# MANUAL FOR QUALITY CONTROL IN ROAD & BRIDGE WORKS

Published by:

# **INDIAN ROADS CONGRESS**

Kama Koti Marg, Sector-6, R.K. Puram, New Delhi-110 022

NOVEMBER, 2017

Price : ₹ 1500/-(Plus Packing & Postage) First Published : November, 2017

(All Rights Reserved. No part of this publication shall be reproduced, translated or transmitted in any form or by any means without the permission of the Indian Roads Congress)

> Printed by India Offset Press, Delhi-110 064 500 Copies

# CONTENTS

| S. No.           |         | Description                                                                                                        | Page<br>No. |
|------------------|---------|--------------------------------------------------------------------------------------------------------------------|-------------|
|                  | Perso   | onnel of the General Specifications and Standards Committee                                                        | (i)         |
| <b>SECTION 1</b> | : INTRO | DUCTION                                                                                                            | 1           |
| <b>SECTION 2</b> | : GENEI | RAL APPROACH                                                                                                       |             |
|                  | 2.1     | Concept                                                                                                            | 3           |
|                  | 2.2     | Step wise procedure in Total Quality Management                                                                    | 6           |
| <b>SECTION 3</b> | : PERSO | ONNEL                                                                                                              |             |
|                  | 3.1     | Introduction                                                                                                       | 12          |
|                  | 3.2     | Integral/Outsourced Quality Assurance /Control Unit of<br>Contractor and its Hierarchical Position in Organization | 12          |
|                  | 3.3     | QA/QC Personnel of Contractor                                                                                      | 12          |
|                  | 3.4     | QC Personnel of Engineer                                                                                           | 14          |
| <b>SECTION 4</b> | : QUALI | TY ASSURANCE PLAN                                                                                                  |             |
|                  | 4.1     | Introduction                                                                                                       | 17          |
|                  | 4.2     | Objective                                                                                                          | 17          |
|                  | 4.3     | General Principles                                                                                                 | 17          |
|                  | 4.4     | Quality Assurance Plan for Different Stages of Project<br>Implementation                                           | 19          |
| SECTION 5        | -       | TY REQUIREMENTS FOR FACTORY MANUFACTURED<br>RIALS, PRODUCTS AND SPECIALIZED                                        |             |
|                  | 5.1     | Introduction                                                                                                       | 34          |
|                  | 5.2     | General Principles                                                                                                 | 34          |
|                  | 5.3     | Responsibility of Supplier/Manufacturer                                                                            | 35          |
|                  | 5.4     | Responsibility of Concessionaire/Contractor                                                                        | 35          |
|                  | 5.5     | Responsibility of Engineer/Consultant/Employer/Authority                                                           | 36          |
|                  | 5.6     | New Materials                                                                                                      | 36          |
| <b>SECTION 6</b> | : FIELD | LABORATORY SET UP                                                                                                  |             |
|                  | 6.1     | Introduction                                                                                                       | 61          |
|                  | 6.2     | Objective                                                                                                          | 61          |
|                  | 6.3     | General Features                                                                                                   | 61          |
|                  | 6.4     | Project Preparation                                                                                                | 63          |

|                   | 6.5      | Construction                                            | 63  |
|-------------------|----------|---------------------------------------------------------|-----|
|                   | 6.6      | Upkeep and Maintenance                                  | 63  |
| SECTION 7 :       | CALIB    | RATION OF INSPECTION, MEASURING AND TESTING             |     |
|                   | EQUIP    | /ENT                                                    |     |
|                   | 7.1      | Introduction                                            | 73  |
|                   | 7.2      | Objective                                               | 73  |
|                   | 7.3      | Scope                                                   | 73  |
|                   | 7.4      | Type of Calibration                                     | 75  |
|                   | 7.5      | Requirements for Calibration                            | 76  |
|                   | 7.6      | Frequency of Calibration                                | 76  |
|                   | 7.7      | Calibration Records                                     | 76  |
|                   | 7.8      | Recall Procedures                                       | 77  |
| SECTION 8 :       | INSPEC   | CTION AND TESTING                                       |     |
|                   | 8.1      | Introduction                                            | 79  |
|                   | 8.2      | Objective                                               | 79  |
|                   | 8.3      | Scope                                                   | 79  |
|                   | 8.4      | Project Preparation                                     | 79  |
|                   | 8.5      | Construction                                            | 81  |
|                   | 8.6      | Operation & Maintenance                                 | 84  |
|                   | 8.7      | Third Party Testing                                     | 85  |
|                   | 8.8.     | Sampling                                                | 85  |
|                   | 8.9      | General Guidelines for Inspection & Testing             | 86  |
| SECTION 9 :       | росим    | ENTATION AND COMMUNICATION                              |     |
|                   | 9.1      | Introduction                                            | 177 |
|                   | 9.2      | General Principles of Documentation and Communication   | 177 |
|                   | 9.3      | Guidelines for Establishing Mechanism for Documentation | 178 |
|                   | 9.4      | Guidelines for Security/Authentication of Documents     | 180 |
|                   | 9.5      | Sample Formats for Communication                        | 180 |
| <b>SECTION 10</b> | : STATIS | TICAL ANALYSIS                                          |     |
|                   | 10.1     | Introduction                                            | 185 |
|                   | 10.2     | Glossary of Terms                                       | 186 |
|                   | 10.3     | Sampling and Testing                                    | 188 |
|                   | 10.4     | Fundamental Principles of Statistical Analysis          | 189 |

| SECTION 11 : ACCEP | TANCE/ NON CONFORMANCE/RECTIFICATION                          |
|--------------------|---------------------------------------------------------------|
| 11.1               | Introduction                                                  |
| 11.2               | Acceptance Criteria                                           |
| 11.3               | Failure to meet Acceptance Criteria                           |
| 11.4               | Protocol for Dealing with Non Conformance Works               |
| 11.5               | Standard Formats                                              |
| SECTION 12 : THIRD | PARTY QUALITY AUDIT                                           |
| 12.1               | Audit Objectives and Principles                               |
| 12.2               | Third Party Quality Audit of Road Projects- General Overview  |
| 12.3               | Selection of Projects for Third Party Quality Audit           |
| 12.4               | Scope of Third Party Quality Audit                            |
| 12.5               | Audit Team                                                    |
| 12.6               | National Level Project Monitor                                |
| SECTION 13 : SAFET | Y, HEALTH AND ENVIRONMENT                                     |
| 13.1               | Introduction                                                  |
| 13.2               | Transportation Planning & Health                              |
| 13.3               | Safety, Health & Environmental Safeguards During Construction |

13.4 Quality Process to take care of Safety & Environment 211

# PERSONNEL OF THE GENERAL SPECIFICATIONS AND STANDARDS COMMITTEE (GSS)

(As on 24<sup>th</sup> June, 2017)

| 1  | Kumar, Manoj<br>(Convenor)            | Director General(RD) & Special Secretary to the Govt. of India,<br>Ministry of Road Transport & Highways, New Delhi |
|----|---------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 2  | Singh, B.N.<br>(Co-Convenor)          | Additional Director General, Ministry of Road Transport & Highways, New Delhi                                       |
| 3  | Verma, Dr. S.K.<br>(Member Secretary) | Chief Engineer SR&T(R), Ministry of Road Transport & Highways, New Delhi                                            |
|    |                                       | Members                                                                                                             |
| 4  | Basu, Kaushik                         | Chief Engineer, Ministry of Road Transport & Highways                                                               |
| 5  | Bhardwaj, R.S.                        | Senior Principal Scientist, Central Road Research Institute, New Delhi                                              |
| 6  | Chacko, Dr. K.M.                      | Director, Shriram Institute of Industral Research, Delhi                                                            |
| 7  | Eligar, J.H.                          | Superintending Engineer, Ministry of Road Transport & Highways                                                      |
| 8  | Gupta, D.P.                           | DG(RD) & AS (Retd), Ministry of Road Transport & Highways, New Delhi                                                |
| 9  | Jain, Prof (Dr) S.S.                  | Professor, IIT Roorkee                                                                                              |
| 10 | Jhamb, S.B.                           | Addl. Director General(Retd.), Central Public Works Department, New Delhi                                           |
| 11 | Joshi, L.K.                           | Secretary(Retd.), Ministry of Road Transport & Highways, New Delhi                                                  |
| 12 | Lal, Bhure                            | Chairman, Environment Pollution (Prevention & Control) Authority, Delhi                                             |
| 13 | Mathur, Dr. Ajay                      | Director General, The Energy & Resource Institute, New Delhi                                                        |
| 14 | Narain, Sunita                        | Director General, Centre for Science & Environment, New Delhi                                                       |
| 15 | Goel, O.P.                            | Director General(Retd), Central Public Works Department, New Delhi                                                  |
| 16 | Pandey, I.K.                          | Chief Engineer, Ministry of Road Transport & Highways, New Delhi                                                    |
| 17 | Parrikar, G.M. Naik                   | Superintending Engineer, PWD Goa                                                                                    |
| 18 | Pateriya, Dr. I.K.                    | Director(Technical), National Rural Road Development Agency,<br>New Delhi                                           |
| 19 | Puri, S.K.                            | DG(RD) & SS (Retd), Ministry of Road Transport & Highways, New Delhi                                                |
| 20 | Rajoria, K.B.                         | Engineer-in-Chief(Retd.), Delhi PWD, New Delhi                                                                      |
| 21 | Raju, Dr.G.V.S.                       | Engineer-in-Chief(Retd.), R& B Deptt., Hyderabad                                                                    |
| 22 | Rajvanshi, Ms. Asha                   | Head, EIA Wild Life Institute, Dehradun                                                                             |

| 23 | The Director<br>(Reddy, D.N.)                                   | Engineering Staff College of Engineering, Hyderabad                                     |
|----|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 24 | The CEO & PD<br>(Sahay,Vishvajit)                               | National Automotive Testing and R&D Infrastructure Project, New Delhi                   |
| 25 | Sarangi, D                                                      | Chief General Manager, National Highways Authority of India                             |
| 26 | Sharma, D. C.                                                   | Principal Scientist, Central Road Research Institute, New Delhi                         |
| 27 | Sharma, M. P.                                                   | Chief Engineer, Ministry of Road Transport & Highways, New Delhi                        |
| 28 | Sharma, R. S.                                                   | Managing Director, M/s STP Ltd New Delhi                                                |
| 29 | Sharma, V. K.                                                   | Chief General Manager (LA), National Highways Authority of India, New Delhi             |
| 30 | Sinha, A.V.                                                     | DG (RD) & SS (Retd.), Ministry of Road Transport & Highways,<br>New Delhi               |
| 31 | Sinha, B.N.                                                     | Chief Engineer (Retd.), Central Public Works Department, New Delhi                      |
| 32 | Tawade, D.O.                                                    | Member(Technical), National Highways Authority of India, New Delhi                      |
| 33 | The Director General,<br>(Mathur, Vishnu)                       | Society of Indian Automobile Manufacturers, New Delhi                                   |
| 34 | The Director<br>(Urdhwareshe, Mrs. Rashmi)                      | Automotive Research Association of India, Pune                                          |
| 35 | Vasantha, Dr. C.                                                | Superintending Engineer, PWD Hyderabad                                                  |
| 36 | Verma, S K                                                      | Advisor, Engineering Staff College of India, Hyderabad                                  |
| 37 | Verma, Maj V.C.                                                 | Director, M/s Oriental Structures Engineers Pvt. Ltd., New Delhi                        |
| 38 | Vyas, Neha                                                      | Senior Environment Specialist, World Bank, New Delhi                                    |
|    |                                                                 | Corresponding Members                                                                   |
| 1  | Momin, C.W.                                                     | Chief Engineer, PWD Meghalaya                                                           |
| 2  | Parsekar, U P                                                   | Principal Chief Engineer, PWD Goa                                                       |
| 3  | Sachdev,V.K.                                                    | Chief Engineer (Retd), Ministry of Road Transport & Highways,<br>New Delhi              |
| 4  | Temjen, R. Temsu                                                | Addl. Chief Engineer, PWD Nagaland                                                      |
| 5  | Vanlaltluanga, R.                                               | Engineer-in-Chief, PWD Mizoram                                                          |
|    |                                                                 | Ex-Officio Members                                                                      |
| 1. | President, IRC                                                  | (Pradhan, N.K.) Engineer-in-Chief cum Secretary to the Govt.<br>of Odisha, Bhubaneshwar |
| 2. | Director General (RD) & Spl.<br>Secretary to the Govt. of India | (Kumar, Manoj) Ministry of Road Transport and Highways,<br>New Delhi                    |
| 2  | Constant Conservel                                              | (Nirreal, C.K.) Indian Deede Constração, Novy Delhi                                     |

