periods (T = 0.2 seconds) based on ASCE 7 methods, equals  $Q F_a S_s$ , %g  $S_P$ Design level peak ground acceleration parameter for sites not addressed by ASCE methods. [See EC Example Problem 2 when using "Z" factor from earlier editions of API 650 and UBC. Since 475 year recurrence interval is basis of this peak ground acceleration, Q = 1.0 (no scaling).]  $S_S$ Mapped, maximum considered earthquake, 5% damped, spectral response acceleration parameter at short periods (0.2 sec), %g Undrained shear strength, ASTM D 2166 or ASTM D 2850  $S_{\mathcal{U}}$ Average undrained shear strength in top 30 m (100 ft) Su t Thickness of the shell ring under consideration, mm (in.) Thickness, excluding corrosion allowance, mm (in.) of the bottom annulus under the shell required to provide the ta resisting force for self anchorage. The bottom plate for this thickness shall extend radially at least the distance, L, from the inside of the shell. this term applies for self-anchored tanks only. Thickness of tank bottom less corrosion allowance, mm (in.)  $t_b$  $t_s$ Thickness of bottom shell course less corrosion allowance, mm (in.) Equivalent uniform thickness of tank shell, mm (in.) t<sub>u</sub>
- T Natural period of vibration of the tank and contents, seconds

E-3

08

11

| Ξ-4 | ŀ                | API STANDARD 650                                                                                                                                                       |
|-----|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $T_C$            | Natural period of the convective (sloshing) mode of behavior of the liquid, seconds                                                                                    |
|     | $T_i$            | Natural period of vibration for impulsive mode of behavior, seconds                                                                                                    |
|     | $T_L$            | Regional-dependent transition period for longer period ground motion, seconds                                                                                          |
|     | $T_0$            | $0.2 F_v S_I / F_a S_S$                                                                                                                                                |
|     | $T_S$            | $F_{v}S_{I}/F_{a}S_{S}$                                                                                                                                                |
|     | V                | Total design base shear, N (lbf)                                                                                                                                       |
|     | $V_c$            | Design base shear due to the convective component of the effective sloshing weight, N (lbf)                                                                            |
|     | $v_s$            | Average shear wave velocity at large strain levels for the soils beneath the foundation, m/s (ft/s)                                                                    |
|     | $\overline{v}_s$ | Average shear wave velocity in top one 30 m (100 ft), m/s (ft/s)                                                                                                       |
|     | Vi               | Design base shear due to impulsive component from effective weight of tank and contents, N (lbf)                                                                       |
|     | W                | Moisture content (in %), ASTM D 2216                                                                                                                                   |
|     | wa               | Force resisting uplift in annular region, N/m (lbf/ft)                                                                                                                 |
|     | W <sub>AB</sub>  | Calculated design uplift load on anchors per unit circumferential length, $^{ m N/_m}$ (lbf/ft)                                                                        |
|     | $W_c$            | Effective convective (sloshing) portion of the liquid weight, N (lbf)                                                                                                  |
|     | $W_{\rm eff}$    | Effective weight contributing to seismic response                                                                                                                      |
|     | $W_f$            | Weight of the tank bottom, N (lbf)                                                                                                                                     |
|     | W <sub>fd</sub>  | Total weight of tank foundation, N (lbf)                                                                                                                               |
|     | $W_g$            | Weight of soil directly over tank foundation footing, N (lbf)                                                                                                          |
|     | W <sub>i</sub>   | Effective impulsive portion of the liquid weight, N (lbf)                                                                                                              |
|     | W <sub>int</sub> | Calculated design uplift load due to product pressure per unit circumferential length, N/m (lbf/ft)                                                                    |
|     | $W_p$            | Total weight of the tank contents based on the design specific gravity of the product, N (lbf)                                                                         |
|     | W <sub>r</sub>   | Total weight of fixed tank roof including framing, knuckles, any permanent attachments and 10% of the roof desig snow load, N (lbf)                                    |
|     | W <sub>rs</sub>  | Roof load acting on the tank shell including 10% of the roof design snow load, N (lbf)                                                                                 |
|     | w <sub>rs</sub>  | Roof load acting on the shell, including 10% of the specified snow load N/m (lbf/ft)                                                                                   |
|     | Ws               | Total weight of tank shell and appurtenances, N (lbf)                                                                                                                  |
|     | $W_T$            | Total weight of tank shell, roof, framing, knuckles, product, bottom, attachments, appurtenances, participating snor<br>load, if specified, and appurtenances, N (lbf) |
|     | w <sub>t</sub>   | Tank and roof weight acting at base of shell, N/m (lbf/ft)                                                                                                             |
|     | X <sub>c</sub>   | Height from the bottom of the tank shell to the center of action of lateral seismic force related to the convective liqu force for ringwall moment, m (ft)             |
|     | X <sub>cs</sub>  | Height from the bottom of the tank shell to the center of action of lateral seismic force related to the convective liqu force for the slab moment, m (ft)             |
|     | X <sub>i</sub>   | Height from the bottom of the tank shell to the center of action of the lateral seismic force related to the impulsive l uid force for ringwall moment, m (ft)         |
|     | Xis              | Height from the bottom of the tank shell to the center of action of the lateral seismic force related to the impulsive li<br>uid force for the slab moment, m (ft)     |
|     | $X_r$            | Height from the bottom of the tank shell to the roof and roof appurtenances center of gravity, m (ft)                                                                  |

- $X_s$  Height from the bottom of the tank shell to the shell's center of gravity, m (ft)
- *Y* Distance from liquid surface to analysis point, (positive down), m (ft)
- $y_u$  Estimated uplift displacement for self-anchored tank, mm (in.)
- $\sigma_c$  Maximum longitudinal shell compression stress, MPa (lbf/in.<sup>2</sup>)
- $\sigma_h$  Product hydrostatic hoop stress in the shell, Mpa (lbf/in.<sup>2</sup>)
- $\sigma_s$  Hoop stress in the shell due to impulsive and convective forces of the stored liquid, MPa (lbf/in.<sup>2</sup>)
- $\sigma_T$  Total combined hoop stress in the shell, MPa (lbf/in.<sup>2</sup>)
- μ Friction coefficient for tank sliding
- $\rho$  Density of fluid, kg/m<sup>3</sup> (lb/ft<sup>3</sup>)

### E.3 Performance Basis

#### E.3.1 SEISMIC USE GROUP

• The Seismic Use Group (SUG) for the tank shall be specified by the Purchaser. If it is not specified, the SUG shall be assigned to be SUG I.

### E.3.1.1 Seismic Use Group III

SUG III tanks are those providing necessary service to facilities that are essential for post-earthquake recovery and essential to the life and health of the public; or, tanks containing substantial quantities of hazardous substances that do not have adequate control to prevent public exposure.

#### E.3.1.2 Seismic Use Group II

SUG II tanks are those storing material that may pose a substantial public hazard and lack secondary controls to prevent public exposure, or those tanks providing direct service to major facilities.

#### E.3.1.3 Seismic Use Group I

SUG I tanks are those not assigned to SUGs III or II.

#### E.3.1.4 Multiple Use

Tanks serving multiple use facilities shall be assigned the classification of the use having the highest SUG.

# E.4 Site Ground Motion

Spectral lateral accelerations to be used for design may be based on either "mapped" seismic parameters (zones or contours), "site-specific" procedures, or probabilistic methods as defined by the design response spectra method contained in this appendix. A method for regions outside the USA where ASCE 7 methods for defining the ground motion may not be applicable is also included.

A methodology for defining the design spectrum is given in the following sections.

#### E.4.1 MAPPED ASCE 7 METHOD

- For sites located in the USA, or where the ASCE 7 method is the regulatory requirement, the maximum considered earthquake ground motion shall be defined as the motion due to an event with a 2% probability of exceedance within a 50-year period. The following definitions apply:
  - $S_S$  is the mapped, maximum considered earthquake, 5% damped, spectral response acceleration parameter at short periods (0.2 seconds).
  - S<sub>1</sub> is the mapped, maximum considered earthquake, 5% damped, spectral response acceleration parameter at a period of 1 second.

•  $S_0$  is the mapped, maximum considered earthquake, 5% damped, spectral response acceleration parameter at zero seconds (usually referred to as the peak ground acceleration). Unless otherwise specified or determined,  $S_0$  shall be defined as  $0.4S_S$  when using the mapped methods.

### E.4.2 SITE-SPECIFIC SPECTRAL RESPONSE ACCELERATIONS

The design method for a site-specific spectral response is based on the provisions of ASCE 7. Design using site-specific ground motions should be considered where any of the following apply:

- The tank is located within 10 km (6 miles) of a known active fault.
- The structure is designed using base isolation or energy dissipation systems, which is beyond the scope of this appendix.
- The performance requirements desired by the owner or regulatory body exceed the goal of this appendix.

Site-specific determination of the ground motion is required when the tank is located on Site Class F type soils.

• If design for an MCE site-specific ground motion is desired, or required, the site-specific study and response spectrum shall be provided by the Purchaser as defined this section.

However, in no case shall the ordinates of the site-specific MCE response spectrum defined be less than 80% of the ordinates of the mapped MCE response spectra defined in this appendix.

### E.4.2.1 Site-Specific Study

A site-specific study shall account for the regional tectonic setting, geology, and seismicity. This includes the expected recurrence rates and maximum magnitudes of earthquakes on known faults and source zones, the characteristics of ground motion attenuation, near source effects, if any, on ground motions, and the effects of subsurface site conditions on ground motions. The study shall incorporate current scientific interpretations, including uncertainties, for models and parameter values for seismic sources and ground motions.

If there are known active faults identified, the maximum considered seismic spectral response acceleration at any period,  $S_a^*$ , shall be determined using both probabilistic and deterministic methods.

### E.4.2.2 Probabilistic Site-Specific MCE Ground Motion

The probabilistic site-specific MCE ground motion shall be taken as that motion represented by a 5% damped acceleration response spectrum having a 2% probability of exceedance in a 50-year period.

#### E.4.2.3 Deterministic Site-Specific MCE Ground Motion

The deterministic site-specific MCE spectral response acceleration at each period shall be taken as 150% of the largest median 5% damped spectral response acceleration computed at that period for characteristic earthquakes individually acting on all known active faults within the region.

However, the ordinates of the deterministic site-specific MCE ground motion response spectrum shall not be taken lower than the corresponding ordinates of the response spectrum where the value of  $S_S$  is equal to  $1.5F_a$  and the value of  $S_1$  is equal to  $0.6F_v/T$ .

# E.4.2.4 Site-Specific MCE Ground Motions

07

The 5% damped site-specific MCE spectral response acceleration at any period,  $S_a^*$ , shall be defined as the lesser of the probabilistic MCE ground motion spectral response accelerations determined in E.4.2.2 and the deterministic MCE ground motion spectral response accelerations defined in E.4.2.3.

The response spectrum values for 0.5% damping for the convective behavior shall be 1.5 times the 5% spectral values unless otherwise specified by the Purchaser.

The values for sites classified as F may not be less than 80% of the values for a Site Class E site.

# E.4.3 SITES NOT DEFINED BY ASCE 7 METHODS

In regions outside the USA, where the regulatory requirements for determining design ground motion differ from the ASCE 7 methods prescribed in this appendix, the following methods may be utilized:

- 1. A response spectrum complying with the regulatory requirements may be used providing it is based on, or adjusted to, a basis of 5% and 0.5% damping as required in this appendix. The values of the design spectral acceleration coefficients,  $A_i$  and  $A_c$ , which include the effects of site amplification, importance factor and response modification may be determined directly.  $A_i$  shall be based on the calculated impulsive period of the tank (see E.4.5.1) using the 5% damped spectra, or the period may be assumed to be 0.2 seconds.  $A_c$  shall be based on the calculated convective period (see E.4.5.2) using the 0.5% spectra.
- 2. If no response spectra shape is prescribed and only the peak ground acceleration,  $S_P$  is defined, then the following substitutions shall apply:

$$S_S = 2.5 S_P$$
 (E.4.3-1)

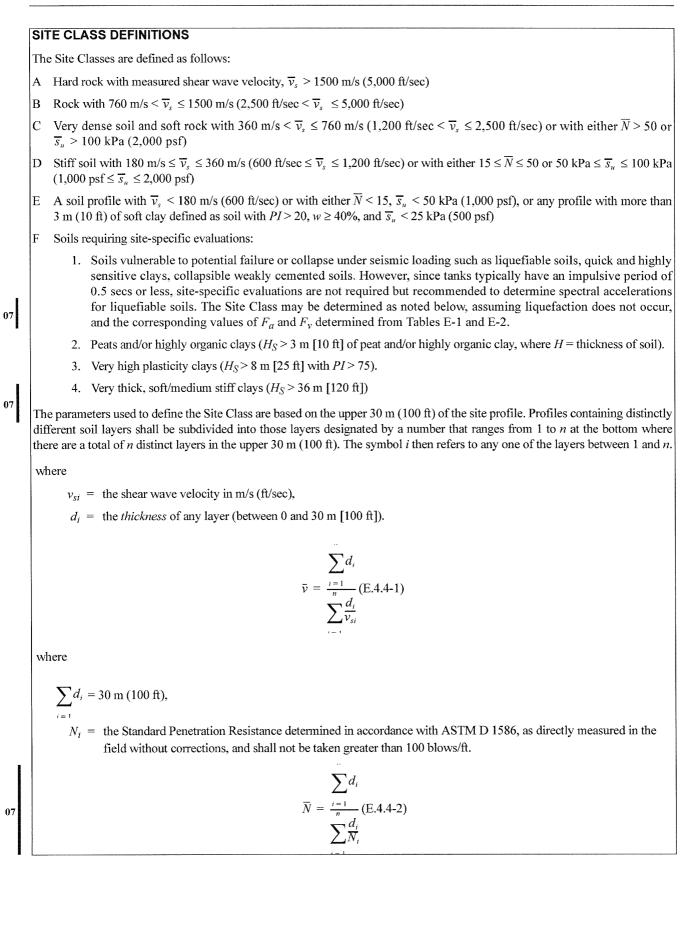
$$S_1 = 1.25 S_P$$
 (E.4.3-2)

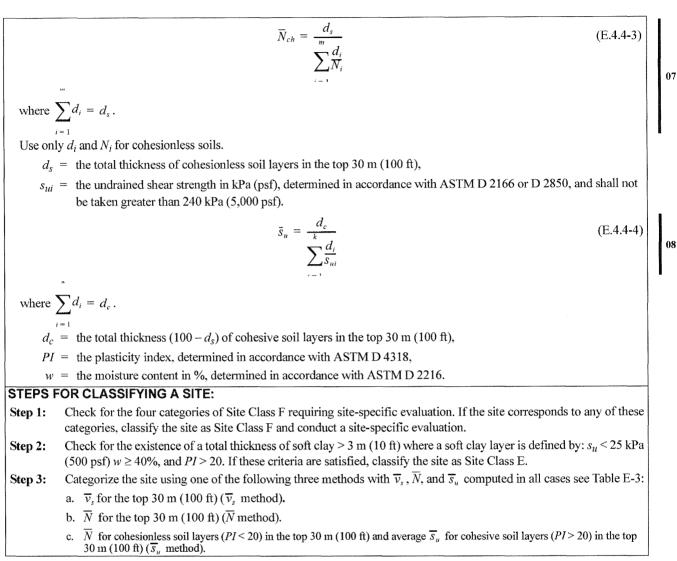
### E.4.4 MODIFICATIONS FOR SITE SOIL CONDITIONS

The maximum considered earthquake spectral response accelerations for peak ground acceleration, shall be modified by the appropriate site coefficients,  $F_a$  and  $F_v$  from Tables E-1 and E-2.

 Where the soil properties are not known in sufficient detail to determine the site class, Site Class D shall be assumed unless the authority having jurisdiction determines that Site Class E or F should apply at the site.

| Site Class | $S_s \leq 0.25$ | $S_{s} = 0.50$ | $S_s = 0.75$ | $S_s = 1.0$ | $S_s \ge 1.25$ |
|------------|-----------------|----------------|--------------|-------------|----------------|
| A          | 0.8             | 0.8            | 0.8          | 0.8         | 0.8            |
| В          | 1.0             | 1.0            | 1.0          | 1.0         | 1.0            |
| С          | 1.2             | 1.2            | 1.1          | 1.0         | 1.0            |
| D          | 1.6             | 1.4            | 1.2          | 1.1         | 1.0            |
| Е          | 2.5             | 1.7            | 1.2          | 0.9         | 0.9            |
| F          | а               | а              | а            | а           | a              |


Table E-1—Value of  $F_a$  as a Function of Site Class


Table E-2—Value of  $F_{v}$  as a Function of Site Class

| Site Class | $S_1 \leq 0.1$ | $S_1 = 0.2$ | $S_1 = 0.3$ | $S_1 = 0.4$ | $S_1 \ge 0.5$ |
|------------|----------------|-------------|-------------|-------------|---------------|
| A          | 0.8            | 0.8         | 0.8         | 0.8         | 0.8           |
| В          | 1.0            | 1.0         | 1.0         | 1.0         | 1.0           |
| С          | 1.7            | 1.6         | 1.5         | 1.4         | 1.3           |
| D          | 2.4            | 2.0         | 1.8         | 1.6         | 1.5           |
| E          | 3.5            | 3.2         | 2.8         | 2.4         | 2.4           |
| F          | a              | a           | а           | а           | a             |

07

07





| Site Class | $\overline{v_s}$                              | $\overline{N}$ or $\overline{N_{ch}}$ | $\overline{s}_{\mu}$                        |
|------------|-----------------------------------------------|---------------------------------------|---------------------------------------------|
| Е          | (< 180 m/s)<br>(< 600 fps)                    | < 15                                  | < 50 kPa<br>(< 1,000 psf)                   |
| D          | 180 m/s – 360 m/s<br>(600 to 1,200 fps)       | 15 to 50                              | 50 kPa – 100 kPa<br>(1,000 psf – 2,000 psf) |
| С          | 360 m/s - 760 m/s<br>(1,200 fps - 2,500 fps)  | > 50                                  | 100 kPa<br>(> 2,000 psf)                    |
| В          | 760 m/s - 1500 m/s<br>(2,500 fps - 5,000 fps) |                                       |                                             |
| A          | > 1500 m/s (5,000 fps)                        |                                       |                                             |

| lable | E-3-Sit | e Classification |
|-------|---------|------------------|
|-------|---------|------------------|

Note: <sup>a</sup> If the  $\overline{s}_u$  method is used and the  $N_{ch}$  and  $\overline{s}_u$  criteria differ, select the category with the softer soils (for example, use Site Class E instead of D).

08

Assignment of Site Class B shall be based on the shear wave velocity for rock. For competent rock with moderate fracturing and weathering, estimation of this shear wave velocity shall be permitted. For more highly fractured and weathered rock, the shear wave velocity shall be directly measured or the site shall be assigned to Site Class C.

Assignment of Site Class A shall be supported by either shear wave velocity measurements on site or shear wave velocity measurements on profiles of the same rock type in the same formation with an equal or greater degree of weathering and fracturing. Where hard rock conditions are known to be continuous to a depth of 30 m (100 ft), surficial shear wave velocity measurements may be extrapolated to assess  $\overline{v}_{s}$ .

Site Classes A and B shall not be used where there is more than 3 m (10 ft) of soil between the rock surface and the bottom of the tank foundation.

### E.4.5 STRUCTURAL PERIOD OF VIBRATION

The pseudo-dynamic modal analysis method utilized in this appendix is based on the natural period of the structure and contents as defined in this section.

#### E.4.5.1 Impulsive Natural Period

The design methods in this appendix are independent of impulsive period of the tank. However, the impulsive period of the tank system may be estimated by Equation E.4.5.1-1.

In SI units:

09

$$T_{i} = \left(\frac{1}{\sqrt{2000}}\right) \left(\frac{C_{i}H}{\sqrt{D}}\right) \left(\frac{\sqrt{\rho}}{\sqrt{E}}\right)$$
(E.4.5.1-1a)

Substituting the SI units specified above:  $T_i = 0.128$  sec.

In US Customary units:

$$T_{i} = \left(\frac{1}{27.8}\right) \left(\frac{C_{i}H}{\sqrt{E}}\right) \left(\frac{\sqrt{\rho}}{\sqrt{E}}\right)$$
(E.4.5.1-1b)

Substituting the US Customary units specified above:  $T_i = 0.128$  sec.

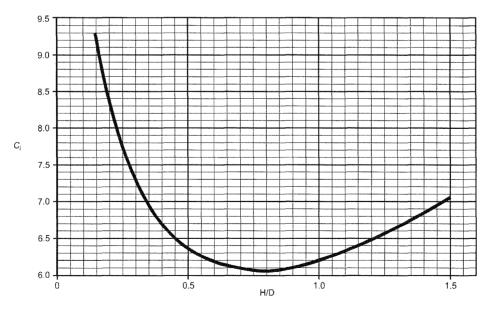



Figure E-1—Coefficient  $C_i$ 

### E.4.5.2 Convective (Sloshing) Period

The first mode sloshing wave period, in seconds, shall be calculated by Equation E.4.5.2 where  $K_s$  is the sloshing period coefficient defined in Equation E.4.5.2-c:

In SI units:

$$T_c = 1.8K_s\sqrt{D} \tag{E.4.5.2-a}$$

or, in US Customary units:

$$T_c = K_s \sqrt{D} \tag{E.4.5.2-b}$$

$$K_s = \frac{0.578}{\sqrt{\tanh\left(\frac{3.68H}{D}\right)}} \tag{E.4.5.2-c}$$

#### E.4.6 DESIGN SPECTRAL RESPONSE ACCELERATIONS

The design response spectrum for ground supported, flat-bottom tanks is defined by the following parameters:

#### E.4.6.1 Spectral Acceleration Coefficients

When probabilistic or mapped design methods are utilized, the spectral acceleration parameters for the design response spectrum are given in Equations E.4.6.1-1 through E.4.6.1-5. Unless otherwise specified by the Purchaser,  $T_L$  shall be taken as the mapped value found in ASCE 7. For tanks falling in SUG I or SUG II, the mapped value of  $T_L$  shall be used to determine convective forces except that a value of  $T_L$  equal to 4 seconds shall be permitted to be used to determine the sloshing wave height. For tanks falling in SUG III, the mapped value of  $T_L$  shall be used to determine both convective forces and sloshing wave height except that the importance factor, I, shall be set equal to 1.0 in the determination of sloshing wave height. In regions outside the USA, where the regulatory requirements for determining design ground motion differ from the ASCE 7 methods prescribed in this appendix,  $T_L$  shall be taken as 4 seconds.

For sites where only the peak ground acceleration is defined, substitute  $S_P$  for  $S_0$  in Equations E.4.6.1-1 through E.4.6.2-1. The scaling factor, Q, is defined as 2/3 for the ASCE 7 methods. Q may be taken equal to 1.0 unless otherwise defined in the regulatory requirements where ASCE 7 does not apply. Soil amplification coefficients,  $F_a$  and  $F_v$ ; the value of the importance factor, I; and the ASD response modification factors,  $R_{wi}$  and  $R_{wc}$ , shall be as defined by the local regulatory requirements. If these values are not defined by the regulations, the values in this appendix shall be used.

#### Impulsive spectral acceleration parameter, A<sub>i</sub>:

$$A_{i} = S_{DS} \left( \frac{I}{R_{wi}} \right) = 2.5 Q F_{a} S_{0} \left( \frac{I}{R_{wi}} \right)$$
(E.4.6.1-1)

However,

and, for seismic site Classes E and F only:

$$A_{i} \ge 0.5S_{1}\left(\frac{I}{R_{wi}}\right) = 0.625S_{P}\left(\frac{I}{R_{wi}}\right)$$
 (E.4.6.1-3)

#### Convective spectral acceleration parameter, $A_c$ :

When, 
$$T_C \le T_L$$
  $A_c = KS_{D1}\left(\frac{1}{T_c}\right)\left(\frac{I}{R_{wc}}\right) = 2.5KQF_aS_0\left(\frac{T_s}{T_c}\right)\left(\frac{I}{R_{wc}}\right) \le A_i$  (E.4.6.1-4)

 $A_i \ge 0.007$ 

When, 
$$T_C > T_L$$
  $A_c = KS_{D1} \left(\frac{T_L}{T_c^2}\right) \left(\frac{I}{R_{wc}}\right) = 2.5 KQF_a S_0 \left(\frac{T_s T_L}{T_c^2}\right) \left(\frac{I}{R_{wc}}\right) \le A_i$  (E.4.6.1-5)

06

(E.4.6.1-2)

#### E.4.6.2 Site-Specific Response Spectra

When site-specific design methods are specified, the seismic parameters shall be defined by Equations E.4.6.2-1 through E.4.6.2-3.

#### Impulsive spectral acceleration parameter:

$$A_i = 2.5 Q \left(\frac{I}{R_{wi}}\right) S_{a0}^*$$
(E.4.6.2-1)

Alternatively,  $A_i$ , may be determined using either (1) the impulsive period of the tank system, or (2) assuming the impulsive period = 0.2 sec;

$$A_i = Q\left(\frac{I}{R_{wi}}\right)S_a^* \tag{E.4.6.2-2}$$

where,  $S_a^*$  is the ordinate of the 5% damped, site-specific MCE response spectra at the calculated impulsive period including site soil effects. See E.4.5.1.

Exception:

- Unless otherwise specified by the Purchaser, the value of the impulsive spectral acceleration,  $S_a^*$ , for flat-bottom tanks with  $H/D \le 0.8$  need not exceed 150%g when the tanks are:
  - · self-anchored, or
  - mechanically-anchored tanks that are equipped with traditional anchor bolt and chairs at least 450 mm (18 in.) high and are not otherwise prevented from sliding laterally at least 25 mm (1 in.).

#### **Convective spectral acceleration:**

08

$$A_c = QK \left(\frac{I}{R_{wc}}\right) S_a^* < A_i \tag{E.4.6.2-3}$$

where,  $S_a^*$  is the ordinate of the 5% damped, site-specific MCE response spectra at the calculated convective period including site or soil effects (see E.4.5.2).

Alternatively, the ordinate of a site-specific spectrum based on the procedures of E.4.2 for 0.5% damping may be used to determine the value  $S_a^*$  with K set equal to 1.0.

### E.5 Seismic Design Factors

#### E.5.1 DESIGN FORCES

The equivalent lateral seismic design force shall be determined by the general relationship

$$F = AW_{\text{eff}} \tag{E.5.1-1}$$

where

A = lateral acceleration coefficient, %g,

 $W_{\rm eff}$  = effective weight.

#### E.5.1.1 Response Modification Factor

The response modification factor for ground supported, liquid storage tanks designed and detailed to these provisions shall be less than or equal to the values shown in Table E-4.

E-12

| Anchorage system      | <i>R<sub>wi</sub></i> , (impulsive) | <i>R<sub>wc,</sub></i> (convective) |
|-----------------------|-------------------------------------|-------------------------------------|
| Self-anchored         | 3.5                                 | 2                                   |
| Mechanically-anchored | 4                                   | 2                                   |

Table E-4—Response Modification Factors for ASD Methods

#### E.5.1.2 Importance Factor

• The importance factor (1) is defined by the SUG and shall be specified by the Purchaser. See E.3 and Table E-5.

Table E-5—Importance Factor (1) and Seismic Use Group Classification

| Seismic Use Group | Ι    |
|-------------------|------|
| I                 | 1.0  |
| Ш                 | 1.25 |
| ш                 | 1.5  |

### E.6 Design

### E.6.1 DESIGN LOADS

Ground-supported, flat-bottom tanks, storing liquids shall be designed to resist the seismic forces calculated by considering the effective mass and dynamic liquid pressures in determining the equivalent lateral forces and lateral force distribution. This is the default method for this appendix. The equivalent lateral force base shear shall be determined as defined in the following sections. The seismic base shear shall be defined as the square root of the sum of the squares (SRSS) combination of the impulsive and convective components unless the applicable regulations require direct sum. For the purposes of this appendix, an alternate method using the direct sum of the effects in one direction combined with 40% of the effect in the orthogonal direction is deemed to be equivalent to the SRSS summation.

$$V = \sqrt{V_i^2 + V_c^2}$$
(E.6.1-1)

where

$$V_i = A_i (W_s + W_r + W_f + W_i)$$
(E.6.1-2)

$$V_c = A_c W_c \tag{E.6.1-3}$$

#### E.6.1.1 Effective Weight of Product

The effective weights  $W_i$  and  $W_c$  shall be determined by multiplying the total product weight,  $W_p$ , by the ratios  $W_i/W_p$  and  $W_c/W_p$ , respectively, Equations E.6.1.1-1 through E.6.1.1-3.

When D/H is greater than or equal to 1.333, the effective impulsive weight is defined in Equation E.6.1.1-1:

$$W_{i} = \frac{\tanh\left(0.866\frac{D}{H}\right)}{0.866\frac{D}{H}}W_{p}$$
(E.6.1.1-1)

When D/H is less than 1.333, the effective impulsive weight is defined in Equation E.6.1.1-2:

$$W_{i} = \left[1.0 - 0.218 \frac{D}{H}\right] W_{p}$$
(E.6.1.1-2)

The effective convective weight is defined in Equation E.6.1.1-3:

$$W_c = 0.230 \frac{D}{H} \tanh\left(\frac{3.67H}{D}\right) W_p$$
 (E.6.1.1-3)

#### E.6.1.2 Center of Action for Effective Lateral Forces

The moment arm from the base of the tank to the center of action for the equivalent lateral forces from the liquid is defined by 07 Equations E.6.1.2.1-1 through E.6.1.2.2-3.

The center of action for the impulsive lateral forces for the tank shell, roof and appurtenances is assumed to act through the center of gravity of the component.

#### E.6.1.2.1 Center of Action for Ringwall Overturning Moment

The ringwall moment,  $M_{PW}$ , is the portion of the total overturning moment that acts at the base of the tank shell perimeter. This moment is used to determine loads on a ringwall foundation, the tank anchorage forces, and to check the longitudinal shell compression.

The heights from the bottom of the tank shell to the center of action of the lateral seismic forces applied to  $W_i$  and  $W_c$ ,  $X_i$  and  $X_c$ , may be determined by multiplying H by the ratios  $X_i/H$  and  $X_c/H$ , respectively, obtained for the ratio D/H by using Equations E.6.1.2.1-1 through E.6.1.2.2-3.

When D/H is greater than or equal to 1.3333, the height  $X_i$  is determined by Equation E.6.1.2.1-1:

$$X_i = 0.375H \tag{E.6.1.2.1-1}$$

When D/H is less than 1.3333, the height  $X_i$  is determined by Equation E.6.1.2.1-2:

$$X_{i} = \left[0.5 - 0.094 \frac{D}{H}\right] H$$
(E.6.1.2.1-2)

The height  $X_c$  is determined by Equation E.6.1.2.1-3:

07

07

08

$$X_{c} = \left[ 1.0 - \frac{\cosh\left(\frac{3.67H}{D}\right) - 1}{\frac{3.67H}{D}\sinh\left(\frac{3.67H}{D}\right)} \right] H$$
(E.6.1.2.1-3)

#### E.6.1.2.2 Center of Action for Slab Overturning Moment

The "slab" moment,  $M_s$ , is the total overturning moment acting across the entire tank base cross-section. This overturning moment is used to design slab and pile cap foundations.

When D/H is greater than or equal to 1.333, the height  $X_{is}$  is determined by Equation E.6.1.2.2-1:

$$X_{is} = 0.375 \left[ 1.0 + 1.333 \left( \frac{0.866 \frac{D}{H}}{\tanh\left(0.866 \frac{D}{H}\right)} - 1.0 \right) \right] H$$
 (E.6.1.2.2-1)

When D/H is less than 1.333, the height  $X_{is}$  is determined by Equation E.6.1.2.2-2:

$$X_{is} = \left[0.500 + 0.060 \frac{D}{H}\right] H$$
(E.6.1.2.2-2)

E-14

The height,  $X_{cs}$ , is determined by Equation E.6.1.2.2-3:

$$X_{cs} = \left[ 1.0 - \frac{\cosh\left(\frac{3.67H}{D}\right) - 1.937}{\frac{3.67H}{D}\sinh\left(\frac{3.67H}{D}\right)} \right] H$$
(E.6.1.2.2-3) (E.6.1.2.2-3)

#### E.6.1.3 Vertical Seismic Effects

- When specified (see Line 8 in the Data Sheet), vertical acceleration effects shall be considered as acting in both upward and downward directions and combined with lateral acceleration effects by the SRSS method unless a direct sum combination is required by the applicable regulations. Vertical acceleration effects for hydrodynamic hoop stresses shall be combined as shown in E.6.1.4. Vertical acceleration effects need not be combined concurrently for determining loads, forces, and resistance to overturning in the tank shell.
- The maximum vertical seismic acceleration parameter shall be taken as  $0.14S_{DS}$  or greater for the ASCE 7 method unless otherwise specified by the Purchaser. Alternatively, the Purchaser may specify the vertical ground motion acceleration parameter,  $A_v$ , The total vertical seismic force shall be:

$$F_v = \pm A_v W_{\text{eff}}$$
 (E.6.1.3-1)

Vertical seismic effects shall be considered in the following when specified:

- Shell hoop tensile stresses (see E.6.1.4).
- Shell-membrane compression (see E.6.2.2).
- Anchorage design (see E.6.2.1).
- Fixed roof components (see E.7.5).
- Sliding (see E.7.6).
- Foundation design (see E.6.2.3).
- In regions outside the USA where the regulatory requirements differ from the methods prescribed in this appendix, the vertical acceleration parameter and combination with lateral effects may be applied as defined by the governing regulatory requirements.

### E.6.1.4 Dynamic Liquid Hoop Forces

Dynamic hoop tensile stresses due to the seismic motion of the liquid shall be determined by the following formulas:

For 
$$D/H \ge 1.333$$
:

In SI units:

$$N_{i} = 8.48A_{i}GDH \left[\frac{Y}{H} - 0.5\left(\frac{Y}{H}\right)^{2}\right] \tanh\left(0.866\frac{D}{H}\right)$$
(E.6.1.4-1a)

or, in US Customary units:

$$N_i = 4.5A_i GDH \left[\frac{Y}{H} - 0.5 \left(\frac{Y}{H}\right)^2\right] \tanh\left(0.866\frac{D}{H}\right)$$
(E.6.1.4-1b)

For D/H < 1.33 and Y < 0.75D:

In SI units:

$$N_i = 5.22A_i GD^2 \left[ \frac{Y}{0.75D} - 0.5 \left( \frac{Y}{0.75D} \right)^2 \right]$$
(E.6.1.4-2a)

E-16

or, in US Customary units:

$$N_i = 2.77A_i GD^2 \left[ \frac{Y}{0.75D} - 0.5 \left( \frac{Y}{0.75D} \right)^2 \right]$$
(E.6.1.4-2b)

For D/H < 1.333 and  $Y \ge 0.75D$ :

In SI units:

$$N_i = 2.6A_i GD^2$$
 (E.6.1.4-3a)

or, in US Customary units:

$$N_i = 1.39A_i GD^2$$
 (E.6.1.4-3b)

For all proportions of D/H:

In SI units:

08

$$N_{c} = \frac{1.85A_{c}GD^{2}\cosh\left[\frac{3.68(H-Y)}{D}\right]}{\cosh\left[\frac{3.68H}{D}\right]}$$
(E.6.1.4-4a)

or, in US Customary units:

$$N_c = \frac{0.98A_c GD^2 \cosh\left[\frac{3.68(H-Y)}{D}\right]}{\cosh\left[\frac{3.68H}{D}\right]}$$
(E.6.1.4-4b)

When the Purchaser specifies that vertical acceleration need not be considered (i.e.,  $A_v = 0$ ), the combined hoop stress shall be defined by Equation E.6.1.4-5. The dynamic hoop tensile stress shall be directly combined with the product hydrostatic design stress in determining the total stress.

$$\sigma_T = \sigma_h \pm \sigma_s = \frac{N_h \pm \sqrt{N_i^2 + N_c^2}}{t}$$
(E.6.1.4-5)

When vertical acceleration is specified.

$$\sigma_T = \sigma_h \pm \sigma_s = \frac{N_h \pm \sqrt{N_i^2 + N_c^2 + (A_v N_h)^2}}{t}$$
(E.6.1.4-6)

### E.6.1.5 Overturning Moment

• The seismic overturning moment at the base of the tank shell shall be the SRSS summation of the impulsive and convective components multiplied by the respective moment arms to the center of action of the forces unless otherwise specified.

Ringwall Moment, M<sub>rw</sub>:

$$M_{rw} = \sqrt{\left[A_i(W_iX_i + W_sX_s + W_rX_r)\right]^2 + \left[A_c(W_cX_c)\right]^2}$$
(E.6.1.5-1)

Slab Moment, M<sub>s</sub>:

$$M_{s} = \sqrt{\left[A_{i}(W_{i}X_{is} + W_{s}X_{s} + W_{r}X_{r})\right]^{2} + \left[A_{c}(W_{c}X_{cs})\right]^{2}}$$
(E.6.1.5-2)

Unless a more rigorous determination is used, the overturning moment at the bottom of each shell ring shall be defined by linear approximation using the following:

1. If the tank is equipped with a fixed roof, the impulsive shear and overturning moment is applied at the top of the shell.

2. The impulsive shear and overturning moment for each shell course is included based on the weight and centroid of each course.

3. The overturning moment due to the liquid is approximated by a linear variation that is equal to the ringwall moment,  $M_{rw}$  at 07 the base of the shell to zero at the maximum liquid level.

### E.6.1.6 Soil-Structure Interaction

- If specified by the Purchaser, the effects of soil-structure interaction on the effective damping and period of vibration may be considered for tanks in accordance with ASCE 7 with the following limitations:
  - Tanks shall be equipped with a reinforced concrete ringwall, mat or similar type foundation supported on grade. Soil structure interaction effects for tanks supported on granular berm or pile type foundation are outside the scope of this appendix.
  - The tanks shall be mechanically anchored to the foundation.
  - The value of the base shear and overturning moments for the impulsive mode including the effects of soil-structure interaction shall not be less than 80% of the values determined without consideration of soil-structure interaction.
  - The effective damping factor for the structure-foundation system shall not exceed 20%.

### E.6.2 RESISTANCE TO DESIGN LOADS

The allowable stress design (ASD) method is utilized in this appendix. Allowable stresses in structural elements applicable to normal operating conditions may be increased by 33% when the effects of the design earthquake are included unless otherwise specified in this appendix.

### E.6.2.1 Anchorage

Resistance to the design overturning (ringwall) moment at the base of the shell may be provided by:

- The weight of the tank shell, weight of roof reaction on shell  $W_{rs}$ , and by the weight of a portion of the tank contents adjacent to the shell for unanchored tanks.
- Mechanical anchorage devices.

### E.6.2.1.1 Self-Anchored

For self-anchored tanks, a portion of the contents may be used to resist overturning. The anchorage provided is dependent on the assumed width of a bottom annulus uplifted by the overturning moment. The resisting annulus may be a portion of the tank bottom or a separate butt-welded annular ring. The overturning resisting force of the annulus that lifts off the foundation shall be determined by Equation E.6.2.1.1-1 except as noted below:

In SI units:

$$v_a = 99t_a \sqrt{F_y HG_e} \le 201.1 \ HDG_e \tag{E.6.2.1.1-1a}$$

or, in US Customary units:

$$w_a = 7.9t_a \sqrt{F_v HG_e} \le 1.28 \ HDG_e$$
 (E.6.2.1.1-1b)

Equation E.6.2.1.1-1 for  $w_a$  applies whether or not a thickened bottom annulus is used. If  $w_a$  exceeds the limit of 201.1  $HDG_e$ , (1.28  $HDG_e$ ) the value of L shall be set to 0.035D and the value of  $w_a$  shall be set equal to 201.1  $HDG_e$ , (1.28  $HDG_e$ ). A value of L defined as  $L_s$  that is less than that determined by the equation found in E.6.2.1.1.2-1 may be used. If a reduced value  $L_s$  is used, a reduced value of  $w_a$  shall be used as determined below:

In SI units:

$$w_a = 5742 HG_e L_s$$
 (E.6.2.1.1-2a)

In US Customary units

$$w_a = 36.5 HG_e L_s$$
 (E.6.2.1.1-2b)

07

The tank is self-anchored providing the following conditions are met:

- 1. The resisting force is adequate for tank stability (i.e., the anchorage ratio,  $J \le 1.54$ ).
- 2. The maximum width of annulus for determining the resisting force is 3.5% of the tank diameter.
- 3. The shell compression satisfies E.6.2.2.
- 4. The required annulus plate thickness does not exceed the thickness of the bottom shell course.
  - 5. Piping flexibility requirements are satisfied.

#### E.6.2.1.1.1 Anchorage Ratio, J

$$J = \frac{M_{rw}}{D^2 [w_t (1 - 0.4A_v) + w_a - 0.4w_{int}]}$$
(E.6.2.1.1.1-1)

where

08

08

09

08

$$w_t = \left[\frac{W_s}{\pi D} + w_{rs}\right]$$
 (E.6.2.1.1.1-2)

#### Table E-6—Anchorage Ratio Criteria

|    | Anchorage Ratio<br>J | Criteria                                                                                                                                                    |
|----|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 07 | J≤0.785              | No calculated uplift under the design seismic overturning moment. The tank is self-anchored.                                                                |
| 07 | $0.785 < J \le 1.54$ | Tank is uplifting, but the tank is stable for the design load providing the shell compres-<br>sion requirements are satisfied. Tank is self-anchored.       |
| 08 | J> 1.54              | Tank is not stable and cannot be self-anchored for the design load. Modify the annular ring if $L < 0.035D$ is not controlling or add mechanical anchorage. |

### E.6.2.1.1.2 Annular Ring Requirements

The thickness of the tank bottom plate provided under the shell may be greater than or equal to the thickness of the general tank bottom plate with the following restrictions.

Note: In thickening the bottom annulus, the intent is not to force a thickening of the lowest shell course, thereby inducing an abrupt thickness change in the shell, but rather to impose a limit on the bottom annulus thickness based on the shell design.

1. The thickness,  $t_a$ , corresponding with the final  $w_a$  in Equations E.6.2.1.1.1-1 and E.6.2.1.1.1-2 shall not exceed the first shell course thickness,  $t_s$ , less the shell corrosion allowance.

2. Nor shall the thickness,  $t_a$ , used in Equation E.6.2.1.1.1-1 and E.6.2.1.1.1-2 exceed the actual thickness of the plate under the shell less the corrosion allowance for tank bottom.

3. When the bottom plate under the shell is thicker than the remainder of the tank bottom, the minimum projection, L, of the supplied thicker annular ring inside the tank wall shall be the greater of 0.45 m (1.5 ft) or as determined in equation (E.6.2.1.1.2-1); however, L need not be greater than 0.035 D:

In SI units:

$$L = 0.01723 t_a \sqrt{F_v / (HG_e)}$$
(E.6.2.1.1.2-1a)

or, in US Customary units:

$$L = 0.216 t_a \sqrt{F_v / (HG_e)}$$
(E.6.2.1.1.2-1b)

#### E.6.2.1.2 Mechanically-Anchored

• If the tank configuration is such that the self-anchored requirements can not be met, the tank must be anchored with mechanical devices such as anchor bolts or straps.

When tanks are anchored, the resisting weight of the product shall not be used to reduce the calculated uplift load on the anchors. The anchors shall be sized to provide for at least the following minimum anchorage resistance:

$$w_{AB} = \left(\frac{1.273M_{rw}}{D^2} - w_t(1 - 0.4A_v)\right)$$
(E.6.2.1.2-1)

plus the uplift, in N/m (lbf/ft) of shell circumference, due to design internal pressure. See Appendix R for load combinations. Wind loading need not be considered in combination with seismic loading.

The anchor seismic design load,  $P_{AB}$ , is defined in Equation E.6.2.1.2-2:

$$P_{AB} = w_{AB} \left(\frac{\pi D}{n_A}\right) \tag{E.6.2.1.2-2}$$

where,  $n_A$  is the number of equally-spaced anchors around the tank circumference.  $P_{AB}$  shall be increased to account for unequal spacing.

When mechanical anchorage is required, the anchor embedment or attachment to the foundation, the anchor attachment assembly and the attachment to the shell shall be designed for  $P_A$ . The anchor attachment design load,  $P_A$ , shall be the lesser of the load equal to the minimum specified yield strength multiplied by the nominal root area of the anchor or three times  $P_{AB}$ . 11 The maximum allowable stress for the anchorage parts shall not exceed the following values for anchors designed for the seismic loading alone or in combination with other load cases:

- An allowable tensile stress for anchor bolts and straps equal to 80% of the published minimum yield stress.
- For other parts, 133% of the allowable stress in accordance with 5.12.8.
- The maximum allowable design stress in the shell at the anchor attachment shall be limited to 170 MPa (25,000 lbf/in.<sup>2</sup>) with no increase for seismic loading. These stresses can be used in conjunction with other loads for seismic loading when the combined loading governs.

### E.6.2.2 Maximum Longitudinal Shell-Membrane Compression Stress

#### E.6.2.2.1 Shell Compression in Self-Anchored Tanks

The maximum longitudinal shell compression stress at the bottom of the shell when there is no calculated uplift, J < 0.785, shall be determined by the formula

In SI units:

$$\sigma_c = \left(w_t (1 + 0.4A_v) + \frac{1.273M_{rw}}{D^2}\right) \frac{1}{1000t_s}$$
(E.6.2.2.1-1a)

or, in US Customary units:

$$\sigma_c = \left(w_t (1 + 0.4A_v) + \frac{1.273M_{rw}}{D^2}\right) \frac{1}{12t_s}$$
(E.6.2.2.1-1b)

The maximum longitudinal shell compression stress at the bottom of the shell when there is calculated uplift, J > 0.785, shall be determined by the formula:

In SI units:

$$\sigma_c = \left(\frac{w_t (1+0.4A_v) + w_a}{0.607 - 0.18667 [J]^{23}} - w_a\right) \frac{1}{1000t_s}$$
(E.6.2.2.1-2a)

or, in US Customary units:

$$\sigma_c = \left(\frac{w_i(1+0.4A_v) + w_a}{0.607 - 0.18667[J]^{2.3}} - w_a\right) \frac{1}{12t_s}$$
(E.6.2.2.1-2b)

11 08

#### E.6.2.2.2 Shell Compression in Mechanically-Anchored Tanks

The maximum longitudinal shell compression stress at the bottom of the shell for mechanically-anchored tanks shall be determined by the formula

In SI units:

$$\sigma_c = \left(w_t (1 + 0.4A_v) + \frac{1.273M_{rw}}{D^2}\right) \frac{1}{1000t_s}$$
(E.6.2.2.2-1a)

or, in US Customary units:

$$\sigma_c = \left(w_t (1 + 0.4A_v) + \frac{1.273M_{rw}}{D^2}\right) \frac{1}{12t_s}$$
(E.6.2.2.2-1b)

#### E.6.2.2.3 Allowable Longitudinal Shell-Membrane Compression Stress in Tank Shell

The maximum longitudinal shell compression stress  $s_c$  must be less than the seismic allowable stress  $F_C$ , which is determined by the following formulas and includes the 33% increase for ASD. These formulas for  $F_C$ , consider the effect of internal pressure due to the liquid contents.

08 When  $GHD^2/t^2$  is  $\geq 44$  (SI units) (10<sup>6</sup> US Customary units),

In SI units:

$$F_c = 83 t_s / D$$
 (E.6.2.2.3-1a)

or, in US Customary units:

07

 $F_c = 10^6 t_s / D$  (E.6.2.2.3-1b)

In SI units:

When  $GHD^2/t^2$  is <44:

08

$$F_C = 83t_s/(2.5D) + 7.5\sqrt{(GH)} < 0.5F_{ty}$$
 (E.6.2.2.3-2a)

or, in US Customary units:

When  $GHD^2/t^2$  is less than  $1 \times 10^6$ :

07

$$F_c = 10^6 t_s / (2.5D) + 600 \sqrt{(GH)} < 0.5F_{ty}$$
 (E.6.2.2.3-2b)

If the thickness of the bottom shell course calculated to resist the seismic overturning moment is greater than the thickness required for hydrostatic pressure, both excluding any corrosion allowance, then the calculated thickness of each upper shell course for hydrostatic pressure shall be increased in the same proportion, unless a special analysis is made to determine the seismic overturning moment and corresponding stresses at the bottom of each upper shell course (see E.6.1.5).

#### E.6.2.3 Foundation

Foundations and footings for mechanically-anchored flat-bottom tanks shall be proportioned to resist peak anchor uplift and overturning bearing pressure. Product and soil load directly over the ringwall and footing may be used to resist the maximum anchor uplift on the foundation, provided the ringwall and footing are designed to carry this eccentric loading.

Product load shall not be used to reduce the anchor load.

When vertical seismic accelerations are applicable, the product load directly over the ringwall and footing:

1. When used to resist the maximum anchor uplift on the foundation, the product pressure shall be multiplied by a factor of  $(1 - 0.4A_v)$  and the foundation ringwall and footing shall be designed to resist the eccentric loads with or without the vertical seismic accelerations.

2. When used to evaluate the bearing (downward) load, the product pressure over the ringwall shall be multiplied by a factor of  $(1 + 0.4A_v)$  and the foundation ringwall and footing shall be designed to resist the eccentric loads with or without the vertical seismic accelerations.

The overturning stability ratio for mechanically-anchored tank system excluding vertical seismic effects shall be 2.0 or greater as defined in Equation E.6.2.3-1.

$$\frac{0.5D[W_p + W_f + W_T + W_{fd} + W_g]}{M_s} \ge 2.0$$
(E.6.2.3-1)

Ringwalls for self-anchored flat-bottom tanks shall be proportioned to resist overturning bearing pressure based on the maximum longitudinal shell compression force at the base of the shell in Equation E.6.2.3-2. Slabs and pile caps for self-anchored tanks shall be designed for the peak loads determined in E.6.2.2.1.

$$P_f = \left(w_t(1+0.4A_v) + \frac{1.273M_{rw}}{D^2}\right)$$
(E.6.2.3-2)

#### E.6.2.4 Hoop Stresses

The maximum allowable hoop tension membrane stress for the combination of hydrostatic product and dynamic membrane hoop effects shall be the lesser of:

- The basic allowable membrane in this Standard for the shell plate material increased by 33%; or,
- $0.9F_y$  times the joint efficiency where  $F_y$  is the lesser of the published minimum yield strength of the shell material or weld material.

### E.7 Detailing Requirements

### E.7.1 ANCHORAGE

Tanks at grade are permitted to be designed without anchorage when they meet the requirements for self-anchored tanks in this appendix.

The following special detailing requirements shall apply to steel tank mechanical anchors in seismic regions where  $S_{DS} > 0.05g$ .

#### E.7.1.1 Self-Anchored

For tanks in SUG III and located where  $S_{DS} = 0.5g$  or greater, butt-welded annular plates shall be required. Annular plates exceeding 10 mm ( $^{3}/_{8}$  in.) thickness shall be butt-welded. The weld of the shell to the bottom annular plate shall be checked for the design uplift load.

### E.7.1.2 Mechanically-Anchored

When mechanical-anchorage is required, at least six anchors shall be provided. The spacing between anchors shall not exceed 3 m (10 ft).

When anchor bolts are used, they shall have a corroded shank diameter of no less than 25 mm (1 in.). Carbon steel anchor straps shall have a nominal thickness of not less than 6 mm ( $^{1}/_{4}$  in.) and shall have a minimum corrosion allowance of 1.5 mm ( $^{1}/_{16}$  in.) on each surface for a distance at least 75 mm (3 in.) but not more than 300 mm (12 in.) above the surface of the concrete.

Hooked anchor bolts (L- or J-shaped embedded bolts) or other anchorage systems based solely on bond or mechanical friction shall not be used when seismic design is required by this appendix. Post-installed anchors may be used provided that testing validates their ability to develop yield load in the anchor under cyclic loads in cracked concrete and meet the requirements of ACI 355.

### E.7.2 FREEBOARD

• Sloshing of the liquid within the tank or vessel shall be considered in determining the freeboard required above the top capacity liquid level. A minimum freeboard shall be provided per Table E-7. See E.4.6.1. Purchaser shall specify whether freeboard is desired for SUG I tanks. Freeboard is required for SUG II and SUG III tanks. The height of the sloshing wave above the product design height can be estimated by:

$$\delta_s = 0.5DA_f \text{ (see Note c in Table E-7)}$$
(E.7.2-1)

For SUG I and II,

When, 
$$T_C \le 4$$
  $A_f = KS_{D1}I\left(\frac{1}{T_C}\right) = 2.5KQF_aS_0I\left(\frac{T_s}{T_C}\right)$  (E.7.2-2)

08

07

When, 
$$T_C > 4$$
  $A_f = KS_{D1}I\left(\frac{4}{T_c^2}\right) = 2.5KQF_aS_0I\left(\frac{4T_s}{T_c^2}\right)$  (E.7.2-3)

For SUG III,

When,  $T_C > T_L$ 

When, 
$$T_C \leq T_L$$
  $A_f = KS_{D1}\left(\frac{1}{T_C}\right) = 2.5KQF_aS_0\left(\frac{T_s}{T_C}\right)$  (E.7.2-4)

80

$$A_{f} = KS_{D1} \left(\frac{T_{L}}{T_{c}^{2}}\right) = 2.5KQF_{a}S_{0} \left(\frac{T_{s}T_{L}}{T_{c}^{2}}\right)$$
(E.7.2-5)

#### Table E-7—Minimum Required Freeboard

|    | Value of <i>S<sub>DS</sub></i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SUG I      | SUG II                | SUG III            |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|--------------------|--|--|
| 08 | <i>S</i> <sub>DS</sub> < 0.33 <i>g</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (a)        | <i>(a)</i>            | δ <sub>s</sub> (c) |  |  |
| 08 | $S_{DS} \ge 0.33g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>(a)</i> | 0.78 <sub>s</sub> (b) | δ <sub>s</sub> (c) |  |  |
|    | <ul> <li>a. A freeboard of 0.7δ<sub>s</sub> is recommended for economic considerations but not required.</li> <li>b. A freeboard equal to 0.7δ<sub>s</sub> is required unless one of the following alternatives are provided: <ol> <li>Secondary containment is provided to control the product spill.</li> <li>The roof and tank shell are designed to contain the sloshing liquid.</li> <li>Freeboard equal to the calculated wave height, δ<sub>s</sub>, is required unless one of the following alternatives are provided: <ol> <li>Secondary containment is provided to control the product spill.</li> </ol> </li> <li>The roof and tank shell are designed to control the product spill.</li> <li>Freeboard equal to the calculated wave height, δ<sub>s</sub>, is required unless one of the following alternatives are provided: <ol> <li>Secondary containment is provided to control the product spill.</li> </ol> </li> <li>The roof and tank shell are designed to contain the sloshing liquid.</li> </ol></li></ul> |            |                       |                    |  |  |

### E.7.3 PIPING FLEXIBILITY

Piping systems connected to tanks shall consider the potential movement of the connection points during earthquakes and provide sufficient flexibility to avoid release of the product by failure of the piping system. The piping system and supports shall be designed so as to not impart significant mechanical loading on the attachment to the tank shell. Local loads at piping connections shall be considered in the design of the tank shell. Mechanical devices which add flexibility such as bellows, expansion joints, and other flexible apparatus may be used when they are designed for seismic loads and displacements.

Unless otherwise calculated, piping systems shall provide for the minimum displacements in Table E-8 at working stress levels (with the 33% increase for seismic loads) in the piping, supports and tank connection. The piping system and tank connection

shall also be designed to tolerate  $1.4C_d$  times the working stress displacements given in Table E-8 without rupture, although permanent deformations and inelastic behavior in the piping supports and tank shell is permitted. For attachment points located above the support or foundation elevation, the displacements in Table E-8 shall be increased to account for drift of the tank or vessel.

| Table E-8—Design Displacements for Piping Attachments | Table | E-8—Design | Displacements | for Piping Attachments |
|-------------------------------------------------------|-------|------------|---------------|------------------------|
|-------------------------------------------------------|-------|------------|---------------|------------------------|

| Condition                                                                                                                                                                                                                                                          | ASD Design<br>Displacement<br>mm (in.) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Mechanically-anchored tanks<br>Upward vertical displacement relative to support or foundation:<br>Downward vertical displacement relative to support or foundation:<br>Range of horizontal displacement (radial and tangential) relative to support or foundation: | 25 (1)<br>13 (0.5)<br>13 (0.5)         |
| Self-anchored tanks<br>Upward vertical displacement relative to support or foundation:<br>Anchorage ratio less than or equal to 0.785:<br>Anchorage ratio greater than 0.785:                                                                                      | 25 (1)<br>100 (4)                      |
| Downward vertical displacement relative to support or foundation:<br>For tanks with a ringwall/mat foundation:<br>For tanks with a berm foundation:                                                                                                                | 13 (0.5)<br>25 (1)                     |
| Range of horizontal displacement (radial and tangential) relative to support or foundation                                                                                                                                                                         | 50 (2)                                 |

The values given in Table E-8 do not include the influence of relative movements of the foundation and piping anchorage points due to foundation movements (such as settlement or seismic displacements). The effects of foundation movements shall be included in the design of the piping system design, including the determination of the mechanical loading on the tank or vessel consideration of the total displacement capacity of the mechanical devices intended to add flexibility. When  $S_{DS} < 0.1$ , the values in Table E-7 may be reduced to 70% of the values shown.

#### E.7.3.1 Method for Estimating Tank Uplift

The maximum uplift at the base of the tank shell for a self-anchored tank constructed to the criteria for annular plates (see E.6.2.1) may be approximated by Equation E.7.3.1-1:

In SI units:

$$y_u = \frac{12.10F_v L^2}{t_b}$$
(E.7.3.1-1a)

Or, in US Customary units:

$$y_u = \frac{F_y L^2}{83300t_b}$$
(E.7.3.1-1b) 07

where

 $t_b$  = calculated annular ring t holdown.

### E.7.4 CONNECTIONS

Connections and attachments for anchorage and other lateral force resisting components shall be designed to develop the strength of the anchor (e.g., minimum published yield strength,  $F_y$  in direct tension, plastic bending moment), or 4 times the calculated element design load.

Penetrations, manholes, and openings in shell components shall be designed to maintain the strength and stability of the shell to carry tensile and compressive membrane shell forces.

The bottom connection on an unanchored flat-bottom tank shall be located inside the shell a sufficient distance to minimize damage by uplift. As a minimum, the distance measured to the edge of the connection reinforcement shall be the width of the calculated unanchored bottom hold-down plus 300 mm (12 in.)

### E.7.5 INTERNAL COMPONENTS

The attachments of internal equipment and accessories which are attached to the primary liquid- or pressure-retaining shell or bottom, or provide structural support for major components shall be designed for the lateral loads due to the sloshing liquid in addition to the inertial forces.

Seismic design of roof framing and columns shall be made if specified by the Purchaser. The Purchaser shall specify live loads
and amount of vertical acceleration to be used in seismic design of the roof members. Columns shall be designed for lateral liquid

API STANDARD 650

inertia loads and acceleration as specified by the Purchaser. Seismic beam-column design shall be based upon the primary member allowable stresses set forth in AISC (ASD), increased by one-third for seismic loading.

Internal columns shall be guided or supported to resist lateral loads (remain stable) even if the roof components are not specified to be designed for the seismic loads, including tanks that need not be designed for seismic ground motion in this appendix (see E.1).

### E.7.6 SLIDING RESISTANCE

The transfer of the total lateral shear force between the tank and the subgrade shall be considered.

For self-anchored flat-bottom steel tanks, the overall horizontal seismic shear force shall be resisted by friction between the tank bottom and the foundation or subgrade. Self-anchored storage tanks shall be proportioned such that the calculated seismic base shear,  $V_s$  does not exceed  $V_s$ :

The friction coefficient,  $\mu$ , shall not exceed 0.4. Lower values of the friction coefficient should be used if the interface of the bottom to supporting foundation does not justify the friction value above (e.g., leak detection membrane beneath the bottom with a lower friction factor, smooth bottoms, etc.).

$$V_s = \mu (W_s + W_r + W_f + W_p) (1.0 - 0.4A_v)$$
(E.7.6-1)

No additional lateral anchorage is required for mechanically-anchored steel tanks designed in accordance with this appendix even though small movements of approximately 25 mm (1 in.) are possible.

The lateral shear transfer behavior for special tank configurations (e.g., shovel bottoms, highly crowned tank bottoms, tanks on grillage) can be unique and are beyond the scope of this appendix.

### E.7.7 LOCAL SHEAR TRANSFER

Local transfer of the shear from the roof to the shell and the shell of the tank into the base shall be considered. For cylindrical tanks, the peak local tangential shear per unit length shall be calculated by:

$$V_{\rm max} = \frac{2V}{\pi D} \tag{E.7.7-1}$$

Tangential shear in flat-bottom steel tanks shall be transferred through the welded connection to the steel bottom. The shear stress in the weld shall not exceed 80% of the weld or base metal yield stress. This transfer mechanism is deemed acceptable for steel tanks designed in accordance with the provisions and  $S_{DS} < 1.0g$ .

# E.7.8 CONNECTIONS WITH ADJACENT STRUCTURES

Equipment, piping, and walkways or other appurtenances attached to the tank or adjacent structures shall be designed to accommodate the elastic displacements of the tank imposed by design seismic forces amplified by a factor of 3.0 plus the amplified displacement of the other structure.

### E.7.9 SHELL SUPPORT

Self-anchored tanks resting on concrete ringwalls or slabs shall have a uniformly supported annulus under the shell. The foundation must be supplied to the tolerances required in 7.5.5 in to provide the required uniform support for Items b, c, and d below. Uniform support shall be provided by one of the following methods:

- a. Shimming and grouting the annulus,
- b. Using fiberboard or other suitable padding
- c. Using double butt-welded bottom or annular plates resting directly on the foundation, Annular plates or bottom plates under the shell may utilize back-up bars welds if the foundation is notched to prevent the back-up bar from bearing on the foundation.
- d. Using closely spaced shims (without structural grout) provided that the localized bearing loads are considered in the tank wall and foundation to prevent local crippling and spalling.

Mechanically-anchored tanks shall be shimmed and grouted.

E-24

# APPENDIX EC-COMMENTARY ON APPENDIX E

# Acknowledgement

The development of this extensive revision to Appendix E and preparation of this Commentary was funded jointly by API and the Federal Emergency Management Agency through the American Lifelines Alliance. The development of this appendix and Commentary was directed by the API Seismic Task Group with technical review by the Dynamic Analysis and Testing Committee of the Pressure Vessel Research Council.

# EC.1 Scope

API 650, Appendix E has been revised in it's entirety to accomplish the following:

- incorporate the newer definitions of ground motion used in the US model building codes and ASCE 7,
- add a procedure to address regions outside the US where ground motions may be defined differently by local regulations,
- expand and generalize the equations to improve programming applications and reduce reliance on plots and equations
  where terms were combined and lacked the clarity needed to adapt to changing requirements,
- · include additional requirements for hydrodynamic hoop stresses and vertical earthquake,
- include, for the convenience of the users, information and equations previously found in outside reference materials,
- revise the combination of impulsive and convective forces to use the SRSS method instead of direct sum method,
- introduce the concept of an "anchorage ratio" for clarity,
- add a foundation stability ratio requirement,
- · permit the use of soil structure interaction for mechanically-anchored tanks,
- · add detailing requirements for freeboard, pipe flexibility, and other components,
- and, improve maintainability.

# EC.2 Definitions and Notations

For additional definitions and background information, the user is referred to the following documents:

- 1. National Earthquake Hazard Reduction Program Provisions and Commentary, FEMA Publications 302, 303, 368 and 369.
- 2. ASCE 7, Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers.
- 3. International Building Code, 2000 and 2003.

# EC.3 Performance Basis

### EC.3.1 SEISMIC USE GROUP

Tanks are classified in the appropriate Seismic Use Group based on the function and hazard to the public. Tank owner/operators may elect to specify a higher SUG as part of their risk management approach for a tank or facility. Specifying a higher SUG increases the Importance Factor, I, used to define the design acceleration parameters and indirectly influences the performance level expected of the tank. Selection of the appropriate SUG is by the owner or specifying engineer who is familiar with the risk management goals, the surrounding environment, the spill prevention, control and countermeasures plans and other factors.

SUG I is the default classification.

### EC.3.1.1 Seismic Use Group III

Tanks assigned the SUG III designation are those whose function are deemed essential (i.e., critical) in nature for public safety, or those tanks that store materials that may pose a very serious risk to the public if released and lack secondary control or protection. For example, tanks serving these types of applications may be assigned SUG III unless an alternative or redundant source is available:

- 1. fire, rescue, and police stations;
- 2. hospitals and emergency treatment facilities;
- 3. power generating stations or other utilities required as emergency backup facilities for Seismic Use Group III facilities;
- 4. designated essential communication centers;

5. structures containing sufficient quantities of toxic or explosive substances deemed to be hazardous to the public but lack secondary safeguards to prevent widespread public exposure;

6. water production, distribution, or treatment facilities required to maintain water pressure for fire suppression within the municipal or public domain (not industrial).

It is unlikely that petroleum storage tanks in terminals, pipeline storage facilities and other industrial sites would be classified as SUG III unless there are extenuating circumstances.

### EC.3.1.2 Seismic Use Group II

Tanks assigned the SUG II designation are those that should continue to function, after a seismic event, for public welfare, or those tanks that store materials that may pose a moderate risk to the public if released and lack secondary containment or other protection. For example, tanks serving the following types of applications may be assigned SUG II unless an alternative or redundant source is available:

1. power generating stations and other public utility facilities not included in Seismic Use Group III and required for continued operation;

2. water and wastewater treatment facilities required for primary treatment and disinfection for potable water.

#### EC.3.1.3 Seismic Use Group I

SUG I is the most common classification. For example, tanks serving the following types of applications may be assigned SUG I unless an alternative or redundant source is available:

1. storage tanks in a terminal or industrial area isolated from public access that has secondary spill prevention and control;

2. storage tanks without secondary spill prevention and control systems that are sufficiently removed from areas of public access such that the hazard is minimal.

## EC.4 Site Ground Motion

The definition of the considered ground motion at the site is the first step in defining acceleration parameters and loads. The philosophy for defining the considered ground motion in the US began changing about 1997. This new approach, which began with the evolution of the 1997 UBC and advanced through the efforts of the National Earthquake Hazard Reduction Program, was the basic resource for the new model building codes. Subsequent to the *International Building Code* 2000, ASCE 7 adopted the methods and is presently the basis for the US model building codes.

However, regulations governing seismic design for tank sites outside the US may not follow this ASCE 7 approach. Therefore, this revision was written to be adaptable to these regulations. Consequently, there is no longer a definition of the "minimum" design ground motion based on US standards that applies to all sites regardless of the local regulations.

Historically, this appendix (and the US standards) was based on ground motion associated with an event having a 10% probability of exceedance in 50 years. This is an event that has a recurrence interval of 475 years. In seismically active areas where earthquakes are more frequent, such as the west coast of the US, this was a reasonable approach. In regions where earthquakes are less frequent, engineers and seismologists concluded that the hazard was under-predicted by the 475 year event. Thus, the maximum considered ground motion definition was revised to a 2% probability of exceedance in 50 years, or a recurrence interval of about 2500 years. The economic consequences of designing to this more severe ground motion was impractical so a scaling factor was introduced based on over-strength inherently present in structures built to today's standards. See the NEHRP Provisions for a more extensive discussion of this rationale.

The API Seismic Task Group considered setting the 475 year event as the "minimum" for application of this standard. Given the variations worldwide in defining the ground motion, it was decided that the local regulation should set the requirements. However, the owner/specifying engineer for the tank should carefully consider the risk in selecting the appropriate design motion in areas outside the US. The API Seismic Task Group suggests that the 475 year event be the minimum basis for defining the site ground motion for tanks.

## EC.4.1 MAPPED ASCE 7 METHODS

The ASCE 7 maximum considered earthquake response spectrum is shown in Figure EC-1 and also illustrates the notations used in developing the response spectrum for the maximum considered ground motion.

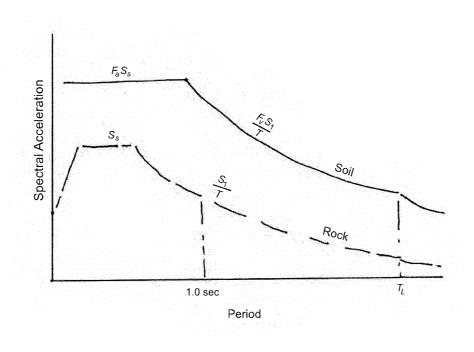



Figure EC-1—Maximum Earthquake Response Spectrum

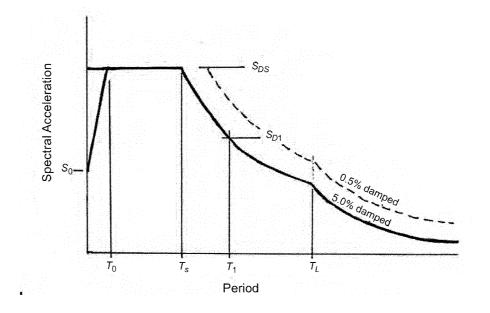



Figure EC-2—Earthquake Response Spectrum Notation

### EC.4.2 SITE-SPECIFIC SPECTRAL RESPONSE ACCELERATIONS

In most situations, a site-specific response spectrum approach is not required. In the rare cases that a site-specific approach is necessary, the ASCE 7 approach was adopted into the appendix. To utilize this procedure, both a probabilistic and deterministic response spectrum is developed. The site specific value is then the *lesser* of the two values.

08

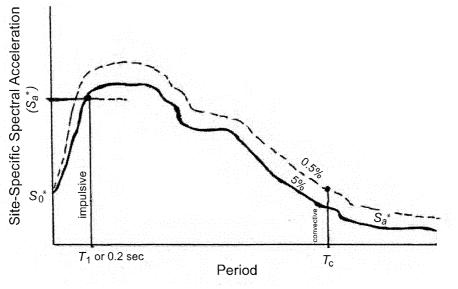



Figure EC-3—Site Specific Response Spectrum

#### EC.4.2.1 Site-Specific Study

<none>

11

### EC.4.2.2 Probabilistic Site-Specific MCE Ground Motion

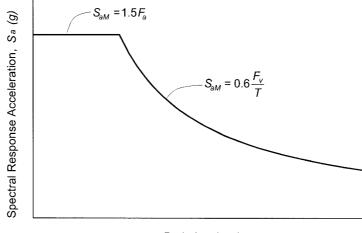
<none>

#### EC.4.2.3 Deterministic Site-Specific MCE Ground Motion

In addition to the value determined for the characteristic earthquake acting on the known active faults, the deterministic values also have a lower bound limit as shown in Figure EC-4.

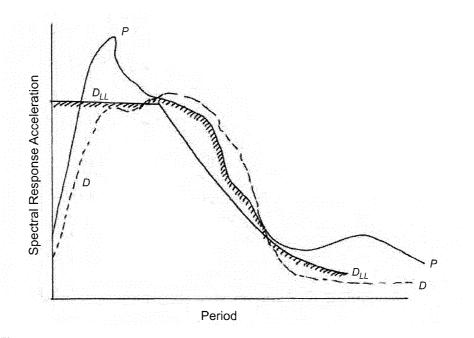
#### 08 E

### EC.4.2.4 Site-Specific MCE Ground Motions


Figure EC-5 illustrates conceptually how these requirements might relate to define the site specific response spectrum.

#### EC.4.3 SITES NOT DEFINED BY ASCE 7 METHODS

The methods and equations in this appendix are best illustrated by a response spectrum curve. When the only definition of ground motion is the peak ground acceleration, the shape of the response spectrum is approximated to determine the spectral accelerations parameters. Consequently, the API Seismic Task Group recommended the relationship of  $S_1$  and  $S_p$  defined in Equation (E.4.3-2) as an approximation based on typical response spectrum curves encountered in design.


$$S_1 = 1.25 S_p$$
 (E.4.3-2)

Alternatively, if the applicable regulations have a means of determining the spectral response at the appropriate periods and damping values, those values (i.e., response spectrum) can be used, assuming that the other requirements of the appendix are met.



Period, T (sec)







## EC.4.4 MODIFICATIONS FOR SITE SOIL CONDITIONS

The ground motions must be amplified when the founding soils are not rock. In previous editions of the appendix, these adjustments only applied to the constant velocity and acceleration portions of the response. Since the mid-1990s, there have been dual site factors as found in ASCE 7 to define the influence of the soil on the shape and values of the ground motions. The appendix utilizes this ASCE 7 approach.

Outside the US, local regulations may have alternate methods of defining the influence of the soil. Such alternate methods may be used; however, if no site amplifications are defined in the local regulations, then the ASCE 7 method of addressing site amplification is required.

08

### EC.4.5 STRUCTURAL PERIOD OF VIBRATION

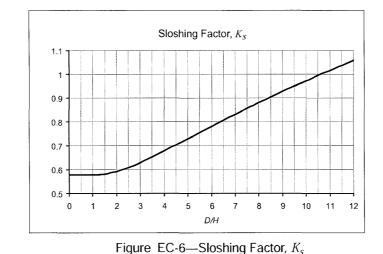
#### EC.4.5.1 Impulsive Natural Period

To use the methods in this appendix, the impulsive seismic acceleration parameter is independent of tank system period unless a site-specific analysis or soil structure interaction evaluation is performed. The impulsive period of the tank is nearly always less than  $T_s$ , placing it on the plateau of the response spectra. Thus, the impulsive acceleration parameter is based directly on SDS. For special circumstances, a simplified procedure was included in the appendix to determine the impulsive period which was taken from the following reference:

"Simplified Procedure for Seismic Analysis of Liquid-Storage Tanks," Malhotra, P; Wenk, T; and Wieland, M. *Structural Engineering International*, March 2000.

#### EC.4.5.2 Convective (Sloshing) Period

For convenience, the graphical procedure for determining the sloshing period,  $T_c$  is included here. See Equation (E.4.5.2-b) and Figure EC-5.


$$T_c = K_s \sqrt{D} \tag{E.4.5.2-b}$$

where

08

D = nominal tank diameter in ft,

 $K_s$  = factor obtained from Figure EC-6 for the ratio *D/H*.



11

08

# EC.4.6 DESIGN SPECTRAL RESPONSE ACCELERATIONS

#### EC.4.6.1 Spectral Acceleration Coefficients

The acceleration parameters equations are based on the response spectrum pictured in Figure EC-7.

A "Q" term not included in the ASCE 7 is introduced in this appendix. "Q" is the scaling factor from the MCE, which is equal to <sup>2</sup>/<sub>3</sub> for the ASCE 7 method. When using a recurrence interval of other than 2500 years, or another regulatory basis, "Q" should be set to the appropriate value; for most cases this is 1.0. For example, in a region outside the US using the 475 year event, Q = 1.0.

For site-specific analysis, the impulsive spectral acceleration is limited to 1.5g. This is based on practical experience and observations of tank behavior. When tanks are lower profile, i.e., H/D < 0.8 and are either self- anchored or have long anchor bolt projections, the tanks can slide at the high impulsive accelerations. This sliding effectively limits the amount of force transferred into the tank. This limitation should not apply if the tank is prevented from sliding.

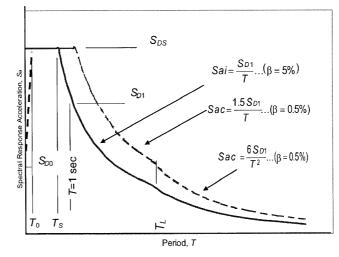



Figure EC-7—Design Response Spectra for Ground-Supported Liquid Storage Tanks

#### EC.5 Seismic Design Factors

#### EC.5.1 DESIGN FORCES

#### EC.5.1.1 Response Modification Factor

This appendix differentiates the response modification factors for impulsive and convective forces. The force reduction factor mimics the nonlinear response of the tank. There are three components to the force reduction factor *R*: (1) ductility  $R_{\mu}$ , (2) damping  $R_{\beta}$ , and (3) over-strength  $R_{\Omega}$ 

$$R = R_{\mu} \times R_{\beta} \times R_{\Omega} \tag{EC.5.1.1-1}$$

The ductility reduction is to account for the force reduction associated with a more flexible response. The damping reduction is to account for the force reduction associated with increased system damping. The over-strength reduction is to account for the fact that the actual strength is higher than the calculated strength.

The convective response is generally so flexible (period between 2 and 10 seconds) that any increased flexibility due to non-linearity has negligible influence on the period and damping of the convective response. It is, therefore, not justified to apply the ductility and damping reductions to the convective response—however, the over-strength reduction can still be applied. In the absence of raw data, NEHRP Technical Subcommittee 13—Non-building Structures proposed a reduction in  $R_W$  for the convective forces. After additional discussion in the ASCE Seismic Task Group, R = 1.5 (or  $R_{WC}$  of approximately 2.0) was accepted.

