

STANDARD PLANS FOR HIGHWAY BRIDGES

PRESTRESSED CONCRETE BEAMS & R. C. C. SLAB TYPE SUPERSTRUCTURE

VOLUME - II ONE END STRESSING

PART 1 : STRAND SYSTEM PART 2 : MULTI WIRE SYSTEM

Ministry of Surface Transport (Roads Wing)

Ministry of Surface Transport

STANDARD PLANS FOR HIGHWAY BRIDGES

PRESTRESSED CONCRETE BEAMS & R.C.C. SLAB TYPE SUPERSTRUCTURE

Published by The Indian Roads Congress on behalf of the Govt. of India, Ministry of Surface Transport (Roads Wing)

> Copies can be had from the Secretary, Indian Roads Congress, Jamnagar House, Shahjahan Road, New Delhi-110011

NEW DELHI 1997 Price Rs. 280/-(plus packing & postage charges)

VOLUME - II

ONE END STRESSING

PART 1 : STRAND SYSTEM PART 2 : MULTI WIRE SYSTEM

(Roads Wing)

Published: December, 1997Reprinted: July, 2006Reprinted: July, 2011Reprinted: August, 2018

© copyrigt, 1997 (This volume or parts thereof may not be reproduced in any form without permission of the Publishers)

Printed at I G Printers Pvt. Ltd. New Delhi (500 copies)

PREFACE

In 1991, Ministry had issued standard T-beam and slab prestressed concrete superstructure plans for 2-lane carriageway having spans 30 m (with and without footpaths) 35 m (with footpaths) and 40 m (without footpaths). These drawings envisage strand prestressing from both ends. In such method, it is essential that prestressing force at both ends should be applied simultaneously and of equal magnitude. This requirement can be achieved only if there is proper coordination/control between the technical staff at both the ends.

To overcome these difficulties and to maintain pace with the developed countries, it was decided to review the designs and drawings which envisage imparting prestressing force from one end only so that technical site staff can have better control during cable extensions.

Further, since high capacity multi-wire cables are available in the market, it was decided to evolve prestressed concrete superstructure drawings using such multi-wire cables.

Accordingly, suitability of already evolved prestressed concrete superstructure plans has been reviewed for adoption of one end prestressing strand system. It is observed that all other details except cable extensions will be identical to the details finalised for two end prestressing system issued earlier. The minor modifications have been carried out in drawings bearing Nos. SD/301 (Sheets 1 & 2), 312, 322, 332 and 342 for respective spans and new drawings bearing Nos. SD/401 (Sheets 1 & 2), 412, 422, 432 and 442 have been presented in part 1 of this volume. Other drawings pertaining to respective spans are available in earlier drawing folders and should be used without modification.

For adoption of multi wire cables (42 wires of 7 mm dia each), while concrete sections finalised earlier have been kept unaltered, slight modification in the cable profile has been found necessary. While reviewing the design, zero and 6 mm slip has been considered at one end only. Accordingly, drawings indicating general notes, anchorage details, cable profile and reinforcement in each end cross girder have been evolved afresh and presented in Part 2 of this volume.

For each type of system, a statement showing bill of quantities of various items has been appended to facilitate preparation of estimate for bridge superstructure based on these drawings.

It is hoped that the new drawings shall be of great use for adoption in the field. While every care has been taken to eliminate any error, error/omission that may come to notice while using these drawings for execution, may please be communicated to the Ministry.

The work of preparing the design and drawings has been carried out by M/s. Tandon Consultants Pvt. Ltd., New Delhi, and has been finalised by the officers of the Ministry. Their efforts deserve appreciation.

Dated: 6th June, 1995

M.V. Sastry Director General (Road Development)

CONTENTS

PART 1. STRAND SYSTEM

PAGE NO. DRAWING NO. TITLE 1. GENERAL 1. GENERAL (i) SD/401 **General Notes** (Sheets 1 & 2) (ii) BILL OF QUANTITIES 2. 30m WITHOUT FOOTP 2. 30m WITHOUT FOOTPATH SD/412 Prestressing Cables 3. 30m WITH FOOTPATH 3. 30m WITH FOOTPATH SD/422 **Prestressing Cables** 4. 35m WITH FOOTPATH SD/432 Prestressing Cables 4. 35m WITH FOOTPATH 5. 40m WITHOUT FOOTPATH SD/442 Prestressing Cables

PART-2 MULTI WIRE SYSTEM

DRAWING NO.

SD/541

SD/542

SD/545

5. 40m WITHOUT FOOTPATH

GENERAL	
(i) SD/501 (Sheets 1 & 2)	General Notes
(ii) BILL OF QUANTITIES	
30m WITHOUT FOOTPATH SD/511 SD/512	Dimensions and Ancher Prestressing Cables
30m WITH FOOTPATH SD/521 SD/522	Dimensions and Ancher Prestressing Cables
35m WITH FOOTPATH SD/531 SD/532 SD/535	Dimensions and Ancher Prestressing Cables Reinforcement in End

TITLE

Dimensions and Anchorage Details Prestressing Cables Reinforcement in End Cross Girders

PAGE NO.

- horage Details
- horage Details
- norage Details
- Cross Girders

PART 1. STRAND SYSTEM

(A) GENERAL

1. These notes are applicable for the Standard Drawings for Prestressed Concrete Girders and RC Slab Type Composite Superstructure with and without footpaths.

2. The drawings are applicable only for right bridges.

3. The design is according to the following Codes:

- I IRC: 5-1985
- II IRC: 6-1966 (1981 Print)
- III IRC: 18-1985
- IV IRC: 21-1987
- V IRC: 22-1986
- VI IRC: 83-1982 (Part 1)
- VII IRC: SP: 33-1989

4. All dimensions are in mm. Only written dimensions shall be followed. No drawing shall be scaled.

5. Public utility services (except water supply and sewerage), if required, shall be carried over the bridge through 150 mm dia ducts provided in the footpaths. Total load of such services shall not be more than 1.0 kN/m on each footpath.

6. Bituminous wearing coat shall comprise the following:

- A layer of mastic asphalt, 6mm thick (12 mm for high rainfall area) after applying a prime coat over the top of the deck, before the wearing coat is laid.
- (ii) 50 mm thick asphaltic concrete wearing coat in two layers of 25 mm each.
- Note 1. For high traffic density, an alternative specification for wearing course comprising 40 mm bituminous concrete overlaid with 25 mm thick bitumen mastic layer can be adopted.
- Note 2. All the work of wearing coat may be done as per Section 500 of MOST's Specification.

7. The following loads have been considered in the design:

- One lane of IRC Class 70R or two lanes of IRC Class A on carriageway, whichever governs.
- Footpath load of 5 kN/sq.m. for superstructure having footpaths.
- (iii) Wearing Coat load of 2 kN/sq.m.

8. The designs are applicable for "moderate" and "severe" conditions of exposure. In case of "severe" conditions suitable anti-corrosion treatment as approved by Engineer-in-Charge may be provided to reinforcement bars and exposed concrete surface.

(B) MATERIALS SPECIFICATIONS

Concrete

1. Concrete shall be design mix and have minimum 28 days characteristic strength of 40 MPa on 150 mm cubes for all elements of superstructure.

2. Ordinary Portland Cement conforming to IS: 269 or High strength Ordinary Portland Cement conforming to IS: 8112 capable of achieving the required design concrete strength shall only be used.

3. To improve workability of concrete and cement grout, admixtures conforming to IS: 6925 and IS: 9103 could be permitted subject to satisfactory proven use. Admixtures generating hydrogen, nitrogen, chlorides, etc., should not be used.