3. Secretary General (Nirmal, S.K.) Indian Roads Congress, New Delhi

# MANUAL FOR QUALITY CONTROL IN ROAD & BRIDGE WORKS

#### **SECTION 1**

#### INTRODUCTION

**1.1** Three special publications were published by IRC in different years regarding quality control on road and bridge works as mentioned below:

| IRC:SP:11-1984 | Handbook for Quality Control for Construction of Roads and Runways; |
|----------------|---------------------------------------------------------------------|
| IRC:SP:57-2000 | Guidelines for Quality Systems for Road Construction;               |
| IRC:SP:47-1998 | Guidelines for Quality Systems for Road & Bridges.                  |

The above publications were formulated in pre NHDP environment when bridges were mostly constructed on stand-alone basis. Need was felt to merge the three publications to suit the manner of implementation of highway projects post NHDP and also upgrade the content to capture all aspects of quality assurance and control in line with best international practices.

**1.2** Accordingly, it was decided in the 1<sup>st</sup> meeting of Project Preparation, Contract Management, Quality Assurance and Public Private Partnership Committee (G-1) held on 06.06.2015 to merge the 3 special publications as above and upgrade the same. A sub-group was formed under the chairmanship of Co-Convenor with other members to prepare the draft of the "**Manual for Quality Control in Road & Bridge Works**". The sub-group prepared different sections of the special publication, which was discussed in different meetings of G-1 Committee between 25.07.2015 and 19.11.2016 and lastly on 29.04.2017 under the chairmanship of Convenor Shri B.N. Singh where Shri D. Sarangi; Shri Kishore Kumar; Shri A.V. Sinha; Shri Ashok Kumar; Shri Ashok Bhasin and Shri S.K. Nirmal attended. The sub-group gratefully acknowledges peer review of the draft by Shri D P Gupta. Finally the draft of the entire publication was considered and approved by G-1 Committee (personnel given below) in its 9<sup>th</sup> meeting held on 19.11.2016.

| Singh, B.N.  | — | Convenor         |
|--------------|---|------------------|
| Sarangi, D.  | — | Co-Convenor      |
| Nirmal, S.K. | — | Member-Secretary |

#### Members

| Banerjee, A.K.    | Kumar, Ashok      |
|-------------------|-------------------|
| Bhasin, Col. A.K. | Kumar, M. Kishore |

| Bongirwar, P.L.       | Pandey, I.K.     |
|-----------------------|------------------|
| Chand, Faqir          | Pandey, R.K.     |
| Dash, Bimal Chandra   | Patwardhan, S.V. |
| Deepankar, Alok       | Puri, S.K.       |
| De, D.C.              | Raju, Dr. G.V.S. |
| Gajria, Maj Gen. K.T. | Sharma, M.P.     |
| Gupta, D.P.           | Sharma, R.S.     |
| Indoria, R.P.         | Sinha, A.V.      |
| Jain, N.S.            | Sinha, N.K.      |
| Jindal, S.C.          |                  |

#### **Corresponding Members**

Venkateshan, T.

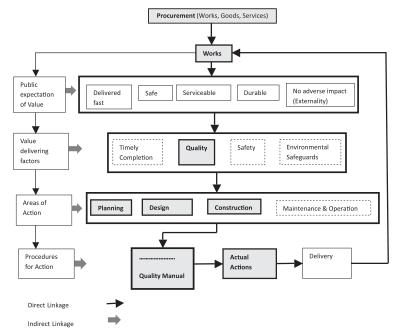
Verma, Maj V.C.

#### **Ex-Officio Members**

President, IRC (Pradhan, N.K.) DG (RD) & SS, MoRTH (Kumar, Manoj)

Secretary General, IRC (Nirmal, S.K.)

**1.3** The document was approved by the General Standards and Specifications Committee (GSS) in its meeting held on 24<sup>th</sup> June 2017 for placing before the IRC Council. The draft was finally approved by the IRC Council in its 212<sup>th</sup> meeting held at Udaipur(Rajasthan) from 14<sup>th</sup> to 15<sup>th</sup> July, 2017.


# **SECTION 2**

# **GENERAL APPROACH**

#### 2.1 Concept

2.1.1 Beginning in the year 1998, when implementation of 4-laning of Golden Quadrilateral was announced, there have been huge strides in development of roads in India. The road development programme is also very wide and vast starting from expressways to rural roads. Road infrastructure has seen a quantum jump in investments during the past two decades. The agencies involved in road construction are quite disparate. The contracting modes are also different. But what is demanding from and common to all road projects is total quality starting from Project Planning to Construction to Operation and Maintenance. Quality of the projects/works should be such that the road performs according to the specified standards during the design life. Quality is essential so that i) users enjoy safe and comfortable riding quality throughout the design life and ii) vehicle operating costs are minimised and iii) resources of the nation are otherwise efficiently utilised. It also simultaneously ensures enrichment of knowledge in the industry, lower bid prices and faster completion of projects. This Manual endeavours to describe different components and aspects of Total Quality Management in Road Projects. It covers various steps/procedures required to be followed to ensure quality matching with international standards. This Manual does not embody extracts from other IRC Codes, Manuals and MORT&H Specifications for Road & Bridge Works. Therefore, this Manual needs to be used in conjunction with MORT&H Specifications for Road & Bridge Works and other applicable codes, manuals and guidelines.

**2.1.2** The role of Quality Manual in overall procurement of works is best described by the following pictorial chart:



Place of Quality Manual in overall Procurement of Works

**2.1.3** At the outset, it is necessary to recall the definition of Total Quality Management as stipulated in various international codes of practice along with other terminology associated with it for proper appreciation of quality requirements.

#### ISO 8402: 1994

- (i) Quality: The totality of features and characteristics of a product or service that bears on its ability to satisfy stated or implied needs.
- (ii) Total Quality Management: A management approach of an organisation centred on quality, based on the participation of all its members and aiming at long term success through customer satisfaction and benefits to all members of the organisation and society.
- (iii) Quality Policy: The overall quality intentions and direction of an organisation as regards quality as formally expressed by top management.
- (iv) Quality Management: The aspect of the overall management function that determines and implements the quality policy.
- (v) Quality Planning: Activities that establish the objectives and requirements for quality and for application of quality policy.
- (vi) Quality Assurance: All the planned and systematic activities implemented within the quality system, and demonstrated as needed, to provide adequate confidence that an entity will fulfill requirements for Quality.
- (vii) Quality Control: The operational techniques and activities that are used to fulfil requirements for quality.
- (viii) Requirements of Quality: Expression of the needs or their translation into a set of quantitatively/qualitatively stated characteristics of an entity.
- (ix) Quality Systems: The organisation structure, responsibilities, procedures, processes and resources for implementing Quality Management.
- (x) Quality Plan: A document setting out the specific quality practices, resources and sequence of activities relevant to a particular product.
- (xi) Quality Audit: A systematic and an independent examination to determine whether quality activities and related result comply with planned arrangements and whether these arrangements are implemented effectively and are suitable to achieve objectives.

#### BS 7850-1:1992

(i) Total Quality Management: A management philosophy and company practices that aim to harness the human and material resources of an organization in the most effective way to achieve the objectives of the organization.

#### Transport Reasearch Board

 Quality: The degree of excellence of a product or service; (2) the degree to which a product or service satisfies the needs of a specific customer; or (3) the degree to which a product or service conforms with a given requirement.

- Quality assurance: All those planned and systematic actions are necessary to provide confidence that a product or facility will perform satisfactorily in service.
- (iii) Quality control: Those QA actions and considerations necessary to assess and adjust production and construction processes so as to control the level of quality being produced in the end product.
- (iv) Acceptance: Sampling and testing, or inspection, to determine the degree of compliance with contract requirements.
- (v) Quality characteristic: That characteristic of a unit or product that is actually measured to determine conformance with a given requirement. When the quality characteristic is measured for acceptance purposes, it is an acceptance quality characteristic (AQC).
- (vi) Quality measure: Any one of several means that have been established to quantify quality. Some examples of quality measures are the mean, the standard deviation, the percent within limits, the average absolute deviation, and the quality index.

#### American Society for Quality Control

- (i) Quality: The totality of features and characteristics of a product or service that bear on its ability to satisfy given needs.
- (ii) Quality assurance: All those planned or systematic actions necessary to provide adequate confidence that a product or service will satisfy given needs.

#### American Society for Testing and Materials (ASTM-E699)

- (i) Quality assurance: A planned system of activities whose purpose is to provide assurance that the overall quality control program (see quality control) is in fact being effectively implemented. This system involves a continuing evaluation of the adequacy and effectiveness of the overall quality control program with a view to having corrective action initiated where necessary. For a specific material, product, service, etc., this involves verification, audits, and evaluations of the quality factors that affect the specification, production, inspection, and use of the material product, service, system, or environment.
- (ii) Quality control: A planned system of activities whose purpose is to provide a level of quality that meets the needs of users: also, the use of such a system. The objective of quality control is to provide an overall system integrating the quality factors of several related steps including: the proper specification for what is wanted: production to meet the full intent of the specification: inspection to determine whether the resulting material, product, service, etc., is in accord with the specification: and review of usage to determine necessary revisions of the specification.

#### BS 4778-Quality Vocabulary

(i) Quality: The totality of features and characteristics of a product or service that bear upon its ability to satisfy stated or implied needs.

- (ii) Quality Policy: The overall quality intentions and directions of an organisation as regards quality as fully expressed by top management.
- (iii) Quality Management: The aspect of the overall management function that determines and implements the quality policy.
- (iv) Quality System: The organisational structure, responsibilities, procedures, processes and resources for implementing quality management.
- (v) Quality Assurance: All those planned and systematic actions necessary to provide adequate confidence that a product or service will satisfy given requirements for quality.
- (vi) Quality Control: The operational techniques and activities that are used to fulfill requirements for quality.

The above definitions are universal in nature and apply to all fields. In the context of road projects, the definitions are used with suitable interpretation as considered applicable to road projects.