#### EC.5.1.2 Importance Factor

<none>

### EC.6 Design

#### EC.6.1 DESIGN LOADS

Historically, steel tank standards in the US have used the direct sum of the impulsive and convective forces. Other standards do not. For example, the SRSS method of combining the impulsive and convective components is used the New Zealand Standard NZS 3106. Here is what C2.2.9.4 (Commentary) of that standard says:

"The periods of the inertia (ed. note: impulsive) and convective responses are generally widely separated, the impulsive period being much shorter than the convective period. When responses are widely separated, near-simultaneous occurrence of peak values could occur. However, the convective response takes much longer to build up than the impulsive response, consequently the impulsive component is likely to be subsiding by the time the convective component reaches its peak. It is thus recommended that the combined impulsive and convective responses be taken as the square root of the sum of the squares of the separate components."

A numerical study was undertaken by the NEHRP Technical Subcommittee 13—Non-building Structures to investigate the relative accuracy of "direct sum" and SRSS methods for combining the impulsive and convective responses. In this study: (1) the impulsive period was varied between 0.05 seconds and 1 second, (2) the convective period was varied between 1 second and 20 seconds; (3) the impulsive and convective masses were assumed equal, and (4) eight different ground motions from Northridge and Landers earthquake data were used.

While, the SRSS modal combination rule does not provide the worst possible loading, it does provide the most likely loading. It has been shown that this rule is suitable for combining the impulsive and convective (sloshing) responses in tanks.

Furthermore, it should be remembered that different portions of a site response spectrum are not controlled by the same seismic event. Whereas, the short-period spectral values, which determine the impulsive response, are controlled by the closer earthquakes, the long-period spectral values, which determine the convective response, are controlled by distant, larger earthquakes. Therefore, there is already some conservatism inherent in assuming that the impulsive and convective responses will occur simultaneously.

### EC.6.1.1 Effective Weight of Product

For convenience, the relationships defined in the appendix equations are graphically illustrated in Figure EC-8.

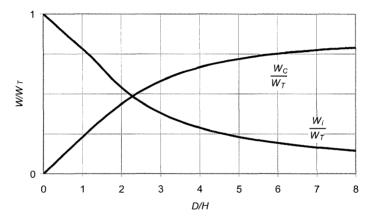



Figure EC-8—Effective Weight of Liquid Ratio

### EC.6.1.2 Center of Action for Effective Forces

For convenience, the relationships defined in the appendix equations are graphically illustrated in Figure EC-9.

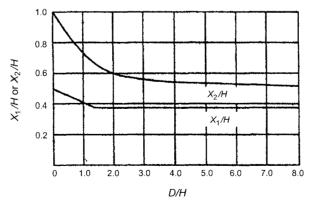



Figure EC-9—Center of Action of Effective Forces



<none>

11

#### EC.6.1.4 Dynamic Liquid Hoop Forces

Calculations of hydrodynamic hoop forces were not included in previous editions of the appendix since it was not usually a governing condition for the typical petroleum storage tank. However, with larger diameter tanks, products with higher specific gravity, and vertical seismic effects, this additional check for hoop stresses was deemed to be necessary.

#### EC.6.1.5 Overturning Moment

<none>

### EC.6.1.6 Soil-Structure Interaction

See the NEHRP Provisions, Chapter 5 for additional information. This is applicable to mechanically anchored tanks in this appendix. The complexity and state of technology for soil structure interaction evaluations of uplifting tanks and tanks with berm foundations was considered as beyond the scope of this appendix.

### EC.6.2 RESISTANCE TO DESIGN LOADS

#### EC.6.2.1 Anchorage

Anchorage for overturning loads may be accomplished by the inherent tank configuration and product weight (self-anchored) or by adding mechanical devices (mechanically-anchored) such as anchor bolts or straps. If a tank satisfies the requirements for self anchorage, it should not be anchored.

The methods and load combinations used to design tank anchorage have proven to be satisfactory. Alternative methods for predicting annular plate behavior and anchor bolt loads have been proposed by various researchers. The API Seismic task Group believes that while some of these methods may more accurately depict the actual behavior of the tank, the added complexity does not significantly alter the anchorage design for the tanks usually constructed to API standards. Consequently, the simplified, but proven, method is retained.

#### EC.6.2.2 Maximum Longitudinal Shell Membrane Compression Stress

#### EC.6.2.3 Foundation

Using the calculated maximum toe pressure in the tank shell to satisfy equilibrium on self anchored flatbottom tanks produces impractical ringwall dimensions. Some yielding of soil (settlement) may occur under the shell requiring re-leveling of the tank after a seismic event. The foundations under flatbottom tanks, even tanks resting directly on earth foundations, have fared well under seismic loadings. Therefore, the seismic loading does not alter the foundation design criteria or provide justification for increased foundations for ringbearing plates.

A requirement for a mechanically-anchored tank stability check was added. This check assumes that the tank, product and foundation behave as a rigid body and is over-turning about the toe (i.e., base of the tank). This is not the actual behavior of the tank system but is a convenient model to use for checking the gross stability of the foundation. See Figure EC-10. The required factor of safety is 2.0 for this model.

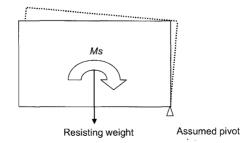



Figure EC-10—Overturning Moment

EC.6.2.4 Hoop Stress

## EC.7 Detailing Requirements

#### EC.7.1 ANCHORAGE

EC.7.1.1 Self-Anchored

#### EC.7.1.1.1 Mechanically-Anchored

Although not the preferred solution for mechanical anchors, straps are permitted. However, if straps are utilized, proper details are vital to achieve the performance objective. The anchorage into the foundation should be mechanical, and not rely on bond strength alone. Since there are no direct technical testing methods for validation as exist for anchor bolts, the ability of the detail selected to yield the anchor strap should be demonstrated preferably by test or, at a minimum, by calculation.

The design and detailing of the strap should also allow for the commonly occurring corrosion of the strap near the foundation, while not providing too much steel area that reduces the desirable ductile stretching of the strap under overload. One solution is to contour the strap to produce reduced area over a portion of the strap length. See Figure EC-11.

The connection to the shell is also often poorly detailed and stresses the attachment weld in the weak direction. Attaching the strap with a single horizontal fillet weld is not recommended. Attaching the strap to a thicker reinforcing plate may also be necessary to avoid over-stressing the shell. One method of detailing a strap is shown is Figure EC-11.

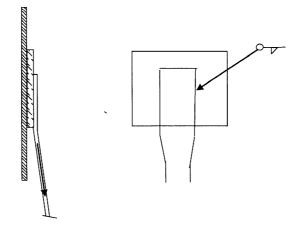



Figure EC-11—Anchor Strap Attachment to Shell

#### EC.7.2 FREEBOARD

Freeboard is provided to reduce potential operational damage to the upper shell and roof by the impingement of the sloshing wave. In some circumstances, this damage may include tearing of the roof to shell connection and release a small amount of product. However, in almost all cases, this damage is not a structural collapse mechanism but rather an issue of operational risk and repair cost. Designing the typical API style roof and shell to resist the sloshing wave is impractical.

In the rare situation that the these provisions are applied to a tank that is completely filled and no sloshing space is provided above the maximum operating level, the entire contents of the tank should be considered an impulsive mass.

### EC.7.3 PIPING FLEXIBILITY

Lack of sufficient piping flexibility has been one of the leading causes of product loss observed after an earthquake. Piping designers may not recognize the movements that the tank and foundation may experience and may not provide sufficient flexibility in the piping system and supports. This overstresses the pipe and tank shell, usually causing a piping break.

Piping designers should not assume that the tank is an anchor point to resist piping loads without carefully evaluating the mechanical loads on the tank, including the compatibility of displacement. While the tank shell is relatively stiff in reacting to loads applied in the vertical direction, in most cases it is not stiff relative to the piping for radial or rotational loads.

A table of design displacements is included in the appendix. See Table E-8. These values are a compromise of practical design considerations, economics and the probability that the piping connection will be at the point of maximum uplift. If one "estimated" the tank uplift using the simplified model in the appendix, the uplift will often exceed the values in Table E-8 unless the tank is in lower ground motion regions.

Mechanically anchoring the tank to reduce piping flexibility demands should be a "last resort." The cost of anchoring a tank that otherwise need not be anchored will often be larger than altering the piping configuration. The cost of the anchors, the foundation, and the attachment details to the shell must be weighed against piping flexibility devices or configuration changes.

Some tank designers incorporate under-bottom connections attached to the bottom out of the uplift zone. This is potentially problematic in areas where high lateral impulsive ground motion may cause the tank to slide. The tank sliding may cause a bottom failure. Properly detailed connections though the cylindrical shell are preferred.

#### EC.7.3.1 Method for Estimating Tank Uplift

#### EC.7.4 CONNECTIONS

### EC.7.5 INTERNAL COMPONENTS

Buckling of the roof rafters perpendicular to the primary direction of the lateral ground motion has been observed after some events. Initially, this damage was thought to be impingement damage to the rafter from the sloshing of the liquid. Presently, this buckling behavior is believed to be the result of the tendency of the flexible tank wall to oval, creating a compressive force perpendicular to the direction of the ground motion. Allowing these rafter to slip, or including an "accidental" compression load in the design of the rafter is recommended.

#### EC.7.6 SLIDING RESISTANCE

EC.7.7 LOCAL SHEAR TRANSFER

### EC.7.8 CONNECTIONS WITH ADJACENT STRUCTURES

#### EC.7.9 SHELL SUPPORT

### EC.7.10 REPAIR, MODIFICATION OR RECONSTRUCTION

### EC.8 Additional Reading

The following references are part of a large body of work addressing the behavior of tanks exposed to seismic ground motion.

1. Hanson, R.D., *Behavior of Liquid Storage Tanks*, Report, National Academy of Sciences, Washington D.C., 1973, pp. 331 – 339.

2. Haroun, M.A., and Housner, G.W., "Seismic Design of Liquid Storage Tanks," *Journal of Technical Councils*, ASCE, Vol. 107, April 1981, pp. 191 – 207.

3. Housner, G.W. 1954, Earthquake Pressures on Fluid Containers, California Institute of Technology.

4. Malhotra, P.K., and Veletsos, A.S., "Uplifting Analysis of Base Plates in Cylindrical Tanks," *Journal of Structural Division*, ASCE, Vol. 120, No. 12, 1994, pp. 3489 – 3505.

5. Malhotra, P.K., and Veletsos, A.S., *Seismic response of unanchored and partially anchored liquid-storage tanks*, Report TR-105809. Electric Power Research Institute. Palo Alto. 1995.

6. Malhotra, P; Wenk, T; and Wieland, M., "Simplified Procedure for Seismic Analysis of Liquid-Storage Tanks," *Structural Engineering International,* March 2000.

7. Manos, G. C.; Clough, R. W., *Further study of the earthquake response of a broad cylindrical liquid-storage tank model*, Report EERC 82-07, University of California, Berkeley, 1982.

8. New Zealand Standard NZS 3106.

9. Peek, R., and Jennings, P.C., "Simplified Analysis of Unanchored Tanks," *Journal of Earthquake Engineering and Structural Dynamics*, Vol. 16, No. 7, October 1988, pp. 1073 – 1085.

10. Technical Information Document (TID) 7024, *Nuclear Reactors and Earthquakes*, Chap. 6 and Appendix F. Published by Lockheed Aircraft Corporation under a grant from the US Dept. of Energy (formerly US Atomic Energy Commission), 1963.

11. Veletsos, A.S., *Seismic Effects in Flexible Liquid Storage Tanks*, Proceedings of the 5th World Conference on Earthquake Engineering, Rome, Italy, Vol. 1, 1974, pp. 630 – 639.

12. Veletsos, A.S.; Yang, J. Y., *Earthquake response of liquid storage tanks*, Proceedings of the Second Engineering Mechanics Specialty Conference. ASCE. Raleigh. 1977. pp. 1 – 24.

13. Veletsos, A.S., "Seismic response and design of liquid storage tanks," *Guidelines for the Seismic Design of Oil and Gas Pipeline Systems*, ASCE. New York. 1984 pp. 255 – 370.

14. Wozniak, R.S., and W.W. Mitchell. 1978, *Basis of Seismic Design Provisions for Welded Steel Oil Storage Tanks*, 1978 Proceedings—Refining Dept., Washington, D.C.: American Petroleum Institute. 57:485 – 501.

# EC.9 Example Problems

1. Determining Spectral Acceleration Parameters Using ASCE 7 Method

2. Determining Spectral Acceleration Parameters Using Peak Ground Acceleration

3. Determining Spectral Acceleration Parameters Using Site-specific Response Spectrum

4. Calculating Impulsive, Convective and Combined Overturning Moment and Base Shear

5. Calculating Anchorage Ratio " $\mathcal{J}$ " and Self-Anchored Annular Plate

6. Calculating Hydrodynamic Hoop Stresses

7. Calculating the Overturning Stability Ratio

### **EXAMPLE PROBLEM #1**

08

#### **Determining Spectral Acceleration Parameters Using ASCE 7 Method**

Required for US Locations

Seismic ground motion parameters may be determined from the ASCE 7 maps (this may be difficult in some locations due to scale); or, using digital data from USGS or IBC CD-ROM.

The results from the USGS web site for an assumed location, using the 2002 values: http://eqhazmaps.usgs.gov/index.html

| The ground motion values for the requested point:                         |                                                                                                                           |                                                                                                                                                                                          |  |  |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 35 Lat. – 118 Long.                                                       |                                                                                                                           |                                                                                                                                                                                          |  |  |
| DISTANCE TO                                                               |                                                                                                                           |                                                                                                                                                                                          |  |  |
| 0.00 kms                                                                  |                                                                                                                           |                                                                                                                                                                                          |  |  |
| INT 35.00 Lat. – 118.00 Long.                                             |                                                                                                                           |                                                                                                                                                                                          |  |  |
| Probabilistic ground motion values, in %g, at the Nearest Grid point are: |                                                                                                                           |                                                                                                                                                                                          |  |  |
|                                                                           | 2%PE in 50 yr                                                                                                             |                                                                                                                                                                                          |  |  |
| 23.00                                                                     | 38.22                                                                                                                     | << S <sub>0</sub>                                                                                                                                                                        |  |  |
| 54.56                                                                     | 92.65                                                                                                                     | << S <sub>S</sub>                                                                                                                                                                        |  |  |
| 25.35                                                                     | 42.09                                                                                                                     | << S <sub>1</sub>                                                                                                                                                                        |  |  |
|                                                                           | 35 Lat. – 118 Long.<br>0.00 kms<br>35.00 Lat. – 118.00 Long.<br>es, in % <i>g</i> , at the Nearest Griv<br>23.00<br>54.56 | 35 Lat. – 118 Long.         0.00 kms         35.00 Lat. – 118.00 Long.         es, in %g, at the Nearest Grid point are:         2%PE in 50 yr         23.00         54.56         92.65 |  |  |

Similarly, using the IBC 2000 CD-ROM \*

Selecting  $S_s$  and  $S_1$ 

| API 650 Ap                                | pendix EC Example Problem           |  |  |
|-------------------------------------------|-------------------------------------|--|--|
| MCE Parameters—Conterminous 48 States     |                                     |  |  |
| Latitude = 35.0000, Longitude = -118.0000 |                                     |  |  |
| Data are bas                              | ed on the 0.01 deg grid set         |  |  |
| Period SA                                 |                                     |  |  |
| (sec)                                     | (% <i>g</i> )                       |  |  |
| 0.2                                       | 102.7 Map Value, Soil Factor of 1.0 |  |  |
| 1.0                                       | 42.0 Map Value, Soil Factor of 1.0  |  |  |

Comparing to ASCE 7-02 Map, Figure 9.4.1.1(c) \*

 $S_s = 100\% g$ 

 $S_1 = 42\% g$ 

\* The ABC 2000 and ASCE 7 values are based on the USGS 1996 values. These values will be used for the example problems. The user should note that these maps are likely being revised in the later editions of these documents.

Therefore, use  $S_s = 103\% g$ ,  $S_1 = 42\% g$  and  $S_0 = 38\% g$ 

 $S_s = 103\% g$  $S_1 = 42\% g$ 

 $S_0 = 38\% g$ 

For this site, (from ASCE 7 maps)

 $T_L = 12$  seconds

Assuming Site Class D, and interpolating

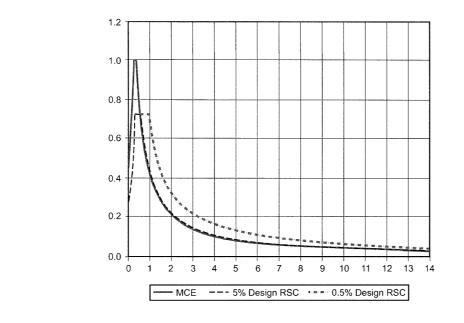
 $F_a = 1.09$ 

(See E.4.4)

 $F_V = 1.58$ 

Q = 0.67 for ASCE methods

Therefore


| $S_{DS} =$ | $QF_aS_s$          | = | 75% g        |
|------------|--------------------|---|--------------|
| $S_{D1} =$ | $QF_vS_1$          | = | 44% g        |
| $S_{D0} =$ | $QS_0$             | = | 25% g        |
| $T_s =$    | $S_{D1}/S_{DS}$    | = | 0.59 seconds |
| $T_O =$    | $0.2S_{D1}/S_{DS}$ | = | 0.12 seconds |

The response spectrum can now be constructed (does not include  $I/R_{W}$ )

#### **Determine Spectral Acceleration Coefficients (See E.4.6.1)**

Given:

Assume tank is self-anchored,  $R_W = 3.5$  (see E.5.1.1)



SUG I applies, I = 1.0Tank Diameter, D = 100 ft Product Height, H = 40 ft

# <sup>08</sup> Impulsive

$$A_i = S_{DS} \left( \frac{I}{R_{wi}} \right) = 0.75 \left( \frac{1.0}{3.5} \right) = 0.21 > 0.007$$
 (E.4.6.1-1)

#### Convective

Per E.4.5.2,

$$T_{c} = 6.09 \text{ seconds} < T_{L}$$

$$A_{c} = KS_{D1} \left(\frac{1}{T_{c}}\right) \left(\frac{I}{R_{wc}}\right) = 1.5(0.44) \left(\frac{1}{6.09}\right) \left(\frac{1.0}{2}\right) = 0.054 \le .21$$
(E.4.6.1-4)

## **EXAMPLE PROBLEM #2**

### Determining Spectral Acceleration Parameters Using Peak Ground Acceleration

For regions outside the US where applicable

For the same tank in Example #1, located outside the US.

See E.4.3.

Assuming the only parameter given is the 475 year peak ground acceleration (damping = 5%).

This is comparable to the 'Z' used in the earlier editions of the UBC.

Assume that regulations do not provide response spectrum.

Since 475 year recurrence interval is basis of peak ground acceleration, Q = 1.0 (no scaling).

Determine parameters:

 $S_p = 0.23\% g \ll$  given See Ex #1, USGS PGA for 10% PE

 $S_s = 2.5$   $S_p = 0.58\% g$ 

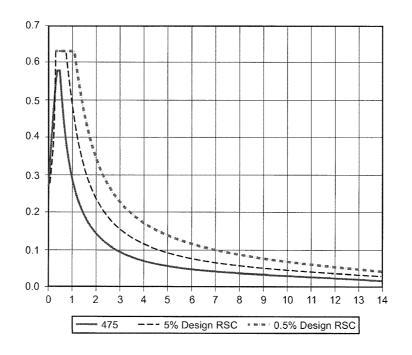
 $S_1 = 1.25$   $S_p = 0.29\% g$ 

Assuming Site Class D, and interpolating

No soil or site class parameters were given in the local regulations, use same as Example #1

 $F_a = 1.09$  (See E.4.4)

 $F_{v} = 1.58$ 


Q = 1.00

 $S_0$  is 475 year value

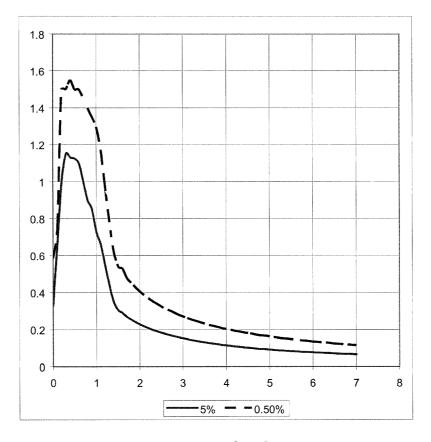
Therefore

 $SDS = QF_{\partial}S_{S}s = 63\% g$   $S_{D1} = QF_{\nu}S_{1} = 46\% g$   $SD_{0} = QS_{0} = 23\% g$   $T_{s} = S_{D1}/S_{DS} = 0.73 \text{ seconds}$  $T_{o} = 0.2S_{D1}/S_{DS} = 0.15 \text{ seconds}$ 

The response spectrum can now be constructed (does not include  $L/R_{W}$ )



The remaining calculations are similar to those shown in Example #1.


### **EXAMPLE PROBLEM #3**

#### Determining Spectral Acceleration Parameters Using Site-Specific Response Spectrum

Given the following 2500 year recurrence interval site specific response spectrum.

Assume that the spectrum was developed according to the requirements of Appendix E.

Also, assume that the soil/site class influences are included in the spectrum (i.e.,  $F_a$  and  $F_v = 1.0$ )



From this response spectrum select the peak ground acceleration,  $S_{a0}^{*}$  (the <sup>\*</sup> denotes site-specific in Appendix E nomenclature) Using the 5% curve,

 $S_{a0}^{*} = 0.33g$ 

#### Select the Impulsive Spectral Acceleration

There are two methods: 1) calculate the impulsive period per E.4.5.1, or Section 2) the more traditional approach—simply use the maximum value in the short period region of the curve. Using this second approach, and the 5% spectrum:

$$S_{ai}^{*} = 1.15g$$

#### Select the Convective Spectral Acceleration

Using the sloshing period form Example Problem #1, and reading from the 0.5% curve, the convective spectral acceleration is:

 $S_{ac}^{*} = 0.13g$ 

Assuming that the project specifications do not require designing for the 2500 year event, but follow Appendix E:

 $A_i = 2.5 Q S_{a0}^* 0.550 g$ 

(E.4.6.2-1)

Alliteratively, scale  $S_{ai}^{*}$  by the factor  $Q = 0.77g \ll USE$ 

Similarly,

 $A_c = Q S_{ac}^{*} = 0.087 g << USE$ 

These values of  $A_i$  and  $A_c$  may be substituted into the equations in Appendix E.

## **EXAMPLE PROBLEM #4**

Using Equation (E.4.6.2-1)

## Calculating Impulsive, Convective and Combined Overturning Moment and Base Shear

This problem illustrates the determination of the seismic base shear and overturning forces.

Known information about the tank:

- H = 40 ft
- $D = 100 \, \text{ft}$
- G = 0.7
- $W_p = 13,722,000$  lb, weight of product
- $W_s = 213,500$  lb, weight of the shell

 $W_r = 102,100$  lb, weight of the roof (an allowance for a snow load is not required for this site)

 $W_f = 80,900$  lb, weight of the bottom

 $t_s = 0.5625$  in., thickness of the bottom shell course

- $F_{y}$  = 30,000 psi for ASTM A 283, Grade C material for the bottom plate welded to the shell
- $S_d$  = 20,000 psi for ASTM A 283, Grade C material for the lowest shell course
- $X_s = 18.0$  ft (this value was assumed to be  $0.45 \times H_t$  for this sample problem)
- $X_{f} = 41.0$  ft (this value was assumed to be  $H_{l} + 1$  for this sample problem)
- I = 1.00 Seismic Use Group I for a self-anchored tank
- $R_W = 3.5$

#### **Problem Solution**

Per E.5.1 and E.6.1.6, the equivalent lateral seismic force is given by the square root sum of the squares combination impulsive and convective forces.

The seismic base shear is determined by Equation (E.6.1-1):

$$V = \sqrt{V_i^2 + V_c^2}$$
(E.6.1-1)

The seismic overturning moment at the base of the tank shell ringwall) is determined by Equation (E.6.1.5-1):

$$M_{rw} = \sqrt{[A_i(W_iX_i + W_sX_s + W_rX_r)]^2 + [A_c(W_cX_c)]^2}$$
(E.6.1.5-1)

### **Determine the Impulsive Water Parameters**

 $W_i$ , the impulsive weight

D/H = 2.50 > = 1.33 Use Equation (E.6.1.1-1)

$$W_{i} = \frac{\tanh\left(0.866\frac{D}{H}\right)}{0.866\frac{D}{H}}W_{p}$$
(E.6.1.1-1)

X<sub>i</sub>, the moment arm for the impulsive product mass, see Equation (E.6.1.2.1-1)

$$X_i = 0.375H = 15.0 \text{ ft}$$
 (E.6.1.2.1-1)

 $A_{j}$  the impulsive spectral acceleration parameter was determined in Example Problem #1

 $A_i = 0.21g$ 

## **Determine the Convective Water Parameters**

Determine  $W_{i}$ , the convective water weight using Equation (E.6.1.1-3)

08

$$W_{c} = 0.230 \frac{D}{H} \tanh\left(\frac{3.67 H}{D}\right) W_{p}$$
(E.6.1.1-3)  
= 0.517 × 13,722,000  
= 7,095,000 lb

The sloshing period was determined in Example Problem #1

 $T_c = 6.08$  seconds  $< T_L = 12$  seconds

 $A_c$  was determined in Example Problem #1

$$A_c = 0.054g$$

 $X_{c}$  the moment arm for the convective water mass is determined by Equation (E.6.1.2.1-3)

$$X_{c} = \left[1.0 - \frac{\cosh\left(\frac{3.67H}{D}\right) - 1}{\frac{3.67H}{D} \sinh\left(\frac{3.67H}{D}\right)}\right]H$$
(E.6.1.2.1-3)

 $= 0.574 \times 40$ 

= 23.0 ft

### **Determine the Seismic Base Shear**

The impulsive component is determined by Equation (E.6.1-2)

 $V_{i} = A_{i}(W_{s} + W_{r} + W_{f} + W_{i})$   $= 0.21 \times 6,569,500$  = 1,379,600 lb(E.6.1-2)

 $A_i = 0.21g$ 

 $W_s = 213,500 \text{ lb}$ 

 $W_{\rm f} = 102,100 \, {\rm lb}$ 

 $W_f = 80,900 \text{ lb}$ 

 $W_i = 6,173,000$  lb

The convective component is determined by Equation (E.6.1-3)

$$V_c = A_c W_c \tag{E.6.1-3}$$

 $= 0.054 \times 7,095,000$ 

$$A_c = 0.054g$$
  
 $W_c = 7,095,000 \text{ lb}$ 

The seismic base shear is

 $V = \sqrt{V_i^2 + V_c^2}$ 

= 1,431,800 lb

### **Determine the Seismic Overturning Moment**

The ringwall moment is determined by Equation (E.6.1.5-1)

$$M_{rw} = \sqrt{\left[A_{i}(W_{i}X_{i} + W_{s}X_{s} + W_{r}X_{r})\right]^{2} + \left[A_{c}(W_{c}X_{c})\right]^{2}}$$
(E.6.1.5-1)

 $A_i = 0.21g$   $W_i = 6,173,000 \text{ lb}$   $X_i = 15.0 \text{ ft}$   $W_s = 213,500 \text{ lb}$   $X_s = 18.0 \text{ ft}$  $W_r = 102,100 \text{ lb}$ 

- $X_{\Gamma} = 41.0 \text{ ft}$ 
  - $= 0.21 \times 100,624,100$
  - = 21,131,100 ft-lb

 $A_c = 0.054$ g

 $W_c = 7,095,000 \text{ lb}$ 

 $X_c = 23.0 \, \text{ft}$ 

- $= 0.054 \times 162,874,400$
- = 8,795,200 ft-lb

The seismic overturning moment at the base of the tank shell,  $M_{rw}$  is 22,888,400 ft-lb

#### **EXAMPLE PROBLEM #5**

### Calculating Anchorage Ratio "J" and Self-Anchored Annular Plate

Determine if the tank is suitable for the seismic overturning forces without the need for anchors.

Consideration of vertical seismic accelerations are not considered for this problem ( $A_v = 0$ ).

Known information for this tank:

D = 100 ft, diameter

- t = 0.5625 in., the thickness of the lowest shell course
- $t_a = 0.25$  in., the thickness of the bottom plate welded to the shell ft
- $H = 40 \, \text{ft}$
- G = 0.7

 $S_d$  = 20,000 psi for ASTM A 283, Grade C material for the lowest shell course

 $F_{V}$  = 30,000 psi for ASTM A 283, Grade C material for the bottom plate welded to the shell

 $M_{TW} = 22,888,400$  ft-lb, the seismic overturning moment at the base of the tank

- $W_{\rm s} = 213,500$  lb, the weight of the shell
- $W_{rs} = 61,300$  lb, weight of the roof supported by the shell (assumed 60% of  $W_r$  without snow)
- $w_{rs} = 195 \text{ lb/ft}$ , the weight of the roof supported by the shell

The resisting force for a self-anchored tank is determined by Equation (E.6.2.1.1-1b)

$$w_a = 7.9 t_a \sqrt{F_y HG_e} \le 1.28 \ HDG(1 - A_v)$$
 (E.6.2.1.1-1b)

= 3584 lb/ft

 $w_a = 1810 \text{ lb/ft}$ 

11

The anchorage ratio, *J* is: Using Equation (E.6.2.1.1.1-2)

$$w_t = \frac{W_s}{\pi D} + w_{rs}$$
(E.6.2.1.1.1-2)  
= 680 + 195

Applying this to Equation (E.6.2.1.1.1-1)

$$J = \frac{M_{rw}}{D^2 [w_t (1 - 0.4A_v) + w_a - 0.4w_{int}]}$$
(E.6.2.1.1.1-1)

= 0.853 < 1.54, therefore tank is stable

For purposes of demonstration, assume  $M_{IW}$  is doubled and J is = 1.71 > 1.54, therefore tank is not stable

With this increased load, this tank does not meet the stability requirements with a 1/4 in. thick bottom plate under the shell. Try a thickened annular plate

Determine the required bottom thickness in order to avoid the addition of tank anchorage.

By trial-and-error, a 0.4375 in. thick annular ring will be used.

Recalculating:

$$t_a = 0.4375$$
 in.

$$W_a = 3168 \, \text{lb/ft}$$

J = 0.566 < 1.54, therefore tank is now stable

The minimum width of the butt welded annular ring to be provided (inside the tank) is calculated by Equation (E.6.2.1.1.2-1b)

$$L = 0.216 t_a \sqrt{F_y / HG}$$
(E.6.2.1.1.2-1b)  
= 3.09 ft = 37.1 in.

but, L to exceed 0.035D = 3.50 ft = OK

A 0.4375 in. thickened annular plate projecting at least 37.1 in. inside the tank shell is OK providing, the check the vertical shell compression due to seismic overturning forces is met.

J = 0.566, no calculated uplift

$$\sigma_c = \left( w_t (1 + 0.4A_v) + \frac{1.273M_{rw}}{D^2} \right) \frac{1}{12t_s}$$

= 993 psi

The allowable shell compression is calculated by the following equation:

$$GHD^2/t^2 = 884,938 < 1,000,000$$

The allowable compression is given by Equation (E.6.2.2.3-2b)

$$F_C = 10^6 t_s / (2.5D) + 600\sqrt{(GH)}$$
(E.6.2.2.3-2b)

= 4925 psi > 993 psi = OK

#### **EXAMPLE PROBLEM #6**

### **Calculating Hydrodynamic Hoop Stresses**

See E.6.1.4.

Consider both lateral and vertical accelerations.

The owner has specified a vertical acceleration of 12.5% g.

Known information about the tank:

$$H = 40 \, \text{ft}$$

 $D = 100 \, \text{ft}$ 

$$G = 0.7$$

 $t_s = 0.5625$  in., thickness of the bottom shell course

 $F_{v}$  = 30,000 psi for ASTM A 283, Grade C material for the bottom plate welded to the shell

 $S_d$  = 20,000 psi for ASTM A 283, Grade C material for the lowest shell course

E = 1.0 weld joint efficiency

$$A_i = 0.210 \, g$$

$$A_c = 0.054 \, g$$

$$A_v = 0.125 g$$

The product hydrostatic membrane hoop load at the base of the tank is

 $N_h = 2.6(H-1)DG$ 

#### = 7098 lb/in.

The impulsive hoop membrane hoop force at the base of the tank is calculated by Equation (E.6.1.4-1b)

D/H = 2.5

Y = H = 40 ft

$$N_{i} = 4.5A_{i}GDH \left[\frac{Y}{H} - 0.5\left(\frac{Y}{H}\right)^{2}\right] \tanh\left(0.866\frac{D}{H}\right)$$
(E.6.1.4-1b)

#### = 1312 lb/in.

The convective hoop membrane hoop load at the base of the tank is Equation (E.6.1.4-4b)

D/H = 2.5Y = H = 40 ft

09

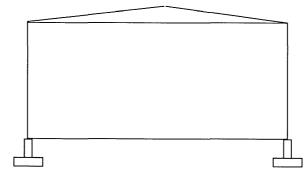
$$N_{c} = \frac{0.98A_{c}GD^{2}\cosh\left[\frac{3.68(H-Y)}{D}\right]}{\cosh\left[\frac{3.68H}{D}\right]}$$
(E.6.1.4-4b) 08

= 163 lb/in

The total hoop stress, including lateral and vertical seismic accelerations per Equation (E.6.1.4-b)

$$\sigma_T = \sigma_h \pm \sigma_s = \frac{N_h \pm \sqrt{N_i^2 + N_c^2 + (A_v N_h)^2}}{t}$$
(E.6.1.4-b)

The allowable seismic hoop stress is the lesser of


 $1.333 \times S_d = 26,660$ psi (GOVERNS) < 22,924 psi = OK

 $0.9F_y = 27,000$  psi

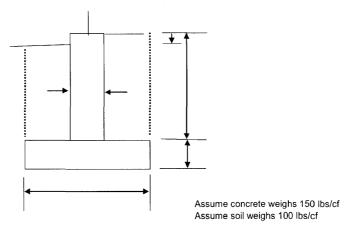
#### **EXAMPLE PROBLEM #7**

Calculating the Overturning Stability Ratio

See E.6.2.3.



See Example Problem #4


 $D = 100 \, \text{ft}$ 

H = 40 ft

- $W_p = 13,722,000$  lb weight of product
- $W_f = 80,900$  lb weight of floor
- $W_T$  = 315,600 lb weight of tank
- $W_{fd} = 1,413,716$  lb weight of foundation
- $W_g = 721,300$  lb weight of soil over foundation

Assume  $M_s = 75,000,000$  lb-ft

09



Compute weight of foundation:

 $W_{fd} = 150\pi DA_{fd} = 150\pi(100)[(2x6) + (3x6)] = 1,413,716 \text{ lb}$ 

Compute weight of soil over footing

Outside ringwall:

08

$$W_{go} = 100\pi(D+4 \text{ ft})(2x5.5) = 359,400 \text{ lb}$$
  
 $W_{gi} = 100\pi(D-4 \text{ ft})(2x6) = 361,900 \text{ lb}$ 

Summing

$$W_g = 721,300 \text{ lbs}$$

Sum moments about toe of the tank, Equation (E.6.2.3-1)

$$\frac{0.5D[W_p + W_t + W_T + W_{td} + W_g]}{M_s} \ge 2.0$$
(E.6.2.3-1)
$$= 10.8 > 2 = OK$$

## APPENDIX F-DESIGN OF TANKS FOR SMALL INTERNAL PRESSURES

## F.1 Scope

**F.1.1** The maximum internal pressure for closed-top API Std 650 tanks may be increased to the maximum internal pressure permitted when the additional requirements of this appendix are met. This appendix applies to the storage of nonrefrigerated liquids (see also API Std 620, Appendices Q and R). For maximum design temperatures above 93°C (200°F), see Appendix M.

**F.1.2** When the internal pressure multiplied by the cross-sectional area of the nominal tank diameter does not exceed the nominal weight of the metal in the shell, roof, and any framing supported by the shell or roof, see the design requirements in F.3 through F.6. Overturning stability with respect to seismic conditions shall be determined independently of internal pressure uplift. Seismic design shall meet the requirements of Appendix E.

**F.1.3** Internal pressures that exceed the weight of the shell, roof, and framing but do not exceed 18 kPa  $(2^{1}/_{2} \text{ lbf/in.}^{2})$  gauge when the shell is anchored to a counterbalancing weight, such as a concrete ringwall, are covered in F.7.

**F.1.4** Tanks designed according to this appendix shall comply with all the applicable rules of this Standard unless the rules are superseded by the requirements of F.7.

F.1.5 The tank nameplate (see Figure 10-1) shall indicate whether the tank has been designed in accordance with F.1.2 or F.1.3.

**F.1.6** Figure F-1 is provided to aid in the determination of the applicability of various sections of this appendix.

### F.2 Venting (Deleted)

## F.3 Roof Details

The details of the roof-to-shell junction shall be in accordance with Figure F-2, in which the participating area resisting the compressive force is shaded with diagonal lines.

### F.4 Maximum Design Pressure and Test Procedure

**F.4.1** The maximum design pressure, *P*, for a tank that has been constructed or that has had its design details established may be calculated from the following equation (subject to the limitations of  $P_{\text{max}}$  in F.4.2):

In SI units:

$$P = \frac{AF_{y}\tan\theta}{200D^{2}} + \frac{0.00127\ D_{LR}}{D^{2}}$$
11

07

11

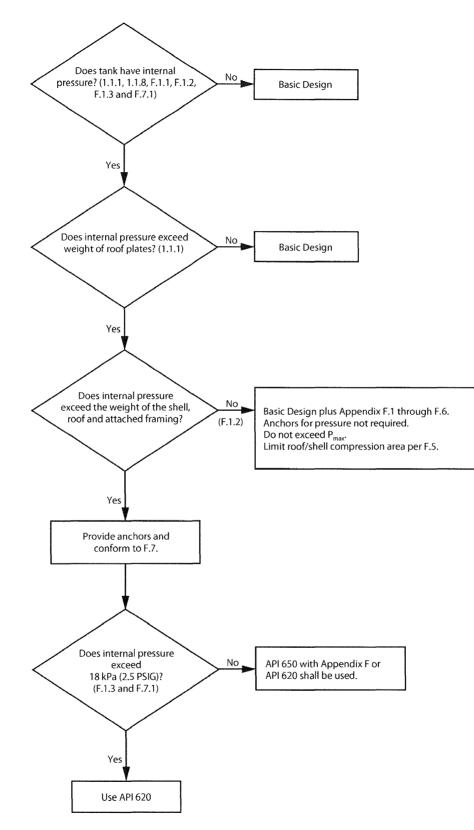
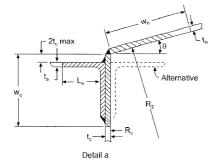
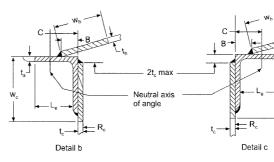
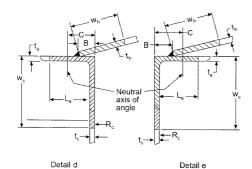
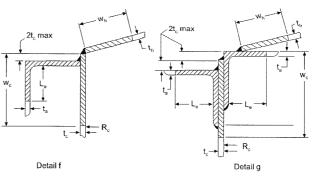
where

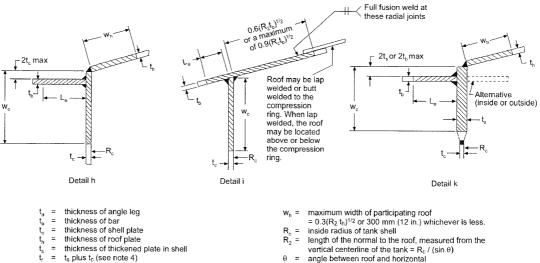
- P = internal design pressure (kPa),
- A = area resisting the compressive force, as illustrated in Figure F-1 (mm<sup>2</sup>),
- $F_y$  = lowest minimum specified yield strength (modified for design temperature) of the materials in the roof-to-shell junction (MPa),
- $\theta$  = angle between the roof and a horizontal plane at the roof-to-shell junction (degrees),

 $\tan \theta$  = slope of the roof, expressed as a decimal quantity,

 $D_{LR}$  = nominal weight of roof plate plus any attached structural (N).

DELETED



Figure F-1—Appendix F Decision Tree











- = =
- W,
- The plus t<sub>c</sub> (see note 4) maximum width of participating shell = 0.6 (R<sub>c</sub> t)<sup>1/2</sup>, where t = t<sub>a</sub>, t<sub>c</sub>, t<sub>s</sub>, or t<sub>f</sub> as applicable. =
- $R_2$ length of the normal to the roof, measured from the = vertical centerline of the tank =  $R_c / (\sin \theta)$
- θ angle between roof and horizontal

- Notes:
- 1. All dimensions and thicknesses are in mm (in.).
- 2. Dimension B in details b, c, d, and e is:  $0 \le B \le C$ . C is the dimension to the neutral axis of the angle.
- 3. The unstiffened length of the angle or bar,  $L_e$ , shall be limited to  $250t/(F_v)^{1/2}$  mm [ $3000t/(F_v)^{1/2}$  in.] where  $F_v$  is the minimum specified yield strength, MPa (lbf/in.<sup>2</sup>) and  $t = t_a$  or  $t_b$ , as applicable.
- 4. Where members are lap welded onto the shell (refer to details a, b, c, and g), tf may be used in wc formula only for the extent of the overlap.

Figure F-2—Permissible Details of Compression Rings

In US Customary units:

$$P = \frac{(0.962)(AF_y)(\tan\theta)}{D^2} + \frac{0.245 \ D_{LR}}{D^2}$$

where

11

09

11

11

11

11

P = internal design pressure (in. of water),

- A = area resisting the compressive force, as illustrated in Figure F-2 (in.<sup>2</sup>),
- $F_y$  = lowest minimum specified yield strength (modified for design temperature) of the materials in the roof-to-shell junction (lb/in.<sup>2</sup>),
  - $\theta$  = angle between the roof and a horizontal plane at the roof-to-shell junction (degrees),
- $\tan \theta$  = slope of the roof, expressed as a decimal quantity,
- 11  $D_{LR}$  = nominal weight of roof plate plus any attached structural (lbf).

**F.4.2** The maximum design pressure, limited by uplift at the base of the shell, shall not exceed the value calculated from the following equation unless further limited by F.4.3:

In SI units:

$$P_{\max} = \frac{0.000849 D_{LS}}{D^2} + \frac{0.00127 D_{LR}}{D^2} - \frac{0.00153 M_w}{D^3}$$

where

 $P_{\text{max}}$  = maximum design internal pressure (kPa),

 $D_{LS}$  = nominal weight of the shell and any framing (but not roof plates) supported by the shell and roof (N),

 $M_{W}$  = wind moment (N-m).

 $D_{LR}$  = nominal weight of roof plate plus any attached structural (N).

In US Customary units:

$$P_{\max} = \frac{0.1632D_{LS}}{D^2} + \frac{0.245}{D^2} - \frac{0.2938M_w}{D^3}$$

where

 $P_{\text{max}}$  = maximum design internal pressure (in. of water),

 $D_{LS}$  = nominal weight of the shell and any framing (but not roof plates) supported by the shell and roof (lbf),

 $M_W$  = wind moment (ft-lbf).

 $D_{LR}$  = nominal weight of roof plate plus any attached structural (lbf).

**F.4.3** As top angle size and roof slope decrease and tank diameter increases, the design pressure permitted by F.4.1 and F.4.2 approaches the failure pressure of F.6 for the roof-to-shell junction. In order to provide a safe margin between the maximum operating pressure and the calculated failure pressure, a suggested further limitation on the maximum design pressure for tanks with a weak roof-to-shell attachment (frangible joint) is:

$$P_{\text{max}} \leq 0.8 P_f$$

**F.4.4** When the entire tank is completed, it shall be filled with water to the top angle or the design liquid level, and the design internal air pressure shall be applied to the enclosed space above the water level and held for 15 minutes. The air pressure shall then be reduced to one-half the design pressure, and all welded joints above the liquid level shall be checked for leaks by means of a soap film, linseed oil, or another suitable material. Tank vents shall be tested during or after this test.

F-4

### F.5 Required Compression Area at the Roof-to-Shell Junction

**F.5.1** Where the maximum design pressure has already been established (not higher than that permitted by F.4.2 or F.4.3, whenever applicable), the total required compression area at the roof-to-shell junction shall be calculated from the following equation:

In SI units:

$$A = \frac{200D^2 \left(P_i - \frac{0.00127 D_{LR}}{D^2}\right)}{F_v(\tan\theta)}$$
11

where

A = total required compression area at the roof-to-shell junction (mm<sup>2</sup>),

 $P_i$  = design internal pressure (kPa).

 $D_{LR}$  = nominal weight of roof plate plus any attached structural (N).

In US Customary units:

$$A = \frac{D^2 \left( P_i - \frac{0.245 \ D_{LR}}{D^2} \right)}{0.962 F_y \ (\tan \theta)}$$
11

where

A = total required compression area at the roof-to-shell junction (in.<sup>2</sup>),

 $P_i$  = design internal pressure (in. of water),

 $D_{LR}$  = nominal weight of roof plate plus any attached structural (lbf).

A is based on the nominal material thickness less any corrosion allowance.

**F.5.2** For self-supporting roofs, the compression area shall not be less than the cross-sectional area calculated in 5.10.5 and 5.10.6.

### F.6 Calculated Failure Pressure

Failure of the roof-to-shell junction can be expected to occur when the stress in the compression ring area reaches the yield point. On this basis, an approximate formula for the pressure at which failure of the top compression ring is expected (using conservative effective areas) to occur can be expressed in terms of the design pressure permitted by F.4.1, as follows:

In SI units:

$$P_f = 1.6P - \frac{0.000746 \ D_{LR}}{D^2}$$
 11

where

 $P_f$  = calculated minimum failure pressure (kPa).

 $D_{LR}$  = nominal weight of roof plate plus any attached structural (N).

In US Customary units:

$$P_f = 1.6P - \frac{0.147 \ D_{LR}}{D^2}$$

where

 $P_f$  = calculated minimum failure pressure (in. of water).

 $D_{LR}$  = nominal weight of roof plate plus any attached structural (lbf).

Note: Experience with actual failures indicates that buckling of the roof-to-shell junction is localized and probably occurs when the yield point of the material is exceeded in the compression area.

F-5

11

08

08

11

# F.7 Anchored Tanks with Design Pressures up to 18 kPa (2<sup>1</sup>/<sub>2</sub> lbf/in.<sup>2</sup>) Gauge

**F.7.1** In calculating shell thickness for Appendix F tanks that are to be anchored to resist uplift due to internal pressure, and when selecting shell manhole thicknesses in Tables 5-3a and 5-3b and flush-type cleanout fitting thicknesses in Tables 5-10a and 5-10b, *H* shall be increased by the quantity P/(9.8G) [P/(12G)]—where *H* is the design liquid height, in m (ft), *P* is the design pressure kPa (in. of water), and *G* is the design specific gravity.

**F.7.2** The required compression area at the roof-to-shell junction shall be calculated as in F.5.1, and the participating compression area at the junction shall be determined by Figure F-2. Full penetration butt welds shall be used to connect sections of the compression ring. For self-supporting roofs, the compression area shall not be less than the cross sectional area calculated in 5.10.5 or 5.10.6 as applicable. Materials for compression areas may be selected from API 650, Section 4, and need not meet toughness criteria of 4.2.9.

**F.7.3** The design and welding of roofs and the design, reinforcement, and welding of roof manholes and nozzles shall be completed with consideration of both API 650 and API 620. The design rules shall be as follows:

- 1. The thickness of self supporting roofs shall not be less than required by API 620, 5.10.2 and 5.10.3, using API 650, Table 5-2, for allowable stresses and API 620, Table 5-2, for joint efficiency and radiography requirements. The thickness of self supporting roofs shall not be less than required by API 650, 5.10.5 or 5.10.6, as applicable.
- 2. Roof plate, manway and nozzle materials shall be selected from API 650, Section 4. Materials need not meet toughness criteria of 4.2.9.
- 3. Roof manways and roof nozzles shall meet the requirements of API 650, 5.7.1 through 5.7.6, for shell manways and nozzles. Where designed details for API 650 vary by height of liquid level, the values for the lowest liquid level may be used. Alternatively, roof manways and nozzles may be designed per API 620 using all the rules for API 620 roof manways and nozzles, including the 250°F maximum design temperature limitation.
- **F.7.4** The design of the anchorage and its attachment to the tank shall be a matter of agreement between the Manufacturer and the Purchaser and shall meet the requirements of 5.12.

**F.7.5** The counterbalancing weight, in addition to the requirements in 5.12, shall be designed so that the resistance to uplift at the bottom of the shell will be the greatest of the following:

a. The uplift produced by 1.5 times the design pressure of the corroded empty tank plus the uplift from the design wind velocity on the tank.

b. The uplift produced by 1.25 times the test pressure applied to the empty tank (with the nominal thicknesses).

c. The uplift produced by 1.5 times the calculated failure pressure ( $P_f$  in F.6) applied to the tank filled with the design liquid. The effective weight of the liquid shall be limited to the inside projection of the ringwall (Appendix B type) from the tank shell. Friction between the soil and the ringwall may be included as resistance. When a footing is included in the ringwall design, the effective weight of the soil may be included.

**F.7.6** After the tank is filled with water, the shell and the anchorage shall be visually inspected for tightness. Air pressure of 1.25 times the design pressure shall be applied to the tank filled with water to the design liquid height. The air pressure shall be reduced to the design pressure, and the tank shall be checked for tightness. In addition, all seams above the water level shall be tested using a soap film or another material suitable for the detection of leaks. After the test water has been emptied from the tank (and the tank is at atmospheric pressure), the anchorage shall be checked for tightness. The design air pressure shall then be applied to the tank for a final check of the anchorage.

08

09

11

F-6

# APPENDIX G—STRUCTURALLY-SUPPORTED ALUMINUM DOME ROOFS

## G.1 General

### G.1.1 PURPOSE

This appendix establishes minimum criteria for the design, fabrication, and erection of structurally-supported aluminum dome roofs. When this appendix is applicable, the requirements of 5.10 and the paragraphs in Appendix F that deal with roof design are superseded. All other requirements of API Std 650 shall apply, except that the maximum design temperature shall not exceed  $90^{\circ}$ C (200°F).

### G.1.2 DEFINITION

A structurally-supported aluminum dome roof is a fully triangulated aluminum space truss with the struts joined at points arrayed on the surface of a sphere. Aluminum closure panels are firmly attached to the frame members. The roof is attached to and supported by the tank at mounting points equally spaced around the perimeter of the tank.

### G.1.3 GENERAL APPLICATION

### G.1.3.1 New Tanks

When this appendix is specified for a new tank, the tank shall be designed to support the aluminum dome roof. The roof Manufacturer shall supply the magnitude and direction of all the forces acting on the tank as a result of the roof loads, together with details of the roof-to-shell attachment. The tank shall be designed as an open-top tank, and its wind girder shall meet the requirements of 5.9. The top of the tank shell shall be structurally suitable for attachment of the dome roof structure. The tank Manufacturer and the foundation designer shall be responsible for designing the tank and foundation, respectively, for the loads and moments transmitted from the roof, as provided by the roof manufacturer. If the Purchaser specifies a roof with fixed supports, the supports shall be rigidly attached directly to the tank and the top of the tank shall be designed to sustain the horizontal thrust transferred from the roof (see G.5.2). The as-built minimum and maximum diameter at the top of the tank shall be reported to the roof manufacturer by the Purchaser or the tank Manufacturer.

11

11

### • G.1.3.2 Existing Tanks

When this appendix is specified for an aluminum dome roof to be added to an existing tank (with or without an existing roof), the roof Manufacturer shall verify that the tank has sufficient strength to support a new roof and meet the applicable requirements of Section 5.11. Information on the existing tank shall be provided by the Purchaser including minimum tank shell course thick-nesses, tank shell course heights, design corrosion allowance, and existing anchorage details. The Purchaser shall specify the existing or new appurtenances to be accommodated by the roof Manufacturer. The roof Manufacturer shall supply the values of the forces acting on the tank as a result of the roof loads. The Purchaser shall verify the adequacy of the foundations. Unless otherwise specified, any reinforcement required to enable the tank to support the roof shall be the responsibility of the Purchaser. The design and erection of the roof shall accommodate the actual tank shape. The responsibility for determining the tank shape shall be specified by the Purchaser. The existing tank shall be equipped with a wind girder that meets the requirements of 5.9 for an open-top tank.

#### G.1.3.3 Existing Tank Data Sheet

When an aluminum dome is ordered for an existing tank, a data sheet shall be completed by the Purchaser (see Figure G-1).

### G.1.4 SPECIAL FEATURES

### • G.1.4.1 Self-Supporting Structure

The aluminum dome roof shall be supported only from the rim of the tank. The design of the connection between the roof and the tank rim shall allow for thermal expansion. A minimum temperature range of  $\pm 70^{\circ}$ C (120°F) shall be used for design unless a wider range is specified by the Purchaser.

### G.1.4.2 Finish

Unless otherwise specified, the aluminum dome roof materials shall have a mill finish.

11

API STANDARD 650

|                                                                                                                                                                                                                                                                                                                             |                                                                                                               | JOB NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | _ ITEM NO                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------|
| DATA SHEFT FO                                                                                                                                                                                                                                                                                                               | R A STRUCTURALLY-                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                             | ALUMINUM DOME                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                 |
| ADDED TO A                                                                                                                                                                                                                                                                                                                  | N EXISTING TANK                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                             |                                                                                                               | PAGE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BY                  |                                                                                                 |
| ORMATION TO BE COMPLE                                                                                                                                                                                                                                                                                                       | ETED BY THE PURCHASER)                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                 |
| PURCHASER/AGENT                                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                 |
| ADDRESS                                                                                                                                                                                                                                                                                                                     |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                 |
| CITY                                                                                                                                                                                                                                                                                                                        |                                                                                                               | STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ZIP                 |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                             | PLANT                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                             | m³/h (bbl/h) OUT                                                                                              | г m <sup>3</sup> /h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (bbl/b)             |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                             | RATURE                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | °E))                                                                                            |
|                                                                                                                                                                                                                                                                                                                             | ATMOSPHERIC OR kPa (in                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | INE OR NEGATIVE)                                                                                |
|                                                                                                                                                                                                                                                                                                                             | LIVE<br>PROVIDE SKETCH)                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | 10                                                                                              |
| 40.4                                                                                                                                                                                                                                                                                                                        |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | IA                                                                                              |
|                                                                                                                                                                                                                                                                                                                             | JE HERE: SEISMIC USE GROUP                                                                                    | ; MBE SITE CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _HSS                |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                             | ELERATIONS (SELECT ONE):                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                             | IC PARAMETERS, %g (E.4.1) S <sub>s</sub>                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                 |
| ~                                                                                                                                                                                                                                                                                                                           | SPECTRAL RESPONSE ACCELERATIONS                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | REQUIRED? C         | YES () NO                                                                                       |
|                                                                                                                                                                                                                                                                                                                             | SCE) METHODS                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                 |
| VERTICAL SEISMIC DESI                                                                                                                                                                                                                                                                                                       | IGN? OYES ONO; VERTICAL EA                                                                                    | ARTHQUAKE ACCELERAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ION COEFFICIE       | NT A <sub>v</sub> , %g:                                                                         |
| GROUND SNOW LOAD (I                                                                                                                                                                                                                                                                                                         | F NOT FROM ASCE 7):                                                                                           | kPa (lbf/ft <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                                                                                                 |
| ). DESIGN WIND SPEED: (SE                                                                                                                                                                                                                                                                                                   | ELECT ONE) 💦 190 Km/h (120 mph)                                                                               | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                             | O PURCHASER SPEC                                                                                              | CIEIED WIND SPEED (50-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VR MIN 3-SEC (      | CLIST) Km/b (mpb)                                                                               |
|                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11(101110, 3.960, 0 | 5051) Kinni (inph)                                                                              |
|                                                                                                                                                                                                                                                                                                                             | O 3-SEC. GUST FROM                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                             | 9                                                                                                             | MASCE 7, FIGURE 6-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | Km/h (mph)                                                                                      |
|                                                                                                                                                                                                                                                                                                                             | IMPORTANCE FACTOR                                                                                             | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | Km/h (mph)                                                                                      |
| MAXIMUM HEIGHT FROM                                                                                                                                                                                                                                                                                                         | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY                                                                        | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | Km/h (mph)<br>                                                                                  |
|                                                                                                                                                                                                                                                                                                                             | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME                                         | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | Km/h (mph)<br>                                                                                  |
| . TANK SHELL THICKNESS                                                                                                                                                                                                                                                                                                      | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)                             | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | Km/h (mph)<br>                                                                                  |
| . TANK SHELL THICKNESS<br>COURSE                                                                                                                                                                                                                                                                                            | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM                  | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PLATE               | Km/h (mph)<br>                                                                                  |
| . TANK SHELL THICKNESS                                                                                                                                                                                                                                                                                                      | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM                  | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | Km/h (mph)<br>                                                                                  |
| . TANK SHELL THICKNESS<br>COURSE                                                                                                                                                                                                                                                                                            | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM                  | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PLATE               | Km/h (mph)<br>                                                                                  |
| . TANK SHELL THICKNESS<br>COURSE                                                                                                                                                                                                                                                                                            | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM                  | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PLATE               | Km/h (mph)<br>                                                                                  |
| . TANK SHELL THICKNESS<br>COURSE                                                                                                                                                                                                                                                                                            | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM                  | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PLATE               | Km/h (mph)<br>                                                                                  |
| . TANK SHELL THICKNESS<br>COURSE                                                                                                                                                                                                                                                                                            | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM                  | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PLATE               | Km/h (mph)<br>                                                                                  |
| . TANK SHELL THICKNESS<br>COURSE                                                                                                                                                                                                                                                                                            | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM                  | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PLATE               | Km/h (mph)<br>                                                                                  |
| . TANK SHELL THICKNESS<br>COURSE<br>NUMBER<br>                                                                                                                                                                                                                                                                              | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM<br>THICKNESS     | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL<br>THICKNESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PLATE               | Km/h (mph)<br>                                                                                  |
| . TANK SHELL THICKNESS<br>COURSE<br>NUMBER<br>                                                                                                                                                                                                                                                                              | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM<br>THICKNESS     | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL<br>THICKNESS<br><br><br><br>G (PROVIDE SKETCH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATE<br>WIDTH      | Km/h (mph)<br>                                                                                  |
| . TANK SHELL THICKNESS<br>COURSE<br>NUMBER<br>                                                                                                                                                                                                                                                                              | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM<br>THICKNESS     | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL<br>THICKNESS<br><br><br>G (PROVIDE SKETCH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PLATE<br>WIDTH      | Km/h (mph)<br><br>m (ft)<br>m (ft)                                                              |
| . TANK SHELL THICKNESS<br>COURSE<br>NUMBER<br>                                                                                                                                                                                                                                                                              | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM<br>THICKNESS     | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL<br>THICKNESS<br><br><br>G (PROVIDE SKETCH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PLATE<br>WIDTH      | Km/h (mph)<br>m (ft)<br>m (ft)<br><br><br><br>                                                  |
| ACTUAL MINIMUM TANK                                                                                                                                                                                                                                                                                                         | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM<br>THICKNESS<br> | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL<br>THICKNESS<br><br>G (PROVIDE SKETCH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PLATE<br>WIDTH      | Km/h (mph)<br>m (ft)<br>m (ft)<br>m (in.)<br>m (ft)                                             |
| . TANK SHELL THICKNESS<br>COURSE<br>NUMBER<br>                                                                                                                                                                                                                                                                              | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM<br>THICKNESS     | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL<br>THICKNESS<br><br>G (PROVIDE SKETCH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PLATE<br>WIDTH      | Km/h (mph)<br>m (ft)<br>m (ft)<br>m (in.)<br>m (ft)<br>m (ft)                                   |
| . TANK SHELL THICKNESS<br>COURSE<br>NUMBER<br>                                                                                                                                                                                                                                                                              | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM<br>THICKNESS     | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL<br>THICKNESS<br><br>G (PROVIDE SKETCH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PLATE<br>WIDTH      | Km/h (mph)<br>m (ft)<br>m (ft)<br>m (in.)<br>m (ft)<br>m (ft)                                   |
| . TANK SHELL THICKNESS<br>COURSE<br>NUMBER<br>                                                                                                                                                                                                                                                                              | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM<br>THICKNESS     | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL<br>THICKNESS<br><br><br>G (PROVIDE SKETCH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PLATE<br>WIDTH      | Km/h (mph)<br><br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft.) |
| . TANK SHELL THICKNESS<br>COURSE<br>NUMBER<br>                                                                                                                                                                                                                                                                              | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM<br>THICKNESS     | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL<br>THICKNESS<br><br><br>G (PROVIDE SKETCH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PLATE<br>WIDTH      | Km/h (mph)<br><br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft.) |
| TANK SHELL THICKNESS     COURSE     NUMBER                                                                                                                                                                                                                                                                                  | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM<br>THICKNESS     | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL<br>THICKNESS<br><br>S (PROVIDE SKETCH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PLATE<br>WIDTH      | Km/h (mph)<br><br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft.) |
| TANK SHELL THICKNESS     COURSE     NUMBER                                                                                                                                                                                                                                                                                  | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM<br>THICKNESS     | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL<br>THICKNESS<br><br>G (PROVIDE SKETCH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PLATE<br>WIDTH      | Km/h (mph)<br><br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)  |
| TANK SHELL THICKNESS     COURSE     NUMBER                                                                                                                                                                                                                                                                                  | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM<br>THICKNESS     | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL<br>THICKNESS<br><br>G (PROVIDE SKETCH)<br>G (PROVIDE SKETCH)<br>D BY THE PURCHASER, A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLATE<br>WIDTH      | Km/h (mph)<br><br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)  |
| ACTUAL TANK STIFFENE<br>GASES EXPECTED IN TH<br>ACTUAL TANK STIFFENE<br>GASES EXPECTED IN TH<br>REQUIRED FREEBOARD<br>ACTUAL MINIMUM TANK IDA<br>CTUAL MAXIMUM TANK DIA<br>CTUAL MAXIMUM TANK DIA<br>CELEVATION OF TOP OF T<br>BOTTOM THICKNESS AT<br>MAXIMUM LIQUID LEVEL<br>EXISTING ANCHORAGE D<br>LIST ALL APPURTENANCE | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM<br>THICKNESS     | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL<br>THICKNESS<br><br>G (PROVIDE SKETCH)<br>G (PROVIDE SKETCH)<br>D BY THE PURCHASER, A<br>DR ACTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PLATE<br>WIDTH      | Km/h (mph)<br><br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)  |
| TANK SHELL THICKNESS     COURSE     NUMBER                                                                                                                                                                                                                                                                                  | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM<br>THICKNESS     | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL<br>THICKNESS<br><br>G (PROVIDE SKETCH)<br>G (PROVIDE SKETCH)<br>D BY THE PURCHASER, A<br>DR ACTION<br>ACCOMMODATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PLATE<br>WIDTH      | Km/h (mph)<br><br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)  |
| ACTUAL TANK STIFFENE<br>GASES EXPECTED IN TH<br>ACTUAL TANK STIFFENE<br>GASES EXPECTED IN TH<br>REQUIRED FREEBOARD<br>ACTUAL MINIMUM TANK IDA<br>CTUAL MAXIMUM TANK DIA<br>CTUAL MAXIMUM TANK DIA<br>CELEVATION OF TOP OF T<br>BOTTOM THICKNESS AT<br>MAXIMUM LIQUID LEVEL<br>EXISTING ANCHORAGE D<br>LIST ALL APPURTENANCE | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM<br>THICKNESS     | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL<br>THICKNESS<br><br>G (PROVIDE SKETCH)<br>G (PROVIDE SKETCH)<br>D BY THE PURCHASER, A<br>DR ACTION<br>ACCOMMODATE<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PLATE<br>WIDTH      | Km/h (mph)<br><br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)  |
| . TANK SHELL THICKNESS<br>COURSE<br>NUMBER<br>                                                                                                                                                                                                                                                                              | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM<br>THICKNESS     | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL<br>THICKNESS<br><br>G (PROVIDE SKETCH)<br>G (PROVIDE SKETCH)<br>D BY THE PURCHASER, A<br>DR ACTION<br>ACCOMMODATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PLATE<br>WIDTH      | Km/h (mph)<br><br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)  |
| ACTUAL TANK STIFFENE<br>GASES EXPECTED IN TH<br>ACTUAL TANK STIFFENE<br>GASES EXPECTED IN TH<br>REQUIRED FREEBOARD<br>ACTUAL MINIMUM TANK IDA<br>CTUAL MAXIMUM TANK DIA<br>CTUAL MAXIMUM TANK DIA<br>CELEVATION OF TOP OF T<br>BOTTOM THICKNESS AT<br>MAXIMUM LIQUID LEVEL<br>EXISTING ANCHORAGE D<br>LIST ALL APPURTENANCE | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM<br>THICKNESS     | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL<br>THICKNESS<br><br>G (PROVIDE SKETCH)<br>G (PROVIDE SKETCH)<br>D BY THE PURCHASER, A<br>DR ACTION<br>ACCOMMODATE<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PLATE<br>WIDTH      | Km/h (mph)<br><br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)  |
| . TANK SHELL THICKNESS<br>COURSE<br>NUMBER<br>                                                                                                                                                                                                                                                                              | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM<br>THICKNESS     | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL<br>THICKNESS<br><br>G (PROVIDE SKETCH)<br>G (PROVIDE SKETCH)<br>D BY THE PURCHASER, A<br>DR ACTION<br>ACCOMMODATE<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PLATE<br>WIDTH      | Km/h (mph)<br><br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)  |
| TANK SHELL THICKNESS     COURSE     NUMBER                                                                                                                                                                                                                                                                                  | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM<br>THICKNESS     | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL<br>THICKNESS<br><br>G (PROVIDE SKETCH)<br>C (PROVIDE S | PLATE<br>WIDTH      | Km/h (mph)<br><br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)  |
| . TANK SHELL THICKNESS<br>COURSE<br>NUMBER<br>                                                                                                                                                                                                                                                                              | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM<br>THICKNESS     | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL<br>THICKNESS<br><br>G (PROVIDE SKETCH)<br>C (PROVIDE S | PLATE<br>WIDTH      | Km/h (mph)<br><br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)  |
| TANK SHELL THICKNESS     COURSE     NUMBER                                                                                                                                                                                                                                                                                  | IMPORTANCE FACTOR<br>EXPOSURE CATEGORY<br>TOP OF SHELL TO TOP OF DOME<br>(ACTUAL)<br>MINIMUM<br>THICKNESS     | M ASCE 7, FIGURE 6-1<br>(IF OTHER THAN 1.0)<br>Y PER ASCE 7<br>TYPICAL<br>THICKNESS<br><br>G (PROVIDE SKETCH)<br>C (PROVIDE S | PLATE<br>WIDTH      | Km/h (mph)<br><br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)<br>m (ft)  |

Figure G-1—Data Sheet for a Structurally-Supported Aluminum Dome Added to an Existing Tank

### G.1.4.3 Maintenance and Inspection

The roof Manufacturer shall provide a maintenance and inspection manual for roof items that may require maintenance, periodic inspection, or both.

#### G.1.4.4 Jurisdictional Requirements

The Purchaser is required to provide all applicable jurisdictional requirements that apply to the aluminum dome roof (see 1.3).

## G.2 Materials

### G.2.1 GENERAL

Materials furnished to meet the requirements of this appendix shall be new. A complete material specification shall be submitted by the roof Manufacturer for approval by the Purchaser. The materials shall be compatible with the product specified to be stored in the tank and the surrounding environment. No aluminum alloy with a magnesium content greater than 3% shall be used when the maximum design temperature exceeds 65°C (150°F). Properties and tolerances of aluminum alloys shall conform to *Aluminum Standards and Data*, as published by the Aluminum Association (Washington, D.C.).

### G.2.2 STRUCTURAL FRAME

Structural frame members shall be fabricated from 6061-T6 or a recognized alloy with properties established by the Aluminum Association, Inc.

## G.2.3 ROOF PANELS

Roof panels shall be fabricated from Series 3000 or 5000 aluminum with a minimum nominal thickness of 1.20 mm (0.050 in.).

#### G.2.4 BOLTS AND FASTENERS

Fasteners shall be of 7075-T73 aluminum, 2024-T4 aluminum, austenitic stainless steel, or other materials as agreed to by the Purchaser. Only stainless steel fasteners shall be used to attach aluminum to steel.

#### G.2.5 SEALANT AND GASKET MATERIAL

**G.2.5.1** Sealants shall be silicone or urea urethane compounds that conform to Federal Spec TT-S-00230C unless another material is required for compatibility with stored materials. Sealants shall remain flexible over a temperature range of  $-60^{\circ}$ C to  $+150^{\circ}$ C ( $-80^{\circ}$ F to  $+300^{\circ}$ F) without tearing, cracking, or becoming brittle. Elongation, tensile strength, hardness, and adhesion shall not change significantly with aging or exposure to ozone, ultraviolet light, or vapors from the product stored in the tank.

**G.2.5.2** Preformed gasket material shall be Neoprene, silicone, Buna-N, urea urethane, or EPDM elastomer meeting ASTM C 509 or Federal Spec ZZ-R-765C unless another material is required for compatibility with stored materials.

#### G.2.6 SKYLIGHT PANELS

Skylight panels shall be clear acrylic or polycarbonate with a minimum nominal thickness of 6 mm (0.25 in.).

### G.3 Allowable Stresses

## G.3.1 ALUMINUM STRUCTURAL MEMBERS

Aluminum structural members and connections shall be designed in accordance with the *Aluminum Design Manual*, as published by the Aluminum Association, Inc. (Washington, D.C.), except as modified by this appendix.

#### G.3.2 ALUMINUM PANELS

Aluminum panels shall be designed in accordance with Specifications for Aluminum Sheet Metal Work in Building Construction, as published by the Aluminum Association, Inc. (Washington, D.C.) and this appendix. Attachment fasteners shall not penetrate both the panel and the flange of the structural member.

### G.3.3 BOLTS AND FASTENERS

**G.3.3.1** The maximum stress in bolts and fasteners for any design condition shall not exceed the allowable stress given in Tables G-1a and G-1b.

| Allowable Tensile Stress <sup>a,b</sup> | Allowable Shear Stress <sup>a,b,c</sup> |
|-----------------------------------------|-----------------------------------------|
| (MPa)                                   | (MPa)                                   |
| 172                                     | 124                                     |
| 234                                     | 172                                     |
| 182                                     | 109                                     |
| 201                                     | 120                                     |
|                                         | (MPa)<br>172<br>234<br>182              |

| Table G-1a—(SI) Bolts and Fasteners | Table | G-1a—( | (SI) | Bolts | and | Fasteners |
|-------------------------------------|-------|--------|------|-------|-----|-----------|
|-------------------------------------|-------|--------|------|-------|-----|-----------|

<sup>a</sup>The root-of-thread area shall be used to calculate the strength of threaded parts.

<sup>b</sup>For seismic loads, these values may be increased by one-third.

<sup>c</sup>If the thread area is completely out of the shear area, the cross-sectional area of the shank may be used to determine the allowable shear load.

<sup>d</sup>For bolts with a minimum tensile strength of 620 MPa. eFor bolts with a minimum tensile strength of 860 MPa.

<sup>f</sup>For fasteners not shown, design shall be in accordance with the *Aluminum Design Manual*, as published by the Aluminum Association, Inc. (Washington, D.C.).

|                             | Allowable Tensile Stress <sup>a,b</sup> | Allowable Shear Stress <sup>a,b,c</sup> |
|-----------------------------|-----------------------------------------|-----------------------------------------|
| Materials                   | (ksi)                                   | (ksi)                                   |
| Austenitic stainless steeld | 25.0                                    | 18.0                                    |
| Austenitic stainless steele | 34.0                                    | 25.0                                    |
| 2024-T4 aluminum            | 26.0                                    | 16.0                                    |
| 7075-T73 aluminum           | 28.0                                    | 17.0                                    |

#### Table G-1b-(USC) Bolts and Fasteners

<sup>a</sup>The root-of-thread area shall be used to calculate the strength of threaded parts.

<sup>b</sup>For seismic loads, these values may be increased by one-third.

<sup>c</sup>If the thread area is completely out of the shear area, the cross-sectional area of the shank may be used to determine the allowable shear load.

<sup>d</sup>For bolts with a minimum tensile strength of 90 ksi.

eFor bolts with a minimum tensile strength of 125 ksi.

<sup>f</sup>For fasteners not shown, design shall be in accordance with the Aluminum Design Manual, as published by the Aluminum Association, Inc. (Washington, D.C.).

**G.3.3.2** The hole diameter for a fastener shall not exceed the diameter of the fastener plus 1.5 mm  $(^{1}/_{16} \text{ in.})$ .

# G.4 Design

### G.4.1 DESIGN PRINCIPLES

**G.4.1.1** The roof framing system shall be designed as a three-dimensional space frame or truss with membrane covering (roof panels) providing loads along the length of the individual members. The design must consider the increased compression induced in the framing members due to the tension in the roof panels.

**G.4.1.2** The actual stresses in the framing members and panels under all design load conditions shall be less than or equal to the allowable stresses per the Aluminum Design Manual, as published by the Aluminum Association, Inc. (Washington, D.C.).

**G.4.1.3** The allowable general buckling pressure  $p_a$  shall equal or exceed the maximum pressure given in R.1 (e).

$$p_{a} = \frac{1.6E\sqrt{I_{x}A}}{LR^{2}(SF)}$$
(G.4.1.3-1)

where

E = modulus of elasticity of the dome frame members,

 $I_x$  = moment of inertia of frame members for bending in a plane normal to the dome surface,

- A = cross-sectional area of frame members,
- R = spherical radius of the dome,
- L = average length of the frame members,
- SF = safety factor = 1.65.

Alternatively,  $p_a$  shall be determined by a non-linear finite element analysis with a safety factor of 1.65.

G.4.1.4 The net tension ring area (exclusive of bolt holes and top flange protrusions) shall not be less than:

$$A_n = \frac{D^2 p}{8F_t \tan \theta} \tag{G4.1.4-1}$$

where

 $A_n$  = net area of tension ring,

- D = nominal tank diameter,
- p = maximum pressure given in R.1 (e),
- $\theta = \frac{1}{2}$  the central angle of the dome or roof slope at the tank shell,
- $F_t$  = least allowable stress for components of the tension ring.

Note: This formula does not include bending stresses due to loads from the panel attached to the beam. These stresses must also be considered in the tension ring design per G.3.1.

#### G.4.2 DESIGN LOADS

#### G.4.2.1 Loads on Dome Roofs

Dome roofs shall be designed for:

- a. the loads in 5.2.1,
- b. the load combinations in Appendix R.1(a), (b), (c), (e), and (f).

### G.4.2.2 Seismic Load

If the tank is designed for seismic loads, the roof shall be designed for:

- a. a horizontal seismic force  $F_h = A_i W_r$
- b. a vertical seismic force  $F_V = \pm A_V W_T$

where  $A_{j}$ ,  $A_{v}$  and  $W_{r}$  are as defined in Appendix E. Forces shall be uniformly applied over the surface of the roof. Horizontal and vertical forces need not be applied simultaneously

## G.4.2.3 Panel Loads

**G.4.2.3.1** Roof panels shall be of one-piece aluminum sheet (except for skylights as allowed by G.8.4). The roof shall be designed to support a uniform load of 3 kPa ( $60 \text{ lbf/ft}^2$ ) over the full area of the panel.

**G.4.2.3.2** The roof shall be designed to support two concentrated loads 1100 N (250 lbf), each distributed over two separate  $0.1 \text{ m}^2$  (1 ft<sup>2</sup>) areas of any panel.

**G.4.2.3.3** The loads specified in G.4.2.3.1 and G.4.2.3.2 shall not be applied simultaneously or in combination with any other loads.

### G.4.3 INTERNAL PRESSURE

Unless otherwise specified by the Purchaser, the internal design pressure shall not exceed the weight of the roof. In no case shall the internal design pressure exceed 2.2 kPa (9 in. of water) water column. When the design pressure,  $P_{\text{max}}$ , for a tank with an aluminum dome roof is being calculated, the weight of the roof, including structure, shall be used for the  $D_{LR}$  term in F.4.2.

# G.5 Roof Attachment

## G.5.1 LOAD TRANSFER

Structural supports for the roof shall be bolted or welded to the tank. To preclude overloading of the shell, the number of attachment points shall be determined by the roof Manufacturer in consultation with the tank Manufacturer. The attachment detail shall be suitable to transfer all roof loads to the tank shell and keep local stresses within allowable limits.

## G.5.2 ROOF SUPPORTS

### G.5.2.1 Sliding Supports

The roof attachment points may incorporate a slide bearing with low-friction bearing pads to minimize the horizontal radial forces transferred to the tank. The primary horizontal thrust transferred from the dome shall be resisted by an integral tension ring.

### 11 G.5.2.2 Fixed Supports

The roof may have fixed supports attached directly to the tank, and the top of the tank shall be analyzed and designed to sustain the horizontal thrust transferred from the roof, including that from differential thermal expansion and contraction. For roofs with fixed supports on a new tank, the maximum acceptable radial tank deflections at the top of the tank shall be coordinated between the tank Manufacturer and roof manufacturer. For roofs with fixed supports on an existing tank, the maximum acceptable radial tank deflections at the top of the tank shall be coordinated between the Purchaser and roof manufacturer.