4. Cement content in concrete shall neither be less than 400 kg/cu.m. nor more than 540 kg/cu.m. of concrete.

5. Maximum water cement ratio shall be as follows:

Deck Slab 0.40; Precast Girder 0.40

Reinforcement

6. Reinforcing Steel shall be of HYSD bars (Grade designation S:415) conforming to IS: 1786.

Prestressing Steel and Accessories

7. Cable consisting of 12 nos. of 12.7 mm dia. 7ply Class 2 Strand as per IS: 6006-1983 shall be used for main prestressing.

8. For future prestressing, single 12.7 mm dia. 7ply Class 2 Strand as per IS: 6006-1983 shall be used.

9. The prestressing steel and accessories shall be subjected to an acceptance test prior to their actual use on the works (Guidance may be taken from BS: 4447). Only multistrand jacks shall be used for tensioning of cables. Direct and indirect force measurement device (e.g. Pressure Gauge) to be attached in consultation with system manufacturer.

10. Anchorages at dead end shall be used similar to those used at the "live end". The use of buried type of anchorages at "dead end" are not permitted.

11. The strands at dead end anchorage shall be pre-blocked prior to tensioning from the live end. During tensioning of cable if there is any slip at the "dead end" the same shall be added to the extension required at the stressing end.

Sheathing

12. Sheathing shall be of "Drossbach" type 75 mm ID manufactured from minimum 0.4 mm thick bright metal strip. It shall be tested as per IRC: 18-1985, *Appendix:* 1.

Water

13. Water to be used in concreting, grouting and curing shall conform to Clause 5.1 (ii) of IRC: SP: 33-1989.

Expansion Joints

14. Expansion joints must be robust, durable, watertight and replaceable. It must be provided over the full width of deck and follow the profile including kerb, footpath (where relevant) and facia. Expansion joints shall be obtained only from approved manufacturers and be of proven type. Details of expansion joints may be got approved before commencement of construction. Site fabricated expansion joints shall be prohibited.

15. Expansion joints shall have the following additional essential features:

- (a) It shall cater for a total movement of ± 40 mm
- (b) It shall be provided with a waterproof membrane to ensure against leakage below the joint.
- (c) It shall have a cushion of elastomer to enable absorption of shock transmitted by vehicles.

16. Fabricated steel parts shall be positioned accurately before concreting the portion of deck slab beyond the end faces of the main girders.

17. Presence of manufacturer's representative at the time of positioning of embedded parts and installation of expansion joints is mandatory.

MKD	DATE	DESCRIPTION	BY					
		REVISION						
М	GOVERNMENT OF INDIA MINISTRY OF SURFACE TRANSPORT (ROADS WING), NEW DELHI							
STANDARD DRAWINGS FOR ROAD BRIDGES								
	PSC GIRDER AND RC SLAB COMPOSITE SUPERSTRUCTURE WITH AND WITHOUT FOOTPATHS GENERAL NOTES							
	ON	E END STRESS	SING					
RECO	MMENDED B	Y APPROVED	BY 1992					
	A. Ros	T.K. The	brg NO.					
	(D.K. RAS S.E.	TOGI) (M.K. MUKHE	ERJEE) SD/401 SHEET NO. 1					

18. The initial gap between the adjacent movable concrete faces shall be fixed in consultation with the manufacturer of the expansion joint. However, the initial gap shall not be less than 38mm at the time of concreting.

(C) CONSTRUCTION

Sequence

Day Activity (After casting of main girders)

14	Stressing of 1st stage cables
21	Casting of cross girders and deck slab except its portion beyond the end faces of main girders
49	Casting of portion of the deck slab beyond the end faces of main girders and casting of superimposed dead loads other than wearing coat
56	Stressing of 2nd stage cables
After	
56	Laying of wearing coat

Stressing of 1st stage cables can be done earlier on achieving a strength of 35 MPa. Subsequent activities can also be advanced keeping the same time intervals.

2nd stage cables shall be stressed progressively one at a time in the three girders.

Launching Truss

The design is based on cast-in-situ construction." However, launching of girders may be permitted for which the load from leg of launching truss should not exceed the value given in relevant drawing.

(D) WORKMANSHIP/DETAILING

1. Minimum cover to any reinforcement shall be 50 mm unless shown otherwise in the drawing.

2. For ensuring proper cover of concrete to reinforcement bars, specially made polymer cover blocks shall only be used.

3. Construction joints shall be provided at locations shown in drawings.

4. Welding of reinforcement bars shall not be permitted.

5. Bending of reinforcement bars to be as per IS: 2502-1963.

6. Minimum lap length shall be kept as 63 d where "d" is the diameter of bar.

7. Supporting chairs of 12 mm dia. shall be provided at suitable intervals, as per IS: 2502.

8. Sharp edges of concrete shall be chamfered (10 mm x 10 mm)

9. Shuttering plates shall suitably be stiffened to enable the compaction by form vibrators.

10. Full width screed vibrator shall be used for compaction of concrete in deck slab.

11. The jacking force in each cable is 1543 kN to be imparted at stressing end only by using multistrand jack.

12. The following properties have been considered in the design.

- Area of 1 strand = 98.7 mm^2 (i)
- (ii) Wobble coefficient k = 0.0046/m
- (iii) Friction coefficient $\mu = 0.25$
- (iv) Modulus of elasticity of steel in strand = 1.95 x 105 MPa
- (v) Average slip = 6 mm

13. Minimum strength of concrete at the time of tensioning of cables shall be 35 MPa or as recommended by system manufacturer, whichever is higher.

14. Grouting shall be carried out as per Appendix-2 of IRC: 18-1985.

15. For future prestressing in case of bridge distress, single 12.7 mm dia. 7-ply Class 2 strands as per IS: 6006-1983 shall be used. The tensioning force per strand shall be 128.6 kN. Mono strand jacks shall be used for tensioning of strands utilising approved prestressing system only. The externally placed strands shall be protected by polyethylene sheathing and grouted.

16. The location of jacks for lifting up the superstructure to replace bearing etc., is shown thus 1. This shall be distinctly etched on end crossgirders and pier/abutment caps.

(E) REFERENCE TO DRAWINGS

Drawing No.	Title
SD/302	General Arrangement
SD/303	Details of wearing coat and drainage system
SD/304	Details of RCC Railing for Superstructure without footpaths
SD/305	Details of RCC Railing for Superstructure with footpaths
SD/306 (Sheets 1, 2 & 3)	Details of Bearings.

In case any other type of railing is used, prior approval shall be obtained.

(F) SPECIAL NOTE FOR PRESTRESSING

If the calculated elongation is reached before the calculated gauge pressure is obtained, continue tensioning till attaining the calculated gauge pressure, provided the elongation does not exceed 1.05 times the calculated elongation. If this elongation is achieved before the calculated gauge pressure is attained, stop stressing and inform the engineer.

If the calculated elongation has not been reached continue tensioning by intervals of 5 kg/sq. cm. until the calculated elongation is reached provided the gauge pressure does not exceed 1.05 times the calculated gauge pressure.

If the elongation at 1.05 times the calculated gauge pressure is less than 0.95 times the calculated elongation, the following measures must be taken, in succession, to define the cause of this lack of elongation.

- Recalibrate the pressure gauge. .
- Check the correct functioning of the jack, pump and leads.
- De-tension the cable. Slide it in its duct to check that it is not blocked by mortar which has entered through holes in the sheath. Retension the cable, if free.

If the required elongation is not obtained, further finishing operations such as cutting or sealing, should not be undertaken without the approval of the engineer.