2.1.4 There are three focal points of Total Quality Management. These are Quality Assurance, Quality Control and Acceptance. All the activities related to Quality spin around these focal points. Notwithstanding the contracting format used for a particular project, guality control vests with the Contractor/Concessionaire, whereas acceptance vests with the Employer/Authority, who is normally assisted by Consultants in medium and large size projects. Quality Assurance applies to all the entities involved in the project. Quality Assurance Plan of all the entities involved in the project must be compatible following the broad parameters specified in this Manual. Acceptance criteria should be built into the contract in clear and unambiguous terms, which makes it obligatory on the part of the Contractor/Concessionaire to plan, build and follow its Quality Assurance and Quality Control programme so as to fulfill the acceptance criteria. Whereas the Contractor/ Concessionaire and Engineer/Consultant are required to have a project specific Quality Assurance Plan, the Employer/Authority may have a generic Quality Assurance Plan/Quality Policy. This Manual attempts to specify various aspects of the focal points mentioned above for road projects in general, without any reference to particular contracting format. The contract should take care to adapt to the provisions of this Manual with modifications, if any, as applicable to a particular contracting format. The approach to guality requirements as applicable to four broad stages of a road project i.e. (i) project preparation, (ii) procurement, (iii) construction and (iv) operation and maintenance are discussed below.

# 2.2 Step wise procedure in Total Quality Management

The following paragraphs of this section give an overview of different steps to be followed in Total Quality Management of a road project in a sequential order, whereas details are brought out in the succeeding sections.

#### **2.2.1** Selection of the class of Quality Assurance

Depending upon the rigors of control and cross verification, four classes of Quality Assurance (QA) are prescribed:

| Classes of Quality Assurance | Class Nomenclature |
|------------------------------|--------------------|
| Nominal QA                   | Q-1                |
| Normal QA                    | Q-2                |
| High QA                      | Q-3                |
| Extra high QA                | Q-4                |

Quality Assurance class needs to be decided prior to start of the Project Preparation. However, during the course of project implementation, Quality Assurance class of some of the items/ attributes may be upgraded to next class based on specific requirements. Provision for such up-gradation needs to be built into a Contract. This Manual is basically meant for Q-3 class of quality assurance which is applicable to projects in following situations:

- i) National Highways and State Highways
- ii) Coastal roads
- iii) Roads in high altitudes
- iv) Roads in high rainfall areas (average over 2000 mm)
- v) Large size projects on Major District Roads

Q-2 class QA is recommended for rural roads and average size projects/works on Major District Roads. Q-1 class QA may be restricted to rural roads in remote areas subject to specific approval of the concerned road agency. Q-4 class QA is applicable to expressways. Q-4 class QA is also applicable to following specialised components of projects following lower class of QA.:

- i) Tunnels
- ii) Elevated highways

For quality management in rural roads, reference may be made to Quality Assurance Handbook for Rural Roads of the National Rural Roads Development Agency of the Ministry of Rural Development.

#### 2.2.2 Personnel

Both the Contractor/Concessionaire and Engineer/Consultant are required to engage adequate number of personnel with required knowledge, experience and expertise to control quality. The knowledge and experience of lab technicians who actually carry out the tests is also very critical. The size and complexity of a project determines the range of personnel, their knowledge, experience and expertise. The quality personnel of the Contractor may be independent of production and laying unit or part of it. This Manual suggests the list of quality personnel required with Contractor/Concessionaire and Engineer/Consultant for projects of different size and complexity in **Section 3**. The organizational structure of the quality control personnel along with qualification and experience requirements of the said personnel are also specified so that each of the personnel is capable of meeting the requirements of the chosen field and the team has the right mix of personnel to attend to all the quality requirements of a project.

#### 2.2.3 Quality Assurance Plan

Quality Assurance has already been defined as "All the planned and systematic activities implemented within the quality system, and demonstrated as needed, to provide adequate confidence that an entity will fulfill requirements for Quality." In a way Quality Assurance is sum of Quality Control and Acceptance. Quality Assurance Plan (QAP) is, therefore, a document chronicling the actions to be taken and steps to be followed by each party to the project for successful implementation of the project duly fulfilling the Quality Requirements.

The project cycle involves three broad stages i.e. Project Preparation, Project Development and Construction. Therefore, for a single project, different quality assurance plan needs to be prepared by different parties in different stages. The requirement of QAP during different stages of a project is summarized below:

| Project stage       | Requirements of QAP by different parties to project                                                                                     |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Project Preparation | DPR consultant will prepare QAP for Project Preparation.                                                                                |
|                     | Client will have a general protocol for association with DPR consultant and scrutiny/verification of data, design and drawings.         |
|                     | Independent Engineer/Authority's Engineer will have a protocol to review drawings in BOT/EPC Contract.                                  |
| Development         | Employer/Authority will have a general protocol for bid document preparation, bid evaluation and award.                                 |
| Construction        | Contractor/Concessionaire will prepare QAP.                                                                                             |
|                     | Supervision manual prepared by Engineer/ Consultant will contain Quality Assurance mechanism to be followed by the Engineer/Consultant. |
|                     | Employer/Authority will have a general protocol for Quality Control.                                                                    |

Model structure of QAPs as above and protocol for Employer/Authority/Engineer are given in Section 4.

# **2.2.4** Quality Requirements for Factory Manufactured Materials, Products and Specialized Items

Supplier's quality policy indicates commitment of the management of the supplier to achieve and sustain quality of the product to meet purchaser's stated or implied needs, whether contractually required or not. In case of road projects, supplier's Quality Policy in respect of factory manufactured materials, products and specialized items such as steel, bitumen, bearings, expansion joints, road signages, crash barriers etc. is very important. **Section 5** gives a broad contour of the minimum elements of quality policy of suppliers of such products. Notwithstanding whether a supplier is empanelled or not, the Quality Policy of the supplier shall be furnished by the Contractor/Concessionaire to the Engineer / Consultant, who will ascertain that the Quality Policy of such supplier shall be commensurate with the details given in **Section 5**. In large and complex projects, the Engineer/Consultant may further exercise independent check as to whether the Quality Policy of the supplier is being duly complied with.

**Section 5** stipulates testing requirements of most of the factory manufactured materials, products and specialised items and whether site testing facility available for them. For all such materials and products, the supplier/manufacturer is required to submit detailed documents as specified in **Section 5**. **Section 5** also delineates responsibilities of Supplier/Manufacturer / Concessionaire / Contractor / Engineer / Consultant / Employer/Authority in further confirming quality of such materials either by witnessing tests in manufacturer's laboratory or conducting third party testing.

#### 2.2.5 Laboratory set up

**Section 6** gives a broad outline of the Contractor's site laboratory. General infrastructure requirement of the laboratory, layout and suggestive list of equipments and consumables for main/plant laboratory, routine and special upkeep of equipments are covered in **Section 6**. Suggested codes of practice for various tests to be conducted on naturally occurring materials in original/crushed form and various types of mixes is also given in **Section 6**. Any third party laboratory, where testing of materials is proposed to be carried out by any entity involved with road project, must satisfy the requirements of **Section 6** as a minimum. The requirements of **Section 6** also apply to the laboratory for testing of different materials related to Project Preparation as well as Operation and Maintenance.

#### **2.2.6** Calibration of Inspection, Measuring and Testing Equipments

Calibration is defined as specific type of measurement performed on measurement standards. material measures and measuring instruments to establish the relationship between the indicated values and known values of a measured quantity. The term covers calibrations carried out using appropriate reference equipment at any location. The requirements for equipment calibration, measurement and traceability are given in ISO/IEC 17025. The laboratory's programme for the maintenance and calibration of equipment will typically comprise of periodic cleaning, servicing, calibration and safety checks (where applicable). While establishing a calibration programme, aspects of measurement traceability, procedures, intervals and records for both calibration and checks, need to be considered for each item of IMT equipment in relation to the particular test method for which it may be used. Calibration of equipment is a must for certainty/reliability of the test results. Calibration requirement ranges from sieves to nuclear density meter. Calibration of plant and equipments such as Hot Mix Plant, Concrete Batching Plant etc. are also very important. Calibration requirements, types of calibration, interval of calibration, and method of calibration of different IMT equipments typically used in a road project, recall procedure etc. are given in Section 7. Wherever time interval for calibration specified by the manufacturer is smaller than the time interval indicated in Section 7, the manufacturer's recommendation shall be followed. External laboratory used for calibration must be accredited by NABL. Calibration Certificate as well as documentary evidence of the accreditation of the calibrating laboratory should be made available in the laboratory. Recall procedures of the IMT equipments are given in Section 7. The requirements of Section 7 also apply to calibration of testing equipments related to Project Preparation and Operation and Maintenance.

#### 2.2.7 Inspection and Testing

Inspection and Testing generally covers the following:

- (i) Alignment and surface regularity
- (ii) Reinforcement detailing
- (iii) Positioning of furniture/accessories
- (iv) Testing of constituent materials and finished products
- (v) Field/in situ testing

Whereas the requirements of tests for different materials/products/works are given in MoRT&H Specifications for Road & Bridge Works/**Section 5** of this Manual, details of testing procedure are given in applicable code of practice. Test frequency is given in MoRT&H Specifications for Road & Bridge Works/**Section 5** of this Manual/ applicable codes of practice. **Section 8** of this Manual deals with general overview of testing procedures. It includes both in-process and final inspection and testing. The activities include surveys, measurements and tests in laboratory as well as site. General principles/guidelines about inspection and testing including source approval, receiving inspection, in process inspection, final inspection, sampling of materials from quarries, borrow pits, stock piles, trucks/pavers etc., maintaining integrity of samples, testing method for each of the tests, handling procedures, recording of observations, formats for recording observations in various tests etc. are covered in **Section 8**.

#### **2.2.8** Documentation and Communication

Documentation of Quality Assurance and Quality Control processes with proper authenticity are critical for arriving at acceptance or otherwise of a finished product. The Contractor/ Concessionaire and Engineer/Consultant shall establish mechanism for documentation well in advance. Documentation shall be in both soft and hard format. Proper arrangement for security/authenticity of documentation shall be made by both Contractor/Concessionaire and Engineer/Consultant. General principles and guidelines for establishing mechanism for documentation are explained in **Section 9**. Communication between different parties to the Contract is an important aspect. Though it is not limited to only Quality Control aspects, communication related to Quality Control occupies a larger share of the total communication. Communication should be fast, reliable and well documented both in soft and hard format. E-tools may be followed for faster communication and contract management. General aspects of such e-tools are discussed in **Section 9**. Besides, sample formats for RFI, Notices etc. are given in **Section 9**.

# 2.2.9 Statistical Analysis

Variability of materials, workmanship and construction process is a reality in road construction like any other manufacturing process. Adding to the variability of materials and processes, there is also considerable variation in the testing process resulting in measurement errors. Acceptance procedure is therefore, required to factor in variability of test results or in other words statistical analysis of test results. **Section 10** gives an idea about various methods of statistical analysis practiced internationally. **Section 10** outlines the salient aspects of sampling, criteria for selection of Lot (Population in statististical terms). **Section 10** gives

fundamental principles of statistical analysis and indicates relationship between mean value of the test results carried out on the sample in respect of particular Quality Characteristic of a material/item of work vis-à-vis specification limit for that particular Quality Characteristic.

#### **2.2.10** Acceptance/non conformance/rectification

Acceptance criteria for different materials/finished products/items of work are given in different Sections of MoRT&H Specifications for Road & Bridge Works whereas acceptance criteria of some additional Quality Characteristics of factory manufactured materials, products and specialized items as detailed in **Section 5** of this Manual are mentioned in applicable codes of practice as mentioned therein. **Section 11** prescribes Quality Characteristics of materials/ works where statistical analysis is to be carried out for final acceptance and also specifies the procedure for statistical check of such Quality Characteristics. **Section 11** details the procedure/protocol for acceptance/rejection of raw/factory manufactured materials/mixes/ finished products/works based on quality control test results and supplemented by statistical analysis where ever applicable. **Section 11** prescribes various options available in case of failure of a sample to meet acceptance criteria and also gives a detailed protocol to deal with non-conformance works.