### G.5.3 SEPARATION OF CARBON STEEL AND ALUMINUM

Unless another method is specified by the Purchaser, aluminum shall be isolated from carbon steel by an austenitic stainless steel spacer or an elastomeric isolator bearing pad.

## G.5.4 ELECTRICAL GROUNDING

The aluminum dome roof shall be electrically interconnected with and bonded to the steel tank shell or rim. As a minimum, stainless steel cable conductors 3 mm ( $^{1}/_{8}$  in.) in diameter shall be installed at every third support point. The choice of cable shall take into account strength, corrosion resistance, conductivity, joint reliability, flexibility, and service life.

# G.6 Physical Characteristics

## G.6.1 SIZES

An aluminum dome roof may be used on any size tank erected in accordance with this Standard.

G-6

09

### G.6.2 DOME RADIUS

The maximum dome radius shall be 1.2 times the diameter of the tank. The minimum dome radius shall be 0.7 times the diameter of the tank unless otherwise specified by the Purchaser.

#### G.7 Platforms, Walkways, and Handrails

Platforms, walkways, and handrails shall conform to 5.8.10 except that the maximum concentrated load on walkways or stairways supported by the roof structure shall be 4450 N (1000 lbf). When walkways are specified to go across the exterior of the roof (to the apex, for example), stairways shall be provided on portions of walkways whose slope is greater than 20 degrees. Walkways and stairways may be curved or straight segments.

#### G.8 Appurtenances

### G.8.1 ROOF HATCHES

If roof hatches are required, each hatch shall be furnished with a curb 100 mm (4 in.) or higher and a positive latching device to hold the hatch in the open position. The minimum size of opening shall not be less than 600 mm (24 in.). The axis of the opening may be perpendicular to the slope of the roof, but the minimum clearance projected on a horizontal plane shall be 500 mm (20 in.).

### G.8.2 ROOF NOZZLES AND GAUGE HATCHES

Roof nozzles and gauge hatches shall be flanged at the base and bolted to the roof panels with an aluminum reinforcing plate on the underside of the panels. The axis of a nozzle or gauge hatch shall be vertical. If the nozzle is used for venting purposes, it shall not project below the underside of the roof panel. Aluminum or stainless steel flanges may be bolted directly to the roof panel, with the joint caulked with sealant. Steel flanges shall be separated from the aluminum panel by a gasket (see Figure G-2 for a typical nozzle detail).

#### G.8.3 SKYLIGHTS

**G.8.3.1** If skylights are specified by the Purchaser, each skylight shall be furnished with a curb 100 mm (4 in.) or higher and shall be designed for the live and wind loads specified in G.4.2.5. The Purchaser shall specify the total skylight area to be provided.

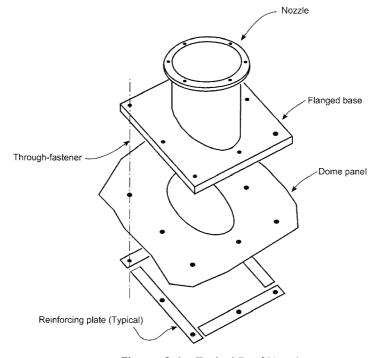



Figure G-2—Typical Roof Nozzle

**G.8.3.2** When skylights are specified for tanks without floating roofs or for floating roof tanks which are sealed and gas-blanketed (not provided with circulation venting per H.5.2.2.1 and H.5.2.2.2), the Purchaser shall consider skylight material compatibility with exposure to elevated concentrations of the stored product.

# • G.9 Sealing at the Shell

The roof need not be sealed to the tank shell unless specified by the Purchaser or required to contain internal pressure. The bottom of the flashing shall extend at least 50 mm (2 in.) below the top of the tank. Corrosion-resistant coarse-mesh screen (13 mm [ $^{1}/_{2}$  in.] openings) shall be provided to prevent the entrance of birds.

# G.10 Testing

# G.10.1 LEAK TESTING

- **G.10.1.1** After completion, the roof seams shall be leak tested by spraying the outside of the seams with water from a hose with a minimum static head pressure 350 kPa (50 lbf/in.<sup>2</sup>) gauge at the nozzle. Because of possible corrosive effects, consideration shall be given to the quality of the water used and the duration of the test. Potable water shall be used unless otherwise specified. The water shall not be sprayed directly on roof vents. Any water on the inside of the roof shall constitute evidence of leakage.
- **G.10.1.2** Where gas-tight roofs are required, leak testing may be accomplished in accordance with F.4.4 or F.7.6 or by another means acceptable to the roof Manufacturer and the Purchaser.

G.10.1.3 Any leaks discovered during testing shall be sealed, and the roof shall be retested until all leaks are sealed.

# G.11 Fabrication and Erection

# G.11.1 GENERAL

The dome contractor shall perform the work described in this appendix using qualified supervisors who are skilled and experienced in the fabrication and erection of aluminum structures.

# G.11.2 FABRICATION

All roof parts shall be prefabricated for field assembly. Fabrication procedures shall be in accordance with Section 6 of the *Aluminum Design Manual*. All structural shapes used to make the roof shall be punched or drilled before any shop coating is applied.

### • G.11.3 WELDING

07

The design and fabrication of welded aluminum parts shall be in accordance with the A*luminum Design Manual: Specifications for Aluminum Structures* and AWS D1.2. All aluminum structural welds and components joined by welding shall be visually inspected and tested by dye-penetrant examination in accordance with Section 5, Part D, of AWS D1.2. All structural welding of aluminum shall be performed before the dome is erected in the field. A full set of satisfactory examination records shall be delivered to the owner before field erection.

### G.11.4 SHIPPING AND HANDLING

Materials shall be handled, shipped, and stored in a manner that does not damage the surface of aluminum or the surface coating of steel.

### G.11.5 ERECTION

The erection supervisor shall be experienced in the construction of aluminum dome roofs and shall follow the Manufacturer's instructions and drawings furnished for that purpose.

### G.11.6 WORKMANSHIP

To minimize internal stresses on the structure when fasteners are tightened, the roof shall be installed on supports that are in good horizontal alignment. The components of the structure shall be erected with precise fit and alignment. Field cutting and trimming, relocation of holes, or the application of force to the parts to achieve fit-up is not acceptable.

G-8

# APPENDIX H—INTERNAL FLOATING ROOFS

## H.1 Scope

- **H.1.1** This appendix provides minimum requirements that apply to a tank with an internal floating roof and a fixed roof at the top of the tank shell, and to the tank appurtenances. This appendix is intended to limit only those factors that affect the safety and durability of the installation and that are considered to be consistent with the quality and safety requirements of this Standard. Types of internal floating roofs (listed under H.2) and materials (listed under H.3) are provided as a basic guide and shall not be considered to restrict the Purchaser option of employing other commonly accepted or alternative designs, as long as all design loading is documented to meet the minimum requirements herein, and all other criteria are met (except alternative materials and thicknesses as permitted by H.3.1). The requirements apply to the internal floating roof of a new tank and may be applied to an existing fixed-roof tank. Section 5.10 of this Standard is applicable, except as modified in this appendix.
- H.1.2 The Purchaser is required to provide all applicable jurisdictional requirements that apply to internal floating roofs (see 1.3).
- **H.1.3** See Appendix W for bid requirements pertaining to internal floating roofs.

# H.2 Types of Internal Floating Roofs

**H.2.1** The internal floating roof type shall be selected by the Purchaser after consideration of both proposed and future product service, operating conditions, maintenance requirements, regulatory compliance, service life expectancy, ambient temperature, maximum design temperature, product vapor pressure, corrosion conditions and other compatibility factors. Other operating conditions requiring consideration include (but are not limited to) anticipated pumping rates, roof landing cycles, and the potential for turbulence resulting from upsets, such as vapor slugs injected into the tank. Safety and risk factors associated with the roof types shall also be evaluated<sup>24</sup>. The type of roof, which shall be designated by the Purchaser on the Data Sheet, Line 30, shall be one of the types described in H.2.2.

**H.2.2** The following types of internal floating roofs are described in this appendix:

a. Metallic pan internal floating roofs<sup>25,26,27</sup> have a peripheral rim above the liquid for buoyancy. These roofs are in full contact with the liquid surface and are typically constructed of steel.

b. Metallic open-top bulk-headed internal floating roofs<sup>26,27</sup> have peripheral open-top bulk-headed compartments for buoyancy. Distributed open-top bulk-headed compartments shall be used as required. These roofs are in full contact with the liquid surface and are typically constructed of steel.

c. Metallic pontoon internal floating roofs have peripheral closed-top bulk-headed compartments for buoyancy. Distributed closed-top bulk-headed compartments shall be used as required. These roofs are in full contact with the liquid surface and are typ-ically constructed of steel.

d. Metallic double-deck internal floating roofs have continuous closed top and bottom decks, which contain bulk-headed compartments for buoyancy. These roofs are in full contact with the liquid surface and are typically constructed of steel.

e. Metallic internal floating roofs on floats have their deck above the liquid, supported by closed pontoon compartments for buoyancy. These roof decks are not in full contact with the liquid surface and are typically constructed of aluminum alloys or stainless steel.

<sup>&</sup>lt;sup>24</sup>Internal floating roof tanks generally have reduced fire risk, and the use of fixed fire suppression systems is often not mandatory. Various internal floating roof materials will have unique flammability characteristics, melting points and weights (perhaps with reduced buoyancy being required). If fire suppression systems are used, certain roof types need to be evaluated for full surface protection. NFPA 11 *Standard for Low-Expansion Foam* can provide guidance for this evaluation.

<sup>&</sup>lt;sup>25</sup>The Purchaser is cautioned that this design does not have multiple flotation compartments necessary to meet the requirements of H.4.2.1.3.
<sup>26</sup>These designs contain no closed buoyancy compartments, and are subject to flooding during sloshing or during application of fire-fighting foam/water solution. Also, without bracing of the rim being provided by the pontoon top plate, design to resist buckling of the rim must be evaluated.

<sup>&</sup>lt;sup>27</sup>If the floating roof is a) a metallic pan roof with or without bulkheads, or b) a non-metallic roof with or without closed buoyancy compartments, then the tank is considered a fixed-roof tank (i.e., having no internal floating roof) for the requirements of NFPA 30. See NFPA 30 for spacing restrictions on floating roof tanks.

• f. Metallic sandwich-panel/composite internal floating roofs have metallic or composite material panel modules for buoyancy compartments. Panel modules may include a honeycomb or closed cell foam core; however, cell walls within the panel module are not considered "compartments" for purposes of inspection and design buoyancy requirements (see H.4.1.7 and H.4.2.1)<sup>28</sup>. These roofs are in full contact with the liquid surface and are typically constructed of aluminum alloys or Purchaser approved composite materials.<sup>27</sup>

• g. Hybrid internal floating roofs shall, upon agreement between the Purchaser and the Manufacturer, be a design combination of roof types described in H.2.2.b and H.2.2.c, having bulkhead compartments with closed-top perimeter pontoon and open-top center compartments for buoyancy. These roofs are in full contact with the liquid surface and are typically constructed of steel.

07 • h. Other roof materials or designs if specified and described in detail by the Purchaser on the Data Sheet.

# H.3 Material

# H.3.1 SELECTION

Internal floating roof materials shall be selected by the Purchaser after consideration of items listed under H.2.1. The Manufacturer shall submit a complete material specification in his proposal. The choice of materials should be governed by compatibility with the specified liquid. Material produced to specifications other than those listed in this appendix (alternative materials) may be used. Material shall be certified to meet all the requirements of a material specification listed in this appendix, and approved by the Purchaser or shall comply with requirements as specified by the Purchaser. When specified by the Purchaser, a corrosion allowance shall be added to the minimum nominal thickness indicated below. The "nominal thickness" is the purchased thickness with allowance for the permissible mill tolerance.

# H.3.2 STEEL

<sup>08</sup>

**08** Steel shall conform to the requirements of Section 4 of this Standard. Steel in contact with vapor or liquid shall be 4.8 mm (<sup>3</sup>/<sub>16</sub> in.) minimum nominal thickness. Other steel shall be 2.5 mm (0.094 in.) minimum nominal thickness.

### H.3.3 ALUMINUM

Aluminum shall conform to the requirements of Apendix AL. Aluminum skin shall be 0.50 mm (0.020 in.) minimum nominal thickness. Aluminum floats shall be 1.2 mm (0.050 in.) minimum nominal thickness. For a sandwich panel flotation unit, core material shall be at least 25 mm (1.0 in.) thick, and metallic skin (except carbon steel) shall be 0.41 mm (0.016 in.) minimum nominal thickness.

### H.3.4 STAINLESS STEEL

Stainless steel shall conform to the requirements of ASTM A 240/A 240M (austenitic type only). Stainless steel skin shall be 0.46 mm (0.018 in.) minimum nominal thickness. Stainless steel floats shall be 1.2 mm (0.048 in.) minimum nominal thickness.

# H.4 Requirements for All Types

### H.4.1 GENERAL

**H.4.1.1** An internal floating roof and its accessories shall be designed and constructed to allow the roof to operate throughout its normal travel without manual attention and without damage to any part of the fixed roof, the internal floating roof, internal floating roof seals (except for normal wear), the tank, or their appurtenances. The internal floating roof and seals shall be designed to operate in a tank constructed within the dimensional limits defined in 7.5 of this Standard.

**H.4.1.2** The internal floating roof shall be designed and built to float and rest in a uniform horizontal plane (no drainage slope required).

**H.4.1.3** All seams in the internal floating roof that are exposed to product vapor or liquid shall be vapor-tight in accordance with H.4.3.1.

H-2

 $<sup>^{28}</sup>$ A single inspection opening per panel module is permitted, regardless of core material; however, core materials producing enclosed spaces within a module may result in undetectable combustible gas in areas isolated from the inspection opening. Design buoyancy shall be based on the loss of any two full panel modules (not cells within modules).

**H.4.1.4** A vapor-tight rim (or skirt), extending at least 150 mm (6 in.) above the liquid at the design flotation level, shall be provided around both the internal floating roof periphery and around all internal floating roof penetrations (columns, ladders, stilling wells, manways, open deck drains and other roof openings) except for drains designed to avoid product backflow onto the roof.

**H.4.1.5** The non-contact type (see H.2.2e) internal floating roof shall have a vapor-tight rim (or skirt), extending at least 100 mm (4 in.) into the liquid at the design flotation level, around both the internal floating roof periphery and around all internal floating roof penetrations (columns, ladders, stilling wells, manways, open deck drains and other roof openings), with the exception of penetrations for pressure-vacuum (bleeder) vents (per H.5.2.1).

- **H.4.1.6** All conductive parts of the internal floating roof shall be electrically interconnected and bonded to the outer tank structure. This shall be accomplished by electric bonding shunts in the seal area (a minimum of four, uniformly distributed) or flexible multi-strand cables from the external tank roof to the internal floating roof (a minimum of two, uniformly distributed). The choice of bonding devices shall be specified by the Purchaser on the Data Sheet, Line 32, considering strength, corrosion resistance, joint reliability, flexibility, and service life. All movable cover accessories (hatches, manholes, pressure relief devices, and other openings) on the internal floating roof shall be electrically bonded to the internal floating roof to prevent static electricity sparking when they are opened.
- **H.4.1.7** Each closed flotation compartment shall be capable of being field-inspected for the presence of combustible gas. Inspection openings shall be located above the liquid level and closed compartments shall be capable of being resealed in the field after periodic inspection (to prevent liquid or vapor entry). Closed-top compartments (types H.2.2c, d, and g) shall be accessible from the top of the internal floating roof and provided with a secured and gasketed manhole for visual internal inspection and the manhole cover shall be provided with a suitable vent. The top edge of the manhole shall extend a minimum of 25 mm (1 in.) above the top of the pontoon rim/skirt. With agreement by the Purchaser, type H.2.2c, d, and g floating roofs 6 m (20 ft) in diameter or less may be provided with an inspection port in place of a manhole. The inspection ports must meet the sealing, securing and extension requirements listed here for manholes in internal floating roof closed compartments.
- **H.4.1.8** All closed flotation compartments shall be seal welded to prevent liquid or vapor entry, unless otherwise specified by the Purchaser. For pontoon, double-deck and hybrid internal floating roofs (types H.2.2c, d, and g), each bulkhead in a closed flotation compartment shall also be provided with a continuous seal weld all around so that the bulkhead is liquid and vapor-tight.
- **H.4.1.9** For metallic/composite sandwich-panel roofs (type H.2.2f), if the use of adhesives is allowed by the Purchaser (per H.4.3.4) to seal the flotation panels (in lieu of welding), all exposed adhesives shall be compatible with the product service and flotation test water (Purchaser shall consider future product service, the hydrostatic test condition, and design condition changes to specify adhesive compatibility.)
- **H.4.1.10** When specified by the Purchaser for deck surfaces above the liquid level, deck drains shall be provided to return any spillage or condensate to the product. Such drains shall close automatically or extend at least 100 mm (4 in.) into the product to minimize vapor loss.

**H.4.1.11** Internal floating roofs classified as full-contact types (see H.2.2) shall be designed to minimize trapped vapor space beneath the internal floating roof.

#### H.4.2 INTERNAL FLOATING ROOF DESIGN

#### H.4.2.1 Buoyancy Requirements

• **H.4.2.1.1** All internal floating roof design calculations shall be based on the lower of the product specific gravity or 0.7 (to allow for operation in a range of hydrocarbon service), regardless of any higher specific gravity that might be specified by the Purchaser.

**H.4.2.1.2** All internal floating roofs shall include buoyancy required to support at least twice its dead weight (including the weight of the floation compartments, seal and all other floating roof and attached components), plus additional buoyancy to offset the calculated friction exerted by peripheral and penetration seals during filling.

• **H.4.2.1.3** All internal floating roofs with multiple flotation compartments shall be capable of floating without additional damage after any two compartments are punctured and flooded. Designs which employ an open center deck in contact with the liquid (types H.2.2b, c, and g) shall be capable of floating without additional damage after any two compartments and the center deck are punctured and flooded. With agreement by the Purchaser, any floating roof 6 m (20 ft) in diameter or less with multiple flotation compartments may be designed to be capable of floating without additional damage after any one compartment is punctured and flooded.

07

07

API STANDARD 650

**H.4.2.1.4** The internal floating roof shall be designed to meet the requirements of H.4.2.1.3 and to safely support at least two men walking anywhere on the roof while it is floating without damaging the floating roof and without allowing product on the roof. One applied load of 2.2 kN (500 lbf) over 0.1 m<sup>2</sup> (1 ft<sup>2</sup>) applied anywhere on the roof addresses two men walking. With agreement by the Purchaser, the concentrated load design criteria may be modified for roofs less than 9 m (30 ft) diameter (where internal floating roofs may become unstable), to account for access needs, and expected concentrated live loads.

## H.4.2.2 Internal Floating Roof Support Design Loads

**H.4.2.2.1** Internal floating roof supports and deck structural attachments (such as reinforcing pads and pontoon end gussets) shall be designed to support the load combinations listed in H.4.2.2.2 without exceeding allowable stresses. Consideration shall also be made for non-uniform support settlement or other non-uniform load distribution, based on anticipated conditions specified by the Purchaser. Application of non-uniform loads is by agreement between the Purchaser and Manufacturer.

# • H.4.2.2.2 Load Combination for Floating Roof Supports

Floating roof support loading (legs or cables) shall be as follows:

 $D_{f+}$  (the greater of)  $P_{fe \text{ or }} L_{f1 \text{ or }} L_{f2}$ 

where

- $D_f$  = dead load of internal floating roof, including the weight of the floation compartments, seal and all other floating roof and attached components,
- $L_{\Lambda}$  = internal floating roof uniform live load (0.6 kPa [12.5 lbf/ft<sup>2</sup>] if not automatic drains are provided, 0.24 kPa [5 lbf/ft<sup>2</sup>] if automatic drains are provided),
- $L_{l2}$  = internal floating roof point load of at least two men walking anywhere on the roof. One applied load of 2.2 kN [500 lbf] over 0.1 m<sup>2</sup> [1 ft<sup>2</sup>] applied anywhere on the roof addresses two men walking,
- $P_{fe}$  = internal floating roof design external pressure (0.24 kPa [5 lbf/ft<sup>2</sup>] minimum).

Note: With agreement by the Purchaser,  $L_{I2}$  may be modified for roofs less than 9 m (30 ft) diameter (where internal floating roofs may be come unstable), to account for access needs, and expected concentrated live loads.

**H.4.2.2.3** The allowable load on support cables shall be determined using a factor of safety of 5 on the ultimate strength of cables and their connections. Cables and their connections shall be dedesigned for the load combination listed in H.4.2.2.2.

### H.4.2.3 Other Design Requirements

**H.4.2.3.1** Aluminum load carrying members, assemblies and connections shall comply with the design requirements of the latest edition of the Aluminum Design Manual.

• H.4.2.3.2 Steel structural components shall be proportioned so that the maximum stresses shall not exceed the limitations specified in the latest edition of the *Manual of Steel Construction, Allowable Stress Design,* as published by the American Institute of Steel Construction (Chicago, IL). For other steel components, the allowable stress and stability requirements shall be jointly established by the Purchaser and the Manufacturer, as part of the inquiry. Alternatively, a proof test (simulating the conditions of H.4.2) may be performed on the roof or on one of similar design.

# H.4.3 JOINT DESIGN

**H.4.3.1** All seams in the floating roof exposed directly to product vapor or liquid shall be welded, bolted, screwed, riveted, clamped, or sealed and checked for vapor-tightness per H.6.2.

**H.4.3.2** Welded joints between stainless steel members and welded joints between carbon steel members shall conform to 5.1 of this Standard. Welded joints between aluminum members shall conform to AL.5.1.

H.4.3.2.1 Single-welded butt joints without backing are acceptable for flotation units where one side is inaccessible.

**H.4.3.2.2** The thickness of fillet welds on material less than 4.8 mm  $(^{3}/_{16}$  in.) thick shall not be less than that of the. thinner member of the joint.

• H.4.3.3 Bolted, threaded, and riveted joints are acceptable when mutually agreed upon by the Purchaser and the Manufacturer.

H-4

08

11

- H.4.3.3.1 Only austenitic type stainless steel hardware shall be used to join aluminum and/or stainless steel components to each other or to carbon steel. Where acceptable to the Purchaser and the Manufacturer, aluminum hardware may be used to join aluminum components. Aluminum shall be isolated from carbon steel by an austenitic stainless steel spacer, an elastomeric pad, or equivalent protection. The use of plated fasteners shall be permitted only when connecting steel components, if specified by the Purchaser.
- **H.4.3.4** Use of any joint sealing compound, insulating material, polymer, elastomer or adhesive must be pre-approved by the Purchaser. The joining procedure along with test results demonstrating the properties required by this paragraph shall be described completely. Where such joints are permitted, any joint sealing compound, insulating material, elastomeric or adhesive shall be compatible with the product stored, specified service conditions, and with materials joined. Resulting joints shall be equivalent in serviceability (with the basic floating roof components), of a size and strength that will accept the roof design loads without failure or leakage, and shall have an expected life equal to the service life of the roof. Any non-metallic component shall be selected and fabricated to preclude absorption (under design conditions specified and permitted by this Standard) of hydrocarbons, hydro-test water and specified product to be stored.
- H.4.3.5 If specified by the Purchaser, all steel plate seams exposed to the product liquid or vapor shall be seal welded (for corrosive service conditions).

#### H.4.4 PERIPHERAL SEALS

• In addition to the required floating roof primary peripheral seal, secondary-peripheral seals shall be provided if specified on the Data Sheet, Line 31. Floating roof primary and secondary peripheral seal types and configurations shall be provided as specified on the Data Sheet, Line 31.

**H.4.4.1** A peripheral seal (also referred to as "rim seal") that spans the annular space between the internal floating roof deck and the shell shall be provided. When an internal floating roof has two such devices, one mounted above the other, the lower is the primary peripheral seal and the upper is the secondary peripheral seal. When there is only one such device, it is a primary peripheral seal, regardless of its mounting position.

• **H.4.4.2** The peripheral seal type and material shall be selected by the Purchaser after consideration of both proposed and future product service, tank shell construction/condition, maintenance requirements, regulatory compliance, service life expectancy, ambient temperature, design metal temperature, maximum design temperature, permeability, abrasion resistance, discoloration, aging, embrittlement, flammability, and other compatibility factors. The various seal types (listed H.4.4.4) will have variable life expectancy and service limitations.

The following non-mandatory table provides guidance on frequently used materials for selected products. Each material must be evaluated for the specific product and temperature.

| Fluid Stored        | Seal Material                                                                  |
|---------------------|--------------------------------------------------------------------------------|
| Crude oil           | Fluoropolymers, urethane, nitrile                                              |
| Refined products    | Fluoropolymers, urethane, urethane laminate, fluoroelastomers, or Buna-N-Vinyl |
| Gasoline/MTBE blend | Fluoropolymers or nitrile                                                      |

**H.4.4.3** All peripheral seals and their attachment to the floating roof shall be designed to accommodate  $\pm 100 \text{ mm}$  ( $\pm 4 \text{ in.}$ ) of local deviation between the floating roof and the shell.

#### H.4.4.4 Types of Primary Seals

a. Liquid-mounted rim seal: Means a resilient foam-filled or liquid-filled primary rim seal mounted in a position resulting in the bottom of the seal being normally in contact with the stored liquid surface. This seal may be a flexible foam (such as polyurethane foam in accordance with ASTM D 3453) or liquid contained in a coated fabric envelope. Circumferential joints on liquid-mounted peripheral seals shall be liquid-tight and shall overlap at least 75 mm (3 in.). The material and thickness of the envelope fabric shall be determined after the factors given in H.4.4.2 are considered.

b. Vapor-mounted rim seal: Means a peripheral seal positioned such that it does not normally contact the surface of the stored liquid. Vapor-mounted peripheral seals may include, but are not limited to, resilient-filled seals (similar in design to liquid-mounted

07

07

rim seals per H.4.4.4a), and flexible-wiper seals. Flexible-wiper seal means a rim seal utilizing a blade or tip of a flexible material (such as extruded rubber or synthetic rubber) with or without a reinforcing cloth or mesh.

c. Mechanical shoe (metallic shoe): Means a peripheral seal that utilizes a light-gauge metallic band as the sliding contact with the shell and a fabric seal to close the annular space between the metallic band and the rim of the floating roof deck. The band is typically formed as a series of sheets (shoes) that are overlapped or joined together to form a ring and held against the shell by a series of mechanical devices.

Galvanized shoes shall conform to ASTM A 924 and shall have a minimum nominal thickness of 1.5 mm (16 gauge) and a G90 coating. Stainless steel shoes shall conform to H.3.3, and shall have a minimum nominal thickness of 1.2 mm (18 gauge). For internal floating roofs the primary shoes shall extend at least 150 mm (6 in.) above and at least 100 mm (4 in.) into the liquid at the design flotation level. If necessary, bottom shell course accessories (e.g., side mixers) and other assemblies shall be modified or relocated to eliminate interference between lower portions of metallic seal assemblies.

• Unless specified otherwise by the Purchaser, the seal shoe and compression mechanism shall be installed before hydrostatic testing. It may be necessary to remove the seal shoe after the hydro-test to accommodate cleaning, application of interior linings, or any situation where the installed shoe might interfere with the process. The fabric seal may be installed after the hydrostatic testing.

H.4.4.5 The specific requirements for all floating roof peripheral seals are:

1. All fasteners and washers for installation of seal joints, including fabric seal joints, shall be austenitic stainless steel. (See restrictions on contact between galvanizing and stainless steel in S.2.1.3.)

2. The seals shall be designed for a temperature range extending from design metal temperature less  $8^{\circ}$ C (15°F) to the maximum operating temperature.

3. Lengths of seal sections shall be as long as practical. No holes or openings shall be permitted in the completed seal. The seal material may be fabricated in sections resulting in seams, but any such seam shall be joined or otherwise held tightly together along the entire seam. For peripheral seals that use a fabric material to effect the seal, the requirement in the preceding sentence applies only to the fabric and not to any support devises. An adequate but minimum number of expansion joints shall be provided.

4. Provisions shall be made to prevent damage to the seal due to any overflow openings in the shell.

- 5. Rough spots on the shell that could damage the seal assembly shall be ground smooth. See H.6.1.
- 6. All metallic components shall be electrically bonded. See H.4.1.6 or C.3.1.6 for electrical bonding requirements.

**H.4.4.6** If wax scrapers are specified on the Data Sheet, Line 31, they shall be located such that the scraping action occurs below the liquid surface. Design of wax scrapers shall not interfere with bottom shell course accessories.

### H.4.5 ROOF PENETRATIONS

Columns, ladders, and other rigid vertical appurtenances that penetrate the deck shall be provided with a seal that will permit a local deviation of  $\pm 125$  mm ( $\pm 5$  in.). Appurtenances shall be plumb within a tolerance of  $\pm 75$  mm ( $\pm 3$  in.).

### H.4.6 ROOF SUPPORTS

- H.4.6.1 The floating roof shall be provided with adjustable supports, unless the Purchaser specifies fixed supports.
- **H.4.6.2** Unless specified otherwise, the height of the floating roof shall be adjustable to two positions with the tank in service. The design of the supports shall prevent damage to the fixed roof and floating roof when the tank is in an overflow condition.

• **H.4.6.3** The Purchaser shall specify clearance requirements to establish the low (operating) and high (maintenance) levels of the roof supports. The low roof position shall be the lowest permitted by the internal components of the tank including shell nozzles with internal projections. If specified, a single position support height shall be based on the Purchaser-specified clearance dimension. The Purchaser shall provide data to enable the Manufacturer to ensure that all tank appurtenances (such as mixers, interior piping, and fill nozzles) are cleared by the roof in its lowest position. In addition to fitting elevations, such data shall include minimum mixer operation level and low level alarm settings (if applicable). If not specified otherwise by the Purchaser, the following apply:

H-6

07

07

**H.4.6.3.1** The high roof position shall provide a 2-m (78-in.) minimum clearance throughout the bottom, between the roof and the tank bottom.

**H.4.6.3.2** Where propeller-type mixers are used, the support legs shall provide a minimum clearance of 75 mm (3 in.) from the underside of the internal floating roof (or roof notch) to the tip of the mixer propeller.

**H.4.6.4** Support attachments in the deck area shall be designed to prevent failure at the point of attachment. On the bottom of the steel welded deck plates (used on types H.2.2a, b, c, d, and g), where flexure is anticipated adjacent to supports or other relatively rigid members, full-fillet welds not less than 50 mm (2 in.) long on 250 mm (10 in.) centers shall be used on any plate laps that occur within 300 mm (12 in.) of any such support or member.

- **H.4.6.5** Supports shall be fabricated from pipe, unless cable or another type is specified on the Data Sheet, Line 34 and approved by the Purchaser. Supports fabricated from pipe shall be notched or otherwise constructed at the bottom to provide complete liquid drainage. Cable supports shall be adjustable externally and shall not have an open penetration at the floating roof surface. Fixed roofs shall be designed or verified suitable for cable support loads, when used, per agreement between the Purchaser and tank/roof Manufacturers.
- **H.4.6.6** Steel pads or other means shall be used to distribute the loads on the bottom of the tank and provide a wear surface. With the Purchaser's approval, pads may be omitted if the tank bottom will support the live load plus the dead load of the floating roof. If pads are used, they shall be continuously welded to the tank bottom.
- **H.4.6.7** Aluminum supports shall be isolated from carbon steel by an austenitic stainless steel spacer, an elastomeric bearing pad, or equivalent protection, unless specified otherwise by the Purchaser.
- **H.4.6.8** Special protective measures (corrosion allowance, material selection, linings) are to be evaluated for supports that interface with stratified product bottoms, which may include corrosive contaminant combinations not found in the normal product. The Purchaser shall specify if any protective measures are required.
- **H.4.6.9** For tanks with internal linings, the Purchaser shall specify on Line 23 of the Data Sheet any special requirements for minimizing corrosion where the leg contacts the tank bottom, such as a flat plate or bull nose on the leg base, a thicker base plate, or other means.

**H.4.6.10** Consideration shall be given to the use of fixed supports for the operating position (low level) of internal floating roofs, which utilize cable supports suspended from a fixed roof. These supports are typically not adjustable, are sealed to prevent emissions, and are for the operating position (low level) set at a level as specified by the Purchaser. The use of fixed supports for the low level position are intended to reduce the frequency of fixed roof loading. The operating position (low level) and length of the cables shall be such that sinking and/or collapse of the internal floating roof will not apply loads to the support cables.

**H.4.6.11** If cable supports are used, the supports shall be adjustable from the fixed roof while the floating roof is floating and with the cables unloaded.

**H.4.6.12** Cables, cable segments, or cable connections which support the floating roof are prohibited from using a fusible link or other devices which are designed to fail at a specified load limit.

**H.4.6.13** Cables used to support internal floating roofs shall be 300 series stainless steel and shall be flexible to facilitate repeatable lay down patterns on the floating roof as it travels up and down within the tank. Lay down patterns shall be positioned to avoid rim seals and floating roof appurtenances that could prevent the cable from freely extending as the floating roof lowers.

# H.5 Openings and Appurtenances

### H.5.1 LADDER

• **H.5.1.1** The tank interior is considered a confined space environment with restricted access (see API RP 2026). If specified by the Purchaser, the tank shall be supplied with a ladder for internal floating roof deck access. If a ladder is not supplied and the floating roof is not steel, a ladder landing pad shall be provided on the floating roof.

**H.5.1.2** The ladder shall be designed to allow for the full travel of the internal floating roof, regardless of any settling of the roof supports.

**H.5.1.3** The ladder shall be installed within a fixed-roof manhole, per H.5.5.1.

07

07

• **H.5.1.4** If a level-gauge stilling well is provided, the well may form one or both legs of the ladder, as specified by the Purchaser.

**H.5.1.5** The ladder shall not be attached to the tank bottom unless provision is made for vertical movement at the upper connection.

# H.5.2 VENTS

#### 08 9 H.5.2.1 Internal Floating Roof Pressure-Relieving Vents

**H.5.2.1.1** Vents suitable to prevent overstressing of the roof deck or seal membrane shall be provided on the floating roof. These vents shall be adequate to evacuate air and gases from underneath the roof such that the internal floating roof is not lifted from resting on its supports during filling operations, until floating on the stored liquid. The vents shall also be adequate to release any vacuum generated underneath the roof after it settles on its supports during emptying operations to limit the floating roof external pressure to  $P_{fe}$ . The Purchaser shall specify filling and emptying rates. The manufacturer shall size the vents.

**H.5.2.1.2** Internal floating roofs which utilize support legs shall be equipped with leg- or pressure-vacuum-activated vents. The Purchaser may specify the type of vent and the associated design conditions (see Line 33 of the Data Sheet). Leg activated vents shall be adjustable as required per H.4.6.

**H.5.2.1.3** Internal floating roofs, which utilize cable supports and mechanical activiated vents shall have a leg or cable activated vent(s) for the operating position (low level) and a cable activated vent(s) for the maintenance position (high level). Alternatively, internal floating roofs which utilize cable supports shall use a pressure vacuum vent(s) to provide the required venting for all floating roof support levels.

**H.5.2.1.4** Leg or cable activated vents shall be designed to open automatically when the roof lowers to 150 mm (6 in.) above its lowest operating position and to close automatically when the roof raises more than 150 mm (6 in.) above its lowest position. Float-activated vents shall be designed to remain closed while the roof is floating. Pressure-vacuum activated vents shall be designed to open and achieve required flow rates within the design capacities of the floating roof and floating roof support system as described in H.5.2.1.1.

#### H.5.2.2 Tank Circulation Vents

• **H.5.2.2.1** Peripheral circulation vents shall be located on the tank roof (unless otherwise specified by the Purchaser) and meet the requirements of H.5.3.3, so that they are above the seal of the internal floating roof when the tank is full. The maximum spacing between vents shall be 10 m (32 ft), based on an arc measured at the tank shell, but there shall not be fewer than four equally-spaced vents. The venting shall be distributed such that the sum of the open areas of the vents located within any 10 m (32 ft) interval is at least 0.2 m<sup>2</sup> (2.0 ft<sup>2</sup>). The total net open area of these vents shall be greater than or equal to 0.06 m<sup>2</sup>/m (0.2 ft<sup>2</sup>/ft) of tank diameter. These vents shall be covered with a corrosion-resistant coarse-mesh screen (13 mm [<sup>1</sup>/<sub>2</sub> in.] openings, unless specified otherwise by the Purchaser) and shall be provided with weather shields (the closed area of the screen must be deducted to determine the net open vent area).

**H.5.2.2.2** A center circulation vent with a minimum net open area of  $30,000 \text{ mm}^2$  (50 in.<sup>2</sup>) shall be provided at the center of the fixed roof or at the highest elevation possible on the fixed roof. It shall have a weather cover and shall be provided with a corrosion-resistant coarse-mesh screen (the closed area of the screen must be deducted to determine the net open vent area).

• **H.5.2.2.3** If circulation vents (per H.5.2.2.1 and H.5.2.2.2) are not installed, gas blanketing or another acceptable method to prevent the development of a combustible gas mixture within the tank is required. Additionally, the tank shall be protected by pressure-vacuum vents in accordance with 5.8.5, based on information provided by the Purchaser.

### H.5.3 LIQUID-LEVEL INDICATION, OVERFILL PROTECTION, AND OVERFLOW SLOTS

- **H.5.3.1** The Purchaser shall provide appropriate alarm devices to indicate a rise of the liquid in the tank to a level above the normal and overfill protection levels (see NFPA 30 and API RP 2350). Overflow slots shall not be used as a primary means of detecting an overfill incident.
- **H.5.3.2** The internal floating roof Manufacturer shall provide information defining the internal floating roof and seal dimensional profile for the Purchasers' determination of the maximum normal operating and overfill protection liquid levels (considering tank fixed-roof support, overflow slots or any other top of shell obstructions). The floating roof Manufacturer shall provide the design flotation level (liquid surface elevation) of the internal floating roof at which the pressure/vacuum relief vents will begin to open (to facilitate the Purchasers' determination of minimum operating levels).

H-8

08

▶ **H.5.3.3** The use of emergency overflow slots shall only be permitted if specified by the Purchaser. When emergency overflow slots are used, they shall be sized to discharge at the pump-in rates for the tank. The greater of the product specific gravity or 1.0 shall be used to determine the overflow slot position so that accidental overfilling will not damage the tank or roof or interrupt the continuous operation of the floating roof. Overflow discharge rates shall be determined by using the net open area (less screen) and using a product level (for determining head pressure) not exceeding the top of the overflow opening. The overflow slots shall be covered with a corrosion-resistant coarse-mesh screen (13 mm [<sup>1</sup>/<sub>2</sub> in.] openings) and shall be provided with weather shields (the closed area of the screen must be deducted to determine the net open area). The open area of emergency overflow slots may contribute to the peripheral venting requirement of H.5.2.2.1 provided that at least 50% of the circulation-vent area remains unobstructed during emergency overflow conditions. The floating-roof seal shall not interfere with the operation of the emergency overflow regions overflow openings. Overflow slots shall not be placed over the stairway or nozzles unless restricted by tank diameter/height or unless overflow piping, collection headers, or troughs are specified by the Purchaser to divert flow.

### H.5.4 ANTI-ROTATION AND CENTERING DEVICES

The internal floating roof shall be centered and restrained from rotating. A guide pole with rollers, two or more seal centering cables or other suitable device(s) shall be provided as required for this purpose. The internal floating roof shall not depend solely on the peripheral seals or vertical penetration wells to maintain the centered position or to resist rotation. Any device used for either purpose shall not interfere with the ability of the internal floating roof to travel within the full operating elevations in accordance with H.4.1.1.

#### H.5.5 MANHOLES AND INSPECTION HATCHES

#### H.5.5.1 Fixed-Roof Manholes

At least one fixed-roof manhole complying with this Standard, with a nominal opening of 600 mm (24 in.) or larger, shall be provided in the fixed roof for maintenance ventilation purposes. If used for access to the tank interior, the minimum clear opening shall be 750 mm (30 in.).

### H.5.5.2 Floating-Roof Manholes

At least one internal floating roof deck manhole shall be provided for access to and ventilation of the tank when the floating roof is on its supports and the tank is empty. The manhole shall have a nominal opening of 600 mm (24 in.) or larger and shall be provided with a bolted or secured and gasketed manhole cover. The manhole neck dimensions shall meet the requirements of H.4.1.4 and H.4.1.5.

#### H.5.5.3 Inspection Hatches

When specified by the Purchaser, inspection hatches shall be located on the fixed roof to permit visual inspection of the seal region. The maximum spacing between inspection hatches shall be 23 m (75 ft), but there shall not be fewer than four equally-spaced hatches. Designs that combine inspection hatches with tank-shell circulation vents (located on the tank roof) are acceptable.

### H.5.6 INLET DIFFUSER

Purchaser shall specify the need for an inlet diffuser sized to reduce the inlet velocity to less than 1 m (3 ft) per second during initial fill per API RP 2003. Purchaser shall provide pumping rates and any blending, pigging and recirculation data along with the inlet diameter, for Manufacturer's determination of the diffuser design and size.

### H.5.7 GAUGING AND SAMPLING DEVICES

When specified by the Purchaser, the fixed roof and the internal floating roof shall be provided with and/or accommodate gauging and sampling devices. Sampling devices on the deck of the floating roof shall be installed beneath the fixed-roof hatch (as specified for this purpose) and, unless designed as a gauge pole (extending up to the fixed roof), shall have a funneled (tapered) cover to facilitate use from the roof of the tank. All such devices on the floating roof shall be installed within the plumbness tolerance of H.4.5. See C.3.14 for additional requirements applicable to gauge wells and poles.

### H.5.8 CORROSION GAUGE

When specified by the Purchaser, a corrosion gauge for the internal floating roof shall be provided adjacent to the ladder to indicate the general corrosion rate.

# H.5.9 FOAM DAMS

A foam dam, if specified on the Data Sheet, Line 32, shall be fabricated and installed in compliance with NFPA 11.

# H.6 Fabrication, Erection, Welding, Inspection, and Testing

- **H.6.1** The applicable fabrication, erection, welding, inspection, and testing requirements of this Standard shall be met. Upon the start of internal floating roof installation, or concurrent with assembly within a tank under construction, the tank (interior shell and vertical components) shall be inspected by the floating roof erector, unless otherwise specified. The purpose of this inspection shall be to confirm plumbness of all interior components, along with roundness and the condition of the shell (for the presence of damage, projections, or obstructions) to verify that the floating roof and seals will operate properly. Any defects, projections, obstructions or tank tolerance limits (exceeding those defined in 7.5 of this Standard), which would inhibit proper internal floating roof and seal operation, that are identified by the internal floating roof erector shall be reported to the Purchaser.
- H.6.2 Deck seams and other joints that are required to be or vapor-tight per H.4.1.3 shall be tested for leaks by the shop or field joint assembler. Joint testing shall be performed by means of penetrating oil or another method consistent with those described in this Standard for testing cone-roof and/or tank-bottom seams, or by any other method mutually agreed upon by the Purchaser and the roof Manufacturer.

**H.6.3** The floating roof Manufacturer shall supply all floating roof closures required for testing per H.4.1.3, H.4.1.7, H.4.3.1, and H.6.2. Rivets, self-tapping screws, and removable sections are not acceptable for test plugs.

• H.6.4 Any flotation compartment that is completely shop-fabricated or assembled in such a manner as to permit leak testing at the fabricating shop shall be leak tested at the shop as well as retested in the field by the floating roof erector for all accessible seams. In the field assembly yard or in the erected position, the erector shall spot leak test 10% of the floation compartments, whether shop- or field-fabricated. The Purchaser may select the specific compartments to test and the test location, based on his visual inspections for indications of damage or potential leaks (see the Data Sheet, Line 34). Any leaking compartments shall be ' repaired and re-tested by the roof Manufacturer. If the testing finds any leaks in compartments tested, except for those damaged by shipping, then 100% of the roof compartments shall be leak tested. Unless prohibited by safety concerns, leak testing shall be at an internal pressure of 20 kPa – 55 kPa (3 lbf/in.<sup>2</sup> – 8 lbf/in.<sup>2</sup>) gauge using a soap solution or commercial leak detection solution.

Note: Special contract terms may be required to cover the costs of the field testing.

**H.6.5** Upon assembly and prior to a flotation test, the erector shall inspect to verify that the peripheral seal produces an acceptable fit against the tank shell.

# 09 H.6.6 INITIAL FLOTATION

A flotation test and initial fill inspection shall be conducted by the Purchaser. This test may be performed or witnessed by the erector, as subject to agreement with the Purchaser. The party performing the flotation test shall make water connections and supply all tank closures required for testing and remove all water connections and temporary closures (including gaskets, fasteners, test blanks, etc.) after completion of the test, unless otherwise specified by the Purchaser.

H.6.6.1 Internal floating roofs in accordance with types H.2.2a, b, c, d, and g shall be given a floation test on water. Internal floating roofs in accordance with types H.2.2e and H.2.2f shall be given a floation test on water or product at the option of the Purchaser. During this test, the roof and all accessible compartments shall be checked to confirm that they are free from leaks. The appearance of a damp spot on the upper side of the part in contact with the liquid shall be considered evidence of leakage.

**H.6.6.2** During initial fill the internal floating roof should be checked to confirm that it travels freely to its full height. The peripheral seal shall be checked for proper operation throughout the entire travel of the internal floating roof. During the first event of lowering the level from full height, particular attention shall be given for tanks that contain a floating suction to ensure proper operation.

**H.6.6.3** Because of possible corrosive effects, consideration shall be given to the quality of water used and the duration of the test. Potable water is recommended. For aluminum or stainless steel floating roofs, S.4.10 shall be followed.

**H.6.6.4** The high flotation level shall be evaluated for clearance and the floating suction (if existing) shall be compensated for the excess buoyancy that will be encountered during hydrostatic testing of the floating roof system.

07

07

# APPENDIX I—UNDERTANK LEAK DETECTION AND SUBGRADE PROTECTION

### I.1 Scope and Background

**I.1.1** This appendix provides acceptable construction details for the detection of product leaks through the bottoms of aboveg-round storage tanks, and provides guidelines for tanks supported by grillage.

Note: API supports a general position of installation of a Release Prevention Barrier (RPB) under new tanks during initial construction. An RPB includes steel bottoms, synthetic materials, clay liners, and all other barriers or combination of barriers placed in the bottom of or under an aboveground storage tank, which have the following functions: (a) preventing the escape of contaminated material, and (b) containing or channeling released material for leak detection.

- I.1.2 Several acceptable construction details are provided for detection of leaks through the tank bottom and details for tanks supported by grillage (see Figures I-1 through I-11). Alternative details or methods may be used if agreed upon by the tank owner and Manufacturer, provided the details or methods satisfy the requirements of I.2.
- **I.1.3** The tank owner shall determine whether the undertank area is to be constructed for leak detection. If leak detection is required, the owner shall specify the method or methods to be employed.

**1.1.4** The bottoms of aboveground storage tanks may leak as a result of product side corrosion, soil side corrosion, or a combination of both. The extent of product side corrosion can be detected using standard inspection techniques during an internal inspection, but determining the nature and extent of soil side corrosion is more difficult. Therefore, in certain services and tank locations, it may be desirable to provide for undertank monitoring of leakage through the tank bottom plates.

**1.1.5** For additional information on the use of internal linings to prevent internal bottom corrosion, see API RP 652. Similarly, see API RP 651 for guidelines and requirements relating to preventing corrosion from the soil side of the bottom plate.

11

**1.1.6** When the appropriate tank foundation design is being selected, it is important to consider the environmental and safety regulatory implications of leakage of tank contents into the containment space below the tank bottom. Specifically, the contamination of permeable material such as sand used as a floor support may constitute the generation of a hazardous waste. The treatment or disposal costs of such contaminated material must be determined.

**1.1.7** The requirements for secondary containment as it relates to diked areas and impoundments are not within the scope of this appendix.

### I.2 Performance Requirements

The following general requirements shall be satisfied for all leak detection systems:

a. Leaks through the tank bottom shall be detectable by observation at the tank perimeter. If a leak is detected, it shall be collected.

b. The use of electronic sensors for the detection of vapors and liquids is acceptable; however, the requirements of Item a above shall be satisfied. Any such sensor shall be fail-safe or have provision for calibration.

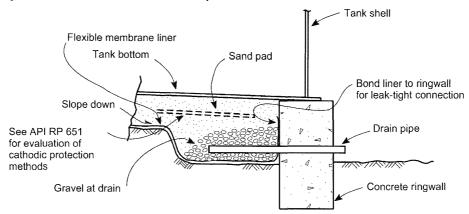



Figure I-1—Concrete Ringwall with Undertank Leak Detection at the Tank Perimeter (Typical Arrangement)

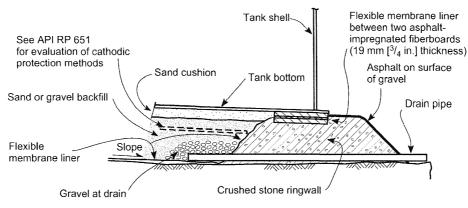



Figure I-2—Crushed Stone Ringwall with Undertank Leak Detection at the Tank Perimeter (Typical Arrangement)

- c. The materials of construction shall be chemically resistant to the range of products to be stored at the temperature range expected in service. Other physical properties shall be specified by the tank owner.
  - d. The permeability of the leak detection barrier shall not exceed  $1 \times 10^{-7}$  cm ( $4 \times 10^{-5}$  mils) per second.
  - e. The material in contact with the subgrade shall be suitable for below-grade service or be protected against degradation.

f. The leak barrier shall be of one-piece construction, or the joints shall satisfy the leak tightness, permeability, and chemical resistance requirements for the base leak-barrier material. The Manufacturer and a complete description of the leak barrier material shall be identified to the tank owner.

g. The installation of sumps and pipes below the tank bottom is acceptable; however, the required leak detection and leak tightness shall be maintained. See Figures I-8 and I-9 for typical details.

# I.3 Cathodic Protection

Cathodic protection systems may be installed in conjunction with undertank leak detection systems. See API RP 651 for guidelines on the use of cathodic protection methods.

#### I.4 Double Steel Bottom Construction

**1.4.1** If a double steel bottom is used, the details of construction shall provide for the proper support of the primary bottom and shell for all operating conditions. The design shall be evaluated to verify that the primary bottom and shell are not overstressed. The evaluation shall consider all anticipated operating conditions such as design metal temperature, maximum design temperature, fill height, hydrostatic testing, seismic conditions, and tank settlement. The evaluation is not required if the primary bottom is uniformly supported on both sides of the shell and is not structurally attached to the secondary bottom or primary bottom support.

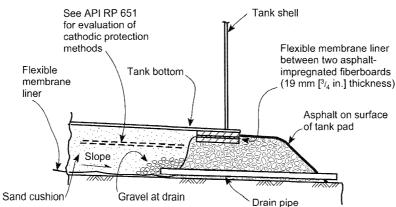



Figure I-3—Earthen Foundation with Undertank Leak Detection at the Tank Perimeter (Typical Arrangement)

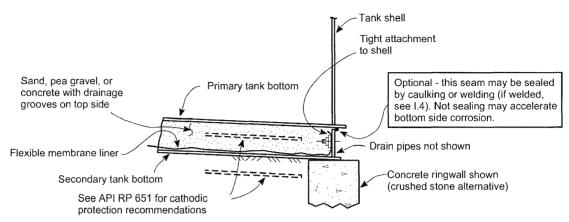



Figure I-4—Double Steel Bottom with Leak Detection at the Tank Perimeter (Typical Arrangement)

**1.4.2** For double steel bottom systems that use steel members (such as grating, structural shapes, or wire mesh) to separate the bottoms, ingress of water between the bottoms will result in local accelerated corrosion rates. If the perimeter of the bottoms is not sealed, corrosion protection of the tank bottoms shall be provided.

#### I.5 Material Requirements and Construction Details

**I.5.1** The minimum thickness of flexible-membrane leak barriers shall be 800 millimicrons (30 mils) for fiber-reinforced membranes and 1000 millimicrons (40 mils) for unreinforced membranes. If clay liners are used, they shall be thick enough to meet the permeability requirements of I.2, Item d.

**1.5.2** The leak barrier shall be protected as required to prevent damage during construction. If the foundation fill or tank pad material is likely to cause a puncture in the leak barrier, a layer of sand or fine gravel or a geotextile material shall be used as a protective cushion.

**1.5.3** For a flexible-membrane liner installed over a steel bottom, all nicks, burrs, and sharp edges shall be removed or a layer of fine sand, gravel, or geotextile material shall be used to protect the liner.

**1.5.4** The flexible leak barrier shall be covered by at least 100 mm (4 in.) of sand, except as otherwise shown in Figures I-1 through I-10. This dimension may have to be increased if cathodic protection is to be provided in the space between the tank bottom and the leak barrier.

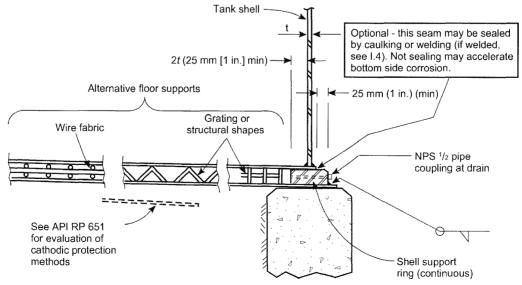



Figure I-5—Double Steel Bottom with Leak Detection at the Tank Perimeter (Typical Arrangement)



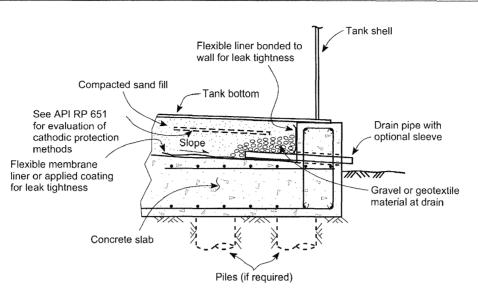



Figure I-6—Reinforced Concrete Slab with Leak Detection at the Perimeter (Typical Arrangement)

• **1.5.5** If drain pipes are used around the tank perimeter, they shall be at least NPS 1 in diameter and have a minimum wall thickness of Schedule 40. The pipes may be perforated in the undertank area to improve their leak detection function. The inner ends and perforations of the drain pipes shall be protected from clogging by the use of gravel, screening, geotextiles, or another method approved by the tank owner. The drain pipes shall exit through the foundation and shall be visible to indicate any leakage. If specified by the owner, the undertank drains shall be fitted with a valve or piped to a leak detection well as shown in Figure I-10. The maximum spacing of drain pipes shall be 15 m (50 ft), with a minimum of four drain pipes per tank; however, two drain pipes may be used for tanks 6 m (20 ft) or less in diameter.

**1.5.6** The need for pipe sleeves, expansion joints, or both in conjunction with drain pipes shall be evaluated.

**1.5.7** The outlet of the drain pipes and collection sumps, if used, shall be protected from the ingress of water from external sources.

**1.5.8** Leak detection systems that use sumps in the liner below the tank bottom shall have a drain line that extends from the sump to the tank perimeter. Consideration shall be given to installation of supplemental perimeter drains.

# I.6 Testing and Inspection

**1.6.1** The leak barrier, all leak-barrier penetrations, attachments of the leak barrier to the foundation ringwall, and other appurtenances shall be visually inspected for proper construction in accordance with applicable specifications.

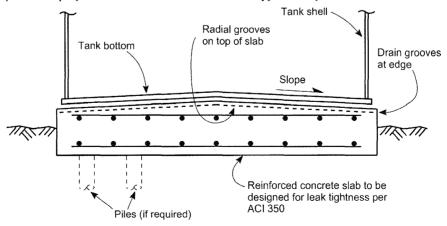



Figure I-7-Reinforced Concrete Slab

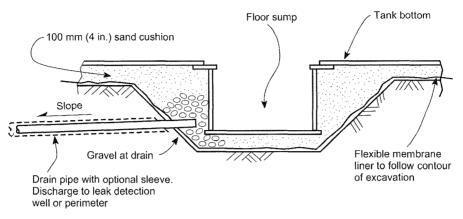



Figure I-8—Typical Drawoff Sump

- **1.6.2** The shop and field seams of flexible-membrane liners shall pass a vacuum-box test. All leaks shall be repaired and retested. Alternative testing methods may be used with the tank owner's approval.
- **I.6.3** Proof testing of samples of the flexible-membrane liner seam shall be performed to verify the seam strength and flexibility and the adequacy of the bonding. The procedure (including testing methods) used to bond or weld the liner seams shall be submitted to the owner for review and shall specify all critical parameters, such as temperature, speed, surface preparation, and curing time, required to achieve liquid-tight seams. The required strength and flexibility of the liner seams shall be agreed upon by the tank owner and Manufacturer. The seam samples shall be produced at the beginning of each shift for each operator and welding machine.
- **I.6.4** All liner penetrations, attachments of the liner to the foundation ringwall, and other appurtenances shall be demonstrated to be leak tight. This may be demonstrated by a mock-up test, prior experience, or other methods acceptable to the owner.

### I.7 Tanks Supported by Grillage

• **I.7.1** Tanks designed and constructed in accordance with API Std 650 that have a maximum nominal shell thickness of 13 mm (<sup>1</sup>/<sub>2</sub> in.), including any customer specified corrosion allowance, and maximum design temperature not exceeding 93°C (200°F) may be supported by steel or concrete grillage. By agreement between the Purchaser and the Manufacturer, these rules may be applied to tanks with shell thickness greater than 13 mm (<sup>1</sup>/<sub>2</sub> in.). These rules apply to single steel butt-welded bottoms supported by grillage members.

1.7.2 The thickness and design metal temperature of the bottom plate shall be in accordance with Figure 4-1.

**1.7.3** The maximum spacing between adjacent or radial grillage members and the bottom plate thickness shall satisfy the requirements of I.7.3.1 and I.7.3.2.

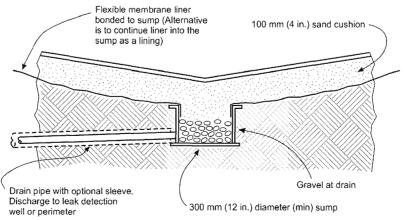
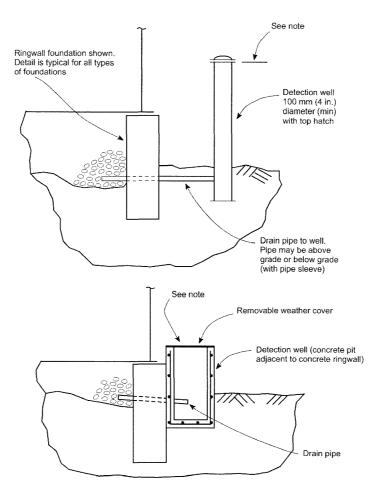




Figure I-9—Center Sump for Downward-Sloped Bottom



Note: Top of well shall be above maximum high water level within dike

Figure I-10—Typical Leak Detection Wells

**1.7.3.1** The maximum spacing between adjacent or radial grillage members shall not exceed:

$$b = \left[\frac{1.5F_y(t_g - CA)^2}{p}\right]^{0.5}$$
(I.7.3.1-1)

11 **1.7.3.2** The required nominal thickness of the bottom plate supported on grillage shall not be less than that determined by the following equation:

$$t_g = \left[\frac{b^2(p)}{1.5F_y}\right]^{0.5} + CA \tag{I.7.3.2-1}$$

where

- b = maximum allowable spacing (center-to-center) between adjacent or radial grillage members, in mm (in.),
- $F_v$  = specified minimum yield strength of bottom plate material, in MPa (psi),
- $t_{g}$  = nominal thickness (including any corrosion allowance) of the bottom plate supported on grillage, in mm (in.),
- CA = corrosion allowance to be added to the bottom plate, in mm (in.). The Purchaser shall specify the corrosion allowance,
  - p = uniform pressure (including the weight of the bottom plate) acting on the bottom resulting from the greater of the weight of the product plus any internal pressure, or the weight of the hydrostatic test water, in MPa (psi).

**1.7.3.3** The maximum calculated deflection of the bottom plate at mid-span shall not exceed  $(t_g - CA) / 2$ :

$$d = \frac{0.0284 p b^4}{E_s (t_g - CA)^3} \le (t_g - CA) / 2$$
(I.7.3.3-1)

where

d = maximum calculated deflection of the bottom plate at mid-span, in mm (in.),

 $E_s$  = modulus of elasticity of the bottom plate material, in MPa (psi).

**1.7.4** The bottom plates shall be jointed together by butt-welds having complete penetration and complete fusion. Joints shall be visually inspected prior to welding to ensure the weld gap and fit-up will allow complete penetration. Each weld pass shall be visually inspected. The alignment and spacing of grillage members shall be such that the joints between bottom plates are located approximately above the center of the grillage members to the greatest extent practical. Grillage members shall be arranged to minimize the length of unsupported tank shell spanning between grillage members.

**1.7.5** Grillage members shall be symmetrical about their vertical centerline. Steel grillage members shall be designed to prevent web crippling and web buckling as specified in Chapter K of the AISC *Manual of Steel Construction, Allowable Stress Design.* Concrete grillage members may also be used.

• **1.7.6** The Purchaser shall specify the corrosion allowance to be added to steel grillage members. If a corrosion allowance is required, the manner of application (added to webs only, added to webs and flanges, added to one surface, added to all surfaces, and so forth) shall also be specified.

**1.7.7** For tanks designed to withstand wind or seismic loads, provisions shall be made to prevent sliding, distortion, and overturning of the grillage members. Lateral bracing between the top and bottom flanges of adjacent steel grillage members may be required to prevent distortion and overturning. The lateral bracing and connections shall be designed to transfer the specified lateral loads. If friction forces between the grillage members and the foundation are not adequate to transfer the specified later load, the grillage members shall be anchored to the foundation.

**1.7.8** The tank shall be anchored to resist uplift forces (in excess of the corroded dead load) due to pressure and wind or seismic overturning. Anchors shall be located near the intersection of the tank shell and a grillage member, or near an additional stiffening member.

**1.7.9** The tank shell shall be designed to prevent local buckling at the grillage members and consideration shall be given to shell distortion when the spacing of the grillage members is determined.

**1.7.10** The bottom plate and grillage members directly beneath roof support columns and other items supported by the bottom shall be designed for the loads imposed. Additional support members are to be furnished if required to adequately support the bottom.

**1.7.11** If flush-type cleanouts or flush-type shell connections are furnished, additional support members shall be provided to adequately support the bottom-reinforcing and bottom-transition plates. As a minimum, the additional support members shall consist of a circumferential member (minimum length and location according to Method A of Figure 5-12) and radial support members. The radial support members shall extend from the circumferential member to the inner edge of the bottom reinforcing (for flush-type cleanouts) or bottom-transition plate (for flush-type shell connections). The circumferential spacing of the radial support members shall not exceed 300 mm (12 in.).

**1.7.12** For tanks located in a corrosive environment, and where atmospheric corrosion due to wet/dry cycles may occur, consideration shall be given to protecting the soil side of the bottom plates, grillage members, and in particular, the contact surface between the bottom plates and grillage members by utilizing protective coatings or by adding a corrosion allowance to these members.

### **I.8 Typical Installations**

Although it is not the intent of this appendix to provide detailed designs for the construction of undertank leak detection systems and tanks supported by grillage, Figures I-1 through I-11 illustrate the general use and application of the recommendations presented in this appendix.

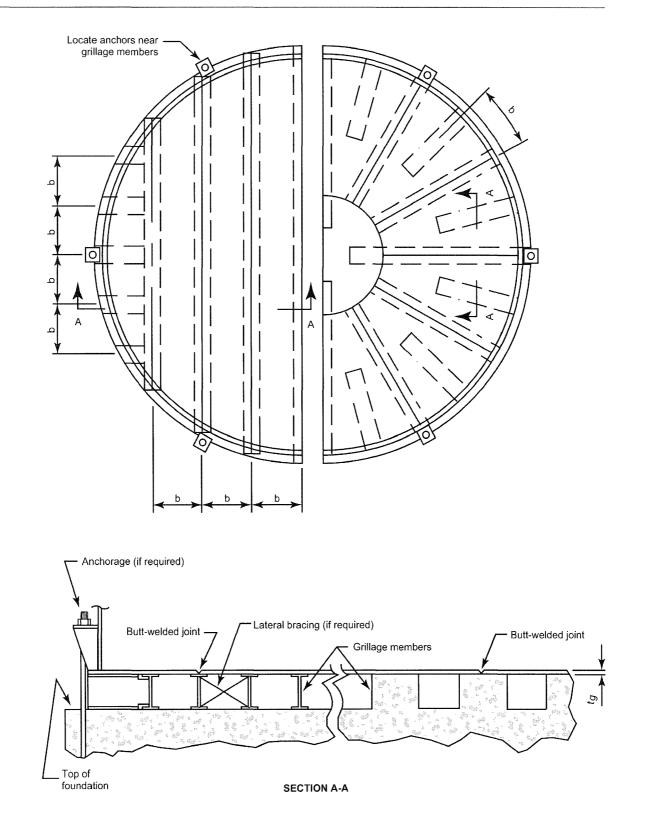



Figure I-11—Tanks Supported by Grillage Members (General Arrangement)

# APPENDIX J—SHOP-ASSEMBLED STORAGE TANKS

#### J.1 Scope

**J.1.1** This appendix provides requirements for the design and fabrication of vertical storage tanks in sizes that permit complete shop assembly and delivery to the installation site in one piece. Storage tanks designed according to this appendix shall not exceed 6 m (20 ft) in diameter.

• **J.1.2** The application of this appendix to the design and fabrication of shop-assembled storage tanks shall be mutually agreed upon by the Purchaser and the Manufacturer.

#### J.2 Materials

**J.2.1** The material requirements of Appendix A of this standard are applicable, except as noted in J.2.2.

**J.2.2** The selection of shell or bottom plate materials exceeding a nominal thickness of 13 mm (1/2 in.) shall be based upon the requirements of Section 4 of this standard.

11

11

08

#### J.3 Design

### J.3.1 JOINTS

**J.3.1.1** Joints shall be designed as specified in 5.1; however, lap-welded joints in bottoms are not permissible. In addition, the modifications given in J.3.1.2 through J.3.1.5 are applicable.

J.3.1.2 All shell joints shall be butt-welded so that full penetration is produced without the use of back-up bars.

**J.3.1.3** Shell plates shall be sized to limit the number of plates to the smallest practical number consistent with sound economic practice. Each course should preferably be constructed of one plate.

**J.3.1.4** Top angles are not required for flanged-roof tanks.

J.3.1.5 Joints in bottom plates shall be butt-welded. The welding shall produce complete penetration of the parent metal.

#### J.3.2 BOTTOMS

**J.3.2.1** All bottom plates shall have a minimum nominal thickness of 6 mm (0.236 in.) ( $49.8 \text{ kg/m}^2$  [10.2 lbf/ft<sup>2</sup>], see 4.2.1.2 and 5.4.1).

J.3.2.2 Bottoms shall be constructed of a minimum number of pieces; wherever feasible they shall be constructed of one piece.

**J.3.2.3** Bottoms may be flat or flat flanged. A flat-bottom shall project at least 25 mm (1 in.) beyond the outside diameter of the weld attaching the bottom to the shell plate. A flat-flanged bottom shall have an inside corner radius that is not less than three times the bottom thickness and a straight flange that is a minimum of 19 mm (3/4 in.).

**J.3.2.4** For flat bottoms, the attachment between the bottom edges of the lowest course shell plate and the bottom plate shall be a continuous fillet weld laid on each side of the shell plate. Each fillet weld shall be sized in accordance with 5.1.5.7. A flat-flanged bottom shall be attached to the shell by full-penetration butt-welds.

#### J.3.3 SHELLS

Shell plates shall be designed in accordance with the formula given in A.4.1, but the nominal thickness of shell plates shall not be less than the following:

a. For tanks with a diameter less than or equal to 3.2 m (10.5 ft) – 4.8 mm ( $\frac{3}{16}$  in.).

b. For tanks with a diameter greater than 3.2 m (10.5 ft) – 6 mm (0.236 in.).

#### J.3.4 WIND GIRDERS FOR OPEN-TOP TANKS

Open-top tanks shall be provided with wind girders as specified in 5.9.

# J.3.5 ROOFS

#### J.3.5.1 General

Roofs for tanks constructed in accordance with this appendix shall be of the self-supporting type and shall conform to either J.3.5.2 or J.3.5.3.

#### J.3.5.2 Cone Roofs

Self-supporting cone roofs shall be designed as specified in 5.10.5, except they may be provided with a flange that will permit butt-welded attachment to the shell (see J.3.1.4). Flanges shall be formed with a minimum inside corner radius of three times the roof thickness or 19 mm  $(^{3}/_{4}$  in.), whichever is larger.

#### J.3.5.3 Dome and Umbrella Roofs

Self-supporting dome and umbrella roofs shall be designed as specified in 5.10.6, except they may be flanged as described in J.3.5.2. For dome roofs that are flanged, the radius of curvature shall not be limited to the maximum requirements given in 5.10.6; instead, the curvature shall be limited by the depth of the roof, including the crown and knuckle depth, as listed in Tables J-1a and J-1b.

08

08

Table J-1a—(SI) Minimum Roof Depths for Shop-Assembled Dome-Roof Tanks

|          | -     |
|----------|-------|
| Diameter | Depth |
| m        | mm    |
| ≤ 1.8    | 50    |
| ≤ 2.4    | 90    |
| ≤ 3.0    | 140   |
| ≤ 3.7    | 200   |
| ≤ 4.3    | 275   |
| ≤ 4.9    | 375   |
| ≤ 6.0    | 500   |
| ·        |       |

09 08 Table J-1b-(USC) Minimum Roof Depths for Shop-Assembled Dome-Roof Tanks

| Diameter | Depth                                                          |
|----------|----------------------------------------------------------------|
| ft       | in.                                                            |
| 6        | 2                                                              |
| 8        | 3 <sup>1</sup> / <sub>2</sub><br>5 <sup>1</sup> / <sub>2</sub> |
| 10       | 5 <sup>1</sup> / <sub>2</sub>                                  |
| 12       | 8                                                              |
| 14       | 11                                                             |
| 16       | 15                                                             |
| 20       | 20                                                             |

#### J.3.5.4 Top Angles

When top angles are required, they shall be attached as specified in 5.10.7.

#### J.3.6 TANK CONNECTIONS AND APPURTENANCES

J.3.6.1 Manholes, nozzles, and other connections in the shell shall be constructed and attached as specified in 5.7, but it is unlikely that reinforcing plates will be required for manholes and nozzles in the tank shell. The need for reinforcement shall be checked according to the procedure given in 5.7.2. Since the nominal shell-plate thicknesses required by J.3.3 will normally exceed the calculated thickness, the excess material in the shell should satisfy the reinforcement requirements in nearly all cases.

**J.3.6.2** The requirements of 5.7.3 for the spacing of welds do not apply except for the requirement that the spacing between the toes of welds around a connection shall not be less than 2.5 times the shell thickness at the connection.

• J.3.6.3 The roofs of tanks constructed in accordance with this appendix will be inherently strong because of the limitations in diameter required for shipping clearances. Thus, reinforcement of roof manholes and nozzles is not required unless specifically requested by the Purchaser or unless roof loads exceed 1.2 kPa (25 lbf/ft<sup>2</sup>), in which case the amount and type of reinforcement shall be agreed upon by the Purchaser and the Manufacturer.

**J.3.6.4** For shell manholes and nozzles the radiographic requirements of 5.7.3.4 do not apply.

**J.3.6.5** For flush-type cleanout fittings, the provisions for stress relief specified in 5.7.4 and 5.7.7.3 are not required unless any plate in the assembly has a thickness greater than 16 mm (<sup>5</sup>/8 in.).

**J.3.6.6** For flush-type shell connections, the provisions for stress relief specified in 5.7.4 and 5.7.8.3 are not required unless any plate in the assembly has a thickness greater than 16 mm ( $^{5}/_{8}$  in.).

#### J.3.7 CORROSION ALLOWANCE

- J.3.7.1 If the Purchaser requires that a corrosion allowance be provided, the allowance and the areas to which the allowance is to be added shall be specified. If a corrosion allowance is specified without an indication of the area to which it is to be added, the Manufacturer shall assume that it is to be added only to the calculated shell-plate thickness.
- **J.3.7.2** When a corrosion allowance is specified for the roof and bottom plates, it shall be added to the minimum nominal thicknesses.

#### J.3.8 LIFTING LUGS

**J.3.8.1** Lugs or clips for use in loading and unloading tanks and for use in placing tanks on foundations shall be provided on all tanks constructed in accordance with this appendix.

• **J.3.8.2** There shall be a minimum of two lugs on each tank. The location of the lugs shall be agreed upon by the Purchaser and the Manufacturer. The lugs shall preferably be located at the top of the tank, in pairs, 180 degrees apart.

**J.3.8.3** Lugs and their attachment welds shall be designed to carry their share of the applied load (twice the empty weight of the tank) distributed in a reasonable manner and based on a safety factor of 4.

**J.3.8.4** Lugs capable of carrying the load described in J.3.8.3 shall be designed and attached in a manner that will not damage the tank.

### J.3.9 ANCHORING

Because of the proportions of shop-assembled storage tanks, overturning as a result of wind loading must be considered. If necessary, adequate provisions for anchoring shall be provided.

# J.4 Fabrication and Construction

### J.4.1 GENERAL

**J.4.1.1** Fabrication and construction shall be in accordance with the applicable provisions of Sections 6 and 7 of this Standard. Erection shall be interpreted as assembly, and it shall be understood that the entire vessel is constructed in the shop and not at the field site.

J.4.1.2 Sections 7.2.2 and 7.2.5 of this Standard are not applicable to the bottoms and roofs of shop-assembled tanks.

### J.4.2 TESTING, REPAIRS, AND INSPECTION

### J.4.2.1 General

For testing of, repairs to, and inspection of shop-assembled tanks, the requirements of J.4.2.2 through J.4.2.4 replace those of 7.3.2 through 7.3.6.

## J.4.2.2 Testing

Unless otherwise specified by the Purchaser, as an alternative to the requirements of 7.3.2 through 7.3.7, a tank may be shop tested for leaks by the following method:

a. The tank bottom shall be braced by securely attaching an external stiffening member as required to prevent permanent deformation during the test.

b. All openings shall be closed with plugs or covers as needed. Bolts and gaskets of the size and type required for final installation shall be used during the test.

c. An internal air pressure of 14 kPa – 21 kPa (2 lbf/in.<sup>2</sup> – 3 lbf/in.<sup>2</sup>) gauge shall be applied to the tank. For tanks with a diameter of 3.7 m (12 ft) or less, a maximum pressure of 35 kPa (5 lbf/in.<sup>2</sup>) gauge shall be used.

d. Soap film, linseed oil, or another material suitable for the detection of leaks shall be applied to all shell, bottom, roof, and attachment welds, and the tank shall be carefully examined for leaks.

e. After the air pressure is released, the external stiffening member shall be removed, and any weld scars shall be repaired.

## J.4.2.3 Repairs

All weld defects found by the leak test or by radiographic examination shall be repaired as specified in Section 8.

#### J.4.2.4 Inspection

The Purchaser's inspector shall have free entry to the Manufacturer's shop at all times. The Manufacturer shall afford the Purchaser's inspector reasonable facilities to assure the inspector that the work is being performed in accordance with the requirements of this Standard. All material and workmanship shall be subject to the replacement requirements of 6.2.3.

## J.5 Inspection of Shell Joints

**J.5.1** The methods of inspecting shell joints described in Section 8 apply to shop-assembled tanks, but spot radiography may be omitted when a joint efficiency of 0.70 is used (see A.3.4).

10

**J.5.2** When radiographic examination is required (joint efficiency = 0.85), the spot radiographs of vertical joints shall conform to 8.1.2.2, Item a only, excluding the 10 mm ( $^{3}/_{8}$  in.) shell thickness limitation in Item a and excluding the additional random spot radiograph required by Item a. The spot radiographs of horizontal joints shall conform to 8.1.2.3.

## J.6 Welding Procedure and Welder Qualifications

The requirements for qualification of welding procedures and welders given in Section 9 apply to shop-assembled tanks.

## J.7 Marking

Shop-assembled tanks shall be marked in accordance with Section 10, except that 10.1.4 and 10.2 are not applicable. The nameplate (see Figure 10-1) shall indicate that the tank has been designed in accordance with this appendix.

#### J-4

# APPENDIX K—SAMPLE APPLICATIONS OF THE VARIABLE-DESIGN-POINT METHOD TO DETERMINE SHELL-PLATE THICKNESS

# K.1 Variable-Design-Point, Example #1

# K.1.1 DATA

| [ ] Design condition [x] Test condition                |                                        |
|--------------------------------------------------------|----------------------------------------|
| Specific gravity of liquid, G.                         | 1.0                                    |
| Corrosion allowance:                                   | 0.0 mm (0.0 in.)                       |
| Tank diameter, <i>D</i> :                              | 85.0 m (280 ft)                        |
| Design Liquid Level (also total height of tank for the |                                        |
| examples in this appendix), <i>H</i> :                 | 19.2 m (64 ft)                         |
| Number of courses:                                     | 8.0                                    |
| Allowable stress for design, <i>S</i> <sub>d</sub>     | ••••                                   |
| Allowable stress for testing, $S_t$ :                  | 208 MPa (30,000 lbf/in. <sup>2</sup> ) |
| Height of bottom course, $h_1$ :                       | 2,400 mm (96 in.)                      |
| Nominal tank radius, <i>r</i>                          | 42,500 mm (1,680 in.)                  |

(See 5.6.4 for definition of nomenclature.)

# K.1.2 CALCULATIONS

#### First Course (t<sub>1</sub>)

For the test condition,  $t_1$  is equal to  $t_{1t}$  but not greater than  $t_{pt}$ .

In SI units:

$$t_{pt} = \frac{4.9D(H-0.3)}{St} = \frac{(4.9)(85)(19.2-0.3)}{208} = 37.85$$

$$t_{1t} = \left[1.06 - \frac{0.0696D}{H}\sqrt{\frac{H}{S_t}}\right] \left[\frac{(4.9HD)}{S_t}\right]$$

$$= \left[1.06 - \frac{0.0696(85)}{19.2}\sqrt{\frac{19.2}{208}}\right] \left[\frac{4.9(19.2)(85)}{208}\right]$$

$$= [1.06 - (0.3081)(0.3038)][38.45]$$

$$= [1.06 - 0.0936][38.45]$$

$$= [0.9664][38.45]$$

$$= 37.15 \text{ mm} = t_1$$

In US Customary units:

$$t_{pt} = \frac{2.6D(H-1)}{St} = \frac{2.6(280)(64-1)}{30,000} = 1.529$$
$$t_{1t} = \left[1.06 - \frac{(0.463D)}{H} \sqrt{\frac{H}{S_t}}\right] \left[\frac{(2.6HD)}{S_t}\right]$$
$$= \left[1.06 - \frac{0.463(280)}{64} \sqrt{\frac{64}{30,000}}\right] \left[\frac{2.6(64)(280)}{30,000}\right]$$
$$= [1.06 - (2.026)(0.0462)][1.553]$$

K-1

11

- = [1.06 0.0936][1.553]
- = [0.9664][1.553]
- = 1.501 in.  $= t_1$

# <sup>11</sup> K.2 Variable-Design-Point, Example #2

# K.2.1 DATA

In US Customary units:

*D* = 280 ft

H = 40 ft

$$G = 0.85$$

| C      | Course Height | Course Height (h | ) .    | Н      | CA     | Mataial  |
|--------|---------------|------------------|--------|--------|--------|----------|
| Course | ft            | in.              | :      | ft     | in.    | Material |
| 1      | 8             | 96               | 4      | 0      | 0.125  | A573-70  |
| 2      | 8             | 96               | 3      | 32     | 0.125  | A573-70  |
| 3      | 8             | 96               | 2      | 24     | 0.0625 | A573-70  |
| 4      | 8             | 96               | 1      | .6     | 0      | A36      |
| 5      | 8             | 96               |        | 8      | 0      | A36      |
|        |               | Material         | Sd     | St     |        |          |
|        |               | Waterial         | psi    | psi    |        |          |
|        |               | A573-70          | 28,000 | 30,000 |        |          |
|        |               | A36              | 23,200 | 24,900 |        |          |

# 09 K.2.2 BOTTOM COURSE (COURSE 1)

#### K.2.2.1 Design Condition

 $t_{pd} = 2.6 \times D \times (H-1) \times G/S_d + CA = 0.987$  in.

 $t_{1d} = (1.06 - (0.463 \times D/H) \times (HG/S_d)^{0.5}) \times (2.6HDG/S_d) + CA = 0.962$  in.

 $t_{1d}$  need not be greater than  $t_{pd}$ 

 $t_{1d}$  = minimum of above thicknesses = 0.962 in.

## K.2.2.2 Hydrostatic Test Condition

$$t_{pt} = 2.6 \times D \times (H-1) / S_t = 0.946$$
 in.

$$t_{1dt} = (1.06 - (0.463 \times D/H) \times (H/S_0)^{0.5}) \times (2.6HD/S_0) = 0.914$$
 in.

 $t_{1t}$  need not be greater than  $t_{pt}$ 

 $t_{1t}$  = minimum of above thicknesses = 0.914 in.

 $t_{\text{use}}$  = nominal thickness used

 $t_{\min}$  = minimum nominal thickness required, the greater of  $t_d$  or  $t_t$ 

 $t_{\min} = 0.962$  in. (controlled by  $t_{1d}$ )

 $t_{\rm use} = 1.000 \text{ in.}$ 

Note:  $t_{use} > t_{min}$  The greater thickness will be used for subsequent calculations and noted as the required thickness, therefore,  $t_{1d} = 1.000$  in.

#### K.2.2.3 Check $L/H \leq 2$

- $L = (6Dt)^{0.5}$
- $t = t_{\rm use} CA = 0.875$  in.
- L = 38.34
- $L/H = 0.96 \le 2$

#### K.2.3 SHELL COURSE 2

#### K.2.3.1 Design Condition

$$h_1 = 96$$
 in.

- r = 1680 in.
- $t_{1d} = 1.000$  in.
- CA = 0.125 in.
- $t_1 = 0.875$  in.

 $h_1/(r \times t_1)^{0.5} = 2.504 > 1.375$  and < 2.625

$$t_2 = t_{2a} + (t_1 - t_{2a})(2.1 - h_1/(1.25 \times (rt_1)^{0.5}))$$

- $t_{2a} = 0.634$  in. (see K.2.4)
- $t_2 = 0.657$  in.
- $t_{2d} = t_2 + CA = 0.782$  in.

#### K.2.3.2 Hydrostatic Test Condition

- $h_1 = 96$  in.
- r = 1680 in.
- $t_{1t} = 1.000$  in.
- $t_1 = 1.000$  in.
- $h_1/(r \times t_1)^{0.5} = 2.342 > 1.375$  and < 2.625
- $t_2 = t_{2a} + (t_1 t_{2a})(2.1 h_1/(1.25 \times (rt_1)^{0.5}))$
- $t_{2a} = 0.699$  in.(See K.2.4)
- $t_2 = 0.767$  in.

09

 $t_{2t} = 0.767$  in.

 $t_{\min}$  = greater of  $t_{2d}$  or  $t_{2t}$  = 0.782 in.

 $t_{\rm use} = 0.8125$  in.

Note:  $t_{use} > t_{min}$ , however, the extra thickness will not be used for subsequent calculations, therefore,  $t_{2d} = 0.782$  in.

# K.2.4 SECOND COURSE AS UPPER SHELL COURSE

#### K.2.4.1 Design Condition

 $D = 280 \, \text{ft}$ 

Material A573-70

- $S_d = 28,000 \text{ psi}$
- $S_t = 30,000 \text{ psi}$
- CA = 0.125 in.
- G = 0.85
- $H = 32 \, \text{ft}$
- r = 1680 in.

09

 $C = (K^{0.5}(K-1))/(1+K^{1.5})$ 

$$K = t_L/t_u$$

 $\mathbf{x}_1 = 0.61 (rt_u)^{0.5} + 3.84 CH$ 

$$x_2 = 12CH$$

- $x_3 = 1.22 \times (rt_u)^{0.5}$
- $t_L = 0.875$  in. (thickness of bottom shell course less CA)

#### K.2.4.2 Trials

| starting $t_u$ | = 2.6D(H - | $-1)G/S_d =$ | 0.6851 in. |
|----------------|------------|--------------|------------|
|----------------|------------|--------------|------------|

|   | t <sub>u</sub> | K     | С     | x <sub>1</sub> | x <sub>2</sub> | x <sub>3</sub> | х      | $t_d - CA$ |
|---|----------------|-------|-------|----------------|----------------|----------------|--------|------------|
|   | in.            |       |       | in.            | in.            | in.            | in.    | in.        |
| 1 | 0.685          | 1.277 | 0.128 | 36.449         | 49.231         | 41.390         | 36.449 | 0.640      |
| 2 | 0.640          | 1.367 | 0.165 | 40.298         | 63.420         | 40.006         | 40.006 | 0.634      |
| 3 | 0.634          | 1.381 | 0.171 | 40.885         | 65.575         | 39.801         | 39.801 | 0.634      |
| 4 | 0.634          | 1.380 | 0.170 | 40.851         | 65.450         | 39.813         | 39.813 | 0.634      |

 $t_d - CA = 0.634$  in.

 $t_d = 0.759$  in.

#### K.2.4.3 Hydrotest Condition

 $t_L = 0.914$  in. (calculated hydrostatic thickness of bottom shell course)

#### K.2.4.4 Trials

|   | $t_u$ | K     | С     | $\mathbf{x}_1$ | x <sub>2</sub> | <b>x</b> <sub>3</sub> | х      | $t_t$ |
|---|-------|-------|-------|----------------|----------------|-----------------------|--------|-------|
|   | in.   |       |       | in.            | in.            | in.                   | in.    | in.   |
| 1 | 0.752 | 1.215 | 0.101 | 34.137         | 38.909         | 43.371                | 34.137 | 0.708 |
| 2 | 0.708 | 1.292 | 0.134 | 37.548         | 51.616         | 42.061                | 37.548 | 0.701 |
| 3 | 0.701 | 1.305 | 0.140 | 38.098         | 53.658         | 41.855                | 38.098 | 0.699 |
| 4 | 0.699 | 1.307 | 0.141 | 38.188         | 53.989         | 41.822                | 38.188 | 0.699 |

 $t_t = 0.699$  in.

## K.2.5 SHELL COURSE 3

# K.2.5.1 Design Condition

 $D = 280 \, \text{ft}$ 

Material A573-70

- $S_d = 28,000 \text{ psi}$
- $S_t = 30,000 \text{ psi}$
- CA = 0.0625 in.
- G = 0.85
- H = 24 ft
- r = 1680 in.
- $C = (K^{0.5}(K-1))/(1+K^{1.5})$

$$K = t_L/t_u$$

- $x_1 = 0.61 (rt_u)^{0.5} + 3.84 CH$
- $\mathbf{x}_2 = 12CH$
- $x_3 = 1.22 \times (rt_u)^{0.5}$
- $t_L = 0.657$  in. ( $t_d$  of lower shell course less CA)

#### K.2.5.2 Trials

starting  $t_u = 2.6D(H-1)G/S_d = 0.508$  in.

|   | t <sub>u</sub> | Κ     | С     | x <sub>1</sub> | x2     | x <sub>3</sub> | х      | $t_d - CA$ |
|---|----------------|-------|-------|----------------|--------|----------------|--------|------------|
|   | in.            |       |       | in.            | in.    | in.            | in.    | in.        |
| 1 | 0.508          | 1.293 | 0.135 | 30.256         | 38.846 | 35.651         | 30.256 | 0.475      |
| 2 | 0.475          | 1.385 | 0.172 | 33.089         | 49.572 | 34.452         | 33.089 | 0.469      |
| 3 | 0.469          | 1.400 | 0.178 | 33.550         | 51.310 | 34.262         | 33.550 | 0.469      |
| 4 | 0.469          | 1.403 | 0.179 | 33.626         | 51.595 | 34.231         | 33.626 | 0.468      |

 $t_d - CA = 0.468$  in.

 $t_d = 0.531$  in.

# K.2.5.3 Hydrotest Condition

 $t_L = 0.767$  in. (calculated hydrostatic thickness of lower shell course)

#### K.2.5.4 Trials

starting  $rt_u = 2.6D(H-1)/S_t = 0.558$  in.

|   | t <sub>u</sub> | K     | С     | x <sub>1</sub> | x2     | x3     | Х       | t <sub>t</sub> |
|---|----------------|-------|-------|----------------|--------|--------|---------|----------------|
|   | in.            |       |       | in.            | in.    | in.    | in.     | in.            |
| 1 | 0.558          | 1.375 | 0.168 | 34.186         | 48.461 | 37.358 | 34.1864 | 0.513          |
| 2 | 0.513          | 1.495 | 0.214 | 37.637         | 61.641 | 35.825 | 35.825  | 0.510          |
| 3 | 0.510          | 1.505 | 0.218 | 37.905         | 62.659 | 35.709 | 35.7092 | 0.510          |
| 4 | 0.510          | 1.504 | 0.217 | 37.886         | 62.586 | 35.717 | 35.7174 | 0.510          |

 $t_t = 0.510$  in.

 $t_{\min} = 0.531$  in.

 $t_{\rm use} = 0.531$  in.

# K.2.6 SHELL COURSE 4

#### 09 K.2.6.1 Design Condition

 $D = 280 \, \text{ft}$ 

Material A36

 $S_d = 23,200 \text{ psi}$ 

$$S_t = 24,900 \text{ psi}$$

$$CA = 0$$
 in.

G = 0.85

 $H = 16 \, \text{ft}$ 

r = 1680 in.

$$C = (K^{0.5}(K-1))/(1+K^{1.5})$$

$$K = t_L/t_u$$

$$\mathbf{x}_1 = 0.61(rt_u)^{0.5} + 3.84CH$$

$$x_2 = 12CH$$

 $x_3 = 1.22 \times (rt_u)^{0.5}$ 

 $t_L = 0.468$  in. ( $t_d$  of lower shell course less CA)

### K.2.6.2 Trials

|   | t <sub>u</sub> | K     | С     | $\mathbf{x}_1$ | x2     | x3     | х      | $t_d - CA$ |
|---|----------------|-------|-------|----------------|--------|--------|--------|------------|
|   | in.            |       |       | in.            | in.    | in.    | in.    | in.        |
| 1 | 0.400          | 1.171 | 0.082 | 20.827         | 15.665 | 31.629 | 15.665 | 0.392      |
| 2 | 0.392          | 1.195 | 0.093 | 21.339         | 17.769 | 31.306 | 17.769 | 0.387      |
| 3 | 0.387          | 1.210 | 0.099 | 21.640         | 19.001 | 31.118 | 19.001 | 0.385      |
| 4 | 0.385          | 1.218 | 0.103 | 21.818         | 19.732 | 31.008 | 19.732 | 0.383      |

starting  $t_{\mu} = 2.6D(H-1)G/S_d = 0.400$  in.

 $t_d - CA = 0.383$  in.

 $t_d = 0.383$  in.

#### K.2.6.3 Hydrotest Condition

 $t_L = 0.510$  in. (calculated hydrostatic thickness of lower shell course)

#### K.2.6.4 Trials

starting  $t_u = 2.6 D (H - 1) / S_t = 0.439$  in.

|   | $t_{u}$ | K       | С     | $\mathbf{x}_1$ | x <sub>2</sub> | x <sub>3</sub> | х      | $t_t$ |
|---|---------|---------|-------|----------------|----------------|----------------|--------|-------|
|   | in.     |         |       | in.            | in.            | in.            | in.    | in.   |
| 1 | 0.439   | 1.1633  | 0.078 | 21.357         | 14.999         | 33.115         | 14.999 | 0.431 |
| 2 | 0.431   | 1.18301 | 0.087 | 21.767         | 16.713         | 32.838         | 16.713 | 0.427 |
| 3 | 0.427   | 1.19458 | 0.092 | 22.007         | 17.710         | 32.679         | 17.710 | 0.425 |
| 4 | 0.425   | 1.20142 | 0.095 | 22.147         | 18.295         | 32.586         | 18.295 | 0.423 |

 $t_t = 0.423$  in.

 $t_{\min} = 0.423 \text{ in.}$ 

 $t_{\rm use} = 0.4375$  in.

Note:  $t_{use} > t_{use \min}$ , however, it is controlled by hydrotest, therefore,  $t_{1d}$  remains at 0.383 for subsequent calculations

# K.2.7 SHELL COURSE 5

#### K.2.7.1 Design Condition

 $D = 280 \, \text{ft}$ 

Material A36

- $S_d = 23,200 \text{ psi}$
- $S_t = 24,900 \text{ psi}$
- CA = 0 in.

G = 0.85

H = 8 ft

- r = -1680 in.
- $C = (K^{0.5}(K-1))/(1+K^{1.5})$

 $K = t_L / t_u$ x<sub>1</sub> = 0.61(rt<sub>u</sub>)<sup>0.5</sup> + 3.84CH x<sub>2</sub> = 12CH

 $x_3 = 1.22 \times (rt_u)^{0.5}$ 

 $t_L = 0.383$  in. ( $t_d$  of lower shell course less CA)

# K.2.7.2 Trials

starting  $t_u = 2.6D(H-1)G/S_d = 0.187$  in.

|   | t <sub>u</sub> | K     | С     | <b>x</b> <sub>1</sub> | x <sub>2</sub> | x <sub>3</sub> | х      | $t_d - CA$ |
|---|----------------|-------|-------|-----------------------|----------------|----------------|--------|------------|
|   | in.            |       |       | in.                   | in.            | in.            | in.    | in.        |
| 1 | 0.187          | 2.051 | 0.382 | 22.546                | 36.695         | 21.607         | 21.607 | 0.165      |
| 2 | 0.165          | 2.316 | 0.443 | 23.762                | 42.486         | 20.334         | 20.334 | 0.168      |
| 3 | 0.168          | 2.277 | 0.434 | 23.596                | 41.696         | 20.507         | 20.507 | 0.168      |
| 4 | 0.168          | 2.282 | 0.435 | 23.619                | 41.803         | 20.484         | 20.484 | 0.168      |

09

 $t_d - CA = 0.168$  in.

 $t_d = 0.168$  in.

#### K.2.7.3 Hydrotest Condition

 $t_L = 0.423$  in. (calculated hydrostatic thickness of lower shell course)

#### K.2.7.4 Trials

starting  $t_u = 2.6D(H-1)/S_t = 0.205$  in.

|   | $t_u$ | K       | С     | $\mathbf{x}_1$ | x <sub>2</sub> | <b>x</b> 3 | х       | $t_t$ |
|---|-------|---------|-------|----------------|----------------|------------|---------|-------|
|   | in.   |         |       | in.            | in.            | in.        | in.     | in.   |
| 1 | 0.205 | 2.06791 | 0.386 | 23.1831        | 37.10029       | 22.622     | 22.6219 | 0.179 |
| 2 | 0.179 | 2.36726 | 0.453 | 24.4925        | 43.50275       | 21.143     | 21.1433 | 0.182 |
| 3 | 0.182 | 2.3205  | 0.444 | 24.3042        | 42.58296       | 21.355     | 21.3553 | 0.182 |
| 4 | 0.182 | 2.32709 | 0.445 | 24.3311        | 42.71425       | 21.325     | 21.325  | 0.182 |

 $t_t = 0.182$  in.

 $t_{\text{usemin}} = 0.182 \text{ in.}$ 

 $t_{\rm use} = 0.375$  in.

Note: Minimum nominal thickness is <sup>3</sup>/8 in.

K-8

# K.2.8 SHELL DESIGN SUMMARY

| 1 5    |          | 0      |        |                |                |                         |                  |      |
|--------|----------|--------|--------|----------------|----------------|-------------------------|------------------|------|
| Course | Material | Sd     | St     | t <sub>d</sub> | t <sub>t</sub> | <i>t</i> <sub>min</sub> | t <sub>use</sub> |      |
| Course | Material | in.    | in.    | in.            | in.            | in.                     | in.              |      |
| 1      | A573-70  | 28,000 | 30,000 | 1.000          | 0.914          | 1.000                   | 1.000            | - 09 |
| 2      | A573-70  | 28,000 | 30,000 | 0.782          | 0.767          | 0.782                   | 0.813            |      |
| 3      | A573-70  | 28,000 | 30,000 | 0.531          | 0.510          | 0.531                   | 0.531            |      |
| 4      | A36      | 23,200 | 23,200 | 0.383          | 0.423          | 0.423                   | 0.438            |      |
| 5      | A36      | 23,200 | 23,200 | 0.168          | 0.182          | 0.182                   | 0.375            |      |
|        |          |        |        |                |                |                         |                  |      |

As required by W.1.5 to be listed on drawings.

(Sample calculated shell-plate thicknesses for various tank sizes and allowable stresses are given in Tables K-1a through K-3b.) 08

| ank Des.       | Tank<br>Diameter | Weight<br>of Shell _ |       |       | She   | ell Plate Thicknes | Shell Plate Thickness for Course, mm |         |       |           |                                |  |  |  |  |
|----------------|------------------|----------------------|-------|-------|-------|--------------------|--------------------------------------|---------|-------|-----------|--------------------------------|--|--|--|--|
| Liq. Lvl.<br>m | m                | Mg                   | 1     | 2     | 3     | 4                  | 5                                    | 6       | 7     | 8         | – Tank Volum<br>m <sup>3</sup> |  |  |  |  |
| 12             | 60               | 233                  | 21.40 | 16.18 | 11.96 | 8.00               | 8.00                                 |         |       |           | 33,900                         |  |  |  |  |
|                | 65               | 282                  | 22.99 | 17.42 | 12.90 | 10.00              | 10.00                                | _       |       | _         | 39,800                         |  |  |  |  |
|                | 75               | 363                  | 26.09 | 20.95 | 14.58 | 10.00              | 10.00                                |         |       |           | 53,000                         |  |  |  |  |
|                | 80               | 408                  | 27.59 | 22.97 | 15.39 | 10.02              | 10.00                                |         | _     |           | 60,300                         |  |  |  |  |
|                | 85               | 457                  | 29.06 | 24.95 | 16.21 | 10.59              | 10.00                                |         | -     | Matanaa   | 68,100                         |  |  |  |  |
|                | 90               | 510                  | 30.51 | 26.88 | 17.01 | 11.16              | 10.00                                | <u></u> |       |           | 76,300                         |  |  |  |  |
|                | 100              | 621                  | 33.31 | 30.59 | 18.57 | 12.28              | 10.00                                |         |       |           | 94,200                         |  |  |  |  |
|                | 105              | 680                  | 34.66 | 32.40 | 19.32 | 12.84              | 10.00                                |         |       |           | 103,900                        |  |  |  |  |
|                | 110              | 741                  | 35.99 | 34.21 | 20.06 | 13.39              | 10.00                                |         |       |           | 114,000                        |  |  |  |  |
|                | 115              | 804                  | 37.29 | 35.94 | 20.78 | 13.93              | 10.00                                |         |       | *******   | 124,600                        |  |  |  |  |
| 14.4           | 55               | 276                  | 23.90 | 18.85 | 14.99 | 11.06              | 8.00                                 | 8.00    |       |           | 34,200                         |  |  |  |  |
|                | 60               | 322                  | 25.90 | 20.43 | 16.29 | 11.96              | 8.00                                 | 8.00    | _     | Productor | 40,700                         |  |  |  |  |
|                | 65               | 388                  | 27.85 | 22.54 | 17.49 | 12.89              | 10.00                                | 10.00   |       |           | 47,800                         |  |  |  |  |
|                | 75               | 505                  | 31.65 | 27.47 | 19.76 | 14.78              | 10.00                                | 10.00   | _     |           | 63,600                         |  |  |  |  |
|                | 80               | 569                  | 33.50 | 29.85 | 20.92 | 15.71              | 10.00                                | 10.00   |       | _         | 72,400                         |  |  |  |  |
|                | 85               | 638                  | 35.32 | 32.17 | 22.05 | 16.63              | 10.53                                | 10.00   |       |           | 81,700                         |  |  |  |  |
|                | 90               | 711                  | 37.11 | 34.44 | 23.17 | 17.54              | 11.08                                | 10.00   | _     |           | 91,600                         |  |  |  |  |
| 16.8           | 50               | 306                  | 25.42 | 20.83 | 17.30 | 13.69              | 10.15                                | 8.00    | 8.00  |           | 33,000                         |  |  |  |  |
|                | 55               | 364                  | 27.97 | 22.77 | 18.98 | 14.96              | 11.06                                | 8.00    | 8.00  | _         | 39,900                         |  |  |  |  |
|                | 60               | 428                  | 30.42 | 25.25 | 20.54 | 16.27              | 11.96                                | 8.00    | 8.00  |           | 47,500                         |  |  |  |  |
|                | 65               | 514                  | 32.73 | 28.17 | 22.02 | 17.59              | 12.89                                | 10.00   | 10.00 |           | 55,700                         |  |  |  |  |
|                | 75               | 671                  | 37.24 | 33.81 | 25.01 | 20.17              | 14.72                                | 10.00   | 10.00 |           | 74,200                         |  |  |  |  |
|                | 77               | 705                  | 38.12 | 34.91 | 25.60 | 20.69              | 15.09                                | 10.00   | 10.00 | —         | 78,200                         |  |  |  |  |
| 19.2           | 50               | 390                  | 29.12 | 24.42 | 20.95 | 17.28              | 13.69                                | 10.15   | 8.00  | 8.00      | 37,700                         |  |  |  |  |
|                | 55               | 466                  | 32.03 | 27.03 | 22.92 | 18.95              | 14.98                                | 11.06   | 8.00  | 8.00      | 45,600                         |  |  |  |  |
|                | 60               | 551                  | 34.95 | 30.39 | 24.75 | 20.63              | 16.27                                | 11.96   | 8.00  | 8.00      | 54,300                         |  |  |  |  |
|                | 62.5             | 610                  | 36.29 | 32.04 | 25.66 | 21.47              | 16.91                                | 12.41   | 10.00 | 10.00     | 58,900                         |  |  |  |  |

# Table K-1a—(SI) Shell-Plate Thicknesses Based on the Variable-Design-Point Method (See 5.6.4) Using 2400-mm Courses and an Allowable Stress of 159 MPa for the Test Condition

08

API STANDARD 650

K-10

| fank Des.        | Tank<br>Diameter | Weight<br>of Shell _ |       |       | She   | ell Plate Thickne | s for Course, in. |                 |          |        | Nominal<br>- Tank Volum |     |
|------------------|------------------|----------------------|-------|-------|-------|-------------------|-------------------|-----------------|----------|--------|-------------------------|-----|
| Liq. Lvl.<br>ft) | ft               |                      | tons  | 1     | 2     | 3                 | 4                 | 5               | 6        | 7      | 8                       | bbl |
| 40               | 200              | 272                  | 0.871 | 0.659 | 0.487 | 0.317             | 0.313             |                 |          | _      | 224,000                 |     |
|                  | 220              | 333                  | 0.949 | 0.720 | 0.533 | 0.375             | 0.375             | autoral facetor |          |        | 271,000                 |     |
|                  | 240              | 389                  | 1.025 | 0.807 | 0.574 | 0.375             | 0.375             |                 |          |        | 322,500                 |     |
|                  | 260              | 453                  | 1.099 | 0.907 | 0.613 | 0.398             | 0.375             |                 |          |        | 378,500                 |     |
|                  | 280              | 522                  | 1.171 | 1.004 | 0.653 | 0.427             | 0.375             |                 |          |        | 439,000                 |     |
|                  | 300              | 594                  | 1.241 | 1.098 | 0.692 | 0.454             | 0.375             |                 |          |        | 504,000                 |     |
|                  | 320              | 671                  | 1.310 | 1.189 | 0.730 | 0.482             | 0.375             |                 | ******** |        | 573,400                 |     |
|                  | 340              | 751                  | 1.377 | 1.277 | 0.768 | 0.509             | 0.375             |                 |          |        | 647,300                 |     |
|                  | 360              | 835                  | 1.433 | 1.362 | 0.804 | 0.536             | 0.375             |                 |          |        | 725,700                 |     |
|                  | 380              | 923                  | 1.506 | 1.448 | 0.840 | 0.562             | 0.375             |                 | —        | —      | 808,600                 |     |
| 48               | 180              | 312                  | 0.956 | 0.755 | 0.600 | 0.443             | 0.313             | 0.313           | ANDERSON | _      | 217,700                 |     |
|                  | 200              | 376                  | 1.055 | 0.832 | 0.664 | 0.487             | 0.317             | 0.313           | _        |        | 268,800                 |     |
|                  | 220              | 463                  | 1.150 | 0.943 | 0.721 | 0.533             | 0.375             | 0.375           |          | _      | 325,200                 |     |
|                  | 240              | 543                  | 1.243 | 1.063 | 0.776 | 0.579             | 0.375             | 0.375           | —        | _      | 387,000                 |     |
|                  | 260              | 633                  | 1.334 | 1.181 | 0.833 | 0.625             | 0.397             | 0.375           |          |        | 454,200                 |     |
|                  | 280              | 729                  | 1.423 | 1.295 | 0.889 | 0.669             | 0.424             | 0.375           | _        |        | 526,800                 |     |
|                  | 298              | 821                  | 1.502 | 1.394 | 0.938 | 0.710             | 0.448             | 0.375           |          |        | 596,700                 |     |
| 56               | 160              | 333                  | 0.995 | 0.817 | 0.678 | 0.537             | 0.398             | 0.313           | 0.313    |        | 200,700                 |     |
|                  | 180              | 412                  | 1.119 | 0.912 | 0.760 | 0.599             | 0.443             | 0.313           | 0.313    |        | 254,000                 |     |
|                  | 200              | 502                  | 1.239 | 1.033 | 0.836 | 0.663             | 0.487             | 0.317           | 0.313    |        | 313,600                 |     |
|                  | 220              | 615                  | 1.351 | 1.175 | 0.908 | 0.727             | 0.532             | 0.375           | 0.375    | ****** | 379,400                 |     |
|                  | 240              | 723                  | 1.462 | 1.313 | 0.982 | 0.790             | 0.577             | 0.375           | 0.375    |        | 451,500                 |     |
|                  | 247              | 764                  | 1.500 | 1.361 | 1.007 | 0.812             | 0.592             | 0.379           | 0.375    |        | 478,300                 |     |
| 64               | 160              | 423                  | 1.139 | 0.957 | 0.820 | 0.677             | 0.537             | 0.398           | 0.313    | 0.313  | 229,300                 |     |
|                  | 180              | 527                  | 1.282 | 1.078 | 0.918 | 0.758             | 0.599             | 0.443           | 0.313    | 0.313  | 290,300                 |     |
|                  | 200              | 646                  | 1.423 | 1.242 | 1.007 | 0.841             | 0.662             | 0.487           | 0.317    | 0.313  | 358,400                 |     |
|                  | 212              | 735                  | 1.502 | 1.338 | 1.061 | 0.890             | 0.700             | 0.514           | 0.375    | 0.375  | 402,600                 |     |

# Table K-1b—(USC) Shell-Plate Thicknesses Based on the Variable-Design-Point Method (See 5.6.4) Using 96-in. Courses and an Allowable Stress of 23,000 lbf/in.<sup>2</sup> for the Test Condition

WELDED STEEL TANKS FOR OIL STORAGE

| fank Des. | Tank<br>Diameter | Weight<br>of Shell _ |       |       | Sh    | ell Plate Thicknes | s for Course, mm |       |       |          | Nominal<br>Tank Volume        |
|-----------|------------------|----------------------|-------|-------|-------|--------------------|------------------|-------|-------|----------|-------------------------------|
| m         | m                | Mg                   | 1     | 2     | 3     | 4                  | 5                | 6     | 7     | 8        | Tank Volume<br>m <sup>3</sup> |
| 12        | 75               | 298                  | 20.26 | 15.36 | 11.38 | 10.00              | 10.00            |       |       |          | 53,000                        |
|           | 80               | 332                  | 21.45 | 16.48 | 12.06 | 10.00              | 10.00            |       |       |          | 60,300                        |
|           | 85               | 369                  | 22.63 | 18.07 | 12.65 | 10.00              | 10.00            | _     |       |          | 68,100                        |
|           | 90               | 409                  | 23.78 | 19.63 | 13.27 | 10.00              | 10.00            |       | —     | _        | 76,300                        |
|           | 100              | 493                  | 26.03 | 22.64 | 14.51 | 10.00              | 10.00            |       | —     | —        | 94,200                        |
|           | 105              | 537                  | 27.12 | 24.10 | 15.12 | 10.00              | 10.00            | _     |       |          | 103,900                       |
|           | 110              | 585                  | 28.20 | 25.52 | 15.72 | 10.37              | 10.00            | —     | _     | 10000000 | 114,000                       |
|           | 115              | 636                  | 29.25 | 26.92 | 16.31 | 10.79              | 10.00            |       | —     | —        | 124,600                       |
|           | 120              | 688                  | 30.29 | 28.30 | 16.88 | 11.22              | 10.00            |       | —     | _        | 135,700                       |
| 14.4      | 65               | 316                  | 21.55 | 16.99 | 13.52 | 10.00              | 10.00            | 10.00 |       |          | 47,800                        |
|           | 75               | 406                  | 24.54 | 19.96 | 15.41 | 11.37              | 10.00            | 10.00 |       |          | 63,600                        |
|           | 80               | 456                  | 26.01 | 21.86 | 16.27 | 12.09              | 10.00            | 10.00 |       |          | 72,400                        |
|           | 85               | 509                  | 27.45 | 23.73 | 17.14 | 12.81              | 10.00            | 10.00 |       |          | 81,700                        |
|           | 90               | 565                  | 28.87 | 25.55 | 18.02 | 13.52              | 10.00            | 10.00 |       |          | 91,600                        |
|           | 100              | 684                  | 31.64 | 29.10 | 19.76 | 14.92              | 10.00            | 10.00 | _     | —        | 113,100                       |
|           | 105              | 747                  | 33.00 | 30.81 | 20.61 | 15.62              | 10.00            | 10.00 |       |          | 124,700                       |
|           | 110              | 814                  | 34.33 | 32.49 | 21.44 | 16.31              | 10.28            | 10.00 |       |          | 136,800                       |
|           | 115              | 885                  | 35.65 | 34.18 | 22.26 | 17.01              | 10.68            | 10.00 |       |          | 149,600                       |
|           | 120              | 958                  | 36.94 | 35.83 | 23.08 | 17.73              | 11.08            | 10.00 | —     | —        | 162,900                       |
| 16.8      | 60               | 341                  | 23.32 | 19.05 | 15.85 | 12.51              | 9.27             | 8.00  | 8.00  |          | 47,500                        |
|           | 65               | 410                  | 25.27 | 20.53 | 17.13 | 13.50              | 10.00            | 10.00 | 10.00 |          | 55,700                        |
|           | 75               | 533                  | 28.84 | 24.92 | 19.40 | 15.51              | 11.36            | 10.00 | 10.00 | <u> </u> | 74,200                        |
|           | 80               | 601                  | 30.58 | 27.09 | 20.53 | 16.50              | 12.07            | 10.00 | 10.00 |          | 84,400                        |
|           | 85               | 672                  | 32.29 | 29.23 | 21.68 | 17.48              | 12.76            | 10.00 | 10.00 | —        | 95,300                        |
|           | 90               | 747                  | 33.98 | 31.33 | 22.82 | 18.46              | 13.46            | 10.00 | 10.00 |          | 106,900                       |
|           | 100              | 907                  | 37.29 | 35.41 | 25.05 | 20.42              | 14.82            | 10.00 | 10.00 |          | 131,900                       |
|           | 105              | 992                  | 38.91 | 37.39 | 26.14 | 21.46              | 15.48            | 10.00 | 10.00 |          | 145,500                       |
|           | 110              | 1083                 | 40.51 | 39.36 | 27.23 | 22.64              | 16.11            | 10.30 | 10.00 |          | 159,700                       |
|           | 115              | 1179                 | 42.08 | 41.28 | 28.33 | 23.79              | 16.74            | 10.72 | 10.00 |          | 174,500                       |
|           | 120              | 1278                 | 43.63 | 43.14 | 29.44 | 24.94              | 17.36            | 11.14 | 10.00 | -        | 190,000                       |
| 19.2      | 60               | 433                  | 26.71 | 22.34 | 19.19 | 15.83              | 12.52            | 9.27  | 8.00  | 8.00     | 54,300                        |
|           | 65               | 520                  | 28.94 | 24.70 | 20.63 | 17.11              | 13.51            | 10.00 | 10.00 | 10.00    | 63,700                        |
|           | 75               | 679                  | 33.16 | 29.77 | 23.42 | 19.67              | 15.47            | 11.36 | 10.00 | 10.00    | 84,800                        |
|           | 80               | 766                  | 35.17 | 32.22 | 24.85 | 20.93              | 16.45            | 12.06 | 10.00 | 10.00    | 96,500                        |
|           | 85               | 858                  | 37.15 | 34.64 | 26.25 | 22.18              | 17.41            | 12.77 | 10.00 | 10.00    | 109,000                       |
|           | 90               | 955                  | 39.12 | 37.01 | 27.65 | 23.44              | 18.36            | 13.46 | 10.00 | 10.00    | 122,100                       |
|           | 100              | 1163                 | 42.96 | 41.63 | 30.38 | 26.27              | 20.19            | 14.85 | 10.00 | 10.00    | 150,800                       |
|           | 101              | 1185                 | 43.34 | 42.08 | 30.65 | 26.56              | 20.37            | 14.98 | 10.00 | 10.00    | 153,800                       |

# TableK-2a—(SI)Shell-Plate Thicknesses Based on the Variable-Design-Point Method (See 5.6.4)Using 2400-mm Courses and an Allowable Stress of 208 MPa for the Test Condition

K-12

| lank Des. | Tank           | Weight<br>of Shell _ |       |       | SI     | nell Plate Thickne | ss for Course, in. |       |       |         | Nominal<br>Tank Volume |
|-----------|----------------|----------------------|-------|-------|--------|--------------------|--------------------|-------|-------|---------|------------------------|
| ft        | Diameter<br>ft | tons                 | 1     | 2     | 3      | 4                  | 5                  | 6     | 7     | 8       | bbl                    |
| 40        | 240            | 320                  | 0.798 | 0.603 | 0.447  | 0.375              | 0.375              |       |       |         | 322,500                |
|           | 260            | 365                  | 0.856 | 0.651 | 0.482  | 0.375              | 0.375              |       |       |         | 378,500                |
|           | 280            | 417                  | 0.914 | 0.729 | 0.511  | 0.375              | 0.375              |       | —     | _       | 439,000                |
|           | 300            | 472                  | 0.971 | 0.806 | 0.541  | 0.375              | 0.375              |       |       |         | 504,000                |
|           | 320            | 530                  | 1.026 | 0.880 | 0.572  | 0.375              | 0.375              |       |       |         | 573,400                |
|           | 340            | 594                  | 1.08  | 0.952 | 0.602  | 0.395              | 0.375              |       |       |         | 647,300                |
|           | 360            | 661                  | 1.133 | 1.022 | 0.632  | 0.416              | 0.375              |       |       |         | 725,700                |
|           | 380            | 731                  | 1.185 | 1.090 | 0.660  | 0.437              | 0.375              |       |       |         | 800,600                |
|           | 400            | 803                  | 1.235 | 1.156 | 0.689  | 0.458              | 0.375              | —     | —     | —       | 896,000                |
| 48        | 220            | 374                  | 0.892 | 0.704 | 0.561  | 0.412              | 0.375              | 0.375 |       | _       | 325,200                |
|           | 240            | 436                  | 0.966 | 0.773 | 0.608  | 0.446              | 0.375              | 0.375 |       |         | 387,000                |
|           | 260            | 505                  | 1.038 | 0.866 | 0.650  | 0.482              | 0.375              | 0.375 |       |         | 454,200                |
|           | 280            | 579                  | 1.109 | 0.958 | 0.692  | 0.517              | 0.375              | 0.375 | _     |         | 526,800                |
|           | 300            | 656                  | 1.178 | 1.047 | 0.736  | 0.552              | 0.375              | 0.375 |       |         | 604,800                |
|           | 320            | 739                  | 1.247 | 1.135 | 0.778  | 0.587              | 0.375              | 0.375 | —     |         | 688,100                |
|           | 340            | 827                  | 1.314 | 1.220 | 0.820  | 0.621              | 0.392              | 0.375 |       |         | 776,800                |
|           | 360            | 921                  | 1.379 | 1.302 | 0.862  | 0.655              | 0.412              | 0.375 |       |         | 870,900                |
|           | 380            | 1019                 | 1.444 | 1.383 | 0.902  | 0.688              | 0.433              | 0.375 | —     |         | 970,300                |
|           | 400            | 1121                 | 1.507 | 1.462 | 0.942  | 0.721              | 0.452              | 0.375 |       |         | 1,075,200              |
| 56        | 200            | 400                  | 0.953 | 0.778 | 0.648  | 0.511              | 0.378              | 0.313 | 0.313 |         | 313,600                |
|           | 220            | 490                  | 1.048 | 0.858 | 0.709  | 0.560              | 0.412              | 0.375 | 0.375 |         | 379,400                |
|           | 240            | 575                  | 1.135 | 0.968 | 0.764  | 0.609              | 0.446              | 0.375 | 0.375 |         | 451,500                |
|           | 260            | 668                  | 1.220 | 1.075 | 0.819  | 0.658              | 0.481              | 0.375 | 0.375 |         | 529,900                |
|           | 280            | 766                  | 1.305 | 1.180 | 0.876  | 0.706              | 0.515              | 0.375 | 0.375 |         | 614,600                |
|           | 300            | 871                  | 1.387 | 1.283 | 0.932  | 0.754              | 0.549              | 0.375 | 0.375 |         | 705,600                |
|           | 320            | 981                  | 1.469 | 1.383 | 0.987  | 0.801              | 0.583              | 0.375 | 0.375 |         | 802,800                |
|           | 340            | 1100                 | 1.549 | 1.481 | 1.041  | 0.849              | 0.616              | 0.393 | 0.375 | —       | 906,300                |
|           | 360            | 1225                 | 1.627 | 1.577 | 1.094  | 0.895              | 0.649              | 0.413 | 0.375 | MARCOOK | 1,016,000              |
|           | 380            | 1358                 | 1.705 | 1.671 | 1.148  | 0.951              | 0.679              | 0.434 | 0.375 |         | 1,132,000              |
|           | 392            | 1441                 | 1.750 | 1.726 | 1.180  | 0.986              | 0.698              | 0.446 | 0.375 | —       | 1,204,700              |
| 64        | 200            | 508                  | 1.092 | 0.913 | 10.784 | 0.647              | 120.511            | 0.378 | 0.313 | 0.313   | 358,400                |
|           | 220            | 623                  | 1.201 | 1.034 | 0.853  | 0.710              | 0.560              | 0.412 | 0.375 | 0.375   | 433,600                |
|           | 240            | 734                  | 1.304 | 1.159 | 0.922  | 0.772              | 0.608              | 0.447 | 0.375 | 0.375   | 516,000                |
|           | 260            | 853                  | 1.403 | 1.280 | 0.992  | 0.834              | 0.655              | 0.481 | 0.375 | 0.375   | 605,600                |
|           | 280            | 981                  | 1.501 | 1.399 | 1.061  | 0.896              | 0.703              | 0.516 | 0.375 | 0.375   | 702,400                |
|           | 300            | 1116                 | 1.597 | 1.515 | 1.129  | 0.957              | 0.749              | 0.550 | 0.375 | 0.375   | 806,400                |
|           | 320            | 1259                 | 1.692 | 1.629 | 1.196  | 1.017              | 0.796              | 0.584 | 0.375 | 0.375   | 917,500                |
|           | 332            | 1350                 | 1.748 | 1.696 | 1.236  | 1.059              | 0.822              | 0.604 | 0.384 | 0.375   | 987,600                |

#### Table K-2b—(USC) Shell-Plate Thicknesses Based on the Variable-Design-Point Method (See 5.6.4) Using 96-in. Courses and an Allowable Stress of 30,000 lbf/in.<sup>2</sup> for the Test Condition

K-13

| Fank Des.      | Tank          | Weight           |                    |       | Sh    | ell Plate Thicknes | s for Course, mm |       |       |       | Nominal<br>Tank Volume        |
|----------------|---------------|------------------|--------------------|-------|-------|--------------------|------------------|-------|-------|-------|-------------------------------|
| Liq. Lvl.<br>m | Diameter<br>m | of Shell –<br>Mg | 1                  | 2     | 3     | 4                  | 5                | 6     | 7     | 8     | Tank Volume<br>m <sup>3</sup> |
| 14.4           | 65            | 293              | 19.03              | 15.04 | 11.95 | 10.00              | 10.00            | 10.00 |       |       | 47,800                        |
|                | 75            | 368              | 21.76              | 17.19 | 13.70 | 10.05              | 10.00            | 10.00 | —     |       | 63,600                        |
|                | 80            | 413              | 23.07              | 18.78 | 14.48 | 10.69              | 10.00            | 10.00 |       |       | 72,400                        |
|                | 85            | 460              | 24.36              | 20.45 | 15.24 | 11.33              | 10.00            | 10.00 | -     |       | 81,700                        |
|                | 90            | 510              | 25.63              | 22.10 | 16.00 | 11.96              | 10.00            | 10.00 |       | _     | 91,600                        |
|                | 100           | 617              | 28.12              | 25.30 | 17.56 | 13.21              | 10.00            | 10.00 | —     |       | 113,100                       |
|                | 105           | 674              | 29.34              | 26.85 | 18.32 | 13.82              | 10.00            | 10.00 |       |       | 124,700                       |
|                | 110           | 733              | 30.54              | 28.37 | 19.07 | 14.44              | 10.00            | 10.00 |       | _     | 136,800                       |
|                | 115           | 794              | 31.73              | 29.87 | 19.81 | 15.05              | 10.00            | 10.00 |       |       | 149,600                       |
|                | 120           | 856              | 32.89              | 31.34 | 20.54 | 15.66              | 10.00            | 10.00 |       |       | 162,900                       |
| 16.8           | 60            | 308              | 20.56              | 16.86 | 14.00 | 11.08              | 8.21             | 8.00  | 8.00  |       | 47,500                        |
|                | 65            | 376              | 22.27              | 18.17 | 15.13 | 11.93              | 10.00            | 10.00 | 10.00 |       | 55,700                        |
|                | 75            | 480              | 25.56              | 21.48 | 17.24 | 13.70              | 10.05            | 10.00 | 10.00 |       | 74,200                        |
|                | 80            | 541              | 27.11              | 23.43 | 18.23 | 14.58              | 10.67            | 10.00 | 10.00 |       | 84,400                        |
|                | 85            | 604              | 28.64              | 25.35 | 19.23 | 15.45              | 11.29            | 10.00 | 10.00 |       | 95,300                        |
|                | 90            | 671              | 30.15              | 27.24 | 20.25 | 16.32              | 11.91            | 10.00 | 10.00 | _     | 106,900                       |
|                | 100           | 815              | 33.12              | 30.92 | 22.24 | 18.04              | 13.12            | 10.00 | 10.00 |       | 131,900                       |
|                | 105           | 891              | 34.57              | 32.70 | 23.22 | 18.90              | 13.72            | 10.00 | 10.00 |       | 145,500                       |
|                | 110           | 970              | 36.01              | 34.46 | 24.19 | 19.77              | 14.31            | 10.00 | 10.00 | _     | 159,700                       |
|                | 115           | 1053             | 37.42              | 36.19 | 25.15 | 20.80              | 14.87            | 10.00 | 10.00 |       | 174,500                       |
|                | 120           | 1139             | 38.82              | 37.92 | 26.11 | 21.83              | 15.43            | 10.00 | 10.00 | _     | 190,000                       |
| 19.2           | 60            | 389              | 23.54              | 19.76 | 16.94 | 13.98              | 11.08            | 8.21  | 8.00  | 8.00  | 54,300                        |
|                | 65            | 471              | 25.51              | 21.32 | 18.31 | 15.10              | 11.94            | 10.00 | 10.00 | 10.00 | 63,700                        |
|                | 75            | 609              | 29.37              | 25.79 | 20.78 | 17.37              | 13.67            | 10.05 | 10.00 | 10.00 | 84,800                        |
|                | 80            | 687              | 31.17              | 27.99 | 22.02 | 18.49              | 14.53            | 10.68 | 10.00 | 10.00 | 96,500                        |
|                | 85            | 769              | 32.94              | 30.16 | 23.27 | 19.60              | 15.39            | 11.30 | 10.00 | 10.00 | 109,000                       |
|                | 90            | 855              | 34.69              | 32.29 | 24.51 | 20.70              | 16.24            | 11.92 | 10.00 | 10.00 | 122,100                       |
|                | 100           | 1041             | 38.13              | 36.45 | 26.96 | 22.99              | 17.90            | 13.15 | 10.00 | 10.00 | 150,800                       |
|                | 105           | 1140             | 39.82              | 38.47 | 28.16 | 24.27              | 18.70            | 13.76 | 10.00 | 10.00 | 166,300                       |
|                | 110           | 1243             | 41.49              | 40.47 | 29.34 | 25.57              | 19.49            | 14.36 | 10.00 | 10.00 | 182,5000                      |
|                | 115           | 1351             | 43.14              | 42.45 | 30.55 | 26.85              | 20.27            | 14.97 | 10.00 | 10.00 | 199,400                       |
|                | 117           | 1395             | 43.80 <sup>a</sup> | 43.22 | 31.03 | 27.36              | 20.59            | 15.21 | 10.00 | 10.00 | 206,400                       |

# Table K-3a—(SI) Shell-Plate Thicknesses Based on the Variable-Design-Point Method (See 5.6.4)Using 2400-mm Courses and an Allowable Stress of 236 MPa for the Test Condition

<sup>a</sup> Exceeds maximum allowed material thickness.

08

API STANDARD 650

K-14

| Tank Des.       | Tank<br>Diameter | Weight<br>of Shell - |                    |       | S     | Shell Plate Thickn | ess for Course, in. |       |       |       | Nominal<br>- Tank Volume |
|-----------------|------------------|----------------------|--------------------|-------|-------|--------------------|---------------------|-------|-------|-------|--------------------------|
| Liq. Lvl.<br>ft | ft               | ft tons              | 1                  | 2     | 3     | 4                  | 5                   | 6     | 7     | 8     | bbl                      |
| 48              | 220              | 341                  | 0.784              | 0.619 | 0.492 | 0.375              | 0.375               | 0.375 |       |       | 325,200                  |
|                 | 240              | 394                  | 0.850              | 0.670 | 0.534 | 0.393              | 0.375               | 0.375 |       |       | 387,000                  |
|                 | 260              | 453                  | 0.914              | 0.736 | 0.574 | 0.423              | 0.375               | 0.375 | —     |       | 454,200                  |
|                 | 280              | 519                  | 0.977              | 0.818 | 0.611 | 0.454              | 0.375               | 0.375 |       |       | 526,800                  |
|                 | 300              | 588                  | 1.039              | 0.898 | 0.649 | 0.485              | 0.375               | 0.375 |       |       | 604,800                  |
|                 | 320              | 662                  | 1.100              | 0.977 | 0.687 | 0.515              | 0.375               | 0.375 |       |       | 688,100                  |
|                 | 340              | 738                  | 1.160              | 1.053 | 0.724 | 0.545              | 0.375               | 0.375 |       |       | 776,800                  |
|                 | 360              | 819                  | 1.218              | 1.127 | 0.761 | 0.575              | 0.375               | 0.375 | _     |       | 870,900                  |
|                 | 380              | 904                  | 1.276              | 1.200 | 0.797 | 0.605              | 0.381               | 0.375 |       | _     | 970,300                  |
|                 | 400              | 994                  | 1.333              | 1.271 | 0.832 | 0.634              | 0.399               | 0.375 |       |       | 1,075,200                |
| 56              | 200              | 358                  | 0.834              | 0.684 | 0.568 | 0.449              | 0.333               | 0.313 | 0.313 | _     | 313,600                  |
|                 | 220              | 441                  | 0.917              | 0.747 | 0.623 | 0.491              | 0.375               | 0.375 | 0.375 |       | 379,400                  |
|                 | 240              | 514                  | 0.998              | 0.825 | 0.674 | 0.534              | 0.393               | 0.375 | 0.375 |       | 451,500                  |
| )               | 260              | 596                  | 1.074              | 0.921 | 0.723 | 0.577              | 0.422               | 0.375 | 0.375 |       | 529,900                  |
|                 | 280              | 684                  | 1.149              | 1.015 | 0.771 | 0.620              | 0.453               | 0.375 | 0.375 |       | 614,600                  |
|                 | 300              | 777                  | 1.222              | 1.107 | 0.821 | 0.662              | 0.483               | 0.375 | 0.375 |       | 705,600                  |
|                 | 320              | 875                  | 1.295              | 1.197 | 0.869 | 0.703              | 0.512               | 0.375 | 0.375 |       | 802,800                  |
|                 | 340              | 978                  | 1.366              | 1.284 | 0.918 | 0.745              | 0.542               | 0.375 | 0.375 |       | 906,300                  |
|                 | 360              | 1086                 | 1.436              | 1.370 | 0.965 | 0.786              | 0.571               | 0.375 | 0.375 |       | 1,016,000                |
|                 | 380              | 1200                 | 1.505              | 1.454 | 1.012 | 0.827              | 0.600               | 0.382 | 0.375 |       | 1,132,000                |
|                 | 400              | 1322                 | 1.573              | 1.536 | 1.058 | 0.873              | 0.627               | 0.400 | 0.375 | —     | 1,254,400                |
| 64              | 200              | 453                  | 0.955              | 0.801 | 0.687 | 0.567              | 0.449               | 0.333 | 0.313 | 0.313 | 358,400                  |
|                 | 220              | 556                  | 1.051              | 0.884 | 0.752 | 0.622              | 0.491               | 0.375 | 0.375 | 0.375 | 433,600                  |
|                 | 240              | 653                  | 1.146              | 0.994 | 0.812 | 0.677              | 0.533               | 0.393 | 0.375 | 0.375 | 516,000                  |
|                 | 260              | 759                  | 1.235              | 1.102 | 0.872 | 0.731              | 0.575               | 0.423 | 0.375 | 0.375 | 605,600                  |
|                 | 280              | 872                  | 1.321              | 1.208 | 0.933 | 0.786              | 0.617               | 0.453 | 0.375 | 0.375 | 702,400                  |
|                 | 300              | 992                  | 1.406              | 1.311 | 0.994 | 0.839              | 0.658               | 0.483 | 0.375 | 0.375 | 806,400                  |
|                 | 320              | 1119                 | 1.490              | 1.413 | 1.053 | 0.893              | 0.699               | 0.513 | 0.375 | 0.375 | 917,500                  |
|                 | 340              | 1252                 | 1.573              | 1.512 | 1.112 | 0.946              | 0.740               | 0.543 | 0.375 | 0.375 | 1,035,700                |
|                 | 360              | 1394                 | 1.655              | 1.610 | 1.170 | 1.007              | 0.779               | 0.572 | 0.375 | 0.375 | 1,161,200                |
|                 | 380              | 1543                 | 1.735              | 1.705 | 1.228 | 1.071              | 0.817               | 0.601 | 0.382 | 0.375 | 1,293,800                |
|                 | 384              | 1574                 | 1.751 <sup>a</sup> | 1.724 | 1.240 | 1.083              | 0.824               | 0.607 | 0.385 | 0.375 | 1,321,200                |

#### Table K-3b—(USC) Shell-Plate Thicknesses Based on the Variable-Design-Point Method (See 5.6.4) Using 96-in, Courses and an Allowable Stress of 34.300 lbf/in.<sup>2</sup> for the Test Condition

<sup>a</sup> Exceeds maximum allowed material thickness.

# APPENDIX L—API STD 650 STORAGE TANK DATA SHEET

Note: The Data Sheets contained in this appendix can be purchased by contacting Publications@api.org.

## L.1 Introduction

#### L.1.1 PURPOSE

This appendix provides guidance to Purchasers (owners, engineering contractors, and other designated agents) and Manufacturers (fabricators and erectors) for the preparation and completion of the *Atmospheric Storage Tank Data Sheet* (hereafter referred to as the **Data Sheet**). The Data Sheet shall be prepared in conjunction with this Standard such that comprehensive proposals (bids) may be made and subsequent contracts may be placed for the fabrication and erection of tanks.

#### L.1.2 SCOPE

This appendix explains information to be placed on the Data Sheet primarily by Purchasers for use by Manufacturers. However, some of the instructions apply to either the Purchaser or the Manufacturer, depending on which party assumes certain responsibilities.

## L.2 Use of This Appendix

## • L.2.1 DATA SHEET PURPOSE

The Data Sheet (attached to this appendix) shall be part of a complete tank specification. The Data Sheet provides space for defining specific technical information such as geometry, design loads, materials, and appurtenances, as well as an outline sketch of the tank. The Data Sheet may be used as part of the Owner's permanent record describing the tank. Because some information on the Data Sheet may be determined by the Manufacturer, the Data Sheet may also be used to facilitate gathering of the complete design requirements. The floating roof section of the Data Sheet may be omitted if no floating roof is required for the tank.

#### L.2.2 PURCHASER'S RESPONSIBILITY

The preparer(s) of the Data Sheet shall have tank design experience and shall ensure that the requirements are both accurate and complete. The Purchaser is primarily responsible for initiating and completing the Data Sheet.

#### L.2.3 MANUFACTURER'S RESPONSIBILITY

The Manufacturer shall complete the Data Sheet as required to describe the proposal and shall provide the relevant information required on all lines marked with an asterisk (\*) that have not been provided by the Purchaser. The Data Sheet shall be submitted at various times during the project as described in W.1.2(2).

#### L.2.4 TEXT LEGIBILITY

All text placed on the Data Sheet shall be of size and quality to be readable and reproducible. Use additional sheets or extend the form electronically for more space or necessary additions.

#### L.3 Specific Instructions

#### L.3.1 LINE-BY-LINE INSTRUCTIONS

Each place for data entry (numbered lines, boxes, table cells, etc.) on the Data Sheet shall be completed. In no case should a line be left blank. Marking "NA" (not applicable), "Later," "TBD" (to be determined), or other such terminology can be used. The "Later" and "TBD" notations shall be edited to reflect subsequent decisions and as-built configurations (see W.1.2).

Use consistent units for all dimensions and other data on the Data Sheet. Show appropriate units for every appropriate numerical entry.

The following numbered items correspond to the numbered lines and numbered tables on the Data Sheet:

#### • Heading:

Data Sheet Status: Typical entries include: For Quotation, Bid, For Design Review, For Design Revision, and As-Built. Revise to suit the status when submitted by the Purchaser or by the Manufacturer.

- General:
  - Special Documentation Package Requirements: List any exceptions to the default requirements listed in Appendix W.
  - Measurement Units to be used in API Std 650: Identify the set of units to be used when applying the rules in API Std 650.
- 1. Tank Manufacturer
  - Manufacturer's name.\*
  - Contract number\*: Enter proposed or assigned number.
  - Address\*: Enter physical address, not a post office box.
  - Manufacturer's serial number for tank.\*
  - Year built.\*
  - Edition and Addendum of API Std 650 used for design and fabrication.\*
- 2. Purchaser

#### - Purchaser's name.

- Contract number or designation.
- Address: Enter physical address, not a post office box.
- Tank designation: For example, item number, equipment tag number, or other description.
- 3. Owner/Operator

- Owner/operator name.
- Location of facility where tank will be operated.
- 4. Tank Dimensions
  - Size Limitations\*: Specify size limitations only when exact dimensions are to be determined by the Manufacturer (e.g., maximum and minimum diameters, shell heights, overall heights, etc.).
  - Tank Diameter\*: Specify diameter and indicate ID, OD, or CL/BSC (centerline diameter of bottom shell course).
  - Shell Height\*: Specify the distance from the top surface of the bottom plate or annular ring to the upper edge of the cylindrical shell including top angle, if any.
  - Maximum Capacity\* and Net Working Capacity\*:
  - Criteria\*: Method used to determine capacity of tank: An example would be API RP 2350.
- Froducts Stored
  - Liquid: Specify liquid(s) to be stored in the tank.
  - Maximum Specific Gravity: Enter specific gravity of the stored liquid(s) at designated temperatures. Use greatest value
    of all products when tanks are to be designed for multiple products.
  - Blanketing Gas: Specify blanketing gas in the space above the liquid.
  - Vapor Pressure: Specify absolute vapor pressure at the maximum operating temperature. Use the largest value for tanks designed for multiple products.
  - % Aromatic: Specify percentage by weight of aromatic hydrocarbons in tank. Refer to any supplemental specification for protecting the materials of construction, as applicable.
  - Hydrogen Sulfide Service? (Yes/No): If "Yes," a supplemental specification for material selection and hardness shall be required. See 5.3.4.
  - Other Special Service Conditions: Include any conditions that may require further consideration. Consider thermal expansion or shock, cyclic vibratory fatigue, and issues or regulations concerning the product stored, e.g., chloride, caustic, amine, or ethanol corrosion, hydrogen blistering or embrittlement, oleum, sulfuric acid, or ammonia service, RCRA (Resource Conservation and Recovery Act), HON (Hazardous Organic National Emission Standard for Hazardous Air Pollutants), RMP (Clean Air Act Risk Management Plan), etc. Provide supplemental specifications as needed. See 5.3.3.

#### Design and Testing

Purchaser to Review Design Prior to Ordering Materials: Indicate if the Manufacturer is free to order materials prior to Purchaser reviewing the design documents. Schedule may be affected. See W.1.3.

6. Applicable Appendices\*: See 1.1.6. Appendix E may be selected on Line 8 of the Data Sheet. If no appendices are chosen, 07 the basic design of this Standard is intended.

- 7. Design Parameters
  - Maximum Design Temperature: See 3.13 for definition. This differs from the operating temperature. For temperature limits, see 1.1.1, and Appendices M and S. If the roof design temperature is different than the shell temperature, as in the case of an uninsulated roof on an insulated shell, then use Line 23 to specify the roof maximum design temperature.
  - Design Metal Temperature\*: Enter either lowest 1-day mean temperature plus 8°C (15°F) or a lower temperature as specified by the Purchaser if operating conditions and/or local atmospheric conditions control fracture toughness issues.
  - Design Liquid Level\*: See 5.6.3.2, C.3.1.1, and E.2.2.
  - Design Pressure: Specify pressure and units in the vapor space.
  - External Pressure: See 5.2.5.
  - Pressure Combination Factor: This factor is a modifier for the design internal pressure when used in load combinations with other variable loads. Value equals normal operating pressure/design internal pressure or a minimum of 0.4. Manufacturer to use 0.4 when not specified.
  - Maximum Fill Rate: Specify rate and units (e.g., 100 gallons per minute).
  - Maximum Emptying Rate: Specify rate and units (e.g., 75 gallons per minute).
  - Flotation Considerations (Yes/No): Include design consideration that advise the Manufacturer about tank flotation anchorage, bottom uplift, and partial submersion pressures arising out of flood or dike impoundment.
  - Flotation Supplemental Specifications\*: Refer to any that may describe external liquid depth, external fluid specific gravity, minimum internal liquid level, and any other information necessary for design.
  - Section 5.2.4 makes the design criteria here a matter of agreement between the Purchaser and the Manufacturer.
  - Applied Supplemental Load Specification: Refer to supplemental specifications that provide concentrated loads applied to the shell, such as openings or appurtenances from attached equipment, valves, or piping, or reactions from stairs and platforms for determination of strength and stiffness issues by the Manufacturer. If this information is not provided, the requirements of W.2(5) still apply.
- 8. Seismic Design Data
  - Seismic Design? (Yes/No): Indicate whether design for earthquakes is required. The Purchaser may specify Appendix E, or an alternate criterion.
  - Appendix E: Mark the box provided if this appendix shall be used for seismic design.
  - Alternate Seismic Criteria: Refer to any supplemental criteria different from this Standard that shall be followed. All required design factors shall be included in this supplemental specification.
  - Seismic Use Group: See E.3.1.
  - Site Class: See Table E.4-B.
  - Vertical Seismic Design: Indicate if this design is required.
  - Vertical Ground Motion Accelerator: Provide per E.6.1.3.
  - Basis of Lateral Acceleration: Select one of the three methods listed, and specify the appropriate parameters. See E.4.
  - Freeboard: For SUG I designs, indicate if freeboard is required. See E.7.2.
  - Roof Tie Rods @ Outer Ring?\* (Yes/No): See E.7.5
- 9. Design Wind Issues
  - Top Wind Girder Style\*: See 5.9, and Figure 5-24, for open-top and external floating roofs.
  - Dimensions of Top Wind Girder\*: For example, if style were "Curb Angle," the dimension might be  $3 \times 3 \times 3/8$  (in.).
  - Use Top Wind Girder as Walkway? (Yes/No): See 5.9, and Figure 5-25, and note 3 ft-6 in. dimension preference of 5.9.4 if choice is "Yes."
  - Intermediate Wind Girders\* (Yes/No): Specify "Yes" whenever wind girders shall be added to the shell to satisfy shell stability stiffening predicated by wind loads. Specify "No" if shell stiffening is to be accomplished by increasing the shell thickness. If not specified by the Purchaser, the Manufacturer must select between the two alternatives and indicate the choice here.
  - Intermediate Wind Girder Style\*: See 5.9 and Figure 5-24, for all kinds of tanks whenever wind girders are specified.

07

- Dimensions of Intermediate Wind Girders\*: For example, if style were "formed plate," dimension might be b = 30 in. per Figure 5-24.
- Check Buckling in Corroded Condition? (Yes/No): If "Yes," the wind load shall be applied to the corroded shell (an option covered in 5.9.7.1) to establish the adequacy of the thicknesses and/or stiffening rings to resist the applied forces.

#### 10. Shell Design

- 1-Foot Method?\* (Yes/No): The Purchaser may select this shell thickness design method. The method is subject to the applicable limitations noted in 5.6.3, A.4, J.3.3, and S.3.2. If not selected by the Purchaser, the Manufacturer may select either this design method or one of the other two methods that this Standard lists, subject to the restrictions of this Standard and the Purchaser's approval.
- Variable-Design-Point Method?\* (Yes/No/Alternate): The Purchaser may select this shell thickness design method. This method is subject to the restrictions detailed in 5.6.4. If the 1-Foot Method or Elastic Analysis Method is selected by the Purchaser and the Variable-Design-Point Method is also selected as an "Alternate" by the Purchaser, the Variable-Point Design Method may be used in addition to the Purchaser-selected method, but the resulting proposal must be clearly marked as an "Alternate." If the method is not selected by the Purchaser, the Manufacturer may select either this design method or one of the other two methods that this Standard lists, subject to the restrictions of this Standard and the Purchaser's approval.
- Elastic Analysis Method?\* (Yes/No/Alternate): The Purchaser may select this shell thickness design method. This method is subject to the restrictions detailed in 5.6.5. Cases when this method is mandatory are named in 5.6.5 as well as requirements on the analysis boundary conditions. When it is not mandatory, the Purchaser may select this shell design method. If the 1-Foot or Variable-Design-Point Method is selected by the Purchaser and the Elastic Analysis Method is also selected as an "Alternate" by the Purchaser, the Elastic Analysis Method may be used in addition to the Purchaser-selected method, but the resulting proposal must be clearly marked as an "Alternate." If the method is not selected by the Purchaser, the Manufacturer may select either this design method or one of the other two methods that this Standard lists, subject to the restrictions of this Standard and the Purchaser's approval.
- Plate-Stacking Criteria\* Centerline-Stacked? (Yes/No) or Flush-Stacked on the Inside or Outside? (Yes/No)?:
- Plate Widths (Shell Course Heights) and Thicknesses\*: Specify nominal shell course heights and thicknesses. The first course is attached to the bottom.
- Joint Efficiency\*: Specify in percentage. Applicable only to Appendices A, J, and S designs. Mark "NA" for all other designs.
- Shell-to-Bottom Weld Type\*: See Figure 5-3A (inside and outside corner fillets), Figure 5-3C (inside and outside partial penetration corner welds with fillet weld reinforcement), and J.3.2.4 (full penetration butt weld to flanged flat bottom).
- Shell-to-Bottom Weld Inspection Method\*: Choose among the options listed in accordance with 7.2.4.

#### 11. Open-Top and Fixed-Roof Data (see page 6 of the Data Sheet for Floating Roofs)

Open Top?\* (Yes/No) Specify "Yes" if tank has no fixed roof or has an external floating roof. Specify "No" for all other tanks.

Note: The remaining entries in this line apply to fixed roofs ONLY:

- Fixed Roof Type\*: Enter description, such as supported cone with internal structure, supported cone with external structure, structurally-supported aluminum geodesic dome, self-supporting cone, self-supporting dome, self-supporting umbrella, flanged only flat top, or other. See 5.10.1 or Appendix G.
- Roof Support Columns\*: Specify pipe or structural shape. If structural shape is specified, indicate the kind (e.g., wide flange, back-to-back channel, etc.).

Commentary: Pipe-type roof columns are preferred for internal floating roof tanks. In many cases the openings are  $^{3}/_{4}$  NPT threaded couplings that allow the user to plug the openings when the tank is in service, to minimize corrosion of the supports and reduce emission from the tank. The openings are needed to allow the free drainage and cleaning of the columns when the tank is out of service.

- Cone Slope\*: Specify rise to run as a dimensionless ratio, e.g., "3/4:12".
- Dome or Umbrella Radius\*: See 5.10.6 for self-supporting approximate spherical radius of roof.

L-4

- Weld Joints\*: Describe the type of roof plate weld joint, which may be lap joint, butt joint, or some combination thereof.

Note: Appendix F, Section F.7 roofs shall conform to API Std 620.

- Seal Weld Underside of Lap Joints? (Yes/No): May be required for roof plates with internal lining or to prevent crevice corrosion.
- Seal Weld Underside of Wind Girder Joints? (Yes/No): See 5.1.5.8.
- Gas-tight? (Yes/No): See 7.3.7.
- Joint Efficiency\*: Use only for Appendix F, Section F.7 roofs. See API Std 620, Table 3-2.
- Thickness\*: Provide nominal thickness of roof plates.
- Snow-Load\*: Purchaser to provide the snow load for non-U.S. Sites. For non-US sites, the Manufacturer should indicate the 50-year ground snow load selected. See 5.2.1e. For instructions on combining loads, see 5.10.2.1.
- Applied Supplemental Loads Specification\*: Indicate supplementary specifications for both dead and live roof loads that are concentrated or have local distributions (e.g., the personnel loads of 5.8.6.2 and H.4.2.2). Specify any reactions from platforms or walking surfaces as well as loads applied by equipment, valves, and piping.
- Column Lateral Load: Purchaser may optionally specify lateral loads imposed upon roof-supporting columns in accordance with 5.10.2.9.
- Venting Devices\*? Enter type and quantity of devices for normal venting per API Std 2000, and pressure settings. Also, enter type(s) and quantity of emergency venting devices that meet either API Std 2000, circulation venting per Appendix H, or a frangible roof design per 5.10.2.6 as applicable. The frangibility of tanks less than 50 ft in diameter may require additional design considerations beyond those required by this Standard.
- For Non-Frangible Roofs:
  - Seal Weld Roof Plates to Top Angle on the Inside? (Yes/No): When "Yes" is selected, the shell-to-roof-joint shall be seal-welded on the inside. For certain designs, this may adversely affect frangibility.
  - Weld Rafters to Roof Plates? (Yes/No):
- Roof-to-Shell Detail\*: See Figures 5-3A and F-3, J.3.5, and API Std 620, Figure 3-6.
- Radial Projection of Horizontal Component to Top Angle\*: Specify inward or outward projection.
- 12. Required Bottom Data
  - Thickness\*: Enter nominal thickness, including corrosion allowance.
  - Style\*: Enter one of the following: flat, cone up to center, cone down to center, side to side (tilted plane), cone down to offcenter. Enter all sump requirements (number, size, location, etc.) in Data Sheet (Table 3, Line 23, or on the Tank Plan).
  - Slope\*: Enter rise versus run. For the off-center style above, the slope specified is the maximum slope.
  - Weld Joint Type\*: Enter one of the following: single-welded full-fillet lap joint, single-welded butt with backing strip that remains in place, double-welded butt without backing strip, double-welded full-fillet lap joints, or other, to be detailed on Data Sheet Line 23 if necessary.
  - Provide Drip Ring (Yes/No): If required, a drip ring shall be provided per 3.4.5. Unless the following Alternate Specification is provided, the default drip ring shall be provided.
  - Alternate Specification: Refer to an acceptable drip ring design specification if the Purchaser requires a drip ring but declines the default design of 5.4.5.
  - Annular Ring\* (Yes/No): The Purchaser may stipulate this type of detail even if not required by this Standard. A Purchaser's choice of "No" does not relieve the Manufacturer from complying with the requirements of this Standard in this regard.
  - Annular Ring Minimum Radial Width\* and Thickness\*: Specify width and thickness.
- 13. Foundation Information
  - Furnished by\*: Indicate Purchaser, Manufacturer, or others.
  - Type\*: Indicate materials and form. See Appendices B and I (e.g., concrete ring-wall or steel wide flange grillage on concrete pile cap).
  - Soil Allowable Bearing Pressure\*: Estimate pressure from geotechnical report, experience with similar tanks in the same area, etc.
  - Per Specification\*: Refer to any specification that describes soil allowable bearing pressure.
  - Anchor Size\*: See 5.3.1.1 and 5.12. Provide materials of construction, geometric forms, and corrosion allowance for anchors in Table 2 of the Data Sheet.

- Anchor Quantity\*: Indicate the total number of anchors or anchor bolts to be provided.
- Foundation Design Loads: See W.3(15). These loads are unfactored after the manner of the Allowable Stress Design methodology. (Sign convention is as follows: positive acting downward, negative acting upward.)
  - Base Shear\*: Indicate the values for the wind and seismic conditions in units of force.
  - Overturning Moment\*: Indicate in units of force-distance. See 5.11 for wind, and Appendix E, or alternate seismic criteria as specified on Line 8 of the Data Sheet, for seismic criteria.
  - Ring Forces\*: Indicate loads delivered by the shell in units of force per circumference of shell.

Note: The uniformly distributed loads are shell plus roof weight (both new and corroded), roof live load, internal pressure, and partial vacuum.

Note: The non-uniform loads are the peak magnitudes of the longitudinal compressive distributed force derived from the wind and seismic-overturning moments without regard to any other compressive or tensile loads in the shell.

- Bottom Forces\*: Indicate support loads that are the uniformly applied forces to the bottom away from the shell ring in units of force per unit area. These include weight of bottom plates, product and test liquid weights, and pressure/vacuum loads. Mark all inapplicable entities as "NA."
- Other Foundation Loads\*: Provide an attachment to describe these loads such as lateral soil pressure, overburden, roof column reactions, pore pressure, uplift anchor forces, etc.
- Minimum Projection of Foundation Above Grade: Specify the minimum required projection of the foundation above grade, if any.
- 14. Pressure Test (See 7.3.5)
  - Responsibility for Heating Test Water, if Required: Select one.
  - Hydro-Test Fill Height\*: See 7.3.5, F.4.4, and F.7.6.
  - Settlement Measurements (Yes/No): Purchaser may waive the measurement of foundation settlement during the hydrotest in accordance with 7.3.6.5.
  - Extended Duration of Hydro-Test: Provide the number of hours or days if the tank is to be kept full of water for an extended period.
  - Predicted Settlement Profile is Attached: Check if the Purchaser elects to inform the Manufacturer of relevant settlement predictions.
  - Responsibility for Setting Water Quality: Specify party responsible for setting water quality standards. Refer to supplemental specifications as required. For guidance, see 7.3.6.3.
  - Test Water Source and Disposal Tie-In Locations: Provide the location of the supply and disposal points for hydro-test water that the Manufacturer shall use.
  - Test Requirements for Appendix J Tanks: Hydrostatic Testing (Yes/No): If "No" is selected, the Purchaser must specify the required Alternative Test from J.4.2.2.
  - Penetrant Testing Allowed in lieu of Hydro-Testing: Check if there is no means of providing test water at the tank site, e.g., very remote tank sites. See 7.3.5.
  - Post-Pressure-Test Activities Required of the Manufacturer: Select the activities desired according to 7.3.6.2(4).
- 15. Optional Fabrication, Erection, Inspection, and Testing Requirements
  - Inspection by: Designate Purchaser's inspectors. See 7.3.1.1.
  - Supplemental NDE (Non Destructive Examination) Responsibility and Supplemental NDE Specifications: Specify NDE options (e.g., see 8.3.5) or indicate additional NDE options, such as weld hardness testing or additional radio-graphs. For possible additional responsibilities, see 7.3.2.3.
  - Positive Material Identification (Yes/No): Include criteria to be followed.
  - Maximum Permissible Plate Thickness for Shearing: Specify the thickest plate to be butt-welded that may be sheared in accordance with 6.1.2.
  - Must Welds not exceeding 6 mm (1/4 in.) or welds greater than 6 mm (1/4 in.) be Multi-Pass? (Yes/No): See 5.1.3.6
  - Leak Test Method\*: Describe leak tests for each component. For example, see 7.3.3, 7.3.4, 7.3.5, 7.3.7, C.3.6, and H.6.2.
  - Modify or Waive API Dimensional Tolerances (see 7.5)? (No/Yes/Specify): If the API tolerances are not adequate, specify the required tolerances here.
  - Specify Additional Tolerances, if any, and Circumferential and Vertical Measurement Locations: Indicate any supplemental tolerances for plumbness and roundness, giving the tolerance limit and the locations for the tolerance readings.

Note: If Additional Radial Tolerance measurements are specified, radial tolerances measured higher than 0.3 m (1 ft) above the shell-tobottom weld shall be three times the tolerances given in 7.5.3, unless specified otherwise by the Purchaser.

- 16. Coating Data
  - Internal Linings by: Describe responsible party or indicate "Not Req'd."
  - Per Specification\*: Refer to supplemental specifications to address the detailed coating/galvanizing requirements for items such as internal structural supports, inside surface of roof, bottom, piping flanges, stairs, platforms, ladders, underside of bottoms, and top surface of foundation. Ensure that all requirements address issues such as joint contour preparation (e.g., shell-to-bottom, sharp edges of laps, crevices, etc.) and reduced weld build-up or undercut. For guidance on internal bottom linings, see API RP 652.
  - External Coating by: Describe responsible party or indicate "Not Req'd."
  - Per Specification\*: Refer to any supplemental specification fully describing the process.
  - Under-Bottom Coating by: Describe responsible party or indicate "Not Req'd."
  - Per Specification\*: Refer to a supplemental specification fully describing the process.
- 17. Cathodic Protection
  - Cathodic Protection System? (Yes/No): See API RP 651 for guidance.
  - Per Specification\*: Describe requirements and responsible parties.
- 18. Leak Detection System
  - Leak Detection System? (Yes/No): Provide a passive leak detection system as described in Appendix I. Active elements may be specified; however, the system must also provide leak detection by passive means. If active leak detection schemes (e.g., volumetric inventory records, mass change, acoustic emissions sensing, and tracer element detection) are required, describe the requirements by means of a specification herein.
  - Per Specification\*: Describe requirements and responsible parties.
- 19. Release Prevention Barrier (See Appendix I, I.1.1, Note, for definition.)
  - Release Prevention Barrier? (Yes/No): Examples of barriers are vault floors, double bottoms, and impermeable membranes.
  - Per Specification\*: Describe requirements and responsible parties.
- 20. Tank Measurement System

trol stations.

- Required? (Yes/No): Examples are float gauge, differential pressure level indicator, level alarm, radar, and level gauge.
   Remote Capability Required? (Yes/No): Indicate whether level measurements are required to be relayed to remote con-
- By\*: Designate the provider of the measurement system.
- Per Specification\*: Refer to supplemental specification.
- 21. Tank Weights and Lifting Requirements
  - Full of Water\*: Indicate weight filled with water to design liquid level.
  - Empty\*: Indicate weight when empty. For specification of lift lugs, see Data Sheet, Line 28. For tanks that are to be lifted, rigging and handling instructions and temporary bracing may be required. Provide reference to a supplemental specification as required.
  - Shipping\*: Specify weight for Appendix J tanks only.
  - Brace/Lift Specification\*: Refer to any supplemental bracing/lifting specifications.
- 22. References: Include relevant documents.
- 23. Remarks: Use this for issues not adequately covered elsewhere. Include any alternate shell opening designs specified by the Purchaser in accordance with 5.7, with reference to the alternate criteria (e.g., API Std 620).

07

11

#### Table 1 Materials of Construction

List material specifications (e.g., CSA G40.21M-260W, ASTM A573-65, ISO 630 Gr E355-C, etc.), and supplied thickness of items in the left column only.

State corrosion allowance for each component. See 5.3.2. For internals, indicate if the corrosion allowance is to be applied to each exposed surface. Unless indicated otherwise, it applies to the total thickness specified. Show units of measure.

Any materials that either have received any heat treatment, such as normalizing, beyond the minimum heat-treating requirements of the material specification or have been qualified by impact tests shall be identified by reference to notes located under the "remarks" lines. The notes shall define the heat treatment received and/or the energy acceptance levels, test temperature, and specimen orientation for impact tests.

When thermal stress relief is applied to a part in accordance with the requirements of 5.7.4, the part shall be identified by a note under the "remarks" lines.

#### Table 2 Bolts and Anchors

Complete all bolting and anchorage information (see 4.7, 5.11.3, 5.12, E.6.2, E.7, F.7.4, and J.3.9), including head and nut shape and material specifications. Show units of measure for the corrosion allowance and see 5.3.2. Corrosion allowance may be marked "NA" for galvanized, special corrosion-resistant coated, or stainless steel anchor bolts.

#### • Table 3 Nozzle and Manhole Schedule\* (for Fixed Roof, Shell, and Bottom)

Include nozzles (e.g., both blanked and piped-to connections), equipment and instrument attachment and access openings, sumps, inspection ports, and manholes in the fixed roof, shell and bottom.

| Entry Field                                    | Comments                                                       | Representative Example                        |
|------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|
| Mark                                           | Purchaser's mark or designation                                | Nozzle "A-1" in shell                         |
| Service                                        | Stated service or purpose                                      | Product Out                                   |
| Size, NPS, or Diameter (In.)                   | Conventional size description of pipe and tube                 | NPS 24                                        |
| Neck Schedule or Wall Thickness                | Pipe schedule or wall thickness                                | Sch 40S                                       |
| Reinf. Plate Dimensions                        | Circular, Diamond, etc.                                        | 49.5" OD × 0.188"                             |
| Full Pen. On Open. (Y/N)                       | See 5.7.2.2                                                    | Yes                                           |
| Flange Type                                    | Fabricated, S.O., WN, LJ, etc.                                 | ASME B16.5 Lap Joint                          |
| Flange Class or Thickness                      | ASME, ANSI, API Std 650 Table                                  | CI 150                                        |
| Gasket Bearing Surface Dimension<br>and Finish | Dimension and finish of bearing surface in contact with gasket | 27.25" OD, 125-250 <i>R<sub>a</sub></i> μ-in. |
| Gasket Thickness and Dimension                 |                                                                | 0.125" × 24" ID × 28.25" OD                   |
| Gasket Material and Description                | Generic, Brand, ANSI Std, etc.                                 | Non-asbestos sheet, per Manufacturer          |
| Proj. to FF or CL or from Datum Lines          | See paragraph below                                            | 18" FF                                        |

The description of, and examples for, the information that may be specified in Table 3 is as follows:

ASME B16.47 flanges are not available in all sizes, materials, and flange types (see 5.7.6.1).

COMMENT: Lap joint nozzle flanges should be avoided in connections where the combined stresses (such as bending, cyclic, and seismic) in the nozzle where attached to the lap joint stub-end exceed the API 650 basic allowable stress at the maximum design temperature. Lap joint nozzle flanges should also be avoided in connections with vibration or when susceptible to environmental stress corrosion cracking.

Nozzle projections shall be measured from the outside of the shell to the face of the shell flange (FF) and from datum line to the face of the flange for roof and floor openings, unless otherwise specified. Shell opening elevations shall be from the datum line to the centerline of the opening, unless otherwise specified. Roof opening locations shall be measured radially from the centerline of the tank. Specify datum line and elevations with orientations on the "Tank Plans and Sketch" of the Data Sheet.

For fabricated flanges requiring ASME *Boiler and Pressure Vessel Code*, Section VIII, Division 1, UG-34 and Appendix 2 calculations, place the "m" and "y" values for the gasket in the "Remarks" section of the Data Sheet, Line 23. Clearly indicate to which gaskets these values apply.

07

11

Consider listing in Table 3, items such as:

- Water draw-offs.
- Thermowells (make, model, stem length).
- Suction trough (size, reference drawing).
- Couplings (number, size).
- Sump.
- Inspection hatches for observation of floating roofs (as specified on Line 34).

Some items require that supplemental information be supplied, such as reference drawings, model numbers, and other specifications. Provide any supplemental information on Line 23.

#### Other Tank Appurtenances:

- 24. Platform, Stairway and Railing: See 5.8.10 and C.3.14.6.
  - Galvanizing Required? (Yes/No)\*: Examples are stairways, platforms, and handrails to be galvanized. Identify components in Remarks, Line 23. See S.2.1.3.
  - Stairway Style\*: Specify whether straight along a radius or helical.
  - Walking Surface Type\*: Describe type of walking surface on platform and stairs (e.g., diamond-checkered pattern plate, bar and rod grating, expanded metal grating, etc.).
  - Stairway and Walkway Clear Width\*: See 5.9.4, Table 5-17, and Table 5-18.
  - National Safety Standards\*: Indicate all standards that shall be observed for ladders, stairs, walkways, platforms, and other architectural/structural items (e.g., OSHA 1910).
  - Architectural/Structural Specification\*: Provide details for alloys, shapes, fasteners, coating, etc.
  - Gauger's Platform Required? (Yes/No).
  - Quantity of Gauger's Platforms Required\*.
  - Per Specification\*: Refer to any supplemental specification, if gauger's platform specification differs from the architectural/structural reference specification above.
- 25. Jackets and Other Heaters or Coolers
  - Is a Jacket Required? (Yes/No)\*: If Yes, a supplemental specification may be required to address some or all of the following items:
    - Should the jacket be integral (utilize the shell as one boundary wall) or stand-alone (able to hold pressure when detached from shell).
    - How should the jacket be attached to the shell.? Specify whether welded, bolted, or otherwise attached.
    - What type of jacket is required? Consider annular cylinder, pipe coil, half-pipe helix, panel coil, or other types to be described.
  - Are Other Heaters or Coolers Required? (Yes/No)\*: If Yes, a supplemental specification may be required to address some or all of the following items:
    - Specify the type of heater or cooler. For example, internal coils, bayonet heat exchangers, or below bottom piping
    - Provide specifications for any other heaters or coolers.
    - Specify design pressures for jacket or heaters or coolers, both internal pressure and partial vacuum.
    - Specify design temperatures for jackets and heaters/coolers.
- 26. Mixer/Agitator
  - Quantity: Indicate number required.
  - Size\*:
  - Per Specification\*: Provide reference to supplemental specification.
- 27. Insulation Data
  - Required? (Yes/No):
  - Thickness\*: Indicate thickness of insulation in inches.
  - Note: If not uniform for entire tank shell and roof, defer to Purchaser-supplied supplemental insulation specification.
  - Material\*: Designate material and density of insulation.

- Per Specifications\*: Provide references to insulation and insulation support specifications.
- Responsibility for Insulation and Installation: Indicate Purchaser, Manufacturer, or others.

### • 28. Structural Attachments

- Lift Lugs for Maintenance or Installation?\* (Yes/No): Specify projection if insulation is required.
- Description\*: Describe the type of lifting lugs required.
- Shell Anchorage?\* (Yes/No): Wind or seismic loading may require anchorage. See 5.11, 5.12, and Appendices E and F.
- Type\*: Specify type of shell anchorage (e.g., chairs, lugs, sleeves, rings, straps, etc.).
- Scaffold Cable Supports? (Yes/No): Indicate if required. See Figure 5-22.
- 29. Various Other Items
  - Flush-Type Shell Connection and Flush-Type Cleanout Fitting: Mark the blocks indicating which type(s) is required. See Figures 5-12 and 5-14.
  - Waive Application of Appendix P: Indicate if the Manufacturer is required to analyze nozzle loads in accordance with Appendix P. It is not intended that this appendix necessarily be applied to piping connections similar in size and configuration to those on tanks of similar size and thickness for which satisfactory service experience is available. See Appendix P for limitations.
  - Enter miscellaneous items not found elsewhere on the Data Sheet.

## • Table 4 Other Tank Appurtenances Schedule\*:

- 07 Include all appurtenances not described elsewhere on the Data Sheet. Consider listing in Table 4 such items as the following:
  - Ladders
  - Overflow openings (number and size). See H.5.3.
  - Circulation vents (number and size). See H.5.2.2.
  - Pressure-vacuum relief valves (nominal size, model number, etc.).
  - Free vent/flame arrestor.
  - Grounding clips (quantity and style).

Some items require supplemental information, such as reference drawings, model numbers, and other specifications. Provide any supplemental information on Line 23.

#### • Floating Roof Data:

- 30. Floating Roof Selection
  - Design Basis: Check which API Appendix is to be applied?
  - Type of Roof\*: Specify the option listed in Appendix C or H. Only the Purchaser may specify "Other" and describe another option.
- 31. Seals
  - Primary Seal: Select from types listed, or specify "Other" and supply necessary details or reference specification. Foam seal material may absorb some products over time, becoming a potential safety issue. See C.3.13 and H.4.4.
  - Shoe Mechanism: Indicate mechanism required for mechanical primary seal. Select the Manufacturer's standard, or specify a particular type (e.g., pantograph, leaf spring, safety-pin spring, coil spring scissors, etc.).

- Electrically Isolate Mechanism from Shoes? (Yes/No): Indicate if required to insulate to prevent possible arcing.
- Wax Scrapers Required? (Yes/No): Such devices remove wax-like substances from the tank shell as the roof descends to provide a cleaner sealing surface.
- Nominal Shoe Thickness\*: Include units. See C.3.13 and H.4.4.4.
- Carbon Steel Shoes to be Galvanized? (Yes/No): This option cannot be selected for stainless steel shoes.
- Secondary Seal: Indicate the need for a secondary seal.
- Supplementary Specification: Refer to supplementary specification for secondary rim seal.
- 32. Data for All Floating Roofs:
  - Overflow Openings in Shell Acceptable? (Yes/No): See C.3.1.1.
  - Shell Extension? (Yes/No): Select a windskirt per C.3.1.1. If Yes is selected, this may affect capacity, design liquid level, and the need for an overflow indicator (alarm), requiring a Purchaser-supplied supplemental specification under Line 20. See API RP 2350.
  - Roof-Drain Check Valves Required? (Yes/No): See C.3.8.1.
  - Roof-Drain Isolation Valves Required? (Yes/No): See C.3.8.1.
  - Freeze Protection for Roof Drains Required? (Yes/No): See C.3.8.1. Freeze protection is not required in all climates.
  - Roof-Drain Piping to External Nozzles: Select the type of piping from the blocks provided. If "Other" is selected, provide description or reference supplemental specification. The number of roof drains required and sump details shall be shown on the construction drawings.
  - Foam Dam? (Yes/No): See C.3.15.2.
  - Supplementary Specification: Provide supplementary foam dam specification reference.
  - Nominal Deck Thickness\*: Specify a nominal deck thickness greater than that stated in C.3.3.2. If not specified, the Manufacturer shall insert the thickness stated in the above reference.
  - Bulkhead Top Edges to be Liquid-Tight? (Yes/No): See H.4.1.8. This is mandatory for external floating roofs but is a Purchaser's option for internal floating roofs.
  - Seal-Weld Underside of Roof?: Select "Yes" to provide increased corrosion protection or additional stiffness. This applies to seal welds in addition to the seal welding required in C.3.3.3 and H.4.3.5.
  - Electrical Bonding: Indicate if either shunts or cables will be used to bond the roof electrically to the shell, and provide a supplemental specification to designate any technical requirements.
  - Quantity of Non-Guide Pole Gauge Wells Required: See C.3.14.1(2), for manual gauging apparatus in wells not associated with a guide pole.
  - Quantity of Sample Hatches Required: See C.3.15.3 for sample hatches without gauging apparatus.
  - Guide Pole for Gauging? (Yes/No): Indicate whether the guide pole (anti-rotation device) shall be used for gauging.
  - Slots in Guide Pole? (Yes/No): Indicate whether guide pole, if used for gauging, shall be slotted.
  - Datum Plates? (Yes/No): Indicate if required. See C.3.14.4.
  - Striking Plates? (Yes/No): Indicate if required. See C.3.14.5.
  - Guide Pole Emissions-Limiting Devices: Indicate any required by regulation or any additional devices requested by the Purchaser for guide poles from the list provided. See C.3.14.1(1).
  - Quantity of Roof Manholes\*: See C.3.5, C.3.11, and H.5.5.

- Minimum Roof Clearances Above Bottom: Indicate elevations above the bottom to the landed floating roof for both the minimum operating level and the minimum maintenance level. These choices affect access and capacity. See C.3.10.3, H.4.6.2, and API RP 2350.
  - Removable Leg Storage Racks? (Yes/No): Indicate if required.
    - Leg Sleeves or Fixed Low Legs: Mark the block that specifies whether the leg-supported floating roof shall be provided with a sleeve through the roof plate or with fixed low legs.
- 33. Additional Data for External Floating Roofs (See Appendix C):
  - Weather Shield? (Yes/No): Indicate the need for a weather shield on external floating roofs. If secondary rim seals serve as weather shields, they shall not be additionally requested here.
  - Supplementary Specification: Provide references for weather shield specifications.
  - Rolling Ladder Required?\* (Yes/No): Unless the Purchaser specifically declines here, a rolling ladder is to be provided in accordance with C.3.7.
  - Must Each Leg be Field-Adjustable? (Yes/No): Indicate if required. If potential bottom settlement is an issue, the Purchaser has the option to require a two-position removable leg that can accommodate local adjustments that may differ for each leg. This option is for all floating roofs and is specifically discussed in C.3.10.3.
  - Design Rainfall Intensity: Specify a rainfall rate, a minimum period of duration, and an association with a statistically occurring storm such as that found in Technical Report No. 40 (e.g., 0.5 in. per hour for 5 minutes for the 2-year storm).
  - Design Accumulated 24-hour Rainfall: Specify height of water accumulated in 24 hours associated with a statistically occurring storm (e.g., 12 in. in 24 hours for the 100-year storm). See C.3.4 for minimum requirements.
  - Distortion and Stability Determinations Required? (Yes/No): List option per C.3.4.2.
  - Supplemental Specification: Document any established methodology chosen by agreement between the Purchaser and the Manufacturer.
  - Landed Live Load\*: See C.3.10.2. This space gives the Purchaser the option of specifying a larger live load for external floating roofs and for specifying the stated live load for internal floating roofs even if drains are provided that may normally negate the need for such live load design.
- 34. Additional Data for Internal Floating Roofs
  - Two-Position Legs Required? (Yes/No): See H.4.6.2. If the two positions shall be field-adaptable to account for bottom settlement, indicate this in Line 23 of the Data Sheet.
  - Cable-Supported Floating Roof? (Yes/No): Indicate if required. This is an internal floating roof option as found in H.4.6.5.
  - Fixed-Roof Inspection Hatches Required? (Yes/No): Indicate number required for evaluation of condition of floating roof without having to enter the vapor space. See H.5.5.3.
  - Internal Roof Drain Required? (Yes/No): See H.4.1.10
  - Omit Distribution Pads Supporting Uniform Live Loads? (Yes/No): See H.4.6.6
  - Corrosion Gauge Required? (Yes/No): See H.5.8.
  - Fixed Ladder Required? (Yes/No): This applies to vertical ladders attached to the shell, which will also require a manhole in the fixed roof to be specified in Table 3.
  - Modified Minimum Point Load? (Yes/No): Point or concentrated loads are stated in H.4.2.2 for internal floating roofs, but may be waived for tanks 9 m (30 ft) or smaller in diameter.

09

- Mfr. to Leak Test Compartments: Indicate the % of compartments to be tested by the Manufacturer and the location of the tests. If unknown prior to the Purchaser doing a field inspection, special contract terms may be required to cover the additional costs.
- Roof Erector's Flotation Test: Indicate when this test is to be performed: See H.6.5, H.6.6 for restrictions on these options.
- Flotation Test Media: Indicate the media to be used and the water quality. See H.6.6. Provide a separate specification, if required, to stipulate requirements.
- Flotation Test Duration, Fill Height,: See H.6.6.
- Flotation Test Items provided by Purchaser: List any items being supplied including those (gaskets, fasteners, test blanks, etc.) after the test is completed. See H.6.6.
- Responsible Party for Conducting Flotation Test and Inspecting Roof during Test: Purchaser can delegate these. See H.6.6.

#### Table 5 Floating Roof Materials

According to C.3.1.2, the application of corrosion allowances (C.A.) shall be a matter of agreement between the Purchaser and the Manufacturer. Document this agreement on the Data Sheet "Remarks" Line 23 (e.g., "Manufacturer affirms that the nominal thicknesses chosen for floating roof components include the corrosion allowances shown in the Table for Floating Roof Materials on page 7 of the Data Sheet").

#### L.3.2 TANK PLAN AND SKETCHES (PAGE 8 AND SUPPLEMENTS)

#### L.3.2.1 General

Page 8 of the Data Sheet shall be used to show the shell and roof appurtenance orientations. A single sheet is normally adequate for this purpose; however additional sheets may be necessary to show special details or configurations. All sheets shall be identified and sequenced as part of the Data Sheet. Sketches may be made with CAD or manual drafting. All sheets shall be identified by revision date or other means of record change.

Note: Consider the prevailing wind direction when locating equipment requiring personnel access.

#### L.3.2.2 Sketch Views

The sketch view shall include an orthographic "Plan View" that may be used for the orientation of shell, roof, and bottom openings. Other views may be added.

#### L.3.2.3 Drafting Practices for Data Sheet Sketches

Drafting practices shall be consistent with the following items:

- Where practicable, sketches shall be to scale, but the scale need not be shown on the sketches.
- Bottom views are not allowed.
- Plant north or geographic north arrow shall point upward on the sketch.
- Plant north or geographic north shall be at the "0 degrees" orientation, as applicable.
- Component thicknesses need not be shown on the sketch.
- Internal details shall be identified and located. Provide only enough information to describe the item, or provide reference to standard details. These items shall also be itemized in the appropriate tables in the Data Sheet.
- External appurtenances may be omitted from the sketch; however they must be itemized in the appropriate tables in the Data Sheet.
- Foundation or anchorage details not clearly defined elsewhere shall be shown in the Data Sheet. This may require that an "Elevation View" be provided.

|         | API                                                                | API Std 650 Storage Tank<br>Data Sheet                              | Data Sheet Status:<br>———————————————————————————————————— |
|---------|--------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|
| * For h | poxes marked with * if blank Mfr. s                                | hall determine and submit as per Appendix L. For all lines, see Ap  |                                                            |
|         |                                                                    |                                                                     |                                                            |
|         | ERAL Special Documentation Pac<br>surement Units to be used in APL | skage Requirements:<br>Std 650: SI 🔲 US Customary 🗋                 |                                                            |
|         |                                                                    |                                                                     |                                                            |
| 1.      |                                                                    | Contract No.*                                                       |                                                            |
|         | Address*                                                           |                                                                     |                                                            |
| 2.      |                                                                    | Year Built* Edition & Addendum to A                                 |                                                            |
| ۷.      |                                                                    | Contract No                                                         |                                                            |
|         |                                                                    |                                                                     |                                                            |
| 3.      |                                                                    | Location                                                            |                                                            |
| 4.      |                                                                    | Tank Diameter*                                                      |                                                            |
|         |                                                                    | Net Working* Criteria:*                                             |                                                            |
| 5.      | Products Stored:                                                   |                                                                     |                                                            |
|         | Liquid                                                             | Max. S.G.: at °                                                     |                                                            |
|         |                                                                    | Vapor Pressure PSIA                                                 | A at Max. Operating Temp.                                  |
|         | % Aromatic Suppl. Spe                                              | ec H_2S Service? Yes 🗆 No 🗔 S                                       | Suppl. Spec                                                |
|         |                                                                    | ns? Yes 🗌 No 🔲 Suppl. Specs                                         |                                                            |
|         |                                                                    |                                                                     |                                                            |
| DESI    |                                                                    | Purchaser to Review Design Prior to Orde                            |                                                            |
| 6.      | Applicable API Standard 650 A                                      | Appendices:* A □ B □ C □ F □ G □ H □ I □ J □ L □ M                  | ∧ □ o □ p □ s □ u □ v □ w □                                |
| 7.      | Max. Design. Temp°                                                 | Design Metal Temp.* Design Liquid Level*                            |                                                            |
|         | Maximum Fill Rate                                                  | ernal Pressure Pressure Combination Factor<br>Maximum Emptying Rate |                                                            |
|         | Flotation Considerations? Yes                                      | □ No □ Flot. Suppl. Spec:*Applied Suppler                           | mental Load Spec                                           |
| 8.      | Seismic Design?Yes 🗌 No 🗌                                          | Appendix E 🔲 Alternate Seismic Criteria                             | Seismic Use Group                                          |
|         | MBE Site Class Ver                                                 | tical Seismic Design? Yes 🗔 No 🗔 🛛 Vertical Ground Motion A         | Accelerator A <sub>v</sub> :                               |
|         | Basis of Lateral Acceleration (                                    | Select one):                                                        | So ; Site-Specific Procedures?: MCE                        |
|         |                                                                    | □; □ Other (Non-ASCE) Methods                                       | ,                                                          |
|         |                                                                    |                                                                     |                                                            |
| _       | •                                                                  | IG I Design Roof Tie Rods @ Outer Ring?* Yes 🗋 No 🗋                 |                                                            |
| 9.      | -                                                                  | s, 50-yr wind speed (3-sec Gust)*                                   |                                                            |
|         | Top Wind Girder Style*                                             | Dimensions* Use Top W                                               | vind Girder as Walkway? Yes 🗌 No 🔲                         |
|         | Intermediate Wind Girders?* Y                                      | es 🗆 No 🗔 Intermediate Wind Girder Style*                           | _ Dimensions*                                              |
|         | Check Buckling in Corroded Co                                      | ond.? Yes 🔲 No 🔲                                                    |                                                            |
| 10.     | Shell Design: 1-Ft Mthd?* Yes                                      | 🗅 No 🗔 ; Variable-Des-Pt Mthd?* Yes 🗔 No 🗔 Alternate 🗔 ; I          | Elastic Anal, Mthd?* Yes 🗋 No 🗋 Alternate [                |
|         |                                                                    |                                                                     |                                                            |
|         | 6                                                                  | terline-Stacked? Yes 🗋 No 🗋 Flush-Stacked? Yes 🗋 No                 |                                                            |
|         |                                                                    | neights) and Thicknesses * Numbers below Indicate Course Nur        |                                                            |
|         |                                                                    | 34                                                                  |                                                            |
|         |                                                                    | 89                                                                  |                                                            |
|         |                                                                    | 13 14                                                               |                                                            |
| A       | Joint Efficiency"9                                                 | 6 Shell-to-Bottom Weld Type* Shell-to-Bo                            | Title:                                                     |
| ADDro   |                                                                    |                                                                     | 1 · · · · · · ·                                            |
| Appro   |                                                                    |                                                                     | By: Ck'd: Date:                                            |

|         | API                                                                                                                                                                                      |                                                                                                      | 50 Storage Tank<br>ata Sheet                                                                         | Page 2 of 8                                                                                                                         |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| * If bo | x is blank, Manufacturer shall det                                                                                                                                                       | l<br>ermine and submit as p                                                                          | per Appendix L.                                                                                      |                                                                                                                                     |
| 11.     | Open-Top and Fixed Roofs: (See<br>Fixed Roof Type*<br>Cone Slope* Dome or                                                                                                                | Roof                                                                                                 |                                                                                                      | ctural Shape 🗆                                                                                                                      |
|         | Seal Weld Underside of: Lap-Join<br>Gas-tight? Yes 		No                                                                                                                                  | ts? Yes □ No □; Seal<br>īciency*%<br>osf Balanced Snow Load<br>Column Lateral Loa                    | Weld Underside of Wind Girder Join dpsf Unbalanced Snow I nd                                         | ts? Yes 🗆 No 🗔                                                                                                                      |
|         | For Non-Frangible Roofs: Seal W                                                                                                                                                          | eld Roof Plates to Top A                                                                             | -                                                                                                    | Weld rafters to Roof Plates Yes □ No □<br>nt of Top Angle* Inward □ Outward □                                                       |
| 12.     | Bottom: Thickness* S                                                                                                                                                                     | Style*<br>Alternate Spec                                                                             | Slope* Weld Joint Typ                                                                                | ē*                                                                                                                                  |
| 13.     | Foundation: Furnished by*<br>Soil Allow. Bearing Pressure*<br>Foundation Design Loads: Base<br>Ring Forces: Weight of Shell + 1<br>Partial Vacuum* Wine<br>Bottom Forces: Floor Wt. New* | Per Spec.*<br>Shear Force: Wind* _<br>Roof New* Co<br>d* Seismic*<br>Corroded*                       | Type*<br>Seismic* Overturning<br>prroded* Roof Live Load<br><br>Product Wt.* Water \                 | Anchors: Size* Qty*<br>J Moment: Wind* Seismic*<br>* Internal Pressure*<br>Mt.* Internal Pressure*<br>ojection of Fdn. Above Grade: |
| 14.     | Predicted Settlement Profile is<br>Responsibility for Setting Water<br>Test Water Source & Disposal T                                                                                    | Settlement Measureme<br>Attached<br>Quality: Purchaser<br>ie-In Locations<br>equired of the Manufact | ents Required? Yes D No D Ext<br>Manufacturer D Supplementa<br>Hy<br>turer: Broom Clean D Potable Wa | ended Duration of Hydro-Test:<br>I Test Water Quality Spec<br>dro-Test Appendix J Tank? Yes D No D<br>tter Rinse D Dry Interior D   |
| 15.     | Inspection by                                                                                                                                                                            |                                                                                                      |                                                                                                      | in Field                                                                                                                            |
|         | Supplemental NDE Responsibili<br>Positive Material Identification?<br>Max. Plate Thickness for Sheari                                                                                    | ty<br>Yes □ No □ PM<br>ng                                                                            | Supplemental NDE Spec<br>I Requirements:                                                             | (Purch., Mfg., Other)                                                                                                               |
|         |                                                                                                                                                                                          | Shell*                                                                                               | Shell Noz./Manhole                                                                                   |                                                                                                                                     |
|         | Specify Additional Tolerances, if<br>- Allowable Plumbness:                                                                                                                              | any, and Circumferent<br>Measure and Re                                                              |                                                                                                      |                                                                                                                                     |
|         | <ul> <li>Allowable Roundness: **<br/>around the Tank, at the Fo</li> </ul>                                                                                                               | Measure Radi<br>llowing Shell Heights (s                                                             | ius and Record at a Minimum of<br>select one box):                                                   | Locations or Every m (ft)                                                                                                           |
|         | Top of Tank, H<br>**See Data Sheet Instructions for                                                                                                                                      | $\Box$ <sup>1</sup> / <sub>3</sub> H, <sup>2</sup> / <sub>3</sub> H and I<br>the Maximum Allowat     |                                                                                                      | rse   Other:                                                                                                                        |
| Approv  | als:                                                                                                                                                                                     | Revisions:                                                                                           |                                                                                                      | Title:           By:         Ck'd:         Date:           Drawing No.:         Sheet of                                            |

07

|     | ΑΡΙ                                  | API Std 650 Storage Tank                 |                   |           |
|-----|--------------------------------------|------------------------------------------|-------------------|-----------|
|     | API                                  | Data Sheet                               |                   | Page 3 of |
| 16. | Coatings:                            |                                          | 1                 |           |
|     | Internal Linings by:                 | Per Spec.*                               |                   |           |
|     | External Coating by:                 | (Not Req'd., Otr                         | iers, rank wirg.) |           |
|     |                                      | (Not Req'd., Oth                         | ers, Tank Mfg.)   |           |
|     | Under-Bottom Coating by:             | Per Spec.*(Not Roo'd, Ot                 | ners, Tank Mfg.)  |           |
| 17. | Cathodic Protection System? Yes      | (Not Red 0., Ot                          |                   |           |
| 18. |                                      | o 🗋 Per Spec.*                           |                   |           |
| 19. |                                      | No  Per Spec.*                           |                   |           |
| 20. |                                      | ? Yes I No I Remote Capability Required? |                   |           |
|     | By:*                                 | Per Spec.*                               |                   |           |
| 21. |                                      | Empty* Shipping* Brace/L                 | ift Spec.*        |           |
| 22. | References*: API Std 650, Appendix L | _                                        |                   |           |
|     |                                      |                                          |                   |           |
|     |                                      |                                          |                   |           |

|          | A                      | <b>P</b>         |                              |             | AP                                       |                                              | 650 St<br>ata Sl          | orage<br>heet                              | Tank                                                              |                                            |                         |      | Page 4 of 8                                 |
|----------|------------------------|------------------|------------------------------|-------------|------------------------------------------|----------------------------------------------|---------------------------|--------------------------------------------|-------------------------------------------------------------------|--------------------------------------------|-------------------------|------|---------------------------------------------|
| * If box | is blank, N            | Manufactur       | er shall o                   | detern      | nine and subr                            |                                              |                           |                                            |                                                                   |                                            |                         |      |                                             |
|          |                        |                  |                              |             |                                          |                                              |                           | ONSTRUC                                    |                                                                   |                                            |                         |      |                                             |
| Ob all C | Compone                |                  | Mat                          | terial*/    | /Thickness*                              | C./                                          | ~~~                       |                                            | Dede                                                              | Materi                                     | al*                     |      | C.A.                                        |
|          | Course                 |                  |                              |             |                                          |                                              |                           |                                            | zzle Necks                                                        |                                            |                         |      |                                             |
|          | Course                 |                  |                              |             |                                          |                                              |                           |                                            | zzle Flanges                                                      |                                            |                         |      |                                             |
|          | Course                 |                  | _                            |             |                                          |                                              |                           | lange Cove                                 |                                                                   |                                            |                         |      |                                             |
|          | Course                 |                  |                              |             |                                          |                                              |                           | nchor Atta                                 |                                                                   |                                            |                         |      |                                             |
| Roof     |                        |                  |                              |             |                                          |                                              | s                         | ubmerged                                   | Piping                                                            |                                            |                         |      |                                             |
| Bottom   | )                      |                  |                              |             |                                          |                                              | V                         | Vetted Stru                                | cturals                                                           |                                            |                         |      | +                                           |
| Annula   | r Ring                 |                  |                              |             |                                          |                                              | N                         | on-wetted                                  | Structurals                                                       |                                            |                         |      | +                                           |
|          |                        |                  |                              |             |                                          |                                              |                           | + Che                                      | eck here if C.A.                                                  | is to apply to                             | each ex                 | pose | d surface □.                                |
|          |                        |                  |                              |             |                                          | fable 2 BC                                   | LTS and                   | ANCHORS                                    |                                                                   |                                            |                         |      |                                             |
| Con      | nponent                | Head T           | vpe*                         | Bolt        | or Anchor Mat                            | r                                            |                           | Material*                                  |                                                                   | Thread Series*                             |                         |      | C.A.                                        |
|          | Bolting                |                  | <u></u>                      | DOIL        |                                          |                                              |                           | material                                   |                                                                   |                                            |                         |      | ++                                          |
| Structu  | ral Bolting            |                  |                              |             |                                          |                                              |                           |                                            |                                                                   |                                            |                         |      | ++                                          |
| Anchor   | Bolts                  |                  |                              |             |                                          |                                              |                           |                                            |                                                                   | *******                                    |                         |      | ++                                          |
|          |                        |                  |                              |             |                                          |                                              |                           |                                            |                                                                   |                                            |                         |      |                                             |
|          |                        |                  |                              |             |                                          |                                              |                           |                                            |                                                                   |                                            |                         |      |                                             |
|          | al C.A., on            | the nomina       | al diame                     | ter.        |                                          |                                              |                           |                                            |                                                                   |                                            |                         |      |                                             |
|          | al C.A., on            |                  |                              |             | LE and MAN                               | HOLE SC                                      | HEDULE*                   | (for Fixed                                 | I Roof, Shell,                                                    | and Bottom)                                |                         |      |                                             |
| ++ Tota  | al C.A., on<br>Service |                  |                              | NOZZ<br>Sch | LE and MAN<br>Reinf. Plate<br>Dimensions | HOLE SC<br>Full Pen.<br>On<br>Open.<br>(Y/N) | HEDULE*<br>Flange<br>Type | (for Fixed<br>Flange<br>Class or<br>Thick. | I Roof, Shell,<br>Gasket<br>Bearing Surf.<br>Dimen. and<br>Finish | and Bottom)<br>Gasket Thick.<br>and Dimen. | Gasi<br>Mat'l.<br>Desci | and  | Proj. to FF or<br>CL or from<br>Datum Lines |
|          |                        | Size,<br>NPS, or | Fable 3 I<br>Neck S<br>or Wa | NOZZ<br>Sch | Reinf. Plate                             | Full Pen.<br>On<br>Open.                     | Flange                    | Flange<br>Class or                         | Gasket<br>Bearing Surf.<br>Dimen. and                             | Gasket Thick.                              | Mat'l.                  | and  | CL or from                                  |
| ++ Tota  |                        | Size,<br>NPS, or | Fable 3 I<br>Neck S<br>or Wa | NOZZ<br>Sch | Reinf. Plate                             | Full Pen.<br>On<br>Open.                     | Flange                    | Flange<br>Class or                         | Gasket<br>Bearing Surf.<br>Dimen. and                             | Gasket Thick.                              | Mat'l.                  | and  | CL or from                                  |
| Mark     | Service                | Size,<br>NPS, or | Fable 3 I<br>Neck S<br>or Wa | NOZZ<br>Sch | Reinf. Plate<br>Dimensions               | Full Pen.<br>On<br>Open.<br>(Y/N)            | Flange                    | Flange<br>Class or                         | Gasket<br>Bearing Surf.<br>Dimen. and<br>Finish                   | Gasket Thick.                              | Mat'l.                  | and  | CL or from                                  |
| ++ Tota  | Service                | Size,<br>NPS, or | Fable 3 I<br>Neck S<br>or Wa | NOZZ<br>Sch | Reinf. Plate                             | Full Pen.<br>On<br>Open.<br>(Y/N)            | Flange                    | Flange<br>Class or                         | Gasket<br>Bearing Surf.<br>Dimen. and                             | Gasket Thick.                              | Mat'l.                  | and  | CL or from<br>Datum Lines                   |

|           | ΑΡΙ                       | API                       |                | Storage T                | ānk                          |                 |                 |
|-----------|---------------------------|---------------------------|----------------|--------------------------|------------------------------|-----------------|-----------------|
|           |                           |                           | Data           | Sheet                    |                              |                 | Page 5 of       |
|           | blank, Manufacturer sh    |                           | bmit as per Ap | pendix L.                | I                            |                 |                 |
| OTHER T   | ANK APPURTENANCI          | <u>=S</u>                 |                |                          |                              |                 |                 |
| 24. Plat  | form, Stairway, and Rai   | ling: Galvanizing Re      | q'd?* Yes 🗋    | No 🛛 Stairway            | Style*<br>(Straight or Helic |                 | e*              |
| Stai      | r and Walkway Clear W     | fidth*                    | Nationa        | al Safety Standards      | S*                           |                 |                 |
| Arcl      | nitectural/Structural Spe | cification*               |                | The Parking of Andrewson |                              |                 |                 |
| Gau       | ger's Platform Req'd?     | Yes 🗆 No 🗔 🔾              | ty Req'd.*     | Per S                    | Spec. *                      |                 |                 |
| 25. Jac   | ket Required?* Yes □      | No 🗆 Other He             | aters/Coolers  | Required?* Yes           |                              |                 |                 |
| Sup       | plemental Jacket, Heat    | er, or Cooler Specific    | cations*       |                          |                              |                 |                 |
| 26. Mix   | er/Agitator: Quantity     | Size*                     | Per Spec.      | *                        |                              |                 | -               |
| 27. Insi  | llation: Required? Yes    | 🗆 No 🗆 Thickr             | ness*          | Material*                |                              |                 |                 |
| Per       | Specs*                    |                           | Respons        | sibility for Insulation  | n and Installation           |                 |                 |
|           |                           |                           |                |                          | (Pu                          | chaser, Manufac | cturer, Others) |
| 28. Stru  | ctural Attachments: Lift  | Lugs?* Yes 🗆 N            | lo 🗆 Desc.*    |                          |                              |                 |                 |
| She       | II Anchorage?* Yes 🗆      | No □ Tvpe*                |                |                          | Scaffold (                   | able Support?   | Yes 🗖 No 🗆      |
|           |                           |                           |                |                          |                              |                 |                 |
| 29. Vari  | ous Other Items: Welde    | a Fiush-Type: Shell (     |                |                          | Valve Application            | of Appendix P?  | Yes 🗆 No 🖵      |
| Mis       | cellany #1                |                           | Mise           | cellany #2               |                              |                 | 4 <del>1</del>  |
|           | cellany #3                |                           |                |                          |                              |                 |                 |
| Mis       | cellany #5                |                           | Mise           | cellany #6               |                              |                 |                 |
|           |                           |                           | 4 OTHER TAI    |                          |                              |                 | 1               |
| Mark      | Quantity                  | Service or<br>Description | Size           | Orientation              | Height from Datum            | Material        | Remarks         |
|           |                           |                           |                |                          |                              |                 |                 |
|           |                           |                           |                |                          |                              |                 |                 |
|           |                           |                           |                |                          |                              |                 |                 |
|           |                           |                           |                |                          |                              |                 |                 |
|           |                           |                           |                |                          |                              |                 |                 |
|           |                           |                           |                |                          |                              |                 |                 |
|           |                           |                           |                |                          |                              |                 |                 |
|           |                           |                           |                |                          |                              |                 |                 |
| pprovals: |                           | Revisio                   | ns:            |                          | Title:                       |                 |                 |
| ppiovais. |                           | 1701210                   |                |                          |                              | Ck'd: Di        | ate:            |
|           |                           |                           |                |                          | By:<br>Drawing No.           |                 | ate:<br>of      |

|                        | API                                                        | Data Sheet                                                  | Page 6 of 8                                    |
|------------------------|------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|
| * If box is blank,     | Manufacturer shall determine an                            | d submit as per Appendix L.                                 |                                                |
| FLOATING R             | OF DATA                                                    |                                                             |                                                |
| 30. Floating           | Roof Selection                                             |                                                             |                                                |
| Design Ba              | sis: Appendix C 🗔 Or Appe                                  | endix H 🗔                                                   |                                                |
| Type of R              | of: (External or Internal); Sing                           | le Deck Pontoon* 🗋 Double Deck* 🗔                           |                                                |
|                        | (Internal Only): Tubular F                                 | Pontoon* 🗋 Metallic Sandwich Panel* 🗋                       |                                                |
|                        | Other 🗋                                                    | Supplement                                                  | al Spec.:                                      |
| 31. <b>Seals</b>       |                                                            |                                                             |                                                |
| Primary S              | al: Shoe 🔲 Envelope 🔲 W                                    | iper/Compression Plate 🗋 Other 🗋 S                          | upplemental Spec:                              |
| Sho                    | Mechanism: Mfg. Std. 🔲 Oth                                 | er 🗋                                                        |                                                |
| Elec                   | rically Isolate Mechanism from S                           | hoes? Yes 🗋 No 🗔 Wax Scrapers Required?                     | Yes 🔲 No 🗌                                     |
| Non                    | nal Shoe Thickness*                                        | Carbon Steel Shoes to be Galvanized? Yes                    | ] No 🗔                                         |
| Sec                    | ndary Seal: Shoe 🔲 Envelope                                | • 🗆 Wiper 🗆 None 🗔 Other 🗆                                  | Supplemental Spec:                             |
| 32. Data for           | All Floating Roofs:                                        |                                                             |                                                |
| Overflow               | Openings in Shell Acceptable? Ye                           | es 🗋 No 🗋 Shell Extension? Yes 🔲 No 🗋                       |                                                |
| Roof-Drai              | ı Check Valves Required? Yes [                             | ☐ No ☐ Roof-Drain Isolation Valves Required?                | Yes 🗋 No 🗌                                     |
| Freeze Pi              | otection for Roof Drains Required                          | d? No 🔲 Yes 🔲 Supplemental Requirements:                    |                                                |
| Roof-Drai              | Piping to External Nozzles: Mfg                            | . Std. 🗋 Armored Flexible Pipe 🔲 Swivels in I               | Rigid Pipe 🔲 Other 🗌                           |
| Foam Da                | 1? Yes 🔲 No 🗔 Supplemen                                    | tal Spec                                                    |                                                |
| Nominal I              | eck Thickness*                                             |                                                             |                                                |
| Bulkhead               | Γοp Edges to be Liquid-Tight? Υε                           | es 🔲 No 🔲 Seal-weld Underside of Roof? Yes                  | □ No □                                         |
| Electrical             | 3onding: Shunts: Yes 🗋 No 🗋                                | Cables: Yes 🗌 No 🗔 Supplemental Spec                        | ۶                                              |
| Qty of No              | -Guide-Pole Gauge Wells Requi                              | red Qty of Sample Hatches Require                           | d                                              |
| Guide                  | ²ole for Gauging? Yes □ No [                               | 🗋 Slots in Guide Pole? Yes 🔲 No 🗔 Datum                     | Plates? Yes 🗋 No 🗋 Striking Plates? Yes 🗌 No 🗋 |
| Guide Pole Er          | issions-Limiting Devices: Sliding                          | Cover D Pole Wiper D Pole Sleeve D Flo                      | at 🗋 Float Wiper 🗋 Pole Cap 🗋                  |
| Qty. of Ro             | of Manholes* Minimur                                       | n High-Roof Clearance Above Bottom:                         |                                                |
|                        | e Leg Storage Racks? Yes 🗌<br>al Data for External Floatin | No 🗋 ; Leg Sleeves 🔲 or Fixed Low Legs [<br><b>g Roofs:</b> |                                                |
| Weather S              | hield? Yes 🗋 No 🔲 Suppl. :                                 | Spec                                                        |                                                |
| Rolling La             | lder Req'd? Yes 🔲 No 🗔 F                                   | ield Adjustable Legs? Yes 🗋 No 🗔                            |                                                |
| Design Ra              | infall IntensityIn./Hr. (r                                 | nm/hr) Based on a Minute Duration As                        | sociated with the Storm                        |
| Design Ac              | cumulated 24-Hour Rainfall                                 | In. (mm) Based on the Storr                                 | n                                              |
| Distortion             | and Stability Determinations Req                           | uired? Yes 🔲 No 🗔 Supplemental Specificatio                 | nc                                             |
|                        | e l oad*                                                   |                                                             |                                                |
| Landed L<br>Approvals: |                                                            | Revisions:                                                  |                                                |

|      |                                                                                                | 1                    | AP                    | I Std 650            | Storage         | Tank               |                              |               |  |
|------|------------------------------------------------------------------------------------------------|----------------------|-----------------------|----------------------|-----------------|--------------------|------------------------------|---------------|--|
|      |                                                                                                |                      |                       |                      | Sheet           |                    |                              | Page 7 of 8   |  |
| 24   |                                                                                                |                      |                       | Dutu                 | Oncor           |                    |                              |               |  |
| 34.  | Additional Data for Inte                                                                       | -                    |                       |                      |                 |                    |                              |               |  |
|      | Two-Position Legs? Yes 🗌                                                                       | I NO 🗆 Cable-:       | Supported             | Root? Yes 🗋 No       | Fixed-Root      | Inspection Ha      | atches Required?: Yes 🛄      | No 🗀          |  |
|      | Internal Roof Drain Require                                                                    | ed? Yes 🗋 No 🗆       | l Omit D              | istribution Pads Sup | porting Uniform | Live Loads? Y      | es 🔲 No 🗍                    |               |  |
|      | Corrosion Gauge Required? Yes 🗋 No 🗋 Fixed Ladder Required?: Yes 🗋 No 🗔 ; Type of Roof Vent: * |                      |                       |                      |                 |                    |                              |               |  |
|      | Modified Minimum Point Load? Yes 🗔 No 🗔 Supplemental Specification                             |                      |                       |                      |                 |                    |                              |               |  |
|      | Mfr. to Leak Test * % o                                                                        | f Compartments       | 🗋 in Asse             | embly Yard 🔲 in E    | rected Position | Unknown            | ; see separate contract tern | าร            |  |
|      | Roof Erector's Flotation Tes                                                                   | st: w/ tank hydro [  | □ at cor              | mpletion of roof 🛛   | at later date 🛛 | Not                | required                     |               |  |
|      | Flotation Test Media: Wat                                                                      | er 🗆 Product 🗆       | (see H.6.             | 6.1) Water Quali     | ity: Potable 🗋  | Other 🔲            | See Supplemental Spec        |               |  |
|      | Flotation Test: Duration                                                                       | Fill Height:         |                       |                      |                 |                    |                              |               |  |
|      | Flotation Test Items provide                                                                   | ed by Purchaser (se  | е H 6 7) <sup>,</sup> | None 🗍 List Att:     | ached 🗌         |                    |                              |               |  |
|      |                                                                                                |                      |                       |                      |                 |                    |                              |               |  |
|      | Responsible Party for Inspe                                                                    | ecting Roof during I | nitial Fill:          | Purchaser 🔟 Oth      | ner 🛛           | ·······            |                              |               |  |
|      |                                                                                                |                      | Tabl                  | e 5 FLOATING R       | OOF MATERIA     | ALS                |                              |               |  |
|      | Component                                                                                      | Material*/Thicl      | kness*                | C.A./Coating*        | Compo           | onent              | Material*/Thickness*         | C.A./Coating* |  |
| Decl | k Plate                                                                                        |                      |                       |                      | Datum Plate     |                    |                              |               |  |
| Inne | r Rim Plate                                                                                    |                      |                       |                      | Tubular Ponto   | on                 |                              |               |  |
| Oute | er Rim Plate                                                                                   |                      |                       |                      | Pontoon Bulk    | nead               |                              |               |  |
| Foa  | m Dam                                                                                          |                      |                       |                      | Submerged Pi    | pe                 |                              |               |  |
| San  | dwich Panel Face Plate                                                                         |                      |                       |                      | Guide Pole      |                    |                              |               |  |
| San  | dwich Panel Core                                                                               |                      |                       |                      | Secondary Se    | al                 |                              |               |  |
| Gau  | ge Well                                                                                        |                      |                       |                      | Secondary Se    | al Fabric          |                              |               |  |
| Drai | n Sumps                                                                                        |                      |                       |                      | Wiper Tip       |                    |                              |               |  |
| Ope  | ning Sleeves                                                                                   |                      |                       |                      | Wax Scraper     |                    |                              |               |  |
| Floa | ting Suction Lines                                                                             |                      |                       |                      | Weather Seal    |                    |                              |               |  |
| Prim | ary Fabric Seal                                                                                |                      |                       |                      | Envelope Fab    | ric                |                              |               |  |
| Foa  | m Log Core                                                                                     |                      |                       |                      | Shoe Mechan     | isms               |                              |               |  |
| Land | ding Legs                                                                                      |                      |                       |                      | Primary Seal S  | Shoe               |                              |               |  |
| Land | ding Leg Bottom Pads                                                                           |                      |                       |                      | Removable C     | overs              |                              |               |  |
| Man  | hole Necks                                                                                     |                      |                       |                      | Rolling Ladde   | r                  |                              |               |  |
| Vent | is                                                                                             |                      |                       |                      | Inlet Diffusers |                    |                              |               |  |
|      |                                                                                                |                      | r _                   |                      |                 |                    |                              |               |  |
| Арр  | rovals:                                                                                        |                      | Revision              | ns:                  |                 | Title:             |                              |               |  |
|      |                                                                                                |                      |                       |                      |                 | By:<br>Drawing No. | Ck'd:<br>: Sheet of          | Date:         |  |

| API                                   | API Std 650 Storage Tank                |                 |
|---------------------------------------|-----------------------------------------|-----------------|
| AFI                                   | Data Sheet                              | Page 8 c        |
| * If box is blank, Manufacturer shall | determine and submit as per Appendix L. |                 |
| Tank Plan and Sketches:               |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
| lotes:                                |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
|                                       |                                         |                 |
| pprovals:                             | Revisions:                              | Title:          |
|                                       |                                         | By: Ck'd: Date: |

|     | Table L-1—Index of D                       | Decisions or Actions Which may be Required                         | of the Tank Purchaser     |
|-----|--------------------------------------------|--------------------------------------------------------------------|---------------------------|
| 07  | Foreword                                   | 5.6.1.1 (Notes 1, 3)                                               | 6.1.3                     |
|     | 1.1.2                                      | 5.6.1.2                                                            | 6.2.1                     |
| 08  | 1.1.3                                      | Tables 5-2a and 5-2b (Note a)                                      | 6.2.3                     |
|     | 1.1.5                                      | 5.6.3.2 ( <i>H</i> , <i>G</i> , <i>CA</i> )                        | 6.2.4                     |
|     | 1.1.6                                      | 5.6.4.1                                                            | 7.1.1                     |
|     | 1.1.11                                     | 5.6.4.6 ( <i>H</i> )                                               | 7.1.4                     |
|     | Table 1-1 (App. C, E, G, I, L, O, P, V, W) | 5.7.1.4                                                            | 7.2.1.1                   |
|     | 1.1.15                                     | 5.7.1.8                                                            | 7.2.1.7                   |
| 0.7 | 1.1.18                                     | Figure 5-6 (Note 5)                                                | 7.2.3.3                   |
| 07  | 1.1.22                                     | Figure 5-7A (Notes 1, 7)                                           | 7.2.4.1                   |
|     | 1.1.28                                     | Figure 5-7B (Note 6)                                               | 7.2.4.3                   |
|     | 1.3.2                                      | Figure 5-8 (Note 4)                                                | 7.3.1.3                   |
|     | 1.3.3                                      | 5.7.2.2                                                            | 7.3.2.1                   |
|     | 1.4                                        | 5.7.2.3 (b)                                                        | 7.3.2.3                   |
|     | 4.1.1.4                                    | Tables 5-6a and 5-6b (Note c)                                      | 7.3.5, 1                  |
| 08  | 4.1.2                                      | Tables 5-8a and 5-8b (Note d)                                      | 7.3.6.2 (2, 3, 4, 5, 7)   |
|     | 4.1.3                                      | Tables 5-9a and 5-9b (Note c) $\sum_{i=1}^{n} 5 \cdot 12$ (Note c) | 7.3.6.3                   |
|     | 4.1.5 (b)                                  | Figure 5-12 (Note 4)                                               | 7.3.6.5 (Note)            |
|     | 4.2.1.3<br>4.2.5                           | 5.7.3.4<br>5.7.4.5                                                 | 7.3.7.2                   |
|     | 4.2.5<br>Table 4-1 (Note 1)                | 5.7.5.2                                                            | 7.4.1<br>7.4.4            |
|     | Table 4-2 (Note C)                         | 5.7.6.1.a                                                          | 7.5.1                     |
|     | 4.2.7.4                                    | 5.7.6.1.b                                                          | 8.1.2.7                   |
|     | 4.2.8.1                                    | 5.7.6.2                                                            | 8.1.4                     |
|     | 4.2.9.2                                    | 5.7.6.3                                                            | 8.1.6                     |
|     | 4.2.10.4                                   | 5.7.7.1                                                            | 8.1.7.2                   |
|     | 4.4.1 (g)                                  | 5.7.8.1                                                            | 8.1.8.2                   |
|     | 4.4.2                                      | 5.8.2                                                              | 8.3.2.5                   |
|     | 4.6.2                                      | 5.8.5.3                                                            | 8.6.3                     |
|     | 4.7                                        | 5.8.5.4                                                            | 8.6.10                    |
|     | 4.9.1.1                                    | 5.8.7                                                              | 8.6.11                    |
|     | 4.9.1.4                                    | 5.8.10 (c)                                                         | 9.2.1.1                   |
| 07  | 4.9.1.5                                    | 5.8.11.2                                                           | 10.1.1 (e, f, g, j, k)    |
|     | 4.9.2                                      | 5.8.11.3                                                           | Figure 10-1 (Note)        |
|     | 4.9.3.1                                    | 5.9.3.3                                                            | 10.3 (Note)               |
|     | 5.1.3.6.1<br>5.1.3.8                       | 5.9.6.1 (Note)                                                     | A.1.1<br>A.1.2            |
|     | 5.1.5.3 (b)                                | 5.9.7.1(t, d)                                                      | A.1.2<br>A.3.4            |
|     | 5.1.5.4                                    | 5.9.7.2 ( $t_{uniform}, t_{actual}$ )<br>5.9.7.7                   | A.4.1 (G, CA)             |
|     | 5.1.5.5                                    | 5.10.2.2                                                           | A.6                       |
|     | 5.1.5.8 (b)                                | 5.10.2.4                                                           | A.8.2                     |
|     | 5.1.5.9 (e)                                | 5.10.2.6                                                           | A.9.2                     |
|     | 5.2.1 (a, b, f, g, h, j, 1)                | 5.10.2.7                                                           | B.3.3                     |
|     | 5.2.2                                      | 5.10.2.8                                                           | B.3.4                     |
|     | 5.2.3 (a, b, c)                            | 5.10.3.1                                                           | B.4.4.1                   |
|     | 5.2.4                                      | 5.10.3.4                                                           | C.1                       |
|     | 5.2.6.1                                    | 5.10.4.1                                                           | C.3.1.1                   |
|     | 5.3.1.1                                    | 5.10.4.4                                                           | C.3.1.2                   |
|     | 5.3.2.1                                    | 5.10.4.5                                                           | C.3.1.5                   |
|     | 5.3.2.3                                    | 5.10.5                                                             | C.3.3.2                   |
|     | 5.3.2.6                                    | 5.10.6                                                             | C.3.4.1 (b)               |
|     | 5.3.3                                      | 5.12.5                                                             | C.3.4.2                   |
|     | 5.3.4                                      | 5.12.6                                                             | C.3.5                     |
|     | 5.4.1<br>5.4.4                             | 5.12.10<br>6.1.1.1                                                 | C.3.7                     |
|     | 5.4.5                                      | 6.1.2 (Note)                                                       | C.3.8.1 (1, 3)<br>C.3.8.2 |
| 1   |                                            | ···· (11010)                                                       | 0.0.0.2                   |

WELDED TANKS FOR OIL STORAGE

| C 2 8 2                            | LI 1 2          | I.6.3                                                                                      |       |
|------------------------------------|-----------------|--------------------------------------------------------------------------------------------|-------|
| C.3.8.3                            | H.1.2           |                                                                                            |       |
| C.3.10.1                           | H.1.3           | I.6.4                                                                                      |       |
| C.3.10.3 (b)                       | H.2.2 (f, g, h) | I.7.1                                                                                      |       |
| C.3.10.4                           | H.3             | I.7.3.2 (CA)                                                                               | 1.000 |
| C.3.10.8                           | H.4.1.6         | I.7.6                                                                                      |       |
| C.3.10.9                           | H.4.1.7         | J.1.2                                                                                      |       |
| C.3.12.3                           | H.4.1.8         | J.3.6.2                                                                                    |       |
| C.3.13.2                           | H.4.1.9         | J.3.7.1                                                                                    |       |
| C.3.13.5 (Primary, Secondary Seal) | H.4.1.10        | J.3.7.2                                                                                    |       |
| C.3.14.1 (1)                       | H.4.2.1.1       | J.3.8.2                                                                                    |       |
| C.3.14.2                           | H.4.2.1.3       | J.4.2.2                                                                                    |       |
| C.3.14.4                           | H.4.2.2         | Appendix L                                                                                 |       |
| C.3.14.5                           | H.4.2.3.2       | M.1.2 (Note)                                                                               |       |
| C.3.14.6                           | H.4.3.3         | M.2                                                                                        | l     |
| C.3.15.2                           | H.4.3.3.1       | M.4.2 ( <i>C</i> )                                                                         |       |
| C.3.15.3                           | H.4.3.4         | N.2.1                                                                                      | 07    |
| C.3.15.4 (a, e)                    | H.4.3.5         | N.2.2                                                                                      |       |
| E.1                                | H.4.4           | N.2.4                                                                                      |       |
| E.3.1                              | H.4.4.2         | N.2.5                                                                                      |       |
| E.4.1                              | H.4.4.4         | N.2.6                                                                                      |       |
| E.4.2                              | H.4.6.1         | 0.2.2                                                                                      |       |
| E.4.2.4                            | H.4.6.2         | O.2.6                                                                                      |       |
| E.4.4                              | H.4.6.3         | 0.3.1.4                                                                                    |       |
| E.4.6.1                            | H.4.6.5         | P.1                                                                                        | 1     |
| E.4.6.2                            | H.4.6.6         | P.2.1                                                                                      |       |
| E.5.1.2                            | H.4.6.7         | P.2.2                                                                                      |       |
| E.6.1.3                            | H.4.6.8         | P.2.8.1                                                                                    |       |
| E.6.1.5                            | H.4.6.9         | P.2.8.2                                                                                    |       |
| E.6.1.6                            | H.5.1.1         | R.2                                                                                        |       |
| E.6.2.1.2                          | H.5.1.4         | S.1.2                                                                                      |       |
| E.0.2.1.2<br>E.7.2                 |                 |                                                                                            |       |
|                                    | H.5.2.1         | Table S-1a and S-1b (Notes 1, 2, 3, 5)                                                     | 08    |
| E.7.5                              | H.5.2.2.1       | S.2.1.2                                                                                    |       |
| F.5.1                              | H.5.2.2.3       | S.2.2                                                                                      |       |
| F.7.4                              | H.5.3.1         | S.3.1                                                                                      |       |
| G1.3.2                             | H.5.3.2         | S.3.2 (G, CA)                                                                              | 07    |
| G1.3.3                             | H.5.3.3         | 8.4.3.2                                                                                    |       |
| G1.4.1                             | H.5.5.3         | S.4.4.3                                                                                    |       |
| G1.4.2                             | H.5.6           | S.4.5.1                                                                                    |       |
| G.1.4.4                            | H.5.7           | Tables S-2a and S-2b (Notes 2, 3)                                                          | 08    |
| G2.1                               | H.5.8           | Tables S-3a and S-3b (Note 4)                                                              | 00    |
| G2.4                               | H.5.9           | S.4.9.2                                                                                    |       |
| G4.3                               | H.6.1           | S.4.10.2 (a, f)                                                                            |       |
| G5.3                               | H.6.2           | S.4.10.3                                                                                   |       |
| G.6.2                              | H.6.4 (Note)    | S.4.13                                                                                     |       |
| G7                                 | H.6.6           | S.6 (a)                                                                                    | I     |
| G8.3                               | H.6.6.1         | U.3.1                                                                                      | 07    |
| G9                                 | I.1.2           | U.3.3                                                                                      |       |
| G10.1.1                            | I.1.3           | U.3.5                                                                                      |       |
| G10.1.2                            | I.2 (c)         | U.4.3                                                                                      |       |
| G11.3                              | I.5.5           | Appendix V                                                                                 |       |
| H.1.1                              | I.6.2           | Appendix W                                                                                 | 1     |
|                                    | _               | <u>-</u> - <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u></u> | 1     |

## APPENDIX M—REQUIREMENTS FOR TANKS OPERATING AT ELEVATED TEMPERATURES

## M.1 Scope

**M.1.1** This appendix specifies additional requirements for API Std 650 tanks with a maximum design temperature exceeding 93°C (200°F) but not exceeding 260°C (500°F).

M.1.2 The following shall not be used for a maximum design temperature above 93°C (200°F):

a. Open-top tanks (see 5.9).

- b. Floating-roof tanks (see Appendix C).
- c. Structurally-supported aluminum dome roofs (see G.1.1 and note below).

d. Internal floating roofs constructed of aluminum (see H.2.2 and note below).

e. Internal floating roofs constructed of composite material (see H.2.2). Lower temperature limits may apply for this roof material type. 07

• Note: An exception may be made by the Purchaser for Items c and d, if the following criteria are met:

a. Allowable stress reductions for aluminum alloys are determined in accordance with Appendix AL, and alloys are evaluated for the potential of exfoliation.

11

07

b. Gaskets and seals are evaluated for suitability at the maximum design temperature.

**M.1.3** Internal floating roofs in accordance with Appendix H may be used for a maximum design temperature above 93°C (200°F), subject to the applicable requirements of this appendix. The vapor pressure of the liquid must be considered. Sealing devices, particularly those of fabric and nonmetallic materials, shall be suitable for the maximum design temperature.

**M.1.4** Tanks for small internal pressures in accordance with Appendix F may be used for a maximum design temperature above 93°C (200°F), subject to the requirements of M.3.6, M.3.7, and M.3.8.

**M.1.5** Shop-assembled tanks in accordance with Appendix J may be used for a maximum design temperature above 93°C (200°F), subject to the applicable requirements of this appendix.

**M.1.6** The nameplate of the tank shall indicate that the tank is in accordance with this appendix by the addition of M to the information required by 10.1.1. In addition, the nameplate shall be marked with the maximum design temperature in the space indicated in Figure 10-1.

## • M.2 Thermal Effects

This appendix does not provide detailed rules for limiting loadings and strains resulting from thermal effects, such as differential thermal expansion and thermal cycling, that may exist in some tanks operating at elevated temperatures. Where significant thermal effects will be present, it is the intent of this appendix that the Purchaser define such effects. The Manufacturer shall propose, subject to the Purchaser's acceptance, details that will provide strength and utility equivalent to those provided by the details specified by this Standard in the absence of such effects.

For a maximum design temperature above 93°C (200°F), particular consideration should be given to the following thermal effects:

a. Temperature differences between the tank bottom and the lower portion of the shell. Such thermal differences may result from factors such as the method and sequence of filling and heating or cooling, the degree of internal circulation, and heat losses to the foundation and from the shell to the atmosphere. With such temperature differences, it may be necessary to provide for increased piping flexibility, an improved bottom-to-shell joint, and a thicker annular ring or bottom sketch plates to compensate for increased rotation of the bottom-to-shell joint (see M.4.2).

b. The ability of the bottom to expand thermally, which may be limited by the method of filling and heating. With such a condition, it may be necessary to provide improved bottom welding in addition to the details suggested in Item a.

c. Temperature differences or gradients between members, such as the shell and the roof or stairways, the shell and stiffeners, the roof or shell and the roof supports, and locations with insulation discontinuities.

d. Whether or not the contents are allowed to solidify and are later reheated to a liquid, including the effect on columns, beams, and rafters. The possible build-up of solids on these components and the potential for plugging of the vent system should also be considered.

e. The number and magnitude of temperature cycles the tank is expected to undergo during its design life.

## M.3 Modifications in Stress and Thickness

**M.3.1** For a maximum design temperature not exceeding 93°C (200°F), the allowable stress specified in 5.6.2 (see Tables 5-2a and 5-2b) for calculating shell thickness need not be modified.

M.3.2 For a maximum design temperature exceeding 93°C (200°F), the allowable stress specified in 5.6.2 shall be modified as follows: The allowable stress shall be two-thirds the minimum specified yield strength of the material multiplied by the applicable
 reduction factor given in Tables M-1a and M-1b or the value given in Tables 5-2a and 5-2b for product design stress, whichever is less.

**M.3.3** For operating temperatures exceeding 93°C (200°F), the yield strength  $F_y$  in 5.10.4.4 shall be multiplied by the applicable reduction factor given in Tables M-1a and M-1b.

M.3.4 The allowable stress of 145 MPa (21,000 lbf/in<sup>2</sup>) in the equation for shell-plate thickness in A.4.1 shall be multiplied by
 the applicable reduction factor given in Tables M-1a and M-1b.

M.3.5 The requirements of 5.7.5 for shell manholes, 5.7.7 for flush-type cleanout fittings and of 5.7.8 for flush-type shell connections shall be modified. The thickness of bottom reinforcing plate for flush-type shell cleanouts and flush-type shell connections and bolting flange and cover plates for shell manhole and flush-type shell cleanouts shall be multiplied by the ratio of 205 MPa (30,000 lbf/in.<sup>2</sup>) to the material yield strength at the maximum design temperature if the ratio is greater than one.

**M.3.6** The structural allowable stresses specified in 5.10.3, including the allowable stresses dependent on the modulus of elasticity, shall be multiplied by the yield strength reduction factors from Tables M-1a and M-1b at the maximum design temperature.

M.3.7 Text deleted.

<sup>09</sup> M.3.8 Text deleted.

M.3.9 If the anchors are insulated, the allowable stresses specified in Tables 5-21a, 5-21b and 5-22a and 5-22b shall be multiplied by the ratio of the material's yield strength at the maximum design temperature to 205 MPa (30,000 lbf/in.<sup>2</sup>) if the ratio is less than 1.0 (see Tables M-1a and M-1b for yield strength reduction factors).

|             | Minimum Specified Yield Strength (MPa) |                             |           |
|-------------|----------------------------------------|-----------------------------|-----------|
| Temperature |                                        |                             |           |
| (°C)        | < 310 MPa                              | From $\ge$ 310 to < 380 MPa | ≥ 380 MPa |
| 94          | 0.91                                   | 0.88                        | 0.92      |
| 150         | 0.88                                   | 0.81                        | 0.87      |
| 200         | 0.85                                   | 0.75                        | 0.83      |
| 260         | 0.80                                   | 0.70                        | 0.79      |

Table M-1a—(SI) Yield Strength Reduction Factors

08

Note: Linear interpolation shall be applied for intermediate values

| Table | M-1b | (USC) | Yield Strength | Reduction | Factors |
|-------|------|-------|----------------|-----------|---------|
|       |      |       |                |           |         |

|             | Minimum Specified Yield Strength (lbf/in. <sup>2</sup> ) |                                                |                                    |
|-------------|----------------------------------------------------------|------------------------------------------------|------------------------------------|
| Temperature |                                                          |                                                |                                    |
| (°F)        | < 45,000 lbf/in. <sup>2</sup>                            | $\geq$ 45,000 to < 55,000 lbf/in. <sup>2</sup> | $\geq$ 55,000 lbf/in. <sup>2</sup> |
| 201         | 0.91                                                     | 0.88                                           | 0.92                               |
| 300         | 0.88                                                     | 0.81                                           | 0.87                               |
| 400         | 0.85                                                     | 0.75                                           | 0.83                               |
| 500         | 0.80                                                     | 0.70                                           | 0.79                               |

Note: Linear interpolation shall be applied for intermediate values.

M-2

08

## M.4 Tank Bottoms

**M.4.1** Tanks with diameters exceeding 30 m (100 ft) shall have butt-welded annular bottom plates (see 5.1.5.6).

**M.4.2** The following simplified procedure is offered as a recommended design practice for elevated-temperature tanks where significant temperature differences between the tank bottom and the lowest shell course are expected. The use of the procedure is not intended to be mandatory. It is recognized that other analytical procedures can be employed as well as that operating conditions may preclude the need for such a procedure.

Shell-to-bottom junctions in elevated-temperature tanks may be evaluated for liquid head and temperature cycles with the formulas, procedures, and exclusions given below. (See Conditions a and b in the note below, which exclude tanks from such analyses.)

Note: A cyclic design life evaluation need not be made if all the criteria of either of the following conditions are met:

a. The design temperature difference (*1*) is less than or equal to 220°C (400°F), *K* is less than or equal to 2.0, and *C* is less than or equal to 0.5. b. A heated liquid head, in feet, greater than or equal to  $0.3(Dt)^{0.5}$  is normally maintained in the tank, except for an occasional cool-down (about once a year) to ambient temperatures; *T* is less than or equal to 260°C (500°F); and *K* is less than or equal to 4.0. (For background information on the development of the stress formulas, design life criteria, and C and B factors, see G.G. Karcher, "Stresses at the Shell-to-Bottom Junction of Elevated-Temperature Tanks.")

In SI units:

$$N = \left(\frac{9.7 \times 10^3}{KS}\right)^{2.44}$$

(If N is greater than or equal to 1300, cycling at the shell-to-bottom junction is not a controlling factor.)

where

- N = number of design liquid level and temperature cycles estimated for the tank design life (usually less than 1300). This design procedure contains a conservative safety margin. It is not necessary to monitor actual in-service temperature and liquid head cycles
- K = stress concentration factor for the bottom plate at the toe of the inside shell-to-bottom fillet weld
  - = 4.0 for shell-to-bottom fillet welds and lap-welded bottom plates
  - = 2.0 for butt-welded annular plates where the shell-to-bottom fillet welds have been inspected by 100% magnetic particle examination (see 8.2). This magnetic particle examination shall be performed on the root pass at every 13 mm of deposited weld metal while the weld is being made and on the completed weld. The examination shall be performed before hydrostatic testing

$$S = \frac{0.028 D^2 t_b^{0.25}}{t} \times \left[ \frac{58 HG}{(Dt)^{0.5}} + \frac{26.2 CT t^{0.5}}{D^{1.5}} - \frac{4.8 BS_y t_b^2}{(Dt)^{1.5}} - G \right]$$

= one-half the maximum stress range that occurs in the annular plate at the shell-to-bottom junction weld, in MPa. The *H* and *CT* terms must be large enough to cause a positive *S*. A negative *S* indicates that loading conditions are not sufficient to satisfy the development assumptions of this formula. Specifically stated, the following inequality must be satisfied when the equation for *S* is used:

$$\left[\frac{58HG}{(Dt)^{0.5}} + \frac{26.2\,C\,T\,t^{0.5}}{D^{1.5}} - G\right] > \frac{4.8BS_y t_b^2}{(Dt)^{1.5}}$$

When the equation for S is used, the shell thickness t must be greater than or equal to the annular-plate thickness  $t_b$ 

- T = difference between the minimum ambient temperature and the maximum design temperature (°C)
- $S_V$  = specified minimum yield strength of the bottom plate at the maximum design temperature (MPa)

- D = nominal tank diameter (m)
- H = difference in filling height between the full level and the low level (m)
- G = design specific gravity of the liquid
- t = nominal thickness of the tank's bottom shell course (mm)
- $t_b$  = nominal thickness of the annular bottom plate (mm)
- C = factor to account for radial restraint of the tank's shell-to-bottom junction with respect to free thermal expansion ( $C_{\text{max}} = 1.0$ ;  $C_{\text{min}} = 0.25$ ). The actual design value of *C* shall be established considering the tank's operating and warm-up procedure and heat transfer to the subgrade<sup>29</sup>
  - = 0.85 if no C factor is specified by the Purchaser
  - $B = \text{foundation factor}^{29}$ 
    - = 2.0 for tanks on earth foundations
    - = 4.0 for tanks on earth foundations with a concrete ringwall

In US Customary units:

$$N = \left(\frac{1.4 \times 10^6}{KS}\right)^{2.44}$$

(If N is greater than or equal to 1300, cycling at the shell-to-bottom junction is not a controlling factor.)

where

- N = number of design liquid level and temperature cycles estimated for the tank design life (usually less than 1300). This design procedure contains a conservative safety margin. It is not necessary to monitor actual in-service temperature and liquid head cycles
- K = stress concentration factor for the bottom plate at the toe of the inside shell-to-bottom fillet weld
  - = 4.0 for shell-to-bottom fillet welds and lap-welded bottom plates
  - = 2.0 for butt-welded annular plates where the shell-to-bottom fillet welds have been inspected by 100% magnetic particle examination (see 8.2). This magnetic particle examination shall be performed on the root pass at every 1/2 in. of deposited weld metal while the weld is being made and on the completed weld. The examination shall be performed before hydrostatic testing

$$S = \frac{0.033 D^2 t_b^{0.25}}{t} \times \left[ \frac{6.3 HG}{(Dt)^{0.5}} + \frac{436 CT t^{0.5}}{D^{1.5}} - \frac{BS_y t_b^2}{(Dt)^{1.5}} - G \right]$$

= one-half the maximum stress range that occurs in the annular plate at the shell-to-bottom junction weld, in pounds per square inch. The *H* and *CT* terms must be large enough to cause a positive *S*. A negative *S* indicates that loading conditions are not sufficient to satisfy the development assumptions of this formula. Specifically stated, the following inequality must be satisfied when the equation for *S* is used:

$$\left[\frac{6.3 HG}{(Dt)^{0.5}} + \frac{436 CTt^{0.5}}{D^{1.5}} - G\right] > \frac{BS_y t_b^2}{(Dt)^{1.5}}$$

When the equation for S is used, the shell thickness t must be greater than or equal to the annular-plate thickness  $t_b$ 

e

<sup>&</sup>lt;sup>29</sup>G. G. Karcher, "Stresses at the Shell-to-Bottom Junction of Elevated-Temperature Tanks," *1981 Proceedings—Refining Department*, Volume 60, American Petroleum Institute, Washington D.C. 1981, pp. 154 – 159.

- T = difference between the minimum ambient temperature and the maximum design temperature (°F).
- $S_V$  = specified minimum yield strength of the bottom plate at the maximum design temperature (lbf/in.<sup>2</sup>).
- D = nominal tank diameter (ft)
- H = difference in filling height between the full level and the low level (ft)
- G = design specific gravity of the liquid
- t = nominal thickness of the tank's bottom shell course (in.)
- $t_b$  = nominal thickness of the annular bottom plate (in.)
- C = factor to account for radial restraint of the tank's shell-to-bottom junction with respect to free thermal expansion ( $C_{\text{max}} = 1.0$ ;  $C_{\text{min}} = 0.25$ ). The actual design value of *C* shall be established considering the tank's operating and warm-up procedure and heat transfer to the subgrade<sup>29</sup>
  - = 0.85 if no *C* factor is specified by the Purchaser
- B =foundation factor<sup>29</sup>
  - = 2.0 for tanks on earth foundations
  - = 4.0 for tanks on earth foundations with a concrete ringwall

## M.5 Self-Supporting Roofs

**M.5.1** The requirements of 5.10.5 and 5.10.6, which are applicable to self-supporting roofs, shall be modified. For a maximum design temperature above 93°C (200°F), the calculated nominal thickness of roof plates, as defined in 5.10.5 and 5.10.6, shall be increased by the ratio of 199,000 MPa (28,800,000 lbf/in.<sup>2</sup>) to the material's modulus of elasticity at the maximum design temperature.

**M.5.2** Tables M-2a and M-2b shall be used to determine the material's modulus of elasticity at the maximum operating temperature.

## M.6 Wind Girders

In the equation for the maximum height of unstiffened shell in 5.9.7.1, the maximum height ( $H_1$ ) shall be reduced by the ratio of the material's modulus of elasticity at the maximum design temperature to 199,000 MPa (28,800,000 lbf/in.<sup>2</sup>) when the ratio is less than 1.0 (see Tables M-2a and M-2b for modulus of elasticity values).

|   | Maximum Design<br>Temperature | Modulus of Elasticity |
|---|-------------------------------|-----------------------|
|   | °C                            | МРа                   |
| - | 93                            | 199,000               |
|   | 150                           | 195,000               |
|   | 200                           | 191,000               |
|   | 260                           | 188,000               |
|   |                               |                       |

| Table M-2a—(SI) Modulus of El      | locticity of the May | inum Decian Temperatura   |
|------------------------------------|----------------------|---------------------------|
| $1aue_1v_2a - (50) v_000uus of El$ | iasucity at the max  | inium design remoerature. |
|                                    |                      |                           |

Note: Linear interpolation shall be applied for intermediate values.

07

| Maximum Design<br>Temperature | Modulus of Elasticity |
|-------------------------------|-----------------------|
| °F                            | lbf/in. <sup>2</sup>  |
| 200                           | 28,800,000            |
| 300                           | 28,300,000            |
| 400                           | 27,700,000            |
| 500                           | 27,300,000            |

Table M-2b-(USC) Modulus of Elasticity at the Maximum Design Temperature

Note: Linear interpolation shall be applied for intermediate values.

# APPENDIX N-USE OF NEW MATERIALS THAT ARE NOT IDENTIFIED

## N.1 General

New or unused plates and seamless or welded pipe that are not completely identified as complying with any listed specification may be used in the construction of tanks covered by this Standard, under the conditions specified in N.2.

## N.2 Conditions

- **N.2.1** A material may be used if an authentic test record for each heat or heat-treating lot of material is available that proves that the material has chemical requirements and mechanical properties within the permissible range of a specification listed in this Standard. If the test requirements of the listed specification are more restrictive than any specification or authentic tests that have been reported for the material, more restrictive tests shall be performed in accordance with the requirements of the listed specification, and the results shall be submitted to the Purchaser for approval.
- **N.2.2** If an authentic test record is not available or if all the material cannot be positively identified with the test record by legible stamping or marking, the following requirements apply:

a. Each plate shall be subjected to the chemical analysis and physical tests required by the designated specification, with the following modifications: The carbon and manganese contents shall be determined in all check analyses. When the designated specification does not specify carbon and manganese limits, the Purchaser shall decide whether these contents are acceptable. When the direction of rolling is not definitely known, two tension specimens shall be taken at right angles to each other from a corner of each plate, and one tension specimen shall meet the specification requirements.

b. Each length of pipe shall be subjected to a chemical check analysis and sufficient physical tests to satisfy the Purchaser that all of the material is properly identified with a given heat or heat-treatment lot and that the chemical and physical requirements of the designated specification are met. Material specified as suitable for welding, cold bending, close coiling, and the like shall be given sufficient check tests to satisfy the Purchaser that each length of material is suitable for the fabrication procedure to be used.

**N.2.3** Charpy V-notch impact tests must be performed when required by Figure 4-1 to verify that the material possesses the toughness required by Tables 4-4a and 4-4b.

08

- **N.2.4** After a material is properly identified with a designated specification and the Purchaser is satisfied that the material complies with the specification in all respects, the testing agency shall stencil or otherwise mark, as permitted by the specification, a serial *S* number on each plate or each length of pipe (or as alternatively provided for small sizes in the specification) in the presence of the Purchaser.
- N.2.5 Suitable report forms clearly marked "Report on Tests of Nonidentified Materials" shall be furnished by the tank Manufacturer or testing agency. The forms shall be properly filled out, certified by the testing agency, and approved by the Purchaser.
- **N.2.6** The Purchaser shall have the right to accept or reject the testing agency or the test results.

**N.2.7** The requirements for fabrication applicable to the designated specification to which the nonidentified material corresponds shall be followed, and the allowable design stress values shall be those specified in this Standard for the corresponding specification.

# APPENDIX O—RECOMMENDATIONS FOR UNDER-BOTTOM CONNECTIONS

# O.1 Scope

This appendix contains recommendations to be used for the design and construction of under-bottom connections for storage tanks. The recommendations are offered to outline good practice and to point out certain precautions that are to be observed. Reference should be made to Appendix B for considerations involving foundation and subgrade.

# **O.2** Recommendations

**O.2.1** The recommendations of this appendix are intended for use only where significant foundation settlement is not expected. It is not possible to establish precise limits, but if predicted settlement exceeds 13 mm ( $^{1}/_{2}$  in.), the recommendations should be subjected to detailed engineering review for possible additions, modifications, or elimination of bottom connections. Particular consideration shall be given to possible differential settlement in the immediate area of the bottom connection and with respect to connecting piping.

• **O.2.2** The arrangement and details of bottom connections may be varied to achieve the utility, tightness, and strength required for the prevailing foundation conditions. The details shown in Figures O-1, O-2, and O-3 are examples. Figures O-1 and O-2 show details used on a concrete ringwall foundation, but similar designs may be used on earth foundations. Figure O-3 shows another detail used on earth foundations. Other arrangements of foundation and connection (including combination sump and pipe) may be used under the provisions of O.2.6. When required by the Purchaser, seismic considerations (see Appendix E) shall be included.

**O.2.3** Support of the pipe by the soil and bottom connection shall be evaluated to confirm adequacy and resistance to liquid, static, and dynamic loads. Both deflection and stress shall be considered in the evaluation.

**O.2.4** Consideration shall be given to predicted settlement that would affect the relative positions of the tank and pipe or pipe supports outside the tank (see O.2.1).

**O.2.5** Bottom connections used in floating-roof tanks shall be provided with a baffle to prevent impingement of the inlet product stream directly against the floating roof.

• **O.2.6** All details are subject to agreement between the Purchaser and the Manufacturer.

# O.3 Guideline Examples

## 0.3.1 CONCRETE VAULT AND RINGWALL (SEE FIGURES O-1 AND O-2)

**O.3.1.1** The concrete ceiling vault shown in Figure O-2 provides improved support of the tank bottom and shell and provides more uniform reinforcing-bar distribution around the ringwall opening than the details shown in Figure O-1 provide.

**O.3.1.2** Particular attention is required for the backfill specifications and placement of the backfill around the vault area and around the inside of the entire ringwall. Compaction shall be adequate to prevent significant localized settlement.

**O.3.1.3** Consideration should be given to the soil characteristics at the different elevations at the bottom of the ringwall and the vault, especially for the deeper vaults to accommodate the larger connections.

• **O.3.1.4** Recommended details and dimensions are shown in Figures O-1 and O-2 and Tables O-1a and O-1b. Dimension *K* is considered adequate to place the connection out of the influence of shell-to-bottom rotation when the tank is statically loaded. Seismic loading shall be analyzed for additional considerations. The method shall be a matter of agreement between the Manufacturer and the Purchaser. When the tank bottom has annular plates (thicker than the tank bottom), it is recommended either to provide at least 300 mm (12 in.) between the edge of the pipe connection or reinforcing plate and the inner edge of the annular plate or to locally extend the annular plate, thickened if necessary, to encompass the bottom connection. The dimensions in Tables O-1a and O-1b may be changed to achieve desired clearances for installations, inspections, and the like.

**O.3.1.5** Concrete walls, floors, and ceilings shall be designed to meet the minimum requirements of ACI 318 and local soil conditions.

|                            |             |     | Table O | -1a-(31) | Dimension | IS OF UTU | er-Dollom | Connectio | ліз  |    |                 |
|----------------------------|-------------|-----|---------|----------|-----------|-----------|-----------|-----------|------|----|-----------------|
| Inlet<br>Diameter<br>NPS - |             |     |         |          |           | mm        |           |           |      |    |                 |
| D                          | <i>B</i> /2 | E   | F       | G        | Н         | J         | Κ         | L         | W/2  | Ta | ST <sup>b</sup> |
| 6                          | 525         | 225 | 350     | 750      | 575       | 300       | 1125      | 1975      | 925  | 16 | ST4WF8.5        |
| 8                          | 550         | 250 | 400     | 825      | 650       | 300       | 1150      | 2050      | 950  | 16 | ST4WF8.5        |
| 12                         | 600         | 300 | 450     | 875      | 750       | 300       | 1200      | 2150      | 1000 | 16 | ST6WF13.5       |
| 18                         | 675         | 375 | 500     | 950      | 900       | 300       | 1300      | 2325      | 1075 | 16 | ST6WF13.5       |
| 24                         | 750         | 450 | 600     | 1050     | 1075      | 300       | 1400      | 2550      | 1150 | 16 | ST6WF13.5       |
| 30                         | 850         | 525 | 750     | 1150     | 1300      | 300       | 1500      | 2750      | 1225 | 16 | ST6WF13.5       |
| 36                         | 925         | 625 | 925     | 1275     | 1550      | 300       | 1625      | 3000      | 1300 | 16 | ST8WF18.0       |
| 42                         | 1000        | 700 | 1075    | 1375     | 1775      | 300       | 1725      | 3200      | 1375 | 16 | ST8WF18.0       |
| 48                         | 1075        | 825 | 1225    | 1475     | 2025      | 300       | 1825      | 3400      | 1450 | 16 | ST8WF18.0       |

Table O-1a-(SI) Dimensions of Under-Bottom Connections

<sup>a</sup>Applies only to Figure O-1. For tank heights greater than 19.2 mm – 21.6 mm inclusive, 19-mm plate shall be used. *T* shall not be less than the thickness of the annular plate.

<sup>b</sup>Other composite sections may be used to support the load.

Note: See Figures O-1 and O-2. For diameters not shown, the dimensions of the next larger size shall be used.

08

| Table O-1b | —(USC) | Dimensions | of | Under | -Bottom | Connections |
|------------|--------|------------|----|-------|---------|-------------|
|------------|--------|------------|----|-------|---------|-------------|

| Inlet<br>Diameter<br>NPS - |             |    |    |    |    | in. |    |     |     |                 |           |
|----------------------------|-------------|----|----|----|----|-----|----|-----|-----|-----------------|-----------|
| D                          | <i>B</i> /2 | E  | F  | G  | Н  | J   | Κ  | L   | W/2 | Ta              | $ST^b$    |
| 6                          | 21          | 9  | 14 | 30 | 23 | 12  | 44 | 78  | 36  | <sup>5</sup> /8 | ST4WF8.5  |
| 8                          | 22          | 10 | 16 | 32 | 26 | 12  | 45 | 81  | 37  | <sup>5</sup> /8 | ST4WF8.5  |
| 12                         | 24          | 12 | 18 | 34 | 30 | 12  | 47 | 85  | 39  | <sup>5</sup> /8 | ST6WF13.5 |
| 18                         | 27          | 15 | 20 | 37 | 35 | 12  | 51 | 92  | 42  | <sup>5</sup> /8 | ST6WF13.5 |
| 24                         | 30          | 18 | 24 | 41 | 42 | 12  | 55 | 100 | 45  | <sup>5</sup> /8 | ST6WF13.5 |
| 30                         | 33          | 21 | 30 | 45 | 51 | 12  | 59 | 108 | 48  | <sup>5</sup> /8 | ST6WF13.5 |
| 36                         | 36          | 25 | 36 | 50 | 61 | 12  | 64 | 118 | 51  | <sup>5</sup> /8 | ST8WF18.0 |
| 42                         | 39          | 28 | 42 | 54 | 70 | 12  | 68 | 126 | 54  | <sup>5</sup> /8 | ST8WF18.0 |
| 48                         | 42          | 32 | 48 | 58 | 80 | 12  | 72 | 134 | 57  | <sup>5</sup> /8 | ST8WF18.0 |

<sup>a</sup>Applies only to Figure O-1. For tank heights greater than 64 ft – 72 ft inclusive, 3/4-in. plate shall be used. *T* shall not be less than the thickness of the annular plate.

<sup>b</sup>Other composite sections may be used to support the load.

Note: See Figures O-1 and O-2. For diameters not shown, the dimensions of the next larger size shall be used.

# O.3.2 EARTH FOUNDATION (SEE FIGURE O-3)

**O.3.2.1** The detail shown in Figure O-3 provides an alternative arrangement for tanks where a concrete ringwall is not provided.

**O.3.2.2** Soil and backfill support capability shall be evaluated to ensure that reasonably uniform settlement (if any) will occur under the loads imposed.

**O.3.2.3** When the pipe is connected to the bottom at an angle, consideration should be given to design for unbalanced forces if the pipe is trimmed flush with the bottom.

**O.3.2.4** When seismically-induced loadings are specified, such loadings under the tank bottom and shell shall be considered when the depth and type of backfill around and over the pipe are selected.

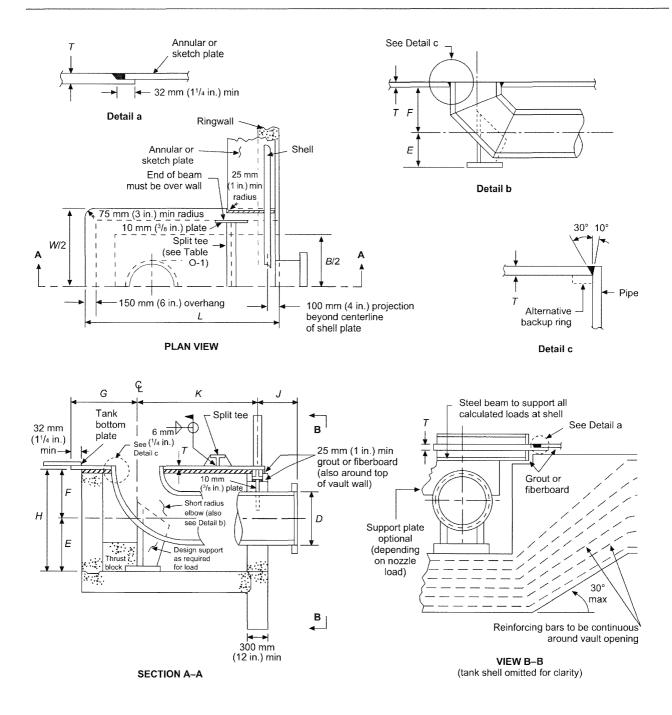
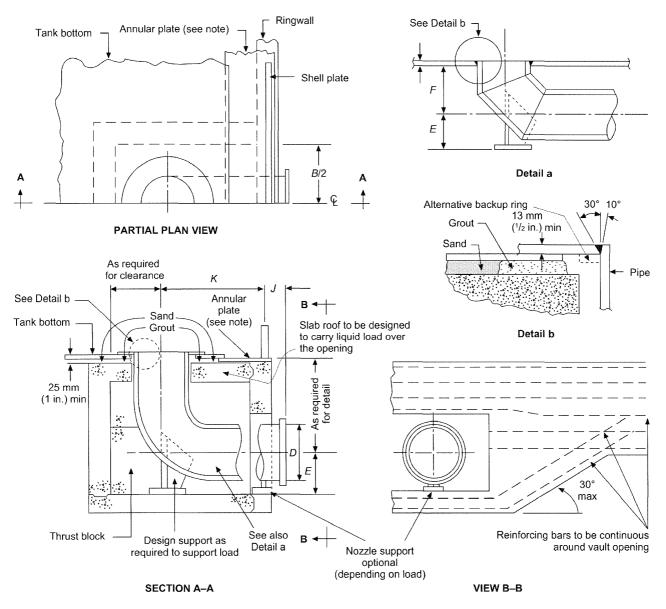
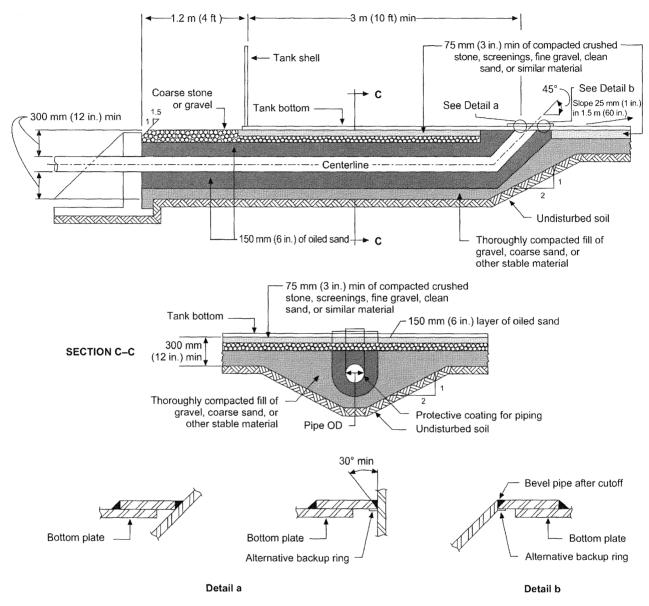





Figure O-1—Example of Under-Bottom Connection with Concrete Ringwall Foundation



Note: If sketch plates are used, a full plate shall be located over the vault.

Figure O-2—Example of Under-Bottom Connection with Concrete Ringwall Foundation and Improved Tank Bottom and Shell Support



Note: This type of connection shall not be used for tanks with a diameter of less than 6 m (20 ft).

Figure O-3—Example of Under-Bottom Connection with Earth-Type Foundation

# APPENDIX P-ALLOWABLE EXTERNAL LOADS ON TANK SHELL OPENINGS

# P.1 Introduction

This appendix shall be used (unless specified otherwise by the Purchaser on Line 29 of the Data Sheet) for tanks larger than 36 m (120 ft) in diameter, and only when specified by the Purchaser for tanks 36 m (120 ft) in diameter and smaller. See W.2(5) for additional requirements.

This appendix presents two different procedures to determine external loads on tank shells. Section P.2 establishes limit loads and P.3 is based on allowable stresses. This appendix is based on H. D. Billimoria and J. Hagstrom's "Stiffness Coefficients and Allowable Loads for Nozzles in Flat Bottom Storage Tanks" and H. D. Billimoria and K. K. Tam's "Experimental Investigation of Stiffness Coefficients and Allowable Loads for a Nozzle in a Flat Bottom Storage Tank."

# P.2 Limit Loads

### P.2.1 SCOPE

This appendix establishes requirements for the design of storage-tank openings that conform to Tables 5-6a and 5-6b and will be subjected to external piping loads. The requirements of this appendix represent accepted practice for the design of shell openings in the lower half of the bottom shell course that have a minimum elevation from the tank bottom and meet the requirements of Tables 5-6a and 5-6b. It is recognized that the Purchaser may specify other procedures, special factors, and additional requirements. Any deviation from these requirements shall be mutually agreed upon by the Purchaser and the Manufacturer.

# • P.2.2 GENERAL

The design of an external piping system that will be connected to a thin-walled, large-diameter cylindrical vertical storage tank may pose a problem in the analysis of the interface between the piping system and the tank opening connections. The piping designer must consider the stiffness of the tank shell and the radial deflection and meridional rotation of the shell opening at the opening-shell connection resulting from product head, pressure, and uniform or differential temperature between the shell and the bottom. The work of the piping designer and the tank designer must be coordinated to ensure that the piping loads imposed on the shell opening by the connected piping are within safe limits. Although three primary forces and three primary moments may be applied to the mid-surface of the shell at an opening connection, only one force,  $F_R$ , and two moments,  $M_L$  and  $M_C$ , are normally considered significant causes of shell deformation (see P.2.3 for a description of the nomenclature).

#### P.2.3 NOMENCLATURE

- a = outside radius of the opening connection (mm) (in.)
- E = modulus of elasticity (MPa) (lbf/in.<sup>2</sup>) (see Tables P-1a and P-1b)
- $F_R$  = radial thrust applied at the mid-surface of the tank shell at the opening connection (N) (lbf)
- $F_P$  = pressure end load on the opening for the pressure resulting from the design product head at the elevation of the opening centerline,  $\pi a^2 P(N)$  (lbf)
- G = design specific gravity of the liquid
- H = maximum allowable tank filling height (mm) (in.)
- $K_C$  = stiffness coefficient for the circumferential moment (N-mm/radian) (in.-lbf/radian)
- $K_L$  = stiffness coefficient for the longitudinal moment (N-mm/radian) (in.-lbf/radian)
- $K_R$  = stiffness coefficient for the radial thrust load (N/mm) (lbf/in.)
- L = vertical distance from the opening centerline to the tank bottom (mm) (in.)
- $M_C$  = circumferential moment applied to the mid-surface of the tank shell (N-mm) (in.-lbf)
- $M_L$  = longitudinal moment applied to the mid-surface of the tank shell (N-mm) (in.-lbf)

08

| Design<br>Temperature | Modulus of Elasticity<br>(MPa) | Thermal Expansion Coefficient <sup>a</sup> |
|-----------------------|--------------------------------|--------------------------------------------|
| °C                    | E E                            | $(mm \times 10^{-6}/[mm^{-\circ}C])$       |
| 20                    | 203,000                        |                                            |
| 93                    | 199,000                        | 12.0                                       |
| 150                   | 195,000                        | 12.4                                       |
| 200                   | 191,000                        | 12.7                                       |
| 260                   | 188,000                        | 13.1                                       |
|                       |                                |                                            |

Table P-1a-(SI) Modulus of Elasticity and Thermal Expansion Coefficient at the Design Temperature

<sup>a</sup>Mean coefficient of thermal expansion, going from 20°C to the temperature indicated. Note: Linear interpolation may be applied for intermediate values.

| Table P-1b—(USC) Modulus of Elasticity and Thermal Expansion Coefficient at the Design Tempera |
|------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------|

| Design<br>Temperature<br>°F | Modulus of Elasticity<br>(lbf/in. <sup>2</sup> )<br><i>E</i> | Thermal Expansion Coefficient <sup>a</sup><br>(in. × 10 <sup>-6</sup> per in°F) |
|-----------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------|
| Г                           |                                                              | (III. × 10 ° per III.= 1')                                                      |
| 70                          | 29,500,000                                                   |                                                                                 |
| 200                         | 28,800,000                                                   | 6.67                                                                            |
| 300                         | 28,300,000                                                   | 6.87                                                                            |
| 400                         | 27,700,000                                                   | 7.07                                                                            |
| 500                         | 27,300,000                                                   | 7.25                                                                            |
|                             |                                                              |                                                                                 |

<sup>a</sup>Mean coefficient of thermal expansion, going from 70°F to the temperature indicated. Note: Linear interpolation may be applied for intermediate values.

- P = pressure resulting from product head at the elevation of the opening centerline (MPa) (lbf/in.<sup>2</sup>)
- R = nominal tank radius (mm) (in.)
- t = shell thickness at the opening connection (mm) (in.)
- $\Delta T$  = normal design temperature minus installation temperature (°C) (°F)
- W = unrestrained radial growth of the shell (mm) (in.)
- $W_R$  = resultant radial deflection at the opening connection (mm) (in.)

$$X_A = L + a \text{ (mm) (in.)}$$

$$X_B = L - a \text{ (mm) (in.)}$$

$$X_C = L \text{ (mm) (in.)}$$

- $Y_C$  = coefficient determined from Figure P-4B
- $Y_F$ ,  $Y_L$  = coefficients determined from Figure P-4A
  - $\alpha$  = thermal expansion coefficient of the shell material (mm/[mm-°C]) (in./[in.-°F]) (see Tables P-1a and P-1b)
  - $\beta$  = characteristic parameter, 1.285/(*Rt*)<sup>0.5</sup> (1/mm) (1/in.)
  - $\lambda = a/(Rt)^{0.5}$
  - $\theta$  = unrestrained shell rotation resulting from product head (radians)
  - $\theta_C$  = shell rotation in the horizontal plane at the opening connection resulting from the circumferential moment (radians)

08

11

 $\theta_L$  = shell rotation in the vertical plane at the opening connection resulting from the longitudinal moment (radians)

# P.2.4 STIFFNESS COEFFICIENTS FOR OPENING CONNECTIONS

The stiffness coefficients  $K_R$ ,  $K_L$ , and  $K_C$  corresponding to the piping loads  $F_R$ ,  $M_L$ , and  $M_C$  at an opening connection, as shown in Figure P-1, shall be obtained by the use of Figures P-2A through P-2L. Figures P-2A through P-2L shall be used to interpolate intermediate values of coefficients.

# P.2.5 SHELL DEFLECTION AND ROTATION

# P.2.5.1 Radial Growth of Shell

The unrestrained outward radial growth of the shell at the center of the opening connection resulting from product head and/or thermal expansion shall be determined as follows:

In SI units:

$$W = \frac{9.8 \times 10^{-6} GHR^2}{Et} \times \left[1 - e^{-\beta L} \cos(\beta L) - \frac{L}{H}\right] + \alpha R \Delta T$$

In US Customary units:

$$W = \frac{0.036 \, GHR^2}{Et} \times \left[1 - e^{-\beta L} \cos \left(\beta L\right) - \frac{L}{H}\right] + \alpha R \Delta T$$

#### P.2.5.2 Rotation of Shell

The unrestrained rotation of the shell at the center of the nozzle-shell connection resulting from product head shall be determined as follows:

In SI units:

$$\theta = \frac{9.8 \times 10^{-6} GHR^2}{Et} \times \left\{ \frac{1}{H} - \beta e^{-\beta L} [\cos(\beta L) + \sin(\beta L)] \right\}$$

In US Customary units:

$$\theta = \frac{0.036 \, GHR^2}{Et} \times \left\{ \frac{1}{H} - \beta e^{-\beta L} [\cos(\beta L) + \sin(\beta L)] \right\}$$

### P.2.6 DETERMINATION OF LOADS ON THE OPENING CONNECTION

The relationship between the elastic deformation of the opening connection and the external piping loads is expressed as follows:

$$W_R = \frac{F_R}{K_R} - L \tan\left(\frac{M_L}{K_L}\right) + W$$
$$\theta_L = \frac{M_L}{K_L} - \tan^{-1}\left(\frac{F_R}{LK_R}\right) + \theta$$
$$\theta_C = \frac{M_C}{K_C}$$

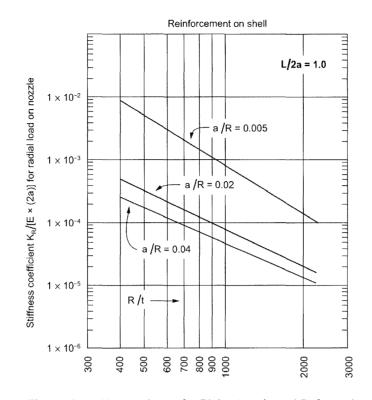



Figure P-1—Nomenclature for Piping Loads and Deformation

 $K_R$ ,  $K_L$ , and  $K_C$  are the shell stiffness coefficients determined from Figures P-2A through P-2L.  $W_R$ ,  $\theta_L$ , and  $\theta_C$  are the resultant radial deflection and rotation of the shell at the opening connection resulting from the piping loads  $F_R$ ,  $M_L$ , and  $M_C$  and the product head, pressure, and uniform or differential temperature between the shell and the tank bottom.  $F_R$ ,  $M_L$ , and  $M_C$  shall be obtained from analyses of piping flexibility based on consideration of the shell stiffness determined from Figures P-2A through P-2L, the shell deflection and rotation determined as described in P.2.5.1 and P.2.5.2, and the rigidity and restraint of the connected piping system.

# P.2.7 DETERMINATION OF ALLOWABLE LOADS FOR THE SHELL OPENING

### P.2.7.1 Construction of Nomograms

**11 P.2.7.1.1** Determine the nondimensional quantities  $X_A/(Rt)^{0.5}$ ,  $X_B/(Rt)^{0.5}$ , and  $X_C/(Rt)^{0.5}$  for the opening configuration under consideration.

**P.2.7.1.2** Lay out two sets of orthogonal axes on graph paper, and label the abscissas and ordinates as shown in Figures P-3A and P-3B, where  $Y_C$ ,  $Y_F$  and  $Y_L$  are coefficients determined from Figures P-4A and P-4B.

**P.2.7.1.3** Lay out two sets of orthogonal axes on graph paper, and label the abscissas and ordinates as shown in Figures P-3A and P-3B, where  $Y_C$ ,  $Y_E$  and  $Y_L$  are coefficients determined from Figures P-4A and P-4B.

**P.2.7.1.4** Construct four boundaries for Figure P-3A and two boundaries for Figure P-3B. Boundaries  $b_1$  and  $b_2$  shall be constructed as lines at 45-degree angles between the abscissa and the ordinate. Boundaries  $c_1$ ,  $c_2$ , and  $c_3$  shall be constructed as lines at 45-degree angles passing through the calculated value indicated in Figures P-3A and P-3B plotted on the positive x axis.

#### P.2.7.2 Determination of Allowable Loads

**P.2.7.2.1** Use the values for  $F_R$ ,  $M_L$ , and  $M_C$  obtained from the piping analyses to determine the quantities  $(\lambda/2Y_F)$   $(F_R/F_P)$ ,  $(\lambda/aY_L)(M_L/F_P)$ , and  $(\lambda/aY_C)(M_C/F_P)$ .

**P.2.7.2.2** Plot the point  $(\lambda/2Y_F)(F_R/F_P)$ ,  $(\lambda/aY_L)(M_L/F_P)$  on the nomogram constructed as shown in Figure P-5A.

**P.2.7.2.3** Plot the point  $(\lambda/2Y_F)(F_R/F_P)$ ,  $(\lambda/aY_C)(M_C/F_P)$  on the nomogram constructed as shown in Figure P-5B.

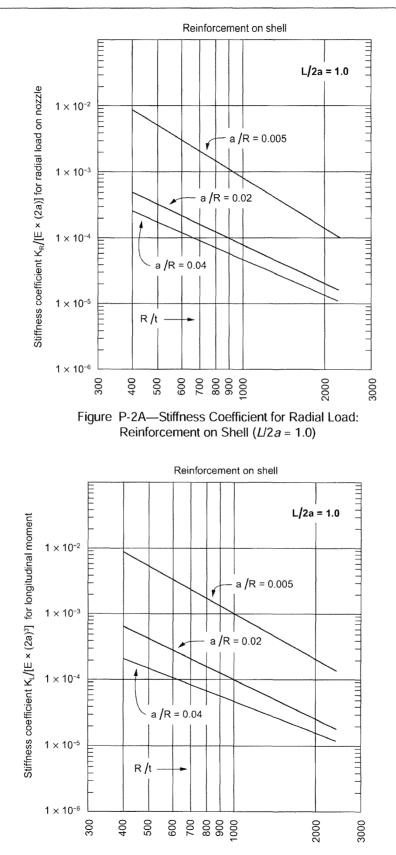



Figure P-2B—Stiffness Coefficient for Longitudinal Moment: Reinforcement on Shell (L/2a = 1.0)

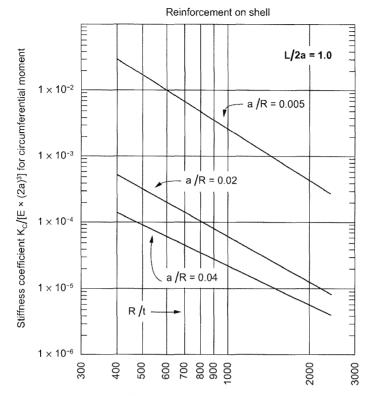
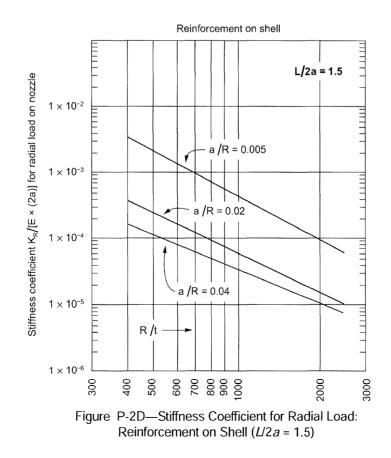




Figure P-2C—Stiffness Coefficient for Circumferential Moment: Reinforcement on Shell (L/2a = 1.0)



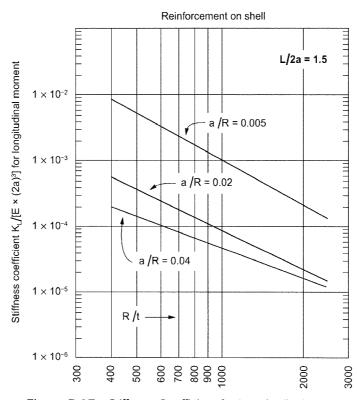
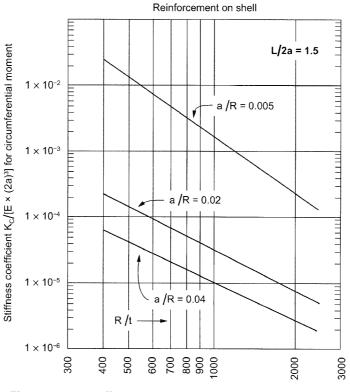
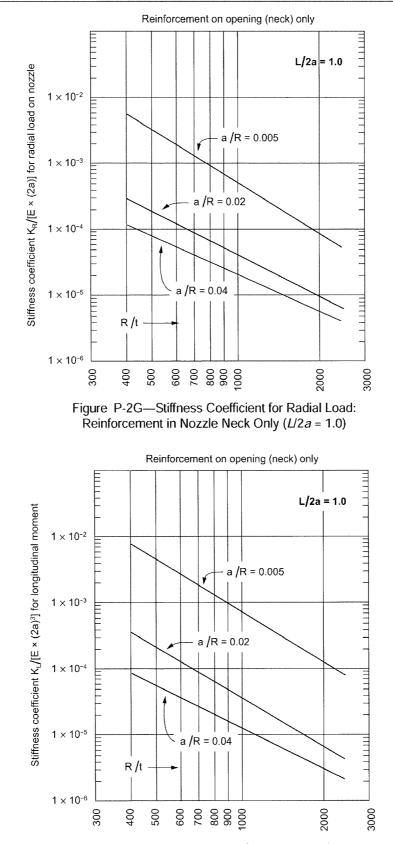
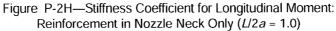
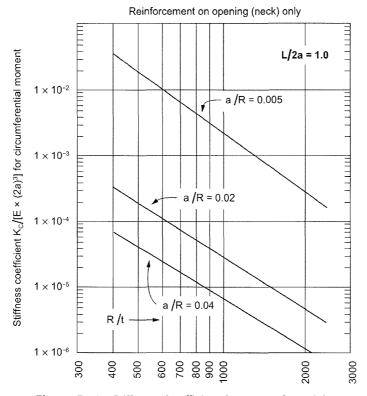
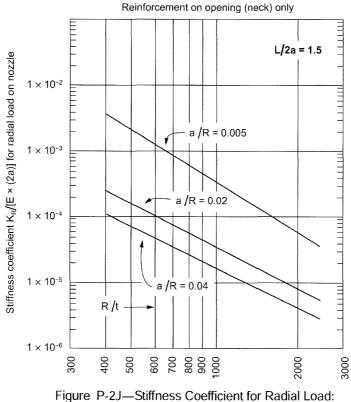
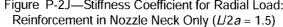



Figure P-2E—Stiffness Coefficient for Longitudinal Moment: Reinforcement on Shell (L/2a = 1.5)




Figure P-2F—Stiffness Coefficient for Circumferential Moment: Reinforcement on Shell (L/2a = 1.5)













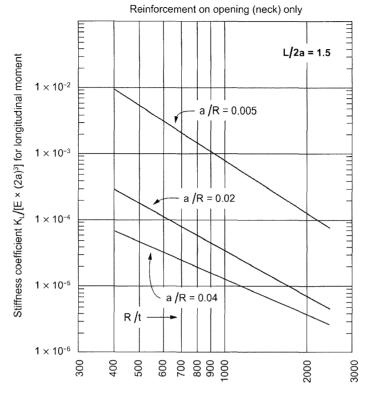
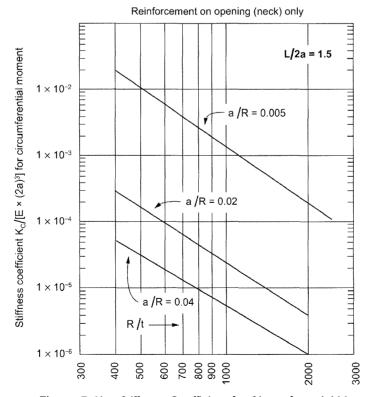
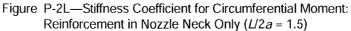






Figure P-2K—Stiffness Coefficient for Longitudinal Moment: Reinforcement in Nozzle Neck Only (L/2a = 1.5)





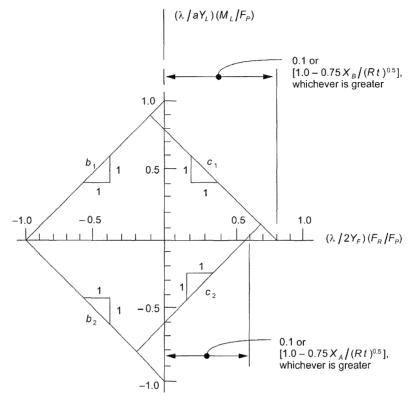



Figure P-3A—Construction of Nomogram for  $b_1$ ,  $b_2$ ,  $c_1$ ,  $c_2$  Boundary

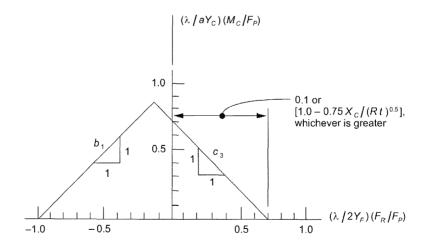
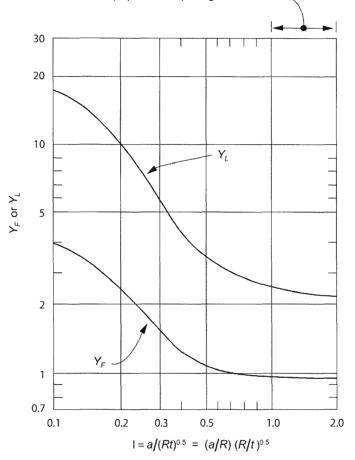




Figure P-3B—Construction of Nomogram for b<sub>1</sub>, c<sub>3</sub> Boundary



Two-thirds of the required reinforced area must be located within a + 0.5 (Rt)<sup>0.5</sup> of the opening centerline

Figure P-4A—Obtaining Coefficients  $Y_F$  and  $Y_L$ 

**P.2.7.2.4** The external piping loads  $F_R$ ,  $M_L$ , and  $M_C$  to be imposed on the shell opening are acceptable if both points determined from P.2.7.2.2 and P.2.7.2.3 lie within the boundaries of the nonograms constructed for the particular opening-tank configuration.

#### P.2.8 MANUFACTURER AND PURCHASER RESPONSIBILITY

- **P.2.8.1** The Manufacturer is responsible for furnishing to the Purchaser the shell stiffness coefficients (see P.2.4) and the unrestrained shell deflection and rotation (see P.2.5). The Purchaser is responsible for furnishing to the Manufacturer the magnitude of the shell-opening loads (see P.2.6). The Manufacturer shall determine, in accordance with P.2.7, the acceptability of the shellopening loads furnished by the Purchaser. If the loads are excessive, the piping configuration shall be modified so that the shellopening loads fall within the boundaries of the nomograms constructed as in P.2.7.1.
- **P.2.8.2** Changing the elevation of the opening and changing the thickness of the shell are alternative means of reducing stresses, but because these measures can affect fabrication, they may be considered only if mutually agreed upon by the Purchaser and the Manufacturer.

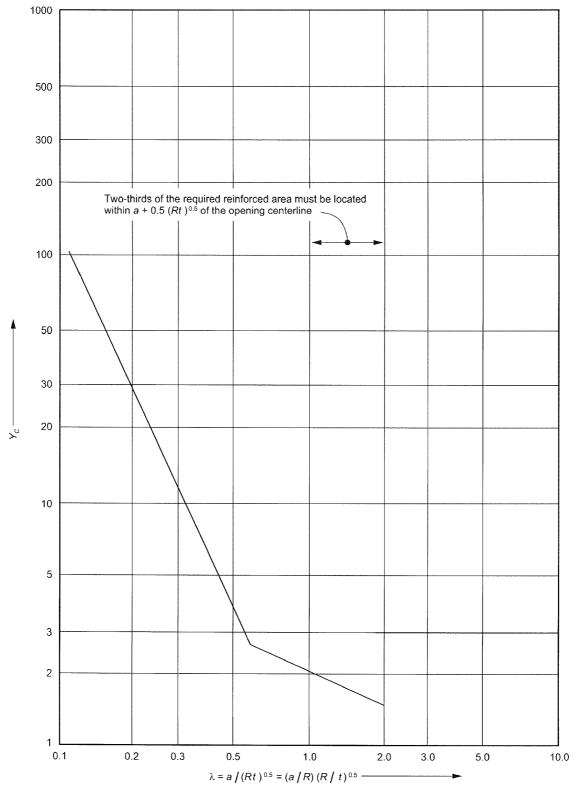



Figure P-4B—Obtaining Coefficient  $Y_C$ 

# P.2.9 SAMPLE PROBLEM

# P.2.9.1 Problem

A tank is 80 m (260 ft) in diameter and 19.2 m (64 ft) high, and its bottom shell course is 34 mm (1.33 in.) thick. The tank has a low-type nozzle with an outside diameter of 610 mm (24 in.) in accordance with API Std 650, and the nozzle centerline is 630 mm (24.75 in.) up from the bottom plate, with reinforcement on the shell (see Figure P-6). What are the end conditions (W,  $\theta$ ,  $K_R$ ,  $K_L$ , and  $K_C$ ) for an analysis of piping flexibility? What are the limit loads for the nozzle?

- a = 305 mm (12 in.),
- L = 630 mm (24.75 in.),

 $H = 19,200 \text{ mm} (64 \times 12 = 768 \text{ in.}),$ 

 $\Delta T = 90^{\circ} - 20^{\circ} = 70^{\circ} \text{C} (200^{\circ} - 70^{\circ} = 130^{\circ} \text{F}),$ 

$$R = 80,000/2 = 40,000 \text{ mm} ((260 \times 12)/2 = 1560 \text{ in.}),$$

11

t = 34 mm (1.33 in.).

### P.2.9.2 Solution

P.2.9.2.1 Calculate the stiffness coefficients for the nozzle-tank connection:

R/t = 40,000/34 = 1176 (1560/1.33 = 1173)

a/R = 305/40,000 = 0.008 (12/1560 = 0.008)

L/2a = 630/610 @ 1.0 (24.75/24 @ 1.0)

11 For the radial load (from Figure P-2A),

In SI units:

$$\frac{K_R}{E(2a)} = 3.1 \times 10^{-4}$$
  

$$K_R = (3.1 \times 10^{-4}) (199,000 \text{ N/mm}^2) (610 \text{ mm})$$
  

$$= 3.9 \times 10^4 \text{ N/mm}$$

11

In US Customary units:

$$\frac{K_R}{E(2a)} = 3.1 \times 10^{-4}$$
  

$$K_R = (3.1 \times 10^{-4})(28.8 \times 10^6 \text{ lb/in.}^2)(24 \text{ in.})$$
  

$$= 2.14 \times 10^5 \text{ lbf/in.}$$

11

For the longitudinal moment (from Figure P-2B),

In SI units:

$$\frac{K_L}{E(2a)^3} = 4.4 \times 10^{-4}$$
$$K_L = (4.4 \times 10^{-4}) (199,000 \text{ N/mm}^2) (610 \text{ mm})^3$$
$$= 2.0 \times 10^{10} \text{ N-mm/rad}$$

In US Customary units:

11

$$\frac{K_L}{E(2a)^3} = 4.3 \times 10^{-4}$$
$$K_L = (4.3 \times 10^{-4})(28.8 \times 10^6)(24)^3$$
$$= 1.7 \times 10^8 \text{ in.-lb/rad}$$

For the circumferential moment (from Figure P-2C), In SI units:

$$\frac{K_C}{E(2a)^3} = 9.4 \times 10^{-4}$$
$$K_C = (9.4 \times 10^{-4}) (199,000 \text{ N/mm}^2) (610 \text{ mm})^3$$
$$= 4.2 \times 10^{10} \text{ N-mm/rad}$$

In US Customary units:

$$\frac{K_C}{E(2a)^3} = 9.3 \times 10^{-4}$$

$$K_C = (9.3 \times 10^{-4}) (28.8 \times 10^6) (24)^3$$

$$= 3.7 \times 10^8 \text{ in.-lb/rad}$$
11

P.2.9.2.2 Calculate the unrestrained shell deflection and rotation at the nozzle centerline resulting from the hydrostatic head of the full tank:

In SI units:

$$\beta = \frac{1.285}{(Rt)^{0.5}} = \frac{1.285}{(40,000 \times 34)^{0.5}} = 0.00110/\text{mm}$$

$$\beta L = (0.00110)(630) = 0.7 \text{ rad}$$

$$W = \frac{9.8 \times 10^{-6} GHR^2}{Et} \Big[ 1 - e^{-\beta L} \cos(\beta L) - \frac{L}{H} \Big] + \alpha R \Delta T$$

$$= \frac{(9.8 \times 10^{-6})(1)(19,200)(40,000)^2}{(199,000)(34)}$$

$$\Big[ 1 - e^{0.7} \cos(0.7) - \frac{630}{19,200} \Big] + (12.0 \times 10^{-6})(40,000)(70)$$

$$= 59.77 \text{ mm}$$

$$\theta = \frac{9.8 \times 10^{-6} GHR^2}{Et} \Big\{ \frac{1}{H} - \beta e^{-\beta L} [\cos(\beta L) + \sin(\beta L)] \Big\}$$

$$= \frac{(9.8 \times 10^{-6})(1)(19,200)(40,000)^2}{(199,000)(34)}$$

$$\Big\{ \frac{1}{19,200} - 0.0011e^{-0.7} [\cos(0.7) + \sin(0.7)] \Big\}$$

$$= -0.032 \text{ rad}$$

11

11

.

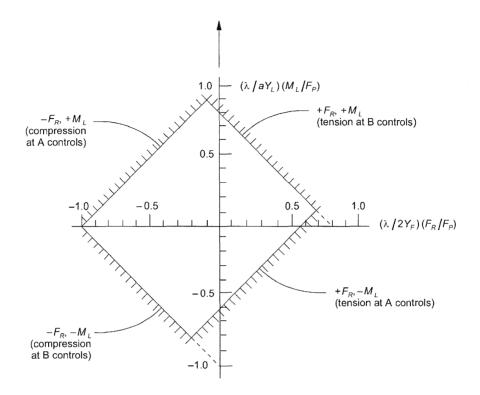



Figure P-5A—Determination of Allowable Loads from Nomogram:  $F_R$  and  $M_L$ 

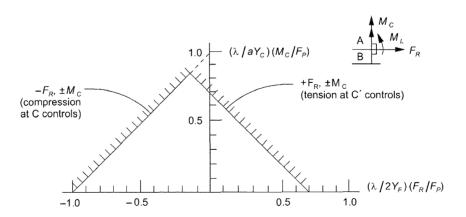
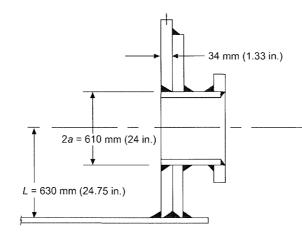




Figure P-5B—Determination of Allowable Loads from Nomogram:  $F_R$  and  $M_C$ 





In US Customary units:

$$\beta = \frac{1.285}{(Rt)^{0.5}} = \frac{1.285}{(1560 \times 1.33)^{0.5}} = 0.0282/\text{in.}$$

$$\beta L = (0.0282)(24.75) = 0.7 \text{ rad}$$

$$W = \frac{0.036 \, GHR^2}{Et} \left[ 1 - e^{-\beta L} \cos(\beta L) - \frac{L}{H} \right] + \alpha R \Delta T$$

$$= \frac{0.036(1)(768)(1560)^2}{(28.8 \times 10^6)(1.33)} \left[ 1 - e^{-0.7} \cos(0.7) - \frac{24.75}{768} \right]$$

$$+ (6.67 \times 10 - 6)(1560)(130)$$

$$= 2.39 \text{ in.}$$

$$\theta = \frac{0.036 \, GHR^2}{Et} \left\{ \frac{1}{H} - \beta e^{-\beta L} [\cos(\beta L) + \sin(\beta L)] \right\}$$

$$= \frac{0.036(1)(768)(1560)^2}{(28.8 \times 10^6)(1.33)} \left\{ \frac{1}{768} - 0.0282 \, e^{-0.7} [\cos(0.7) + \sin(0.7)] \right\}$$

$$= -0.032 \text{ rad}$$

$$11$$

Perform the analysis of piping flexibility using  $W_{t} \theta$ ,  $K_{R}$ ,  $K_{L}$ , and  $K_{C}$  as the end conditions at the nozzle-to-piping connection.

 $X_A = 935 \text{ mm}$  (36.75 in.)  $X_B = 325 \text{ mm}$  (12.75 in.)  $X_C = 630 \text{ mm}$  (24.75 in.)

Determine the allowable loads for the shell opening, as shown in P.9.2.3.

# **P.2.9.2.3** Determine the nondimensional quantities:

In SI units:

$$\frac{X_A}{(Rt)^{0.5}} = \frac{935}{[(40,000)(34)]^{0.5}} = 0.80$$
$$\frac{X_B}{(Rt)^{0.5}} = \frac{325}{[(40,000)(34)]^{0.5}} = 0.28$$
$$\frac{X_C}{(Rt)^{0.5}} = \frac{630}{[(40,000)(34)]^{0.5}} = 0.54$$
$$= \frac{a}{(Rt)^{0.5}} = \frac{305}{[(40,000)(34)]^{0.5}} = 0.26$$

In US Customary units:

$$\frac{X_A}{(Rt)^{0.5}} = \frac{36.75}{[(1560)(1.33)]^{0.5}} = 0.81$$
$$\frac{X_B}{(Rt)^{0.5}} = \frac{12.75}{[(1560)(1.33)]^{0.5}} = 0.28$$
$$\frac{X_C}{(Rt)^{0.5}} = \frac{24.75}{[(1560)(1.33)]^{0.5}} = 0.54$$
$$\lambda = \frac{a}{(Rt)^{0.5}} = \frac{12}{[(1560)(1.33)]^{0.5}} = 0.26$$

λ

11

11

11

From Figures P-4A and P-4B,

$$Y_F = 1.9/N (1.9/lbf)$$
  
 $Y_L = 7.2/N-mm (7.2/in.-lbf)$ 

 $Y_C = 13.4$ /N-mm (13.6/in.-lbf)

**P.2.9.2.4** Construct the load nomograms (see Figure P-7):

In SI units:

$$1.0 - 0.75 \frac{X_B}{(Rt)^{0.5}} = 1.0 - 0.75 \left(\frac{325}{1166}\right) = 0.79$$

$$1.0 - 0.75 \frac{X_A}{(Rt)^{0.5}} = 1.0 - 0.75 \left(\frac{935}{1166}\right) = 0.40$$

$$1.0 - 0.75 \frac{X_C}{(Rt)^{0.5}} = 1.0 - 0.75 \left(\frac{630}{1166}\right) = 0.59$$

$$F_P = P\pi a^2 = (9800)(1.0)(19.2 - 0.630)\pi (0.305)^2$$

$$= 53,200 \text{ N}$$

$$\frac{\lambda}{2Y_F} \left(\frac{F_R}{F_P}\right) = \frac{0.26}{(2)(1.9)} \left(\frac{F_R}{53,200}\right) = 1.29 \times 10^{-6} F_R$$

$$\frac{\lambda}{aY_L} \left(\frac{M_L}{F_P}\right) = \frac{0.26}{(305)(7.2)} \left(\frac{M_L}{53,200}\right) = 2.22 \times 10^{-9} M_L$$

$$\frac{\lambda}{aY_C} \left(\frac{M_C}{F_P}\right) = \frac{0.26}{(305)(13.4)} \left(\frac{M_C}{53,200}\right) = 1.19 \times 10^{-9} M_C$$

In US Customary units:

$$1.0 - 0.75 \frac{X_B}{(Rt)^{0.5}} = 1.0 - 0.75 \left(\frac{12.75}{45.6}\right) = 0.79$$

$$1.0 - 0.75 \frac{X_A}{(Rt)^{0.5}} = 1.0 - 0.75 \left(\frac{36.75}{45.6}\right) = 0.40$$

$$1.0 - 0.75 \frac{X_C}{(Rt)^{0.5}} = 1.0 - 0.75 \left(\frac{24.75}{45.6}\right) = 0.59$$

$$F_P = P\pi a^2 = \left[\frac{(62.4)(1.0)}{1728}\right] [(64)(12) - 24.75]\pi 12^2$$

$$= 12.142 \text{ pounds}$$

$$\frac{\lambda}{2Y_F} \left(\frac{F_R}{F_P}\right) = \frac{0.26}{(2)(1.9)} \left(\frac{F_R}{12.142}\right) = 5.64 \times 10^{-6} F_R$$

$$\frac{\lambda}{aY_L} \left(\frac{M_L}{F_P}\right) = \frac{0.26}{(12)(7.2)} \left(\frac{M_L}{12.142}\right) = 2.48 \times 10^{-7} M_L$$

$$\frac{\lambda}{aY_C} \left(\frac{M_C}{F_P}\right) = \frac{0.26}{(12)(13.6)} \left(\frac{M_C}{12.142}\right) = 1.31 \times 10^{-7} M_C$$

**P.2.9.2.5** Determine the limiting piping loads.

In SI units:

For  $M_L = 0$  and  $M_C = 0$ ,

For 
$$F_R$$
,  $\frac{\lambda}{2Y_F} \left( \frac{F_R}{F_F} \right) = 1.29 \times 10^{-6} F_R \le 0.4$ 

11

11

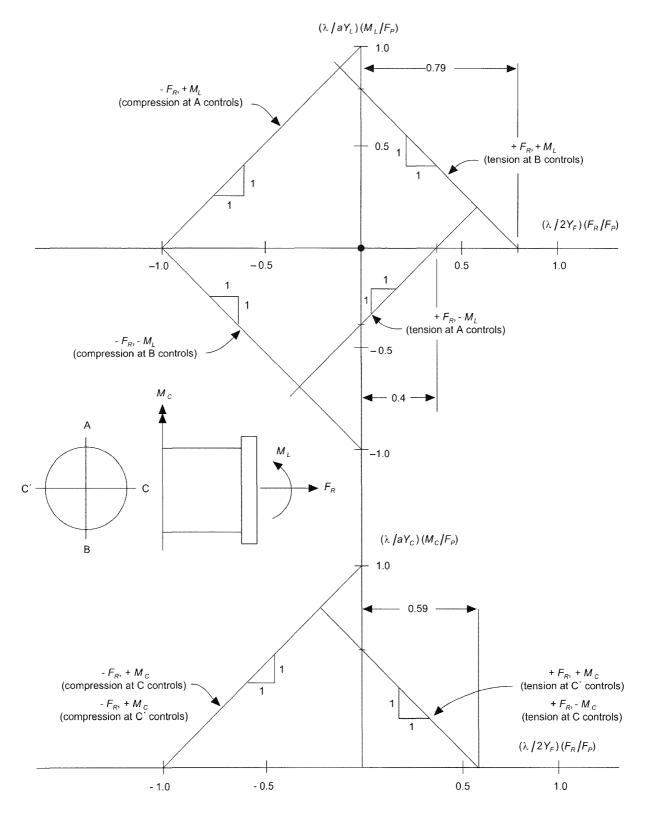



Figure P-7—Allowable-Load Nomograms for Sample Problem

Therefore,

$$F_{R_{\text{max}}} = \frac{0.4}{1.29 \times 10^{-6}} = 310,000 \text{ N} \text{ (tension at A controls)}$$

For  $M_L = 0$  and  $F_R = 0$ ,

For 
$$M_C$$
,  $\frac{\lambda}{aY_C} \left( \frac{M_C}{F_P} \right) = 1.19 \times 10^{-9} M_C \le 0.59$ 

Therefore,

$$M_{Cmax} = \frac{0.59}{1.19 \times 10^{-9}} = 4.96 \times 10^8 \text{ N-mm} \text{ (tension at C' controls)}$$

For  $F_R = 0$  and  $M_C = 0$ ,

For 
$$M_L$$
,  $\frac{\lambda}{aY_L} \left( \frac{M_L}{F_P} \right) = 2.22 \times 10^{-9} M_L \le 0.4$ 

Therefore,

$$M_{L\text{max}} = \frac{0.4}{2.22 \times 10^{-9}} = 1.80 \times 10^8 \text{ N-mm} \text{ (tension at A controls)}$$

In US Customary units:

For  $M_L = 0$  and  $M_C = 0$ ,

For 
$$F_R$$
,  $\frac{\lambda}{2Y_F} \left(\frac{F_R}{F_F}\right) = 5.64 \times 10^{-6} F_R \le 0.4$ 

Therefore,

$$F_{Rmax} = \frac{0.4}{5.64 \times 10^{-6}} = 70,900 \text{ lbf (tension at A controls)}$$

For  $M_L = 0$  and  $F_R = 0$ ,

For 
$$M_C$$
,  $\frac{\lambda}{aY_C} \left( \frac{M_C}{F_P} \right) = 1.31 \times 10^{-7} M_C \le 0.59$ 

Therefore,

$$M_{Cmax} = \frac{0.59}{1.31 \times 10^{-7}} = 4.50 \times 10^6 \text{ in.-lbf (tension at C' controls)}$$

For  $F_R = 0$  and  $M_C = 0$ ,

For 
$$M_L$$
,  $\frac{\lambda}{a Y_L} \left( \frac{M_L}{F_P} \right) = 2.48 \times 10^{-7} M_L \le 0.4$ 

Therefore,

$$M_{L_{\text{max}}} = \frac{0.4}{2.48 \times 10^{-7}} = 1.61 \times 10^6 \text{ in.-lbf} \text{ (tension at A controls)}$$

# P.2.9.3 Summary

The limiting piping loads are as follows:

In SI units:

 $F_{Rmax}$  = 310,000 N (tension at A controls)

 $M_{\rm Cmax} = 4.96 \times 10^8$  N-mm (tension at C' controls)

 $M_{L\rm max} = 1.8 \times 10^8$  N-mm (tension at A controls)

In US Customary units:

 $F_{R\max}$  = 70,900 lbf (tension at A controls)

 $M_{Cmax} = 4.50 \times 10^6$  in.-lbf (tension at C' controls)

 $M_{L\text{max}} = 1.61 \times 10^6$  in.-lbf (tension at A controls)

Note: This section is based on the paper "Analysis of Nozzle Loads in API 650 Tanks"  $^{\rm 30}$ 

<sup>30</sup>Analysis of Loads for Nozzles in API 650 Tanks, M. Lengsfeld, K.L. Bardia, J. Taagepera, K. Hathaitham, D.G. LaBounty, M.C. Lengsfeld. Paper PVP-Vol 430, ASME, New York, 2001

09 DELETED (Section P.3 Deleted in its Entirety)

# APPENDIX R-LOAD COMBINATIONS

**R.1** For the purposes of this Standard, loads are combined in the following manner. Design rules account for these load combinations, including the absence of any load other than  $D_I$  in the combinations:

 $D_L + F + P_i$ 

(a) Fluid and Internal Pressure:

(b) Hydrostatic Test:

 $D_L + (H_t + P_t)$ 

 $D_L + W + F_D(P_p)$ 

(d) Wind and External Pressure:

(c) Wind and Internal Pressure:

 $D_L + W + 0.4P_e$ 

(e) Gravity Loads:

1)  $D_L + (L_r \text{ or } Su \text{ or } Sb) + 0.4P_e$ 2)  $D_L + P_e + 0.4(L_r \text{ or } S_u \text{ or } S_b)$ 

(f) Seismic:

$$D_L + F + E + 0.1S_b + F_p(P_j)$$
 11

(g) Gravity Loads for Fixed Roofs with Suspended Floating Roofs:

1) 
$$D_L + D_f + (L_r \text{ or } S) + P_e + 0.4 \{P_{fe} \text{ or } L_{f1} \text{ or } L_{f2}\}$$
  
2)  $D_L + D_{f+} \{P_{fe} \text{ or } L_{f1} \text{ or } L_{f2}\} + 0.4 \{(S \text{ or } L_f) + P_e\}$ 

Notes:

1. In the combinations listed in (g), Df,  $P_{fe}$ ,  $L_{f1}$  and  $L_{f2}$  shall be applied as point loads at the cable attachment to the fixed roof. 2. Design External Pressure,  $P_{e}$  shall be considered as 0 kPa (0 lbf/ft<sup>2</sup>) for tanks with circulation vents meeting Appendix H requirements.

• **R.2** The pressure combination factor (*Fp*) is defined as the ratio of normal operating pressure to design pressure, with a minimum value of 0.4.

11

09

# APPENDIX S—AUSTENITIC STAINLESS STEEL STORAGE TANKS

# S.1 Scope

**S.1.1** This appendix covers materials, design, fabrication, erection, and testing requirements for vertical, cylindrical, aboveground, closed- and open-top, welded, austenitic stainless steel storage tanks constructed of material grades 201-1, 201LN, 304, 09 304L, 316, 316L, 317, and 317L. This appendix does not cover stainless steel clad plate or strip-lined construction.

S.1.2 This appendix applies only to tanks in nonrefrigerated services with a maximum design temperature not exceeding 260°C (500°F). Tanks designed to this appendix shall be assigned a maximum design temperature no less than 40°C (100°F). It is cautioned that exothermic reactions occurring inside unheated storage tanks can produce temperatures exceeding 40°C (100°F).

### S.1.3 DELETED

**S.1.4** The minimum thicknesses specified in this appendix are corroded thicknesses unless otherwise stated.

**S.1.5** This appendix states only the requirements that differ from the basic rules in this Standard. For requirements not stated, the basic rules must be followed.

# S.2 Materials

# S.2.1 SELECTION AND ORDERING

S.2.1.1 Materials shall be in accordance with Tables S-1a and S-1b.

08

09

11

| Plates and Structural Members<br>(Note 1) | Piping and Tubing—Seamless<br>or Welded (Note 2) | Forgings (Notes 2, 3) | Bolting and Bars (Notes 4, 5)            |
|-------------------------------------------|--------------------------------------------------|-----------------------|------------------------------------------|
| A 240M, Type 201-1                        | A 213M, Grade TP 201                             | A 182M, Grade F 304   | A 193M, Class 1, Grades B8, B8A, and B8M |
| A 240M, Type 201LN                        | A 213M, Grade TP 304                             | A 182M, Grade F 304L  | A 194M, Grades B8, B8A, B8M, and B8MA    |
| A 240M, Type 304                          | A 213M, Grade TP 304L                            | A 182M, Grade F 316   | A 320M, Grades B8, B8A, B8M, and B8MA    |
| A 240M, Type 304L                         | A 213M, Grade TP 316                             | A 182M, Grade F 316L  | A 479M, Type 304                         |
| A 240M, Type 316                          | A 213M, Grade TP 316L                            | A 182M, Grade F 317   | A 479M, Type 304L                        |
| A 240M, Type 316L                         | A 213M, Grade TP 317                             | A 182M, Grade F 317L  | A 479M, Type 316                         |
| A 240M, Type 317                          | A 213M, Grade TP 317L                            |                       | A 479M, Type 316L                        |
| A 240M, Type 317L                         | A 312M, Grade TP 304                             |                       | A 479M, Type 317                         |
|                                           | A 312M, Grade TP 304L                            |                       |                                          |
|                                           | A 312M, Grade TP 316                             |                       |                                          |
|                                           | A 312M, Grade TP 316L                            |                       |                                          |
|                                           | A 312M, Grade TP 317                             |                       |                                          |
|                                           | A 312M, Grade TP 317L                            |                       |                                          |
|                                           | A 358M, Grade 304                                |                       |                                          |
|                                           | A 358M, Grade 304L                               |                       |                                          |
|                                           | A 358M, Grade 316                                |                       |                                          |
|                                           | A 358M, Grade 316L                               |                       |                                          |
|                                           | A 403M, Class WP 304                             |                       |                                          |
|                                           | A 403M, Class WP 304L                            |                       |                                          |
|                                           | A 403M, Class WP 316                             |                       |                                          |
|                                           | A 403M, Class WP 316L                            |                       |                                          |
|                                           | A 403M, Class WP 317                             |                       |                                          |
|                                           | A 403M, Class WP 317L                            |                       |                                          |

Notes:

1. Unless otherwise specified by the Purchaser, plate, sheet, or strip shall be furnished with a No. 1 finish and shall be hot-rolled, annealed, and descaled.

• 2. Carbon steel flanges and/or stub ends may be used by agreement between the Purchaser and the Manufacturer, providing the design and details consider the dissimilar properties of the materials used and are suitable for the intended service.

3. Castings shall not be used unless specified by the Purchaser. If specified, castings shall meet ASTM A 351 and shall be inspected in accordance with ASME *Boiler and Pressure Vessel Code*, Section VIII, Division 1, Appendix 7.

4. All bars in contact with the product shall be furnished in the hot-rolled, annealed, and descaled condition.

• 5. Other bolting materials may be used by agreement between the Purchaser and the Manufacturer.

|    | Plates and Structural Members<br>(Note 1) | Piping and Tubing—Seamless<br>or Welded (Note 2) | Forgings (Notes 2, 3) | Bolting and Bars (Notes 4, 5)           |
|----|-------------------------------------------|--------------------------------------------------|-----------------------|-----------------------------------------|
| I  | A 240, Type 201-1                         | A213, Grade TP 201                               | A 182, Grade F 304    | A 193, Class 1, Grades B8, B8A, and B8M |
| 09 | A 240, Type 201LN                         | A213, Grade TP 304                               | A 182, Grade F 304L   | A 194, Grades 8, 8A, 8M, and 8MA        |
| -  | A 240, Type 304                           | A213, Grade TP 304L                              | A 182, Grade F 316    | A320, Grades B8, B8A, B8M, and B8MA     |
|    | A 240, Type 304L                          | A213, Grade TP 316                               | A 182, Grade F 316L   | A 479, Type 304                         |
|    | A 240, Type 316                           | A213, Grade TP 316L                              | A 182, Grade F 317    | A 479, Type 304L                        |
|    | A 240, Type 316L                          | A213, Grade TP 317                               | A 182, Grade F 317L   | A 479, Type 316                         |
|    | A 240, Type 317                           | A213, Grade TP 317L                              |                       | A 479, Type 316L                        |
|    | A 240, Type 317L                          | A 312, Grade TP 304                              |                       | A 479, Type 317                         |
| 09 | A 276, Type 201                           | A 312, Grade TP 304L                             |                       |                                         |
| -  | A 276, Type 304                           | A 312, Grade TP 316                              |                       |                                         |
|    | A 276, Type 304L                          | A 312, Grade TP 316L                             |                       |                                         |
|    | A 276, Type 316                           | A 312, Grade TP 317                              |                       |                                         |
|    | A 276, Type 316L                          | A 312, Grade TP 317L                             |                       |                                         |
|    | A 276, Type 317                           | A 358, Grade 304                                 |                       |                                         |
|    |                                           | A 358, Grade 304L                                |                       |                                         |
|    |                                           | A 358, Grade 316                                 |                       |                                         |
|    |                                           | A 358, Grade 316L                                |                       |                                         |
|    |                                           | A 403, Class WP 304                              |                       |                                         |
|    |                                           | A 403, Class WP 304L                             |                       |                                         |
|    |                                           | A 403, Class WP 316                              |                       |                                         |
|    |                                           | A 403, Class WP 316L                             |                       |                                         |
|    |                                           | A 403, Class WP 317                              |                       |                                         |
|    |                                           | A 403, Class WP 317L                             |                       |                                         |

Table S-1b-(USC) ASTM Materials for Stainless Steel Components

Notes:

07

- 1. Unless otherwise specified by the Purchaser, plate, sheet, or strip shall be furnished with a No. 1 finish and shall be hot-rolled, annealed, and descaled.
- 2. Carbon steel flanges and/or stub ends may be used by agreement between the Purchaser and the Manufacturer, providing the design and details consider the dissimilar properties of the materials used and are suitable for the intended service.
- 3. Castings shall not be used unless specified by the Purchaser. If specified, castings shall meet ASTM A 351 and shall be inspected in accordance with ASME *Boiler and Pressure Vessel Code*, Section VIII, Division 1, Appendix 7.
- 4. All bars in contact with the product shall be furnished in the hot-rolled, annealed, and descaled condition.
- 5. Other bolting materials may be used by agreement between the Purchaser and the Manufacturer.

• **S.2.1.2** Selection of the type/grade of stainless steel depends on the service and environment to which it will be exposed and **11** the effects of fabrication processes (see S.4.3.2 and S.4.4.3). The Purchaser shall specify the type/grade.

**S.2.1.3** External structural attachments may be carbon steels meeting the requirements of Section 4 of this Standard, providing they are protected from corrosion and the design and details consider the dissimilar properties of the materials used. (This does not include shell, roof, or bottom openings and their reinforcement.) Carbon steel attachments (e.g., clips for scaffolding) shall not be welded directly to any internal surface of the tank. For stainless steel tanks subject to external fire impingement, the use of gal-vanizing on attachments, including ladders and platforms, is not recommended.

# • S.2.2 PACKAGING

Packaging stainless steel for shipment is important to its corrosion resistance. Precautions to protect the surface of the material depend on the surface finish supplied and may vary among Manufacturers. Normal packaging methods may not be sufficient to protect the material from normal shipping damage. If the intended service requires special precautions, special instructions shall be specified by the Purchaser.

## S.2.3 IMPACT TESTING

Impact tests are not required for austenitic stainless steel base metals.

# S.3 Design

# • S.3.1 TANK BOTTOMS

#### S.3.1.1 Shell-to-Bottom Fillet Welds

The attachment weld between the bottom edge of the lowest course shell plate and the bottom plate shall comply with the following values:

|           | Thickness<br>ell Plate | Minimu<br>of Filler |                              |
|-----------|------------------------|---------------------|------------------------------|
| (mm)      | (in.)                  | (mm)                | (in.)                        |
| 5         | 0.1875                 | 5                   | 3/16                         |
| >5 to 25  | >0.1875 to 1.0         | 6                   | 1/4                          |
| >25 to 45 | >1.0 to 1.75           | 8                   | <sup>5</sup> / <sub>16</sub> |

#### S.3.1.2 Bottom Plates

All bottom plates shall have a corroded thickness of not less than 5 mm  $(^{3}/_{16} \text{ in.})$ . Bottom plates which weld to shell plates thicker than 25 mm (1.0 in.) shall have a corroded thickness of not less than 6 mm  $(^{1}/_{4} \text{ in.})$ . Unless otherwise agreed to by the Purchaser, all rectangular and sketch plates (bottom plates on which the shell rests that have one end rectangular) shall have a minimum nominal width of not less than 1,200 mm (48 in.).

### S.3.1.3 Annular Bottom Plates

Butt-welded annular bottom plates meeting the requirements of 5.5.2 through 5.5.5 are required when either the bottom shell course maximum product stress is greater than 160 MPa (23,200 lbf/in.<sup>2</sup>) or the bottom shell course maximum test stress is greater than 172 MPa (24,900 lbf/in.<sup>2</sup>).

### S.3.2 SHELL DESIGN

### S.3.2.1 General

**S.3.2.1.1** The required nominal shell thickness shall not be less than the greatest of the design shell thickness plus corrosion allowance, hydrostatic test shell thickness, or the nominal thickness listed in 5.6.1.1 (note 4 does not apply).

S.3.2.1.2 Unless otherwise agreed to by the Purchaser, the shell plates shall have a minimum width of 1200 mm (48 in.).

#### S.3.2.2 Shell Thickness Calculation

The requirements of 5.6 shall be followed, except as modified in S.3.2.2.1 through S.3.2.2.3.

**S.3.2.2.1** Allowable stresses for all shell thickness calculation methods are provided in Tables S-2a and S-2b

S.3.2.2.2 Appendix A is not applicable.

**S.3.2.2.3** The following formulas for design shell thickness and test shell thickness may alternatively be used for tanks 60 m (200 ft) in diameter and smaller.

In SI units:

$$t_{d} = \frac{4.9D(H-0.3)G}{(S_{d})E} + CA$$
  
$$t_{t} = \frac{4.9D(H-0.3)}{(S_{t})(E)}$$

09 11

08

where

- $t_d$  = design shell thickness (mm),
- $t_l$  = hydrostatic test shell thickness (mm),
- D = nominal diameter of tank (m) (see 5.6.1.1),
- H = design liquid level (m) (see 5.6.3.2),
- G = specific gravity of the liquid to be stored, as specified by the Purchaser,
  - E = joint efficiency, 1.0, 0.85, or 0.70 (see Table S-4),
- CA = corrosion allowance (mm), as specified by the Purchaser (see 5.3.2),
  - $S_d$  = allowable stress for the design condition (MPa) (see Tables S-2a and S-2b),
    - $S_t$  = allowable stress for hydrostatic test condition (MPa) (see Tables S-2a and S-2b).

In US Customary units:

$$t_{d} = \frac{2.6D(H-1)G}{(S_{d})E} + CA$$
$$t_{r} = \frac{2.6D(H-1)}{(S_{r})(E)}$$

where

08

08

11

 $t_d$  = design shell thickness (in.),

- $t_t$  = hydrostatic test shell thickness (in.),
- D = nominal diameter of tank (ft) (see 5.6.1.1),
- H = design liquid level (ft) (see 5.6.3.2),
- G = specific gravity of the liquid to be stored, as specified by the Purchaser,
- E = joint efficiency, 1.0, 0.85, or 0.70 (see Table S-4),
- CA = corrosion allowance (in.), as specified by the Purchaser (see 5.3.2),
- $S_d$  = allowable stress for the design condition (lbf/in.<sup>2</sup>) (see Tables S-2a and S-2b),
- $S_t$  = allowable stress for hydrostatic test condition (lbf/in.<sup>2</sup>) (see Tables S-2a and S-2b).

Note: The allowable stresses recognize the increased toughness of stainless steels over carbon steels and the relatively low yield/tensile ratios of the stainless steels. The increased toughness permits designing to a higher proportion of the yield strength, however, the Manufacturer and Purchaser shall be aware that this may result in permanent strain (see Tables S-2a and S-2b).

#### S.3.3 SHELL OPENINGS

**S.3.3.1** The minimum nominal thickness of connections and openings shall be as follows:

| Minimum Nominal<br>Neck Thickness |
|-----------------------------------|
| Schedule 80S                      |
| Schedule 40S                      |
| 6 mm (0.25 in.)                   |
|                                   |

Note: Reinforcement requirements of 5.7 must be maintained.

**S.3.3.2** Thermal stress relief requirements of 5.7.4 are not applicable.

**S.3.3.3** Shell manholes shall be in conformance with 5.7.5 except that the corroded thickness requirements of bolting flange and cover plate shall be multiplied by the greater of (a) the ratio of the material yield strength at  $40^{\circ}$ C ( $100^{\circ}$ F) to the material yield strength at the maximum design temperature, or (b) the ratio of 205 MPa (30,000 psi) to the material yield strength at the maximum design temperature.

S.3.3.4 As an alternative to S.3.3.3, plate ring flanges may be designed in accordance with API Std 620 rules using the allowable stresses given in Tables S-3a and S-3b.

**S.3.3.5** Allowable weld stresses for shell openings shall conform to 5.7.2.8 except  $S_d$  = the maximum allowable design stress 07 (the lesser value of the base materials joined) permitted by Tables S-2a and S-2b.

### S.3.4 ROOF DESIGN AND ROOF MANHOLES

**S.3.4.1** The yield strength given in Tables S-5a and S-5b shall be used for  $F_v$  in 5.10.4.4.

**S.3.4.2** All stainless steel components of the roof manhole shall have a nominal thickness of not less than  $5 \text{ mm} (^{3}/16 \text{ in.})$ .

S.3.4.3 In 5.10.3.1 the required structural specification for stress limitations shall be modified to ASCE 8 Specification for the Design of Cold-Formed Stainless Steel Structural Members. The portion of the specification Appendix D entitled, "Allowable Stress Design," shall be used in determining allowable unit stress.

**S.3.4.4** In 5.10.3.4 for columns, the AISC reference shall be modified to ASCE 8. Modified allowable stress values for l/r >120 are not applicable.

#### S.3.5 APPENDIX F—MODIFICATIONS

#### S.3.5.1 DELETED

**S.3.5.2** In F.7.1, the shell thickness shall be as specified in S.3.2 except that the pressure P (in kPa [in. of water]) divided by 9.8G(12G) shall be added to the design liquid height in meters (ft).

#### S.3.5.3 DELETED

#### S.3.6 APPENDIX M—MODIFICATIONS

**S.3.6.1** Appendix M requirements shall be met for stainless steel tanks with a maximum design temperature over 40°C (100°F) as modified by S.3.6.2 through S.3.6.7.

**S.3.6.2** Allowable shell stress shall be in accordance with Tables S-2a and S-2b.

11 **S.3.6.3** In M.3.5, the requirements of 5.7.7 for flush-type cleanout fittings and of 5.7.8 for flush-type shell connections shall be modified. The thickness of the bottom reinforcing plate, bolting flange, and cover plate shall be multiplied by the greater of (a) the ratio of the material yield strength at 40°C (100°F) to the material yield strength at the maximum design temperature, or (b) the ratio of 205 MPa (30,000 psi) to the material yield strength at the maximum design temperature. (See Tables S-5a and S-5b for yield 08 strength.)

**S.3.6.4** In M.3.6, the stainless steel structural allowable stress shall be multiplied by the ratio of the material yield strength at 11 the maximum design temperature to the material yield strength at 40°C (100°F). (See Tables S-5a and S-5b for yield strength.) 08

### S.3.6.5 DELETED

**S.3.6.6** In M.5.1, the requirements of 5.10.5 and 5.10.6 shall be multiplied by the ratio of the material modulus of elasticity at 40°C (100°F) to the material modulus of elasticity at the maximum design temperature. (See Tables S-6a and S-6b for modulus of 08 elasticity.)

**S.3.6.7** In M.6 (the equation for the maximum height of unstiffened shell in 5.9.7.1), the maximum height shall be multiplied 08 by the ratio of the material modulus of elasticity at the maximum design temperature of 40°C (100°F).

#### **Fabrication and Construction** S.4

# S.4.1 GENERAL

Special precautions must be observed to minimize the risk of damage to the corrosion resistance of stainless steel. Stainless steel shall be handled so as to minimize contact with iron or other types of steel during all phases of fabrication, shipping, and construction. The following sections describe the major precautions that should be observed during fabrication and handling.

11

09

08

08

11

- 08

# S.4.2 STORAGE

Storage should be under cover and well removed from shop dirt and fumes from pickling operations. If outside storage is necessary, provisions should be made for rainwater to drain and allow the material to dry. Stainless steel should not be stored in contact with carbon steel. Materials containing chlorides, including foods, beverages, oils, and greases, should not come in contact with stainless steel.

# S.4.3 THERMAL CUTTING

S.4.3.1 Thermal cutting of stainless steel shall be by the iron powder burning carbon arc or the plasma-arc method.

• **S.4.3.2** Thermal cutting of stainless steel may leave a heat-affected zone and intergranular carbide precipitates. This heat-affected zone may have reduced corrosion resistance unless removed by machining, grinding, or solution annealing and quenching. The Purchaser shall specify if the heat-affected zone is to be removed.

# S.4.4 FORMING

**S.4.4.1** Stainless steels shall be formed by a cold, warm, or hot forming procedure that is noninjurious to the material.

**S.4.4.2** Stainless steels may be cold formed, providing the maximum strain produced by such forming does not exceed 10% and control of forming spring-back is provided in the forming procedure.

• **S.4.4.3** Warm forming at 540°C (1000°F) – 650°C (1200°F) may cause intergranular carbide precipitation in 304, 316, and 317 grades of stainless steel. Unless stainless steel in this sensitized condition is acceptable for the service of the equipment, it will be necessary to use 304L, 316L, or 317L grades or to solution anneal and quench after forming. Warm forming shall be performed only with agreement of the Purchaser.

S.4.4.4 Hot forming, if required, may be performed within a temperature range of 900°C (1650°F) – 1200°C (2200°F).

**S.4.4.5** Forming at temperatures between 650°C (1200°F) and 900°C (1650°F) is not permitted.

# S.4.5 CLEANING

• **S.4.5.1** When the Purchaser requires cleaning to remove surface contaminants that may impair the normal corrosion resistance, it shall be done in accordance with ASTM A 380, unless otherwise specified. Any additional cleanliness requirements for the intended service shall be specified by the Purchaser.

|               |       | Min. Yield | Min. Tensile | Allowal | ble Stress ( $S_d$ ) (in | n MPa) for Maxin | num Design Ten | nperature Not E | xceeding      |
|---------------|-------|------------|--------------|---------|--------------------------|------------------|----------------|-----------------|---------------|
|               | Туре  | MPa        | MPa          | 40°C    | 90°C                     | 150°C            | 200°C          | 260°C           | $S_t$ Ambient |
| 9             | 201-1 | 260        | 515          | 155     | 136                      | 125              | 121            |                 | 234           |
|               | 201LN | 310        | 655          | 197     | 172                      | 153              | 145            | 143             | 279           |
| <b>08</b> 316 | 304   | 205        | 515          | 155     | 155                      | 140              | 128            | 121             | 186           |
|               | 304L  | 170        | 485          | 145     | 132                      | 119              | 109            | 101             | 155           |
|               | 316   | 205        | 515          | 155     | 155                      | 145              | 133            | 123             | 186           |
|               | 316L  | 170        | 485          | 145     | 131                      | 117              | 107            | 99              | 155           |
|               | 317   | 205        | 515          | 155     | 155                      | 145              | 133            | 123             | 186           |
|               | 317L  | 205        | 515          | 155     | 155                      | 145              | 133            | 123             | 186           |

Table S-2a-(SI) Allowable Stresses for Tank Shells.

Notes:

08

1.  $S_d$  may be interpolated between temperatures.

2. The design stress shall be the lesser of 0.3 of the minimum tensile strength or 0.9 of the minimum yield strength. The factor of 0.9 of yield corresponds to a permanent strain of 0.10%. When a lower level of permanent strain is desired, the Purchaser shall specify a reduced yield factor in accordance with Table Y-2 of ASME Section II, Part D. The yield values at the different maximum design temperatures can be obtained from Tables S-5a.

• 3. For dual-certified materials (e.g., ASTM A 182M/A 182 Type 304L/304), use the allowable stress of the grade specified by the Purchaser.

Table S-2b—(USC) Allowable Stresses for Tank Shells

| Туре  | Min. Yield<br>psi | Min. Tensile<br>psi | Allowable Stress $(S_d)$ (in psi) for Maximum Design Temperature Not Exceeding |        |        |        |        |                        |  |
|-------|-------------------|---------------------|--------------------------------------------------------------------------------|--------|--------|--------|--------|------------------------|--|
|       |                   |                     | 100°F                                                                          | 200°F  | 300°F  | 400°F  | 500°F  | S <sub>t</sub> Ambient |  |
| 201-1 | 38,000            | 75,000              | 22,500                                                                         | 19,700 | 18,100 | 17,500 |        | 34,200                 |  |
| 201LN | 45,000            | 95,000              | 28,500                                                                         | 24,900 | 22,200 | 21,100 | 20,700 | 40,500                 |  |
| 304   | 30,000            | 75,000              | 22,500                                                                         | 22,500 | 20,300 | 18,600 | 17,500 | 27,000                 |  |
| 304L  | 25,000            | 70,000              | 21,000                                                                         | 19,200 | 17,200 | 15,800 | 14,700 | 22,500                 |  |
| 316   | 30,000            | 75,000              | 22,500                                                                         | 22,500 | 21,000 | 19,300 | 17,900 | 27,000                 |  |
| 316L  | 25,000            | 70,000              | 21,000                                                                         | 19,000 | 17,000 | 15,500 | 14,300 | 22,500                 |  |
| 317   | 30,000            | 75,000              | 22,500                                                                         | 22,500 | 21,000 | 19,300 | 17,900 | 27,000                 |  |
| 317L  | 30,000            | 75,000              | 22,500                                                                         | 22,500 | 21,000 | 19,300 | 17,900 | 27,000                 |  |

Notes:

1.  $S_d$  may be interpolated between temperatures.

2. The design stress shall be the lesser of 0.3 of the minimum tensile strength or 0.9 of the minimum yield strength. The factor of 0.9 of yield corresponds to a permanent strain of 0.10%. When a lower level of permanent strain is desired, the Purchaser shall specify a reduced yield factor in accordance with Table Y-2 of ASME Section II, Part D. The yield values at the different maximum design temperatures can be obtained from Table S-5b.

• 3. For dual-certified materials (e.g., ASTM A 182M/A 182 Type 304L/304), use the allowable stress of the grade specified by the Purchaser.

|               | Allowable Stress $(S_l)$ (in MPa) for Maximum Design Temperature Not Exceeding |      |       |       |       |  |  |  |  |
|---------------|--------------------------------------------------------------------------------|------|-------|-------|-------|--|--|--|--|
| Туре          | 40°C                                                                           | 90°C | 150°C | 200°C | 260°C |  |  |  |  |
| 201-1         | 155                                                                            | 133  | 115   | 104   |       |  |  |  |  |
| 201LN         | 197                                                                            | 167  | 151   | 143   | 138   |  |  |  |  |
| 304           | 140                                                                            | 115  | 103   | 95    | 89    |  |  |  |  |
| 304L          | 117                                                                            | 99   | 88    | 81    | 75    |  |  |  |  |
| 316           | 140                                                                            | 119  | 107   | 99    | 92    |  |  |  |  |
| 316L          | 117                                                                            | 97   | 87    | 79    | 73    |  |  |  |  |
| 317           | 140                                                                            | 119  | 108   | 99    | 92    |  |  |  |  |
| 31 <b>7</b> L | 140                                                                            | 119  | 108   | 99    | 92    |  |  |  |  |

#### Table S-3a-(SI) Allowable Stresses for Plate Ring Flanges

Notes:

1. Allowable stresses may be interpolated between temperatures.

2. The allowable stresses are based on a lower level of permanent strain.

3. The design stress shall be the lesser of 0.3 of the minimum tensile strength or 2/3 of the minimum yield strength.

4. For dual-certified materials (e.g., ASTM A 182M/A 182 Type 304L/304), use the allowable stress of the grade specified by the Purchaser.

S.4.5.2 When welding is completed, flux residue and weld spatter shall be removed mechanically using stainless steel tools.

**S.4.5.3** Removal of excess weld metal, if required, shall be done with a grinding wheel or belt that has not been previously used on other metals.

S-7

API STANDARD 650

|    |       | Alle   | wable Stress $(S_t)$ (in psi | ) for Maximum Design | Temperature Not Excee | ding   |
|----|-------|--------|------------------------------|----------------------|-----------------------|--------|
|    | Туре  | 100°F  | 200°F                        | 300°F                | 400°F                 | 500°F  |
|    | 201-1 | 22,500 | 19,300                       | 16,700               | 15,100                |        |
|    | 201LN | 28,500 | 24,200                       | 21,900               | 20,700                | 20,000 |
|    | 304   | 20,000 | 16,700                       | 15,000               | 13,800                | 12,900 |
|    | 304L  | 16,700 | 14,300                       | 12,800               | 11,700                | 10,900 |
|    | 316   | 20,000 | 17,200                       | 15,500               | 14,300                | 13,300 |
|    | 316L  | 16,700 | 14,100                       | 12,600               | 11,500                | 10,600 |
| 08 | 317   | 20,000 | 17,300                       | 15,600               | 14,300                | 13,300 |
|    | 317L  | 20,000 | 17,300                       | 15,600               | 14,300                | 13,300 |

Notes:

2002230000

 Allowable stresses may be interpolated between temperatures.
 Allowable stresses are based on a lower level of permanent strain.
 The design stress shall be the lesser of 0.3 of the minimum tensile strength or <sup>2</sup>/<sub>3</sub> of the minimum yield strength.
 For dual-certified materials (e.g., ASTM A 182M/A 182 Type 304L/304), use the allowable stress of the grade specified by the Purchaser. .

### Table S-4-Joint Efficiencies

| Joint Efficiency | Radiograph Requirements |
|------------------|-------------------------|
| 1.0              | Radiograph per 8.1.2    |
| 0.85             | Radiograph per A.5.3    |
| 0.70             | No radiography required |

|       |      | Yield Strength (in MPa) | for Maximum Design Ter | Maximum Design Temperature Not Exceeding |       |  |  |  |
|-------|------|-------------------------|------------------------|------------------------------------------|-------|--|--|--|
| Туре  | 40°C | 90°C                    | 150°C                  | 200°C                                    | 260°C |  |  |  |
| 201-1 | 260  | 199                     | 172                    | 157                                      |       |  |  |  |
| 201LN | 310  | 250                     | 227                    | 214                                      | 207   |  |  |  |
| 304   | 205  | 170                     | 155                    | 143                                      | 134   |  |  |  |
| 304L  | 170  | 148                     | 132                    | 121                                      | 113   |  |  |  |
| 316   | 205  | 178                     | 161                    | 148                                      | 137   |  |  |  |
| 316L  | 170  | 145                     | 130                    | 119                                      | 110   |  |  |  |
| 317   | 205  | 179                     | 161                    | 148                                      | 138   |  |  |  |
| 317L  | 205  | 179                     | 161                    | 148                                      | 138   |  |  |  |

Notes:

09

Interpolate between temperatures.
 Reference: Table Y-1 of ASME Section II, Part D.

S-8

WELDED TANKS FOR OIL STORAGE

#### Table S-5b-(USC) Yield Strength Values in psi

|        |        | Yield Strength (in psi) fo | or Maximum Design Tem | perature Not Exceeding |        |
|--------|--------|----------------------------|-----------------------|------------------------|--------|
| Туре — | 100°F  | 200°F                      | 300°F                 | 400°F                  | 500°F  |
| 201-1  | 38,000 | 28,900                     | 25,000                | 22,700                 |        |
| 201LN  | 45,000 | 36,300                     | 32,900                | 31,100                 | 30,000 |
| 304    | 30,000 | 25,000                     | 22,500                | 20,700                 | 19,400 |
| 304L   | 25,000 | 21,400                     | 19,200                | 17,500                 | 16,400 |
| 316    | 30,000 | 25,800                     | 23,300                | 21,400                 | 19,900 |
| 316L   | 25,000 | 21,100                     | 18,900                | 17,200                 | 15,900 |
| 317    | 30,000 | 25,900                     | 23,400                | 21,400                 | 20,000 |
| 317L   | 30,000 | 25,900                     | 23,400                | 21,400                 | 20,000 |

Notes:

1. Interpolate between temperatures.

2. Reference: Table Y-1 of ASME Section II, Part D.

|  | Table | S-6a( | (SI) | ) Modulus of Ela | asticity at | the Maximum | Design | Temperature |
|--|-------|-------|------|------------------|-------------|-------------|--------|-------------|
|--|-------|-------|------|------------------|-------------|-------------|--------|-------------|

| Maximum Design Temperature<br>(°C) Not Exceeding | Modulus of Elasticity (MPa) |
|--------------------------------------------------|-----------------------------|
| 40                                               | 194,000                     |
| 90                                               | 190,000                     |
| 150                                              | 186,000                     |
| 200                                              | 182,000                     |
| 260                                              | 179,000                     |

Note: Interpolate between temperatures.

| Table S-6b—(USC) Modulus of Elasticity at the Maximum Design Temperature | Table S-6b-( | USC | ) Modulus o | f Elasticit | / at the | Maximum | Design | Temperature |
|--------------------------------------------------------------------------|--------------|-----|-------------|-------------|----------|---------|--------|-------------|
|--------------------------------------------------------------------------|--------------|-----|-------------|-------------|----------|---------|--------|-------------|

| Modulus of Elasticity (psi) |
|-----------------------------|
| 28,100,000                  |
| 27,500,000                  |
| 27,000,000                  |
| 26,400,000                  |
| 25,900,000                  |
|                             |

Note: Interpolate between temperatures.

**S.4.5.4** Chemical cleaners used shall not have a detrimental effect on the stainless steel and welded joints and shall be disposed of in accordance with laws and regulations governing the disposal of such chemicals. The use of chemical cleaners shall always be followed by thorough rinsing with water and drying (see S.4.9).

### S.4.6 BLAST CLEANING

If blast cleaning is necessary, it shall be done with sharp acicular grains of sand or grit containing not more than 2% by weight iron as free iron or iron oxide. Steel shot or sand used previously to clean nonstainless steel is not permitted.

# S.4.7 PICKLING

If pickling of a sensitized stainless steel is necessary, an acid mixture of nitric and hydrofluoric acids shall not be used. After pickling, the stainless steel shall be thoroughly rinsed with water and dried.

S-9

09

08

09

08

09

## S.4.8 PASSIVATION OR IRON FREEING

When passivation or iron freeing is specified by the Purchaser, it may be achieved by treatment with nitric or citric acid. The use of hydrofluoric acid mixtures for passivation purposes is prohibited for sensitized stainless.

## S.4.9 RINSING

**S.4.9.1** When cleaning and pickling or passivation is required, these operations shall be followed immediately by rinsing, not allowing the surfaces to dry between operations.

• **S.4.9.2** Rinse water shall be potable and shall not contain more than 200 parts per million chloride at temperatures below 40°C (100°F), or no more than 100 parts per million chloride at temperatures above 40°C (100°F) and below 65°C (150°F), unless specified otherwise by the Purchaser.

**S.4.9.3** Following final rinsing, the equipment shall be completely dried.

### S.4.10 HYDROSTATIC TESTING

**S.4.10.1** The rules of 7.3.5 apply to hydrostatic testing except that the penetrating oil test in 7.3.5(2) shall be replaced with liquid penetrant examination conducted by applying the penetrant on one side and developer on the opposite side of the welds. The dwell time must be at least one hour.

- **S.4.10.2** The materials used in the construction of stainless steel tanks may be subject to severe pitting, cracking, or rusting if they are exposed to contaminated test water for extended periods of time. The Purchaser shall specify a minimum quality of test water that conforms to the following requirements:
- a. Unless otherwise specified by the Purchaser, water used for hydrostatic testing of tanks shall be potable and treated, containing at least 0.2 parts per million free chlorine.
  - b. Water shall be substantially clean and clear.
  - c. Water shall have no objectionable odor (that is, no hydrogen sulfide).
  - d. Water pH shall be between 6 and 8.3.
  - e. Water temperature shall be below 50°C (120°F).
- f. The chloride content of the water shall be below 50 parts per million, unless specified otherwise by the Purchaser.
- **S.4.10.3** When testing with potable water, the exposure time shall not exceed 21 days, unless specified otherwise by the Purchaser.

**S.4.10.4** When testing with other fresh waters, the exposure time shall not exceed 7 days.

**S.4.10.5** Upon completion of the hydrostatic test, water shall be completely drained. Wetted surfaces shall be washed with potable water when nonpotable water is used for the test and completely dried. Particular attention shall be given to low spots, crevices, and similar areas. Hot air drying is not permitted.

### S.4.11 WELDING

**S.4.11.1** Tanks and their structural attachments shall be welded by any of the processes permitted in 7.2.1.1 or by the plasma arc process. Galvanized components or components coated with zinc-rich coating shall not be welded directly to stainless steel.

**S.4.11.2** Weld procedure qualifications for stainless steel alloys shall demonstrate strength matching the base metals joined (i.e., 3XX stainless shall be welded with a matching E3XX or ER3XX filler metal).

**S.4.11.3** For the 300 series stainless steel materials, the filler metal mechanical properties and chemistry shall both match the type of base metals joined (i.e., 3XX stainless shall be welded with a matching E3XX or ER3XX filler metal).

**S.4.11.4** For the 200 series stainless steel materials, filler metals of matching composition are not available. The Manufacturer, with approval of the Purchaser, shall select the appropriate filler metal, taking into account the corrosion resistance and mechanical properties required for the joint.

**S.4.11.5** Dissimilar material welds (stainless steels to carbon steels) shall use filler metals of E309/ER309 or higher alloy content.

07

**S.4.11.6** Two stainless steel plates identical in material type may be welded together prior to erection in order to form a single shell plate subassembly. Plates welded together shall have thicknesses within 1.6 mm ( $^{1}/_{16}$  in.) of each other with the maximum plate thickness being 13 mm ( $^{1}/_{2}$  in.). No more than two plates shall be used to form one subassembly. Vertical edges of the pair of plates comprising a subassembly shall be aligned. The vertical joint offset requirement of 5.1.5.2 (b) shall be applied only between the subassembly and plates above and below it. The subassembly shall conform to the dimensional tolerances contained in Section 7 and shall be subjected to inspection requirements contained in Section 8. At least 25% of vertical spot radiographs shall be made at the subassembly horizontal weld to field vertical weld intersection. All welding procedure specifications shall be in accordance with Section 9.

### S.4.12 WELDING PROCEDURE AND WELDER QUALIFICATIONS

Impact tests are not required for austenitic stainless steel weld metal and heat-affected zones.

### S.4.13 POSTWELD HEAT TREATMENT

Postweld heat treatment of austenitic stainless steel materials need not be performed unless specified by the Purchaser.

#### S.4.14 INSPECTION OF WELDS

### S.4.14.1 Radiographic Inspection of Butt-Welds

Radiographic examination of butt-welds shall be in accordance with 8.1 and Table S-4.

#### S.4.14.2 Inspection of Welds by Liquid Penetrant Method

The following component welds shall be examined by the liquid penetrant method before the hydrostatic test of the tank:

a. The shell-to-bottom inside attachment weld.

b. All welds of opening connections in tank shell that are not completely radiographed, including nozzle and manhole neck welds and neck-to-flange welds.

c. All welds of attachments to shells, such as stiffeners, compression rings, clips, and other nonpressure parts for which the thickness of both parts joined is greater than 19 mm ( $^{3}/_{4}$  in.).

d. All butt-welded joints in tank annular plates on which backing strips are to remain.

## S.5 Marking

Brazing shall be deleted from 10.1.2.

## S.6 Appendices

The following appendices are modified for use with austenitic stainless steel storage tanks:

a. Appendix A is not applicable to tanks built to this appendix, except for the radiography requirements of A.5.3 subject to the joint efficiency used.

- b. Appendix C may be used; however, the Purchaser shall identify all materials of construction.
  - c. Appendix F is modified as outlined in S.3.5 of this appendix.
  - d. Appendix J may be used, except the nominal shell thickness for all tank diameters shall not be less than 5 mm  $(^{3}/_{16}$  in.).
  - e. Appendix K is not applicable to tanks built to this appendix.
  - f. Appendix M is modified as outlined in S.3.6 of this appendix.
  - g. Appendix N is not applicable.
  - h. Appendix O may be used; however, the structural members of Tables O-1a and O-1b shall be of an acceptable grade of material.
  - i. All other appendices may be used without modifications.

11

# APPENDIX SC—STAINLESS AND CARBON STEEL MIXED MATERIALS STORAGE TANKS

# SC.1 Scope

**SC.1.1** This appendix covers materials, design, fabrication, erection, and testing requirements for vertical, cylindrical, aboveground, closed- and open-top, welded, storage tanks constructed with stainless steel and carbon steel. Generally, in this appendix the term stainless steel includes austenitic or duplex unless noted otherwise. Stainless steel and carbon steel may be used in the same tank for shell rings, bottom plates, roof structure and other parts of a tank to provide product storage for conditions that require only certain portions of the tanks to provide added corrosion resistance. These tanks are mixed material tanks. Stainless steel and carbon steel plates may be mixed in the bottom, roof or within any shell course. This appendix does not cover stainless steel clad plate or strip lined construction.

**SC.1.2** This appendix applies only to tanks in non-refrigerated services with a maximum design temperature not exceeding  $93^{\circ}$ C ( $200^{\circ}$ F). Mixed material tanks operating at temperatures greater than  $93^{\circ}$ C ( $200^{\circ}$ F) are not addressed in this appendix. For the purposes of this appendix, the design temperature shall be the maximum design temperature as specified by the Purchaser. It is cautioned that exothermic reactions occurring inside unheated storage tanks can produce temperatures exceeding  $40^{\circ}$ C ( $100^{\circ}$ F).

**SC.1.3** This appendix states only the requirements that differ from the basic rules in this standard. For requirements not stated, the basic rules must be followed including Appendix S and Appendix X as applicable. References to paragraphs in this appendix shall be to the basic document unless stipulated otherwise.

SC.1.4 For limitations due to thermal effects see S.3.6 and X.3.7.

**SC.1.5** The nameplate of the tank shall indicate that the tank is in accordance with this appendix by the addition of Appendix SC to the information required by 10.1.1. In addition, the nameplate shall be marked with the maximum design temperature in the space indicated in Figure 10.1.

09

# SC.2 Materials

**SC.2.1** Materials shall be in accordance with Section 4, Appendix S, and Appendix X.

• **SC.2.2** Selection of the type/grade of stainless steel and carbon steel for mixed material tanks depends on the service and environment to which it will be exposed and the effects of fabrication processes. (S.4.3.2, S.4.4.3, and X.2.1.1) The Purchaser shall select the type/grade. The Purchaser shall also specify which components shall be stainless steel.

**SC.2.3** Components of a tank including shell, roof, bottom or bottom openings and their reinforcement may be carbon steels meeting the requirements of Section 4, provided they are protected from corrosion and the design and details consider the dissimilar properties of the materials used. Carbon steel attachments (e.g., clips for scaffolding) shall not be welded directly to any internal stainless steel tank surface.

**SC.2.4** Impact tests are not required for austenitic stainless steel base metals. See X.2.3.2 for impact testing requirements for duplex stainless steel. Carbon steels in a mixed material tank shall require impact testing in accordance with the basic document.

**SC.2.5** Welding of stainless steel to carbon steel shall use stainless steel electrodes appropriate for the type/grade of stainless steel used and the welding process employed.

# SC.3 Design

When the design temperature exceeds 40°C (100°F) and the diameter exceeds 30 m (100 ft), a structural analysis of the entire tank structure is required to adequately predict stresses due to differential movements when austenitic stainless steel is joined to either carbon steel or duplex stainless steel components such as bottom to first shell course, adjacent shell courses, and roof to top shell course. The material combination of this paragraph applies to all other sub-paragraphs in Section SC.3. No analysis of stresses from differential movements is required for duplex stainless steel joined to carbon steel.

# SC.3.1 BOTTOM

**SC.3.1.1** When the bottom plate and first shell course are of different materials, the design shall account for differential component expansion.

**SC.3.1.2** When the annular plate and first shell course are of different materials and the design temperature is greater than  $40^{\circ}$ C ( $100^{\circ}$ F), the design shall account for differential shell component expansion. When the first shell course is carbon steel and the annular plate is stainless steel, the requirements of 5.5.1 shall apply.

### SC.3.2 SHELL DESIGN

**SC.3.2.1** The variable point design method shall not be used for design of mixed material tank shells.

**SC.3.2.2** Austenitic stainless steel insert plates shall not be used in carbon steel or duplex stainless steel plates and carbon steel or duplex stainless steel insert plates shall not be used in austenitic stainless steel plates except when an evaluation for differential movement due to temperature is performed.

**SC.3.2.3** Where adjacent shell courses are of different materials and the design temperature is greater than 40°C (100°F), the design shall account for differential shell course expansion with regard to out of plane bending in the carbon steel plates. Use of stiffeners or thicker carbon steel plates may be required.

**SC.3.2.4** The required nominal shell thickness shall not be less than the greatest of the design shell thickness plus corrosion allowance, hydrostatic test shell thickness, or the nominal plate thickness listed in 5.6.1.1 (note 4 does not apply to the first shell courses made of stainless steel material).

**SC.3.3** When the roof and shell are of different materials and the operating temperature is greater than 40°C (100°F), the design shall account for differential component expansion. Use of stiffeners or thicker component members may be required.

### SC.3.4 NOZZLES AND MANWAYS

SC.3.4.1 Reinforcement requirements of 5.7 must be maintained except insert plates shall comply with SC 3.2.2.

• SC.3.4.2 Nozzles and manways shall be of the same material as the shell course unless otherwise specified by the Purchaser.

**SC.3.4.3** Reinforcing plates for shell penetrations shall be carbon steel to carbon steel and stainless steel to stainless steel even if the nozzle material differs from the shell material.

#### 09

### SC.4 Miscellaneous Requirements

**SC.4.1** Chemical cleaners and pickling solutions used shall not have a detrimental effect on the stainless steel or carbon steel in mixed material tanks and their welded joints. Chemical cleaners and pickling solutions shall be disposed of in accordance with laws and regulations governing the disposal of such chemicals. The use of chemical cleaners shall always be followed by thorough rinsing with potable water and drying (see S.4.9 and X.4.5).

**SC.4.2** Impact tests are not required for austenitic stainless steel weld metals and heat-affected zones. Impact tests of the carbon steel or duplex stainless steel heat affected zone shall be performed when required by the basic document or Appendix X.

• SC.4.3 Postweld heat treatment of austenitic stainless steel and duplex stainless steel materials need not be performed unless specified by the Purchaser. PWHT of carbon steel components shall be performed when required by the basic document. For mixed material nozzle assemblies, the PWHT requirements of 5.7.4 are not mandatory except when specified by the Purchaser. The Purchaser is cautioned that mixed material nozzles with duplex stainless steel should not be PWHT due to the potential damaging effects of high temperature on the duplex material. The Purchaser is advised to discuss with a materials consultant or mill representative to determine what PWHT can be done for the specific material/chemistry/configuration.

SC.4.4 Surfaces of carbon steel plates shall be free of rust and scale prior to welding to stainless steel plates.

**SC.4.5** At butt welds between stainless and carbon steel, at least one side of the joint shall be beveled with land not to exceed t/3 in order to prevent excessive weld metal dilution.

**SC.4.6** Internal galvanic corrosion will occur by using mixed material construction and additional mitigation such as appropriate localized coatings should be considered.

**SC.4.7** Where substantial quantities of uncoated stainless steel are welded to coated carbon steel, accelerated corrosion rates are possible at holidays in the carbon steel coating.

SC-2

09

# APPENDIX T-NDE REQUIREMENTS SUMMARY

| Process  | Welds Requiring Inspection                                                                                                                                                                                                                     | Reference<br>Section |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Air Test | Reinforcement plate welds inside and outside to 100 kPa (15 lbf/in. <sup>2</sup> ).                                                                                                                                                            | 7.3.4                |
| Air Test | Roofs designed to be airtight if roof seams are not vacuum-box tested.                                                                                                                                                                         | 7.3.7.1a             |
| Air Test | Appendix F roofs during hydro-test of tanks.                                                                                                                                                                                                   | F.4.4                |
| Air Test | Aluminum dome roofs if required to be gas-tight.                                                                                                                                                                                               | G.10.1.2             |
| Air Test | Shop built tanks if not tested per 7.3.2 – 7.3.7.                                                                                                                                                                                              | J.4.2.2              |
| Air Test | Shop fabricated compartments (pontoons). Test in shop and field.                                                                                                                                                                               | H.6.4                |
| Hydro    | Tank shell.                                                                                                                                                                                                                                    | 7.3.6                |
| MT       | Flush-type shell connections: Nozzle-to-tank shell, Repad welds, shell-to-bottom reinforcing pad welds on the root pass, each 12.5 mm ( $1/_2$ in.) of weld, and completed weld. After stress relieving before hydro-test.                     | 5.7.8.11             |
| MT       | Permanent attachment welds and temporary weld removal areas on Group IV, IVA, V, and VI materials.                                                                                                                                             | 7.2.3.5              |
| MT       | Completed welds of stress relieved assemblies before hydro-test.                                                                                                                                                                               | 7.2.3.6              |
| MT       | First pass of the internal shell-to-bottom weld unless inspected by penetrating oil or PT or VB. Not required if the final weld is tested by pressure (see 7.3.4.2) or if agreed to by Purchaser and the final weld is tested by MT, PT or VB. | 7.2.4.1a             |
| MT       | Final shell-to-bottom welds, inside and outside instead of MT, PT, pen. oil, or VB of the initial inside pass.                                                                                                                                 | 7.2.4.3c             |
| MT       | Shell-to-bottom fillet welds including the root pass, 20 mm ( $1/_2$ in.), and final surface of Appendix M tanks for which the stress concentration factor of $K = 2.0$ is used.                                                               | M.4.2                |
| MT       | Non-structural small attachments such as insulation clips (not supports) studs and pins not welded by capacitor discharge. Unless tested by liquid penetrant.                                                                                  | 7.2.1.11             |
| Pen. Oil | All seams of internal floating roofs exposed to liquid or vapors unless VB tested.                                                                                                                                                             | H.6.2                |
| Pen. Oil | First pass of the internal shell-to-bottom weld if approved instead of MT or PT.                                                                                                                                                               | 7.2.4.1d             |
| Pen. Oil | Tank shell if no water for hydrostatic test.                                                                                                                                                                                                   | 7.3.5                |
| Pen. Oil | Deck seams of external floating roofs.                                                                                                                                                                                                         | C.4.2                |
| Pen. Oil | Welded shell joints above the hydrostatic test water level unless vacuum-box tested.                                                                                                                                                           | 7.3.6.1              |
| Pen. Oil | Compartment welds of external floating roofs not tested with internal pressure or VB.                                                                                                                                                          | C.3.6                |
| PT       | Permanent attachment welds and temporary weld removal areas on Group IV, IVA, V, VI materials instead of MT if approved.                                                                                                                       | 7.2.3.5              |
| PT       | Welds attaching nozzles, manways, and clean out openings instead of MT if approved.                                                                                                                                                            | 7.2.3.6              |
| PT       | First pass of the internal shell-to-bottom weld if approved instead of MT.                                                                                                                                                                     | 7.2.4.1b or c        |
| PT       | Final shell-to-bottom welds, inside and outside instead of MT, PT, pen. oil, or VB of the initial inside pass.                                                                                                                                 | 7.2.4.3c             |
| PT       | All aluminum structural welds and components joined by welding.                                                                                                                                                                                | G.11.3               |
| PT       | Stainless steel tank shell-to-bottom welds, opening connections not radiographed all welds of attachments to shells, and all butt welds of annular plates on which backing strips are to remain.                                               | S.4.14.2             |
| PT       | Non-structural small attachments such as insulation clips (not supports) studs and pins not welded by capacitor discharge. Unless tested by magnetic particle.                                                                                 | 7.2.1.11             |

| RT         | Shell plate butt welds unless examined by UT with Purchaser approval. RT is not required for Appendix A, J, and S tanks where the Joint Efficiency of 0.7 is used.                                                                      | 7.3.2.1,<br>A.5.3,<br>S.4.14.1  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| RT         | Butt welds of annular plates that are required by 7.5.1 or M.4.1.                                                                                                                                                                       | 8.1.2.9                         |
| RT         | Flush-type shell connections: 100% of all longitudinal butt welds in the nozzle neck and tran-<br>sition piece, if any, and the first circumferential butt weld in the neck closest to the shell,<br>excluding the neck-to-flange weld. | 5.7.8.11                        |
| RT         | Shell vertical and horizontal welds which have intersecting openings and repads—100% over weld length 3 times the diameter of the opening.                                                                                              | 5.7.3.4                         |
| Tracer Gas | Entire length of bottom weld joints as an alternative to vacuum-box testing.                                                                                                                                                            | 7.3.3.b                         |
| UT         | Shell plate butt welds if approved by Purchaser.                                                                                                                                                                                        | 7.3.2.1                         |
| VB         | First pass of the internal shell-to-bottom weld if approved instead of MT, PT, or Pen. Oil.                                                                                                                                             | 7.2.4.1e                        |
| VB         | Bottom welds.                                                                                                                                                                                                                           | 7.3.4a                          |
| VB         | Welds of roofs designed to be gas-tight if not air tested.                                                                                                                                                                              | 7.3.7.1                         |
| VB         | All seams of internal floating roofs exposed to liquid or vapors if not tested by penetrating oil.                                                                                                                                      | H.6.2                           |
| VB         | Seams of flexible membrane liners for leak protection.                                                                                                                                                                                  | I.6.2                           |
| VB         | Welded shell joints above the hydrostatic test water level unless tested with penetrating oil.                                                                                                                                          | 7.3.6.1                         |
| VB         | Shell-to-bottom weld joints.                                                                                                                                                                                                            | 7.2.4.3c                        |
| VE         | Flush type shell connections: Nozzle-to-tank shell, repad welds, shell-to-bottom reinforcing pad welds on the root pass, each 20 mm ( $^{1}/_{2}$ in.) of weld, and completed weld. After stress relieving before hydro-test.           | 5.7.8.11                        |
| VE         | Tack of shell butt welds left in place.                                                                                                                                                                                                 | 7.2.1.8                         |
| VE         | Permanent attachment welds and temporary weld removal areas on Group IV, IVA, V, and VI materials.                                                                                                                                      | 7.2.3.5                         |
| VE         | Completed welds of stress relieved assemblies before hydro-test.                                                                                                                                                                        | 7.2.3.6                         |
| VE         | First pass and final weld inside and outside of the internal shell-to-bottom weld.                                                                                                                                                      | 7.2.4.1,<br>7.2.4.2,<br>7.2.4.3 |
| VE         | All shell plate butt welds.                                                                                                                                                                                                             | 7.3.2.1                         |
| VE         | All fillet welds including roof plate welds.                                                                                                                                                                                            | 7.3.2.2                         |
| VE         | Upper side of the upper deck welds of pontoon and double deck floating roofs.                                                                                                                                                           | C.4.4                           |
| VE         | All aluminum structural welds and components joined by welding.                                                                                                                                                                         | G.11.3                          |
| VE         | Joint fit-up of butt welds of bottoms supported by grillage and each weld pass.                                                                                                                                                         | I.7.4                           |
| VE         | Non-structural small attachments such as insulation clips (not supports) studs and pins including those welded by capacitor discharge.                                                                                                  | 7.2.1.11                        |
| VE         | Leak barrier, leak barrier penetrations, attachments to ringwalls and other appurtenances.                                                                                                                                              | I.6.1                           |
| VE         | Bottom welds.                                                                                                                                                                                                                           | 7.3.3                           |
| VE         | Roof welds not designed to be gas-tight.                                                                                                                                                                                                | 7.3.7.2                         |
| Water      | Bottom welds if not vacuum-box or tracer gas tested.                                                                                                                                                                                    | 7.3.3c                          |
| Water      | External floating roofs—flotation test.                                                                                                                                                                                                 | C.4.3                           |
| Water      | External floating roof drain pipe and hose systems with pressure.                                                                                                                                                                       | C.4.5                           |
| Water      | Aluminum dome roofs after completion.                                                                                                                                                                                                   | G.10.1.1                        |
| Water      | Internal floating roofs flotation test.                                                                                                                                                                                                 | H.7.3                           |

#### Definitions:

MT = Magnetic Particle Examination

Pen Oil = Penetrating Oil Test

PT = Liquid Penetrant Examination

RT = Radiographic Testing

VB = Vacuum-Box Testing

VE = Visual Examination

#### Acceptance Standards:

MT: ASME Section VIII, Appendix 6 (Paragraphs 6-3, 6-4, 6-5)

PT: ASME Section VIII, Appendix 8, (Paragraphs 8-3, 8-4, 8-5)

RT: ASME Section VIII, Paragraph UW-51(b)

Tracer Gas: API Std 650, Section 8.6.11

UT: For welds examined by UT in lieu of RT, acceptance standards are in Appendix U. For UT when RT is used for the requirements of 7.3.2.1, the acceptance standard is as agreed upon by the Manufacturer and Purchaser.

VB: API Std 650, Section 8.6

VE: API Std 650, Section 8.5

### **Examiner Qualifications:**

MT: API Std 650, Section 8.2.3.

PT: API Std 650, Section 8.2.3

RT: ASNT SNT-TC-1A Level II or III. Level-I personnel may be used under the supervision of a Level II or Level III with a written procedure in accordance with ASME Section V, Article 2.

Tracer Gas: None

UT: For welds examined by UT in lieu of RT, the inspector must be ASNT-TC-1A or CP-189 Level II or Level III. For UT when RT is used for the requirements of 7.3.2.1, the required qualifications are ASNT-TC-1A Level II or Level III. A Level I may be used with restrictions—see API Std 650, Section 8.3.2.

VB: None

VE: None

Procedure Requirements:

MT: ASME Section V, Article 7

PT: ASME Section V, Article 6

RT: A procedure is not required. However, the examination method must comply with ASME Section V, Article 2. Acceptance standards shall be in accordance with ASME Section VIII, Paragraph UW-51(b).

UT: For shell welds examined by UT in lieu or RT, ASME, Section V, Article 4 and U.3.5. For welds when RT is used for the requirements of 7.3.2.1, ASME Section V.

VB: None

VE: None

Tracer Gas: API Std 650, Section 8.6.11.a.

# APPENDIX U—ULTRASONIC EXAMINATION IN LIEU OF RADIOGRAPHY

## **U.1** General

### U.1.1 PURPOSE

This appendix provides detailed rules for the use of the ultrasonic examination (UT) method for the examination of tank seams as permitted by 7.3.2.1. This alternative is limited to joints where the thickness of the thinner of the two members joined is greater than or equal to 10 mm ( $\frac{3}{8}$  in.).

### **U.1.2 APPLICATION AND EXTENT**

The provisions of 8.1 governing:

- a. When adjacent plates may be regarded as the same thickness,
- b. Application (see 8.1.1), and
- c. Number and Locations (see 8.1.2)

shall apply to this ultrasonic method. When these sections refer to radiography, for purposes of this appendix, they shall be read as applied to UT.

## **U.2** Definitions

- a. documenting: Preparation of text and/or and figures.
- b. evaluation: All activities required in U.6.3 through U.6.6 to determine the acceptability of a flaw.

c. **flaw:** A reflector that is not geometric or metallurgical in origin that may be detectable by nondestructive testing but is not necessarily rejectable.

d. **flaw categorization:** Whether a flaw is a surface flaw or is a subsurface flaw (see U.6.4). Note that a flaw need not be surface-breaking to be categorized as a surface flaw.

e. **flaw characterization:** The process of quantifying the size, location and shape of a flaw. See U.6.3 for size and location. The only shape characterization required by this appendix is applied to the results of supplemental surface examination by MT or PT (see U.6.6.2).

f. indication: That which marks or denotes the presence of a reflector.

g. **interpretation**: The determination of whether an indication is relevant or non-relevant. i.e., whether it originates from a geometric or metallurgical feature or conversely originates from a flaw (see U.6.2).

h. investigation: Activities required to determine the interpretation of an indication (see U.6.1 and U.6.2).

i. **recording:** The writing of ultrasonic data onto an appropriate electronic medium.

j. **reflector:** An interface at which an ultrasonic beam encounters a change in acoustic impedance and at which at least part of the energy is reflected.

## U.3 Technique

• **U.3.1** The UT volume shall include the weld metal, plus the lesser of 25 mm (1 in.) or *t* of adjoining base metal on each side of the weld unless otherwise agreed upon by the Purchaser and the Manufacturer.

**U.3.2** UT for the detection of flaws shall be performed using automated, computer-based data acquisition except that scanning of adjacent base metal for flaws that can interfere with the examination may be performed manually. UT for sizing of flaws shall be performed as described in U.6.3.1

• **U.3.3** A documented examination strategy or scan plan shall be provided showing transducer placement, movement, and component coverage that provides a standardized and repeatable methodology for weld acceptance. The scan plan shall also include ultrasonic beam angle to be used, beam directions with respect to weld centerline, and tank material volume examined for each weld. The documentation shall be made available to the Owner upon request.

**U.3.4** Data from the examination volume, per U.3.1, shall be recorded and/or documented as follows:

a. For automated computer-based scans, data shall be recorded using the same system essential variables, specified value or range of values, used for the demonstration of the procedure per U.4.3.

b. For manual scans, results shall be documented in a written report.

• **U.3.5** The UT shall be performed in accordance with a written procedure which has been reviewed and approved by the Purchaser and conforms to the requirements of Section V, Article 4, except that:

a. the calibration block shown in Figure T-434.2.1 of Section V, Article 4 shall be used, and

b. for examination techniques that provide plate quality information (e.g., TOFD), the initial base material straight-beam examination need not be performed.

**U.3.6** The examination methodology (including U.6.6) shall be demonstrated to be effective over the full weld volume. It is recognized that Time of Flight Diffraction (TOFD) may have limitations in detection of flaws at the surface such that it may be necessary to supplement TOFD with pulse-echo techniques suitable for the detection of near-field and far-field flaws. The variety of surface and sub-surface category flaws in the test plate mandated by U.4.3a are intended to ensure that any such limitations are adequately addressed.

# U.4 Personnel Qualifications and Training

**U.4.1 Personnel Qualifications**—Personnel performing and evaluating UT examinations shall be qualified and certified in accordance with their employer's written practice. ASNT SNT-TC-IA or CP-189 shall be used as a guideline. Only Level-II or Level-III personnel shall perform UT examinations, analyze the data, or interpret the results.

**U.4.2 Qualification Records**—Qualification records of certified personnel shall be approved by the Manufacturer and maintained by their employer.

• **U.4.3 Personnel Testing**—Personnel who acquire and analyze UT data shall be trained using the equipment of U.3.2, and the procedure of U.3.5 above. Additionally, they shall pass a practical examination based on the technique on a blind test plate. The testing program details shall be by agreement between the Purchaser and the inspection company but shall in any case include the following elements as a minimum:

a. The test plate shall contain a variety of surface and sub-surface category flaws including multiple flaws described in U.6.5. Some of the flaws shall be acceptable and others unacceptable per the applicable criteria of Tables U-1a or U-1b.

b. The practical examination should cover detection, interpretation, sizing, plotting, categorization, grouping, and characterization that is sufficient to cover the cases outlined in U.6.

c. Criteria for passing the test shall include limits on the number of miscalls, both of rejectable flaws missed or accepted and acceptable regions rejected.

d. Testing shall be facilitated by a third-party or by the Purchaser.

# U.5 Level III Review

08

07

**U.5.1** The final data package shall be reviewed by a UT Level-III individual qualified in accordance with U.4.1 and U.4.3 above. The review shall include:

a. The ultrasonic data record.

b. Data interpretations.

c. Evaluations of indications performed by another qualified Level-II or Level-III individual. The data review may be performed by another individual from the same organization.

**U.5.2** Alternatively, the review may be achieved by arranging for a data acquisition and initial interpretation by a Level-II individual qualified in accordance with. U.4.1 and U.4.3 above, and a final interpretation and evaluation shall be performed by a Level-III individual qualified per U.5.1.

# U.6 Interpretation and Evaluation

**U.6.1** Investigation Criteria—Reflectors that produce a response greater than 20% of the reference level shall be investigated. Alternatively, for methods or techniques that do not use amplitude recording levels, sized reflectors longer than 40% of the

**U.6.2** Interpretation as Geometric/Metallurgical—Ultrasonic indications of geometric and metallurgical origin shall be interpreted as follows:

**U.6.2.1** Indications that are determined to originate from the surface configurations (such as weld reinforcement or root geometry) or variations in metallurgical structure of materials may be interpreted as geometric indications, and

a. Need not be sized or categorized in accordance with U.6.3 and U.6.4 below;

b. Need not be compared to the allowable flaw acceptance criteria of Tables U-1a and U-2b;

c. The maximum indication amplitude (if applicable) and location shall be documented, for example: internal attachments, 200% DAC maximum amplitude, one (1) in. above the weld centerline, on the inside surface, from 90° to 95°.

**U.6.2.2** The following steps shall be taken to classify an indication as geometric:

a. Interpret the area containing the indication in accordance with the applicable examination procedure;

b. Plot and verify the indication's coordinates, provide a cross-sectional display showing the indication's position and any surface conditions such as root or counter-bore; and

c. Review fabrication or weld prep drawings.

**U.6.2.3** Alternatively, other NDE methods or techniques may be applied to interpret an indication as geometric (e.g., alternative UT beam angles, radiography, ID and/or OD profiling).

### U.6.3 FLAW SIZING

**U.6.3.1** Flaws shall be sized using automated, computer-based data acquisition or by a supplemental manual technique that has been demonstrated to perform acceptably per U.4.3 above.

**U.6.3.2** The dimensions of the flaw shall be defined by the rectangle that fully contains the area of the flaw. The length (*l*) of the flaw shall be drawn parallel to the inside pressure-retaining surface of the component. The height (*h*) of the flaw shall be drawn normal to the inside pressure-retaining surface.

### **U.6.4 FLAW CATEGORIZATION**

If the space between the surface and the flaw in the through-thickness direction is less than one-half the measured height of the flaw, then the flaw shall be categorized as a surface flaw with flaw height extending to the surface of the material.

### U.6.5 GROUPING OF MULTIPLE FLAWS

**U.6.5.1** Discontinuous flaws that are oriented primarily in parallel planes shall be considered to lie in a single plane if the distance between the adjacent planes is equal to or less than 13 mm ( $^{1}/_{2}$  in.).

**U.6.5.2** If the space between two flaws aligned along the axis of weld is less than the length of the longer of the two, the two flaws shall be considered a single flaw.

**U.6.5.3** If the space between two flaws aligned in the through-thickness direction is less than the height of the flaw of greater height, the two flaws shall be considered a single flaw.

### U.6.6 FLAW ACCEPTANCE CRITERIA

**U.6.6.1** Acceptance Criteria Tables—Flaw dimensions resulting after the application of the rules of U.6.3, U.6.4 and U.6.5 shall be evaluated for acceptance using the criteria of Tables U-1a and U-1b.

U.6.6.2 Surface Examination—Flaws categorized as surface flaws during the UT examination may or may not be surface-connected. Therefore, unless the UT data analysis confirms that the flaw is not surface-connected, a supplemental surface examination (MT or PT) shall be performed in accordance with 8.2 or 8.4 as applicable for all surface flaws. Any flaws which are detected by MT or PT and characterized as planar are unacceptable regardless of length.

08

07 08

08

08

# U.7 Repairs

All repaired areas, plus the lesser of 25 mm (1 in.) or *t* of the adjoining weld on each side of the repair, shall be reinspected per this Appendix.

# 07 U.8 Flaw Documentation

In addition to the data record prescribed by U.3.4, written documentation shall be produced for each unacceptable flaw and those acceptable flaws that either exceed 50% of reference level for amplitude based techniques or exceed 75% of the acceptable length for non-amplitude techniques.

| na mang mang mang mang mang mang mang ma |   |                                             | ACCEPT | ABLE FLAV | W LENGTHS | 5—( <i>1</i> ) mm                     | ana ang ang ang ang ang ang ang ang ang |                |
|------------------------------------------|---|---------------------------------------------|--------|-----------|-----------|---------------------------------------|-----------------------------------------|----------------|
| Thickness at Weld ( $i$ ) <sup>a</sup>   |   | For Surface Fla<br>ith Height, ( <i>h</i> ) |        |           |           | SubSurface<br>th Height, ( <i>h</i> ) |                                         |                |
| mm                                       | 2 | 2.5                                         | 3      | 2         | 3         | 4                                     | 5                                       | 6              |
| 10 to <13                                | 8 | 8                                           | 4      | 14        | 5         | 4                                     | Not<br>allowed                          | Not<br>allowed |
| 13 to < 19                               | 8 | 8                                           | 4      | 38        | 8         | 5                                     | 4                                       | 3              |
| 19 to < 25                               | 8 | 8                                           | 4      | 75        | 13        | 8                                     | 6                                       | 5              |
| 25 to < 32                               | 9 | 8                                           | 4      | 100       | 20        | 9                                     | 8                                       | 6              |
| 32 to < 40                               | 9 | 8                                           | 4      | 125       | 30        | 10                                    | 8                                       | 8              |
| 40 to < 44                               | 9 | 8                                           | 4      | 150       | 38        | 10                                    | 9                                       | 8              |

Table U-1a—(SI) Flaw Acceptance Criteria for UT Indications May be Used for All Materials

a. *t* = thickness of the weld excluding any allowable reinforcement. For a butt weld joining members having different thickness at the weld, *t* is the thinner of the two.

b. Any surface flaw, to be deemed acceptable, must satisfy both the size limitations of this table and additionally satisfy the MT/PT characterization limitations of U.6.6.2

Table U-1b-(USC) Flaw Acceptance Criteria for UT Indications May be Used for All Materials

|                                           |                                                                | ACCEPTABLE FLAW LENGTHS—(1) in. |      |                                                      |      |      |                |                |  |  |
|-------------------------------------------|----------------------------------------------------------------|---------------------------------|------|------------------------------------------------------|------|------|----------------|----------------|--|--|
| Thickness at Weld (/) <sup>a</sup><br>in. | For Surface Flaw <sup>b</sup><br>With Height, ( <i>h</i> ) in. |                                 |      | For SubSurface Flaw<br>With Height, ( <i>h</i> ) in. |      |      |                |                |  |  |
|                                           | 0.08                                                           | 0.10                            | 0.12 | 0.08                                                 | 0.12 | 0.16 | 0.2            | 0.24           |  |  |
| 0.375 to < 0.50                           | 0.30                                                           | 0.30                            | 0.15 | 0.55                                                 | 0.20 | 0.15 | Not<br>allowed | Not<br>allowed |  |  |
| 0.50 to < 0.75                            | 0.30                                                           | 0.30                            | 0.15 | 1.50                                                 | 0.30 | 0.20 | 0.15           | 0.10           |  |  |
| 0.75 to < 1.0                             | 0.30                                                           | 0.30                            | 0.15 | 3.00                                                 | 0.50 | 0.30 | 0.25           | 0.20           |  |  |
| 1.0 to < 1.25                             | 0.35                                                           | 0.30                            | 0.15 | 4.00                                                 | 0.80 | 0.35 | 0.30           | 0.25           |  |  |
| 1.25 to < 1.50                            | 0.35                                                           | 0.30                            | 0.15 | 5.00                                                 | 1.20 | 0.40 | 0.30           | 0.30           |  |  |
| 1.50 to < 1.75                            | 0.35                                                           | 0.30                            | 0.15 | 6.00                                                 | 1.50 | 0.40 | 0.35           | 0.30           |  |  |

a. *t* = thickness of the weld excluding any allowable reinforcement. For a butt weld joining members having different thickness at the weld, *t* is the thinner of the two.

b. Any surface flaw, to be deemed acceptable, must satisfy both the size limitations of this table and additionally satisfy the MT/PT characterization limitations of U.6.6.2

U-4

08

07

08

# APPENDIX V—DESIGN OF STORAGE TANKS FOR EXTERNAL PRESSURE

# • V.1 Scope

This appendix provides minimum requirements that may be specified by the Purchaser for tanks that are designed to operate with external pressure (vacuum) loading as a normal operating condition. This appendix is intended to apply to tanks for which the normal operating external pressure exceeds 0.25 kPa (0.036 lbf/in.<sup>2</sup>) but does not exceed 6.9 kPa (1.0 lbf/in.<sup>2</sup>). This appendix is intended for use with tanks subject to uniform external pressure. The requirements in this appendix represent accepted practice for application to flat-bottom tanks. However, the Purchaser may specify other procedures or additional requirements. Any deviation from the requirements of this appendix must be by agreement between the Purchaser and the Manufacturer. See V.11 for a discussion of the technical basis for this appendix.

# V.2 General

The design procedures presented in this appendix are intended to allow the user to evaluate the design of the bottom, shell and fixed roof of tanks that operate under partial vacuum conditions. See Appendix R for requirements for combining external pressure loads with other design loads. The requirements of this appendix are not intended to supersede the requirements of other appendices of this Standard that may be specified. For Appendix AL, M, S and SC tanks, the variables in the equations prescribed in this appendix shall be modified in accordance with the requirements of Appendices AL, M, S and SC, respectively.

# V.3 Nomenclature and Definitions

## V.3.1 NOMENCLATURE

- $\theta$  = angle between a horizontal plane and the surface of the roof plate (degrees)
- $A_{\text{reqd}}$  = total required cross-sectional area of the stiffener region, mm<sup>2</sup> (in.<sup>2</sup>)
- $A_{\text{stiff}}$  = required cross-sectional area of stiffener, mm<sup>2</sup> (in.<sup>2</sup>) Note:  $A_{\text{stiff}}$  must be at least  $1/2 \times A_{\text{total}}$ 
  - D = nominal tank diameter, m (ft)
- $D_L$  = dead load, the weight of the tank or tank component calculated using nominal thickness unless otherwise specified, kPa (lb/ft<sup>2</sup>)
- E = modulus of elasticity of the roof plate material, MPa, (lb/in.<sup>2</sup>)
- f = smallest of the allowable tensile stresses (see Tables 5-2a and 5-2b) of the roof plate material, shell plate material or stiffener ring material at the maximum operating temperature, MPa (lb/in.<sup>2</sup>)
- $f_c$  = smallest of the allowable compressive stresses of the roof plate material, shell plate material, bottom plate material or stiffener ring material at the maximum operating temperature, MPa (lb/in.<sup>2</sup>).  $f_c$  = 0.4 $F_y$  of components considered for the intermediate and bottom stiffener regions. However,  $f_c$  need not be less than 103 MPa (15,000 lb/in.<sup>2</sup>).  $f_c$  = 0.6 $F_y$  of components considered for the top end stiffener region. However,  $f_c$  need not be less than 140 MPa (20,000 lb/in.<sup>2</sup>).
- $F_y$  = yield strength of the component at the maximum operating temperature, MPa (lb/in.<sup>2</sup>)
- $G_{\rm in}$  = unit weight of liquid inside tank, kg/m<sup>3</sup> (lb/ ft<sup>3</sup>)
- $G_{out}$  = unit weight of flood liquid, kg/m<sup>3</sup> (lb/ ft<sup>3</sup>) (1000 kg/m<sup>3</sup> [62.4 lb/ ft<sup>3</sup>] for water)
- H = shell height, m (ft)
- $h_1, h_2...h_n$  = height of shell courses 1, 2, 3, through n, respectively, m (ft)
  - $H_{\rm in}$  = height or depth of liquid inside tank, m (ft)
  - $H_{\text{safe}}$  = maximum height of unstiffened shell permitted, based on  $t_{smin}$ , m (ft)
  - *HTS* = Transformed height of tank shell, m (ft)
  - $I_{\text{act}}$  = The actual moment of inertia of the stiffener ring region, cm<sup>4</sup> (in.<sup>4</sup>)
  - $I_{reqd}$  = required moment of inertia of the stiffener ring, cm<sup>4</sup> (in.<sup>4</sup>)

DELETED

11

11

- $L_1, L_2$  = distances between adjacent intermediate stiffeners or intermediate stiffener and top of shell or bottom of shell, respectively, m (ft)
  - $L_r$  = minimum roof live load on horizontal projected area of the roof, kPa (lb/ft<sup>2</sup>) = 1.0kPa (20 lb/ft<sup>2</sup>)
  - $L_s = (L_1 + L_2) / 2, m$  (ft)
  - N = number of waves into which a shell will buckle under external pressure
  - $N_s$  = number of intermediate stiffeners
  - $P_e$  = specified external pressure, kPa (lb/ft<sup>2</sup>)
  - $P_r$  = total design external pressure for design of roof, kPa (lb/ft<sup>2</sup>).
  - $P_s$  = total design external pressure for design of shell, kPa (lb/ft<sup>2</sup>).  $P_s$  = the greater of 1) the specified design external pressure,  $P_{e}$ , excluding wind or 2) W + 0.4 $P_e$  (see R.2 of Appendix R for an important consideration).
  - $\psi$  = stability factor (see V.8.1 for values)
  - Q = radial load imposed on the intermediate stiffener by the shell, N/m (lb/in.)
  - $q_{\rm s}$  = first moment of area of stiffener for design of stiffener attachment weld, mm<sup>3</sup> (in.<sup>3</sup>)
  - R = roof dish radius, m (ft)
  - S = specified snow load, kPa (lb/ft<sup>2</sup>)
  - $S_d$  = allowable design stress, Mpa, (lb/in.<sup>2</sup>)
  - t = nominal shell thickness, mm (in.)
  - $t_b$  = nominal thickness of bottom plate under the shell, mm (in.)
- $t_{\text{cone}}$  = required nominal thickness of cone roof plate, mm (in.). Maximum corroded thickness shall be 12.5 mm (0.5 in.)
- $t_{\text{dome}}$  = required nominal thickness of dome roof plate, mm (in.). Maximum corroded thickness shall be 12.5 mm (0.5 in.)
- $t_{s1}, t_{s2}...t_{sn}$  = nominal thickness of cylindrical shell course 1, 2...n, mm (in.), where the subscript numbering is from top to bottom of the shell. Note: The subscript 1 denotes the top shell course and *n* denotes the lowest shell course.

 $t_{\text{shell}}$  = nominal thickness of shell at level under consideration, mm (in.)

 $t_{\rm smin}$  = nominal thickness of thinnest shell course, mm (in.)

- $V_1$  = radial load imposed on the stiffener by the shell, N/m (lb/in.)
- $V_{s1}$  = radial pressure load imposed on the stiffener from the shell for sizing the stiffener attachment weld, N/m (lb/ft)
- $v_{\rm s}$  = radial shear load on stiffener for sizing the stiffener attachment weld, N (lb)
- $V_{s2}$  = weld shear flow load imposed for sizing the stiffener attachment weld, N/m (lb/ft)
- W = maximum wind pressure consistent with the specified design wind velocity, kPa (lb/ft<sup>2</sup>). The maximum wind pressure shall be calculated as follows (see 5.9.7.1, Note 2):

In SI units:

$$W = 1.48 \left(\frac{V}{190}\right)^2$$

In US Customary units:

$$W = 31 \left(\frac{V}{120}\right)^2$$

where

V = specified design wind velocity (3-sec gust), kph (mph),

- $W_{\text{bott}}$  = weight of bottom plate, kg/m<sup>2</sup> (lb/ft<sup>2</sup>)
- $w_{\text{shell}}$  = contributing width of shell on each side of intermediate stiffener, mm (in.)
- $X_{\rm btm}$  = length of bottom plate within tension/compression ring region, mm (in.).  $X_{btm}$  = 16  $t_b$
- $X_{\text{cone}}$  = length of cone roof within tension/compression ring region, mm (in.)
- $X_{\text{dome}}$  = length of umbrella or dome roof within tension/compression ring region, mm (in.)
- $X_{\text{shell}}$  = length of shell within tension/compression ring region, mm (in.)

08

08

08

### V.3.2 DEFINITIONS

**V.3.2.1** specified external pressure: External pressure specified on the tank data sheet (see Appendix L) by the Purchaser. This specified value excludes any external pressure due to wind.

**V.3.2.2** total design external pressure for the roof ( $P_r$ ): Sum of the specified external pressure and the roof live load or snow load and the dead load as provided in V.7.1.

**V.3.2.3** total design external pressure for the shell ( $P_s$ ): Sum of the specified external pressure and the external pressure due to wind as combined in V.8.1.2.

# V.4 Construction Tolerances

The procedures prescribed in this appendix are only valid for tanks that satisfy the construction tolerances of 7.5.

# V.5 Corrosion Allowance

Unless specified otherwise by the Purchaser, the evaluation of tanks in accordance with the requirements of this appendix may be based on the nominal thickness of the pressure-resisting components. If the nature of the tank service conditions is such that corrosion will result in a uniform loss of thickness of the affected components, the Purchaser should specify that corrosion allowance be deducted from the nominal thickness used in the evaluation.

## V.6 Testing

Testing of the tank design for external pressure is not required by this appendix, but may be performed if specified by the Purchaser.

# V.7 Fixed Roof

The total design external pressure loading,  $P_r$ , on the roof is determined by the following equation:

 $P_r$  = The greater of  $D_L$  + ( $L_r$  or S) + 0.4  $P_e$  or  $D_L$  +  $P_e$  + 0.4 ( $L_r$  or S)

### V.7.1 COLUMN-SUPPORTED CONE ROOF

Column-supported cone roofs may be used on tanks designed for external pressure, providing the design and construction satisfy the following requirements.

- V.7.1.1 The roof plate spanning between support rafters may be designed as a simple beam spanning several supports, or as a catenary beam spanning between supports, or as a diaphragm, by agreement between the Purchaser and the Manufacturer. Regardless of the design method selected, the following considerations shall be addressed in the design:
  - a. Allowable stress for both membrane and bending.
  - b. Joint efficiency of welds joining the roof plates together.
  - c. Assumed end fixity conditions for plate (beam) span.
  - d. Allowable deflection criteria.

If the roof plate is designed as a catenary beam, the following additional considerations shall be addressed in the design.

e. Possibility of stress reversal and fatigue loading of welds at and between supports of the roof plate.

**V.7.1.2** Additional guidance on the design of supported cone roof plates for pressure loading may be found in References 8 and 9, for example, and in other published texts.

### V.7.2 SELF-SUPPORTING CONE ROOF

**V.7.2.1** The required thickness of the roof plate is determined by the following equation. However, the thickness shall not be less than that required by 5.10.5.1.

In SI units:

 $t_{\rm cone} = \frac{83D}{\sin\theta} \sqrt{\frac{P_r}{1.72E}}$ 

In US Customary units:

08

08

**V.7.2.2** The total required cross-sectional area in the cone roof-to-shell joint region for external pressure on the roof is determined by the following equation.

 $t_{\rm cone} = \frac{D}{\sin \theta} \sqrt{\frac{P_r}{0.248E}}$ 

In SI units:

 $A_{\text{reqd}} = \frac{125P_r D^2}{\text{f}\tan\theta}$ 

In US Customary units:

08

08

$$A_{\text{reqd}} = \frac{P_r D^2}{8 \text{ f } \tan \theta}$$

**V.7.2.3** The length of cone roof considered to be within the top tension/compression ring region is determined by the following equation (see Figure V.1A):

In SI units:

08

$$X_{\text{cone}} = 13.4 \sqrt{\frac{Dt_{\text{cone}}}{\sin \theta}}$$

In US Customary units:

08

11

$$X_{\text{cone}} = 1.47 \sqrt{\frac{Dt_{\text{cone}}}{\sin \theta}}$$

**V.7.2.4** The vertical dimension measured from the top of the shell or top angle considered to be within the tension/compression ring region is determined by the following equation (see Figure V.1A):

In SI units:

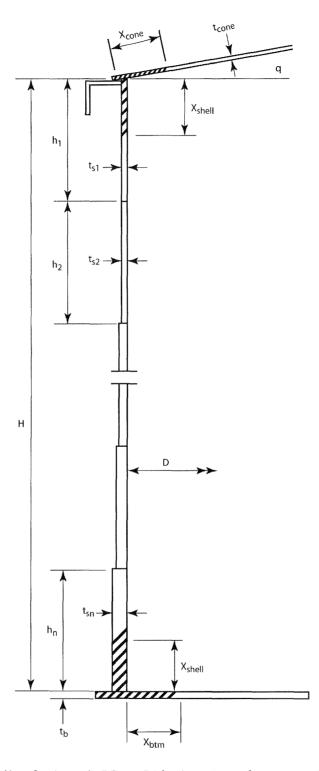
For the top tension/compression region:

For the bottom tension/compression region:

$$X_{\text{shell}} = 13.4\sqrt{Dt_{sl}} \qquad \qquad X_{\text{shell}} = 13.4\sqrt{Dt_{sn}}$$

In US Customary units:

For the top tension/compression region:


For the bottom tension/compression region:

$$X_{\text{shell}} = 1.47 \sqrt{Dt_{s/}} \qquad \qquad X_{\text{shell}} = 1.47 \sqrt{Dt_{s/}}$$

V.7.2.5 The required cross-sectional area of the top stiffener structural shape is determined by the following equation:

$$A_{\text{stiff}} = A_{\text{regd}} - t_{s1}X_{\text{shell}} - t_{\text{cone}}X_{\text{cone}}$$

V-4



Note: See Appendix F, Figure F-2 for alternative configurations and associated limitations on structural section used for top stiffener.

Figure V-1A-Dimensions for Self-Supporting Cone Roof

### V.7.3 SELF-SUPPORTING DOME OR UMBRELLA ROOF

**V.7.3.1** The required thickness of the roof plate is determined by the following equations. However, the thickness shall not be less than that required by 5.10.6.1. (Note that design in accordance with API Std 620 is permitted for dished dome roofs meeting the requirements of API Std 620, 5.10.5.1.)

In SI units:

11

$$t_{\text{done}} = 141 R_{\sqrt{\frac{P_r}{E}}}$$
 (for umbrella and dome roofs)

In US Customary units:

$$t_{\text{dome}} = 4.47 R \sqrt{\frac{P_r}{E}}$$
 (for umbrella and dome roofs)

**V.7.3.2** The total required cross-sectional area in the dome or umbrella roof-to-shell joint region for external pressure on the roof is determined by the following equation. However, the area shall not be less than that required by 5.10.6.2.

In SI units:

$$A_{\rm reqd} = \frac{300 P_{\rm r} RD}{f}$$

In US Customary units:

$$A_{\text{reqd}} = \frac{P_r RD}{3.375f}$$

**V.7.3.3** The length of dome or umbrella roof considered to be within the top tension/compression ring region is determined by the following equation:

In SI units:

08

$$X_{\text{dome}} = 19.0\sqrt{RT_{\text{dome}}}$$

In US Customary units:

$$X_{\text{dome}} = 2.1 \sqrt{RT_{\text{dome}}}$$

**V.7.3.4** The length of shell considered to be within the top tension/compression ring region is determined by the following equation (see Figure V.1B):

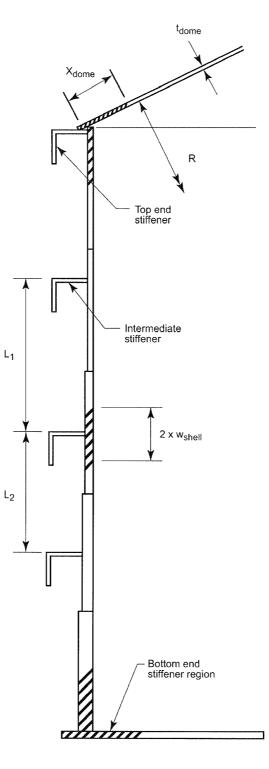
 $X_{\text{shell}} = 1.47 \sqrt{Dt_{s1}}$ 

In SI units:

#### 08

 $X_{\text{shell}} = 13.4\sqrt{Dt_{sl}}$ 

In US Customary units:


08

11

$$A_{\text{stiff}} = A_{\text{reqd}} - t_{s1}X_{\text{shell}} - t_{\text{dome}}X_{\text{dome}}$$
$$A_{\text{stiff}} = 7.21 - (0.3125)(7.21) - (0.529)(11.7)$$
$$A_{\text{stiff}} = -1.23 \text{ in.}^2$$

Note: This value should be recalculated, if necessary, after selection of final shell thickness.

V-6



Note: See Appendix F, Figure F-2 for alternative configurations and associated limitations on structural section used for top stiffener.

Figure V-1B—Dimensions for Self-Supporting Dome Roof

## V.8 Shell

## V.8.1 UNSTIFFENED SHELLS

The procedure utilizes the nominal thickness of thinnest shell course and the transformed shell method to establish intermediate stiffener number and locations. The equations in V.8.1.2 and V.8.1.3 contain variables for a stability factor,  $\psi$ , that is dependent upon the magnitude of the vacuum pressure. The equations also include a 0.8 "knockdown" factor for imperfections in the cylindrical shell geometry. Shells shall be checked for two conditions: 1) the combined wind plus vacuum, and 2) for vacuum pressure alone. Each condition shall be checked using the appropriate stability factor,  $\psi$ , as follows:

In SI Units:

Condition 1-Wind plus specified external (vacuum) pressure

- $\psi = 1.0$  for wind plus vacuum pressure [when vacuum pressure (*Pe*) is less than or equal to 0.25 kPa]. For this case, Appendix V is not mandatory.
- $\psi = [Pe + 0.70]/0.95$  for wind plus vacuum pressure [when vacuum pressure (*Pe*) is greater than 0.25 kPa but less than or equal to 0.70 kPa].
- $\psi = [Pe/0.48]$  for wind plus vacuum pressure [when vacuum pressure (*Pe*) is greater than 0.70 kPa; however,  $\psi$  need not exceed 2.5.

Condition 2-Specified external (vacuum) pressure only

 $\Psi = 3.0$ 

In US Customary Units:

Condition 1-Wind plus specified external (vacuum) pressure

- $\psi = 1.0$  for wind plus vacuum pressure [when vacuum pressure (*Pe*) is less than or equal to 5.2 psf]. For this case, Appendix V is not mandatory.
- $\psi = [Pe + 15]/20$  for wind plus vacuum pressure [when vacuum pressure (*Pe*) is greater than 5.2 psf but less than or equal to 15 psf].
- $\psi$  = [Pe/10] for wind plus vacuum pressure [when vacuum pressure (*Pe*) is greater than 15 psf; however,  $\psi$  need not exceed 2.5.

Condition 2-Specified external (vacuum) pressure only

 $\Psi = 3.0$ 

**V.8.1.1** For an unstiffened tank shell subjected to external pressure sufficient to cause buckling, buckling will occur elastically if the following criterion\* is satisfied. Note that this criterion will typically be satisfied except for very small, exceptionally thick tanks. If this criterion is not satisfied, external pressure effects should be evaluated in accordance with the requirements of the ASME *Boiler and Pressure Vessel Code*, Section VIII, Division 1.

In SI units:

08

$$\left(\frac{D}{t_{smin}}\right)^{0.75} \left[ \left(\frac{H_{TS}}{D}\right) \left(\frac{F_y}{E}\right)^{0.5} \right] \ge 0.00675$$

In US Customary units:

$$\left(\frac{D}{t_{smin}}\right)^{0.75} \left[ \left(\frac{H_{TS}}{D}\right) \left(\frac{F_y}{E}\right)^{0.5} \right] \ge 0.19$$

The equations in the following sections are applicable, providing the shell satisfies the criterion of this section.

**V.8.1.2** The design external pressure (using the appropriate  $\psi$  from V.8.1.1) and the specified external (vacuum) pressure (using  $\psi = 3.0$ ) shall not exceed for an unstiffened tank.

\* Source is The Structural Research Council (SSRC) text "Guide to Stability Design Criteria for Metal Structures," Section 14.3.5.

In SI units:

$$P_s \text{ or } P_e \le \frac{E}{15203\psi\left(\frac{H_{TS}}{D}\right)\left(\frac{D}{t_{smin}}\right)^{2.5}}$$

 $P_s \text{ or } P_e \le \frac{0.6 E}{\Psi\left(\frac{H_{TS}}{D}\right) \left(\frac{D}{t}\right)^{2.5}}$ 

In US Customary units:

**V.8.1.3** The equation in V.8.1.2 can be rewritten to calculate the nominal thickness of the thinnest shell course required for a specified design external pressure as

In SI units:

$$t_{\rm smin} \ge \frac{47.07 \left(\psi H_{TS} P_s\right)^{0.4} D^{0.6}}{\left(E\right)^{0.4}}$$

In US Customary units:

$$t_{\rm smin} \ge \frac{1.23 (\psi H_{TS} P_s)^{0.4} D^{0.6}}{(E)^{0.4}}$$

**V.8.1.4** For tanks with shell courses of varying thickness, the transformed shell height,  $H_{TS}$ , for the tank shell is determined in accordance with the following procedure:

a. The transformed height of the shell is calculated as the sum of the transformed widths of the individual shell courses as described in Item b.

b. The transformed width of each individual shell course is calculated by multiplying the actual shell height by the ratio  $(t_{s1}/t_{act})^{2.5}$ . Note that  $t_{s1} = t_{act}$  for the top shell course.

The transformed shell height is determined from the following equation:

$$H_{TS} = h_1 \left(\frac{t_{s1}}{t_{s1}}\right)^{2.5} + h_2 \left(\frac{t_{s1}}{t_{s2}}\right)^{2.5} + \dots + h_n \left(\frac{t_{s1}}{t_{sn}}\right)^{2.5}$$

The transformed shell height is an analytical model of the actual tank. The transformed shell has a uniform thickness equal to the topmost shell thickness and a height equal to the transformed height. This analytical model of the actual tank will have essentially an equivalent resistance to buckling from external pressure as the actual tank.

### V.8.2 CIRCUMFERENTIALLY STIFFENED SHELLS

Tank shells may be strengthened with circumferential stiffeners to increase the resistance to buckling under external pressure loading. When circumferential stiffeners are used to strengthen the cylindrical shell to resist buckling due to external pressure, the design of the stiffeners shall meet the following requirements.

#### V.8.2.1 Number and Spacing of Intermediate Stiffener Rings

**V.8.2.1.1** Calculate the transformed shell height in accordance with V.8.1.4. (See V.10 for a numerical example of the calculation of the transformed shell height.)

**V.8.2.1.2** Calculate the maximum spacing of intermediate stiffeners. The equation in V.8.1.3 can be rearranged to solve for a "safe height" of shell,  $H_{\text{safe}}$ , as follows.  $H_{\text{safe}}$  is the maximum height of unstiffened shell permitted, based on the transformed shell thickness ( $t_{s1}$ ).

In SI units:

$$H_{\text{safe}} = \frac{(t_{\text{smin}})^{2.5}(E)}{15203D^{1.5}(P_s)\psi}$$

In US Customary units:

$$H_{\text{safe}} = \frac{0.6(t_{\text{smin}})^{2.5}(E)}{D^{1.5}(P_s)\Psi}$$

.

)8

V-9

**V.8.2.1.3** Calculate the number of intermediate stiffeners required,  $N_s$ , based on  $H_{safe}$ , in accordance with the following equation. A zero or negative value of  $N_s$  means that no intermediate stiffeners are required. Round up the calculated value of  $N_s$  to the nearest integer for use in V.8.2.1.4 and subsequent calculations.

$$N_s + 1 = \frac{H_{TS}}{H_{Safe}}$$

V.8.2.1.4 Maximum stiffener spacing for each shell thickness shall be:

 $L_{X} = \left[\frac{H_{TS}}{(N_{s}+1)}\right] \left[\frac{t_{sx}}{t_{smin}}\right]^{2.5}$ 

where

 $L_x$  = the stiffener spacking for a given shell thickness,

 $t_{SX}$  = the thickness of the shell in question.

### V.8.2.2 Intermediate Stiffener Ring Design

**V.8.2.2.1** The number of waves, *N*, into which a shell will theoretically buckle under uniform external pressure is determined in accordance with the following equation:

In SI units:

$$N^{2} = \sqrt{\frac{445D^{3}}{t_{smin}H_{TS}^{2}}} \le 100$$

In US Customary units:

$$N^2 = \sqrt{\frac{5.33D^3}{t_{smin}H_{TS}^2}} \le 100$$

For design purposes, the minimum value of N is 2 and the maximum value of N is 10. Use the same  $N^2$  for intermediate and end stiffeners.

**V.8.2.2.2** The distance between adjacent intermediate stiffeners on the actual shell for shells of non-uniform thickness is determined in accordance with the following procedures.

a. Maximum spacing,  $L_s$ , on nominal thickness of the thinnest shell course,  $t_{smin} = H_{TS} / (N_s + 1)$ 

b. Maximum spacing,  $L_s$  on other shell thicknesses =  $[H_{TS}/(N_s + 1)](t_{sx}/t_{smin})^{2.5}$ , where  $t_{sx}$  is the individual shell thickness.

c. Where the spacing between stiffeners includes different shell thicknesses, adjust the actual spacing using the transformed shell spacings adjusted accordingly. See V.10 for a numerical example of this procedure.

**V.8.2.2.3** The radial load imposed on the stiffener by the shell is determined in accordance with the following equation:

In SI units:

$$Q = 1000 P_s L_s$$

In US Customary units:

$$Q = \frac{P_s L_s}{12}$$

The stiffener should be located at  $H_{TS}/(N_s + 1)$  spacing where  $N_s$  is number of intermediate stiffeners on the transformed shell.

**V.8.2.2.4** The actual moment of inertia of the intermediate stiffener region,  $I_{act}$  shall be greater than or equal to the total required moment of inertia of this region,  $I_{reqd}$ , where:

 $I_{act}$  = The actual moment of inertia of the intermediate stiffener ring region, consisting of the combined moment of inertia of the intermediate stiffener and the shell within a contributing distance on each side of the intermediate stiffener. The contributing distance is determined in accordance with the following equation:

In SI units:

$$W_{\text{shell}} = 13.4 \sqrt{Dt_{\text{shell}}}$$
 on each side of stiffener

In US Customary units:

$$W_{\text{shell}} = 1.47 \sqrt{Dt_{\text{shell}}}$$
 on each side of stiffener

where  $t_{\text{shell}}$  is the actual thickness of the shell plate on which the stiffener is located.

**V.8.2.2.5** The required moment of inertia of the intermediate stiffener region, *I<sub>reqd</sub>* is determined in accordance with the following equation:

In SI uni3ts

$$I_{\text{reqd}} = \frac{37.5 \, QD^3}{E(N^2 - 1)}$$

In US Customary units:

$$I_{\text{reqd}} = \frac{648 \, QD^3}{E(N^2 - 1)}$$

**V.8.2.2.6** In addition to the moment of inertia requirements stated above, the intermediate stiffener region shall satisfy the following area requirements.

**V.8.2.2.6.1** The total required cross-sectional area of the intermediate stiffener region,  $A_{\text{reqd}}$ , is determined in accordance with the following equation:

In SI units:

$$A_{\rm reqd} = \frac{QD}{2f_c}$$

In US Customary units:

$$A_{\text{reqd}} = \frac{6\,QD}{f_c}$$

**V.8.2.2.6.2** The required cross-sectional area of the intermediate stiffener structural shape alone,  $A_{\text{stiff}}$ , is determined in accordance with the following equation:

In SI units:

$$A_{\text{stiff}} = A_{\text{read}} - 26.84 t_{\text{shell}} \sqrt{Dt_{\text{shell}}}$$

In US Customary units:

$$A_{\text{stiff}} = A_{\text{reqd}} - 2.94 t_{\text{shell}} \sqrt{Dt_{\text{shell}}}$$

 $A_{\text{stiff}}$  (actual) must be greater than or equal to  $A_{\text{stiff}}$  required.  $A_{\text{stiff}}$  (actual) must also be greater than or equal to 0.5  $A_{\text{reod}}$ .

#### V.8.2.3 End Stiffeners

The actual moment of inertia of the end stiffener region,  $I_{act}$  must be greater than or equal to the total required moment of inertia of this region,  $I_{read}$ , where:

 $I_{act}$  = the actual moment of inertia of the end stiffener ring region, consisting of the combined moment of inertia of the end stiffener and the shell within a contributing distance on one side of the end stiffener. No credit shall be taken for the roof portion in this region, however credit may be taken for a portion of the bottom plate. The width of bottom plate considered effective as an end stiffener shall be not more than  $16t_b$ , where  $t_b$  is the thickness of the bottom or annular plates, unless a detailed stress analysis demonstrates that a greater width may be used. The contributing distance on one side of the stiffener is determined in accordance with the following equation:

In SI units:

For the top end stiffener:

For the bottom end stiffener:

In US Customary units:

For the top end stiffener:

\_\_\_\_\_

For the bottom end stiffener:

**V.8.2.3.1** The radial load imposed on the end stiffener by the shell is determined in accordance with the following equation: In SI units:

$$V_1 = 250P_sH$$

In US Customary units:

$$V_1 = \frac{P_s H}{48}$$

**V.8.2.3.2** The required moment of inertia of the end stiffener region,  $I_{reqd}$  is determined in accordance with the following equation:

In SI units

$$I_{\text{reqd}} = \frac{37.5 \, V_1 D^3}{E(N^2 - 1)}$$

In US Customary units:

09

$$I_{\rm reqd} = \frac{648 \, V_1 D^3}{E(N^2 - 1)}$$

**V.8.2.3.3** In addition to the moment of inertia requirements stated above, the end stiffener region shall satisfy the following area requirements.

**V.8.2.3.3.1** The total required cross-sectional area of the end stiffener region,  $A_{reqd}$ , is determined in accordance with the following equation:

In SI units:

$$A_{\text{reqd}} = \frac{V_1 D}{2f}$$

In US Customary units:

$$A_{\text{reqd}} = \frac{6 V_1 D}{f}$$

**V.8.2.3.3.2** The required cross-sectional area of the end stiffener structural shape alone, *A*<sub>stiff</sub>, is determined in accordance with the following equation:

For cone roof top end stiffener:

$$A_{\text{stiff}} = A_{\text{reqd}} - t_{\text{cone}} X_{\text{cone}} - t_{s1} X_{\text{shell}}$$

For dome or umbrella roof top end stiffener:

$$A_{\text{stiff}} = A_{\text{reqd}} - t_{s1}X_{\text{shell}} - t_{\text{dome}}X_{\text{dome}}$$

For bottom end stiffener:

$$A_{\text{stiff}} = A_{\text{reqd}} - t_b X_{\text{btm}} - t_{sn} X_{\text{shell}}$$

 $A_{\text{stiff}}$  (actual) must be greater than or equal to  $A_{\text{stiff}}$  (required).

### V.8.2.4 Strength of Stiffener Attachment Weld

Stiffening ring attachment welds shall be sized to resist the full radial pressure load from the shell between stiffeners, and shear loads acting radially across the stiffener caused by external design loads carried by the stiffener (if any) and a computed radial shear equal to 2% of the stiffening ring's compressive load.

**V.8.2.4.1** The radial pressure load from the shell shall be determined in accordance with the following formula:

$$V_{s1} = P_s L_s$$

**V.8.2.4.2** The radial shear load shall be determined in accordance with the following formula:

$$v_s = 0.01 P_s L_s D$$

V.8.2.4.3 The weld shear flow due to the radial shear load shall be determined in accordance with the following formula:

 $V_{s2} = v_s q_s / I_s$ , where  $q_s$  is the first moment of area of the stiffener.

**V.8.2.4.4** The combined load for the design of the weld shall be determined in accordance with the following formula:

$$W_W = (V_{S1}^2 + V_{S2}^2)^{1/2}$$

**V.8.2.4.5** The minimum fillet weld leg size shall be the smallest of the shell thickness at the location of the stiffener, the stiffener thickness at the weld location, or 6 mm ( $^{1}/_{4}$  in.).

#### V.8.2.5 Lateral Bracing of Stiffener

The projecting part of a stiffening ring without an outer vertical flange need not be braced if the width of the projecting part in a radial vertical plane does not exceed 16 times its thickness. When this condition is not satisfied, the stiffening ring shall be laterally braced in accordance with the requirements of API Std 620, 5.12.5.8.

### V.9 Bottom

• **V.9.1** The bottom of the tank shall be evaluated for external pressure loading if either of the following conditions is applicable. These conditions do not need to be considered simultaneously unless specified by the Purchaser.

1. If the total design external pressure force on the bottom plate exceeds the sum of the weight of the bottom plates plus the weight of any product required by the Purchaser to remain in the tank when external pressure is acting, membrane stresses in the bottom must be evaluated.

2. If the area around the tank will be subject to flooding with liquid, provisions should be included in the design of the tank and its operating procedures to ensure that the tank contains sufficient liquid to counteract bottom uplift resulting from exter-

API STANDARD 650

nal flooding conditions. If the tank cannot be filled with liquid of sufficient depth to counteract the uplift from the liquid pressure under the bottom of the tank, membrane stresses in the bottom must be evaluated.

**V.9.2** In both of the above cases, the bottom may be evaluated as a membrane subjected to uniform loading and restrained by the compression ring characteristics of the bottom-to-shell junction. For column-supported roofs, the design of the columns shall consider the additional axial loading due to external pressure.

**V.9.3** The following provisions apply when Condition 2 in V.9.1 exists.

V.9.3.1 Calculation of external (flooding) pressure:

The calculation of the hydrostatic external pressure due to flooding is performed using the equation:

$$P = G_{\text{out}}H,$$

<u>Rule 1:</u>

When flooding of the area surrounding a tank is possible, the most effective way to prevent damage to the shell or bottom is to maintain an equivalent or higher level of liquid inside the tank whenever flooding occurs. The required minimum level of liquid to be maintained inside the tank is calculated as follows:

$$(G_{\text{in}} \times H_{\text{in}}) + W_{\text{bott}} / (\pi \times R^2) \ge G_{\text{out}} \times H_{\text{out}},$$

<u>Rule 2:</u>

When it is not possible to satisfy the equation in Rule 1, the tank and anchorage, if used, shall be designed to safely resist the unbalanced pressure resulting from flood liquid. As a minimum, the following components shall be evaluated:

• V.9.3.2 allowable stress: Unless otherwise specified, the flooding described above may be considered a temporary loading and the allowable stress increased accordingly. However, the increase in allowable stress shall not exceed 33% of the basic allowable stress for the subject component when evaluating the component for flood loading.

**V.9.3.3 anchorage:** For tanks that are mechanically anchored, the anchorage devices shall be adequate to resist the uplift and shear forces resulting from the pressure due to external flood liquid. If the tank is not mechanically anchored, provisions should be made to guide the tank back into its original position when the flooding conditions recede.

**V.9.3.4** attached piping and sump: Piping and other components connecting the tank to the ground or another structure shall be capable of withstanding, without damage or failure, loads and movements due to any unbalanced pressures resulting from flooding of the area around the tank. If a sump is used, the design of the sump shall consider the possibility of the sump floating out of its pit during a flooding event.

**V.9.3.5 bottom plate:** Under the pressure of external flood liquid without counterbalancing internal liquid, the bottom plate will tend to deform or "balloon" upwards. As the bottom deforms and is subject to additional unbalanced pressure, membrane stresses increase in the bottom plate. The bottom plate shall be capable of withstanding this deformation without overstress of the plate or the attaching welds.

**V.9.3.6 corner joint:** As the bottom plate deforms upwards, compressive stresses and bending stresses in the shell-to-bottom joint increase. The shell plate and bottom plate components of the shell-to-bottom joint within the effective compression ring limits shall be proportioned to maintain combined stresses within the yield strength corresponding to the weaker of the two components.

# V.10 Example Calculations

The following example calculations illustrate, in US Customary units, the use of this appendix.

## V.10.1 DATA

Tank diameter = 75 ft-0 in. Tank shell height = 48 ft-0 in. Design liquid level = 48 ft-0 in. Specific gravity of liquid = 1.0 Allowable design stress,  $S_d$  = 23,200 lb/in.<sup>2</sup>

V-14

Allowable stress in tension ring,  $f = 21,600 \text{ lb/in.}^2$ Minimum yield strength of all steel = 36,000 lb/in.<sup>2</sup> Specified corrosion allowance = None Tank bottom plate thickness =  $3/_8$  in. Design external pressure = 0.6 lb/in.<sup>2</sup>g (86.4 lb/ft<sup>2</sup>) Design wind velocity (3-sec gust) = 120 mph (Maximum wind pressure,  $W = 31 \text{ lb/ft}^2$ ) Design snow load = 0 lb/ft<sup>2</sup> Roof design live load = 25 lb/ft<sup>2</sup> Modulus of Elasticity,  $E = 30,000,000 \text{ lb/in.}^2$ Shell course heights and thicknesses calculated by the one-foot method are as follows:

| Course Number | (H-1)<br>(ft) | Required Thickness<br>(in.) | Minimum Thickness<br>(in.)     |  |
|---------------|---------------|-----------------------------|--------------------------------|--|
| 1             | 7             | 0.059                       | <sup>5</sup> / <sub>16</sub> * |  |
| 2             | 15            | 0.126                       | <sup>5</sup> / <sub>16</sub> * |  |
| 3             | 23            | 0.193                       | <sup>5</sup> / <sub>16</sub> * |  |
| 4             | 31            | 0.261                       | <sup>5</sup> / <sub>16</sub> * |  |
| 5             | 39            | 0.328                       | 0.328                          |  |
| 6 47          |               | 0.395                       | 0.395                          |  |

\* The thicknesses of the upper four shell courses were increased from those required for hydrostatic pressure to eliminate need for an intermediate wind girder.

### V.10.2 EXTERNAL PRESSURE CALCULATIONS

1. Select roof type: Try a self-supporting cone roof with a 20-degree slope from horizontal.

From **V.7**,

$$P_{r}$$
 = The greater of  $D_{L}$  + ( $L_{r}$  or  $S$ ) + 0.4 $P_{e}$  or  $D_{L}$  +  $P_{e}$  + 0.4 ( $L_{r}$  or  $S$ ),

where:

 $D_L = 20.4 \text{ lb/ft}^2$  (Estimated assuming  $\frac{1}{2}$ -in. roof plate),

$$L_r = 25 \, \text{lb/ft}^2$$
,

 $S = 0 \, \text{lb/ft}^2$ ,

- $P_e = 0.6 \text{ lb/in.}^2 = 86.4 \text{ lb/ft}^2$ ,
- $P_r = 20.4 + 25 + 0.4$  (86.4) = 80.0 lb/ft<sup>2</sup>, or,
- $P_{\Gamma} = 20.4 + 86.4 + 0.4$  (25) = 116.8 lb/ft<sup>2</sup> (Governs).

The required nominal thickness of the cone roof plate is calculated from V.7.2.1, as follows:

$$t_{\rm cone} = \frac{D}{\sin\phi} \sqrt{\frac{P_r}{0.248E}}$$

$$t_{\rm cone} = \frac{75}{0.342} \sqrt{\frac{116.8}{7,440,000}}$$

 $t_{\text{cone}} = 0.869$  in., this thickness is not practical. Consider a supported cone roof or a self-supporting dome roof.

11

Try a lap-welded dome roof with a dish radius of  $1.0 \times D = 1.0 \times 75 = 75$  ft. Assuming the plate weight does not change significantly, the required thickness of the dome plate is calculated from **V.7.3.1** as follows:

$$t_{\text{dome}} = 4.47 R_{\sqrt{\frac{P_r}{E}}}$$

$$t_{\rm dome} = 4.47(75) \sqrt{\frac{116.8}{30,000,000}}$$

$$t_{\text{dome}} = 0.661$$
 in., this thickness is not practical for lap-welding.

Consider a butt-welded dome roof with a dish radius of  $0.8 \times D = 0.8 \times 75 = 60$  ft-0 in. Again assuming the plate weight does not change significantly, the required thickness of the dome plate is calculated from **V.7.3.1** as follows:

$$t_{\text{dome}} = 4.47 R \sqrt{\frac{P_r}{E}}$$
$$t_{\text{dome}} = 4.47(60) \sqrt{\frac{116.8}{30,000,000}}$$

 $t_{\text{dome}} = 0.529$  in., this thickness is practical for butt-welding. (Alternatively, a supported cone roof could be used.)

#### 2. Calculate the roof tension ring area required at the junction of the roof and cylindrical shell:

From V.7.3.2, the required tension ring area is calculated as follows:

$$A_{\text{reqd}} = \frac{P_r RD}{3.375 f}$$
$$A_{\text{reqd}} = \frac{116.8(60)(75)}{3.375(21,600)}$$
$$A_{\text{reqd}} = 7.21 \text{ sq. in.}$$

From V.7.3.3, the length of effective roof plate contributing to the tension ring area is calculated as follows:

$$X_{\text{dome}} = 2.1 \sqrt{RT_{\text{dome}}}$$
$$X_{\text{dome}} = 2.1 \sqrt{60(0.529)}$$
$$X_{\text{dome}} = 11.7 \text{ in.}$$

From V.7.3.4, the length of effective shell plate contributing to the tension ring area is calculated as follows:

 $X_{\text{shell}} = 1.47 \sqrt{Dt_{s1}}$ 

1

07

 $X_{\text{shell}} = 1.47 \sqrt{75(0.3125)}$  $X_{\text{shell}} = 7.21$  in. (Note: This value should be recalculated, if necessary, after selection of final shell thickness.)

From V.7.3.5, the required area of the stiffener is calculated as follows:

$$A_{\text{stiff}} = A_{\text{reqd}} - t_{s1}X_{\text{shell}} - t_{\text{dome}}X_{\text{dome}}$$
$$A_{\text{stiff}} = 7.21 - (0.3125)(7.21) - (0.529)(11.7)$$
$$A_{\text{stiff}} = -1.23 \text{ sq. in., Stiffener is not required}$$

Note: This value should be recalculated, if necessary, after selection of final shell thickness.)

# 3. Check that buckling will occur elastically in the unstiffened cylindrical shell:

From **V.8.1.1**, elastic buckling will occur if the following equation is satisfied:

$$\left(\frac{D}{t_{smin}}\right)^{0.75} \left[ \left(\frac{H_{TS}}{D}\right) \left(\frac{F_y}{E}\right)^{0.5} \right] \ge 0.00675$$
$$\left(\frac{75}{0.3125}\right)^{0.75} \left[ \left(\frac{43.54}{75}\right) \left(\frac{36}{30,000}\right)^{0.5} \right] = 1.23 \ge 0.19 \text{, thus buckling will be elastic.}$$

Note: This value should be recalculated, if necessary, after selection of final shell thickness.)

**4.** Calculate the minimum shell thickness required for the combined loading from design external pressure and wind: From V.8.1.3, the required minimum shell thickness is calculated as follows:

$$t_{smin} \ge \frac{1.23(\psi H_{TS}P_s)^{0.4} D^{0.6}}{(E)^{0.4}}$$
<sup>09</sup>

where

- $P_s$  = the greater of 1) the specified design external pressure excluding wind or 2)  $W + 0.4P_{e}$ , where W is the specified design wind pressure, lb/ft<sup>2</sup>,
- $P_s = 0.6 \text{ lb/in}^2 = 86.4 \text{ lb/ft}^2 \text{ or } 31 + 0.4 \text{ (86.4)} = 65.6 \text{ lb/ft}^2.$

$$t_{\rm smin} \ge \frac{1.23(3 \times 43.54 \times 86.4)^{0.4} 75^{0.6}}{(30,000,000)^{0.4}} = 1.35 \,\text{in}.$$

 $t_{smin} \geq 0.698$  in.

$$\Psi = 3.0$$

5. Calculate the transformed shell height:

| Course Number                                                                                                    | Actual Shell Course Height<br>(ft) | Thickness<br>(in.) | Transformed Shell Course Height *<br>(ft) |  |  |  |
|------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------|-------------------------------------------|--|--|--|
| 1                                                                                                                | 8                                  | 0.3125             | 8.00                                      |  |  |  |
| 2                                                                                                                | 8                                  | 0.3125             | 8.00                                      |  |  |  |
| 3                                                                                                                | 8                                  | 0.3125             | 8.00                                      |  |  |  |
| 4                                                                                                                | 8                                  | 0.3125             | 8.00                                      |  |  |  |
| 5                                                                                                                | 8                                  | 0.328              | 7.09                                      |  |  |  |
| 6                                                                                                                | 8                                  | 0.395              | 4.45                                      |  |  |  |
| Sum =                                                                                                            | 48 ft                              | Sum =              | 43.54 ft                                  |  |  |  |
| * For example, the transformed height of No. 5 shell course = $(0.3125/.328)^{2.5}(8) = 7.09$ ft (see V.8.1.4.b) |                                    |                    |                                           |  |  |  |

The required minimum thickness is greater than the available thickness and the shell must be stiffened.

### 6. Calculate the maximum spacing of intermediate stiffeners:

From V.8.2.1.2,

$$H_{\text{safe}} = \frac{0.6(t_{\text{smin}})^{2.5}(E)}{\Psi D^{1.5}(P_s)}$$
$$H_{\text{safe}} = \frac{0.6(0.3125)^{2.5}(30,000,000)}{3(75)^{1.5}(86.4)}$$

 $H_{\rm safe} = 5.84$  ft

09

### 7. Calculate the number of intermediate stiffeners required, $N_s$ based on $H_{\text{safe}}$ :

From V.8.2.1.3,

$$N_s + 1 = H_{TS} / H_{safe}$$
  
 $N_s + 1 = 43.54 / 5.84 = 7.46$   
 $N_s = 7$   
Actual spacing for 7 stiffeners = 43.54 / 8 = 5.44 ft

#### 8. Calculate the intermediate stiffener spacing for the non-uniform shell thickness:

#### From V.8.2.2.2,

Intermediate stiffener spacing on 0.3125-in. shell plate is,

 $L_s = H_{TS} / (N_s + 1) = 43.54 / (7 + 1) = 5.44$  ft

Intermediate stiffener spacings on 0.328 in. and 0.395 in. shell plate are,

$$L_{s} = [H_{TS} / (N_{s} + 1)] (t_{sx} / t_{smin})^{2.5}$$
  

$$L_{s} = [43.54 / (8)] (0.328 / 0.3125)^{2.5} = 6.14 \text{ ft}$$
  

$$L_{s} = [43.54 / (8)] (0.395 / 0.3125)^{2.5} = 9.77 \text{ ft}$$

Locate 5 stiffeners on 0.3125 in. shell at spacing = 5.44 ft

Locate the 6<sup>th</sup> stiffener as follows:

Available  $\frac{5}{16}$ -in. shell plate =  $(4 \times 8 \text{ ft}) - (5 \times 5.44 \text{ ft}) = 4.8 \text{ ft}$ 

Length of 0.328-in. shell required =  $(5.44 - 4.8) \times (0.328 / 0.3125)^{2.5} = 0.722$  ft

Location of  $6^{\text{th}}$  stiffener = 32 + 0.722 = 32.722 ft from top of tank

Location of  $7^{\text{th}}$  stiffener = 32.722 + 6.14 = 38.862 ft

Check that the remaining unstiffened shell length is equal to the transformed shell stiffener spacing:

Difference between actual and transformed shell height = 48 - 43.55 = 4.45 ft

Length of 0.328-in. shell below stiffener = 40 - 38.862 = 1.138 ft

Transformed shell stiffener spacing =  $1.138 \times (0.3125/0.328)^{2.5} + 4.45 = 5.44$  ft - OK

### 9. If fewer stiffeners and thicker shell plates is a more economical solution, the design can be adjusted as follows:

Assume, for this example, a uniform shell thickness equal to the thickness of the lowest shell course, i.e.,  $t_{avg} = 0.395$  in.  $H_{safe}$  is then calculated as follows:

$$H_{\text{safe}} = \frac{0.6(0.395)^{2.5}(30,000,000)}{3(75)^{1.5}(733.36)(86.4)}$$

$$H_{\rm safe} = 10.48$$
 ft

For  $t_{avg} = 0.395$  in.,  $H_{TS}$  is recalculated to be equal to 48 ft The number of stiffeners required is:

$$N_s + 1 = 48 / 10.48 = 4.58; N_s = 4$$

Actual spacing for 4 stiffeners = 48 / 5 = 9.6 ft

## 10. Calculate the number of buckling waves:

From V.8.2.2.1,

$$N^{2} = \sqrt{\frac{5.33D^{3}}{t_{smin}L_{s}^{2}}} \le 100; \ L_{s} = (L_{1} + L_{2})/2 = (9.6 + 9.6)/2 = 9.6 \,\text{ft}$$

$$N^2 = \sqrt{\frac{5.33(75)^3}{(0.395)(9.6)^2}} = 249 > 100; N = > 10$$
, therefore use 10

$$Q = \frac{P_s L_s}{12}$$
; where  $P_s = 86.4$  lb/ft<sup>2</sup>  
 $Q = \frac{(86.4)(9.6)}{12} = 69.1$  lb/in.

**12.** Calculate the total contributing shell width acting with the intermediate stiffener: From V.8.2.2.4,

$$2 \times w_{\text{shell}} = 2 \times 1.47 \sqrt{Dt_{\text{shell}}}$$
; where  $t_{\text{shell}} = 0.395$  in.  
 $2 \times 1.47 \sqrt{(75)(0.395)}$ ; 16.0 in.

**13.** Calculate the required moment of inertia of the intermediate stiffener region: From V.8.2.2.5, the required moment of inertia is calculated as follows:

$$I_{\text{reqd}} = \frac{648 \, QD^3}{E(N^2 - 1)}$$
$$I_{\text{reqd}} = \frac{648(69.1)(75)^3}{30,000,000(100 - 1)}$$
$$I_{\text{reqd}} = 6.36 \text{ in.}^4$$

14. Calculate the total area required in the intermediate stiffener region:

From V.8.2.2.6.1, the required area is calculated as follows:

$$A_{\text{reqd}} = \frac{6\,QD}{f}$$
$$A_{\text{reqd}} = \frac{6(69.1)(75)}{(14,400)}$$

 $A_{\rm reqd} = 2.16 \text{ in.}^2$ 

V-19

07

08

07

07

07

07

# $_{07}$ ] 15. Calculate the required area of the stiffener section:

From V.8.2.2.6.2, the required area is calculated as follows:

 $A_{\text{stiff}} = A_{\text{reqd}} - 2.94 t_{\text{shell}} \sqrt{Dt_{\text{shell}}}$ 

 $A_{\text{stiff}} = 2.16 - 2.94(0.395)\sqrt{(75)(0.395)}$ 

 $A_{\text{stiff}} = -4.2 \text{ in.}^2$ ; the stiffener section area must be  $\geq 1.08 \text{ sq. in.} (= \frac{1}{2} \times A_{\text{reqd}})$ 

Select a rolled section that will satisfy the area and inertia requirements. By inspection, since the stiffener spacing is constant, the section selected is adequate for all 4 stiffeners.

### 07 16. Calculate the required properties of the top stiffener:

From V.8.2.3, the contributing distance of the cylindrical shell is calculated as follows:

$$W_{\text{shell}} = 1.47 \sqrt{Dt_{s1}}$$
  
 $W_{\text{shell}} = 1.47 \sqrt{(75)(0.395)}$   
 $W_{\text{shell}} = 8.0$  in.

From V.8.2.3.1, the radial load on the top stiffener is calculated as follows:

$$V_{1} = \frac{P_{s}H}{48}$$
$$V_{1} = \frac{86.4(48)}{48}$$
$$V_{1} = 86.4 \text{ lb/in.}$$

From V.8.2.3.2, the required moment of inertia of the top stiffener is calculated as follows:

$$I_{\text{reqd}} = \frac{684 V_1 D^3}{E(N^2 - 1)}$$
$$I_{\text{reqd}} = \frac{684(86.4)(75)^3}{30,000,000(99)}$$
$$I_{\text{reqd}} = 8.39 \text{ in.}^4$$

From V.8.2.3.3.1, the required area of the top stiffener region is calculated as follows:

$$A_{\text{reqd}} = \frac{6 V_1 D}{f}$$
$$A_{\text{reqd}} = \frac{6(86.4)(75)}{21,600}$$
$$A_{\text{reqd}} = 1.80 \text{ sq. in.}$$

From V.8.2.3.3.2, the required area of the top stiffener section is calculated as follows:

$$A_{\text{stiff}} = A_{\text{reqd}} - t_{s1}X_{\text{shell}} - t_{\text{dome}}X_{\text{dome}}$$

$$A_{\text{stiff}} = 1.80 - (0.395)(8.0) - (0.529)(11.7) = -7.55$$
 in.  
The stiffener section area must be  $\geq 0.90$  sq. in. (=  $1/2 \times A_{\text{total}}$ )

Select a rolled section that will satisfy the area and inertia requirements.

### 17. Calculate the required properties of the bottom stiffener region:

From V.8.2.3, the contributing distance of the cylindrical shell is calculated as follows:

$$W_{\text{shell}} = 1.47 \sqrt{Dt_{sn}}$$
  
 $W_{\text{shell}} = 1.47 \sqrt{(75)(0.395)}$   
 $W_{\text{shell}} = 8.0 \text{ in.}$ 

From V.8.2.3.2, the required moment of inertia of the bottom stiffener is calculated as follows:

$$I_{\text{reqd}} = \frac{684 V_1 D^3}{E(N^2 - 1)}$$
$$I_{\text{reqd}} = \frac{684(86.4)(75)^3}{30,000,000(99)}$$
$$I_{\text{reqd}} = 8.39 \text{ in.}^4$$

From V.8.2.3.3.1, the required area of the bottom stiffener region is calculated as follows:

$$A_{\text{reqd}} = \frac{6 V_1 D}{f}$$
$$A_{\text{reqd}} = \frac{6(86.4)(75)}{21,600}$$

$$A_{\text{reqd}} = 1.80 \text{ sq. in.}$$

From V.8.2.3.3.2, the required area of the bottom stiffener section is calculated as follows:

$$A_{\text{stiff}} = A_{\text{reqd}} - t_{sn} X_{\text{shell}} - t_b X_{\text{btm}}$$
$$A_{\text{stiff}} = 1.80 - (0.395)(8.0) - (0.375)(6.0) = -3.61 \text{ in.}$$

The contributing portion of the shell-to-bottom joint has a calculated moment of inertia of 20.2 in.<sup>4</sup> and will satisfy the area and inertia requirements. Thus, an additional stiffener is not necessary.

11

## V.11 Technical Basis of This Appendix

The organization of this appendix was modeled after a proprietary DuPont Standard SG 11.4 S. API appreciates DuPont's consent to utilize their standard as a model without any restriction or reservation to develop this appendix. The equations prescribed in this appendix were generally extracted from the same proprietary standard and are based on the same fundamental equations from various public domain references used to develop the proprietary standard. However, where appropriate, the nomenclature was changed to be consistent with API Std 650. Some equations have been modified from the proprietary standard to be consistent with API Std 650 safety factors or other design considerations. For example, some equations have been modified to be consistent with Reference 2. Where necessary, equations have been added for consistency with API Std 650 design principles, such as incorporation of the transformed shell method.

## V.12 References

- 1. DuPont Corporate Engineering Standard SG11.4S, *Field Erected Storage Tank Design Procedures*, Section 5, External Pressure Design.
- 2. API Publication, Stability of API Standard 650 Tank Shells, Raymund V. McGrath.
- 3. The Structural Research Council (SSRC), Guide to Stability Design Criteria for Metal Structures, Section 14.3.5.
- 4. Code Case 2286, "Alternative Rules for Determining Allowable Compressive Stresses for Cylinders, Cones, Spheres and Formed Heads," Cases of ASME *Boiler and Pressure Vessel Code*.
- 5. Welding Research Council Bulletin 406, "Proposed Rules for Determining Allowable Compressive Stresses for Cylinders, Cones, Spheres and Formed Heads," C. D. Miller and K. Mokhtarian.
- 6. American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section VIII, Division 1.
- 7. American Iron & Steel Institute (AISI) Publication, Steel Plate Engineering Data, Volume 2.
- 8. ASME Paper 65-MET-15, "Theoretical and Experimental Study of Steel Panels in Which Membrane Tension is Developed," by J. S. McDermott.
- 9. Machine Design Magazine, December 9, 1976, "Stress Analysis of Pressurized Panels," by J. A. Martinelli.

## APPENDIX W—COMMERCIAL AND DOCUMENTATION RECOMMENDATIONS

• The following commercial and documentation recommendations apply to all tanks when specified by the Purchaser on the Data Sheet.

## • W.1 Document Submittals and Review

### W.1.1 GENERAL

1. Technical documents listed below shall be submitted by the Manufacturer for review by the Purchaser at specified times during a project. Additional documents may be required and shall be a matter of agreement between the Purchaser and the Manufacturer. Submittals and reviews shall be in accordance with contractual schedule agreements. All documents shall be in reproducible form agreeable to the Purchaser.

2. Unless specified otherwise by the Purchaser, the minimum required content of the technical documentation packages shall be as described in this appendix.

#### W.1.2 QUOTATION OR BID DOCUMENT PACKAGE

1. All quotations shall be submitted in accordance with this Standard and Purchaser's requirements listed in the Data Sheet. In addition, a second quotation containing alternates to Purchaser's requirements may be quoted for Purchaser's consideration provided the alternates are clearly marked as such and are completely described in that bid.

2. The Manufacturer shall mark and return the Purchaser's previously prepared Data Sheet. Some entries will not be determined until completion of negotiations and/or completion of the detailed design. Such entries may remain blank for this submittal. The bid shall include the design wind speed and design snow load that will be used in the design by the Manufacturer.

3. The Manufacturer shall provide a list of all engineered accessories being purchased from suppliers, indicating the Manufacturer, and model or part number. Alternatively, when a specific Manufacturer is not known at the time of bidding, a list of Manufacturer-approved suppliers may be submitted. Excluded from the list requirement are commodities such as plate, pipe, flanges, and bolts. Included in the list are items such as floating roofs, dome roofs, roof seals, pressure vents, gauges, and instrumentation. Also, see C.1.1.

### • W.1.3 DESIGN REVIEW DOCUMENT PACKAGES

Unless specified otherwise, a Purchaser's review of Manufacturer's design calculations and general arrangement drawings is required before the order of materials. Unless specified otherwise, the Purchaser's review of the documents listed in Items 3 through 7 below is required prior to the start of fabrication. Work may begin following conclusion of any negotiations generated by the review process. A copy of the review packages with any annotations including nozzle size, orientations, projections, placement and elevations of ladders, platforms, stairs, and attachments, etc., shall be returned to the Manufacturer. The Manufacturer shall promptly revise/update the drawings, calculations, and information on the **Data Sheet** showing all review-generated changes and shall submit copies to the Purchaser. The Design Review Document shall consist of at least the following:

- 1. Manufacturer's design calculations as described in W.2 and structural loads for foundation design.
- 2. General arrangement drawings with complete material specification.
- 3. Detailed fabrication drawings.

4. Welding procedure specifications (WPSs) and procedure qualification records (PQRs). This shall include weld hardness criteria when required by the Purchaser. Review of duplicate weld procedures for multiple tanks is not required when written permission is received from the Purchaser.

- 5. Heat treatment procedures (if required).
- 6. Nondestructive examination procedures and testing procedures.
- 7. Description of proposed test gaskets (see 4.9), including material properties, dimensions, and design characteristics.

## W.1.4 INTERIM DOCUMENTS DURING CONSTRUCTION

The Manufacturer shall promptly submit revised documents describing any design or construction changes to the Purchaser. Copies of Material Test Reports applicable to components listed in 4.2.9.1 shall be forwarded to the Purchaser upon receipt of the reports.

## W.1.5 POST-CONSTRUCTION DOCUMENT PACKAGE

Upon completion of construction and testing, copies of a Manufacturer's data book shall be supplied in the quantities specified in the contract. Each copy shall contain at least the documents listed below:

- 1. Final general arrangement and detail fabrication drawings, marked "as-built" by the Manufacturer, complete with dimensions and data, with complete materials specification and parts list.
- 2. Design calculations described in W.2.
- 3. Copies of Material Test Reports applicable to shell plates and annular plates.
- 4. Reports of the results of all tests including weld hardness (when weld hardness criteria are specified), and reports of all nondestructive examinations. Radiographic films shall also be included. For tank pressure test data, include results and duration of pressure test(s), test water level, fill rate, imposed pneumatic pressure, hold times, drain rate, etc.
- 5. Shell and bottom elevation measurements for hydro-test.
- 6. Nameplate facsimile.
- 7. Manufacturer's certification per Figure 10-2.
- 8. The Data Sheet reflecting as-built conditions.
- 9. A drawing that lists the following for each shell course:
  - a. The required shell thicknesses for both the design condition (including corrosion allowance) and the hydrostatic test condition.
  - b. The nominal thickness used.
  - c. The material specification.
  - d. The allowable stresses.
- 10. Nominal thicknesses used for materials other than shell plates.
- 11. Handling criteria and rigging instructions (for shop-built tanks only).

## W.2 Manufacturer's Calculations

All manual calculations shall include relevant formulas and source paragraphs in this Standard or in other specifications or engineering practices, values used in the formulas, calculated results, and acceptance criteria used. Where a computer program performs design calculations, a program description shall be given, including name and version of the program, program limitations and assumptions used, and a brief description of what the program does. These calculations and/or computer programs shall address at least the following:

- 1. Determination of design thicknesses for all pressure boundary elements to satisfy all specified loading conditions, which may include contents, pressure, partial vacuum, dead loads, live loads, snow loads, rain loads, roof flotation, dike or flood plain partial submergence, wind, and seismic activity.
- 2. Overturning check and anchorage due to wind forces, seismic forces, and internal pressure, if applicable.
- 3. Seismic design requirements (e.g., base shear, longitudinal compression, sliding friction resistance checks, overturning moment checks, and anchorage), if applicable.
- 4. Shell stability checks to determine whether shell stiffeners or increased shell course thicknesses will be required.
- 5. Unless specified otherwise by the Purchaser, whenever the tank diameter exceeds 36 m (120 ft), shell stiffness coefficients, maximum unrestrained radial deflection, angle of rotation of bottom course shell nozzles, and the nomographs for moments and forces that these nozzles can safely sustain from connected piping shall be provided in accordance with pro-

visions of Appendix P. Alternate analysis techniques, such as the finite element method, may also be used to satisfy this requirement.

6. Any additional calculations specified by the Purchaser to show compliance with this Standard and any appendices invoked.

## W.3 Manufacturer's Drawing Contents

All Manufacturer's drawings shall be thoroughly checked for accuracy and completeness before sending for Purchaser review. Manufacturer's drawing(s) shall show, as a minimum, the following information:

- 1. An updated list of drawings for each tank shall be resubmitted each time drawings are revised and reissued.
- 2. Identification of the storage tank as designated by the Purchaser.
  - 3. Reference to applicable practices, standards, specifications, details, and associated drawings and sketches.
  - 4. Materials of construction, designated corrosion allowance(s), and gasket specifications.
  - 5. Extent of postweld heat treatments.
  - 6. Extent of radiography to be applied to bottom, shell, and roof butt-welds.
  - 7. Shell design joint efficiencies, for Appendices A, J, and S.

8. Complete details and dimensions of the tank, including external and internal attachments and appurtenances supplied by Manufacturer and sub-contractors.

9. Bottom slope.

10. Nominal plate thicknesses for shell, roof, reinforcement, and bottom.

11. Location of all welded seams. All welds shall be either pictorially detailed or identified by use of the standard welding symbols of ANSI/AWS A2.4. Welding procedures shall be listed for each weld. A "weld map" may be used if it clearly indicates the weld procedure specification used for every joint.

12. For flanges other than those conforming to ASME B16.5 or ASME B16.47, and marked accordingly, show all dimensions and finish of flange face.

13. Facsimile of nameplate with data to be stamped thereon with location and details of fabrication of nameplate bracket.

- 14. Empty, operating, and test weight of tank.
- 15. Loads on foundation as also shown on the **Data Sheet**, Line 13.
- 16. Foundation plans and construction details (if supplied by the Manufacturer or the sub-contractor).

### W.4 Bids for Floating Roofs

• W.4.1 Bids for tanks having floating roofs shall contain sufficient engineering data, including material specifications for both metallic and non-metallic components, nominal thicknesses, and sufficient information (see C.3.4.1 and C.3.4.2 or H.2.1, as applicable) to enable the Purchaser to verify that the bidder has considered all specified design requirements.

**W.4.2** Manufacturer shall list in the quotation all roof accessories furnished and included in the base price of the roof. If any accessories are purchased from other suppliers, the Manufacturer shall provide that supplier's name and the model or part number.

**W.4.3** Manufacturer shall state the lowest and highest operating level of roof in the quotation.

**W.4.4** Manufacturer shall clearly describe the extent of electrical grounding and shunts included as a part of the floating roof design.

**W.4.5** Manufacturer shall provide a cross-section of all seals showing materials and complete details of construction with the bid.

**W.4.6** The Manufacturer shall submit with the bid the minimum and the maximum allowable annular space between the roof and shell, as well as the maximum and minimum annular space the proposed roof seal system can accommodate.

**W.4.7** Manufacturer shall specify size, number, and type of drains with the quotation (external roof only).

**W.4.8** The bid shall state if a wind skirt, a top-shell extension, or overflows will be required for proper functioning of the roof seal (external roof only).

**W.4.9** The Manufacturer of the external floating roof shall prepare and submit to the Purchaser the following calculations:

**W.4.9.1** Calculations showing that the roof design complies with the buoyancy requirements of C.3.4.1a, for both single-deck and double-deck roofs using the smaller of the specific gravity in C.3.4.1 (0.7), or the minimum specific gravity of the product specified on the Data Sheet, Line 5.

**W.4.9.2** Calculations showing that the roof design complies with the punctured compartment loading condition for single-deck pontoon roofs and for double deck roofs as specified in C.3.4.1b.

W.4.9.3 Calculations showing that the design of the roof and roof supports satisfies C.3.10.2.

**W.4.10** The Manufacturer of the internal floating roof shall prepare and submit to the Purchaser the following calculations, considering internal floating roof deflections and stresses for each of the load conditions required by Appendix H. All calculations for the floating condition shall be based upon the design specific gravity (per H.4.2.1.1).

**W.4.10.1** Calculations showing that the roof design complies with the buoyancy requirements of H.4.2.1.

**W.4.10.2** Calculations showing that the roof design complies with the punctured compartment loading condition for single-deck pontoon roofs and for double deck roofs as specified in H.4.2.3.

W.4.10.3 Calculations showing that the design of the roof and roof supports in the landed condition satisfies H.4.2.2.2.

**W.4.11** The internal floating roof Manufacturer shall specify the internal floating roof weight and total floation displacement provided based on a floation level for design specific gravity per H.4.2.1.

### W.5 Jobsite Responsibilities

Unless otherwise specified by the Purchaser, the Manufacturer shall furnish all labor, tools, equipment, supplies, materials, utilities (including power for welding), storage, and personnel services necessary for, and reasonably incidental to, the delivery of materials to the site, the construction of the tank(s), and the removal of surplus and scrap materials from the job site. See the Data Sheet (see Line 14) for the Manufacturer's additional post-hydro-test responsibilities. The Purchaser shall furnish and dispose of the water for hydro-testing the tank from the tie-in points as designated on the Data Sheet, Line 14.

W-4

## APPENDIX X—DUPLEX STAINLESS STEEL STORAGE TANKS

## X.1 Scope

**X.1.1** This appendix covers materials, design, fabrication, erection, and testing requirements for vertical, cylindrical, aboveground, closed- and open-top, welded, duplex stainless steel storage tanks constructed of material grades 2205 (UNS S31803), 2003 (UNS S32003), 2101 (UNS S32101), 2205 (UNS S32205), 2304 (UNS S32304), 255 (UNS S32550), 255+ (UNS S32520), 2507 (UNS S32750), and Z100 (UNS S32760). This appendix does not cover stainless steel clad plate or strip lined construction.

**X.1.2** This appendix applies only to tanks in non-refrigerated services with a maximum design temperature not exceeding 260°C (500°F) and a minimum design metal temperature of  $-40^{\circ}C(-40^{\circ}F)$ . Ambient temperature tanks (non-heated) shall have a design temperature of  $40^{\circ}C$  ( $100^{\circ}F$ ). It is cautioned that exothermic reactions occurring inside unheated storage tanks can produce temperatures exceeding  $40^{\circ}C$  ( $100^{\circ}F$ ).

#### X.1.3 DELETED

**X.1.4** The minimum thicknesses specified in this appendix are corroded thicknesses unless otherwise stated.

**X.1.5** This appendix states only the requirements that differ from the basic rules in this standard. For requirements not stated, the basic rules must be followed.

### X.2 Materials

#### X.2.1 SELECTION AND ORDERING

**X.2.1.1** Materials shall be in accordance with Table X-1.

• X.2.1.2 Selection of the type/grade of duplex stainless steel depends on the service and environment to which it will be exposed. The Purchaser shall specify the type/grade.

**X.2.1.3** External structural attachments may be carbon steels meeting the requirements of Section 4 of this standard, providing any permanent attachments are protected from corrosion. (This does not include shell, roof, or bottom openings and their reinforcement.) Carbon steel attachments (e.g. clips for scaffolding) shall not be welded directly to any internal surface of the tank..

|                      | UNS S31803<br>2205 | UNS S32003<br>2003 | UNS S32101<br>2101 | UNS S32205<br>2205 | UNS S32304<br>2304 | UNS S32550<br>255 | UNS S32520<br>255+ | UNS S32750<br>2507 | UNS S32760<br>Z100 |
|----------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------|--------------------|--------------------|--------------------|
| Plates and           |                    |                    |                    |                    |                    |                   |                    |                    |                    |
| Structural Members   |                    |                    |                    |                    |                    |                   |                    |                    |                    |
| A240                 | х                  | х                  | х                  | х                  | х                  | х                 | х                  | х                  | х                  |
| A276                 | х                  |                    | х                  | х                  | х                  | х                 |                    |                    | х                  |
| Tube or Pipe         |                    |                    |                    |                    |                    |                   |                    |                    |                    |
| Seamless and Weld    | ed                 |                    |                    |                    |                    |                   |                    |                    |                    |
| A789                 | х                  |                    |                    | Х                  | Х                  | х                 |                    | х                  | х                  |
| A790                 | х                  |                    |                    | х                  | х                  | х                 |                    | х                  | х                  |
| A928                 | х                  |                    |                    | х                  | х                  | х                 | Х                  | х                  | х                  |
| Forgings and Fitting | s                  |                    |                    |                    |                    |                   |                    |                    |                    |
| A182                 | х                  |                    |                    | х                  |                    |                   |                    | х                  | х                  |
| A815                 | х                  |                    |                    | х                  |                    |                   |                    |                    | х                  |
| Bolting and Bars     |                    |                    |                    |                    |                    |                   |                    |                    |                    |
| A479                 | х                  |                    | х                  | х                  |                    | х                 |                    | х                  | х                  |

#### Table X-1—ASTM Materials for Duplex Stainless Steel Components

Notes:

 Carbon steel flanges and/or stub ends may be used by agreement between the Purchaser and Manufacturer providing, the design and details consider the dissimilar properties of the materials used and are suitable for the intended service.
 Castings shall not be used unless specified by the Purchaser. If specified, castings shall meet ASTM A890 and shall

be inspected in accordance with ASME *Boiler and Pressure Vessel Code*, Section VIII, Division 1, Appendix 7. 4. All bars in contact with the product shall be furnished in the hot-rolled annealed and descaled condition.

Solution in contact which are product shall be furnished in the hot-folied, annealed, and descaled cc.
 Other bolting materials may be used by agreement between the Purchaser and Manufacturer.

08

<sup>1.</sup> Unless otherwise specified by the Purchaser, plate, sheet, or strip shall be furnished with a No. 1 finish and shall be hot-rolled, annealed, and descaled.

## X.2.2 PACKAGING

Packaging duplex stainless steel for shipment is important to maintain its corrosion resistance. Precautions to protect the surface of the material depend on the surface finish supplied and may vary among Manufacturers. Standard packaging methods may not be sufficient to protect the material from normal shipping damage. If the intended service requires special precautions, the Purchaser shall specify special instructions.

## X.2.3 QUALIFICATION TESTING

• **X.2.3.1** Tests for detecting detrimental intermetallic phases for ASTM A923 are required from one plate per heat treat lot as follows:

| UNS S32205/S31803 | Methods B & C             |
|-------------------|---------------------------|
| UNS S32304        | Method B <sup>*</sup>     |
| UNS S32101        | Method B <sup>*</sup>     |
| UNS S32003        | Method B <sup>*</sup>     |
| UNS S32750        | Method B <sup>*</sup> & C |
| UNS S32550/S32520 | Method $B^* \& C^{**}$    |
| UNS S32760        | Method $B^* \& C^{**}$    |
| *                 |                           |

\*B test values to be agreed upon between Purchaser and Manufacturer but not less than 54J (40 ft-lbf).

 $^{**}$ C test values to be agreed upon between Purchaser and Manufacturer.

**X.2.3.2** Charpy Impact testing per ASME UHA-51 at minimum design metal temperature is required for:

a. components named in 4.2.9.1 in all thicknesses, when the minimum design temperature is between  $-29^{\circ}C$  and  $-40^{\circ}C$  ( $-20^{\circ}F$  and  $-40^{\circ}F$ ), and

b. components named in 4.2.9.1 that have thickness greater than  $10 \text{ mm} (^{3}/_{8} \text{ in.})$  for all temperatures.

ASTM A 923 Practice B test results may be used to fulfill these requirements provided the lateral expansion is measured and reported.

## X.3 Design

## • X.3.1 BOTTOM PLATES

All bottom plates shall have a nominal corroded thickness of not less than 5 mm ( $^{3}/_{16}$  in.). Unless otherwise approved by the Purchaser, all rectangular and sketch plates (bottom plates on which the shell rests that have one end rectangular) shall have a nominal width of not less than 1200 mm (48 in.).

### X.3.2 ANNULAR BOTTOM PLATES

Butt-welded annular bottom plates meeting the requirements of 5.5.2 through 5.5.5 are required when either the bottom shell course maximum product stress is greater than 160 MPa (23,200 lbf/in.<sup>2</sup>) or the bottom shell course maximum test stress is greater than 172 MPa (24,900 lbf/in.<sup>2</sup>).

### X.3.3 SHELL DESIGN

### X.3.3.1 Shell Minimum Thickness

The required nominal shell thickness shall shall not be less than the greatest of the design shell thickness plus corrosion allowance, hydrostatic test shell thickness, or the nominal thickness listed in 5.6.1.1 (note 4 does not apply).

### • X.3.3.2 Minimum Plate Widths

08

# Unless otherwise approved by the Purchaser, the shell plates shall have a minimum width of 1200 mm (48 in.).

## X.3.3.3 Shell Thickness Calculation

The requirements of 5.6 shall be followed except as modified in X.3.3.3.1 through X.3.3.3.3.

X-2

11

**X.3.3.1** Allowable stresses for all shell thickness calculation methods are provided in Tables X-2a and X-2b.

**X.3.3.2** Appendix A is not applicable.

• **X.3.3.3.3** The following formulas for design shell thickness and test shell thickness may alternatively be used for tanks 60 m (200 ft) in diameter and smaller.

In SI units:

$$t_d = (4.9D(H - 0.3)G)/((S_d)(E)) + CA$$
$$t_f = 4.9D(H - 0.3))/((S_f)(E))$$

where

 $t_d$  = design shell thickness (mm);

- $t_t$  = hydrostatic test shell thickness (mm);
- D = nominal diameter of tank (m) (see 5.6.1.1);
- H = design liquid level (m) (see 5.6.3.2);
- G = specific gravity of the liquid to be stored, as specified by the Purchaser;
  - E = joint efficiency, 1.0, 0.85, or 0.70 (see Table X-3);
- CA = corrosion allowance (mm), as specified by the Purchaser (see 5.3.2);
  - $S_d$  = allowable stress for the design condition (MPa) (see Tables X-2a and X-2b);
  - $S_t$  = allowable stress for hydrostatic test condition (MPa) (see Tables X-2a and X-2b).

In US Customary units:

$$t_d = (2.6D(H-1)G)/((S_d)(E)) + CA$$

 $t_t = (2.6D(H-1))/((S_t)(E))$ 

where

- $t_d$  = design shell thickness (in.).
- $t_t$  = hydrostatic test shell thickness (in.).
- D = nominal diameter of tank (ft) (see 5.6.1.1).
- H = design liquid level (ft) (see 5.6.3.2).
- G = specific gravity of the liquid to be stored, as specified by the Purchaser.
  - E = joint efficiency, 1.0, 0.85, or 0.70 (see Table X-3).
- CA = corrosion allowance (in.), as specified by the Purchaser (see 5.3.2).
  - $S_d$  = allowable stress for the design condition (lbf/in.<sup>2</sup>) (see Tables X-2a and X-2b).
  - $S_t$  = allowable stress for hydrostatic test condition (lbf/in.<sup>2</sup>) (see Tables X-2a and X-2b).

#### Table X-2a-(SI) Allowable Stresses for Tank Shells

| Alloy   | Min Yld | Min Ten | Allowa | ble Stress MPa | for Design Temp | Not Exceeding | (S <sub>d</sub> ) |            |
|---------|---------|---------|--------|----------------|-----------------|---------------|-------------------|------------|
|         | MPa     | MPa     | 40°C   | 90°C           | 150°C           | 200°C         | 260°C             | S, ambient |
| S31803  | 450     | 620     | 248    | 248            | 239             | 230           | 225               | 266        |
| S32003  | 450     | 655     | 262    | 231            | 218             | 215           | 212               | 281        |
| S32101  | 450     | 650     | 260    | 234            | 223             | 215           | 212               | 278        |
| \$32205 | 450     | 655     | 262    | 234            | 225             | 208           | 198               | 281        |
| S32304  | 400     | 600     | 240    | 229            | 213             | 205           | 200               | 257        |
| S32550  | 550     | 760     | 303    | 302            | 285             | 279           | 272               | 325        |
| S32520  | 550     | 770     | 308    | 270            | 265             | 256           | 251               | 331        |
| S32750  | 550     | 795     | 318    | 319            | 298             | 279           | 268               | 343        |
| S32760  | 550     | 750     | 298    | 314            | 259             | 256           | 256               | 319        |

Notes:

08

1. S<sub>d</sub> may be interpolated between temperatures.

2. The design stress shall be the lesser of <sup>2</sup>/5 of the minimum tensile strength or <sup>2</sup>/3 of the minimum yield strength.

3. The hydrotest stress shall be the lesser of 3/7 of the minimum tensile strength or 3/4 of the minimum yield strength.

4. For dual certified materials, S31803/S32205 and S32550/S32520, use the allowable stress of the grade specified

by the Purchaser.

## Table X-2b-(USC) Allowable Stresses for Tank Shells

| Alloy  | Min Yld | Min Ten | Allowa | ble Stress psi fo | r Design Temp I | Not Exceeding ( | S <sub>d</sub> ) |                        |
|--------|---------|---------|--------|-------------------|-----------------|-----------------|------------------|------------------------|
|        | psi     | psi     | 100°F  | 200°F             | 300°F           | 400°F           | 500°F            | S <sub>f</sub> ambient |
| S31803 | 65,000  | 90,000  | 36,000 | 36,000            | 34,700          | 33,400          | 32,600           | 38,600                 |
| S32003 | 65,000  | 95,000  | 38,000 | 33,600            | 3,600           | 31,200          | 30,700           | 40,800                 |
| S32101 | 65,000  | 94,000  | 37,600 | 34,000            | 32,400          | 31,200          | 30,700           | 40,300                 |
| S32205 | 65,000  | 95,000  | 38,000 | 34,000            | 32,700          | 30,000          | 28,700           | 40,800                 |
| S32304 | 58,000  | 87,000  | 34,800 | 33,200            | 30,900          | 29,700          | 29,000           | 37,300                 |
| S32550 | 80,000  | 110,000 | 44,000 | 43,800            | 41,400          | 40,400          | 39,400           | 47,200                 |
| S32520 | 80,000  | 112,000 | 44,800 | 39,200            | 38,400          | 37,200          | 36,400           | 48,000                 |
| S32750 | 80,000  | 116,000 | 46,400 | 46,200            | 43,200          | 40,500          | 38,900           | 49,800                 |
| S32760 | 80,000  | 108,000 | 43,200 | 39,200            | 37,600          | 37,200          | 37,200           | 46,300                 |

Notes: 1. S<sub>d</sub> may be interpolated between temperatures.

2. The design stress shall be the lesser of <sup>2</sup>/s of the minimum tensile strength or <sup>2</sup>/s of the minimum yield strength.

The hydrotest stress shall be the lesser of <sup>3</sup>/7 of the minimum tensile strength or <sup>3</sup>/4 of the minimum yield strength.
 For dual certified materials, S31803/S32205 and S32550/S32520, use the allowable stress of the grade specified

by the Purchaser.

#### X.3.4 SHELL OPENINGS

**X.3.4.1** The minimum nominal thickness of connections and openings shall be as follows:

| Size of Nozzle                                              | Minimum Nominal Neck Thickness                                |  |  |  |
|-------------------------------------------------------------|---------------------------------------------------------------|--|--|--|
| NPS 2 and less                                              | Schedule 80S                                                  |  |  |  |
| NPS 3 and NPS 4                                             | Schedule 40S                                                  |  |  |  |
| Over NPS 4                                                  | Schedule 40S but need not be greater than the shell thickness |  |  |  |
| Note: Reinforcement requirements of 5.7 must be maintained. |                                                               |  |  |  |

**X.3.4.2** Thermal stress relief requirements of 5.7.4 are not applicable.

**X.3.4.3** Shell manholes shall be in conformance with 5.7.5.

**X.3.4.4** As an alternative to X.3.4.3, plate ring flanges may be designed in accordance with API 620 rules using the allowable stresses given in Tables X-2a and X-2b.

**X.3.4.5** Allowable weld stresses for shell openings shall conform to 5.7.2.7 except  $S_d$  = the maximum allowable design stress (the lesser value of the base materials joined) permitted by Tables X-2a and X-2b.

#### X.3.5 ROOF MANHOLES

All duplex stainless steel components of the roof manhole shall have a nominal thickness of not less than 5 mm  $(^{3}/_{16}$  in.).

#### X.3.6 APPENDIX F—MODIFICATIONS

In F.7.1, the shell thickness shall be as specified in X.3.3 except that the pressure P [in kPa (in. of water)] divided by 9.8G (12G) shall be added to the design liquid height in meters (ft).

#### X.3.7 APPENDIX M—MODIFICATIONS

**X.3.7.1** Appendix M requirements shall be met for duplex stainless steel tanks with design temperatures over 40°C (100°F) as modified by X.3.7.2 through X.3.7.7.

**X.3.7.2** Allowable shell stress shall be in accordance with Tables X-2a and X-2b.

**X.3.7.3** In M.3.6, the duplex stainless steel structural allowable stress shall be multiplied by the ratio of the material yield strength at the design temperature to the material yield strength at 40°C (100°F). (See Tables X-4a and X-4bfor yield strength.)

**X.3.7.4** In M.5.1, the requirements of 5.10.5.1 and 5.10.6.1 which are applicable to self supporting roof plate thickness shall be multiplied by the ratio of the material modulus of elasticity at 40°C (100°F) to the material modulus of elasticity at the design temperature. (See Tables X-5a and X-5b for modulus of elasticity.)

**X.3.7.5** In M.6 (the equation for the maximum height of unstiffened shell in 5.9.7.1), the maximum height shall be multiplied by the ratio of the material modulus of elasticity at the design temperature to the material modulus of elasticity at 40°C (100°F).

#### X.4 Fabrication and Construction

#### X.4.1 GENERAL

Special precautions must be observed to minimize the risk of loss of the corrosion resistance and toughness of duplex stainless steel. Duplex stainless steel shall be handled so as to minimize contact with iron or other types of steel during all phases of fabrication, shipping, and construction. The thermal history of the material must also be controlled. The following sections describe the major precautions that should be observed during fabrication, and handling.

| Joint Efficiency | Radiographic Requirements |
|------------------|---------------------------|
| 1                | Radiograph per 8.1.2      |
| 0.85             | Radiograph per X.4.14.1.1 |
| 0.7              | No radiography required   |

Table X-3—Joint Efficiencies

08

11

11

08

11

| Alloy  | Yield S | strength MPa for | Design Temp N | lot Exceeding |       |
|--------|---------|------------------|---------------|---------------|-------|
|        | 40°C    | 90°C             | 150°C         | 200°C         | 260°C |
| S31803 | 450     | 396              | 370           | 353           | 342   |
| S32003 | 450     | 386              | 352           | 331           | 317   |
| S32101 | 450     | 379              | 351           | 324           | 317   |
| S32205 | 450     | 358              | 338           | 319           | 296   |
| S32304 | 400     | 343              | 319           | 307           | 299   |
| S32550 | 550     | 484              | 443           | 421           | 407   |
| S32520 | 550     | 448              | 421           | 400           | 379   |
| S32750 | 550     | 486              | 446           | 418           | 402   |
| S32760 | 550     | 455              | 428           | 414           | 400   |
|        |         |                  |               |               |       |

### Table X-4a—(SI) Yield Strength Values in MPa

Notes:

1. Interpolate between temperatures.

2. Reference: Table Y-1 of ASME Section II, Part D or Manufacturers' data sheets.

#### Table X-4b—(USC) Yield Strength Values in psi

|        | • •                                                                         |                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                          | 500°F                                                                                                                                                                    |
|--------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 100 F  | 200 P                                                                       | 300 F                                                                                                                                                                                                                                               | 400 P                                                                                                                                                                                                                                                                                                                                                                      | 500 P                                                                                                                                                                    |
| 65,000 | 57,500                                                                      | 53,700                                                                                                                                                                                                                                              | 51,200                                                                                                                                                                                                                                                                                                                                                                     | 49,600                                                                                                                                                                   |
| 65,000 | 56,000                                                                      | 51,000                                                                                                                                                                                                                                              | 48,000                                                                                                                                                                                                                                                                                                                                                                     | 46,000                                                                                                                                                                   |
| 65,000 | 55,000                                                                      | 51,000                                                                                                                                                                                                                                              | 47,000                                                                                                                                                                                                                                                                                                                                                                     | 46,000                                                                                                                                                                   |
| 65,000 | 52,000                                                                      | 49,000                                                                                                                                                                                                                                              | 45,000                                                                                                                                                                                                                                                                                                                                                                     | 43,000                                                                                                                                                                   |
| 58,000 | 49,800                                                                      | 46,300                                                                                                                                                                                                                                              | 44,500                                                                                                                                                                                                                                                                                                                                                                     | 43,400                                                                                                                                                                   |
| 80,000 | 70,200                                                                      | 64,300                                                                                                                                                                                                                                              | 61,000                                                                                                                                                                                                                                                                                                                                                                     | 59,000                                                                                                                                                                   |
| 80,000 | 65,000                                                                      | 61,000                                                                                                                                                                                                                                              | 58,000                                                                                                                                                                                                                                                                                                                                                                     | 55,000                                                                                                                                                                   |
| 80,000 | 70,500                                                                      | 64,700                                                                                                                                                                                                                                              | 60,700                                                                                                                                                                                                                                                                                                                                                                     | 58,300                                                                                                                                                                   |
| 80,000 | 66,000                                                                      | 62,000                                                                                                                                                                                                                                              | 60,000                                                                                                                                                                                                                                                                                                                                                                     | 58,000                                                                                                                                                                   |
|        | 100°F<br>65,000<br>65,000<br>65,000<br>65,000<br>58,000<br>80,000<br>80,000 | 100°F         200°F           65,000         57,500           65,000         56,000           65,000         55,000           65,000         52,000           58,000         49,800           80,000         70,200           80,000         70,500 | 100°F         200°F         300°F           65,000         57,500         53,700           65,000         56,000         51,000           65,000         55,000         51,000           65,000         52,000         49,000           58,000         49,800         46,300           80,000         70,200         64,300           80,000         70,500         61,000 | 65,00057,50053,70051,20065,00056,00051,00048,00065,00055,00051,00047,00065,00052,00049,00045,00058,00049,80046,30044,50080,00070,20064,30061,00080,00070,50064,70060,700 |

Notes:

2. Reference: Table Y-1 of ASME Section II, Part D or Manufacturers' data sheets.

#### X.4.2 STORAGE

Storage should be under cover and well removed from shop dirt and fumes from pickling operations. If outside storage is necessary, provisions should be made for rainwater to drain and allow the material to dry. Duplex stainless steel should not be stored in contact with carbon steel. Materials containing chlorides, including foods, beverages, oils, cleaners and greases, should not come in contact with duplex stainless steel.

#### X.4.3 THERMAL CUTTING

X.4.3.1 Thermal cutting of duplex stainless steel shall be by the plasma-arc method or by laser cutting.

1. Interpolate between temperatures.

**X.4.3.2** Thermal cutting of duplex stainless steel may leave a heat-affected zone with intermetallic precipitates. This heat-affected zone may have reduced corrosion resistance and toughness unless removed by machining or grinding. Normally the

|         |                       | Adulus of Elasticity      |                            |         |         |
|---------|-----------------------|---------------------------|----------------------------|---------|---------|
| Alloy   | 10F<br>40°C           | Design Temperatui<br>90°C | res Not Exceeding<br>150°C | 200°C   | 260°C   |
| S31803  | 198,000               | 190,000                   | 185,000                    | 180,000 | 174,000 |
| \$32003 | 203,000               | 205,000                   | 201,000                    | 197,000 | 192,000 |
| \$32101 | 198,000               | 194,000                   | 190,000                    | 185,000 | 182,000 |
| S32205  | 198,000               | 190,000                   | 185.000                    | 160,000 | 174,000 |
| S32304  | 198,000               | 190,000                   | 185.000                    | 180,000 | 174,000 |
| S32550  | 203,000               | 206,000                   | 202.000                    | 198,000 | 194,000 |
| S32520  | 203,000               | 206,000                   | 202,000                    | 198,000 | 180,000 |
| \$32750 | 202,000               | 194,000                   | 188.000                    | 180,000 | 175,000 |
| S32760  | 198,000               | 193,000                   | 190,000                    | 185,000 | 182,000 |
| Note    | 1. Interpolate betwee | n temperatures            |                            |         |         |

Table X-5a-(SI) Modulus of Elasticity at the Maximum Operating Temperature

Table X-5b—(USC) Modulus of Elasticity at the Maximum Operating Temperature

| Modulus of Elasticity in psi<br>for Design Temperatures Not Exceeding |                    |                    |        |        |        |
|-----------------------------------------------------------------------|--------------------|--------------------|--------|--------|--------|
| Alloy                                                                 | 100°F              | 200°F              | 300°F  | 400°F  | 500°F  |
| S31803                                                                | 28,700             | 27,600             | 26,800 | 26,100 | 25,300 |
| S32003                                                                | 30,300             | 29,800             | 29,200 | 28,600 | 27,900 |
| S32101                                                                | 28,700             | 28,100             | 27,500 | 26,900 | 26,400 |
| S32205                                                                | 28,700             | 27,600             | 26,800 | 26,100 | 25,300 |
| S32304                                                                | 28,700             | 27,600             | 26,800 | 26,100 | 25,300 |
| S32550                                                                | 30,300             | 29,900             | 29,300 | 28,700 | 28,100 |
| \$32520                                                               | 30,300             | 29,900             | 29,300 | 28,700 | 26,100 |
| S32750                                                                | 29,300             | 28,100             | 27,200 | 26,200 | 25,400 |
| S32760                                                                | 28,800             | 28,000             | 27,600 | 26,900 | 26,400 |
| Note:                                                                 | 1. Interpolate bet | ween temperatures. |        |        |        |

HAZ from thermal cutting is thin enough to be removed by edge preparation machining and adjacent base metal melting during welding. The Purchaser shall specify if the heat-affected zone is to be removed.

### X.4.4 FORMING

X.4.4.1 Duplex stainless steels shall be formed by a cold or hot forming procedure that is not injurious to the material.

**X.4.4.2** Duplex stainless steels may be cold formed. The maximum strain produced by such cold forming shall not exceed 10% and control of forming spring-back is provided in the forming procedure.

X.4.4.3 Hot forming, if required, may be performed within a temperature range shown in Tables X-6a and X-6b.

**X.4.4.** Forming at temperatures between 600°F (315°C) and the minimum temperature shown in Tables X-6a and X-6b is not permitted.

API STANDARD 650

| Alloy  | °C Max | °C Min | °C Min Soaking<br>Temp |
|--------|--------|--------|------------------------|
| S31803 | 1230   | 950    | 1040                   |
| S32003 | 1100   | 950    | 1010                   |
| S32101 | 1100   | 900    | 980                    |
| S32205 | 1230   | 950    | 1040                   |
| S32304 | 1100   | 950    | 980                    |
| S32550 | 1230   | 1000   | 1080                   |
| S32520 | 1230   | 1000   | 1080                   |
| S32750 | 1230   | 1025   | 1050                   |
| S32760 | 1230   | 1000   | 1100                   |

#### Table X-6a-(SI) Hot Form Temperatures

Table X-6b—(USC) Hot Form Temperatures

| Alloy  | °F Max | °F Min | °F Min Soaking<br>Temp |
|--------|--------|--------|------------------------|
| S31803 | 2250   | 1740   | 1900                   |
| S32003 | 2010   | 1740   | 1850                   |
| S32101 | 2010   | 1650   | 1800                   |
| S32205 | 2250   | 1740   | 1900                   |
| S32304 | 2010   | 1740   | 1800                   |
| S32550 | 2250   | 1830   | 1975                   |
| S32520 | 2250   | 1830   | 1975                   |
| S32750 | 2250   | 1875   | 1920                   |
| S32760 | 2250   | 1830   | 2010                   |

#### X.4.5 CLEANING

• **X.4.5.1** When the Purchaser requires cleaning to remove surface contaminants that may impair the normal corrosion resistance; it shall be done in accordance with ASTM A380, unless otherwise specified. The Purchaser shall specify any additional cleanliness requirements for the intended service.

X.4.5.2 When welding is completed; flux residues and weld spatter shall be removed mechanically using stainless steel tools.

**X.4.5.3** Removal of excess weld metal, if required, shall be done with a grinding wheel or belt that has not been previously used on other metals.

**X.4.5.4** Removal of weld heat tint, if required, shall be done using an appropriate pickling product and pickling procedure.

**X.4.5.5** Chemical cleaners and pickling solutions used shall not have a detrimental effect on the duplex stainless steel or welded joints and shall be disposed of in accordance with laws and regulations governing the disposal of such chemicals. Thorough rinsing with water and drying shall always follow the use of any chemical cleaners or pickling solutions (see X.4.9).

### X.4.6 BLAST CLEANING

If blast cleaning is necessary, it shall be done with sharp acicular grains of sand or grit containing not more than 1% by weight iron as free iron or iron oxide. Steel shot or sand previously used to clean non stainless steel materials is not permitted.

#### X.4.7 PICKLING

If pickling of a duplex stainless steel is necessary, an acid mixture of nitric and hydrofluoric acids shall be used. After pickling, the stainless steel shall be thoroughly rinsed with water and dried.

#### X.4.8 PASSIVATION OR SURFACE IRON REMOVAL

When the Purchaser specifies passivation or surface iron removal, cleaning may be achieved by treatment with nitric or citric acid. Nitric hydrofluoric acid shall be used to remove embedded iron.

#### X.4.9 RINSING

**X.4.9.1** When cleaning, pickling or passivation is required, these operations shall be followed immediately by rinsing, not allowing the surfaces to dry between operations. Pickling solutions may require a neutralization treatment before rinsing.

• X.4.9.2 Rinse water shall be potable and shall not contain more than 200 parts per million chloride at temperatures below 40°C (100°F), or no more than 100 parts per million chloride at temperatures above 40°C (100°F) and below 65°C (150°F), unless specifically allowed by the Purchaser.

**X.4.9.3** Following final rinsing, the equipment shall be completely dried.

### X.4.10 HYDROSTATIC TESTING

**X.4.10.1** The rules of 7.3.5 apply to hydrostatic testing except that the penetrating oil test in 7.3.5(2) shall be replaced with liquid penetrant examination conducted by applying the penetrant on one side and developer on the opposite side of the welds. The penetrant dwell time must be at least one hour.

• X.4.10.2 The materials used in the construction of duplex stainless steel tanks may be subject to pitting, or general corrosion if they are exposed to contaminated test water for extended periods of time. The Purchaser shall specify a minimum quality of test water that conforms to the following requirements:

a. Unless otherwise specified by the Purchaser, water used for hydrostatic testing of tanks shall be potable and treated, containing at least 0.2 parts per million free chlorine.

- b. Water shall be substantially clean and clear.
- c. Water shall have no objectionable odor (that is, no hydrogen sulfide).
- d. Water pH shall be between 6 and 8.3.
- e. Water temperature shall be below 50°C (120°F).
- f. The chloride content of the water shall be below 50 parts per million, unless otherwise allowed by the Purchaser.
- **X.4.10.3** When testing with potable water, the exposure time shall not exceed 21 days, unless otherwise specified by the Purchaser.

**X.4.10.4** When testing with other fresh waters, the exposure time shall not exceed 7 days.

**X.4.10.5** Upon completion of the hydrostatic test, water shall be completely drained. Wetted surfaces shall be washed with potable water when non-potable water is used for the test, and completely dried. Particular attention shall be given to low spots, crevices, and similar areas. Hot air drying is not permitted.

### X.4.11 WELDING

**X.4.11.1** Tanks and their structural attachments shall be welded by any of the processes permitted in 7.2.1.1. Galvanized components or components coated with zinc-rich coating shall not be welded directly to duplex stainless steel.

• X.4.11.2 Filler metal chemistry shall be as specified by the Purchaser. Proper filler metal selection may be discussed with the materials manufacturer. Dissimilar welds to carbon steels shall use filler metals of E309L or higher alloy content.

## X.4.12 WELDING PROCEDURE AND WELDER QUALIFICATIONS

**X.4.12.1** Welding Procedure and Welder Qualification requirements shall be as specified in Section 9. In addition, procedure shall meet the requirements of ASTM A923 Method B and when specified by Purchaser also Method C. Welding Procedure Qualification Records shall document the results of tests required both by Section 9 and by ASTM A923.

**X.4.12.2** For any material that has not been assigned a P-number in Table QW-422 of Section IX of the ASME Code, the Welding Procedure and the Welder Qualification shall be developed for that specific material.

## X.4.13 POSTWELD HEAT TREATMENT

Post weld heat treatment of duplex stainless steel materials shall not be performed.

## X.4.14 INSPECTION OF WELDS

### X.4.14.1 Radiographic Inspection of Butt-Welds

**X.4.14.1.1** Radiographic examination of butt-welds shall be in accordance with 6.1 and Table X-3.

**X.4.14.1.2** When shell designs use joint efficiency = 0.85, spot radiographs of vertical joints shall conform to 8.1.2.2, Item a, excluding the 10 mm ( $^{3}/_{8}$  in.) shell-thickness limitation in Item a and excluding the additional random spot radiograph required by Item a.

## X.4.14.2 Inspection of Welds by Liquid Penetrant Method

The following component welds shall be examined by the liquid penetrant method before the hydrostatic test of the tank:

a. The shell-to-bottom inside attachment weld.

b. All welds of opening connections in tank shell that are not completely radiographed, including nozzle and manhole neck welds and neck-to-flange welds.

c. All welds of attachments to shells, such as stiffeners, compression rings, clips, and other nonpressure parts for which the thickness of both parts joined is greater than 19 mm  $(^{3}/_{4}$  in.).

d. All butt-welded joints in tank annular plates on which backing strips are to remain.

## X.5 Marking

08

1

Brazing shall be deleted from 10.1.2.

# • X.6 Appendices

The following appendices are modified for use with duplex stainless steel storage tanks:

a. Appendix A is not applicable to tanks built to this appendix.

b. Appendix C may be used; however, the Purchaser shall identify all materials of construction. The nominal deck thickness using duplex stainless steel shall not be less than 2.5 mm (0.094 in.).

c. Appendix F is modified as outlined in X.3.5 of this appendix.

d. Appendix H may be used: however the Purchaser shall identify all materials of construction. The nominal deck thickness using duplex stainless steel shall not be less than 2.5 mm (0.094 in.).

- e. Appendix J may be used, except the nominal shell thickness for all tank diameters shall not be less than 5 mm  $(^{3}/_{16} \text{ in.})$ .
- f. Appendix K is not applicable to tanks built to this appendix.
- g. Appendix M is modified as outlined in X.3.6 of this appendix.
- h. Appendix N is not applicable.

i. Appendix O may be used; however, the structural members of Tables O-1a and O-1b shall be of an acceptable grade of material.

j. All other appendices may be used without modifications.

## APPENDIX Y—API MONOGRAM (informative)

### Y.1 Introduction

The API Monogram Program allows an API Licensee to apply the API Monogram to products.

The use of the Monogram on products constitutes a representation and warranty by the Licensee to purchasers of the products that, on the date indicated, the products were produced in accordance with a verified quality management system and in accordance with an API product specification. The API Monogram Program delivers significant value to the international oil and gas industry by linking the verification of an organization's quality management system with the demonstrated ability to meet specific product specification requirements.

When used in conjunction with the requirements of the API License Agreement, API Specification Q1, including Annex A, defines the requirements for those organizations who wish to voluntarily obtain an API license to provide API monogrammed products in accordance with an API product specification.

API Monogram Program licenses are issued only after an on-site audit has verified that the Licensee conforms to the requirements described in API Q1 in total.

For information on becoming an API Monogram Licensee, please contact API, Certification Programs, 1220 L Street, NW, Washington, DC 20005 or call 202-682-8000 or by email at certification@api.org.

## Y.2 API Monogram Marking Requirements

The following marking requirements apply only to those API Licensees wishing to mark their products with the API Monogram.

The complete API Monogram marking consists of the following:

- the letters "API 650,"
- the manufacturer's API license number,
- the API Monogram,
- the date of manufacture (defined as the month and year when the Monogram is applied by the manufacturer).