STAND	ARD DRAWIN	NGS FOR ROAD E	BRIDGES
	B JRE THS		
	ONE EN	D STRESSING	
RECOMM	ENDED BY	APPROVED BY	1992
	S. hat	N. K. Rukan	DRG NO.
	(D.K. RASTOGI) S.E.	(M.K. MUKHERJEE) C.E.	SD/401 SHEET NO. 2

DESCRIPTION

REVISION

GOVERNMENT OF INDIA

MINISTRY OF SURFACE TRANSPORT

(ROADS WING), NEW DELHI

BY

MKD

DATE

BILL OF QUANTITIES (PER SPAN) FOR STANDARD PLANS FOR HIGHWAY BRIDGES PRESTRESSED GIRDER & RCC SLAB SUPERSTRUCTURE (WITH PRESTRESSING CABLES COMPRISING OF STRANDS)

S. No.	Item	MOST Specs.	Unit		QUANT	ITY	
		Section No.		30m span without footpath	30m span with footpath	35m span with footpath	40m span without footpath
1.	Cement Concrete Prestressed M40	1500 1700 1800	M³	214.00	263.00	320.62	318.00
2.	Steel Reinforcement S415 for item 1	1600	t	27.99	37.37	46.82	38.96
3.	Prestressing Tendons incl. ancillaries	1800	t	5.69	6.62	8.41	9.81
4.	Elastomeric Expansion Joints	2100	m	18.36	23.66	23.66	18.36
5.	Asphaltic Wearing Coat	2200 512, 515	m²	241.50	241.50	278.25	316.50
6.	Railings	1500 1600 1700 2200	m	64.40	64.40	74.30	84.40
7.	Drainage Spouts	2200	nos.	10	10	12	14
8.	Steel Bearing (i) Rocker Bearing (ii) Rocker-cum- Roller Bearings	2000	nos. nos.	3 3	3 3	3 3	3 3

Note: Quantities mentioned above are applicable to Drawings issued in Vol. I as well as Vol. II Part 1.

CABLE	15	250	14	000	13	000	12	2000	11	000	10	000	90	000	1	8000	70	00	60	000	5	000	4	000	3	000	2	000	10	00		0
NO	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z	Ý	Z	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z
1	269	+165	175	+181	130	+263	115	+300	115	+300	115	+300	115	+300	115	+300	115	+300	115	+300	115	+300	115	+300	115	+300	115	+300	115	+ 300	115	+30
2	269	-165	175	-181	130	-263	115	-300	115	-300	115	-300	115	-300	115	-300	115	-300	115	-300	115	-300	115	-300	115	-300	115	-300	115	-300	115	-30
3	584	+165	441	+154	344	+150	264	+150	201	+150	155	+150	126	+150	115	+150	115	+150	115	+150	115	+150	115	+150	115	+150	115	+150	115	+150	115	+15
4	584	-165	441	-154	344	-150	264	-150	201	-150	155	-150	126	-150	115	-150	115	-150	115	-150	115	-150	115	-150	115	-150	115	-150	115	-150	115	-15
5	1386	0	1229	0	1113	0	1005	0	906	0	816	0	734	0	661	0	596	0	540	0	493	0	454	0	424	0	402	0	389	0	385	0
6	1802	0	1608	0	1464	0	1330	0	1207	0	1095	0	993	0	902	0	822	0	753	0	694	0	646	0	608	0	581	0	565	0	560	0

N
N
IN
IN

Emergence

angle (0)

(Degree)

4.596

6.688

7.191

8.906

NOTES..... 1. The stressing or live anchorages of all the cables will be located at same end of the girder. 2. The length of cables indicated are measured along profile between end faces of precast girder. Additional length required for attaching jack at live end is to be added in consultation with system manufacturer. 3. The extensions indicated are for portion of cables lying between end faces of precast girder. Additional extension for portion lying between end face and gripping point of jack at stressing end is to be added (approx.7mm/m) 4. The extensions are based on the following data: i) Wobble coefficient k = 0.0046/mii) Friction coefficient L= 0.25 iii) Modulus of Elasticity of steel in strand , Es= 1.95×10⁵ MPa 5. The sequence of stressing of prestressing cables shall be as follows: Stage 1. Nos 6,1,2,3 and 4 (14th day after casting of girder.) Stage 2. No.5 (56th day after casting of girder or 35th day after casting deck slab whichever is later). Superimposed dead loads will be placed immediately after stage 2 prestressing 6. All cables are to have smooth profile (without kinks) passing through given ordinates and firmly supported at every 1.0m interval as shown. 7. For other details refer following drawings: i) General Notes : Drg. No. SD/401 (sheet 1 & 2). ii) Dimensions & Anchorage Details : Drg. No. SD/311. iii) Reinforcement in Deck slab & Kerbs: Drg. No. SD/313. Reinforcement in Main Girders: iv) Drg. No. SD/314. Reinforcement in End Cross Girders : V) Drg. No. SD/ 315, vi) Reinforcement in Intermediate Cross Girders: Drg. No. SD / 316. vii) Schedule of Reinforcement Drg. No. SD/ 317 (sheet 1,2&3)

MKD	DATE	DESC	RIPTION	BY
		REV	/ISION	
	MINIST	RY OF SURF	ACE TRANSP	
	STANDA	RD DRAWINGS	FOR ROAD BRI	DGES
	COM 30.0	POSITE SUI	ND RC SLAB PERSTRUCTU OUT FOOTPATH ING CABLES	
		ONE END S	STRESSING	
RECO	OMMENDE	Landard	APPROVED BY	1992
RECO		Landard		1992 DRG. NO

M	$\cap T$	ΈS		
14	U1	E J		 •

- 1 The stressing or live anchorages of all the cables will be located at same end of the girder.
- 2. The length of cables indicated are measured along profile between end faces of precast girder. Additional length required for attaching lack at live end is to be added in consultation with system manufacturer.
- 3. The extensions indicated are for portion of cables lying between end faces of precast girder Additional extension for portion lying between end face and gripping point of jack at stressing end is to be added (approx.7mm/m)
- 4. The extensions are based on the following data
- i) Wobble coefficient k = 0.0046/m
- ii) Friction coefficient L= 0.25
- iii) Modulus of Elasticity of steel in strand, Es=1.95 x 10⁵Mpa
- 5. The sequence of stressing of prestressing cables shall be as follows:
- Stage 1 Nos 6, 1, 2, 3 and 4 (14th day after casting of girder)
- Stage 2 No.5,7 (56th day after casting of girder or 35th day after casting of deck slab whichever is later) Superimposed dead loads will be placed immediately after stage 2 prestressing
- 6. All cables are to have smooth profile without kinks passing through given ordinates and firmly supported at every 1.0m interval as shown.
- 7. For other details refer following drawings. i) General Notes:
 - Drg. no. SD/401(sheet 1&2)
 - ii) Dimension & Anchorage Details. Drg.no. SD/ 321
 - iii) Reinforcement in Deck slab, kerbs and Footpaths. Drg. no. SD/323
 - iv) Reinforcement in main Girders.

1

1. 1.