# **2.2.11** Third party Quality Audit

ISO 19011 specifies third party audits as audits performed by external agencies primarily for the purpose of certification. In the context of road projects, Third Party Quality Audit is a review by an independent entity (a separate firm/group of experts) of how well the key areas of a project quality plan is being followed and whether it's effective in getting the quality results originally envisaged. **Section 12** gives a general overview of third party quality audit. **Section 12** specifies criteria for selection of road projects for third party quality audit. It outlines scope of third party quality audit and general requirements of audit team. A sample terms of reference for third party quality audit is also given in **Section 12**.

#### 2.2.12 Safety, Health and Environment

Although safety, health and environmental issues are not precisely part of this Manual, quality in such issues at work places has huge importance to the nearby communities, road users and construction workers during construction stage as well as nearby communities and road users post construction. It is further established that better care for Safety, Health and Environment at work places automatically enhances quality in road construction.

**Section 13** makes a modest approach to identify and list those aspects of safety, health and environment during road construction.

# **SECTION 3**

# PERSONNEL

#### 3.1 Introduction

Both the Contractor and Engineer are required to engage adequate number of personnel with required knowledge, experience and expertise to control quality. Right type of quality control personnel with Contractor and Engineer is a must to achieve desired quality of the project. This section gives an outline of the type of personnel and their qualification and experience for different size of projects.

#### 3.2 Integral/Outsourced Quality Assurance/Control Unit of Contractor and its Hierarchical Position in Organisation

The Quality Assurance/Control Unit of Contractor may be a unit of inhouse personnel of the Contractor or a unit outsourced from a consulting firm exclusively for the project. Both the practices have inherent advantages and disadvantages. Contractor should choose a system convenient to its internal capacity and demand of delivery. But in either case, the head of the unit shall report to Project Manager or head of the project team of the Contractor and will have say on all raw and mixed materials, plants and equipments brought to site for use in the work. The Contractor shall furnish details of its Quality Assurance/Control Unit in the Quality Assurance Plan.

#### 3.3 QA/QC personnel of Contractor

The Contractor shall have dedicated key and sub-professional for Quality Assurance/Control. Their numbers and position depend on size and complexity of a particular project. Tentative details of key and subprofessional persons in the organization of the Contractor vis-à-vis size of projects is given below:

| Size of the Project | Details of Key & Sub-Professional                             |
|---------------------|---------------------------------------------------------------|
| < Rs. 300 crore     | Material Engineer-1, QC/Asst. QC Engineer-2, Lab Technician-4 |
| ≥ Rs. 300 crore     | Material Engineer-1, QC/Asst. QC Engineer-3, Lab Technician-6 |

Additional/specialized personnel may be required to be engaged by the Contractor for complex projects such as tunnel/innovative structures or projects involving new materials etc. which may be decided on case to case basis.

**3.3.1** The typical organizational charts of quality control personnel of Contractor for different size of projects are given at **Annexure 3.1**.

#### **3.3.2** Role and Responsibility of Contractor's QA/QC Personnel

The role and responsibility of Contractor's QA/QC personnel are broadly described below:

#### Material Engineer

Material Engineer shall remain responsible for all Quality Assurance, Quality Control and Acceptance requirements of the project and will directly report to the Project Manager or project head. He will regularly supervise the activities of QC/Asst. QC Engineer. Material Engineer will provide all necessary assistance to the construction team with reference to acceptance of all raw, manufactured, mixed materials used in the project. His responsibilities include the following:

- Preparation of Quality Assurance Plan;
- Providing inputs to Project Manager for preparation of work methodology;
- Setting up of field laboratories;
- Calibration of equipments;
- Preparation of JMF for flexible pavement & concrete mix design;
- To maintain an effective documentation system for QA/QC throughout the project;
- To monitor and coordinate quality control activities on site;
- Ensure that tests are carried out as per relevant IS/applicable international code of practice;
- Maintain the test records for all the construction material used in the project and submit them to Project Manager before forwarding them to the Consultant.
- To verify the system for reporting and disposing non-conformance and corrective action requests;
- Have final say about acceptance of a material/work;
- To perform internal quality audits on site in accordance with applicable procedures;
- Advising on, planning and organizing inspections, maintenance and repairs;
- Liaising with suppliers, customers and manufacturing/development staff.

#### QC/Asst. QC Engineer

QC/Asst. QC Engineer will be directly responsible for quality control. He will report to the Material Engineer. He will supervise the activities of the Lab Technician. Besides he will carry out the following activities himself.

- Assisting Material Engineer in setting up the field laboratories;
- Day to day supervision of works of Lab Technicians;
- Ensuring proper calibration of all laboratory equipments;
- Preparation of JMF for flexible pavement & concrete mix design;
- Conducting laboratory and field tests on random basis;
- Calculation of test results from test observations carried out by Lab Technician, analysis and interpretation of the test results;
- Maintaining respective records;
- Selection of borrow areas;

- Periodical checking of calibration of WMM Plant, Hot mix plant, Batching plants;
- Preparation of summary test results for monthly progress report.

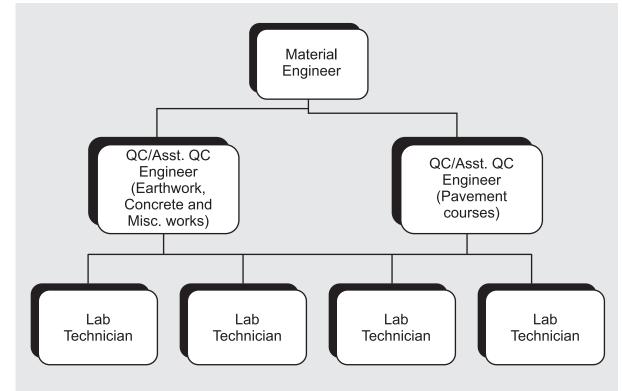
#### Lab Technician

Lab Technician will work under the guidance of QC/Assistant QC Engineer. He will carry out the following activities:

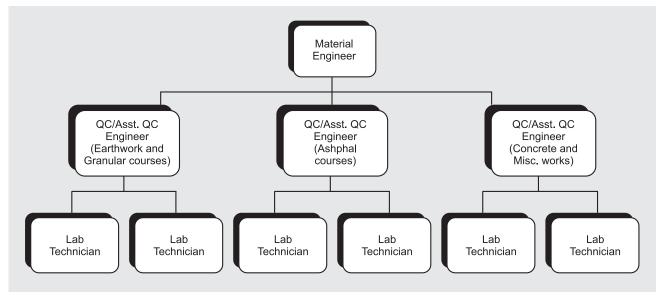
- Sampling of construction materials and preparation for testing as per IS Code;
- Conducting laboratory test of aggregate, cement, soil, bitumen and other materials;
- Recording of test observations;
- Inspection of batching plant, hot mix plant and WMM plant at the time of production;
- Conducting field tests at site and recording test observations.

#### 3.4 QC personnel of Engineer

The number and position of QC personnel of the Engineer depend on mode of contract apart from size and complexity of the project. Tentative list of key and sub-professional for different types of projects is given below:


| Size of the Project | Details of Key & Sub-Professional                                |  |  |  |
|---------------------|------------------------------------------------------------------|--|--|--|
| < Rs. 300 crore     | Material Engineer-1, QC/Asst. QC Engineer-1, Lab<br>Technician-2 |  |  |  |
| ≥ Rs. 300 crore     | Material Engineer-1, QC/Asst. QC Engineer-2, Lab<br>Technician-4 |  |  |  |

**3.5** Qualification and experience of key and sub-professional to be engaged by the Contractor/Consultant is given at **Annexure 3.2**.


#### TYPICAL ORGANISATION CHARTS OF QUALITY CONTROL PERSONNEL OF CONTRACTOR

#### Size of Project < Rs. 300 crores

I



#### II Size of Project ≥ Rs. 300 crores



# QUALIFICATION AND EXPERIENCE OF QUALITY CONTROL PERSONNEL OF CONTRACTOR/ENGINEER

#### I Material Engineer

The Material Engineer shall be graduate in civil engineering from a recognized university. He shall have professional experience of 12 years in construction of highways/roads/airfield runways. He shall have experience of 5 years in similar capacity in construction / construction supervision of highway projects. He shall have experience as Material/Geotechnical Engineer in construction/construction supervision of at least 2 highway projects. He must be familiar with material property of road construction material, technical specifications and procedures of material tests and testing equipments. He shall not be more than 65 years of age. The Material Engineer should preferably have post graduate degree in Geo-Technical Engineering/Soil Mechanics and Foundation Engineering. He should also preferably have experience as Material Engineer in highway construction projects outside the country.

#### II Quality Control Engineer

Quality Control / Assistant Quality Control Engineer shall be at least Graduate / Diploma in Civil Engineering having minimum 2/5 years of work experience (2 year in case of Graduate and 5 year in case of Diploma) in the field of quality control in road/bridge construction projects. He should be conversant with testing of different materials/finished products, testing apparatus, calibration, sampling, testing, recording test observations in proper formats and determination of test results.

#### III Lab Technician

Lab Technician shall be at least Diploma in Civil Engineering /Science Graduate /ITI having minimum 2/5 years of work experience (2 year in case of Diploma and 5 year in case of Science Graduate /ITI) in the field of testing of materials.

# **SECTION 4**

# QUALITY ASSURANCE PLAN

#### 4.1 Introduction

Definition of the following terms as stipulated in ISO 8402 of 1994 is reproduced below for proper appreciation of the subject:

**Quality Policy:** The overall quality intentions and directions of an organisation as regards quality as formally expressed by top management;

**Quality Assurance:** All the planned and systematic activities implemented within the quality system and demonstrated as needed to provide adequate confidence that an entity will fulfill requirements for quality;

**Quality Plan:** A document setting out the specific quality practices, resources and sequence of activities relevant to a particular product, project or contract.

A road project goes through several stages and involves several stakeholders from inception to implementation. Quality of final product is possible only if quality is ensured in each stage. Quality Assurance Plan of each of the major stakeholders consistent with its own Quality Policy is crucial to ensure quality of a particular stage.

#### 4.2 Objective

The objectives of preparing a Quality Assurance Plan (QAP) are as follows:

- Understanding the project requirements/features in totality;
- Assessing the impact of environment on quality;
- Developing quality systems to ensure that the process and product fulfil quality requirements consistently;
- Assignment of responsibilities with absolute clarity;
- Establishing methods for meaningful evaluation;
- Establishing documentation processes and systems to minute details.

#### 4.3 General Principles

The different stages of a project cycle such as project preparation, procurement and implementation have different concerns with respect to quality. The following general principles are intended to address those concerns of quality:

- Preparation of Quality Assurance Plan starts with review of contract documents and all project related information. This will help in identifying thrust areas of the project from quality perspective. This will also help in exercising control over works programme and methodology;
- (ii) Next step is evolving organisational structure of the particular stakeholder clearly delineating therein the personnel responsible for quality. The organisational structure shall be followed by establishment of interpersonal

relationship within the organisation and entity(ies)/individual(s) outside the organisation for implementation and overseeing;

- (iii) Data collection, validation, storage and retrieval are essential requirements of project preparation. Accuracy and reliability of data is key to success of a project. Assignment of responsibilities among the personnel for all the activities starting from planning of survey and investigation to storage of data is essential for good project preparation;
- (iv) It is necessary to establish quality requirements of the material sources keeping specifications, terrain, climate, project completion schedule, Govt. regulations etc. in view so that the same are satisfied before identification of a particular quarry;
- (v) It is necessary to establish quality requirements of the machinery to be deployed for a particular project keeping project completion schedule, packaging, specifications/capacities envisaged etc. in view;
- (vi) Documentation of project related information and communication between the parties to the contract are very important requirements to achieve quality apart from project implementation itself. QAP shall establish these two aspects in detail considering all the aspects of project implementation;
- (vii) Site laboratory is the real bastion of quality control. Infrastructure and other requirements of site laboratory are given in MORT&H Specifications and also Section 6 of this Manual. QAP shall customise it to meet the specific needs of a particular project;
- (viii) Calibration is defined by the International Bureau of Weights and Measures as: "Operation that, under specified conditions, in a first step, establishes a relation between the quantity values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties (of the calibrated instrument or secondary standard) and, in a second step, uses this information to establish a relation for obtaining a measurement result from an indication."Procedure for calibration of instruments and frequency thereof as recommended by the manufacturers and standardised by NABL shall be elaborated in QAP keeping in view the specific needs of the project and planning for field laboratory;
- (ix) Verification process (raw materials, mix, finished state) is the domain of quality control. It covers inspection, sampling of materials and testing. The details of tests to be conducted, frequency of tests etc. are given in MORT&H Specifications and **Section 5** of this Manual and tests have to be conducted as per relevant BIS or other applicable code of practice/standards but protocol for such activities with laid down procedure in detail keeping the specific needs of a particular project in view shall be established in the QAP;
- (x) Three aspects are of relevance in accepting or rejecting an item of a work i.e. result of verification process, statistical analysis and correction, corrective/ preventive actions when a Non Conformance Report (NCR) is generated. QAP shall establish the procedure for handling NCRs for different category of works.

#### 4.4 Quality Assurance Plan for different stages of Project Implementation

#### **4.4.1** *Project Preparation*

Project preparation is traditionally carried out by a consulting firm engaged by the Client. Project preparation is also carried out by DBFOT Concessionaire/EPC Contractor though a consulting firm engaged by it although the scope of project preparation in such case is confined within the boundaries set out by the Schedule-B & C of Concession/Contract agreement and following relevant Manual of IRC i.e. IRC:SP:73/84/86. Accordingly the activities and outputs of project preparation by DBFOT Concessionaire/EPC Contractor is limited compared to the one prepared by Client. However, the quality concerns and responsibility assignment of personnel remain the same.

#### 4.4.1.1 Output Desirability

Project preparation should be such that the project is technically sound, assures optimal cost utilisation, adequately provides for safety requirements and social & environmental safeguards, is easy to implement and ensures intended performance over design life. QAP is a tool that guards the project preparation process in achieving its stated desirable outputs.

#### 4.4.1.2 QAP for Project Preparation Consultant

Model Structure is given at **Annexure 4.1**.

#### 4.4.1.3 General Protocol for Client to Supervise Project Preparation

Client has to play a crucial role in preparation of good project report. Client's participation should spread over entire duration of project preparation. A critical requirement is that Client's views on different reports submitted by the Consultant should be communicated to the Consultant within the prescribed time period so that project can be prepared within the scheduled time and services of the key personnel are truly utilised.

 Client's participation can be meaningful if availability of minimum counterpart personnel of the Client exclusively assigned to project preparation is ensured. The following table gives desirable workload with different rank of officers for handling average size DPR:

| Designation of officer                                 | Maximum number of DPRs<br>to be assigned                     |
|--------------------------------------------------------|--------------------------------------------------------------|
| Asst. Executive Engineer/Deputy<br>Manager             | 2 with no other responsibility/1 with other responsibilities |
| Executive Engineer/ Manager/<br>Deputy General Manager | 4 with no other responsibility/2 with other responsibilities |
| Superintending Engineer/General<br>Manager             | 4 with other responsibilities                                |

(ii) Client's counterpart personnel must frequently interact with Key Personnel of the Consultant. The interaction should be both at site and office. For this purpose Client's personnel shall visit the site often. Client's personnel shall

interact with material engineer, survey engineer, bridge engineer and traffic engineer at site during survey and investigation and team leader, highway engineer and bridge engineer during alignment finalisation and project scope finalisation as a minimum.

- (iii) Client's personnel shall verify/witness 1% of total field/laboratory tests and various surveys including traffic surveys as a minimum.
- (iv) Client's personnel not below the rank of Superintending Engineer/General Manager shall verify the alignment of the entire length of a project at site including widening scheme, bypasses and realignments. Based on the inspection report of the Superintending Engineer/General Manager, the alignment shall be approved by Client's personnel not below the rank of Chief Engineer/Chief General Manager.
- (v) Client's personnel shall scrutinise following parts of reports and drawings as a minimum:
  - Reasonableness of traffic data;
  - Analysis of growth rates;
  - Capacity augmentation plan such as addition of lanes, paved shoulders, service road etc;
  - Widening scheme;
  - Alignment plan, junction lay out etc;
  - Design life of pavement;
  - Approach/scheme for overlay, partial/full reconstruction of existing carriageway;
  - Typical cross sections;
  - Approach/scheme for reconstruction, widening and/or rehabilitation of existing bridges based on 100% site verification;
  - Departure from standards;
  - BOQ;
  - Basic rate of materials;
  - Comparison of average cost;
  - Supplementary Specifications;
  - Schedules of bid documents;
  - Traffic diversion plans.
- (vi) After scrutiny of final drawings, Client's personnel not below the rank of Superintending Engineer/General Manager shall verify the following at site as a minimum before final approval of DPR:
  - Alignment plan;
  - Lay out plan for grade separated and major at-grade intersections;
  - Provisions such as service road, underpass, bus bay, truck terminal etc.;

- Accident black spot rectification proposal;
- Bridge rehabilitation proposal;
- Drain outfall.

The above requirements should be inbuilt into Quality Policy/Manual of the Client.

4.4.1.4 General Protocol for Independent Engineer/Authority's Engineer to Review Drawings in BOT/EPC Contract

Independent Engineer (IE)/Authority's Engineer (AE) shall follow the procedures mentioned below but not limited to it while reviewing the drawings prepared by Concessionaire/Contractor of a BOT/EPC contract:

- Site visit and verification of correctness of data as given in Schedule A of contract;
- Study of DPR prepared by Client;
- Review of Schedule B, C & D of contract agreement and identification of ambiguity/discrepancy/lack of clarity, if any;
- Action under the provision of contract agreement to resolve the discrepancies and establish clarity;
- Comparative study of various survey and investigation data/results as per DPR and that prepared by Concessionaire/Contractor. In case of major differences, IE/AE shall reconfirm accuracy of survey and investigation data/ results prepared by Concessionaire/Contractor;
- Scrutiny of the design reports and drawings as per requirement of Schedule B, C & D of contract agreement and site validation of the drawings from technical, social, environmental, health and safety considerations.

The above requirements shall be inbuilt into Quality Assurance Mechanism of Construction Supervision Consultant/Independent Engineer/Authority's Engineer.

#### **4.4.2** *Procurement*

Procurement is another key activity in the project development cycle. The principles of procurement as set out by World Bank in their draft Procurement Policy 2014 for Procurement in World Bank Investment Project Finance is summarised below:

- Value for money;
- Economy;
- Integrity;
- Fit for purpose;
- Efficiency;
- Transparency;
- Fairness.

These policies are nonetheless equally applicable to procurement of projects with domestic funding irrespective of whether contract is EPC, BOT or Item Rate. Pursuance of the above mentioned policies require a stringent protocol to be meticulously followed by the Employer/

Authority. A sample but not exhaustive protocol is given below:

- Employer/Authority shall ensure that there is absolute clarity and consistency in bidding documents and qualification criteria is objective and quantifiable.
- Employer/Authority shall ensure that bid notice is given adequate publicity.
- Bid evaluation shall be strictly an inhouse exercise of Employer/Authority without any outsourcing.
- Evaluation process shall have undeniable transparency and accountability.
- There should be strong deterrent to conflict of interest.
- Employer/Authority shall ensure that evaluation process is fully documented.
- There should be a credible complaint and grievance redressal mechanism.

The above requirements should be inbuilt into Quality Policy/Manual of the Employer/ Authority.

#### 4.4.3 Construction

The objective of Quality Assurance Plan for the construction stage is clearly spelt out in Clause No. 4.2 of this Section. QAP is a tool that ensures that construction of the project is done in a manner such that quality standards of the project are duly achieved as evidenced in outcome of quality control tests. It covers both process and end control and acts as a precussor to cost and time control such that value for money is achieved.

A Quality Assurance Plan for the Contractor shall typically cover but not limited to the following aspects:

- Organisation structure of contractor's project implementation team including assignment of duties and responsibilities and internal chain of command;
- Operational skills and training of workforce;
- Performance standards of machinery;
- Laboratory infrastructure, equipment and personnel;
- Calibration of equipments;
- Document control;
- Methodology of working, test and inspection plan;
- Control of materials including source selection;
- Control of workmanship;
- Plan for acceptance, non conformities, correction and rejection;
- Plan for adherance to safety, health and environmental considerations.

#### 4.4.3.1 QAP for Contractor

Model Structure is given at **Annexure 4.2**.

#### 4.4.3.2 Quality Assurance Mechanism for Construction Supervision Consultant/ Independent Engineer/Authority's Engineer

The Construction Supervision Consultant/Independent Engineer/Authority's Engineer shall work out a mechanism to be followed within its organisation and team so as to exercise

effective supervision of the project within the provision of contract document and carry out documentation of the process in an efficient manner.

Model Structure is given at **Annexure 4.3**.

#### 4.4.3.3 General Protocol for Employer/Authority during Construction Stage

Notwithstanding the role and responsibility of Construction Supervision Consultant/ Independent Engineer/Authority's Engineer, Employer/Authority has to play a crucial role in ensuring quality of construction. The broad requirements are discussed below:

> (i) Employer/Authority shall ensure availability of minimum staffing both at PIU and HO level so that decisions are fast and just. While it may not be appropriate to exactly specify the details of personnel considering variability of size and complexity of project, additional and miscelleneous responsibilities etc. an idea is given below for desirable strength at PIU level for handling average size projects:

| Designation of officer at PIU level                    | Maximum number of projects to be assigned                    |
|--------------------------------------------------------|--------------------------------------------------------------|
| Asst. Executive Engineer/Deputy<br>Manager             | 1 with no other responsibility                               |
| Executive Engineer/ Manager/<br>Deputy General Manager | 2 with no other responsibility/1 with other responsibilities |
| Superintending Engineer/General<br>Manager             | 3 with other responsibilities                                |

- (ii) Employer/Authority shall have an independent evaluation and monitoring system to ascertain quality control of project. It may be through a dedicated cell at HO level, third party auditing or any other appropriate method but the extent and contour of independent evaluation and monitoring system shall be decided well in advance of commencement/appointed date.
- (iii) Employer/Authority shall install a robust mechanism for dissemination of project information. Dissemination shall be multi modal to cater to the reach of the stakeholders and shall be continued on sustained basis upto completion of the project
- (iv) Employer/Authority shall put in place a credible complaint and grievance redressal mechanism through which complaints/grievances of stakeholders can be genuinely and timely addressed.

The above requirements should be inbuilt into Quality Policy/Manual of the Employer/ Authority.

#### 4.4.3.4 Interaction between QA & QC Personnel of Contractor and Engineer

Proper and timely interaction between QA and QC personnel of Contractor including its project management contractor, if engaged, and Engineer is very critical for achieving quality as well as progress of work. Interaction involves both physical interaction as well as communication

in hard copy and digital format. Contractor will evolve a mechanism for interaction as above and include the same in its QAP.

#### 4.4.3.5 Pre-audit of QAP

QAP prepared by the Contractor is subject to review of Construction Supervision Consultant/ Independent Engineer/Authority's Engineer. Contractor may also engage a separate entity for pre-audit of the QAP before it is submitted to the Engineer for approval. The general points for pre-audit/review of QAP is given below:

- QAP is prepared in sync with the Quality Policy of the Contractor.
- All the works, materials and finished products are covered.
- There is clear task delineation.
- Material/finished product procurement method established.
- Machinery selection established in conformity with methodology and quality control.
- Laboratory infrastructure and testing processes established.

#### Annexure 4.1

# MODEL QUALITY ASSURANCE PLAN FOR PROJECT PREPARATION

#### 1. Brief particulars of assignment

- Name of Client including all units/offices associated with project preparation
- Scope of assignment;
- Brief description of location, terrain, topography, climate, socio-economic characteristics of the project area;
- Stages of project preparation including allocated timeline for each stage;
- Reference and applicable documents;
- Any other important point(s).

#### 2. Quality policy

• Quality policy of the Consultant as per its own charter and reference to such document

#### 3. Consultant's organization and responsibility matrix

A pictorial chart of the organization of the Consultant responsible for project preparation alongwith unit(s)/individual(s) of Consultant's HO who may check/vet the reports/designs/ drawings shall be provided in QAP.

Responsibility matrix for main tasks/group of tasks showing clearly the primary, secondary and tertiary responsibility shall be provided in QAP. The primary responsibility shall mean actual performance of tasks such as survey, field data collection, design, drawing etc. Secondary responsibility includes guidance, supervision and checking with or without approval in respect of the tasks being performed by personnel directly reporting to a particular personnel. It also includes opinion/vetting about a particular output by another personnel/expert which may have a bearing on such output. Tertiary responsibility includes final approval of major tasks involving final outputs. Tertiary responsibility may lie with Team Leader or senior expert(s) in Consultant's HO. Preparation of responsibility matrix hinges on understanding of the interfaces of major tasks e.g. geometrics design depends on topographical survey, siting and FRL of bridges, traffic forecast, social and environmental impact assessment etc. QAP shall classify interfaces of all major tasks in the form of a flow chart before finalising responsibility matrix.

#### 4. Control of surveys

Quality of data is key to preparation of a sound and accurate project report. QAP shall contain the following details as regards to survey activities:

- List of the details of surveys to be conducted as per ToR;
- List of additional surveys, if any, required to be conducted for overall requirement of project preparation;
- List of relevant IRC/IS/other Codes of Practice/Guidelines/Manuals for each survey to be conducted;

- List of the equipments to be used for each survey;
- Formats for recording of data for each of the survey in accordance with the respective Codes of Practice/Guidelines/Manuals. All the formats shall be enclosed to QAP;
- Responsibility Matrix of survey and supervision thereof among key and sub professional, each survey wise, pursuant to para 3 of this Annexure;
- Percentage of checking of data to be carried out by the key professional during survey and post survey, each survey wise;
- Any other point(s) considered relevant.

#### 5. Control of laboratory and field testing

QAP shall contain the following details as regards testing:

- List of the details of laboratory and field testing to be conducted as per ToR;
- List of additional testing, if any, required to be conducted for overall requirement of project preparation;
- List of relevant BIS/other Codes of Practice/Guidelines/Manuals for each test to be conducted;
- List of the equipments and consumables to be used for each test;
- List of the calibration requirements of the testing equipments;
- Formats for recording of test data in accordance with the respective Codes of Practice/Guidelines/Manuals. All the formats shall be enclosed to QAP;
- Responsibility Matrix for testing and supervision thereof among key and sub professional, each test wise, pursuant to para 3 of this Annexure;
- Percentage of testing to be witnessed by the key professional, each test wise;
- Any other point(s) considered relevant.

#### 6. Control of alignment fixation including siting of bridges

Alignment fixation is a key requirement and involves of technical, economic, environmental and social considerations and particularly expanse and depth of social considerations. Alignment needs to be finalised after careful evaluation of all these considerations and in due consultation with all stakeholders. QAP shall contain following details specific to the project in this regard:

- Guidelines for widening scheme;
- Guidelines for deciding the requirement of a bypass and actual alignment of the bypass;
- Guidelines for realignment;
- Procedure for consultation with stakeholders and dissemination of information about alignment and other project related features;
- Any other point(s) considered relevant.

#### 7. Control of data analysis and detailed design

The following shall be provided in QAP regarding data analysis and detailed design.

- List of the details of analysis and designs to be carried out as per ToR;
- List of relevant IRC/BIS/other Codes of Practice/Manuals/Guidelines for each analysis/design;
- List of the software/programming to be used for different analysis and designs;
- Responsibility Matrix for analysis and design and supervision thereof among key and sub professional each case wise pursuant to para 3 of this Annexure;
- Procedure for numbering and storage of manuscripts;
- Procedure for maintaining records of correction and final clearance/approval by designated personnel of Consultant. Suitable formats shall be devised for the purpose;
- Control of revisions- The first formal issue of analysis/design sheet and also drawings referred to in para 7 of this Annexure shall be marked as R0 and subsequent revisions, if any, shall be marked R1, R2 etc. A sample format for keeping a watch on the amendments is given below:

| Rev | Section | Page | <b>Revision Description</b> | Appd. | Date |
|-----|---------|------|-----------------------------|-------|------|
|     |         |      |                             |       |      |

- List the procedure for identification and traceability of documents;
- Any other point(s) considered relevant.

#### 8. Control of safety, health and environment

Safety, health and environment are growing concerns in a road project during both construction and operation. Project preparation must address concerns of safety, health and environment during project cycle. A set of action points to the effect must be included in QAP keeping specific project features in view in line with **Section 13** of the Manual.

#### 9. Control of drawings

• List the rules for deciding sizes of drawings. The drawings shall be of standard size as mentioned below:

| SI. No | Conventional Size | Dimension        |  |  |
|--------|-------------------|------------------|--|--|
| 1.     | A0                | (840mm x 1188mm) |  |  |
| 2.     | A1                | (594mm x 840mm)  |  |  |
| 3.     | A2                | (420mm x 594mm)  |  |  |
| 4.     | A3                | (420mm x 297mm)  |  |  |
| 5.     | A4                | (297mm x 210mm)  |  |  |

- Devise standard title block for drawings.
- List the rules for incorporating notes on the body of drawings such as design basis/philosophy, design parameters, characteristics of selected materials,

loading details, description of implementation scheme of design if any, etc.

• Devise procedure for preparation, checking and approval of drawings with assignment of responsibility among sub professional, key professional and senior expert from HO of the Consultant pursuant to para 3 of this Annexure. A sample checklist for preparation, correction and approval of junction drawing is given below. Similar checklist for other drawings shall be devised.

| SI.<br>No. | Particulars                                                                                                    | Yes | No | NA | Compliance<br>to Item<br>marked "No" |
|------------|----------------------------------------------------------------------------------------------------------------|-----|----|----|--------------------------------------|
| Α          | GENERAL                                                                                                        |     |    |    |                                      |
| 1.         | Drawing title corrected                                                                                        |     |    |    |                                      |
| 2.         | Drawing number/date corrected                                                                                  |     |    |    |                                      |
| 3.         | Revision status given                                                                                          |     |    |    |                                      |
| 4.         | Signature of all concerned                                                                                     |     |    |    |                                      |
| 5.         | Legend abbreviation and notes                                                                                  |     |    |    |                                      |
| В          | JUNCTION ELEMENTS                                                                                              |     |    |    |                                      |
| 1.         | Scale of the drawings as per TOR                                                                               |     |    |    |                                      |
| 2.         | Grids and station points on the drawing with value                                                             |     |    |    |                                      |
| 3.         | Check the centre line at the junction,<br>whether it matches with related plan<br>drawing                      |     |    |    |                                      |
| 4.         | Check acceleration, deceleration and storage lane provided as per requirement                                  |     |    |    |                                      |
| 5.         | Tapering and additional lane is as per design requirements                                                     |     |    |    |                                      |
| 6.         | Turning radius is as per design requirement                                                                    |     |    |    |                                      |
| 7.         | Stop line, lane, edge, chevron markings and over head gantry location are correct                              |     |    |    |                                      |
| 8.         | Cross drainage structures and side<br>drain is tied up properly for smooth flow<br>of water and shown properly |     |    |    |                                      |
| 9.         | For existing situation, the plan of existing junction to be super imposed and shown in up graded drawings      |     |    |    |                                      |
| 10.        | Traffic flow markings are shown on all the arms at appropriate locations                                       |     |    |    |                                      |

| 11. | Dimensions of all the lanes, curve radii<br>mentioned and across section cut and<br>shown separately               |  |
|-----|--------------------------------------------------------------------------------------------------------------------|--|
| 12. | From (Place Name) To (Place Name) mentioned on all the arms                                                        |  |
| 13. | Traffic island at appropriate location with complete dimensions of all elements (radius etc.)                      |  |
| 14. | Sufficient clearance and storage lane<br>at junction available for right turning<br>movements                      |  |
| 15. | All types of traffic signs boards at appropriate places on all the arms of the intersection drawings shown         |  |
| 16. | All features to be named (e.g. existing road, main carriage way, service road, existing culvert and other details) |  |
| C.  | OTHER                                                                                                              |  |
| 1.  | Text and line styles should be same for all the similar drawings                                                   |  |
| D.  | CLIENT COMMENTS                                                                                                    |  |
|     |                                                                                                                    |  |

• List the procedure for identification and traceability of drawings

# MODEL QUALITY ASSURANCE PLAN FOR CONSTRUCTION

#### 1. Brief particulars of project

- Name of Employer/Authority including all units/offices associated with project implementation;
- Name of the Independent Engineer/Authority's Engineer/Construction Supervision Consultant;
- Name of Concessionaire and/or Contractor;
- Brief description of location, terrain, topography, climate, socio-economic characteristics of the project area;
- Any other important point(s).

#### 2. Scope of civil works

List the scope of civil works such as earthwork, pavement courses, structures, drainage and protection works, safety measures etc. Scope of works should indicate use of site and factory manufactured materials in particular items.

#### 3. Applicable documents and references

List all the applicable documents such as contract agreement, applicable manual, MoRT&H Specifications, relevant IRC/BIS/other codes of practice.

#### 4. Quality policy

Contractor's own quality policy as per its own charter and reference to such document.

## 5. Contractor's organisation and structure

- Indicate organisational chart of the project implementation team of the contractor.
- Chart shall show the QA and QC section of the contractor/project management consultants as applicable in more detail.
- Chart shall show interface with top management of the contractor and Independent Engineer/Authority's Engineer/Construction Supervision Consultant as applicable.

## 6. Responsibility matrix among the contractor's key personnel

- All the major tasks in project implementation including pre-construction/ preparatory works shall be identified.
- The role of QA&QC personnel of contractor/ project management consultants as applicable during performance of different tasks shall be established.

## 7. Control of sub-contracting

Sub contracting is a reality in almost all contracts though varying in nature and extent. Sometimes sub contracting of a specialised nature of work is a genuine necessity. While finalising a sub contractor, qualification criteria as stipulated in contract agreement shall be followed. QAP shall provide the following details as regards sub contracting:

- Works/items to be sub contracted in the project as a whole;
- Plan as to how the works/items to be sub contracted will match the works programme of the contractor for the whole project;
- Plan as to how the role of QA&QC personnel of contractor/ project management consultants shall be enforceable to the works/items to be sub contracted.

#### 8. Control of documentation and communication

- Procedure for filing, indexing and maintainence of records in a manner that provides for ready access to documents and prevents loss, damage, or deterioration;
- RFD (Result Framework Document) by contractor (A results framework is an explicit articulation (graphic display, matrix or summary) of the different levels or chains of results expected from a particular intervention).

#### 9. Control of methodology

Contractor is required to submit methodology as per provision of agreement. QAP shall indicate a plan of approach as to how approved methodology shall be followed diligently during execution.

#### 10. Human resources and training

Skill, knowledge and expertise of contractor's personnel responsible for various activities such as plant/machinery operation and maintenance, laboratory/field testing etc. are extremely important to ensure quality of the project. QAP shall deal with contractor's plan and programme to train its own personnel.

## 11. Control of materials including traceability and product identification

QAP will contain two different protocols to be followed by the Contractor to procure naturally occuring minerals and manufactured materials. There will be a separate protocol to control mix materials at Contractor's plant site. The protocol will list the responsibility of Contractor's key personnel and sub professional pursuant to para 6 of this Annexure as regards control of materials. The protocols will contain a faultless system for maintaining product identification. A sample protocol is given below:

- Estimate material quantities with reference to drawings and specifications;
- Prepare requirement plan;
- Float enquiries' enclosing specifications;
- Assign the responsibility of testing and obtaining approval among Contrctor's personnel;
- Collect samples, test independently;
- Seek/obtain approval of the source, if necessary;
- Place order, receive materials, test samples;
- Assign suitable identification number to each lot/stack and maintain record of the same;
- Allow for usage if test reports are satisfactory;

- Untested materials to be stacked at locations designated for the purpose;
- Where routine tests are not conforming to requirements, materials to be segregated at locations designated for rejected materials and quickly removed from site;
- If materials from a particular source continue to fail in the tests, discard the source.

## 12. Control of machinery

- Plan for selection of machinery (number, type and capacity) keeping in view production rate;
- Plan for training of operators as per manufacturer's requirement;
- Plan for calibration, routine checking and upkeep of machinery including all relevant parts responsible for different controls.

#### 13. Control of laboratory and field testing facility

- Plan for laboratory infrastructure such as location, space size, personnel, equipments, accessories, consumables, general facilities commensurate with work requirements;
- Plan for calibration of equipments;
- Plan for upkeep of equipments;
- Plan for identification of samples and documentation of test results;
- Sample formats for collection of samples, recording of test (field and laboratory) observations and analysis/calculation of test results;
- Sample formats for statistical analysis;
- Sample formats for checking of levels and profiles.

All the sample formats mentioned above shall be included in QAP.

## 14. Control of corrective action

List the protocol for retesting and acceptance mechanism.

## 15. Control of traffic management, work zone safety, health and environment

Enforcement of traffic management, work zone safety, health and environment management plans are often neglected. QAP shall provide a protocol for enforcement of these plans.

## 16. Interaction between QA & QC Personnel of Contractor and Engineer

QAP will detail the mechanism for interaction between QA & QC Personnel of Contractor including its project management consultant, if engaged, and Engineer to achieve quality of works together with timely completion.

#### Annexure 4.3

# MODEL QUALITY ASSURANCE MECHANISM FOR CONSTRUCTION SUPERVISION CONSULTANT/INDEPENDENT ENGINEER/AUTHORITY'S ENGINEER

#### 1. Brief particulars of assignment:

- Name of Employer/Authority including all units/offices associated with project implementation;
- Name of the Independent Engineer/Authority's Engineer/Construction Supervision Consultant;
- Name of Concessionaire and/or Contractor;
- Brief description of the scope of work of consultancy services;
- Any other important point(s).

#### 2. Applicable documents and references

List all the applicable documents such as contract agreement, applicable manual, MoRT&H Specifications, relevant IRC/BIS/other Codes of Practice/Guidelines/Manuals.

#### 3. Quality policy

State the Consultant's own quality policy as per its own charter and reference to such document.

#### 4. Consultant's organization and structure

Indicate organizational chart of the consultant's team with clear emphasis on QA and QC team

#### 5. Responsibility matrix among consultant's personnel

List out the tasks of the consultancy services related to quality assurance and control. Prepare responsibility matrix among key personnel, sub professionals and HO support for quality assurance and control clearly showing primary, secondary and tertiary responsibility.

#### 6. Control of documentation and communication

## 7. **Protocol for acceptance, non conformance and rejection**

# **SECTION 5**

# QUALITY REQUIREMENTS FOR FACTORY MANUFACTURED MATERIALS, PRODUCTS AND SPECIALIZED ITEMS

#### 5.1 Introduction

The materials used in road construction can be broadly classified into three categories i.e. natural materials such as soil, sand, gravel, stone etc., factory manufactured materials such as steel, cement, bitumen etc. products and specialized items such as bridge bearing, expansion joint, tolling equipment, crash barrier etc. Field laboratory is required to be equipped for carrying out most of the tests specified for natural materials and factory manufactured materials. However, the finished items are usually tested in manufacturer's own laboratory or in a specialized laboratory.

**5.1.1** Tentative list of factory manufactured materials used in road construction and testing requirements for the same are indicated in **Annexure 5.1**. The tests, which are normally carried out in field laboratory in respect of such materials, are also indicated therein.

**5.1.2** Tentative list of factory manufactured finished items used in road construction and operation are indicated in **Annexure 5.2** along with testing requirements for the same. Normally, there is no facility in field laboratory to carry out such tests.

**5.1.3** Reliability of factory manufactured materials and finished items specified in **Annexure 5.1** & **5.2** in the absence of regular site testing has a lot of concerns which need to be duly addressed through a combination of testing in manufacturer's/third party laboratory and rigorous protocol to ensure adoption of correct practices by the manufacturers.

## 5.2 General Principles

**5.2.1** Quality of factory manufactured materials and finished items specified in **Annexure 5.1** & **5.2** hinges upon the manufacturer's commitment and implementation of a rigorous protocol in a sustained manner in pursuance to ISO 9001-2015 or similar standard. Three aspects are critical in this regard:

- Process approach
- Plan-Do-Check-Act (PDCA) cycle
- Evidence based decision making

## 5.2.1.1 Process Approach

A process is defined as a set of interrelated or interacting activities that use inputs to deliver an intended result. The process approach is a management strategy. When a firm/company uses a *process approach*, it means that it manages and controls the processes that make up its organization, the interactions between these processes, and the inputs and outputs that tie these processes together.

When this approach is applied to quality management, it means that the processes and process interactions are managed by the firm/company as a coherent *process-based quality* 

management system. A process-based quality management system (QMS) uses a process approach to manage and control how its quality policy is implemented and how its quality objectives are achieved. In a nutshell, a firm/company is required to identify the processes that its QMS needs, to identify their sequence and interaction, to identify required inputs and expected outputs for each process, to identify process risks and opportunities, and to assign responsibilities and authorities for each process. It also expects the firm/company to identify the methods needed to manage, monitor, measure, evaluate, and control each process and to provide the resources that each process needs.

## 5.2.1.2 Plan-Do-Check-Act (PDCA) Cycle

A firm/company is required to (i) plan its process based QMS, (ii) operate its process based QMS, (iii) evaluate its process based QMS and (iv) finally improve its process based QMS. A firm/company is required to consistently follow the steps (iii) and (iv) during its operation/ manufacturing.

#### 5.2.1.3 Evidence based Decision Making

Making decisions involves a degree of uncertainty, but ensuring that decisions are based on the analysis and evaluation of data is more likely to produce the desired result. This principle is directly applied to step 1,3 and 4 of PDCA cycle in managing and ensuring quality.

5.2.2 When reliance is made on the quality of a factory manufactured material or finished item, it must be certified that the manufacturer is reasonably complying with the requirements stated in 5.2.1 above.

## 5.3 Responsibility of Supplier/Manufacturer

The supplier/manufacturer has the responsibility of formulating a sound quality management plan (QMP) in accordance with the principles set out in clause 5.2 above that meets the specification requirements through systematic program of sampling, testing, and inspection. QMP shall be consistent with quality policy of the manufacturer. The quality management plan shall cover aspects such as particulars of certification of company by ISO or any other organization, testing facilities, accreditation of manufacturer's laboratory by NABL/equivalent international organisation, calibration process, QC personnel, acceptance mechanism, documentation, third party testing and evaluation method. The supplier shall follow its QMP diligently. The supplier/manufacturer shall furnish its quality management plan and accurate reports of its in house testing and third party laboratory test reports to the purchaser (employer/authority/contractor). Annexure 5.3 gives list of documents to be furnished by supplier/manufacturer. Annexure 5.3 is a minimum requirement only. If any Code of Practice/ Guidelines specifies the details of documents to be provided by supplier/manufacturer for a particular material/item, the same shall also be provided additionally. Requirements given in **Annexure 5.3** may be further improved by concessionaire/contractor in its QAP for any specific factory manufactured material/finished item.

## 5.4 Responsibility of Concessionaire/Contractor

The concessionaire/contractor will remain responsible for the ultimate quality of an item produced using factory manufactured material or a finished item itself. The contractor shall therefore, exercise its checks pursuant to its own QAP for such materials.

## 5.5 Responsibility of Engineer/Consultant/Employer/Authority

The responsibility of Engineer/Consultant is basically threefold. First, the Quality Management Plan and other documents submitted by the supplier/ manufacturer shall be scrutinized at length to find consistency of documents in accordance with quality policy of the manufacturer. Second, the Engineer/Consultant is required to witness a certain percentage of in house tests conducted by the supplier/manufacturer. The Employer/Authority shall carry out witnessing of tests, wherever Engineer/Consultant is not engaged for a particular project. Engineer/ Consultant/Employer/Authority shall get third party testing of certain manufactured materials/ finished items in a laboratory of repute depending upon the volume of work, importance/ unique nature of a particular finished item, inconsistency of manufacturer's test reports, fragile results of the tests. Random sampling along with traceability of sample is a pre-requisite for third party testing. Quality Assurance Mechanism of Engineer/Consultant shall firm up the details of tests to be witnessed by Engineer/Consultant and third party testing of certain manufactured materials/ manufactured materials/ finished items to be carried out.

#### 5.6 New Materials

Several new materials are being developed from time to time which are not incorporated in MoRT&H Specifications for Road & Bridge Works. Such new materials are meant for use in pavement courses, concrete and various miscellaneous works to bring in economy in construction/enhancement of performance/protection of environment etc. Whereas decision as to use of such materials shall be taken as per provisions of Contract Agreement or based on judgement of Employer/Authority, following guidelines shall be followed to ensure that stated objectives are duly realized.

- All new materials proposed to be used should be fit for the intended purpose of the material or the work in which these are incorporated (e.g. strength, durability, volume stability, permeability, separation or filtration, visibility, reflectivity, impact resistance, etc. as relevant), tested in reputed laboratories and in the field.
- The material should have a technology and production base that is capable of producing the required quantity with consistent and reproducible quality.
- Full responsibility of the manufacturer shall be guaranteed towards performance of the material.
- The manufacturer's Quality Policy shall be submitted.
- The specification limits of the material shall be informed for different quality characteristics.
- Undertaking of the manufacturer about no adverse environmental impact shall be furnished supported with test reports.

## Annexure 5.1

# \*LIST OF FACTORY MANUFACTURED MATERIALS USED IN ROAD CONSTRUCTION

## \*(This is not an exhaustive list)

| SI. | Factory                  | Testing requirements                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  | Test facility          |
|-----|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| No. | manufactured<br>material | Test                                                                                                                                                                                                                                                                                                                       | Applicable<br>Code of Practice                                                                                                                   | at field<br>laboratory |
| 1   | 1 Fly Ash                | Requirement of IRC SP:58         Grain Size Analysis         Atterberg Limits         MDD/OMC         CBR         Moisture Content         Cohesion (C)         Angle of Shearing Resistance (φ)         Coefficient of Consolidation         Compression index         Permeability         Coefficient of Uniformity     | IS:2720-Part-2<br>IS:2720-Part-4<br>IS:2720-Part-5<br>IS:2720-Part-8<br>IS:2720-Part-13<br>IS:2720-Part-15<br>IS:2720-Part-16<br>IS:2720-Part-17 | Yes                    |
|     |                          | Requirement of IS:3812 (Part 1)<br>pH<br>Silicon Dioxide<br>Magnesium Oxide<br>Sulphur Trioxide<br>Loss on Ignition<br>Sodium Oxide<br>Silicon Dioxide, plus<br>Aluminium Oxide plus Iron<br>Oxide<br>Total Chloride<br>Reactive Silica<br>Fineness<br>Wet Sieving<br>Lime Reactivity<br>Compressive Strength<br>Soundness | IS:1727<br>IS:4032<br>IS:12423<br>IS: 2720                                                                                                       | No                     |
| 2   | Lime                     | Requirement of MoRT&H<br>Specifications<br>Sieve Analysis<br>Calcium Carbonate<br>Calcium Oxide                                                                                                                                                                                                                            | IS:1514                                                                                                                                          | No                     |

| SI. | Factory                        | Testing requirement                                                                                                                                                                                   | ts                                                                                                                                                                                  | Test facility<br>at field<br>laboratory |
|-----|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| No. | manufactured<br>material       | Test                                                                                                                                                                                                  | Applicable<br>Code of Practice                                                                                                                                                      |                                         |
| 3   | Ordinary<br>Portland<br>Cement | Requirement of IS:269Physical TestsConsistencySetting TimeFineness(Blaine's air, dryseiving)SoundnessDensityCompressive Strength                                                                      | IS:4031-Part-1<br>IS:4031-Part-2<br>IS:4031-Part-3<br>IS:4031-Part-4<br>IS:4031-Part-5<br>IS:4031-Part-6<br>IS:4031-Part-11                                                         | Yes                                     |
|     |                                | Chemical Tests<br>Lime<br>Soluble Silica<br>Alumina<br>Iron Oxide<br>Total Sulpher Content<br>Tricalcium Aluminate<br>Magnesia<br>Loss on Ignition<br>Chloride Content<br>Insoluble Residue<br>Alkali | IS:4032,<br>IS:12423-1988                                                                                                                                                           | No                                      |
| 4   | PPC                            | Requirement of IS:1489                                                                                                                                                                                |                                                                                                                                                                                     |                                         |
|     |                                | Physical<br>Consistency<br>Setting Time<br>Fineness (Blaine's air, Dry<br>Seiving)<br>Soundness<br>Density<br>Compressive Strength<br>Drying Shrinkage                                                | IS:4031-Part-1         IS:4031-Part-2         IS:4031-Part-3         IS:4031-Part-4         IS:4031-Part-5         IS:4031-Part-5         IS:4031-Part-10         IS:4031-Part-11   | Yes                                     |
|     |                                | <b>Chemical</b><br>Sulpheric Anhydride<br>Magnesia<br>Loss on Ignition<br>Insoluble Residue                                                                                                           | IS:4032, IS:12423                                                                                                                                                                   | No                                      |
| 5   | PSC                            | Requirement of IS:455                                                                                                                                                                                 |                                                                                                                                                                                     |                                         |
|     |                                | Physical<br>Consistency<br>Setting Time<br>Fineness(Blaine's air, dry<br>seiving)<br>Soundness<br>Density<br>Compressive Strength                                                                     | <ul> <li>IS:4031-Part-1</li> <li>IS:4031-Part-2</li> <li>IS:4031-Part-3</li> <li>IS:4031-Part-4</li> <li>IS:4031-Part-5</li> <li>IS:4031-Part-6</li> <li>IS:4031-Part-11</li> </ul> | Yes                                     |

| SI. | Factory         | Testing requirements                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             | Test facility          |
|-----|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------|
| No. | manufacturod    | Test                                                                                                                                                                                                                                                                                                                                                                                                                                    | Applicable<br>Code of Practice                                                                                              | at field<br>laboratory |
|     |                 | Chemical<br>Sulpher Trioxide<br>Sulphide Sulphur<br>Magnesium Oxide<br>Loss on Ignition<br>Total Chloride content<br>Insoluble Residue                                                                                                                                                                                                                                                                                                  | IS:4032, IS:12423                                                                                                           | No                     |
| 6   | Rapid Hardening | Requirement of IS:8041                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                             |                        |
|     | Portland Cement | Physical<br>Consistency<br>Setting Time<br>Fineness(Blaine's air, dry<br>seiving)<br>Soundness<br>Density<br>Compressive Strength                                                                                                                                                                                                                                                                                                       | IS:4031-Part-1<br>IS:4031-Part-2<br>IS:4031-Part-3<br>IS:4031-Part-4<br>IS:4031-Part-5<br>IS:4031-Part-6<br>IS:4031-Part-11 | Yes                    |
|     |                 | Chemical<br>Lime<br>Silica<br>Alumina<br>Iron Oxide<br>Total Sulpher Content<br>Tricalcium Aluminate<br>Magnesia<br>Total loss on Ignition<br>Total Chloride Content<br>Insoluble Residue                                                                                                                                                                                                                                               | IS:4032, IS:12423                                                                                                           | No                     |
| 7   | Viscous Grade   | Requirement of IS:73                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |                        |
|     | Bitumen         | <ul> <li>Penetration at 25°C, 100 g, 5 s, 0.1 mm</li> <li>Absolute Viscosity at 60°C, Poises</li> <li>Kinematic Viscosity at 135°C, cSt,</li> <li>Flash Point (Cleveland open cup), °C</li> <li>Solubility in Trichloroethylene, per cent,</li> <li>Softening Point (R&amp;B), °C</li> <li>Tests on Residue from rolling</li> <li>thin film Oven Test:</li> <li>a) Viscosity Ratio at 60°C</li> <li>b) Ductility at 25°C, cm</li> </ul> | IS:1203<br>IS:1206-Part-2<br>IS:1206-Part-3<br>IS:1448-Part-69<br>IS:1216<br>IS:1205<br>IS:1208                             | Yes                    |

| SI. | Factory                  | Testing requirements                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                 | Test facility          |
|-----|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------|
| No. | manufactured<br>material | Test                                                                                                                                                                                                                                                                                                                                                           | Applicable<br>Code of Practice                                                                                                    | at field<br>laboratory |
| 8   | Modified Bitumen         | Requirement of IRC:SP:53                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                   |                        |
|     |                          | Penetration at 25°C 0.1 mm 100 gm,<br>5 sec<br>Softening point (R&B)°C<br>Ductility at 27°C<br>Fraass Breaking Point °C<br>Flash Point CoC °C<br>Elastic recovery of half thread in<br>Ductilometer at 15°C per cent<br>Separation difference in<br>softening point, R&B Method in °C<br>Viscosity at 150°C Flash Point, COC<br>Thin film oven test on residue | IS:1203<br>IS:1205<br>IS:1208<br>IS:9381<br>IS:1209<br>IS:1206-Part 2<br>IS:15462-A<br>Annex-1,2,3 & 4 of<br>IRC:SP:53<br>IS:9382 | Yes                    |
|     |                          | <ul> <li>a) Loss in Mass</li> <li>b) Increase in Softening Point</li> <li>c) Reduction in penetration of<br/>Residue at 25°C , percent(IS 1203)</li> <li>d) Elastic recovery of half thread in<br/>ductilometer at 25°C</li> </ul>                                                                                                                             |                                                                                                                                   |                        |
| 9   | Cationic Bitumen         | Requirement of IS:8887, ASTM:D-2397                                                                                                                                                                                                                                                                                                                            |                                                                                                                                   |                        |
|     | Emulsion                 | Viscosity by Saybolt Furol<br>Viscometer, seconds<br>Storage Stability<br>Particle Charge Test<br>Cement Mixing Stability<br>Distillation<br>Residue on 600 micron IS<br>Sieve, percentage by mass<br>Penetration Ductility<br>Solublity in Trichloroethylene<br>Miscibility with water<br>Residue by evaporation                                              | ASTM: D-244<br>ASTM: D-6933<br>ASTM: D-6935<br>ASTM: D-6997<br>Annex-B, D, E, G,<br>H and J of IS: 8887                           | No                     |
| 10  | Cut back                 | Requirement of IS:217Kinematic viscosity at 60°CFlash point Pensky Mortens ClosedType °CDistillate volume per cent of total distillateupto 360°C                                                                                                                                                                                                               | IS:1206-Part-3<br>IS:1209<br>IS:1213                                                                                              | No                     |

| SI. | Factory                                      | Testing requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     | Test facility          |
|-----|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------|
| No. | manufactured<br>material                     | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Applicable<br>Code of Practice                                      | at field<br>laboratory |
| 11  | Modified Bitumen<br>Emulsion for Micro       | Requirement of MORTH<br>Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                        |
|     | Surfacing                                    | Residue on 600 micron IS sieve<br>Viscosity by Say Bolt Furol<br>Viscometer<br>Coagulation of Emulsion<br>Storage Stability<br>Particle Charge<br>Test on Residue<br>Residue by evaporation<br>Penetration at 25°C/100 gm/5 secs<br>Ductility at 27°C cm<br>Softening point °C<br>Elastic recovery<br>Solubility in trichloroethylene                                                                                                                                                                               | IS:8887<br>IS:1203<br>IS:1208<br>IS:1205<br>IS:15462<br>IS:1216     | No                     |
| 12  | Anti Stripping Agent                         | Requirement of MoRT&H<br>Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |                        |
|     |                                              | Appearance<br>Odour<br>Specific Gravity 27°C<br>Pour Point °C<br>Flash Point °(COC)<br>Water Content per cent Vol.<br>Solubility in diesel oil (HDO or LDO) in<br>the ratio of 2:98 at 50°C<br>Total base value mg KOH/g<br>Nitrogen Content per cent Wt.<br>Stripping value with bitumen containing<br>1 per cent Wt. anti stripping compound at<br>40°C 24 hours<br>Under water coating test<br>Thermal stability at 163°C 5 hours<br>Boiling Water Test per cent coating<br>Retained Marshall Stability per cent | IS:1202<br>IS:1448<br>ASTM: D-664<br>IS:6241<br>ASTM: D-3625        | No                     |
| 13  | Stabilizer additive for stone matrix asphalt | Requirements of MORTH Specifications<br>Maximum fibre length<br>Ash Content<br>Oil Absorption<br>Moisture Content                                                                                                                                                                                                                                                                                                                                                                                                   | ASTM:D-6390<br>MORTH<br>Specifications<br>IRC:SP:79<br>AASHTO:T-283 | No                     |

| SI. | Factory                   | Testing requirement                                                                                                                                    | S                                                                                     | Test facility          |
|-----|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------|
| No. | manufactured<br>material  | Test                                                                                                                                                   | Applicable<br>Code of Practice                                                        | at field<br>laboratory |
| 14  | Silica Fume               | Requirement of IS:15388                                                                                                                                |                                                                                       |                        |
|     |                           | Physical<br>Specific Surface<br>Pozz Activity Index<br>45 Micron Retained<br>Bulk Density                                                              | ASTM C:1240                                                                           | No                     |
|     |                           | <b>Chemical</b><br>Silicon Dioxide<br>Moisture Content<br>Loss in Ignition<br>Alkalis as Na <sub>2</sub> O                                             |                                                                                       |                        |
| 15  | Cement Admixture          | Requirement of IS:9103                                                                                                                                 | IS:6925<br>IS:9103 (Annex E)                                                          |                        |
|     |                           | