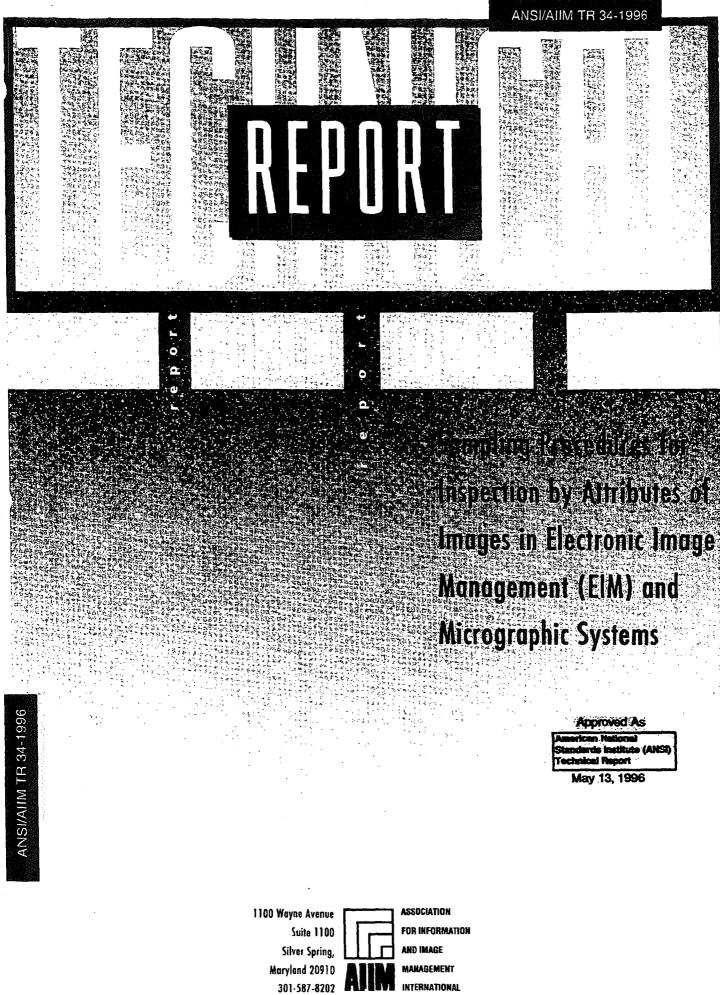


By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document

CERTIFICATE

By the Authority Vested By Part 5 of the United States Code § 552(a) and Part 1 of the Code of Regulations § 51 the attached document has been duly INCORPORATED BY REFERENCE and shall be considered legally binding upon all citizens and residents of the United States of America. <u>HEED THIS NOTICE</u>: Criminal penalties may apply for noncompliance.


Document Name:	AIMM TR34: Sampling Procedures for Inspection by
CFR Section(s):	Attributes of Images in Electronic Image Management and Micrographic Systems 36 CFR 1237.28(d)(2)

Standards Body: Association for Information and Image Management

Official Incorporator:

THE EXECUTIVE DIRECTOR OFFICE OF THE FEDERAL REGISTER WASHINGTON, D.C.

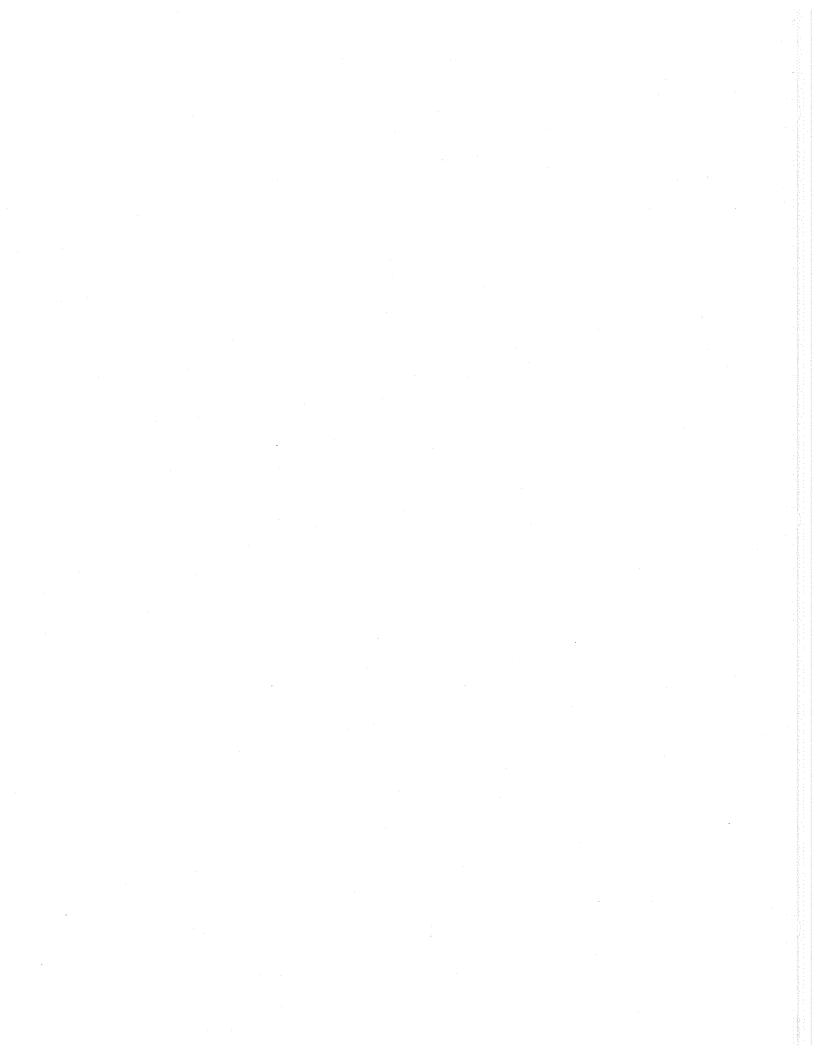
Copyright AIIM International Provided by IHS under license with AIIM No reproduction or networking permitted without license from IHS

ANSI/AIIM TR34-1996 © by the Association for Information and Image Management International 1100 Wayne Avenue, Suite 1100 Silver Spring, MD 20910-5603 Tel: 301/587-8202 Fax: 301/587-2711

> ISBN 0-89258-295-2 Printed in the United States of America

-

Technical Report for Information and Image Management —


Sampling Procedures for Inspection by Attributes of Images in Electronic Image Management (EIM) and Micrographics Systems

An ANSI Technical Report prepared

by the Association for Information and Image Management International

Abstract:

This technical report contains procedures that may be used to sample images converted to electronic or micrographic images. Its purpose is to provide guidance in selecting a sampling procedure. This report provides background information and simple examples.

Contents

Fo	eword ii
1	Purpose and scope1
2	References1
3	Definitions2
4	Acronyms and abbreviations4
5	Expression of nonconformity
6	Use and application of Acceptable Quality
i.	Level (AQL)
7	Types of sampling plans4
8	Considerations when choosing an attribute
	sampling procedure
9	Image attributes
10	Sampling risks and costs7
11	Sampling plans for single lots7
12	Sampling plans for a continuing series of lots 18
13	Examples

Annexes

Annex A Sampling costs
Annex B Flowcharting inspection procedures using
applicable ANSI standards and specifications
and a sampling system
1

Figures

Figure 1 Nomograph	. 10
Figure 2 Curves for determining probability of	
acceptance	. 11
Figure 3 Graph for example sequential plan	17
Figure 4 Example graph for sequential sampling	
using ISO 8422	50
Figure B1 Technical inspection and sampling plans	
(sample of micrographic plan)	61

Tables

Table 1 Some EIM attributes
Table 2 Some film attributes 6
Table 3 Values for single sampling plans
Table 4 Sequential sampling decision process
Table 5 Sequential sampling plans for inspection
for percent nonconforming for producer's risk
= 0.05 and consumer's risk $= 0.10$
Table 6 Example chart for sequential sampling plan 16
Table 7 Sample size code letters
Table 8 Single sampling plans for normal
inspection (Master table)
Table 9 Single sampling plans for tightened
inspection (Master table)
Table 10 Single sampling plans for reduced
inspection (Master table)
Table 11 Switching rules
Table 12 Inspection types and determinations
Table 13 Tables for sample size code letter A
(individual plans) 25
-

Table 14 Tables for sample size code letter B
(individual plans) 26
Table 15 Tables for sample size code letter C
(individual plans)27
Table 16 Tables for sample size code letter D
(individual plans) 28
Table 17 Tables for sample size code letter E
(individual plans) 29
Table 18 Tables for sample size code letter F
(individual plans)
Table 19 Tables for sample size code letter G (i = 1 i i i b = 1 = 1 = 2)
(individual plans)
Table 20 Tables for sample size code letter H
(individual plans)
Table 21 Tables for sample size code letter J (individual plans)
(individual plans)
(individual plans)
Table 23 Tables for sample size code letter L
(individual plans)
Table 24 Tables for sample size code letter M
(individual plans)
Table 25 Tables for sample size code letter N
(individual plans)
Table 26 Tables for sample size code letter P
(individual plans)
Table 27 Tables for sample size code letter Q
(individual plans)
Table 28 Tables for sample size code letter R
(individual plans) 40
Table 29 Tables for sample size code letter S
(individual plans) 41
Table 30 Sequential sampling plans for normal
inspection for percent nonconforming (Master
table)
Table 31 Sequential sampling plans for tightened
inspection for percent nonconforming (Master
table)
Table 32 Curtailment values for sequential sampling
plans for normal inspection for percent
nonconforming
Table 33 Curtailment values for sequential sampling
plans for tightened inspection for percent
nonconforming
Table 34 Example sequential plan 49 Table 35 A 50
Table 35 Average sample size for sequential sampling
plans for normal inspection for percent
nonconforming
Table 36 Average sample size for sequential sampling plans for tightened inspection for percent
nonconforming
Table 37 Example one: risk qualities
Table 37 Example one. fisk quanties Table 38 Parameters for sequential plans 55
Table 39 Parameters for sequential plans 56 Table 39 Class A sequential plan
Table 40 Class B sequential plan 56
Table 41 Single sampling plans for each class 57

i Association for Information and Image Management International

Table 43 Parameters for sequential plans	57
Table 44 Class A sequential plans (example two)	58
Table 45 Class B sequential plans (example two)	
Table 46 Inspection guidelines for sequential	
sampling	58
Table AT Equivalent plans	
Table A1 Equivalent plans Table A2 Cost comparison 1	

Foreword This technical report contains procedures that may be used to sample electronic or micrographic images. Its purpose is to provide guidance in selecting a sampling procedure.

The procedures are based on ISO 2859-1 and ISO 8422. ISO 2859-1 in turn is based on MIL STD 105 which has been replaced by ANSI/ASQC Z1.4. Following the procedures in this technical report will take on added significance for those organizations requiring the ISO 9000 Quality Management and Quality Assurance Standards series of guidelines.

Figure 1 of this report is taken with permission from *Modern Methods for Quality Control and Improvement*, page 457, written by Dr. Harrison Wadsworth and published by Wiley and Sons, Inc., ©1986. Figure 2 is used with permission from the American Society for Quality Control. Table 3 is used with permission from F.E. Grubbs, "On Designing single sampling inspection plans," Annuals of mathematical statistics, Vol. XX (1949)

p. 256.

Tables 5, and 13 through 29 are taken with permission from ISO 8422:1991. Tables 7 through 9, 30 through 33, 35, and 36 are taken with permission from ISO 2859-1:1989. Table 10 is taken with permission from ISO CD 2859-1:1994. This material is reprinted from ISO 8422 and ISO 2859 with permission of the American National Standards Institute (ANSI) under an exclusive licensing agreement with the International Organization for Standardization. Not for resale. No part of ISO 8422 or ISO 2859 may be reproduced in any form, electronic retrieval system or otherwise without the prior written consent of the American National Standards Institute, 11 West 42nd Street, New York, NY 10036.

The users of this technical report must be familiar with sampling schemes and knowledgeable in developing procedures to implement quality control techniques. This report provides background information, simple examples, and methods of incorporating EIM and micrographic attributes. The attributes provided in this technical report are not all inclusive. Users should incorporate their own attributes to satisfy their quality requirements. Image quality can be considered qualitative. The product is satisfactory or unsatisfactory for its intended purpose. There are a number of imaging standards and technical guidelines that detail measurable product attributes, including what is to be considered an acceptable image. Data from these standards and related technical guidelines should be used to establish measurable attributes. Most attributes of an acceptable micrographic image product are based on duplicating the quality of the original document, not improving it. Electronic image capture systems also have measurable attributes. The recorded image may be "cleaned up" to remove superfluous noise and reduce the amount of storage required, but normally not to change the original document's data content.

A producer of source or electronic documents may guarantee 100% or other levels of quality. How and when the established product is accepted can be a problem. Except when there are specific contractual agreements, it may be rare that 100% of the product, in this case images, is individually inspected against the original document. In some instances it may be necessary to perform 100% inspection of the film or electronic images. This report does not apply to that situation. Rather, the first time the product is produced, the producer and the client might need to establish a level of workmanship. They establish this level, each for his or her own reasons, even when the producer is willing to correct all identified errors. Further discussion on the role of sampling versus 100% inspection in the process of making decisions regarding the unacceptability of images is found in annex B.

A converter might want to establish Acceptable Quality Levels (AQL) based on a system of causes. This system is a method to statistically monitor the processes to assure that they are operating to established production standards. Users might want to have an AQL that meets their "normal course of business" to reduce costs associated with re-work or for legal requirements when it is possible that documents are to be used as (hearsay) evidence or in place of the originals. Often specific codes and regulations permit destruction of the original if the copy can be validated.

In any case, a statistical sampling method based on a valid procedure is very beneficial because converted images might not be used in business or for reference until some time after conversion. It may be impossible or very expensive to collect the source material for rework if problems are not addressed within a reasonable time.

Suggestions for improving this technical report are welcome. They should be sent to the Chair, AIIM Standards Board, Association for Information and Image Management International, 1100 Wayne Avenue, Suite 1100, Silver Spring, Maryland, 20910-5603. At the time it approved this recommended practice, the AIIM Standards Board had the following members:

Name of Representative	Organization Represented
Judy Kilpatrick, Chair	Association for Information and Image Management International
Jewel M. Drass	Bell & Howell
John C. Gale	Information Workstation Group
Bruce A. Holroyd	Eastman Kodak Company
James Meyer	Saros Corporation
Roy Pierce	Xerox Corporation
Fernando L. Podio	National Institute of Standards and Technology
Shahzad S. Qazi	Eastman Kodak Company
Michael L. Thomas	MSTC, Inc.
Stephen Urban	Delta Information Systems

Committee C10, Document Quality and Control, had the following members when it approved this report:

_

. .

- -

Name of Representative	Organization Represented
William Neale, Chair	First Image Management Company
Michael J. Badal	Badal Associates
Jan Bastien	Agfa Gevaert
John B. Breeden	Virginia Retirement Systems
Robert Breslawski	Eastman Kodak Company
Myron Chace	Library of Congress
Richard R. Conger	Conger Consultants
James Cullifer	National Commercial Envelope
Suzanne Dodson	University of British Columbia - Main Library
Nancy E. Elkington	Research Libraries Group, Inc.
Eric Erickson	Genealogical Society of Utah
James Fruscione	Massachusetts Institute of Technology
Richard Gershbock	Information International
Keith Glavash	MIT Document Service
Susan Hall	National Archives of

Canada

Richard M. Harrington Jack W. Hostettler Clara F. Jehle

Dr. Donald Klosterboer Susan M. Law Davis Lee Theresa Maultsby Bill McCallum Whitney S. Minkler Paul G. Montgomery Robert P. Mottice

Eduardo J. Navarro Walter A. Orlof Eugene Pawlowski Greg Pelican Robert Phelan Brent M. Reber

Adele Rehder Mark Robinson

Robert M. Saholsky

Cliff Schilling

James A. Somervell Robert W. Starbird Steve M. Stucki

Ernest Taubes Dave Westcott Herbert J. White Virginia State Library Bell & Howell Department of Archives & History

Jacobs Engineering Group US Airforce DATAbank, Inc. 3M Company

A & P International University Microfilms International Applied Image, Inc. Department of the Army Spaulding Company, Inc. Fuji Photo Film U.S.A., Inc. Agfa Division of Bayer Genealogical Society of Utah Hart Information Services Northeastern Document Conservation Center U.S. Government Printing Office AT&T Customer Information Center Somervell & Associates Mobil Corporation Genealogical Society of Utah

Orkland Corporation Genealogical Society of Utah

This technical report was developed by the AIIM Sub committee on Sampling, C10.7. The Committee expresses its thanks to Bill McCallum, who early in the project provided guidance to the committee on sampling, and to Dr. Harrison Wadsworth of the School of Industrial and Systems Engineering of the Georgia Institute of Technology, who wrote the report.

iii Association for Information and Image Management International The AIIM Subcommittee on Sampling, C10.7, had the following members at the time this recommended practice was approved:

Name of Representative	Organization Represented
John Breeden, Chair	Virginia Retirement Systems
Kevin Beverly	PSI International
Betty S. Burton	Department of the Army
James Cullifer	National Commercial Envelope Company
Basil Manns	Library of Congress
Bill McCallum	3M Company
Bob Mottice	University Microfilms International
William Neale	First Image Management Company
Mollie Ann Olds	United States Government Printing Office
Brent Reber	Genealogical Society of Utah
Bob Saholsky	United States Government Printing Office
Robert W. Starbird	Mobil Corporation
Herbert J. White	Genealogical Society of Utah

iv Association for Information and Image Management International

Technical Report for Information and Image Management —

Technical Report — Sampling Procedures for Inspection by Attributes of Images in Electronic Image Management (EIM) and Micrographics Systems ANSI/AIIM TR34-1996

1 Purpose and scope

1.1 Purpose

This technical report contains procedures that may be used to select and apply sampling inspection plans to determine if a lot or batch of electronic or micrographic images meets specified quality requirements. Its purpose is to do the following:

- --- provide guidance to the user when selecting a sampling procedure that will meet risk requirements
- enable the user to develop a sampling plan for individual images in a scientific manner

1.2 Scope

The sampling plans in this technical report apply to document management programs for microform and paper scanning as well as to microfilm of paper and coded data and electronic images of coded data. The sampling procedures will apply to most types of document management programs, including in-house and subcontracted conversion programs.

Only attributes sampling will be addressed and only as it is appropriate for the inspection of images. Furthermore, only single sampling plans and item-by-item sequential plans will be presented. Single sampling plans are the easiest to use and will probably be used most often. If average sample size is a critical consideration, sequential sampling will result in the most savings and is thus recommended. This report does not address multiple and double sample plans.

The sampling plans may be used when the extent of nonconformity is expressed in terms of either proportion (or percent) of nonconforming images or the number of nonconformities per image (per 100 images) when an image may have more than one nonconformity.

The sampling plans are based on the assumption that nonconformities occur randomly and with statistical independence. If it is known that one nonconformity in an image could be caused by a condition also likely to cause other nonconformities, the images shall be considered just as conforming or not and multiple nonconformities shall be ignored.

Plans are included that may be used for single, isolated lots; or for a small number of lots (or rolls) of images. Other procedures are included for a continuing series of lots or rolls of images (for example, 100 rolls) that are sufficient to allow switching rules to be applied. These procedures provide the following:

- --- an automatic protection to the consumer if a deterioration in quality is detected (by switching to tightened inspection or discontinuing inspection)
- an incentive to reduce inspection costs by switching to reduced inspections if consistently good quality is achieved

Clause 11 contains procedures for developing sampling plans that may be used for isolated or a small number of lots or rolls of images. For a large number of lots or rolls, clause 12 contains a discussion of

- the sampling procedures used for a continuing series of lots
- --- single plans used in ISO 2859-1 (ANSI/ASQC Z1.4.)
- item-by-item sequential plans using ISO 8422

2 References

The following standards contain provisions that, through reference in this text, constitute parts of this technical report. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this technical report are encouraged to investigate the possibility of applying the most recent editions of the standards listed in this clause. Members of IEC and ISO maintain registers of currently valid international standards.

2.1 Referenced international standards

ISO 2859-1:1996, Sampling procedures for inspection by attributes — Part 1: Sampling plans indexed by acceptable quality level (AQL) for lot-by-lot inspection.

ISO 2859-2:1985, Sampling procedures for inspection by attributes — Part 2: Sampling plans indexed by Limiting Quality (LQ) for isolated lot inspection.

ISO 8422:1991, Sequential sampling plans for inspection by attributes.

ISO 3534-1:1993, Statistics — Vocabulary and symbols — Part 1: Probability and general statistical terms. ISO 3534-2:1993, Statistics — Vocabulary and symbols — Part 2: Statistical quality control.

ISO 8402:1994, Quality management and quality assurance — Vocabulary.

2.2 Referenced American national standards

ANSI/ASQC Z1.4:1993, Sampling procedures and tables for inspection by attributes.

ANSI/AIIM MS1-1988, Recommended practice for alphanumeric Computer Output Microforms (COM) — Operational practice for inspection and quality control.

ANSI/AIIM MS23-1991, Practice for operational procedures/inspection and quality control of first-generation silver-gelatin microfilm of documents.

ANSI/AIIM MS32-1996, Microrecording of engineering source documents on 35mm microfilm.

ANSI/AIIM MS43-1988, Recommended practice for operational procedures/inspection and quality control of duplicated microforms of documents and from COM.

2.3 Referenced publications

ANSI/AIIM TR2-1992, Technical report for the Association for Information and Image Management International — Glossary of imaging technology.

Grubbs, F. E., "On designing single sampling inspection plans," Annuals of mathematical statistics, Vol. XX (1949).

3 Definitions

3.1 Definitions of terms

For the purpose of this technical report, the definitions given in ISO 3534-1, ISO 3534-2, ISO 2859-1, and ISO 8422, together with the following definitions, apply. Some of the definitions are slight modifications of those found in the ISO standards. They are modified for the purposes of this report, but their meaning is not changed.

Other terms may be defined in ANSI/AIIM TR2, Technical report for the Association of Information and Image Management International — Glossary of imaging technology.

3.1.1 Acceptable Quality Level (AQL): When a continuing series of lots is considered, the AQL is the quality level that, for the purposes of sampling inspection,

is the limit of a satisfactory process average. (See clause 6 for further explanation.)

3.1.2 defect: Nonfulfillment of an intended usage requirement (e.g., blurred, cut off, etc.). Clause 9 includes a partial list of defects.

Notes:

The term "defect" is appropriate for use when a quality characteristic of an image is evaluated in terms of usage (as contrasted to conformance to specifications).

Since the term "defect" has a definite meaning within the law, it should not be used as a general term.

This report does not describe defects; however, clause 9 contains a partial list of attributes that may be nonconforming enough to be classed as defects. Refer to ANSI/AIIM standards and technical reports for complete listings of such image attributes.

3.1.3 image: Unit of inspection. An image is inspected to determine its classification as conforming or not, or to count the number of nonconformities. An image will have a number of components or attributes that may be nonconforming. Refer to clause 9 for a list of attributes.

3.1.4 inspection by attributes: Inspection whereby either the image is classified simply as conforming or nonconforming, or the number of nonconformities in the images inspected is counted, with respect to a given list of attributes.

3.1.5 lot: Definite quantity of images, each having uniform characteristics, collected together and submitted for examination. A lot may also be a single roll or set of rolls of images received at one time, an optical disk, a magnetic tape, or a single box of microfiche, etc.

3.1.6 lot size: Number of images in a lot, disk, or roll.

3.1.7 nonconforming image: Image with one or more nonconformities.

Note: Nonconforming images generally will be classified by their degree of seriousness, such as:

- class A. An image that contains one or more nonconformities of class A and may also contain nonconformities of class B and/or class C.
- class B. An image that contains one or more nonconformities of class B and may also contain nonconformities of class C, but contains no nonconformity of class A.

3.1.8 nonconformities per 100 images: One hundred times the number of nonconformities contained in the sample (one or more nonconformities being possible in any image) divided by the total number of images.

3.1.9 nonconformity: Nonfulfillment of a specified requirement.

Notes:

In some situations, specified requirements coincide with customer usage requirements (see defect). In other situations, they might not coincide, being either more or less stringent, or the exact relationship between the two might not be fully known or understood.

Nonconformities generally will be classified according to their degree of seriousness such as:

- class A. The most serious nonconformities (e.g., loss of information). Such nonconformities will be assigned a very small AQL value.
- class B. Less serious nonconformities (e.g., slightly skewed image). These can be assigned a higher AQL value than those in Class A and a smaller AQL value than those in class C, if a third class exists, etc.

The user is cautioned that adding characteristics and classes of nonconformities generally will affect the overall probability of acceptance of a lot.

3.1.10 percent nonconforming: One hundred times the number of nonconforming images divided by the total number of images inspected.

3.1.11 sample: One or more images taken from a lot, disk, or roll and intended to provide information on the lot or roll.

3.1.12 sample size: Number of images in the sample.

3.1.13 sampling plan: Specific plan that states the sample size to be used and the associated criteria for accepting the lot.

Notes:

An example of a criterion is the number of nonconforming images in a sample is less than or equal to the acceptance number.

A sampling plan does not contain the rules on how to take a sample.

A distinction should be made between the terms sampling plan, sampling scheme, and sampling system.

3.1.14 sampling scheme: Combination of sampling plans with rules for changing from one plan to another. Sampling schemes are used when there is a continuing series of lots to be submitted for acceptance inspection purposes.

3.1.15 sampling system: Collection of sampling schemes, each with its own rules for changing plans, together with criteria by which appropriate schemes may be chosen. ISO 2859-1 is such a sampling system.

3.2 Parameters and variables used in sequential sampling schemes

3.2.1 Acceptance number for a corresponding single sampling plan (Ac): This is the acceptance number for a single sampling plan that has essentially the same operating characteristic as the sampling plan under consideration.

3.2.2 Acceptance number for sequential sampling (A): Value calculated from the specified parameters of the sampling plan and the cumulative sample size. The cumulative count is compared to the acceptance number after each image is inspected to determine if the lot may be accepted.

3.2.3 A: Acceptance number corresponding to the curtailed value of the currulative sample size.

3.2.4 cumulative count (c): When sampling inspection from a lot is performed sequentially, c is the total number of nonconforming images found during inspection, counting from the start of inspection and including the last image inspected.

3.2.5 cumulative sample size (n_{com}) : When sampling inspection of images is performed sequentially, n_{com} is the total number of images inspected, counting from the start of inspection and including the last image inspected.

3.2.6 h_{A} : Constant that is used to determine the acceptance number; h_{A} is the intercept of the acceptance line.

3.2.7 h_{a} : Constant that is used to determine the rejection number; h_{a} is the intercept of the rejection line.

3.2.8 multiplier of the cumulative sample size (g): Multiplier of the cumulative sample size that is used to determine the acceptance and rejection numbers; g is the slope of the acceptance and rejection lines.

3.2.9 n_: Average sample size.

3.2.10 n_i : Sample size for a single sampling plan that has essentially the same operating characteristic as the sampling plan under consideration.

3.2.11 n;: Curtailment value of the cumulative sample size.

3.2.12 p: Lot quality level in proportion nonconforming.

3.2.13 Rejection number for sequential sampling (R): Value calculated from the specified parameters of the sampling plan and the cumulative sample size. The cumulative count is compared to the rejection number after each image is inspected to determine if the lot should be rejected.

3.2.14 R: Rejection number corresponding to the curtailed value of the cumulative sample size.

3 Association for Information and Image Management International

4 Acronyms and abbreviations

AQL	Acceptable Quality Level
CRQ	Consumer's Risk Quality
EIM	Electronic Image Management
EIMS	Electronic Image Management System
PRQ	Producer's Risk Quality

5 Expression of nonconformity

The extent of nonconformity may be expressed in terms of either percent nonconforming or nonconformities per 100 images. The procedures assume that nonconformities occur randomly and with statistical independence. If it is known that a nonconforming component may be caused by a condition also likely to cause others, the image shall be considered as either conforming or nonconforming and multiple nonconformities shall be ignored.

A component may be nonconforming for a number of reasons depending on the system and the needs of the user. A partial list of attributes that may be nonconforming is provided in clause 9. Depending on the user requirements, these nonconformities may be classified as class A, class B, class C, etc.

6 Use and application of Acceptable Quality Level (AQL)

The AQL, together with the sample size code letter, is used for indexing the sampling plans and schemes provided by ISO 2859-1 (ANSI/ASQC Z1.4) and ISO 8422 which are discussed in clause 12 of this technical report. The AQL has no meaning for isolated lot inspection. (See clause 11 of this technical report for information about isolated, or single, lot inspection.)

6.1 AQL designation

To use the sampling schemes (i.e., sets of plans with rules for switching between plans), an AQL must be designated for each class of nonconformities. The effect of this designation is that the majority of lots submitted with quality levels (percent nonconforming or nonconformities per 100 images) equal to or less than this value will be accepted.

The sampling plans provided by ISO 2859-1 and ISO 8422 are arranged in such a way that the probability of acceptance at the designated AQL value depends upon the sample size (and thus the lot size) being higher for large samples than for small ones.

6.2 AQL and process average

The AQL is a parameter of the sampling scheme and should not be confused with the process average, which describes the operating level of an imaging process. The process average is expected to be less than or equal to the AQL to avoid excessive rejections.

The designation of an AQL does not imply that the supplier has the right to knowingly supply any nonconforming images. The term AQL does not apply to isolated lot sampling plans. For such plans, the producer's risk and producer's risk quality along with the consumer's risk and consumer's risk quality are used. These concepts are discussed in 10.1 and 10.2.

7 Types of sampling plans

7.1 Attributes and variables sampling plans

Sampling plans may be classified as attributes or variables plans. The sampling plans discussed in this technical report are all of the attributes type. Each component inspected is classified as conforming or not conforming to specifications.

Variables plans require the calculation of one or more statistics and are not practical for the type of inspections with which this technical report is concerned.

Attributes inspections are usually easier to make because they may be of the "Go, No-Go" variety or they may be visual inspections.

7.2 Single attribute sampling plans

The simplest type of sampling plans are those involving a single sample. That is, in the attributes case, a sample of size n is selected from the lot, and the lot is accepted if no more than c nonconforming images are found in the sample. Otherwise, the lot is rejected.

Procedures for selecting single sampling plans for isolated lots are found in clause 11. Procedures for selecting single plans for a continuing series of lots are found in clause 12.

7.3 Sequential attributes sampling plans

Item-by-item sequential sampling requires that one of the following three decisions be made after each image is inspected:

- accept the lot
- reject the lot
- inspect another image

This process is continued until the lot is accepted or rejected.

8 Considerations when choosing an attribute sampling procedure

The use of sequential sampling results in an average sample size savings over single plans. However, sequential sampling is harder to administer, so that the administrative costs must be balanced against cost savings due to decreased sample size. A simple cost model to assist in the choice of one of these sampling procedures is presented as annex A.

9 Image attributes

The attributes listed in table 1, Some EIM attributes, and table 2, Some film attributes, can be identified visually to determine the quality of images during capture, presentation, and distribution in an Electronic Image Management System in accordance with a prescribed sampling scheme. The person(s) evaluating the image can do so by comparing the original page to the image on a monitor or on a printed output. The attributes listed in tables 1 and 2 should be measured in an output mode similar to their intended application. A quantified measure of each attribute must be made to determine the Producer's Risk Quality (*PRQ*) and the Consumer's Risk Quality (*CRQ*) for each sample. (*PRQ* and *CRQ* are explained in 10.1 and 10.2.)

For each batch, lot, or document, the producer's and consumer's risk factors must be specified for each attribute to be factored with the PRQ and the CRQ. This is necessary to determine the acceptance and rejection criteria for each lot. Each attribute listed in table 1 and table 2 must have these measurable parameters so that statistically valid acceptance and rejection decisions can be made on a lot basis. This process is described in clause 10.

EIM Attribute	Class A	Class B
Size of image relative to the original (measured in both horizontal and vertical direction)	X	
Adequate contrast — For text there should be a high contrast ratio between the text and the background — For gray scale images the contrast should represent the original image		x x
Adequate brightness (more of a monitor problem)		x
Color dropout (dropout of specific colors from a test target)		X
Poor thresholding (dropped low contrast features, dark background obscuring foreground)		X
Image skew on the page		x
Incorrect image orientation on the page		X
Speckle or noise in the background of the image		X
Character dropout (a missing character)	X	
Legibility of small characters or features (poor focus)	x	
Separation of black from white features (bar chart may be required)	X	
Scan line drop out (missing scan lines, single or multiple, across the image, either white or black)	X	
Repeated scan lines on successive images	X	1
Repeated pixel on successive images (consistent noise or spot on each image at the same location)		x
Borders not cropped		x
Missing portion of edge of image	x	

Table 1 — Some EIM attributes

5 Association for Information and Image Management International

Film Attribute	Class A	Class B
	(Major)	(Minor)
Blank film	X	
Blurry images	X	
Chemical residue	X	
Double exposure	x	
Dust*	X	
Edge fog (not affecting coding or image)	X	
Edge fog (affecting coding or image)	x	
Fingerprints*		
Fog (all types, not affecting coding or image)*		
Fog (all types, affecting coding or image)	x	
Frilling	x	
Illegible	x	
Milky film*		
Mottle		x
Newton rings		x
Off tracking*		
Out of focus*		
Pressure marks*		
Excessive residual thiosulfate		
Resolution loss (more than one pattern)*		
Reticulation*		
Scratch (base)*		
Scratch (emulsion not affecting image)*		
Scratch (emulsion affecting legibility)	X	
Static mark*		
Streaks, light or dark*		
Density too high (dark images)*		
Density too low (light images)*		
Uneven density*		
Washboard*		X
Waterspots*		
Image contraction		
Image overlap	x	

Table 2 — Some film attributes

* All defects not identified as major, minor, or cosmetic must be determined by the application and by referring to 12.2.2. of ANSI/AIIM MS23.

6 Association for Information and Image Management International

10 Sampling risks and costs

Whenever sampling inspection is used (as opposed to 100% inspection) certain risks of making errors are always incurred. In situations where 100% inspections are not used, we cannot know everything about the lot. We only know about the images in the sample. Thus, we incur risks of making two types of errors in our decision to accept or not accept.

We can reject (not accept) a lot that should have been accepted. The risk of doing this is called the producer's risk. The second error is that we can accept a lot that we should not have accepted. The risk of doing this is called the consumer's risk. Although sampling always incurs both of these risks, the risks can be measured and controlled if proper statistical procedures are used.

10.1 Producer's risk and Producer's Risk Quality (PRQ)

Often, the producer's risk is stated in terms of a probability or risk level denoted by the Greek letter alpha (α). The producer's risk is the probability that a lot with a quality level (e.g., the fraction nonconforming) at a certain acceptable level or better is not accepted by the sampling procedure. (Stated another way, a good lot is not accepted.) For the purposes of this guide, the symbol *PR* will be used for this risk. The producer's risk quality is the quality level for which the probability of non-acceptance is just equal to the producer's risk. The producer's risk quality is denoted by the symbol *PRQ*.

10.2 Consumer's risk and Consumer's Risk Quality (CRQ)

The consumer's risk is sometimes denoted by the Greek letter beta (β). However, in this guide it will be denoted by the symbol *CR*. The consumer's risk is the probability that a bad lot is accepted. The quality level associated with the consumer's risk is called the consumer's risk quality (*CRQ*).

10.3 Allowable nonconformities and risks associated with complete inspection

Both the consumer's risk and the producer's risk should be small, but they can only be zero when 100% inspection is used. Both the PRQ and the CRQ should be small also. The PRQ cannot be zero without the use of 100% inspection, and the CRQ must be larger than the PRQ. In general, the smaller the values of these risks and quality levels and the closer the two quality levels are to each other, the larger the sample size must be. That is, we must pay for additional discrimination in our sampling procedure.

The fact that the PRQ (our definition of acceptable quality) must be greater than zero does not mean that a certain fraction of a lot may be nonconforming to specifications. It means that we are recognizing that since we have not completely inspected a lot, it is possible for a small number of nonconforming images to be present. If a series of lots are submitted with a quality level equal to or better than the PRQ, the sampling procedure will reject only a small fraction (*PR*) or less of them.

If the images being inspected are of a critical nature and inspection is not destructive, complete inspection may be necessary. Even complete inspection may not be enough, however, to assure us that only conforming images are present. This is because of errors in inspection. If a large number of images must be inspected, the chance of such inspection errors increases rapidly. For this reason, complete inspection may actually result in more nonconforming images being passed than under sampling, when more care may be made during the inspection of each image and the risks are known.

11 Sampling plans for single lots

The sampling procedures described in 11.1 and 11.2 are for use in situations in which all of the lots (images) are received at one time. In cases where there is a continuing series of lots of technically equivalent images from the same supplier, sampling systems such as those described in clause 12 are preferred. The procedures in clause 12 provide a means to

- reduce the sampling intensity when a supplier regularly submits superior quality images
- increase the sampling intensity when a supplier has a history of submitting product that does not meet specifications

When the number of lots to be submitted is not sufficient to permit the use of switching rules to change the sampling intensity, the procedures described in 11.1 and 11.2 should be used in preference to merely selecting a plan from one of the tables provided in clause 12.

Single sampling plans are described in 11.1. Item-byitem sequential plans are described in 11.2. In both cases, it is necessary for the user to have chosen a definition of good and bad quality (i.e., PRQ and CRQ), along with producer's and consumer's risks.

11.1 Single sampling plans

The sampling procedures described here are the simplest plans that can be used when an isolated lot is submitted for inspection. A single sampling plan is described by a sample size, n, and an acceptance number, Ac. A sample of n images is selected from the lot submitted for inspection. If no more than Ac of the images inspected are nonconforming, the lot is accepted.

11.1.1 Sampling risks

To choose a sampling plan, the user must decide the risks he/she is willing to take that a roll or platter is accepted when it should be rejected, or is rejected when it should be accepted.

To simplify the process of selecting sampling plans and for the purpose of this guide, a Producer's Risk (PR) of 5% and a Consumer's Risk (CR) of 10% have been used. The user must choose the producer's risk quality, PRQ, and the consumer's risk quality, CRQ. In other words, the user must decide what percent nonconforming levels should be accepted 95% of the time, and what percent nonconforming levels should be accepted 10% of the time. These two quality levels define the sampling plan to be used.

11.1.2 Tabular method for selecting a plan

A single sampling plan may be derived using table 3, Values for single sampling plans.

AC	n × CRQ	n × PRQ	CRQ/PRQ
0	2.303	0.0513	44.84
1	3.890	0.355	10.96
2	5.322	0.818	6.51
3	6.681	1.366	4.89
4	7.994	1.970	4.06
5	9.274	2.613	3.55
6	10.532	3.286	3.21
7	11.771	3.981	2.96
8	12.995	4.695	2.77
9	14.207	5.426	2.62
10	15.407	6.169	2.50
11	16.598	6.924	2.40
12	17.782	7.690	2.31
13	18.958	8.464	2.24
14	20.128	9.246	2.18
15	21.292	10.035	2.12

Table 3 — Values for single sampling plans*

* Used with permission from F. E. Grubbs, "On designing single sampling inspection plans," Annuals of mathematical statistics, Vol. XX (1949), p. 256. The following steps illustrate the use of table 3.

- A. First, we choose a PRQ and CRQ. Suppose we choose a PRQ of 4% and a CRQ of 12.5% (i.e., PRQ is 0.04; CRQ is 0.125). That is, we wish to find a sampling plan that will accept lots that are 4% or less nonconforming 95% of the time (because PR is 5%) and accept lots that are 12.5% nonconforming only 10% of the time (because CR is 10%).
- B. We determine ratio of CRQ to PRQ.

CRQ/PRQ = 0.125/0.04 = 3.125

- C. Next, we look in the CRQ/PRQ column of table 3, Values for single sampling plans, and locate the value nearest to our calculated value. From the CRQ/PRQ column, we find that 3.21 is the number nearest to 3.125.
- D. We locate the acceptance number in table 3 by looking at the AC value that corresponds to 3.21. Our acceptance number is 6.
- E. Next, we determine the sample size by dividing $n \times CRQ$ by the CRQ and $n \times PRQ$ by the PRQ (rounding up).

 $n = n \times CRQ/CRQ = 10.532/0.125 = 85$

 $n = n \times PRQ/PRQ = 3.286/0.04 = 83$

F. Finally, we choose the sampling plan. We use the highest result of the two calculations for our sampling plan. In this case, we would choose the following sampling plan:

n = 85	
Ac = 6	

We would sample 85 images. If no more than 6 of the images inspected are nonconforming, the lot would be accepted.

11.1.3 Nomograph method for selecting a plan

Another way to select a sampling plan is to use the nomograph method. Figure 1, Nomograph, can be used to select a sampling plan. The following steps describe how to use the nomograph.

A. First, we choose a PRQ and CRQ. We will choose the same PRQ and CRQ used in 11.1.2 — a PRQ of 4% and a CRQ of 12.5% (i.e., PRQ is 0.04; CRQ is 0.125). We wish to find a sampling plan that will accept lots that are 4% nonconforming 95% of the time and accept lots that are 12.5% nonconforming only 10% of the time.

ANSI/AIIM TR34-1996 Sampling Procedures for Inspection by Attributes of Images in EIM and Micrographic Systems

- B. Draw a straight line between the following:
 - CRQ (0.125) on the left-hand scale
 - consumer's risk (0.10) on the right-hand scale

(In figure 1, the left-hand scale is labeled "fraction defective" and the right-hand scale is labeled "probability of acceptance.")

- C. Draw another line between the following:
 - PRQ (.04) on the left-hand scale
 - --- the one-minus-the-producer's-risk (1 .05 = 0.95) on the right-hand scale

(In figure 1, the left-hand scale is labeled "fraction defective" and the right-hand scale is labeled "probability of acceptance.")

- D. Determine the point at which the two lines cross.
- E. Read the sample size and the acceptance number from the two scales in the middle of the graph.

For this example, the nomograph results in the same plan as the tabular method described in 11.1.2. The sampling plan is one in which n is 85 and Ac is 6. We would sample 85 images. If no more than 6 of the images inspected are nonconforming, the lot would be accepted.

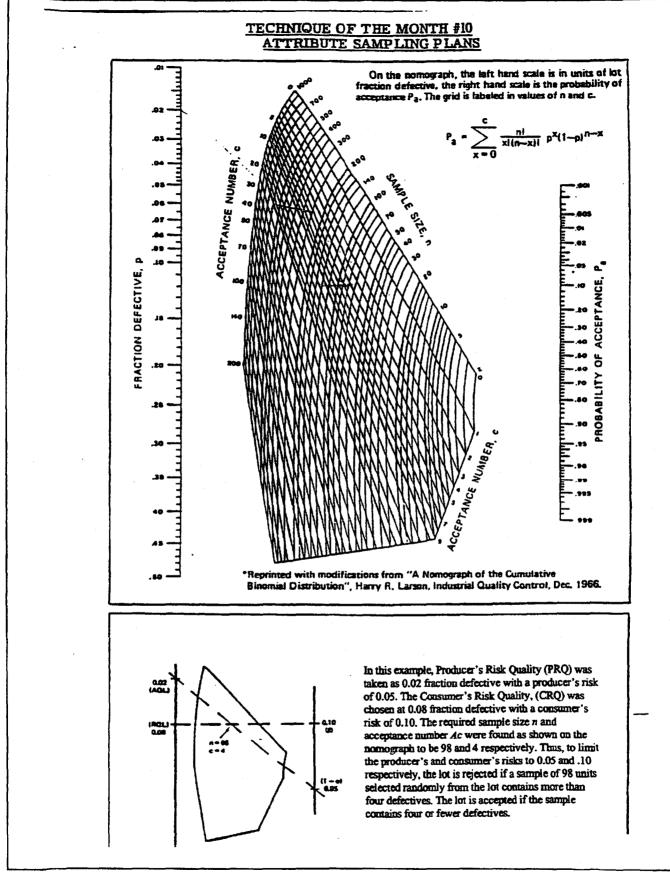


Figure 1 - Nomograph

10

Association for Information and Image Management International

11.1.4 Operating Characteristic (OC)

The operating characteristic is the probability of acceptance as a function of the fraction of the lot that is nonconforming. When this function is plotted it is called an operating characteristic curve, or OC curve. This function can be used to determine the likelihood that a lot of any stated quality will be accepted.

The chart in figure 2, Curves for determining probability of acceptance, can be used to determine the probability of acceptance for any lot quality. The abscissa (horizontal axis) of the chart is the product np (the product of the sample size, n, and the fraction nonconforming, p). This product is the average number of nonconforming images in submitted lots. Each curve on the chart is an acceptance number, Ac. The ordinate (vertical axis) of the chart is the probability of acceptance expressed in percent. For the example used in both 11.1.2 and 11.1.3

$$n \times (PRQ) = 85(0.04) = 3.4$$

$$n \times (CRQ) = 85(0.125) = 10.625.$$

It may then be observed that the curve for Ac = 6 does indeed go through the two points 3.4,95 and 10.625,10.

- ---

We also could determine from the chart in figure 2 that, with the plan n = 85, Ac = 6, an np of 6.7 gives a p of 6.7/85 = 7.9% nonconforming and has a 50% chance of acceptance.

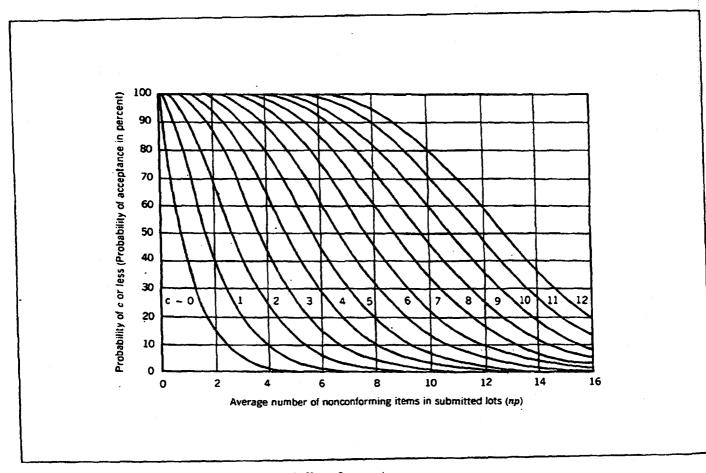


Figure 2 — Curves for determining probability of acceptance

11 Association for Information and Image Management International

11.2 Item-by-item sequential sampling plans

The procedure and tables in 11.2.1, 11.2.2, and 11.2.3 are based on ISO 8422. To obtain complete sequential sampling procedures, refer to that standard.

11.2.1 Principles of sequential sampling

When using a sequential sampling plan by attributes, images are selected at random and subjected to inspection one at a time. A cumulative count is kept of the number of nonconforming images (or number of nonconformities) and the number of images inspected. After each image is inspected, this count is used to assess whether sufficient information exists to either accept or reject the lot. Table 4 outlines the sequential sampling decision process.

If the cumulative count	Then	And then
is such that the risk of accepting a lot with unsatisfactory quality (the consumer's risk) is sufficiently low	the lot is considered acceptable	the inspection is terminated.
is such that the risk of not accepting a lot with satisfactory quality (the producer's risk) is sufficiently low	the lot is considered not acceptable	the inspection is terminated.
does not allow you to decide if the lot is considered acceptable or not acceptable	an additional image is selected and inspected	this process is continued until you have accumulated sufficient information to make a decision as to the acceptability of the lot.

Table 4 — Sequential sampling decision process

11.2.2 Choosing PR and CR

As with single sampling, to evaluate the consumer's risk and the producer's risk, the producer's and consumer's risk qualities must be chosen. As with single sampling, we will use, for the purpose of this guide, a producer's and consumer's risk of 5% and 10%, respectively. This leaves only the PRQ and CRQ to be selected by the user.

The average sample size is the average number of images for a series of lots that will be inspected, all at a stated quality level, before a decision is made to accept or reject the lot. Using a sequential plan leads to a smaller average sample size than a single sampling plan with the same operating characteristic. For very good lots, this savings may reach or exceed 50%.

On the other hand, the actual number of images or attributes of images inspected for a particular lot may exceed that required by a single sampling plan with the same operating characteristic. In fact, a sequential sampling plan may not reach a decision until the entire lot has been inspected. To preclude such events, a curtailment rule has been established and is discussed in 11.2.4.

Because the ultimate sample size for a particular lot when using sequential sampling is not known in advance, selecting images for inspection can present operational difficulties. The user must decide if a smaller average sample size outweighs a sample size that is not known in advance. This becomes a matter of evaluating inspection costs versus the cost of selecting images for inspection. A simple cost model to assist this evaluation is found in annex A, Sampling costs.

It should be pointed out that the type of sampling plan must be selected before sampling begins. If a switch is made during inspection of a lot, the operating characteristic of the resulting plan may be changed drastically because the inspection results would influence the choice of acceptance criteria.

11.2.3 Selecting sequential sampling plan parameters

The general procedure described here is to be used when both the producer's risk quality and the consumer's risk quality have been designated. Thus, the sampling plan will have approximately the same operating characteristic as the single sampling plan, which was developed in 11.1, using the same two points (PR = 5% and CR = 10%).

- A. The first step is to choose the two values CRQ and PRQ.
- B. The next step is to use table 5, Sequential sampling plans for inspection for percent nonconforming for producer's risk = 0.05 and consumer's risk = 0.10, to determine the values of the plan parameters h_{μ} , h_{μ} , and g.
 - 1. Locate the CRQ value (column).
 - 2. Locate the PRO value (row).
 - 3. Identify the plan parameter values listed in the column/row intersection.

An example of the steps follows:

- A. Determine the producer's and consumer's risk quality. In this example, a sequential sampling plan is desired for a producer's risk quality (PRQ) of 4% and a consumer's risk quality (CRQ) of 12.5%. (These criteria mean that a lot with 4% nonconforming images has a probability of acceptance of 95% and a lot with 12.5% nonconforming images has a probability of acceptance of 10%.)
- B. Use table 5 to locate the parameters of the sequential plan that satisfy the criteria. The values are as follows:
 - $-h_{A} = 1.827$
 - -- $h_s = 2.346$
 - --- g = 0.0752

11.2.4 Determining the curtailment value of the sample size

A curtailment rule ensures that a sequential sampling plan decision is made before an entire lot has to be inspected. If the sample size of the single sampling plan that matches the sequential plan is known, the curtailment number is 1.5 times the single sample size rounded up to the nearest integer. (It was determined in 11.1 that a single sampling plan with a sample size of 85 images and an acceptance number of 6 would meet the criteria.)

For the example in 11.2.3, the curtailment value (n,) is

$$n_r = (1.5)n$$

 $n_{r} = (1.5)(85) = 128.$

If the sample size of the equivalent single sampling plan is unknown, the curtailment value is calculated as

$$n_{r} = \frac{2h_{A}h_{R}}{g} (1-g)$$

rounded up to the nearest integer.

In this case, n_i is

[2(1.827)(2.346)]/[0.0752(1-0.0752)] = 124.

11.2.5 Operation of the plan

For each value, n_{com} , that is less than the curtailment value, the acceptance number A is found by rounding the quantity $gn_{com} - h_A$ down to the nearest integer.

The rejection number, R, is found by rounding the quantity $gn_{com} + h_{R}$ up to the nearest integer.

The acceptance number corresponding to the curtailed sample size, A_{i} , is determined by rounding the quantity, gn_{i} , down to the nearest integer.

The corresponding rejection number is $A_i + 1$.

If the acceptance number, A, is negative, the cumulative sample size is too small to allow acceptance of the lot. Conversely, if the rejection number, R, is larger than the cumulative sample size, the cumulative sample size is too small to reject the lot.

The smallest cumulative sample size permitting lot acceptance can be obtained by rounding h_A/g up to the nearest integer. The smallest cumulative sample size permitting rejection of the lot is obtained by rounding $h_a/(1-g)$ up to the nearest integer.

The example started in 11.2.3, has the following parameters:

 $-h_{A} = 1.827$

$$-h_{R} = 2.346$$

-g = 0.0752

The curtailment sample size is 128.

The curtailment acceptance number, A_r , is found by rounding $gn_r = 9.63$ down to the nearest integer. The curtailment acceptance number, A_r is 9.

The curtailment rejection number, R_i is $A_i + 1$, which would be 10.

The formula for the acceptance number, A, is $0.0752n_{-} - 1.827$

rounded down to the nearest integer. See table 6, Example chart for sequential sampling plan.

The formula for the rejection number, R, is $0.0752n_{-} + 2.346$

rounded up to the nearest integer. See table 6, Example chart for sequential sampling plan.

The acceptance and rejection numbers corresponding to the cumulative sample sizes $n_{com} = 1, 2, ..., 127$ are determined by successively inserting the values of n_{com} in these formulas and rounding appropriately. The acceptance number cannot be more than 9, and the rejection number cannot be more than 10. The results are shown in table 6.

Sequential sampling plans for inspection for percent nonconforming for producer's risk = 0.05 and consumer's risk = 0.10	1	00'0t	0,478 0,454 0,414 0,583 0,022 8 0,0287	0.502 0.475 0.544 0.610 0.023 2 0.037 8	0.531 0.501 0.471 0.692 0.644 0.603 0.024 5 0.0294 0.0362	0,581 0.526 0,686 0,720 0,877 0,605 0,0257 0,0308 0,0378	0.594 0.557 0.520 0.782 0.715 0.647 0.027 1 0.0324 0.0397	0,632 0,591 0,549 0,515 0,612 0,738 0,745 0,541 0,0287 0,0342 0,0418 0,0503	0.679 0.670 0.583 0.670 0.587 0.587 0.78,0 0.78,0 0.020,0 0.021,0	0.727 0.673 0.618 0.578 0.834 0.683 0.795 0.740 0.702 4 0.035 4 0.046 0.0558	0.728 0.723 0.642 0.613 1.009 0.928 0.848 0.787 0.0408 0.0408 0.064 0.0550	0,919 0,783 0,712 0,616 1,102 1,006 0,914 0,642 0,0371 0,0437 0,0526 0,6526	0.839 0.850 0.787 0.702 1.205 1.091 0.994 0.901
	lly level	6.30 8.00	0,535 0,504 0,687 0,647 0,0152 0,0165	0,545 0,531 0,738 0,682 0,0180 0,0194	0,602 0.564 0,774 0.724 0,017,0 0,0205	0.841 0.597 0.821 0.787 0.0190 0.0216	0,894 0,635 0,878 0,615 0,019 0,022 8	0.738 0.879 0.945 0.872 0.0202 0.0242	0,789 0.732 1,028 0.940 0,0217 0.0258	0,068 0,790 1,114 1,014 0,023 2 0,027 5	0,953 0,860 1,226 1,106 0,026 9 0,029 4	1,062 0,947 1,363 1,215 0,0268 0,0017	1,188 1,046 1,525 1,343
quarter semping para or inspector or percent in for producer's risk = 0.05 and consumer's risk = 0.10	Consumer's risk quality level CRQ	4.00 5.00	6,004 0,569 6,775 0,729 0,0107 0,0127	0,642 0,602 0,625 0,773 0,0113 0,0134	0,681 0,645 0,687 0,628 0,0120 0,0142	0.742 0.669 0.852 0.634 0.0128 0.015 1	0,801 0,739 1,026 0,948 0,013 0 0,016 0	0.8/3 0.800 850,1 151,1 1,12 0,014 8	0,942 0,975 1,238 1,123 0,0157 0,0184	1.054 0.858.0 162,1 885.1 7.00.0 8.010.0	1,194 1,084 1,533 1,386 0,0183 0,0212	1,371 1,200 1,760 1,541 0,0200 0,0231	1.584 1.384 2.040 1.731
lak = 0.05 and	ð	3,15	0,647 0,630 0,006 91	1 68 0 1 68 0 1 680 0	0.748 0.960 0.0101	0.600 1,007 0.010 0	0.878	0.986	1,076 1,382 0,013 4	1,205 1,548 0.014.5	1,0,0 1,76,1 7,810,0	1,014 2.073 0.0172	1,025
r producer's r		2.00 2.50	0,747 0,694 0,959 0,691 0,005 37 0,007 50	0,806 0,746 1,035 0,957 0,006 78 0,007 97	0,685 0,612 1,136 1,042 0,007 31 0,00855	0.970 0.693 1,245 1,124 0,007 84 0,009 15	1,074 0,958 1,178 1,243 0,008 44 0,009 81	1,207 1,075 1,549 1,281 0,009 14 0,0196	1,285 1,214 1,778 1,214 0,003 56 0,011 5	1,606 1,381 2,082 1,774 0,0108 0,012.5	1,828 1,811 2,472 2,088 0,011 9 0,013 6	2,423 1,946 3,113 2,499 0,013 1 0,014 9	3.201 2.417
2		1.60	0,600	0.676 1,127 0.00560	0.972 1.247 0.008 27	1.076	1.304	1.374 1.764 0.007 92	1,610 1,007 7 0,008 67 0	1,917 2,401 0,009 47	1,390 1,069 3,010 4	3.210 4,122 0.011 5	4,728
		1,00 1,25	0,974 0,447 1,250 1,128 0,004 34	1,678 0.973 1,384 1,248 0,004 21 0,004 90	1,223 1,089 1,570 1,399 0,004 59 0,005 31	1,392 1,221 1,787 1,568 0.004 58 0,005 74	1,615 1,250 2,074 1,765 0,005 41 0,008 22	1.937 1.622 2.487 2.083 0,003 83 0.008 79	2,441 1.981 2,134 2,518 0,005 35 0,007 47	3, 224 2, 437 4, 140 3, 128 0,007 22 0,008 19	4,824 3.258 4,206 1,0500 0,000 0	9.999.9 (9.994 1.2,837 (9.910) 0.009.85 (9.010)	9,974
		05.0	1,070 1,305 0,00337 0	1,200 1,551 0,003 64 0	1,393 1,789 0,003 88 0	2,0/4 0,004 11 0	1,828 2,473 0,004 73	2,403 2,055 0,005 21	3, 228 4, 148 0,005 77	4.759 6.118 0.006.78	9,357 12,013 0,007 12 0		

Table 5 — Sequential sampling plans for inspection for percent nonconforming for producer's risk = 0.05 and consumer's risk = 0.10

Par- ameters								Consumar's	CRO	riak quality loval CRQ							
4 # •	B	8	<u>g</u>	044.8 1252.11 242.11 2410.0	2,00 1,7,1 1,052 0,010,0	3,168 3,168 4,085 0,018 0	2,316 2,316 3,063 0,0206	1,890 1,890 2,426 0,023 7	5,00 2,028 2,027 2	+ 150'0	1, 148 1, 500 0,0187	0001 1001 1000	0.929	0.830 0.830 1.068 0.0597	0.755 0.968 0.968 0.9708	000	0.05 989.0 988.0
					9,508 12,721 0,0178	4, 943 6, 346 0,020 2	3,247 4,169 0,0229	2.392 2.072 0.0262	1.917 1.461 2.461 0.0299	1,586 2,038 0,034 5	1.343 1.724 0.040 1	1.17) 1.504 0.0484	1.038 1.330 0.054 D	216.0 21.1 21.1 20.0	0.824 1.058 0.0758	005	0.745 0.957 0.049 8
44.						9,863 12,663 0.0224	4.810 8.201 0.0253	3, 154 4,049 0,0289	2,376 3,051 0.0320	1,888 2,474 0,0376	1.553 1.984 0.0436	820.1 1.708 1.020.0	1, 157 1, 485 0, 058 2	1.008 1.294 0.048 0	0.685 1.154 0.0810	0-0	0,806 1,035 0,095 8
4.4.4							8,487 12,155 0,028 t	163,4 628,8 9,000,0	3, 131 4, 0, 9 1 0, 00, 0	2.335 2.698 0.0412	1,843 2,367 0,047 5	1.535 1.971 0.054 6	1.211 1.683 0.0630	1.123	0,989 1,269 0,086 9	0-0	0,078 1,127 0,102 3
22-								9,089 9,089 11,469 0,035	4,677 4,677 8,005 8,005	2.100 2.510 0.045.5	2.289 2.939 0.0522	1,832 2,353 0,0597	1.521 1.953 0.0686	1.274 1.635 0.080 5	401'1 411'1 4 E60'0	0-0	0.987 1.242 0,109 9
4 4 4									7637 276,21 2,044 (0	4.705 8.040 0.0507	3.050 828.0 828.0	2.295 2.947 0.0658	1.827 2,348 0.0752	1,461 1,902 0,0879	1,256 1,613 0,1018	222	1.081.1 061.1 7 061.1
										5.850.0 2.05.11	4,484 5,757 0.0638	3.013 3.868 3.868 0.0724	2.255 2,895 0,0924	1.750 2.267 0.0857	1,445 1,055 0,110 0		1.220 1.560 0.128 1
<											8,753 11,238 0,0712	4, 482 5, 754 0, 080 2	2.887 3,825 0,0908	2, 182 2, 776 0, 104 9	1,714 2,201 0,1204		1.406 1.805 0.139.0
<u> </u>												9, 184 11, 792 0,089 7	4.515 5.822 9,1010	2.871 3.688 0.1150	211,2 717,2 0,220,0	- ~ ~	1.675 2.151 0.1520
4 # w													0,958 11,501 0,1121	4.177 5.283 0.1280	2, 776 3,584 0, 145 2	2.2	2.049 2,631 0,1660

Table 5 — Sequential sampling plans for inspection for percent nonconforming for producer's risk = 0.05 and consumer's risk = 0.10 (concluded)

Cumulative Sample Size	Acceptance Number	Rounded Acceptance Number	Rejection Number	Rounded Rejection Number
n	gn h	A	$gn_{m} + h_{h}$	R
1	-1.752	*	2.421	**
2	-1.677	*	2.496	**
3	-1.912	*	2.572	3
4	-1.526	*	2.647	3
8	-1.225	*	2.948	3
9	-1.150	*	3.023	4
20	323	*	3.850	4
21	248	*	4.925	4
22	-0.173	*	4.000	4
23	-0.097	*	4.076	5
24	-0.022	*	4.151	5
25	0.053	0	4.226	5
31	0.050	0	4.677	5
	0.050		4.077	
35	0.805	0	4.978	5
36	0.880	0	5.053	6
37	0.955	0	5.128	6
38	1.031	1	5.204	6
40	1 792	1	5.056	6
48	1.783	1	5.956	7
49	1.858	1	6.031	7
50	1.933	1	6.106	7
51	2.008	2	6.181	/
<u> </u>				
61	2.760	2	6.933	7
62	2.835	2	7.008	8
63	2.911	2	7.084	8
64	2.986	2	7.159	8
65	3.061	3	7.234	8
<u>··</u>			••••	·
75	3.813	3	7.986	8
76	3.888	3	8.061	9
77	3.963	3	8.136	9
78	4.039	4	8.212	9
		····		
88	4.791	4	8.964	9
89	4.866	4	9.039	10
90	4.941	4	9.114	10
91	5.016	5	9.189	10
	5 00 4			
104	5.994	- 5	10.167	10
105	6.069	6		10
117	6.971	6		10
118	7.047	7	••	10
127	7.723	7		10
128	-	9		10

Table 6 - Example chart for sequential sampling plan

* Cumulative sample size is too small to permit acceptance. ** Cumulative sample size is too small to permit rejection.

Association for Information and Image Management International

Two examples of the operation of sequential sampling plans follow.

- A. Assume that the first 20 images inspected were conforming to specifications. The 21st image was nonconforming. If no other nonconforming images were found, the lot may be accepted after 38 images are inspected. (This can be seen by looking at A in table 6. At image 38, a lot can be accepted if only 1 image has been rejected. Until the 38th image has been checked, a lot with one image rejected cannot be accepted.)
- B. On the other hand, suppose the 5th, 10th 18th, 24th, and 31st images were found to be nonconforming. The lot would then be rejected after inspection of the 31st image. (This can be seen by looking at R in table 6. At the 31st image, the lot can be rejected if 5 images are rejected. In this example, 5 images have been rejected, the 5th, 10th, 18th, 24th and 31st.)

The earliest that a lot may be accepted is after the inspection of 25 images, if all are found to be conforming.

11.2.6 Graphical method of operating the plan

The examples above also can be presented graphically, if desired. Figure 3, Graph for example sequential plan, illustrates the same information shown in table 6. To use the graph, do the following:

- A. Start inspection at the origin.
- B. For each image inspected, move one unit to the right.
- C. If an image is nonconforming, move up one unit.
- D. Check if the lower or upper line is crossed.
 - If the lower decision line is crossed, accept the lot.
 - If the upper line is crossed, reject the lot.
- E. Continue sampling as long as the location is between the two lines.

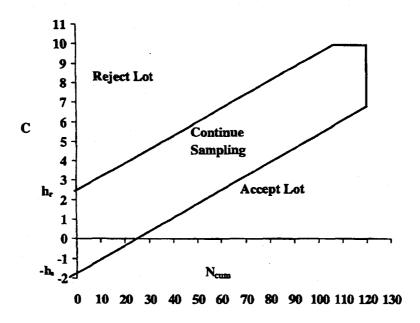


Figure 3 — Graph for example sequential plan

17 Association for Information and Image Management International

12 Sampling plans for a continuing series of lots

12.1 Single sampling using ISO 2859-1

ISO 2859-1 is an international standard that was updated and improved in 1989 and again in 1996 to use modern concepts of quality assurance. The 1996 edition is used in this technical report. Early versions were similar to MIL-STD 105, which has now been discontinued and replaced by ANSI/ASQC Z1.4

ISO 2859-1 uses the concept of sampling, each designated by AQL and sample size code letter, which is addressed in 12.1.1. Each sampling scheme consists of three sampling plans — normal, tightened, and reduced plans — together with rules for switching between the plans.

ISO 2859-1 contains single, double, and multiple sampling plans that are matched as closely as possible; that is, they give approximately the same protection to both the producer and the consumer. Double plans have a smaller average sample size than single plans. Multiple plans have a smaller average sample size than double plans. However, single plans are the easiest to use because they always require the same sample size.

Details on the use of double and multiple plans are found in the standard; however, they will not be discussed in this technical report. Sequential plans with approximately the same protection as the schemes in ISO 2859-1 can be found in ISO 8422. Sequential sampling using ISO 8422 is discussed in 12.2.

12.1.1 Sample size code letters and inspection levels

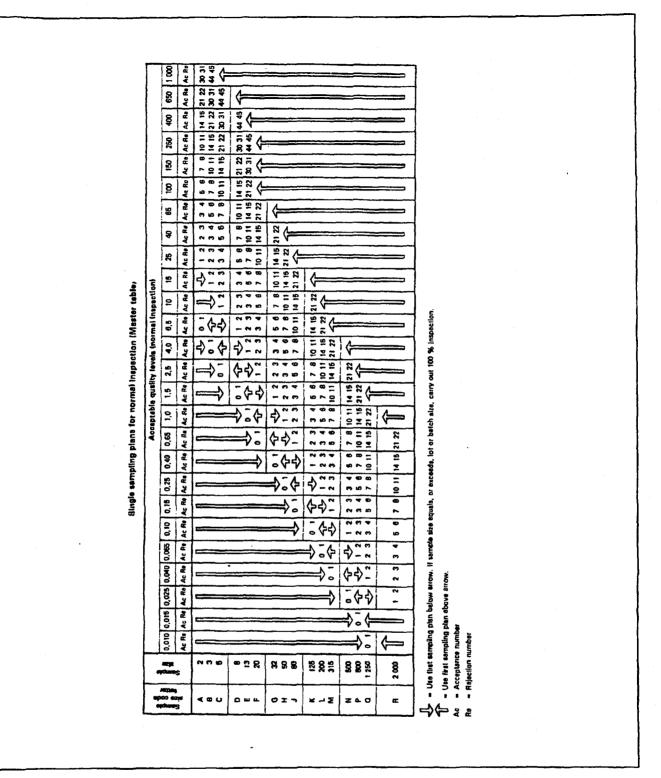
The sample size code letter depends on the lot size and the inspection level. The sample size code letters are found in table 7. The inspection level is designated by the user. The purpose of inspection levels is to allow the user to maintain greater discrimination for some suppliers of conversion services and lesser discrimination for others. Inspection level II is usually used.

At each inspection level, the switching rules shall operate to require normal, tightened, and reduced inspection as specified in 12.1.3. The choice of inspection level is quite separate from these three forms of inspection intensity. Thus, the inspection level that has been specified shall be kept unchanged when switching between normal, tightened, and reduced inspection.

The amount of information about the quality of a lot gained from examining samples drawn from the lot depends on the absolute size of the sample, not on the fraction of the lot sampled, providing the lot is large relative to the sample size. In spite of this, three reasons exist for varying the sample size with the lot size.

- When the risk is high, it is more important to make the correct decision.
- With a large lot, a sample size can be afforded that would not be economical for a small lot.
- A truly random selection is relatively more time consuming if the sample is too small a proportion of the lot (e.g., a sample of 5 images from a lot of 35,000 images).

12.1.2 Obtaining a sampling plan


The AQL and the sample size code letter should be used to obtain the sampling plan from tables 8, 9, and 10, which are respectively the normal, tightened, and reduced plans.

When no sampling plan is available for a given combination of AQL and sample size code letter, the tables direct the user to a new letter by means of arrows. The sample size to be used is given by the new sample size code letter, not the original letter. If this procedure leads to different sample sizes for different classes of nonconformities, the sample size code letter corresponding to the largest sample size can be used for all classes of nonconformities.

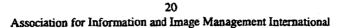
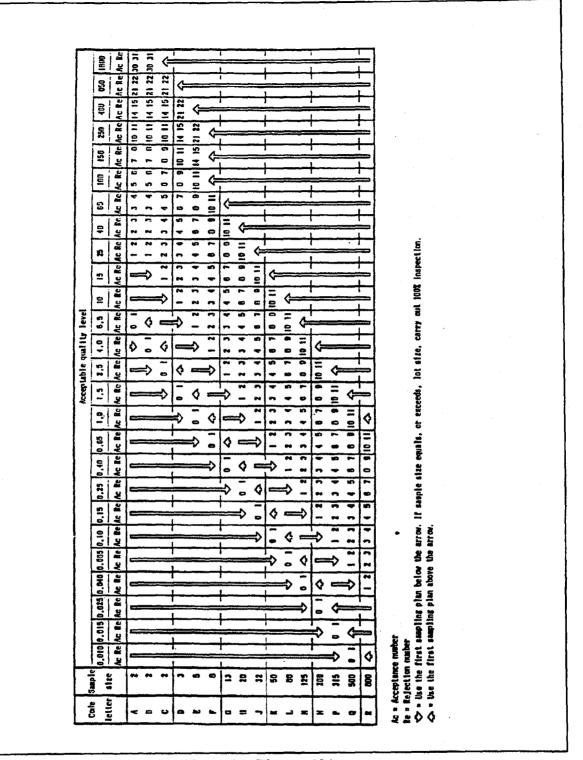

Lot or batch size		Inspection levels	
· · · · · · · · · · · · · · · · · · ·	I	<u> </u>	Ш
2 to 8	Α	Α	В
9 to 15	A	B	С
16 to 25	В	С	D
26 to 50	С	D	E
51 to 90	С	E	F
91 to 150	D	F	G
151 to 280	E	G	Н
281 to 500	F	H	J
501 to 1200	G	1	K
1,201 to 3,200	Н	K	L
3,201 to 10,000	1	L	M
10,001 to 35,000	К	M	N
35,001 to 150,000	L	N	Р
150,001 to 500,000	M	Р	Q
500,001 and over	N	Q	R

Table 7 — Sample size code letters

19 Association for Information and Image Management International



Association for Information and Image Management International 2 Table 9 --- Singl

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{1}{4} = \frac{1}{42} + \frac{1}{42} +$	$\frac{1}{4} - \frac{1}{4} - \frac{1}$											Acc	eptebl	quali	y love	is (tigh	tened	Inspec	tion)							
$\begin{array}{c} 8 \\ C \\$	$ \begin{array}{c} 8 & 3 \\ C & -5 \\ 0 & 8 \\ \hline \\ \\ 8 & 3 \\ \hline \\ 0 & 8 \\ \hline \\ 8 & 3 \\ \hline \\ 0 & 8 \\ \hline \\ 8 & 3 \\ \hline \\ 0 & 8 \\ \hline \\ 8 & 3 \\ \hline \\ 0 & 8 \\ \hline \\ 8 & 3 \\ \hline \\ 0 & 8 \\ \hline \\ 8 & 3 \\ \hline \\ 0 & 8 \\ \hline \\ 8 & 3 \\ \hline \\ 0 & 8 \\ \hline \\ 8 & 3 \\ \hline \\ 0 & 8 \\ \hline \\ 8 & 3 \\ \hline \\ 0 & 8 \\ \hline \\ 8 & 3 \\ \hline \\ 0 & 8 \\ \hline \\ 8 & 3 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 2 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 2 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 2 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 2 \\ \hline \\ 7 & 20 \\ \hline \\ 7 & 2 \\ \hline \\ 7 & 20 \\ \hline \\ 7 & 2 \\ \hline \\ 7 & 7 \\ \hline 7 $	$ \begin{array}{c} 8 & 3 \\ C & -5 \\ 0 & 8 \\ \hline \\ \\ 8 & 3 \\ \hline \\ 0 & 8 \\ \hline \\ 8 & 3 \\ \hline \\ 0 & 8 \\ \hline \\ 8 & 3 \\ \hline \\ 0 & 8 \\ \hline \\ 8 & 3 \\ \hline \\ 0 & 8 \\ \hline \\ 8 & 3 \\ \hline \\ 0 & 8 \\ \hline \\ 8 & 3 \\ \hline \\ 0 & 8 \\ \hline \\ 8 & 3 \\ \hline \\ 0 & 8 \\ \hline \\ 8 & 3 \\ \hline \\ 0 & 8 \\ \hline \\ 8 & 3 \\ \hline \\ 0 & 8 \\ \hline \\ 8 & 3 \\ \hline \\ 0 & 8 \\ \hline \\ 8 & 3 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 2 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 2 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 2 \\ \hline \\ 7 & 20 \\ \hline \\ 0 & 1 \\ \hline \\ 7 & 2 \\ \hline \\ 7 & 20 \\ \hline \\ 7 & 2 \\ \hline \\ 7 & 20 \\ \hline \\ 7 & 2 \\ \hline \\ 7 & 7 \\ \hline 7 $		ļ	 	·						I	{ −−−−	ļ			ļ			·			I			l	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B C	3 5													0 1	0 1		1 2	1223	23 34	34 56	56 89	8 9 12 13	12 13 18 19	18 19 27 28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{J}{K} = Use first sampling plan below errow. If sample size equate, or exceede, lot or batch size, cerry out 100 % Inspection. \frac{J}{K} = Use first sampling plan below errow.$	$\frac{J}{K} = Use first sampling plan below errow. If sample size equate, or exceede, lot or batch size, cerry out 100 % Inspection. \frac{J}{K} = Use first sampling plan below errow.$	E F	13 20 32										0 1	01	ſ	1 2	2 3 3 4	23 34 56	34 56 89	56 89 1213	8 9 12 13 18 19	12 13 18 19	18 19	27 28	27 28	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{N}{P} = \frac{500}{900} = \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{2} + \frac{1}{2}$	$\frac{N}{P} = \frac{500}{900} = \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{2} + \frac{1}{2}$	K J	60 126						0 1		Ĵ	1 2	1223	23 34	34 58	5 6 8 8	8 9 12 13	12 13	18 19		Î					
R 2000 0 1 T 1 2 2 3 3 4 5 6 8 9 12 13 18 19 T	R 2 000 0 1 1 2 3 3 5 6 9 12 13 18 19 10 <td>R 2 000 0 1 1 2 3 3 5 6 9 12 13 18 19 10<td>M N P</td><td>315 500 800</td><td>Ĵ</td><td><u> </u></td><td>0 1</td><td>Î</td><td>J 1 2</td><td>1 2 2 3</td><td>23 34</td><td>2 3 3 4 8 6</td><td>34 56 89</td><td>58 91213</td><td>89 1213 1819</td><td>12 13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	R 2 000 0 1 1 2 3 3 5 6 9 12 13 18 19 10 <td>M N P</td> <td>315 500 800</td> <td>Ĵ</td> <td><u> </u></td> <td>0 1</td> <td>Î</td> <td>J 1 2</td> <td>1 2 2 3</td> <td>23 34</td> <td>2 3 3 4 8 6</td> <td>34 56 89</td> <td>58 91213</td> <td>89 1213 1819</td> <td>12 13</td> <td></td>	M N P	315 500 800	Ĵ	<u> </u>	0 1	Î	J 1 2	1 2 2 3	23 34	2 3 3 4 8 6	34 56 89	58 91213	89 1213 1819	12 13											
	 T = Use first sampling plan above errow. Ac = Acceptance number 	 T = Use first sampling plan above errow. Ac = Acceptance number 	R 2	000					+															U			

ANSUAIIM TR34-1996 Sampling Procedures for Inspection by Attributes of Images in EIM and Micrographic Systems

12.1.3 Normal, tightened, and reduced inspection

Normal inspection shall be carried out at the start of inspection. Normal, tightened or reduced inspection shall continue unchanged on successive lots of images until the switching procedures require a change. The switching rules should be applied to each class of nonconformities independently. Table 11 provides the switching rules.

If the cumulative number of lots not accepted in a sequence of consecutive lots on original tightened inspection reaches five, this acceptance sampling procedure shall not be resumed until action has been taken

by the supplier to improve the quality of the submitted product. Tightened inspection shall then be used as if the switching from normal to tightened inspection procedure had been invoked.

12.1.4 Determination of acceptability

The number of sample images inspected shall be equal to the sample size given by the plan. Table 12, Inspection types and determinations, provides information about percent nonconforming inspection and nonconformities per 100 images inspected.

Switching Procedure	Rules
From normal to tightened	When normal inspection is being carried out, tightened inspection shall be put into operation when 2 out of 5, or fewer, consecutive lots have been rejected on original inspection (that is, ignoring resubmitted lots).
From tightened to normal	When tightened inspection is being carried out, normal inspection shall be reverted to when 5 consecutive lots have been considered acceptable on original inspection.
From normal to reduced	Reduced inspection is an optional procedure which should be approved by all parties prior to its use. If approved, when normal inspection is being carried out, reduced inspection may be put into operation provided that all of the following conditions are satisfied:
	— when the acceptance number is 0 or 1, the preceding 15 lots have been submitted to normal inspection and all have been accepted on original inspection, or
	when the acceptance number is 2 or more, the preceding 10 lots have been submitted to normal inspection and all would have been accepted on original inspection if the AQL were one step tighter.
From reduced to normal	When reduced inspection is being carried out, normal inspection shall be reverted to if a lot on original inspection is not accepted.

Table 11 --- Switching rules

Inspection Type	Sample Result	Determination
Percent nonconforming inspection	Number of nonconforming images found is equal to or less than the acceptance number	The lot is considered acceptable.
	Number of nonconforming images is equal to or greater than the rejection number	The lot shall be considered not acceptable.
Nonconformities per 100 images inspection	Number of nonconformities found is equal to or less than the acceptance number	The lot is considered acceptable.
	Number of nonconformities is equal to or greater than the rejection number	The lot is considered not acceptable.

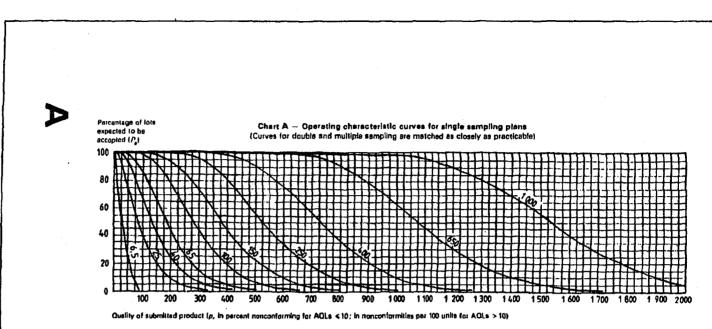
Table 12 — Inspection types and determinations

23 Association for Information and Image Management International ANSI/AIIM TR34-1996 Sampling Procedures for Inspection by Attributes of Images in EIM and Micrographic Systems

12.1.5 Operating Characteristic (OC) curves

The operating characteristic curves for normal and tightened inspection, shown in tables 13 through 29 indicate the percentage of lots that may be expected to be accepted under the various sampling plans for a given percent nonconforming. (The tables are organized by sample size code letter.) The OC curves for AQLs greater than 10 are based on the Poisson distribution and are applicable for nonconformities per 100 images inspection

The OC curves for AQLs of 10 or less are based on the binomial distribution for percent nonconforming inspection and on the Poisson distribution for number of nonconformities per 100 images inspection



2

Sold to:PUBLIC.RESOURCE.ORG, W1277258 2012/4/18 22:4:16 GMT Table

13

Tables for sample size code letter A (individual plans)

NOTE - Values on curves are Acceptable Quality Levels (AQLs) for normal inspection.

Tabulated values for operating characteristic curves for single sampling plans

					Accepte	ble qualit	y levels (n	ormal insp	ection						
PA L	6,5	6,5	25	40	65	100	150	\bowtie	250	\triangleright	400	\bowtie	650	\sim	1 000
	p lin percent nonconforming)	· ·					p (in n	oncontorn	ulties per 10	0 units)					
99,0	0,501	0,503	7,43	21,8	41,2	89.3	145	176	239	305	374	517	629	859	977
95,0	2,53	2,56	17,8	40,9	. 68,3	131	199	235	308	384	462	622	745	995	1 122
90,0	5,13	5,27	26,6	65,1	87,2	158	233	272	351	432	515	684	812	1 073	1 206
75,0	13,4	14,4	48,1	86,4	127	211	298	342	431	521	612	795	934	1 214	1 354
50,0	29,3	34,7	83,9	134	164	284	383	433	633	633	733	933	1 083	1 383	1 533
25.0	50,0	69,3	135	196	255	371	484	640	651	761	870	1 087	1 248	1 568	1 728
10,0	66,4	115	194	266	334	464	589	650	770	869	1 006	1 238	1 409	1 748	1 916
5.0	77,8	150	237	315	388	526	657	722	848	972	1 094	1 335	1 512	1 862	2 035
1,0	90,0	230	332	420	502	658	800	870	1 007	1 141	1 272	1 529	1 718	2 088	2 270
		\sim	40	65	100	160	\geq	260	\succ	400	\succ	650	\geq	1 000	\bowtie
	********************************			6	ccepteble	quality i	evels (tigh	tened Ine	paction)						

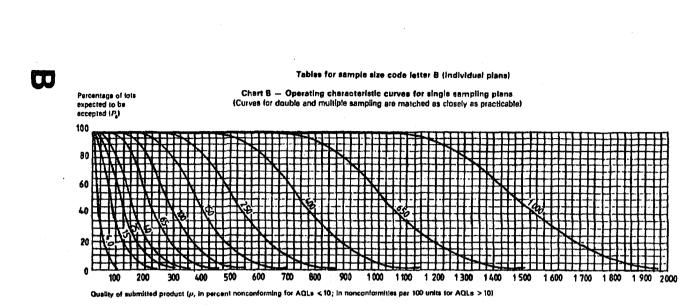
NOTE - Binomial distribution used for percent nonconforming computations; Poisson for nonconformities per 100 units.

vopying it minimized in the second se Association for Information and Image Management International

Table

14

Tables

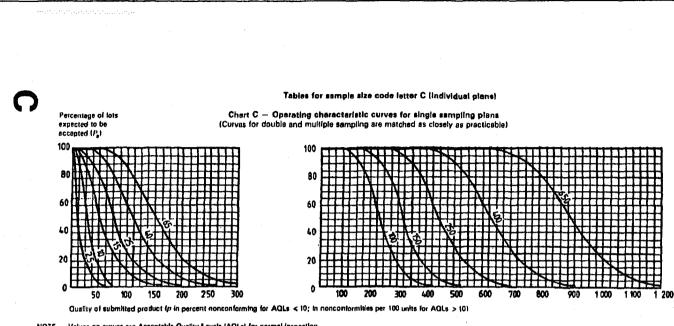

for sample size

code

letter B

(individual plans)

26


NOTE - Values on curves are Acceptable Quality Levels (AQLs) for normal inspection.

Tebulated values for operating characteristic curves for single sampling plans

ANSUAIIM TR34-1996 Sampling Procedures for Inspection by Attributes of Images in EIM and Micrographic Systems

<u> </u>	1	Acceptable quality levels (normal inspection)															
P,	4,0	4,0	15	25	40	65	100	\geq	150	\succ	250	\geq	400	\geq	650	\geq	1 000
	μ (in percent nonconforming)		p (in nonconformities per 100 units)														
99,0	0,334	0,335	4,95	14.6	27,4	59,6	96,9	117	159	203	249	345	419	572	651	947	1 029
96,0	1,70	1,71	11,8	27,3	45,5	67,1	133	157	206	266	308	415	496	683	748	1 065	1 152
90,0	3,45	3,51	17,7	36,7	58,2	105	165	181	234	288	343	456	541	718	804	1 131	1 222
78,0	9,14	9,59	32,0	67,6	84,5	141	199	228	287	347	408	530	623	609	903	1 249	1 344
50,0	20,8	23,1	55,9	89.1	122	189	258	289	358	422	489	622	· 722	922	1 022	1 389	1 489
25,0	37,0	48,2	89,8	131	170	247	323	360	434	507	680	724	832	1 045	1 152	1 539	1 644
10,0	53,6	78,9	130	177	223	309	392	433	614	593	671	825	939	1 165	1 277	1 683	1 793
5,0	63,2	99,9	158	210	258	350	438	481	565	648	730	890	1 008	1 241	1 358	1 773	1 896
1,0	78,6	154	221	280	335	437	533	580	671	761	848	1 019	1 145	1 392	1 513	1 951	2 069
	6,5	6,5	25	40	65	100	\succ	150	\bowtie	250	\bowtie	400	\geq	650	\succ	1 000	\bowtie
						A	ccsptable	quality lev	als (tighte	ned inspe	etion)						

NOTE - Binomial distribution used for percent nonconforming computations; Poisson for nonconformities per 100 units.

NOTE -- Values on curves are Acceptable Quality Levels (AQLs) for normal inspection.

Tabulated values for operating characteristic curves for single sampling plans

<i>P</i> .		Acceptable quality levels (normal importion)																
	2,5	10	2,5	10	15	25	40	65	\sim	100	\bowtie	150	\sim	250	\sim	400	\sim	650
	p (in parcent nonconforming)			p lin nonconformilies per 100 units)														
99,0	0,201	3,27	0,201	2,97	8,72	16,5	37,5	58,1	70,1	95,4	122	150	207	251	343	391	568	616
95,0	1,02	7,64	1,03	7,11	16,4	27,3	52,3	79,6	93,9	123	154	185	249	298	398	449	639	69
90,0	2,09	11,2	2,11	10,6	22,0	34,9	63,0	93,1	109	140	173	206	273	325	429	482	679	733
75,0	6,69	19,4	5,76	19.2	34,5	50,7	84,4	119	137	172	208	245	318	374	485	542	749	806
50,0	12,9	31.4	13,9	33.6	63.6	73,4	113	153	173	213	253	293	373	433	653	613	833	893
25,0	24,2	45,4	27,7	53,9	78,4	102	148	194	218	260	304	348	435	499	627	691	923	586
10,0	36.9	58,4	46,1	77.8	106	134	185	235	260	308	356	403	495	564	699	766	1 010	1 076
6,0	45,1	65.7	59,9	94,9	126	155	210	263	289	339	389	438	534	605	745	814	1 064	1 131
1,0	60,2	77,8	92,1	133	168	201	262	320	348	403	456	509	612	687	835	908	1 171	1 241
	4,0	\geq	4,0	16	25	40	65	\geq	100	\geq	150	\sim	250	\bowtie	400	\sim	650	\ge
		<u> </u>					Acce	pteble qu	ality lave	is (tighter	ned inspe	ation)				·	•	······································

NOTE - Bloomiel distribution used for percent nonconforming computations; Poisson for nonconformities per 100 units.

Copyright AIIM International Provided by IHS under license with No reproduction or networking perm n AIIM mitted ut license SHIC

Association for Information and Image Management International

27

Copyright AIIM International Provided by IHS under license with AIIM No reproduction or networking permittad without ficense from IHS

Table

6

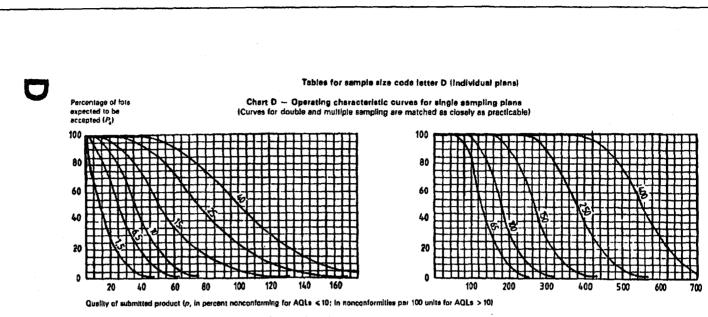
Tables

for

-sample

size

code

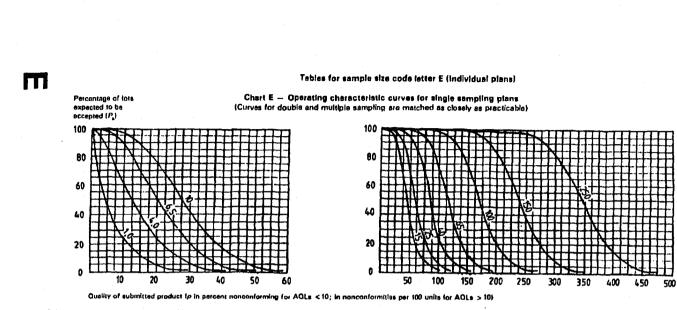

letter

Ð

(individual plans)

Association for Information and Image Management International

Scid to:PUBLIC.RESOURCE.ORG, W1277258 2012/4/18 22:4:16 GMT

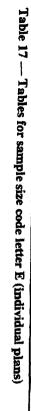


NOTE - Values on curves are Acceptable Quality Levels (AQLs) for normal inspection.

Tabulated values for operating characteristic curves for single sampling plans

	1							Accepte	ble qualit	y levels (norm ei in	spection)				···			
L.	1,6	8,5	10	1,5	8,5	10	15	26	40	\bowtie	65	\bowtie	100	\bowtie	150	\sim	250	\sim	400
		(in percer neontorm)							p (in noncon	formities p	ier 100 uni	ts)						
99,0	0,126	1,97	6,08	0,126	1,86	5,45	10,3	22,3	36,3	43.8	5 9,6	76,2	93,5	129	157	215	244	355	388
95,0	0,639	4,64	11,1	0,641	4,44	10,2	17,1	32,7	49,8	58,7	77,1	96,1	118	158	186	249	281	399	432
90.0	1,31	6,86	14,7	1,32	6,65	13,8	21,8	39,4	68,2	67,9	87,8	108	129	171	203	268	301	424	458
75,0	3,63	12,1	22,1	3,60	12,0	21,6	31,7	62,7	74,5	85,6	108	130	153	199	234	303	339	468	504
50,0	8,30	20,1	32,1	8,68	21,0	33,4	45,9	70,9	95,9	108	133	158	183	233	271	346	383	521	658
25,0	15,9	30,3	43.3	17,3	33,7	49,0	63,9	92,8	121	135	163	190	217	272	312	392	432	577	617
10,0	25,0	40,8	53,8	28,8	48,6	66,6	83,5	116	147	162	193	222	252	309	352	437	479	631	672
5,0	31,2	47,1	60,0	37,4	59,3	78,7	96,9	131	164	180	212	243	274	334	378	465	509	665	707
1,0	43,8	59,0	70,7	57,6	83,0	105	126	164	200	218	252	285	318	382	429	522	668	732	776
L	2,5	10	\bowtie	2,5	10	15	28	40	\bowtie	65	\geq	100	\bowtie	150	\geq	250	\geq	400	\bowtie
								Acceptab	le quality	levels [1]	ghtened l	nspection	nj						

NOTE - Binomial distribution used for percent nonconforming computations; Poisson for nonconformities per 100 units.



NOTE - Values on curves are Acceptable Quality Levels (AQLs) for normal inspection,

Tebulated values for operating characteristic curves for single sampling plans

···-	T							Acce	ptable q	uality lav	els (norm	nal inspe	ction)							
Р.	1,0	4,0	6,5	10	1.0	4,0	6,5	10	15	25	\bowtie	40	\bowtie	65	\bowtie	100	\sim	150	\triangleright	250
•			percant forming1			_					p lin no	inconform	itles per l	100 units)					••••	•
99,0	0,077	1,18	3,68	6,95	0,077	1,15	3,35	6,33	13,7	22,4	27,0	36,7	46,9	67,5	79,6	96,7	132	150	219	238
95,0	0,394	2,81	8,60	11,3	0,395	2,73	6,29	10,5	20,1	30,6	38,1	47,5	59,2	71,1	95,7	115	153	173	246	266
90,0	0,807	4,17	8,80	14,2	0,810	4,09	8,48	13,4	24,2	35,8	41,8	64,0	66,5	79,2	105	125	165	185	261	282
75,0	2,19	7,41	13,4	19,9	2,21	7,39	13,3	19,5	32.5	45,8	52,6	66.3	80,2	B4,1	122	144	187	208	288	310
50.0	5,19	12.6	20.0	27,5	5,33	12,9	20,6	28,2	43,6	59,0	66,7	82,1	87,4	113	144	167	213	236	321	344
25,0	10,1	19.4	28,0	36,1	10.7	20,7	30,2	39,3	57,1	74,5	83, 1	100	117	134	167	192	241	268	355	379
10.0	16,2	26,8	38,0	44,4	17,7	29,9	40,9	51,4	71,3	90,5	100	119	137	155	190	217	269	295	388	414
5,0	20,8	31,6	41,0	49,5	23,0	38,5	48,4	59,6	80,9	101	111	130	150	168	205	233	286	313	409	438
1,0	29,8	41,3	50,6	58,8	35,4	61,1	64,7	77,3	101	123	134	155	176	196	235	264	321	349	450	477
	1,5	8,5	10	Х	1,5	6,5	10	15	25	\geq	40	\bowtie	65	\geq	100	\geq	150	\sim	250	1 S ?
	['							Accep	table qui	ility love	s (tights	med Insp	ection	×		~			·	<u> </u>

NOTE - Bluomist distribution used for percent nonconforming computations; Polsson for nonconformities per 100 units.

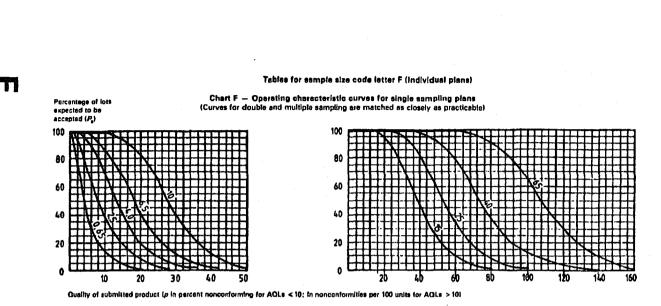
Association for Information and Image Management International

29

Copyright AllM Inte Provided by IHS un No reproduction or

AIIN

H


yright AIIM International vided by IHS under license with AIIM reproduction or networking permitted without license from

HIG

Association for Information and Image Management International

Sold to:PUBLIC.RESOURCE.ORG, W1277258 2C12/4/18 22:4:16 GMT ဗ

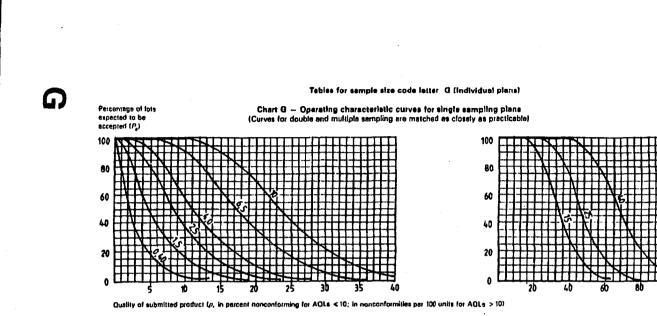
Table 18 — Tables for sample size code letter F (individual plans)

NOTE - Values on curves are Acceptable Quality Levels (AQLs) for normal inspection.

Tabulated values for operating characteristic curves for single sampling plans

	T						Accept	ible qualit	y lovels (n	ormal Ins	pectioni						
r,	0,68	2,6	4,0	6,5	10	0,65	2,5	4,0	6,5	10	15	\geq	25	\succ	40	\geq	65
•			o (In percer Inconformi							p lin n	oncontormi	ties per 10) units)				
99,0	0,050 2	0,759	2,27	4,38	9,75	0,050 3	0,743	2,18	4,12	8,93	14,5	17,5	23,9	30,5	37,4	51,7	62,9
95,0	0,256	1,81	4,22	7,14	14,0	0,258	1,78	4,09	6,83	13, 1	19,9	23,5	30,8	38,4	46,2	62,2	74,5
90,0	0,525	2,69	5,64	9,03	16,6	0,627	2,66	6,61	8,72	15,8	23,3	27,2	35,1	43,2	61,5	68,4	81,2
76,0	1,43	4.81	8,70	12,8	21,6	1,44	4,81	8,64	12,7	21,1	29,8	34,2	43,1	62,1	61,2	79,5	93,4
50,0	3,41	8,25	13,1	18, 1	27,9	3,47	8,39	13,4	18,4	28,4	30,3	43.3	63,3	63,3	73,3	93,3	108
25,0	8,70	12.9	18,7	24,2	34,8	6,93	13,6	19,6	25,5	37,1	48,4	54,0	65,1	76,1	87,0	109	125
10,0	10,9	10,1	24,5	30,4	41,5	11,5	19,4	26,6	33,4	48,4	58,9	65.0	77,0	88,9	101	124	141
5,0	13,9	21,8	28,3	34,4	45,6	15,0	23,7	31,5	38,8	52,6	65,7	72,2	84,8	97,2	109	133	151
1,0	20,0	28,9	35,8	42,1	53,2	23,0	33,2	42,0	50,2	85,6	80.0	87.0	101	114	127	153	172
	1,0	4,0	6,5	10	$>\!$	1,0	4,0	6,5	10	15	\succ	25	\bowtie	40	\geq	65	\sim
	[]		<u> </u>				Accepted	bie quality	levels (tig	htened in	spection		******		*		

NOTE - Binomial distribution used for percent nonconforming computations; Polsson for nonconformities per 100 units.



Table

19

Tables for sample size code letter G (individual plans)

<u>9</u>

NOTE -- Values on curves are Acceptable Quality Levels (AQLs) for normal Inspection.

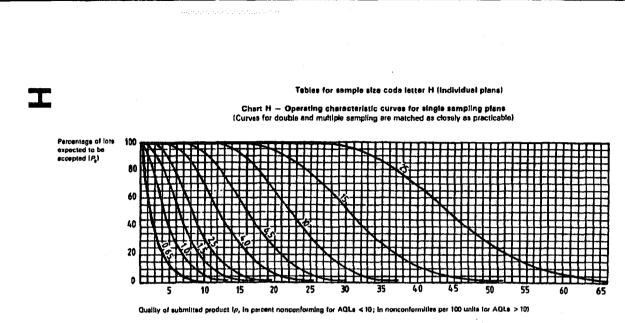
Tabulated values for operating characteristic curves for single sampling plans

							Act	epteble (quality ie	vels (nom	nal Inspec	tion)						
P.	0.40	1,6	2,5	4,0	0.5	10	0,40	1,5	2,5	4.0	6.5	10	\succ	15	\triangleright	25	\triangleright	40
••				forming)							p (in n	onconforn	nities per 1	00 units)				····
99,0	0,031 4	0,471	1,40	2,67	6,08	9,73	0,031 4	0,484	1,36	2,87	5,58	9,08	11,0	14,9	19,1	23,4	32,3	39,3
85,0	0,160	1,12	2,60	4,38	8,50	13,1	0,160	1,11	2,56	4,27	8,17	12,4	14,7	19.3	24,0	28,9	39,9	46,5
90,0	0.329	1,67	3,49	5,56	10,2	15,1	0,329	1,68	3,44	6.45	9,85	14,5	17,0	21,9	27,0	32,2	42,7	50,8
75,0	0,895	3,01	5,42	7,98	13,4	19,0	0,899	3,00	5,40	7,92	13.2	18,6	21,4	26,9	32,6	38,2	49,7	58,4
50.0	2,14	6,19	8,27	11,4	17,6	23,7	2,17	6,24	8.36	11,5	17,7	24,0	27,1	33,3	39.6	45,8	68,3	67,7
25,0	4,24	8,19	11,9	15,4	22,3	29,0	4,33	8,41	12,3	16,0	23,2	30,3	33,8	40,7	47,6	54,4	67,9	78,0
10,0	6,94	11.6	15,8	19,7	27,1	34,0	7,20	12,2	18,8	20,9	29,0	36,8	40,8	48,1	55,8	62,9	77,4	89,1
5,0	8,94	14,0	18,4	22,5	30,1	37,2	9,38	14,8	19,7	24,2	32,9	41,1	45,1	53,0	60,B	68,4	83,4	B4,5
1,0	13,4	19,0	23,8	28,1	38,0	43,2	14,4	20,7	28,3	31,4	41,0	50,0	64,4	63,0	71,3	79,6	95,6	107
	0,65	2.6	4,0	6,5	10	\geq	0,65	2,5	4.0	6,5	10	\sim	15	\bowtie	25	\geq	40	\bowtie
						×>	Accep	stable qui	ility level	a (tighter	ed Inspe	tion)				e	•	-

NOTE - Binomial distribution used for percent nonconforming computations; Polisson for nonconformities per 100 units.

32 Association for Information and Image Management International

Sold to:PUBLIC.RESOURCE.ORG, W1277258 2012/4/18 22:4:16 GMT


풍

Table

22

Tables for sample size code letter

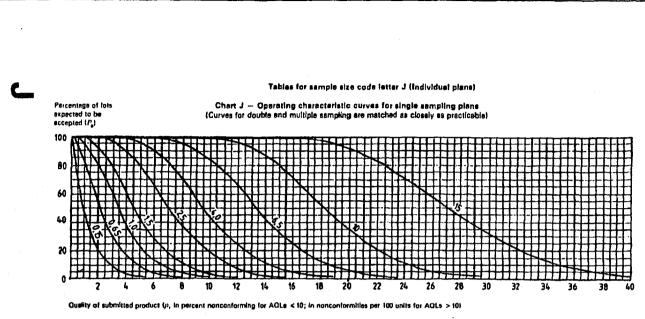
H (individual plans)

NOTE - Values on curves are Acceptable Quality Levels (AQLs) for normal inspection.

Tabulated values for operating characteristic curves for single sampling plans

		_						Acce	ptable qu	ality lave	els (norm	al Inspe	ction1							
Р.	0,25	1.0	1,6	2,5	4,0	6,5	\bowtie	10	0,25	1,0	1,6	2,5	4,0	6,6	\succ	to	\bowtie	15	\geq	25
			p (in	percent r	enconfor	ming)							p (in no	nconform	itles per 1	00 units)				
99,0	0,020 1	0,300	0,666	1,68	3,69	6,07	7,36	10,1	0,020 1	0,297	0,872	1,65	3,67	6,81	7,01	9,54	12,2	15,0	20,7	25,1
95,0	0,103	0,715	1,66	2,78	5,38	8,22	9,72	12,9	0,103	0,711	1,64	2,73	5,23	7,96	9,39	12,3	15,4	18,5	24,9	29,8
90,0	0,210	1,07	2,22	3,63	6,43	9,64	11,2	14,5	0,211	1,06	2,20	3,49	6,30	9,31	10,9	14,0	17,3	20,6	27.3	32,5
75.0	0,874	1,92	3,48	5,10	8,51	12,0	13,8	17,6	0,676	1,92	3,45	5,07	8,44	11,9	13,7	17,2	20,8	24,8	31,8	37,4
60,0	1,38	3.33	6,31	7,29	11,3	15,2	17,2	21,2	1,39	3,36	8,35	7,34	11,3	15,3	17,3	21,3	25.3	29,3	37,3	43,3
25,0	2,73	5,29	7,69	10,0	14,5	19,6	21,0	26,2	2,77	5,39	7,84	10,2	14,8	19,4	21.6	28,0	30.4	34,8	43,5	49,8
10,0	4,50	7,58	10,3	12,9	17,8	22,4	24,7	29,1	4,81	7,78	10,6	13,4	18,5	23,5	26,0	30.8	35,0	40,3	49,5	56,4
5,0	6,82	9,14	12,1	14,8	19,9	24,7	27,0	31,6	6,99	9,49	12,8	15,6	21,0	26,3	28,9	33,9	38,9	43,8	53,4	60,8
1,0	8,00	12.6	15,8	18,7	24,2	29,2	31,7	36,3	9,21	13,3	16,8	20,1	26.2	32,0	34,8	40,3	46,6	50,9	61,2	68,7
	0,40	1,5	2,5	4,0	6,5	\bowtie	10	\geq	0,40	1,5	2,5	4,0	8,5	\sim	10	\geq	15	\geq	25	\bowtie
			·					Accep	table qua	lity lave	is (tighte	ned insp	sction)		.			×		

NOTE - Binomial distribution used for percent nonconforming computations; Poisson for nonconformities per 100 units.


Table

21

Tables for sample size

code letter

J (individual plans)

NOTE -- Values on curves sie Acceptable Quality Levels (AQLs) for normal inspection.

Tabulated values for operating characteristic curves for single sampling plans

									Accep	table qu	ality lev	els (nor	mai insp	ectioni								
<i>r</i> .	0,015	0.65	1,0	1,6	2,8	4,0	\bowtie	8,5	\bowtie	10	0,15	0,65	1,0	1,5	2,5	4,0	$\triangleright\!$	8,5	$\triangleright <$	10		15
				p (in	percent r	onconfo	rming)				l				p lin nor	conterm	ities per	100 units	1			
99,0	0,012 6	0,187	0,65	1,04	2.28	3,73	4,61	0,17	7,93	9,76	0,012 6	0,188	0,545	1,03	2,23	3,63	4,38	5,96	7,62	9,35	12.9	15,7
95,0	0,064 1	0,448	1,03	1,73	3,32	5,07	6,00	7,91	9,89	11,9	0,064 1	0,444	1,02	1,71	3,27	4,98	5,87	7,71	9,61	11,6	15.8	18.0
90,0	0,132	0,667	1,39	2,20	3,99	5,91	6,90	8,95	11,0	13,2	0,132	0,685	1,38	2,18	3,94	6,62	6,79	8,78	10.8	12.9	17,1	20,3
75,0	0,359	1,20	2, 16	3,18	6.30	7,50	8,61	10,9	13,2	16,8	0,360	1,20	2,16	3, 17	5.27	7,45	8,65	10,8	13,0	15,3	19,9	23,4
50,0	0,863	2.09	3,33	4,57	7,08	9,65	10,8	13,3	15,8	18,3	0,968	2,10	3,34	4,69	7,09	9,59	10,8	13,3	15,8	18,3	23.3	27,1
25,0	1,72	3,33	4,84	6,30	9,14	11,9	13,3	16,0	18,6	21,3	1,73	3,37	4,90	6,39	9,28	12.1	13,5	18,3	19,0	21.7	27.2	31,2
10,0	2,84	4,78	6,52	8,16	11,3	14,3	15,7	18,6	21,4	24,2	2,98	4,88	6,65	8,35	11,6	14,7	18,2	19,3	22,2	25,2	30.9	35,2
5,0	3,68	5,79	7,68	9,41	12.7	15,8	17,3	20,3	23,2	26,0	3,74	6,93	7,87	9,69	13,1	18,4	18,0	21,2	24,3	27,4	33,4	37,8
1,0	5,59	8,01	10,1	12,0	15.6	18,9	20,5	23.6	26,6	29,5	6,76	8,30	10,5	12,6	18,4	20,0	21,8	25,2	28,5	31,B	38,2	42,9
	0,25	1,0	1,5	2,6	4,0	\times	6,5	\times	10	\ge	0,25	1.0	1,5	2,5	4,0	\succ	6,5	\ge	10	\times	15	>
									Accepts	ble que	lity level	s (tighte	ned Ins;	section)								F

NOTE - Binomial distribution used for percent nonconforming computations; Poisson for nonconformities per 100 units.

33

Association for Information and Image Management International Sold to PUBLIC, RESOURCE, ORG, W1277258 2012/4/18 22:4:16 GMT

Copyright AIIM International Provided by IHS under license with No reproduction or networking pern

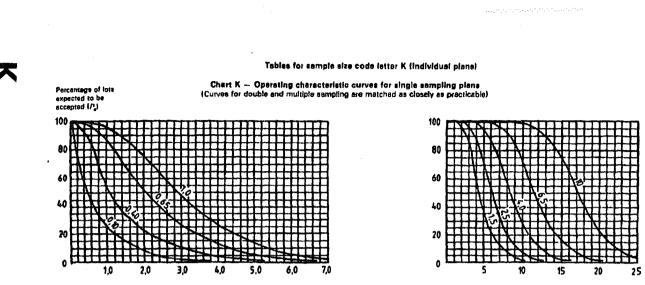
AIIM

Ī

ight AlIM International fed by IHS under license with AlIM production or networking permitted without license from IHS

> 34 Association for Information and Image Management International

Sold to:PUBLIC.RESOURCE.ORG, 2012/4/18 22:4:16 GMT


W1277258

.

Table

ដ

Tables for sample size code letter K (individual plans)

Quality of submitted product in percent nonconforming or in nonconformities per 100 units

NOTE - Values on curves are Acceptable Quality Levels (AQLs) for normal inspection.

Tabulated values for operating characteristic curves for single sampling plane

	Ī				Accepte	ble quality lov	els (normal l	nspection)				
Ρ.	0,10	0,40	0,65	1,0	1,5	2,6	\geq	4,0	\sim	6,5	$>\!\!\!\!>\!\!\!\!>\!\!\!\!>$	10
·•				p	in percent n	anconforming o	nonconformi	ities per 100 uni	ts)	•	······································	
99,0	0,008 04	0,119	0,349	0,659	1,43	2,32	2,81	3,82	4,88	6,98	8,28	10,1
95,0	0,041 0	0,284	0,654	1,09	2,09	3,18	3,76	4,94	6, 15	7,40	9,95	11,9
90,0	0,084 3	0,425	0,882	1,40	2,52	3,72	4,35	5,62	6,92	8,24	10,9	13,0
76,0	0,230	0,789	1,38	2,03	3,38	4,78	5,47	6,90	8,34	9,79	12,7	14,9
50,0	0,665	1,34	2,14	2,94	4,64	8, 14	6,94	8,53	10,1	11,7	14,9	17,3
25,0	1,11	2,15	3,14	4.09	5,94	7,76	8,64	10,4	12,2	13,9	17,4	20,0
10,0	1,84	3,11	4,26	6,34	7,42	9,42	10,4	12,3	14,2	16,1	19,8	22,5
5,0	2,40	3,80	5.04	6,20	8,41	10,5	11,5	13,8	15,6	17,5	21,4	24,2
1,0	3,68	6,31	6,72	8,04	10,5	12,8	13,9	16,1	18,3	20,4	24,5	27,5
	0,16	0,65	1,0	1,6	2,5	\geq	4,0 .	\geq	6,5	$>\!$	10	$>\!$
					Acceptet	le quality leve	is (tightened	Inspection)		· · · · · · · · · · · · · · · · · · ·		

NOTE - All the values given in the table above are based on Poisson distribution as an approximation to the binomial distribution.

pyright AIIM International wided by IHS under license with AIIM reproduction or networking permitted without license fro

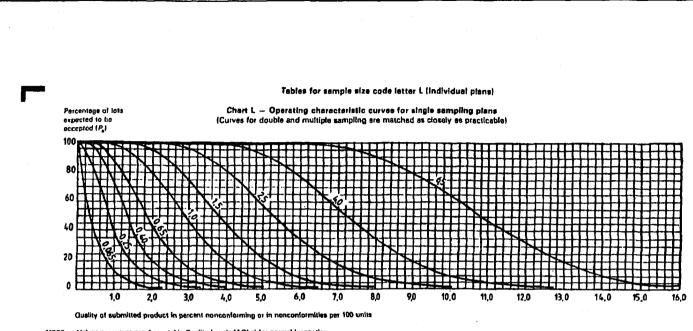

Ē

Table 23

Tables for sample size code letter L (individual plans)

Association for Information and Image Management International

35

NOTE - Values on cuives are Acceptable Quality Lavels (AQLs) for normal inspection.

Tabulated values for operating characteristic curves for single sampling plans

					Accepte	ble quality lev	els (normal	inspection)				
Р.	0,085	0,25	0,40	0,65	1,0	1,8	> <	2,5	\geq	4,0	\sim	6.5
' b		••		P	in percent no	onconforming or	nonconform	ities per 100 unit:	el			
99,0	0,005 03	0,074 3	0,218	0,412	0,893	1,45	1,75	2,39	3,05	3,74	5,17	6,29
95,0	0,025 6	0, 178	0,409	0,683	1,31	1,99	2,35	3,08	3,64	4,62	8,22	7,45
90,0	0,052 7	0,256	0,551	0,872	1,58	2,33	2,72	3,51	4,32	5,15	6,84	8,12
75.0	0,144	0,481	0,864	1,27	2,11	2,98	3,42	4,31	5,21	6,12	7,95	9,34
50,0	0,347	0,839	1,34	1,84	2,84	3,63	4,33	5,33	6,33	7,33	9,33	10,8
25,0	0,693	1,35	1,96	2,55	3,71	4,84	5,40	8,51	7,61	8,70	10,9	12.5
10.0	1,15	1,94	2,68	3,34	4,64	5.89	6,50	7,70	8,89	10,1	12,4	14,1
5,0	1,60	2,37	3,15	3,58	5,26	6.57	7,22	8,48	9,72	10,9	13,3	15,1
1,0	2,30	3,32	4,20	6.02	8,55	8.00	8,70	10,1	11,4	12,7	15,3	17,2
	0,10	0,40	0.65	1,0	1,5	$\geq <$	2,5	$\geq <$	4,0	> <	6,5	\sim
					Acceptab	le quality level	s (tightened	Inspection)			••••••	

NOTE - All the values given in the table above are based on Poisson distribution as an approximation to the binomial distribution.

Copyright AIIM International Provided by IHS under license with AIIM No reproduction or networking permitted without license from IHS

> 36 Association for Information and Image Management International

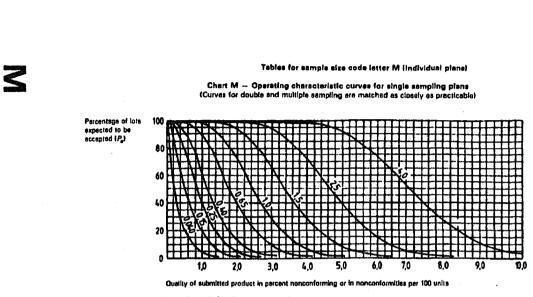

Sold to:PUBLIC.RESOURCE.ORG, W1277256 2012/4/18 22:4:16 GMT

Table 24

1

Tables for sample size code letter

M (individual plans)

NOTE - Values on curvas are Acceptable Quality Levels (AQLs) for normal inspection.

Tabulated values for operating characteristic curves for single sampling plans

					Accepta	ble quality leve	ls (norma) al	inspection)				
Ρ.	0,040	0,15	0,25	0,40	0,65	1.0	$>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	1,5	$>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	2,5	> <	4.0
·•				p	lin percent r	nonconforming o	r nonconform	nities per 100 uni	hs)			.
99,0	0,003 19	0,047 2	0, 138	0,261	0,587	0,923	1,11	1,61	1,94	2,37	3,28	3,99
95,0	0,016 3	0,113	0,260	0,434	0,830	1,28	1,49	1,96	2,44	2,94	3,95	4,73
90,0	0,033 5	0,189	0,350	0,554	1,00	1,48	1,72	2,23	2,74	3,27	4,34	5,18
75,0	0,091 3	0,305	0,548	0,805	1,34	1,89	2,17	2.74	3,31	3,89	5,05	6.93
50,0	0,220	0,533	0,649	1,17	1,80	2,43	2,75	3,39	4,02	4,68	5,93	6,89
25.0	0,440	0,855	1,24	1,62	2,36	3,07	3.43	4,13	4,83	5,52	6,90	7.92
10,0	0,731	1,23	1,69	2,12	2,94	3,74	4,13	4,89	5.64	6,39	7,86	8,95
5,0	0,951	1,51	2,00	2,48	3,34	4,17	4,58	6,38	8,17	6,95	8,47	9,60
1,0	1,46	2,11	2,87	3,19	4,18	8,06	6,52	6,40	7,24	8,08	9,71	10,9
	0,055	0,25	0,40	0,65	1,0	\geq	1,5	\geq	2,5	\sim	4,0	\sim
					Acceptab	te quality level	(tightened	Inspection				

NOTE - All the values given in the table above are based on Polsson distribution as an approximation to the binomial distribution.

working perm n AIIM mitted

ЯH

Table

3

Tables for sample size code letter N (individual plans)

N T reprodu g

Association for Information and Image Management Sold to:PUBLIC.RESOURCE.ORG, W1277258 2012/4/18 22:4:16 GMT Interna

37

Chart N — Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable) Percentage of Ints 100 expected to be accepted (P) 80 64 40 2 0.5 10 1.5 2.0 Quality of submitted product in parcent nonconforming or in nonconformities per 100 units NOTE - Values on curves are Acceptable Quality Levels (AQLs) for normal inspection.

					Accepte	ble quality le	vels (normal l	nspection)		_		
P,	0,025	0,10	0,15	0,26	0.40	0.65	$\triangleright <$	1.0	\geq	15	$\triangleright <$	2.5
•				p.	(in percent no	nconforming a	r nenconformi	lies per 100 uni	isi			
99,0	0,002 01	0,029 7	0,087 2	0,165	0,357	0,581	0,701	0.954	1,22	1.50	2,07	2.5
95.0	0,010 3	0,071 1	0,184	0,273	0.523	0,796	0,939	1.23	1,54	1,85	2,49	2,9
90,0	0,021 1	0,106	0,220	0,349	0.630	0,931	1.09	1,40	1.73	2.06	2 73	3,2
75,0	0,057 5	0,192	0,345	0,607	0,844	1,19	1.37	1,72	2,08	2,45	3,18	3.
50.0	0,139	0,338	0,535	0,734	1,13	1,53	1.73	2,13	2.53	2.93	3,73	4.:
25,0	0,277	0.539	0,784	1,02	1,48	1.94	2,16	2.60	3,04	3,48	4,35	4.
10,0	0,481	0,778	1,05	1,34	1,85	2,35	2,60	3,08	.1,56	4,03	4,95	5.
5,0	0,599	0,949	1,28	1.65	2,10	2.63	2,89	3,39	3,89	4,38	5,34	6.
1,0	0,921	1,33	1,68	2,01	2,62	3,20	3,48	4,03	4,58	5.09	8,12	6,1
	0,040	0,15	0.25	0,40	0,65	\geq	1,0	\geq	1.5	\geq	2.5	>
					Acceptable	availty lave	ls (tightened)	inspection				

NOTE - All the values given in the table shows are based on Poisson distribution as an approximation to the binomial distribution.

Tabulated values for operating characteristic curves for single sampling plans

3.5

4.0

4,5

5,0

5.5

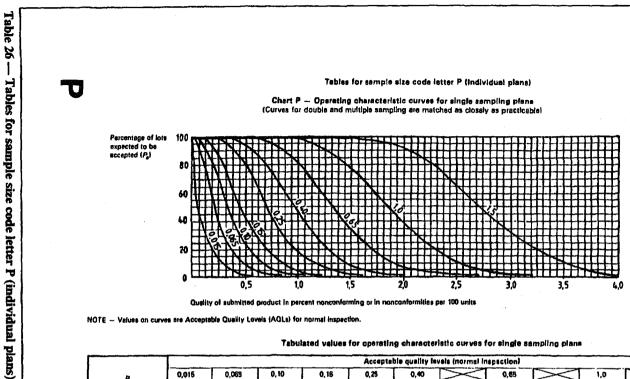
6.0

6,5

Tables for sample size code latter N (Individual plans)

2.5

3,0


Copyright AIIM International Provided by IHS under license with AIIM No reproduction or networking permitted

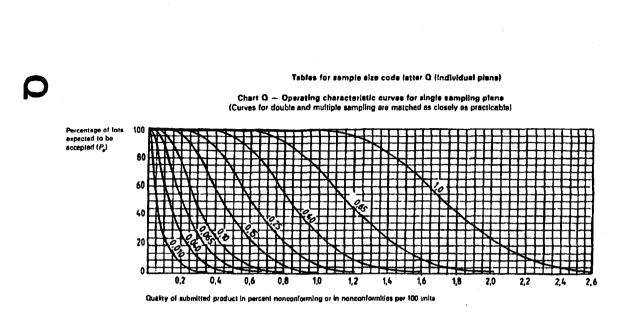
H

Association for Information and Image Management International 38

Sold to:PUBLIC.RESOURCE.ORG, 2012/4/18 22:4:16 GMT

W1277258

Tabulated values for operating characteristic curves for single sampling plans


					Accepta	ble quality lev	els (normal l	nepection)				
Ρ.	0,015	0,065	0,10	0,15	0,25	0,40	$>\!$	0,65	\geq	1,0	\geq	1,5
				p	in percent no	inconforming or	nonconformi	iles per 100 unit	a)			
99,0	0,001 28	0,018 8	0,054 5	0,103	0,223	0,353	0,438	0,596	0,762	0,935	1,29	1,67
\$5,0	0,008 41	0,044 4	0,102	0,171	0,327	0,498	0,587	0,771	0,961	1,16	1,56	1,85
90,0	0,013 2	0,068 8	0,138	0,218	0,394	0,582	0,679	0,878	1,08	1,29	1,71	2,03
75,0	0,038 0	0,120	0,216	0,517	0,627	0,745	0,855	1,08	1,30	1,63	1,99	2,34
50,0	0,088.6	0,210	0,334	0,459	0,709	0,959	1,08	1,33	1,58	1,83	2,33	2,71
25,0	0,173	0,337	0,490	0,639	0,928	1,21	1,35	1,63	1,80	2,17	2,72	3,12
10,0	0,298	0,486	0,965	0,836	1,18	1,47	1,62	1,93	2.22	2,52	3,09	3,52
5,0	0,374	0,683	0,787	0,969	1,31	1,64	1,80	2,12	2,43	2,74	3,34	3,78
1,0	0,576	0,830	1,05	1,28	1,64	2,00	2,18	2,82	2,85	3,18	3,82	4,29
	0,025	0,10	0,15	0,25	0,40	\triangleright	0,65	\geq	1,0	$>\!$	1,6	
					Accepteb	te quality level	s (tightened	Inspection			·	

NOTE - All the values given in the table shave are based on Poisson distribution as an approximation to the binomial distribution.

Tables for sample size code letter Q (individual plans)

Table

N

NOTE - Values on curves are Acceptable Quality Levels (AQLs) for normal inspection.

Tabulated values for operating characteristic curves for single sampling plans

	1				Accepte	ble quality lev	els (normal in	spaction				
Ρ,	0,010	0,040	0,065	0,10	0, 15	0,25	\geq	0.40	$\supset \sim$	0.65	\bowtie	1.0
				p	lin percent no	unconforming o	r nonconformit	ies per 100 un	ita)			
99.0	0,000 804	0,011 B	0,034 9	0,065 9	0,143	0,232	0,281	0,382	0,436	0,598	0,828	1,01
95,0	0,004 10	0,028 4	0,065 4	0,109	0,209	0,318	0,376	0,494	0,615	0,740	0,895	1,19
90,0	0,008 43	0,042 5	0,088 2	0,140	0,262	0,372	0,435	0,562	0,692	0,824	1,09	1,30
76,0	0,023 0	0,076 9	0,138	0,203	0,330	0,476	0,547	0,690	0,B34	0,979	1,27	1,49
60,0	0,055 6	0,134	0,214	0,294	0,454	0.614	0,694	0,853	1,01	1,17	1,49	1,73
25,0	0,111	0,216	0,314	0,409	0,694	0,775	0.864	1,04	1,22	1,39	1,74	2.00
10,0	0,184	0,311	0,428	0,634	0,742	0,942	1,04	1,23	1,42	1,61	1,98	2,26
5,0	0,240	0,380	0,504	0,620	0,841	1,05	1,15	1,36	1,58	1,75	2,14	2,42
1,0	0,368	0,531	0,872	0,804	1,05	1,28	1,39	1,61	1,83	2,04	2,45	2,75
	0,015	0,065	0,10	0,15	0,25	\bowtie	0,40	\geq	0,65	\bowtie	1,0	\sim
					Acceptabl	a quality level	I flightened to	apaction)		· · · · · · · · · · · · · · · · · · ·		

NOTE - All the values given in the table above are based on Poisson distribution as an approximation to the binomial distribution.

39

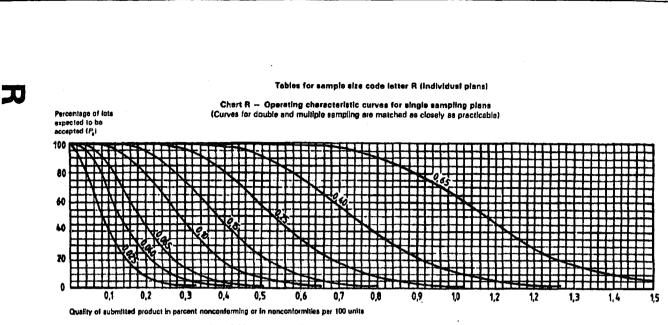
Association for Information and Image Management International

Sold to:PUBLIC.RESOURCE.ORG 2012/4/18 22:4:16 GMT

≶

Copyright AllM international Provided by IHS under ficense with AllM No reproduction or networking permitted without lice

from IHS

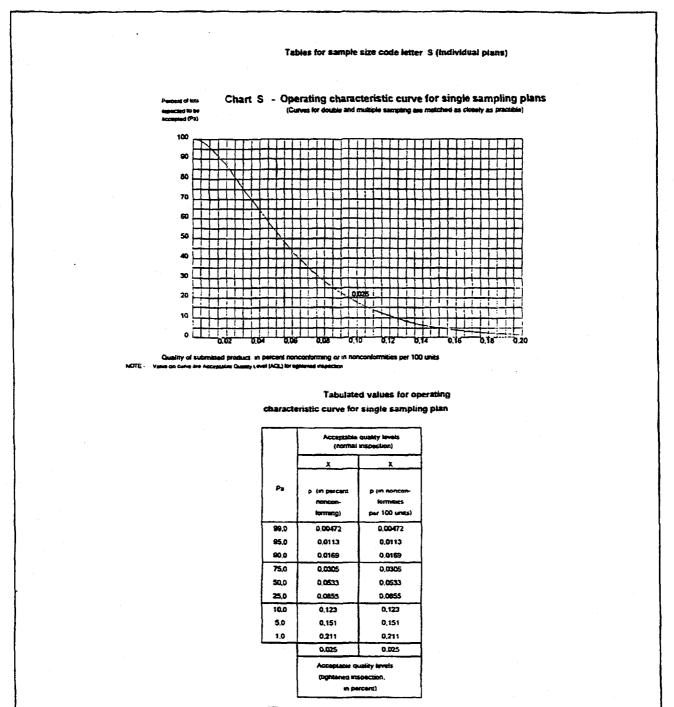

40 Association for Information and Image Management International

Scid to:PUBLIC.RESOURCE.ORG, W1277258 2012/4/18 22:4:16 GMT .

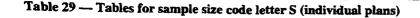
Table

28

Tables for sample size code letter R (individual plans)


NOTE - Values on curves are Acceptable Quality Levels (AQLs) for normal inspection.

Tabulated values for operating characteristic curves for single sampling plans


				A	cceptable que	ility levels (no	mat inspection				
P.	0,025	0,040	0,065	0,10	0,15	$>\!$	0,26	$>\!\!\!\!>\!\!\!\!>\!\!\!\!>\!\!\!\!>\!\!\!\!>\!\!\!\!>\!\!\!\!>\!$	0,40	$>\!\!\!\!>\!\!\!\!>$	0,65
••				p (in pe	rcent nonconfo	rming or nonco	nformities per 100) units)			
99,0	0,007 43	0,021 8	0,041 2	0,089 2	0,145	0,175	0,239	0,305	0,374	0,517	0,629
\$5.0	0,017 8	0,040 9	0,069 3	0,131	0,199	0,235	0,309	0,304	0,462	0.622	0,745
90,0	0,028 6	0,055 1	0,087 2	0,158	0,233	0,272	0,351	0,432	0,515	0,684	0,812
75,0	0,048 1	0,088 4	0,127	0,211	0,298	0,342	0,431	0,521	0,612	0,795	0,834
50,0	0,083 9	0,134	0,181	0,284	0,383	0,433	0,533	0,633	0,733	0,933	1.08
28,0	0,135	0,196	0,255	0,371	0.484	0,540	0,651	0,761	0,870	1,09	1,25
10,0	0,194	0,268	0,334	0,484	0,689	0,660	0,770	0,889	1,01	1,24	1,41
5,0	0,237	0,315	0,388	0,526	0,657	0,722	0,848	0,972	1,09	1,33	1,61
1,0	0,332	0,420	0,502	0,655	0,800	0,870	1,02	1,14	1,27	1,63	1,72
	0,040	0,065	0,10	0, 16	X	0,25	> <	0,40	> <	0,65	$>\!$
				Ac	ceptable qual	ity levels (ligh	tened inspectio	nt			

NOTE - Ail the values given in the table above are based on Polsson distribution as an approximation to the binomial distribution.

.

NOTE - Bittemist distribution used for percent renactivitying computations Poilsion for Astrophysical out 100 white

41 Association for Information and Image Management International

Copyright AllM International Provided by IHS under license with AllM No reproduction or networking permitted without license from IHS

12.2 Sequential sampling using ISO 8422

The purpose of 12.2 is to provide sequential sampling procedures that correspond to the single sampling plans discussed in 12.1. The sequential plans discussed here match, as closely as possible, the plans described in 12.1. The sampling schemes again are indexed by AQL and sample size code letter. The procedure for selecting these indexes is the same as that described in 12.1.

The sampling plans described here are for use in situations where

- --- there is a continuing series of lots, and
- inspection is by attributes for either percent nonconforming or number of nonconformities per 100 images.

The sampling plans are based on the assumption that nonconformities occur randomly and with statistical independence.

In the case of inspection of isolated lots, the procedures in 11.2, Item-by-item single sampling procedures, should be used. Those procedures require selecting the following risks:

- rejecting lots with an acceptable level
- accepting lots with an unacceptable quality level

The principles of sequential sampling by attributes were discussed in 11.2.1. The definitions and symbols used here are the same as those used in 11.2.1. Presented here are the values of the sequential sampling parameters that result in operating characteristic curves approximately the same as those of the single sampling plans described in 12.1 for the same AQL and sample size code letters.

12.2.1 Operation of the procedure

For each value, n_{con} , of the cumulative sample size that is less than the curtailment number n_i , the acceptance number, A, is found by rounding the quantity $gn_{con} - h_A$ down to the nearest integer (see the example that follows).

The rejection number, R, is found by rounding the quantity $gn_{con} + h_{R}$ up to the nearest integer (see the example that follows).

Values of h_A , h_{gr} , and g for normal inspection are given in table 30, indexed by AQL and sample size code letter. Values of the same parameters for tightened inspection are given in table 31.

Curtailment values for the normal and tightened inspection plans of tables 30 and 31 are provided in tables 32 and 33, along with the acceptance number, A_i , for the curtailment sample size.

The rejection number for the curtailment value of the cumulative sample size, R_i , is one more than the acceptance number, A_i .

An example follows.

For the sequential sampling plan with AQL = 2.5% and sample size code letter J, table 30 gives the following values for normal inspection:

- $h_{A} = 1.910$
- $-h_{e} = 1.650$
- -g = 0.0706

The corresponding single sampling plan from table 32 is 80.

The curtailment value from table 32 is 120 with an acceptance number of 8 and a rejection number of 9 (8+1), for the curtailment sample size.

The value of the acceptance number, A, is

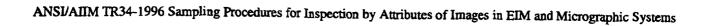
$$A = gn_{com} - h_A$$
$$A = 0.0706n_{com} - 1.910$$

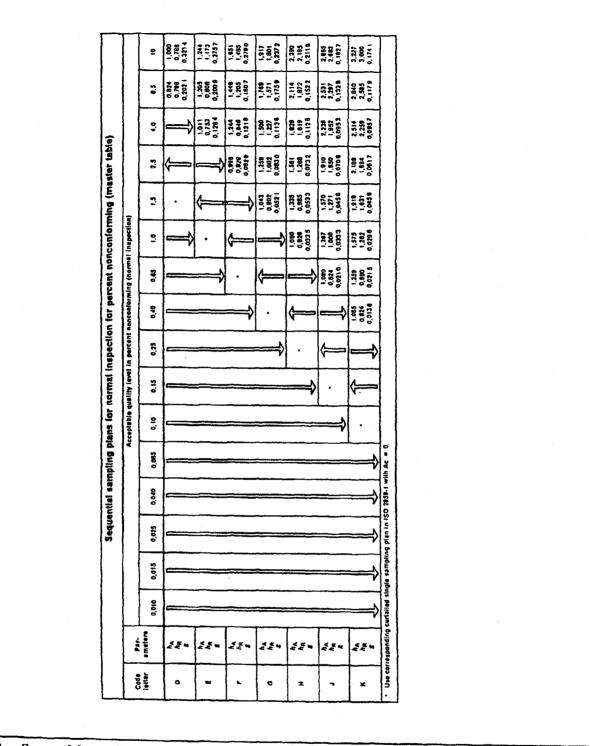
rounded down to the nearest integer (see table 34).

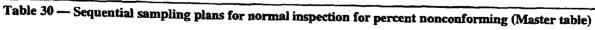
The value of the rejection number, R, is

$$R = gn_{com} + h_R$$
$$R = 0.0706n_{com} + 1.650$$

rounded up to the nearest integer (see table 34).


The rejection number cannot exceed the curtailment rejection number, R_i and the acceptance number cannot be less than zero.


The acceptance and rejection numbers corresponding to the cumulative sample sizes 1,2,..., 120 are calculated from these expressions by successively inserting the values of n_{com} in the expressions and rounding appropriately. The results are indicated in table 34.


The example also can be presented graphically, if desired. Figure 4, Example graph for sequential sampling using ISO 8422, illustrate graphically the same information that is in table 34.

To use the graph, do the following:

- A. Start inspection at the origin.
- B. For each image inspected, move one unit to the right.
- C. If an image is nonconforming, also move up one unit.
- D. Check if the lower or upper decision line is crossed.
 - If the plot crosses the lower decision line, the lot can be accepted.
 - If the plot crosses the upper line, the lot is rejected.
- E. Continue sampling one image at a time as long as the plot is between the two lines.

43 Association for Information and Image Management International

0.00334 0.00334 0.00334 0.00334 0.003335 0.00460 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00465 0.00354 0.00354 0.00354 0.00354 0.00354 0.00354 0.00354 0.00354 0.003534 0.003534 0.003534 0.003534 0.003534 0.003534 0.003534 0.003534 0.003534 0.003534 0.003534 0.003534 0.003534 0.003534 0.003534 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00554 0.00564 0.00554 0.00564000000000000000000000000000000000	0.010	0.015	0.025	0,010	Ac 0,085	o, to	uality level 0, 15	Acceptable quality level in percent nonconforming (normal inspection) 0.10 0.13 0.35 0.40 0.65 1.0	nonconform 0,40	ing (norma 0,65	inepacitor 1,0	-	2.5	0;	8. 8.	2
Image: Control of the control of t				Î	•	{		1,093 0,622 0,00848	1.372 0.887 0.0134	1,600 1,282 0,0184	1.965 1,861 0.028 5	2,271 1,958 0,0385	2.623 2.728 0.053 5	2,983 2,700 0,0737	3.500 3,739 0,1067	{
Image: Constraint of the constr			→	•	{	Ĵ	1.093 0.826 0.00534	1,277 0,981 0,008 52	1.612 1.289 0.0117	1,892 1,879 0,018 0	2,208 1,974 0.0244	2,684 2,382 2,382 0,003 8	3,106 2,802 0,048 7	3,690 3,414 0,068 9	{	
· · /</td <td></td> <td>→</td> <td>•</td> <td><u> </u></td> <td>\Rightarrow</td> <td>1.097 0,628 0,003 38</td> <td>1.380 0.695 0.00535</td> <td>818.1 787.1 0,007.37</td> <td>2,002 1,682 0,0114</td> <td>2,330 2,000 0,0153</td> <td>2.716 2.401 0.021 3</td> <td>3, 169 2,855 0,029 4</td> <td>3,796 3,489 0,043 4</td> <td>{</td> <td></td> <td></td>		→	•	<u> </u>	\Rightarrow	1.097 0,628 0,003 38	1.380 0.695 0.00535	818.1 787.1 0,007.37	2,002 1,682 0,0114	2,330 2,000 0,0153	2.716 2.401 0.021 3	3, 169 2,855 0,029 4	3,796 3,489 0,043 4	{		
1.105 1.293 1.485 2.024 2.346 2.776 3.297 3.877 0.0015 0.0015 0.0016 0.0016 0.0015 0.017 0.0173 0.102 0.0015 0.0016 0.0016 2.443 2.017 0.0173 0.102 0.1201 0.0016 0.0016 2.443 2.017 0.0173 0.102 0.1201 1.006 2.443 2.017 0.0173 0.0173 0.102 0.1301 1.006 2.004 2.004 2.004 2.001 0.0173 0.00014 0.00136 0.00316 0.00316 0.00316 0.00134 0.00136 0.00134	===>	•	{	\rightarrow	1.102 0.601 0.002 11	1.381 0,997 0,00335	1,628 1,303 0,004 60	2.017 1,695 0,007 10	2,345 2,015 0,009 59	2,748 2,425 0,013 4	3.212 2.891 0.0184	3,873 3,557 1,027 ({			
1 2581 2552 8253 82511 8251 8251 8		{	Î	1, 105 0.834 0.00135	1, 193 0, 098 0, 002 15	1,635 1,311 0,00284	2,024 1,700 0,004 54	2,346 2,016 0,008 14	2,778 2,454 0,008.53	3,237 2,911 0,0117	3.927 3.607 0.0173	{				
	\leftarrow		1,102 0,831 0,000 648	1,393 0,997 0,00134	1,624 1,309 0,001 84	2.034 1.710 0.00284	2.358 2,025 0,003 84	2,779 2,453 0,00534	3, 233 2,907 0,007 35	3,835 3,607 0,0108	Î					

Table 30 - Sequential sampling plans for normal inspection for percent nonconforming (Master table) (concluded)

44 Association for Information and Image Management International

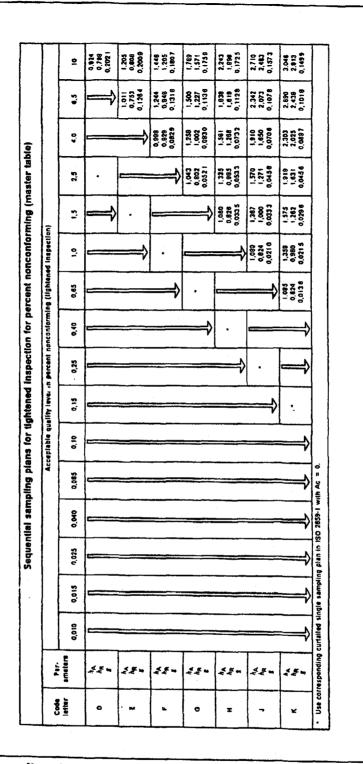
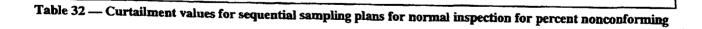


Table 31 — Sequential sampling plans for tightened inspection for percent nonconforming (Master table)


Copyright AIIM International Provided by IHS under license with AIIM No reproduction or networking permitted without license from IHS 45 Association for Information and Image Management International

	[Þ.	ceptable qu	ality level i	Acceptedia quality level in percant nonconforming (Hghtened inspeciion)	onconformi	ng (tighteni	inspection	e				
	emotors	0,010	0.015	0.025	0.040	0,685	0,10	0,15	0.25	0.40	0,65	1.0	5.1	2.5	4,0	8.9	2
	<u> </u>		c====	c			•	e		1,093 0,822 0,008 48	572.1 788.0 • C10.0	1,600 1,282 1,282	1,985 1,681 0,0285	2,385 2,085 0,0425	2,815 2,505 0,063 5	0,0017 1,00,0 1,00,0	(
	<					•			1,093 0,028 0,00534	1.377 0.991 0.00852	1,612 1,269 0,0117	1,992 1,679 0,0180	2.425 2,114 0,0276	2,808 2,602 0,0403	3,453 3,159 0,0504	¢	
1	< # # #			>	•		>	82 E00'0 848'0 260'1	1,390 0,895 0,00535	1,618 1,207 0,007 37	2.002 1,692 0.0114	2.477 2.157 0.0174	2.950 2.639 0.0254	762.5 922.5 5 (50,0	¢		
1	4 E 14		\$	•			1,102 0,831 0,00211	140.1 140.0 1920.0	1,828 1,303 0,004 60	2.017 1.685 0.007 10	2.494 2.171 0.0108	2,893 2,671 0,0158	3,618 3,298 0,2233	¢			
1.	4 # 4 # # 4		•		>	1, 105 0.634 0.001 35	1,292 188,0 190,0	1,635 1,211 0,00294	2.024 1,700 0.004 54	2.507 2.181 0.00894	3,02 i 2,694 0,010 i	3.621 3.300 0.014 B	¢				
	4 # # #	•	~	 >	1,102 0,831 0.000848	1.193 0.987 0.001 24	1,624 1,309 0,00184	2,004 1,710 0,00284	2.510 2.182 0.00434	3.023 2,694 0,008 33	3.657 3,326 0,009 35	\leftarrow					
				1,100 0,832 0,000638													
12	ponding	Use corresponding curtailed si	ingle sampli	single sampling plan in ISO 2859-1 with Ag =	SO 2859-1 v	vith Ac = 0.]			

46 Association for Information and Image Management International

¹⁴ ¹ ¹ Accessible quility level in percent noncanterning ¹⁴ ¹ 0.033 0.0010 0.0165 0.10 0.13 0.23 0.001 1.0 1.3 ¹⁴ ¹ ¹ 0.033 0.010 0.0165 0.11 0.13 0.23 0.005 1.0 1.5 13 28 1 1 0.13 0.13 0.13 0.13 0.14 1.1 1.5 13 28 1 1 0.13 0.13 0.13 0.14 1.1 1.5 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 4 3 4 1	12 8 13 8 12 ∞ ¹ 4 18 1	┕╼╍┶╾╍╸┥╺╍╌╍╍╺┥	0,040					vecabaluca namen' vi	1 indiana						
"4 "4 0.035 0.0105 0.105 0.10 0.13 0.245 0.00 0.16 1.0 1.5 1 20 20 0.005 0.106 0.106 0.10 0.15 0.00 0.055 1.0 1.5 1 20 20 20 0.015 0.10 0.16 0.15 0.00 0.055 1.0 1.5 20 20 20 20 20 20 20 20 20 20 20 21 20 75 1 1 1 2 2 2 2 20 120 1 1 1 2 2 2 2 2 21 41 1 1 2 4 3 6 1 1 21 41 1 1 2 4 3 6 1 1 20 1200 2 4 3 6 1 1 1 1 1 2000 12000 2 4 1 1 1 1 1		0.025	0,040			Accil	lable quel	ity level le	percent.	nonconferi	ning				
13 12 13 23 23 24 23 24 23 4 23 4 23 4 23 4 23 4 23 4 23 4 23 4 24 10 25 10 26 10 27 10 28 10 29 10 200 10 200 20 200 20 200 20 200 20 200 20 200 20 200 20 200 20 200 20 200 20 200 20 200 20 200 20 200 20 200 20 200 20 200 20 20 20				0,065	0. IG	Q, 15	0,25	9	0.65	o. -	S,I	2,5	0. •	6,5	ğ
33 33 34 35 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td>"</td></td<>														2	"
33 33 34 33 4 30 73 30 73 31 130 32 130 33 130 34 130 35 130 36 130 37 13 36 130 37 13 38 130 38 130 39 130 30 133 30 133 30 133 30 133 300 1000 2 130 200 1000										•			~	•	Ś
33 4 50 73 60 138 134 18 135 18 136 18 131 13 132 13 133 13 134 13 135 13 136 13 137 13 138 13 139 130 130 130 131 130 132 133 133 133 134 135 135 130 136 131 137 132 138 133 139 133 139 190 190 1 190 1 190 1 190 1 190 1 190 1 190 1 190 1 190 1 190 1									•			~		2	•
50 73 - 1											~	-		•	=
60 120 20 2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>N</td> <td>•</td> <td>~</td> <td>•</td> <td>=</td> <td>5</td>										N	•	~	•	=	5
133 118 20 200 300 130 213 473 2 214 13 215 473 216 13 213 473 214 13 215 13 216 13 217 13 218 13 2190 183 2190 2 2100 2 2100 2					-	•			2	-	~	Ð	:	ž	2
20 30 30 20 2 4 5 6 5 315 473 - - - - 5 6 5 6 5 50 746 - - - - - 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 1 1 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 1								~	-	~	-	=	=	22	2
315 473 • 2 4 5 6 1 6 560 756 • • 2 4 5 6 1 6 560 1200 • • 2 4 5 6 1 6 1290 1103 2 * 5 6 1 1 5 2 2000 3000 2 * 5 6 1 1 6 1 6		_		•			2	•	~	8	Ξ		33	32	
500 750 1 2 4 5 6 1 15 22 600 1200 2 4 5 6 1 16 22 23 1230 1873 2 4 5 6 1 16 22 33 1230 1873 2 4 5 6 1 16 23 33 1230 2 4 5 6 1 16 23 33 2000 3000 2 4 5 9 1 16 22 33			•		·	~	-	5	•	Ξ	9	33	R		
600 1200 2 4 5 6 11 16 22 1230 1815 2 4 5 6 11 15 21 33 2000 3000 2 4 5 6 11 16 22 33		•		-	2	•	5	-	=	ñ	2	ñ			
1250 1873 2 4 5 8 11 15 21 2000 3000 2 4 5 8 11 16 22 32			_	~	-	~	•	=	ž	33	33				
2000 3000 2 4 5 6 11 16 22	1 250		~	•	v	ø	=	ž	5	*			-		
		2	•	57	•	=	<u>•</u>	22	2						
ULE COLLESCONDING CUMBINES SINGE SINGE DESN IN 190 23341 WIN AC H O	* Use corresponding curtailed single sampling plan in ISO	O 2859-1 with A													

47 Association for Information and Image Management International

Copyright AllM International Provided by IHS under license with AllM No reproduction or networking permitted without license from IHS

ANSI/AIIM TR34-1996 Sampling Procedures for	Inspection b	y Attributes of Images in EIM and Micrographic Syste	ms

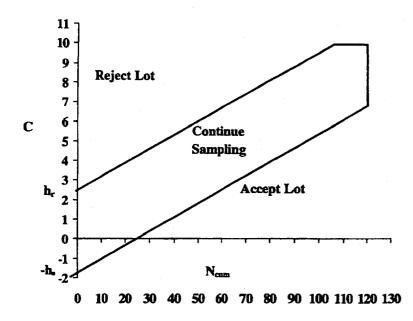

		Curtailment values for sequential sampling plans for tightened inspection for percent nonconforming	ues for	Jenbes	tial san	d Bulldu	lans for	r tighter	ned inst	ection	lor perc	ent nor	Iconfor	ming		
	Sinala semula	Curtailad sam.						¥	Acceptence number, A _t	number, A	-					
Code letter	8215	pie size					Acces	itable qual	Acceptable quality level in percent nonconforming	n percent i	onconiar	aing (
	÷	r	0,025	0,040	0.045	0, 10	0,15	0,25	0,40	0,65	1.0	s,	2,5	0.4 4	8,5	2
•	•	5											ŀ			~
-	5	2										•			2	•
B .	8	ĐĘ									•			2		Ś
ø	55	ę								•			~		~	•
×	8	2							•			*	•	*		ž
-	8	20						•			2	~	*	æ	2	8
×	125	681								2	•		•	ē	<u>•</u>	8
ی	8	9 <u>2</u>				•			2	4	*	•	5	ġ	38	
2	315	57			•	-		3	•	s,	•	2	19	8	-	
z	88	- 952					n	•	~	8	2	ē	8			
•	88	1 200	•			~	•	2	8	2	=	27				
÷	1 250	1875			~	•	ب ه	æ	2	ē	27					
-	2000	3000		~	-	۶.	•	2	81	28						
•	3150	4725	~													
· Use correspond	- Use corresponding curtailed single sampling plan in ISO 2859-1 with Az = 0.	impling plan in ISO 26	158-1 with	- - 												

Table 33 - Curtailment values for sequential sampling plans for tightened inspection for percent nonconforming

48 Association for Information and Image Management International

Acceptance	Rounded Acceptance	Rejection	Rounded Rejection
Number	Number	Number	Number
gn _{cum} - h _A	A	$gn_{cm} + h_{s}$	R
-1.839	*	1.721	**
-1.769	*	1.791	2
-1.698	*	1.862	2
-1.628	*	1.932	2
-1.557	*	2.003	3
			···
-0.498*	*	3.062	4
<u> </u>			· · · · · · · · · · · · · · · · · · ·
0.067	0	3.627	4
0.490	0	4.050	5
			<u></u>
			5
		and the second	6
			6
			···
			7
			· · · ·
			7
			· · ·
	3	كالبصحي فيواد المستخلك والوري بريزا الم	8
4.020	4	7.580	8
		••••	• •
4.444	4	8.004	9
5,009	5		9
			<u> </u>
6.068			9
			···
	and the second		
	Number $gn_{m} - h_{A}$ -1.839 -1.769 -1.628 -1.557 -0.498* 0.067 0.490 1.055 2.044 3.032 3.456 4.020 5.009	Number Number $gn_{com} - h_A$ A -1.839 * -1.769 * -1.698 * -1.628 * -1.557 * -0.498* * 0.067 0 0.067 0 0.490 0 1.055 1 1.479 1 2.044 2 3.032 3 3.456 3 4.020 4 5.009 5 5.009 5	Number $gr_{cm} - h_A$ Number A Number $gr_m + h_a$ -1.839 * 1.721 -1.769 * 1.791 -1.698 * 1.862 -1.628 * 1.932 -1.557 * 2.003 -0.498* * 3.062 0.067 0 3.627 0.067 0 3.627 0.490 0 4.050 1.055 1 4.615 1.479 1 5.039 2.044 2 5.604 3.032 3 6.592 3.032 3

Table 34 - Example sequential plan

Figure 4 — Example graph for sequential sampling using ISO 8422

12.2.2 Switching rules and operating characteristic curves

With the exception that reduced inspection is not possible with the sequential plans given in this technical report, the switching rules provided in 12.1.2 apply. The operating characteristic curves provided in 12.1.5 also apply to the sequential sampling plans provided.

12.2.3 Average sample size

The average sample size is the average of the various sample sizes that can occur before a decision to accept or reject a lot is made. The average sample size for four values of the process average are given in table 35 for normal inspection and in table 36 for tightened inspection. In the tables, 0.00 means no nonconforming images exist in the lot being inspected. The symbol p_A refers to the quality level, in terms of percent nonconforming, or nonconformities per 100 images, that would lead to 90% of the lots being accepted by the sampling plan. The symbol p_R refers to the quality level that would lead to 10% of the lots being accepted by the sequential sampling plan. The symbol g refers to the parameter g of the sampling plan. When the quality is equal to 100g (in terms of percent nonconforming or number of nonconformities per 100 images), the average sample size is at its highest level. Values of the average sample size for quality levels not given in the tables can be found by interpolation.

	Avera	age sa	mple s	itze fo	r sequ n	ential oncon	sampli formin	ng pla 9	ins for	nom	al insp	ection	for pe	ercent	
	Quality level, p			Acci	ptabie	quality (evel in	percent	noncon	forming	(norma	l inspec	tion)		
Code leiter	(proportion honcon- forming)	0,025	0.040	0,065	0,10	0,15	0,25	0,40	0,65	1,0	1,5	2,5	4,0	6,5	10
	00,0													5	4
D	PA)]		6,0	5,9
	5						i							6,5	6,6
	Pn						ļ					{		4,1	4,6
	000		_										8	6	5
E	Pa					} · · ·	1			}			9,8	8,6	8,3
	8.												10,3	9,4	9,9
	Pa												6,4	6,4	6,7
	0,00											13	10	8	6
F	Pa						ł					15.5	13,8	13,3	12,5
												15,6	14,7	15,4	15,4
	Pie					ļ	ļ		}			9,2	9,4	10,0	10,6
	0,00										21	16	14	11	9
G	PA						(ł	24.8	22.2	21,5	20,4	19,1
	8						1				24,7	23,6	24,0	24,2	23,5
	Pn						l				14,4	14,8	15,3	16.0	16,0
	0,00									32	26	22	17	14	12
н	PA					ĺ	l		l	37,8	35,6	33,7	31,6	30,8	29,8
	8									37,7	37,2	37,2	37,0	37,2	37,2
	Pr						ĺ			21,9	22,9	23,0	23,9	24,7	25,4
	0,00								52	41	35	28	24	20	16
J	Pa					[ł		61,2	56,4	53.9	51,1	50,0	48,3	46,7
	2								60,7	58,7	59,1	59,1	59,3	59,2	58,9
	PR								34,8	35,9	36,6	37,8	38,6	39,6	40,2
	0.00							80	64	54	43	36	30	25	19
ĸ	PA				, í			93,8	87,2	81,8	76,6	73.2	69,8	65,4	60,1
	8					}	Ì	92,7	90,2	89,1	87,8	86,1	84,4	81,0	76.3
	Pa						1	52,8	54,7	54,6	55,4	55,6	55.5	54,3	52,3

Table 35 — Average sample size for sequential sampling plans for normal inspection for percent nonconforming

.

Copyright AIIM International Provided by IHS under license with AIIM No reproduction or networking permitted without license from IHS 51 Association for Information and Image Management International

Code letter	Quality level, p (proportion			Acce	ptable	quadity I	evel in :	percent	noncon	forming	(norma	l inspec	tion)		
	noncon- forming)	0.025	0,040	0,065	0,10	0,15	0,25	0,40	0,65	1,0	1,5	2,5	4,0	6,5	10
	0,00						129	103	87	69	59	50	41	33	
L	PA						152	141	133	125	120	116	109	103	
L	8		1.1				150	145	145	143	141	139	134	130	
	PR						84,9	87,8	88,1	89,9	90,3	91,1	89,2	88,1	
	0,00					205	162	138	111	9 5	80	67	54		
м	PA					241	221	211	200	192	186	179	171		
-	8					237	227	229	229	225	224	221	215		
	Pa					135	137	139	143	144	146	146	145		
	0,00				326	260	220	177	152	128	108	88			
N	PA	1			383	354	335	317	311	298	289	280			
~	8				377	365	363	362	364	358	355	351			
	PR				213	220	220	226	232	233	235	236			
	0,00			522	415	354	285	245	206	175	143				
p	Pa			613	566	540	513	499	481	470	458				
·	8			605	583	586	584	584	577	577	574				
	P _R			342	351	355	365	372	375	380	385				
	0,00		820	649	556	446	383	326	276	227					
0	PA		965	886	850	804	779	765	742	728					
	8		952	912	824	916	910	919	909	9 12					
	Pn		539	549	559	573	580	596	599	611					
	0,00	1 303	1 040	889	716	815	521	440	363						
R	PA	1 531	1 419	1 357	1 293	1 252	1 221	1 178	1 159						
n	. 8	1 508	1 461	1 473	1 475	1 484	1 465	1 4 4 1	1 449						
	PR	853	879	892	921	932	949	949	970						

1 Values of p_A ($P_q = 0.90$) and p_R ($P_q = 0.10$) are shown in table X of ISO 2858-1:1989.

2 Average sample size for p = 1,0 (100 % nonconforming) is an integer immediately above $h_R/(1 - g)$

Table 35 — Average sample size for sequential sampling plans for normal inspection for percent nonconforming (concluded)

52 Association for Information and Image Management International

	Averag	ge sam	iple sl	ze for	seque N	ntial s oncon	amplin formin	g plar g	ns for t	ighten	ed ins	pectio	n for p	ercen	t
Code leiter	Quality level, p (proportion			Accer	stable q	untity le	vet in p	ercent	nonconfi	orming (lighten	d inspe	ction)		
Code reller	(proportion noncon- forming)	0.025	0,040	0,065	0,10	0,15	0,25	0.40	0,65	1,0	1,5	2,5	4,0	6,5	10
	0,00												·		-5
D	PA						[6,0
	8			l	l		[6,5
	Pa														4,1
	0,00													8	6
E	PA						Ì							9.8	8,6
-	8													10,3	9,4
	Pa					1		•						6,4	6,4
	0,00												13	10	8
F	PA	1	{			1	}		1				15,5	13,8	13,3
•	8	1											15,6	14,7	15,4
	Pn												9,2	9,4	10,0
	0,00	1							[21	16	14	11
G	PA											24,8	22.2	21,5	20,4
-	8			1								24,7	23,6	24,0	24,2
	Pa			· ·								14,4	14,8	15,3	16,0
	0.00										32	26	22	17	13
н	PA					Í	1				37,8	35,6	33,7	31,6	30,4
	8	ļ		1			1				37,7	37,2	37,2	37,0	37,2
	PR	}		}							21,9	22,9	23,0	23,9	24,9
	0,00									52	41	35	28	22	18
J	PA	1					1			61,2	56,4	53,9	51,1	49,3	47,0
	8					ł	1 -			60,7	58,7	59,1	59,1	59,6	58,4
	PR						1			34,8	35,9	36,6	37,8	39,3	39,4
	0,00								80	64	54	43	34	27	21
ĸ	<i>P</i> A					1	1		93,8	87,2	81,8	76,6	71,8	67,5	61,2
• -	8					l			92,7	90,2	89,1	87,8	85,3	82,7	76,5
	Pa	1		Į			l		52.8	54,7	54,6	55.4	55.5	55.0	52.3

Table 36 --- Average sample size for sequential sampling plans for tightened inspection for percent nonconforming

Copyright AllM International Provided by IHS under license with AllM No reproduction or networking permitted without license from IHS 53 Association for Information and Image Management International

	Quality level, p			Accep	table qi	uality le	vel in p	ercent n	onconta	ming (tightene	d inspe	ction)		
Code letter	(proportion noncon- forming)	0,025	0,040	0,065	0.10	0,15	0.25	0,40	0,65	1.0	1,5	2.5	4.0	6,5	10
	0.00							129	103	87	69	56	45	36	
L	PA							152	141	133	125	119	112	105	
-	R							150	145	145	143	141	137	131	
	Pa							84.9	87.8	88.1	89,9	80.8	90,6	88,5	
	0,00	}					205	162	138	111	88	73	59		
м	Pa						241	221	211	200	188	182	174		
-	*						237	227	229	229	223	222	217		
	PR						135	137	139	143	144	146	146		
	0,00					326	260	220	177	143	117	95			
	PA					383	354	335	317	307	294	283			
~	8					377	365	383	362	363	357	352			
	PR					213	220	220	276	233	234	235			
	0,00				522	415	354	285	231	190	155				
p	Pa				613	566	540	513	496	478	465				
•	R				605	583	586	584	586	580	578			ł	
	Pn				342	351	355	365	376	380	386				
	0,00			820	649	556	446	361	299	243					
'Q	PA			965	686	650	804	774	754	723					
	8			95 2	912	924	916	916	916	897] .			1	1
	PR			539	549	559	573	587	600	597					
	0,00		1 303	1 040	88 9	716	579	478	392]	
R	PA		1 531	1 4 19	1 357	1 293	1 242	1 203	1 168					}	
	*		1 508	1 461	1 473	1 475	1 467	1 460	1 449				[1	
	PR		853	879	892	921	940	854	964		<u> </u>		L		<u> </u>
	0,00	2 059									1				
s	PA	2 419													ł
•	R	2 384										l		l	
	PR	1 347													
NOTES		•							•	· · · · · · · ·					
- 1	(<i>P</i> , = 0,90) and		- 0.101			MA 7 A	150 78		0						

Table 36 — Average sample size for sequential sampling plans for tightened inspection for percent nonconforming (concluded)

54 Association for Information and Image Management International

13 Examples

This clause provides specific examples of how to use this report. The examples may or may not be similar to actual user situations.

13.1 Example one: Film conversion/isolated lots (clause 11)

Film is supplied by the vendor in rolls of 2000 images. A total of 10 rolls is supplied in separate shipments. Each roll is to be sampled. Since 10 rolls are not enough to be considered a continuing series of lots, we treat each roll separately using the procedures of clause 11. First in 13.1.1, we will use the single sampling procedures from 11.1. Then in 13.1.2, we will use the sequential procedures of 11.2.

13.1.1 Single sampling

The film attributes to be inspected are found in table 2, Some film attributes, of clause 9. These attributes are classified as class A or B according to their seriousness.

A. We must first choose producer's and consumer's risk qualities for each class of nonconformity. This is done in the following table. Recall that we are using 5% for producer's risk and 10% for consumer's risk.

Class	PRQ	CRQ
Α	1%	4%
B	4%	10%

Table 37 — Example one: risk qualities

B. Next, we use table 3, Values for single sample plans, to find the sampling plan for class A attributes.

$$CRQ/PRQ = 0.04/0.01 = 4.0$$
 Ac = 4

 $n \times CRQ = 7.994$

- n = 7.994/0.04 = 200
- $n \times PRQ = 1.970$
- or n = 1.970/0.01 = 197
- C. We choose the higher *n* possibility. Therefore, we might use the plan n = 200, Ac = 4. Alternatively, we could have used the nonnograph in figure 1. This would result in the same plan.
- D. Next, we use table 3 to find the sampling plan for class B attributes.

CRQ/PRQ = 0.10/0.04 = 2.5 Ac = 10 $n \times CRQ = 15.407$ n = 15.407/0.10 = 154

 $n \times PRQ = 6.169$

or n = 6.169/0.04 = 154

The sampling plan is n = 154, Ac = 10. Again, the nomograph in figure 1 gives us the same plan.

- E. We review the sampling plans for each class and determine the following:
 - --- class A is n = 200, Ac = 4.
 - --- class B is n = 154, Ac = 10.

Because the largest sample size found was 200, we should select 200 images from the roll. For class B nonconformities, 154 of these would be inspected; for class A, all 200 would be inspected. We would accept a roll if we find

- no more than 4 of the 200 images contain class A nonconformities, and
- no more than 10 of the 154 images contain Class B nonconformities

Otherwise, we would reject the roll.

13.1.2 Sequential sampling

For the same situation as in 13.1, we have decided to use the sequential sampling procedure of 11.2, Item-by-item sequential sampling plans. We again have rolls of 2000 images and the same producer's and consumer's risk qualities shown in table 37 - 5% producer's risk and 10% consumer's risk - for the two classes of nonconforming images.

A. After we decide to use the sequential sampling procedure, we use table 5 to find the parameters for the three plans. These are found in table 38.

Class	h,	h _z	8	n,	A,	R,
Α	1.589	2.040	0.0217	300	6	7
В	2.295	2.947	0.0658	231	15	16

Table 38 — Parameters for sequential plans

B. Then, we construct tables similar to tables 39 and 40.

n _{cum}	A	R	n _{cem}	A	R
1	*	**	137	1	6
2	*	**	n _{cm} 137 166	2	6
3	*	3	183	2	7
4	*	3	212	3	7
45	*	4	258	4	7
74	0	4	258 299 300	4	7
91	0	5	300	6	7
120	1	5			

Table 39 — Class A sequential plan

n _{cam}	A	R	n	A	R
_1	*	**	111	5	11
2	*	**	123	5	12
3	*	**	127	6	12
4	*	4	138	6	13
17	*	5	142	7	13
32	*	6	153	7	14
35	0	6	157	8	14
47	0	7	168	8	15
51	1	7	172	9	15
62	1	8	184	9	16
66	2	8	187	10	16
77	2	9	203	11	16
81	3	9	218	12	16
92	3	10	230	12	16
96	4	10	231	15	16
108	4	11			

Table 40 --- Class B sequential plan

- C. Because there are no fixed sample sizes in this case, we would start inspecting both classes of nonconformities.
- D. Finally, we would
 - stop inspecting if either of the classes reached its rejection value, R

 - accept a roll only after both classes have reached their respective values of A (i.e., we cannot accept a roll until both classes have reached their respective values of A)

13.2 Example two: EIM/series of lots

Electronic images are submitted on magnetic or optical disks with 2000 images per disk. Fifty disks are to be submitted in separate shipments. That is, we have 50 lots (disks) of 2000 images each.

13.2.1 Single sampling

Because we have a continuing series of disks or lots we use the sampling methods of clause 12.

A. The first thing we must do is choose the acceptable quality level (AQL) for each class of nonconformities. We use the classifications in table 1, Some EIM attributes, in clause 9.

The class A nonconformities are given an AQL of 1% and those in class B an AQL of 4%.

- B. We can choose either
 - the single sampling methods in 12.1, or
 - the sequential methods of 12.2.

The single sampling approach will be used here and the sequential method will be used in 13.2.2.

- C. Next, we consult table 7, Sample size code letters. The lot size is 2000 and table 7 indicates that for inspection level II we must use sample size code letter K.
- D. Then from tables 8, 9, and 10, we find the sampling plans for normal, tightened, and reduced inspection, respectively, for each selected AQL. These results are shown in table 41, Single sampling plans for each class.
- E. For the first disk submitted, we would select a sample of 125 images to be inspected on normal inspection.
- F. We would accept the disk if there are no more than the following number of nonconforming images in the sample:
 - 3 class A nonconforming images. (A class A nonconforming image has one or more class A nonconformities.)
 - 10 class B nonconforming images. (A class B nonconforming image has one or more class B nonconformities and no class A nonconformities.)
- G. Next, we would follow the inspection guidelines outlined in table 42.

		Normal		Tight	tened	Red	uced
Class	AQL	п	Ac	n	Ac	n	Ac
A	1%	125	3	125	2	50	2
В	4%	125	10	125	8	50	6

Table 41 - Single sampling plans for each class

If we	Then we
reject 2 disks out of any 5 inspected	switch to tightened inspection, and
	remain on tightened inspection until we have accepted 5 disks in succession
accept 10 consecutive disks under normal inspection using an acceptance number of 2 for class A and 7 for class B	can switch to reduced inspection with its corresponding smaller sample size for each class
reject a lot while on reduced inspection	switch back to normal inspection for the next disk
reject as many as 5 disks while on tightened inspection	should discontinue inspection of the entire shipment of 50 disks

Table 42 — Inspection guidelines (from table 11)

13.2.2 Sequential sampling

As an alternative to the single sampling procedure in 13.2.1, we could use the sequential procedure of 12.2. To illustrate this procedure, we would do the following:

- A. Again, we will assume the AQL values used in 13.2.1 for each class 1% for class A and 4% for class B.
- B. Using tables 30, 31, and 32, we find the plan parameters indicated in table 43. Recall that we are using code letter K from table 7.
- C. We might again develop tables, such as tables 44 and 45, using these parameters to assist in the use of these plans.
- D. As before, we start inspection with the two normal plans. The switching rules are carried out as in 13.2.1, except there are no reduced inspection plans with sequential sampling. Table 46 outlines the inspection guidelines for sequential sampling.

	Acceptable Quality Level (AQL)	Acceptable Parameter (h_A)	RejectionSlope of DecisionParameterLines(h_R)(g)			nbers	
		- A ²			n,	A ,	R,
	No	ormal Inspection					
Class A	1%	1.575	1.262	0.0296	188	5	6
Class B	4%	2.514	2.259	0.0857	188	16	17
	Ti	ghtened Inspection	1				
Class A	1%	1.359	0.980	0.0215	188	4	5
Class B	4%	2.303	2.025	0.0697	188	13	14

Table 43 — Parameters for sequential plans

Norr	Normal Inspection			aed Inspe	ection
n _{cana}	A	R	n _{cem}	A	R
1	*	**	1	*	**
2	*	2	2	*	2
25	*	3	48	*	3
54	0	3	64	0	3
59	0	4	94	0	4
87	1	4	110	1	4
93	1	5	141	1	5
121	2	5	157	2	5
127	2	6	187	2	5
155	3	6	188	4	5
187	3	6			
188	5	6			

Table 44 --- Class A sequential plans (example two)

Nori	nal Inspe	ction	Tighte	ned Inspe	ction
n _{cam}	A	R	n _{cam}	A	R
1	*	**	1	*	**
2	*	**	2	*	**
3	*	3	3	*.	3
9	*	4	14	*	4
21	*	5	29	*	5
30	0	5	34	0	5
32	0	6	43	0	6
42	1	6	48	1	6
44	1	7	58	1	7
53	2	7	62	2	7
56	2	8	72	2	8
65	3	8	77	3	8
67	3	9	86	3	9
77	4	9	91	4	9
79	4	10	101	4	10
88	5	10	105	5	10
91	5	11	115	5	11
100	6	11	120	6	11
102	6	12	129	6	12
112	7	12	134	7	12
. 114	7	13	144	7	13
123	8	- 13	148	8	13
126	8	14	158	8	14
135	9	14	163	9	14
138	9	15	177	10	14
147	10	15	187	10	14
149	10	16	188	13	14
158	11	16			
161	11	17			
170	12	17			
182	13	17			
187	13	17			
188	16	17			

Table 45 — Class B sequential plans (example two)

If we	Then we
reject 2 out of 5 or fewer consecutive lots for class A or class B nonconforming images	switch to tightened inspection for both classes
accept 5 consecutive disks while on tightened inspection	switch back to normal inspection plans
reject a total of 5 disks while on tightened inspection	discontinue sampling inspection under this procedure

Table 46 — Inspection guidelines for sequential sampling (from table 11)

Annex A Sampling Costs

To illustrate the type of decisions that must be made regarding the two types of attributes plans — single and sequential plans — consider the cost model provided in the following equation.

 $C = a + bn^* + cn_a,$

where:

C is the total cost;

 n^* is the maximum sample size;

 n_a is the average sample size when the quality level is at the producer's tisk quality (*PRQ*);

a is the overhead cost;

b is the cost of selecting the sample (per image);

c is the cost of inspection (per image).

To illustrate the use of this equation, assume the overhead cost, a, to be as follows:

- --- single \$0.20
- --- sequential \$0.50

Now assume the following:

--- The cost of selecting the sample is \$0.002 per image.

- The cost of inspection is \$0.02 per image.

- We are dealing with batches of 10,000 images.

- The PRQ is 0.015 (i.e., 1.5% nonconforming).

If the consumer's risk quality (CRQ) is 0.05 (i.e., 5% nonconforming), the producer's risk is set at 5%, and the consumer's risk is 10%, the plans in table A1 would be equivalent in their protection.

Type Plan	Plan Parameters
Single	n = 410, Ac = 10
Sequential	R = 2.4075 + 0.0292n
	A = -3.6720 + 0.0292n

Table A1 — Equivalent plans

For these plans, table A2 illustrates the values of n^* and n_a for PRQ = 0.015. The resulting total costs are shown in the last column of the table.

Type Plan	п*	n,	Cost
Single	410	410	\$9.22
Sequential	725	237	\$6.69

Table A2 — Cost comparison 1

In this case, the most economical plan is the sequential plan. Remember that both plans satisfy our requirements regarding risks. If, on the other hand, the unit cost of selecting a sample is increased to \$0.10 and the inspection cost per image is reduced to \$0.01, the model would give the results displayed in table A3, Cost comparison 2.

Type Plan	Cost	
Single	\$45.30	
Sequential	\$75.37	

Table A3 -- Cost comparison 2

For this illustration, we see that the single sampling plan is the lowest cost plan. These two extreme examples serve to illustrate the fact that high costs of selecting sample units and low inspection costs lead to the decision to use single sampling plans. An additional advantage of such plans is their simplicity.

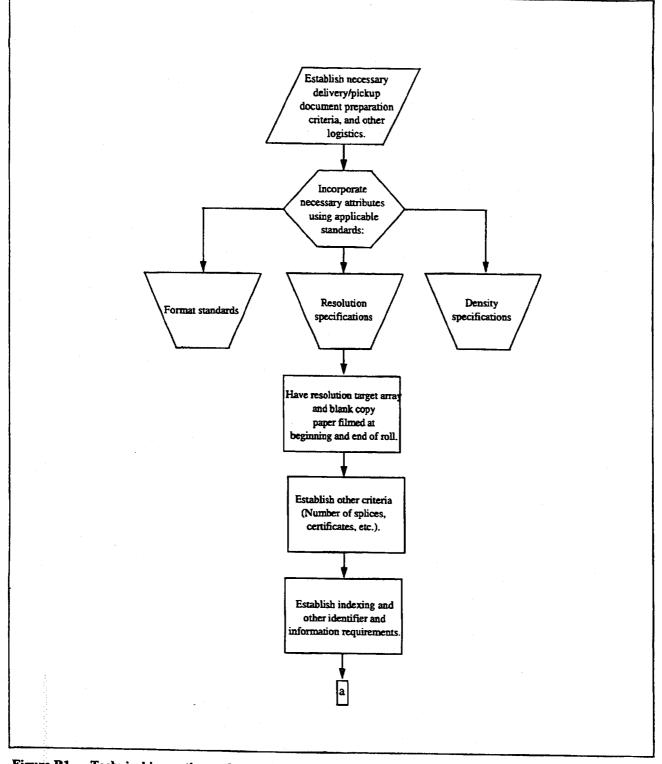
Annex B

Flowcharting inspection procedures using applicable ANSI standards and specifications and a sampling system (based on the example provided in clause 7 of this technical report)

This publication provides a more statistically valid method for selecting the number of images that should be inspected. It replaces the random image inspection scheme described in MS23. That publication recommends a detailed visual image examination criteria for roll films where approximately 0.5% or 10 images would be viewed with a magnifier. MS23 does not establish an acceptancerejection criteria but does describe what the attributes are and how to inspect. Employing a statistical plan may establish a sample that will accurately determine the product quality based on the needs of the user. However, there is a need to understand

- --- the inspection criteria listed in various ANSI standards and guidelines
- the inspection tools to use to be qualified to inspect the film

Also, a sampling plan is not a replacement for specific inspection procedures developed by film technologists.


Micrographic methodology can use 100% inspection of specific criteria target images. Often, this level of inspection is a "Go, No-Go," or a circuit breaker that would increase inspection if certain quality conditions were not met. Unfortunately, quality criteria in the form of specific resolution and density readings are usually based on the assumption that all of the material in a film batch is of equal quality or that the necessary "Go, No-Go," acceptance criteria have been established through an examination of the source documents. A sampling plan probably will indicate conditions where MS23 image capture inspection methods may be unsatisfactory.

Three major micrographic technology quality criteria are

- resolution, which is the ability of the system to capture or film the smallest necessary character at the first generation at significant quality at the user level. This is done by using a quality index chart (MS1, MS23, MS43, and implied in MS32). Readings are made of filmed resolution target arrays.
- background density, which represents an arbitrary relationship between the data on the page and its background. Background density is determined by comparing the documents to be filmed to applicable Background Density Groups (MS32, MS43, and MS32). Specific targets, usually in the form of reading the density using a calibrated densitometer, are used.
- --- inspection for lost data. This class A attribute is evaluated by passing the film over a light box and noting any unusual condition.

Unlike the sampling plan, the technology inspections are 100%.

The flow chart, illustrated in figure B1, Technical inspection and sampling plans, is based on the use of micrographic standards to establish fundamental film attributes based on the selected microform, technical inspection, and a sampling technique described in clause 7 of this technical report.

61 Association for Information and Image Management International

Copyright AllM International Provided by IHS under license with AllM No reproduction or networking permitted without license from IHS

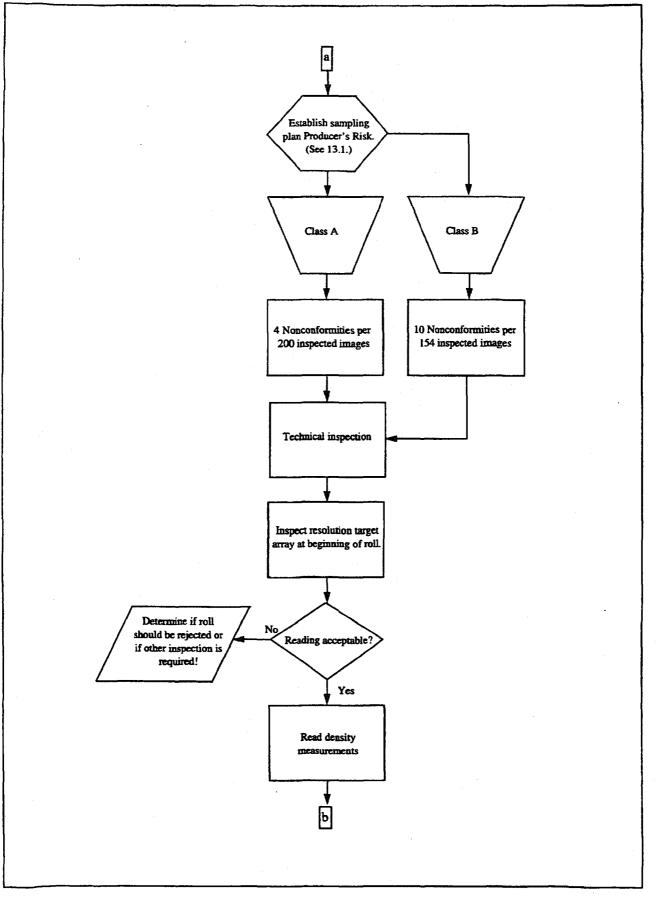
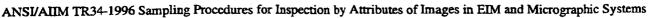
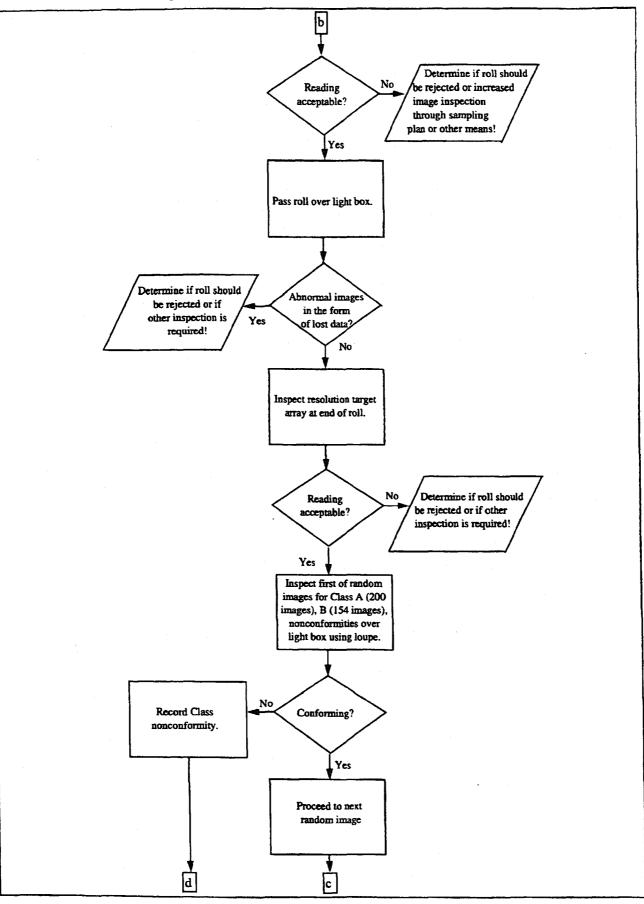
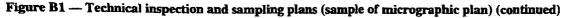
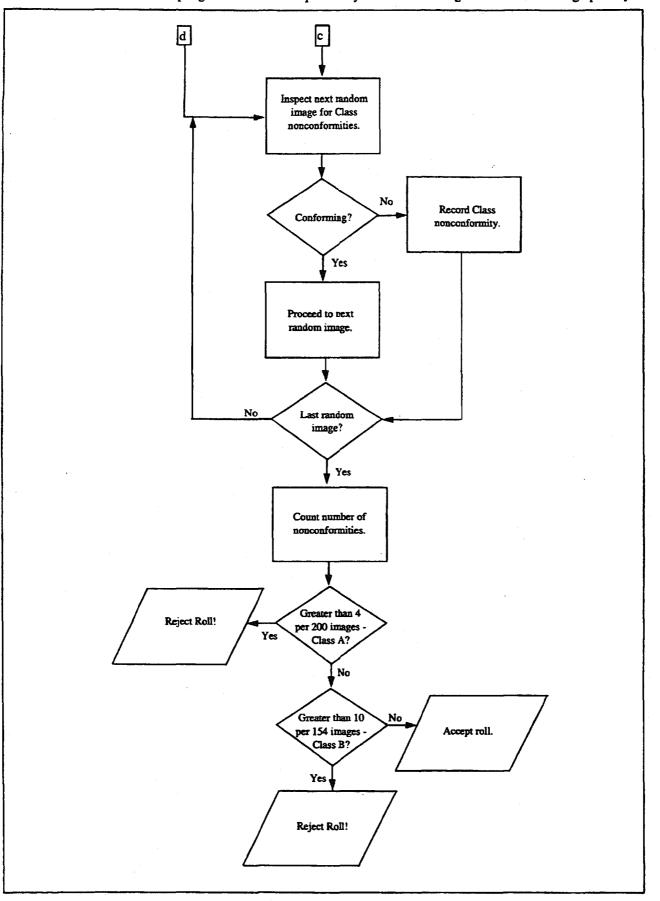





Figure B1 — Technical inspection and sampling plans (sample of micrographic plan) (continued)


62 Association for Information and Image Management International

63 Association for Information and Image Management International

64 Association for Information and Image Management International