- Drg. no. SD/324 v) Reinforcement in End Cross Girders. Drg. no SD/325
- vi) Reinforcement in Intermediate Cross Girders. Drg. no. SD/ 326
- vii) Schedule of Reinforcement. Drg. no. SD/327 Sheets (1, 2 & 3)

MKD	DATE	DES	RIPTION	BY
		RE	ISION	
	MINIST		AT OF INDIA ACE TRANSP NEW DELH	
	STANDA	RD DRAWINGS	FOR ROAD BRI	DGES
	CON 30	PRESTRESS	ND RC SLAP PERSTRUCTU TH FOOTPATHS ING CABLES STRESSING	RE
REC	OMMEND	ED BY	APPROVED BY	1992
		D.K.RASTOGI) S.E	M.K. Rulking (M.K.MUKHERJEE) C.E.	DRG NO

- 1. The stressing or live anchorages of all the cables will be located at same end of the girder.
- 2. The length of cables indicated are measured along profile between end faces of precast girder. Additional length required for attaching jack at live end is to be added in consultation with system manufacturer.
- 3. The extensions indicated are for portion of cables lying between end faces of precast girder Additional extension for portion lying between end face and gripping point of jack at stressing end is to be added (approx.7mm/m)
- 4. The extensions are based on the following data: i) Wobble coefficient k = 0.0046/m
- ii) Friction coefficient $\mu = 0.25$
- iii) Modulus of Elasticity

of steel in strand, $Es = 1.95 \times 10^{5} MPa$

- 5. The sequence of stressing of prestressing cables shall be as follows
 - Stage 1. Nos 5,1,2,3,4 and 8 (14th day after casting of girder.)
 - Stage 2. Nos 6 and 7 (56 th day after casting of girder or 35th day after casting of deck slab whichever is later). Superimposed dead loads will be Placed immediately after stage 2 Prestressing.
- 6. All cables are to have smooth profile (without kinks) passing through given ordinates and firmly supported at every 1.0 m interval as shown.
- 7. For other details refer following drawings :
- i) General Notes: Drg. NO. SD/401(sheet 1&2) ii) Dimensions & Anchorage Details
- Drg. No. SD/ 331
- iii) Reinforcement in Deck slab, Kerbs and Footpaths Drg. No. SD/333.
- iv) Reinforcement in Main Girders Drg. No. SD / 334
- v1 Reinforcement in End Cross Girders Drg. No. SD / 335
- vi) Reinforcement in Intermediate Cross Girders Drg. No. SD/336
- vii) Schedule of Reinforcement Drg. No. SD / 337 (Sheet 1,2 & 3)

IKD	DATE	DESC	RIPTION	BY
		REV	VISION	
I	MINIST		T OF INDIA CE TRANSP , NEW DELH	
	STANDA	RD DRAWINGS	FOR ROAD BRI	DGES
	CON 35.0	POSITE SU SPAN WITH	ND RC SLAB IPERSTRUCT FOOTPATHS ING CABLES STRESSING	URE
RECO	MMENDE	ED BY	APPROVED BY	1992
		D.K. RASTOGI)	M.K. Mukher JEE)	DRG. NO. SD/432

00	
2	
00	
00	
50	
50	
50	
0	

15	-	11	U	
	-	н		

- 1 The stressing or live anchorages of all the cables will be located at same end of the girder.
- 2. The length of cables indicated are measured along profile between end faces of precast girder. Additional length required for attaching jack at live end is to be added in consultation with system manufacturer.
- 3. The extensions indicated are for portion of cables lying between end faces of precast girder. Additional extension for portion lying between end face and gripping point of jack at stressing end is to be added (approx.7mm/m)
 - 4. The extensions are based on the following data i) Wobble coefficient k = 0.0046 / m
 - ii) Friction coefficient L= 0.25
 - iii) Modulus of Elasticity Es=1.95x10² MPa of steel in strand,
 - 5. The sequence of stressing of prestressing cables shall be as follows. Stage 1. Nos 1, 2, 3, 4, 5 and 8(14 th day after
 - casting of girder)
 - No 6 and 7 (56th day after casting of girder or 35th day after casting Stage 2. deck slab whichever is later) Superimposed dead loads will be placed immediately after stage 2 prestressing.
 - 6. All cables are to have smooth profile (without kinks) passing through given ordinates and firmly supported at every 1.0m interval as shown.
 - 7. For other details refer following drawings. General Notes i) Drg. No. SD/401 (sheet 1 & 2) Dimensions & Anchorage Details. ii)
 - Drg. No. SD/ 341
 - iii) Reinforcement in Deck slab & Kerbs-Drg. No. SD/ 343.
 - iv) Reinforcement in Main Girders: Drg. No. SD/ 344
 - v) Reinforcement in End Cross Girders: Drg. No. SD/ 345
 - vi) Reinforcement in Intermediate Cross Girders Drg. No. SD / 346
 - vii) Schedule of Reinforcement Drg. No. SD 347 (sheet 1,2&3)

MKD	DATE	DE	SCRIPTION	BY
		RE	VISION	
	MINIST		CE TRANS	
	STANDAR	RD DRAWINGS	FOR ROAD B	RIDGES
	COM 40.0m	SPAN WITH	ND RC SLAE PERSTRUCTU DUT FOOTPAT NG CABLES STRESSING	JRE
REC	OMMENDE	D BY	APPROVED BY	1992
		(D.K.RASTOGI)	M.K. MUKHERJEE	DRG.NO.

C)
1	Z
5	+300
5	-300
5	+150
5	-150
5	0
90	+150
0	-150
55	0

PART 2. MULTI-WIRE SYSTEM

(A) GENERAL

1. These notes are applicable for the Standard Drawings for Prestressed Concrete Girders and RC Slab Type Composite Superstructure with and without footpaths.

2. The drawings are applicable only for right bridges.

- 3. The design is according to the following Codes:
- I IRC: 5-1985
- II IRC: 6-1966 (1981 Print)
- III IRC: 18-1985
- IV IRC: 21-1987
- V IRC: 22-1986
- VI IRC: 83- 1982 (Part 1)
- VII IRC: SP: 33-1989

4. All dimensions are in mm. Only written dimensions shall be followed. No drawing shall be scaled.

5. Public utility services (except water supply and sewerage), if required, shall be carried over the bridge through 150 mm dia ducts provided in the footpaths. Total load of such services shall not be more than 1.0 kN/m on each footpath.

6. Bituminous wearing coat shall comprise the following:

- A layer of mastic asphalt, 6 mm thick (12 mm for high rainfall area) after applying a prime coat over the top of the deck before the wearing coat is laid.
- (ii) 50 mm thick asphaltic concrete wearing coat in two layers of 25 mm each.
- Note 1. For high traffic density, an alternative specification for wearing course comprising 40 mm bituminous concrete overlaid with 25 mm thick bitumen mastic layer can be adopted.
- Note 2. All the work of wearing coat may be done as per Section 500 of MOST's Specification.

7. The following loads have been considered in the design:

- One lane of IRC Class 70R or two lanes of IRC Class A on carriageway, whichever governs.
- (ii) Footpath load of 5 kN/sq.m. for superstructure having footpaths.
- (iii) Wearing Coat load of 2 kN/sq.m.

8. The designs are applicable for "moderate" and "severe" conditions of exposure. In case of "severe" conditions suitable anti-corrosion treatment as approved by Engineer-in-Charge may be provided to reinforcement bars and exposed concrete surface.

(B) MATERIALS SPECIFICATIONS

Concrete

 Concrete shall be design mix and have minimum 28 days characteristic strength of 40 MPa on 150 mm cubes for all elements of superstructure.

2. Ordinary Portland Cement conforming to IS: 269 or High strength Ordinary Portland cement conforming to IS: 8112 capable of achieving the required design concrete strength shall only be used.

3. To improve workability of concrete and cement grout, admixtures conforming to IS: 6925 and IS: 9103 could be permitted subject to satisfactory proven use. Admixtures generating hydrogen, nitrogen, chlorides, etc., should not be used.

4. Cement content in concrete shall neither be less than 400 kg/cu. m. nor more than 540 kg/cu. m. of concrete.

5. Maximum water cement ratio shall be as follows:

Deck Slab 0.40; Precast Girder 0.40

Reinforcement

6. Reinforcing Steel shall be of HYSD bars (Grade designation S:415) conforming to IS: 1786.

Prestressing Steel and Accessories

7. Cable consisting of 42 nos. of 7.0 mm dia wire as per IS: 1785-1983 (Part I) shall be used for main prestressing.

8. For future prestressing, single 12.7 mm dia 7ply Class 2 Strand as per IS: 6006-1983 shall be used.

9. The prestressing steel and accessories shall be subjected to an acceptance test prior to their actual use on the works (Guidance may be taken from BS: 4447). Direct and indirect force measurement device (e.g. Pressure Gauge) to be attached in consultation with system manufacturer.

Sheathing

10. Sheathing shall be of "Drossbach" type 75 mm ID manufactured from minimum 0.4 mm thick bright metal strip. It shall be tested as per IRC: 18-1985, *Appendix-1*.

Water

11. Water to be used in concreting, grouting and curing shall conform to Clause 5.1 (ii) of IRC: SP: 33-1989.

Expansion Joints

12. Expansion joints must be robust, durable, watertight and replaceable. It must be provided over the full width of deck and follow the profile including kerb, footpath (where relevant) and facia. Expansion joints shall be obtained only from approved manufacturers and be of proven type. Details of expansion joints may be got approved before commencement of construction. Site fabricated expansion joints shall be prohibited.

13. Expansion joints shall have the following additional essential features:

- (a) It shall cater for a total movement of ± 40 mm.
- (b) It shall be provided with a waterproof membrane to ensure against leakage below the joint.
- (c) It shall have a cushion of elastomer to enable absorption of shock transmitted by vehicles.

14. Fabricated steel parts shall be positioned accurately before concreting the portion of deck slab beyond the end faces of the main girders.

15. Presence of manufacturer's representative at the time of positioning of embedded parts and installation of expansion joints is mandatory.

16. The initial gap between the adjacent movable concrete faces shall be fixed in consultation with the manufacturer of the expansion joint. However, the initial gap shall not be less than 38 mm at the time of concreting.

MKD	DATE	DESCRIPTION	BY				
	REVISION						
М	INISTRY C	ERNMENT OF IN OF SURFACE TH S WING), NEW	RANSPORT				
STA	NDARD DR	AWINGS FOR RO	DAD BRIDGES				
	PSC GIRDER AND RC SLAB COMPOSITE SUPERSTRUCTURE WITH AND WITHOUT FOOTPATHS GENERAL NOTES						
MUL	TI-WIRE S	YSTEM (ONE END	O STRESSING)				
RECO	RECOMMENDED BY APPROVED BY DEC. 1993						
	Sd/- (D.K. RAST S.E.	GGI) (M.R. KACHHW C.E.	AHA) SD/501 SHEET NO. 1				

(C) CONSTRUCTION

Sequence

Day Activity (After casting of main girders)

14	Stressing of 1st stage cables
21	Casting of cross girders and deck slab except its portion beyond the end faces of main girders
49	Casting of portion of the deck slab beyond the end faces of main girders and casting of superimposed dead loads other than wearing coat
56	Stressing of 2nd stage cables
After 56	Laying of wearing coat

Stressing of 1st stage cables can be done earlier on achieving a strength of 35 MPa. Subsequent activities can also be advanced keeping the same time intervals.

2nd stage cables shall be stressed progressively one at a time in the three girders.

Launching Truss

The design is based on cast-in-situ construction. However, launching of girders may be permitted forwhich the load from leg of launching truss should not exceed the value given in relevant drawing.

(D) WORKMANSHIP/DETAILING

1. Minimum cover to any reinforcement shall be 50 mm unless shown otherwise in the drawing.

2. For ensuring proper cover of concrete to reinforcement bars, specially made polymer cover blocks shall only be used.

3. Construction joints shall be provided at locations shown in drawings.

4. Welding of reinforcement bars shall not be permitted.

5. Bending of reinforcement bars to be as per IS: 2502-1963.

6. Minimum lap length shall be kept as 63 d where "d" is the diameter of bar.

7. Supporting chairs of 12 mm dia. shall be provided at suitable intervals, as per IS: 2502.

8. Sharp edges of concrete shall be chamfered (10 mm x 10 mm).

9. Shuttering plates shall suitably be stiffened to enable the compaction by form vibrators.

10. Full width screed vibrator shall be used for compaction of concrete in deck slab.

11. The jacking force in each cable is 1776. 3 kN. to be imparted at one end of the girder using multipull jack.

12. The following properties have been considered in the design:

- (i) Area of one wire = 38.48 mm^2
- Area of one cable = 1616.3 mm² (ii)
- Wobble coefficient, k = 0.0091 rad/m (iii)
- (iv) Friction coefficient, $\mu = 0.25$
- Modulus of elasticity of steel in wires = 2.1*105 (v) MPa
- (vi) Slip = 0 to 6 mm.

13. Minimum strength of concrete at the time of tensioning of cables shall be 35 MPa or as recommended by system manufacturer, whichever is higher.

14. Grouting shall be carried out as per Appendix 2 of IRC: 18-1985.

15. For future prestressing in case of bridge distress. single 12.7 mm dia 7-ply Class 2 strand as per IS: 6006-1983 shall be used. The tensioning force per strand shall not exceed 128.6 kN. Mono strand jack shall be used for tensioning of strand utilising approved prestressing system only. The externally placed strands shall be protected by polyethylene sheathing and grouted.

16. The location of jacks for lifting up the superstructure to replace bearing etc., is shown thus 1. This shall be distinctly etched on end crossgirders and pier/abutment caps.

(E) REFERENCE TO DRAWINGS

Drawing No.	Title
SD/302	General Arrangement
SD/303	Details of wearing coat and drainage system
SD/304	Details of RCC Railing for Superstructure without footpaths
SD/305	Details of RCC Railing for Superstructure with footpaths

Details of Bearings SD/306 (Sheets 1, 2 & 3)

In case any other type of railing is used, prior approval shall be obtained.

(F) SPECIAL NOTE FOR PRESTRESSING

If the calculated elongation is reached before the calculated gauge pressure is obtained, continue tensioning till attaining the calculated gauge pressure, provided the elongation does not exceed 1.05 times the calculated elongation. If this elongation is achieved before the calculated gauge pressure is attained, stop stressing and inform the engineer.

If the calculated elongation has not been reached continue tensioning by intervals of 5 kg/sq. cm. until the calculated elongation is reached provided the gauge pressure does not exceed 1.05 times the calculated gauge pressure.

If the elongation at 1.05 times the calculated gauge pressure is less than 0.95 times the calculated elongation, the following measures must be taken, in succession, to define the cause of this lack of elongation.

- Recalibrate the pressure gauge •
- Check the correct functioning of the jack, pump . and leads
- De-tension the cable. Slide it in its duct to check that it is not blocked by mortar which has entered through holes in the sheath. Re-tension the cable, if free.

If the required elongation is not obtained, further finishing operations such as cutting or sealing, should not be undertaken without the approval of the engineer.

MKD	DATE	DESCRIPTION	BY			
		REVISION	5-			
GOVERNMENT OF INDIA MINISTRY OF SURFACE TRANSPORT (ROADS WING), NEW DELHI						
STA	NDARD DR	AWINGS FOR RC	AD BRIDGES			
PSC GIRDER AND RC SLAB COMPOSITE SUPERSTRUCTURE WITH AND WITHOUT FOOTPATHS GENERAL NOTES						
MUL	TI-WIRE SY	STEM (ONE END	STRESSING)			
RECOMMENDED BY APPROVED BY DEC. 1993						
	D. But	m.R.y Collor	DRG NO.			

BILL OF QUANTITIES (PER SPAN) FOR STANDARD PLANS FOR HIGHWAY BRIDGES PRESTRESSED GIRDER & RCC SLAB SUPERSTRUCTURE (WITH PRESTRESSING CABLES COMPRISING OF 7 MM DIA WIRES)

S. No.	Item	MOST SPECS.	UNIT		QUAN	TITY	
		Section No.		30 m span without footpath	30 m span with footpath	35 m span with footpath	40 m span without footpath
1.	Cement Concrete Prestressed M40	1500 1700 1800	m³	214.00	263.00	320.62	318.00
2.	Steel Reinforcement S415 for item 1	1600	t	27.99	37.37	46.82	38.96
3.	Prestressing Tendons incl. ancillaries	1800	t	7.19	8.39	11.14	12.66
4.	Elastomeric Expansion Joints	2100	m	18.36	23.66	23.66	18.36
5.	Asphaltic Wearing Coat	2200 512, 515	m²	241.50	241.50	278.25	316.50
6.	Railings	1500 1600 1700 2200	m	64.40	64.40	74.30	84.40
7.	Drainage Spouts	2200	nos	10	10	12	14
8.	Steel Bearing (i) Rocker Bearing (ii) Roller-cum- Roller Bearings	2000	nos nos	3 3	3 3	3 3	3 3

- 1. The location of jacks for lifting up the superstructure to replace bearingsetc is shown thus . These should be distinctly etched on the end cross girder and pier/abutment cap.
- 2 Anchorage recesses to be sealed with prepackaged non-shrink mortar. The end faces of girders to be coated with 2 coats of epoxy with a total dry film thickness of not less than 150 microns.
- 3. Maximum reaction to any jack under lifting condition is 1510 kN
- 4. During jacking operation both jacks placed under one end cross girder shall be operated simultaneously using stress control system so as to ensure that the reaction on both the jacks is equal at all times.

- 6. Holes in end cross girders and intermediate cross girders at places shown in this drawing shall be left during construction for inserting strands for future prestressing if any.
- 7. For other details refer following drawings: i) General Notes:

Drg.no. SD/501(Sheets 1 & 2)

- Prestressing cables Drg no. SD / 512.
- iii) Reinforcement in deck slab and kerb Drg.no. SD/313.
- iv) Reinforcement in main girders Drg. no. SD/ 314
- v) Reinforcement in end cross girders Drg. no. SD/ 315
- vi) Reinforcement in intermediate cross girders Drg.no. SD / 316
- vii) Schedule of reinforcement Drg.no. SD / 317 (Sheets 1, 2 & 3)

MKD	DATE	DESCR	PTION	BY
		REVIS	SION	
N	INISTR		T OF INDIA ACE TRANSPO NEW DELHI	ORT
	STANDA	DRAWINGS	FOR ROAD BRI	DGES
DI	CON 30	POSITE SU	ND R C SLAB PERSTRUCTU HOUT FOOTPATH NCHORAGE	RE IS
MU	LTI-WIF	RE SYSTEM	ONE END STR	ESSING)
RECO	MMENDE	D BY	APPROVED BY	DEC. 1993
		D. Resto	M.R.C. Edlarah	DRG. NO.

. .

NOTES

1.	The length of cables indicated are measured
	along profile between the outer faces of anchorage
	bearing plates. The actual cutting length of wires
	shall be calculated in consultation with the manufacturer of the prestressing system.
	manoracies of the presidessing system.

- 2. The extensions indicated are for portion of cables lying between the outer faces of anchorage bearing plates.
- 3. The extensions are based on the following data: i) Wobble coefficient, k = 0.0091 rad/m
 - ii) Friction coefficient h = 0.25
 - iii) Modulus of Elasticity
 - of steel (H.T wires), Es = 2.1 × 10° MPa
- 4. The sequence of stressing of prestressing cables shall be as follows :
- Stage 1. Cable Nox 3, 4, 6, 2, 1 (14th day after casting of girder.)
- Stage 2. Cable No. 5 (56th day after casting of girder or 35th day after casting deck slab whichever is later)
- 5. All the cables shall be stressed from one end of the girder.
- 6. All cables are to have smooth profile (without kinks) passing through given ordinates and firmly supported at every 1.0m interval as shown.
- 7. For other details refer following drawings
- i) General Notes:
- Drg. No. SD/ 501 (sheet 1 & 2)
- ii) Dimensions & anchorage details Drg.No. SD/511
- iii) Reinforcement in deck slab & kerbs Drg. No. SD/313
- iv) Reinforcement in main girders Drg. No. SD/ 314
- v) Reinforcement in end cross girders Drg No SD/ 315
- vi) Reinforcement in intermediate cross girders Drg No. SD/ 316
- vii) Schedule of reinforcement
- Drg. No. SD/ 317 (Sheets 1, 2 & 3)

(I	1			1
MKD	DATE	DES		BY
		710-7270	VISION	
	MINIST	RY OF SURF	ACE TRANS	
	STANDA	RD DRAWINGS	FOR ROAD BR	IDGES
MU	CON 30 n PR	APOSITE SU D. SPAN WIT ESTRESSING	AND R C SLA IPERSTRUCTI HOUT FOOTPA G CABLES	URE
INIO				RESSING
RECO	MMENDE	1 2	APPROVED BY	DEC. 1993
		D.K.RASTUGI	M.R.KACHHWAHA	DRG NO.

<u></u>
Z
•300
-300
150
-150
0
0

- 1 The location of jacks for lifting up the superstructure to replace bearings etc is shown thus 😭 . These should be distinctly etched on the end cross girders and pier / abutment cap.
- 2 Anchorage recesses to be sealed with prepackaged non-shrink mortar. The end faces of girders to be coated with 2 coats of epoxy with a total dry film thickness of not less than 150 microns.
- 3 Maximum reaction to any jack under lifting condition is 1810 kN.
- 4 During jacking operation both jacks placed under one end cross girder shall be operated simultaneously using stress control system so as to ensure that the reaction on both the jacks is equal at all times.
- 5 The precast girder is safe for a maximum reaction of 950 kN from leg of moving launching truss.
- 6 Holes in end cross girders and intermediate cross girders at places shown in this drawing shall be left during construction for inserting strands for future prestressing if any.
- 7 For other details refer following drawings:
 - i) General notes: Drg. no. SD/501 (Sheets 1 & 2)
 - ii) Prestressing cables. Drg. no. SD/522
 - iii) Reinforcement in deck slab, kerb and footpaths Drg. no. SD / 323
- iv) Reinforcement in main girders Drg. no. SD/ 324
- v) Reinforcement in end cross girders Drg. no. SD / 325
- vi) Reinforcement in intermediate cross girders Drg. no. SD / 326
- vii) Schedule of reinforcement Drg. no. SD/327 (Sheets 1, 2 & 3).

HORAGE										
	MKD	DATE	DESCR	IPTION	BY					
			REVI	SION						
16	N	INIST		T OF INDIA ACE TRANSP , NEW DELH						
		5TANDA	RD DRAWINGS	FOR ROAD BR	DGES					
300+16=316 50(TYP)	DI	COMI 30	POSITE SUP	ND RC SLAD PERSTRUCTU FOOTPATHS ANCHORAGE	RE					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MULTI-WIRE SYSTEM (ONE END STRESSING)									
VVVVV	RECO	MMENDE	D BY	APPROVED BY	MARCH 1994					
16 SPIRAL			D.K. RASTOGI	MR. KACHHWAH	DRG. NO.					

NOTES			
along prof bearing pl shall be co	ile between t ates. The actu alculated in c	dicated are med he outer faces ial cutting leng onsultation wi restressing system	of anchorage th of wires th the
cables ly		ted are for po the outer fac tes.	
i) Wobble ii) Frictio iii) Modulu of ste	e coefficient on coefficient is of Elastic el (H.Twines)		l /m IPa
	is follows: Cable No.3	, 4, 7, 2, 1 (14) ng of girder)	
Stage 2.	Cable No. casting of	6,5 (56th day girder or 35th ng of deck sl	h day
5. All the ca of the gird		e stressed from	n one end
kinks) pas	ssing through	smooth profile given ordinate: ery 1.0m intervo	s and
 i) Generation Drg.nation ii) Dimenion Drg.nation iii) Reinfoot foot prg.nation iv) Reinfoot Drg.nation v) Reinfoot Drg.nation vi) Reinfoot Drg.nation vi) Reinfoot Drg.nation vi) Reinfoot Drg.nation vi) Schedit 	al Notes: 5. SD/501 (she sions & ancho 5. SD/521. reement in d aths. .SD/323 reement in me 5. SD/324 reement in er 5. SD/325 reement in ir 5. SD/325 reement in ir 5. SD/326 hule of reinfo	orage details leck slab, kerbs ain girders nd cross girder ntermediate cros	and s.
		-	
MKD DATE		CRIPTION	BY
		ISION	
		AT OF INDIA	PORT
		NEW DELH	Cherry Course of the
STANDA	RD DRAWINGS	FOR ROAD BR	DGES
COM 31	POSITE SU Dm. SPAN V PRESTRESS	AND RC SLA JPERSTRUCT WITH FOOTPATHS ING CABLES	URE
MULTI-WI	RE SYSTEM	(ONE END S	
RECOMMENDE		APPROVED BY	MARCH 1994
	(D. K. RASTOGI) S.E.	M.R.KACHHWAHA) (M.R.KACHHWAHA) C.E.	DRG-ND.

Z -150 0

-6 THK

MASTIC

6

DECK SLAB

- 1. The location of jacks for lifting up the superstructure to replace bearings etc is shown thus These should be distinctly eatched on the end cross girder and pier / abutment cap.
- 2. Anchorage recesses to be sealed with prepackaged non-shrink mortar. The end faces of girders to be coated with 2 coats of epoxy with a total dry film thickness of not less than 150 microns.
- 3. Maximum reaction to any jack under lifting condition is 2220 kN.
- 4. During jacking operation both jacks placed under one end cross girder shall be operated simultaneously using stress control system so as to ensure that the reaction on both the jacks is equal at all times.
- 5. The precast girder is safe for a maximum reaction of 1100 kN from leg of moving launching truss.

Holes in end cross girder and intermediate cross girders at places shown in this drawing shall be left during construction for inserting strands for future prestressing if any.

For other details refer following drawings

- i) General notes Drg. no. SD/501 (Sheets 1 & 2)
- ii) Prestressing cables: Drg. no. SD/532
- iii) Reinforcement in deck slab, kerb and footpaths Drg. no. SD / 333
- iv) Reinforcement in main girders Drg. no. SD/334
- v) Reinforcement in end cross girders Drg. no. SD / 535
- vi) Reinforcement in intermediate cross girders Drg. no. SD/336
- vii) Schedule of reinforcement Drg. no. SD/337 (Sheets 1,2 & 3)

	MKD	DATE	DES	CRIPTION	BY					
NCHORAGE			RE	EVISION						
1	GOVERNMENT OF INDIA MINISTRY OF SURFACE TRANSPORT (ROADS WING), NEW DELHI									
B	STANDARD DRAWINGS FOR ROAD BRIDGES									
300+16=316 50(TYP)	PSC GIRDER AND RC SLAB COMPOSITE SUPERSTRUCTURE 35m. SPAN WITH FOOTPATHS DIMENSIONS AND ANCHORAGE DETAILS									
WWW	MU	LTI WI	RE SYSTEM	ONE END ST	RESSING					
	RECOMMENDED BY APPROVED BY MARCH									
[16 SPIRAL			D.K.RASTOGI S.E	M.R. KACHHWAHA	DRG. NO. SD/531					

												O	RDIN	IATE	ES	AT	DIS	TAN	ICE	'X'	(mr	n)	FRC	M	MID	SP	AN											
CABLE	17	710	170	000	16	000	15	000	14	4000	13	3000	12	000	n	000	10	000	9	000	-8	000	7	000	60	000	50	000	4	000	3	000	20	000	10	00	0.0	000
NO	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z	Y	Z
1	300	+140	234	+ 140	144	• 154	115	• 300	115	•300	115	+300	115	+300	115	+300	115	+300	115	+300	115	+300	115	+300	115	+300	115	+300	115	+300	115	+ 300	115	+300	115	+300	115	+300
2	300	-140	234	- 140	144	- 154	115	-300	115	-300	115	-300	115	-300	115	-300	115	-300	115	-300	115	-300	115	-300	115	-300	115	-300	115	-300	115	-300	115	-300	115	-300	115	-300
3	580	+ 140	488	+ 140	360	+150	252	+150	176	+150	130	+150	115	+150	115	+150	115	+150	115	+150	115	+150	115	+150	115	+150	115	+150	115	+150	115	+150	115	•150	115	+150	115	+150
4	580	-140	488	- 140	360	-150	252	-150	176	-150	130	-150	115	-150	115	-150	115	-150	115	-150	115	-150	115	-150	115	-150	115	-150	115	-150	115	-150	115	-150	115	-150	115	-150
5	1065	0	913	0	699	0	511	0	359	0	243	0	165	0	123	0	115	0	115	0	115	0	115	0	115	0	115	0	115	0	115	0	115	0	115	0	115	0
6	1465	0	1277	0	1012	0	779	0	592	0	449	0	352	0	300	0	290	+9	290	+ 118	290	+150	290	+150	290	+150	290	+150	290	•150	290	+150	290	+150	290	+150	290	+150
7	1865	0	1698	0	1464	0	1245	0	1049	0	875	0	724	0	595	0	489	-		-	345	-	-				-		+	+	+	+	-		-	-150	-	-
8	2450	0	2297	0	2083	0	1877	0	1685	0	1506	0	1340	0	1187	0	1048	0	922	0	809	-	-	0		-	-	0	+	+	-	-	412	-	392		385	-

CABLE

\$100 1000 c/c APPROX.

no.	Length (mm)	Extension (mm)	Emorgence angle (deg.)
1 & 2	35470	133.6	5.3
3 & 4	35470	139.7	7.35
5	35580	151.3	12.1
5	35680	140.1	14-86
7	35720	1.41.7	13.22
3	35740	152.5	12.13

LEGEND :-

V

 INDICATES START OF CURVE IN ELEVATION. INDICATES END OF CURVE IN ELEVATION. INDICATES START OF CURVE IN PLAN. INDICATES END OF CURVE IN PLAN. INDICATES END OF CABLE. 		
ELEVATION. 	\rangle	
PLAN.	7	and the second sec
PLAN.]	
	>	
][HNDICATES END OF CABLE.

	NOTES
	 The length of cables indicated are measured along profile between the outer faces of anchorage
METRICAL	bearing plates. The actual cutting length of wires
	shall be calculated in consultation with the manufacturer of the prestressing system.
	2. The extensions indicated are for portion of
	cables lying between the outer faces of anchorage bearing plates.
	unchorage bearing plates.
8	3. The extensions are based on the following data:
)(2)(3)(4)(5)	i) Wobble coefficient, k = 0.0091 rad/m
/0000	ii) Friction coefficient, $\mu = 0.25$
	iii) Modulus of Elasticity of steel (H.T wires) = 2.1 x 10 ⁵ MPa
	4. The sequence of stressing of prestressing cables shall be as follows :
	Stage 1 Cable No. 3, 4, 8, 5, 2,1 (14 th day after casting of girder)
	Stage 2 Cable No. 6.7 (56th day after
r - 36	casting of girder or 35 th day after casting of deck slab whichever is later.)
-5 (8) -47	5. All the cables shall be stressed from one end
-2	of the girder.
	6. All cables are to have smooth profile(without
	kinks) passing through given ordinates and
Z	firmly supported at every 1.0m interval as shown.
	7. For other details refer following drawings
	i) General Notes: Drg no. SD/501(sheets 1&2)
	ii) Dimensions & anchorage details: Drg.No. SD/ 531
	iii)Reinforcement in deck slab, kerbs and footpaths
	Drg.No. SD/333
	iv)Reinforcement in main girders Drg.No.SD/334 v)Reinforcement in end cross girders
	Drg.No.SD/535
	vi)Reinforcement in intermediate cross girders.
	Drg.No. SD/336 vi)Schedule of reinforcement
	Drg.No. SD/337 (Sheets 1; 2 & 3)
8	
	MKD DATE DESCRIPTION BY
IN	
	GOVERNMENT OF INDIA MINISTRY OF SURFACE TRANSPORT
	(ROADS WING), NEW DELHI
E IN	STANDARD DRAWINGS FOR ROAD BRIDGES
IN	PSCGIRDER AND RCSLAB COMPOSITE SUPERSTRUCTURE
	35 m. SPAN WITH FOOTPATHS PRESTRESSING CABLES
	MULTI-WIRE SYSTEM (ONE END STRESSING)
	RECOMMENDED BY APPROVED BY MARCH 1994
₹.	(D.K. RASTOGI) (M.R.KACHHWAHA) SD/532
	(D.K. RAŠTOGI) (M.R.KACHHWAHA) S.E. C.E. SD/532

- The location of jacks for liffting up the superstructure to replace bearings etc is shown thus
 These should be distinctly etched on the cross girders and pier/abutment caps
- 2. For other details refer following drawings:
 - i) General Notes Drg. no. SD/501 (sheets 1 & 2)
 - ii) Dimensions & ancharage details Drg.no. SD/ 531
 - iii) Reinforcement in deck slab kerb and footpaths Drg. no. SD/333
 - iv) Reinforcement in main girders Drg. no. SD/334
 - v) Reinforcement in intermediate cross girders Drg. no. SD / 336
 - vi) Schedule of reinforcement Drg. no. SD/ 337 (sheets 1,2&3)

				1						
мкр	DATE	DESC	RIPTION	BY						
		RE	VISION							
	GOVERNMENT OF INDIA MINISTRY OF SURFACE TRANSPORT (ROADS WING), NEW DELHI									
	STANDARD DRAWINGS FOR ROAD BRIDGES									
	PSC GIRDER AND RC SLAB COMPOSITE SUPERSTRUCTURE 35m. SPAN WITH FOOTPATHS REINFORCEMENT IN END CROSS GIRDERS									
-	MULTI-WIRE SYSTEM (ONE END STRESSING)									
REC	UMMENDE	D BT	APPROVED BY	MARCH 1994						
		(D. K. RASTOGI) S.E.	M.R.KACHHWAHA (M.R.KACHHWAHA C.E.	DRG. NO. SD / 535						

- Anchorage recesses to be sealed with prepackaged non-shrink mortar. The end faces of girders to be coated with 2 coats of epoxy with a total dry film thickness not less than 150 microns.
- 3. Maximum reaction to any jack under lifting condition is 2205 kN.
- (H) + +++(H2) 4. During jacking operation both jacks placed under one end cross girder shall be operated simultaneously using stress control system so as to ensure that the reaction on both the jacks is equal at all times.
 - 5. The precast girder is safe for a maximum reaction of 990 kN from leg of moving launching truss.
 - 6. Holes in end cross girders and intermediate cross girders at places shown in this drawing shall be left during construction for inserting strands for future prestressing, if any.
 - 7. For other details refer following drawings :
 - i) General notes Drg. no. SD / 501 (Sheets 1&2).
 - ii) Prestressing cables Drg. no. SD / 542.
 - iii) Reinforcement in deck slab and kerb Drg. no. SD / 343.
 - iv) Reinforcement in main girders. Drg.no SD/ 344
 - v) Reinforcement in end cross girders. Drg. no. SD/ 545.
 - vi) Reinforcement in intermediate cross girders. Drg.no. SD/346.
 - vii) Schedule of reinforcement: Drg. no. SD/ 347 (Sheets 1, 2 & 3)

1

150

DETAIL-D

300+16=316 SQ(TYP) DIMENSIONS AND ANCHORAGE DETAILS WW

MULTI-WIRE SYSTEM (ONE END STRESSING) APPROVED BY RECOMMENDED MARCH 1994 BY (D.K RASTOGI) M.R.KACHHWAHAD DRG NO

SE

SD / 541

C.E

NOTES.

- 12345
 - 4(2)

	_	
	10	00
	Υ	Ζ
0	115	*300
00	115	-300
0	115	*150
0	115	-150
	115	0
50	290	•150
)	290	- 75
)	470	0

- 1. The length of cables indicated are measured along profile between the outer faces of anchorage bearing plates. The actual cutting length of wires shall be calculated in consultation with the manufacturer of the prestressing system.
- 2. The extensions indicated are for portion of cables lying between the outer faces of anchorage bearing plates.
- 3. The extensions are based on the following data: i) Wobble coefficient, k = 0.0091 rad/m
 - ii) Friction coefficient, lk = 0.25
 - iii) Modulus of Elasticity
 - of steel (H.Twires) Es = 2.1 x 10² Mpa
- 4. The sequence of stressing of prestressing cables shall be as follows:
 - Stage1. Cable no. 3, 4, 8, 5, 2,1(14th day after casting of girder)
 - Stage 2. Cable no. 6,7 (56th day after casting of girder or 35th day after casting of deck slab whichever is later.)
- 5 All the cables shall be stressed from one end of the girder.
- 6. All cables are to have smooth profile (without kinks) passing through given ordnotes and firmly supported at every 1.0 m interval as shown.
- 7. For other details refer following drawings. i) General Notes
 - Drg. no . SD / 501 (sheet 1 & 2) ii) Dimensions & anchorage details: Drg.no.SD/541
 - iii) Reinforcement in deck slab and kerb Drg. no. SD/343
 - iv) Reinforcement in main girders: Drg.no. SD/344
 - v) Reinforcement in end cross girders: Drg. no. SD/ 545
 - vi) Reinforcement in intermediate cross girders: Drg. no. SD/346
 - vii) Schedule of reinforcement Drg no SD/ 347 (Sheets 1 2 & 3)

1

31 -

MKD	DATE	D	ESCRIPTION	BY
		R	EVISION	
	MINIST	TRY OF SUR	NT OF INDIA RFACE TRANS G), NEW DE	PORT
	STANDA	ARD DRAWING	S FOR ROAD E	RIDGES
	40 40	MPOSITE S m. SPAN V PRESTRESS	R AND RC S SUPERSTRUC VITHOUT FOOTP SING CABLE	CTURE PATHS S
MU	JLII-WI	RESISIE	M (ONE END S	STRESSING
REC	OMMEND	ED BY	APPROVED BY	MARCH 1994
		D.K. RASTOG	M.R.K. CHWAHA	SD/542

NOTE S 1. The location of jacks for lifting up the superstructure to replace bearing etc is shown thus 📥 These should be distinctly etched on the cross girders and pier/abutment caps 2 For other details refer following drawings i) General Notes Drg.no. SD/501(sheets 1 & 2) ii) Dimension & anchorage details Drg. no. SD/541 iii) Reinforcement in deck slab and kerb Drg. no. SD/343 .iv) Reinforcement in main girders Drg. no. SD/344 v) Reinforcement in intermediate cross girders Drg.no.SD/346 FACE-B vi) Schedule of reinforcement Drg.no.SD/347 (sheets 1,2 & 3) FACE-B MKD DATE DESCRIPTION BY REVISION **GOVERNMENT OF INDIA** MINISTRY OF SURFACE TRANSPORT (ROAD WING), NEW DE LHI STANDARD DRAWING FOR ROAD BRIDGES PSC GIRDER AND RC SLAB COMPOSITE SUPERSTRUCTURE 40m. SPAN WITHOUT FOOTPATHS REINFORCEMENT IN END CROSS GIRDERS MULTI-WIRE SYSTEM (ONE END STRESSING) RECOMMENDED BY APPROVED BY MARCH 1994 M.R. KACHWAHAS SD/545 D.K. HASTOGI)

S.E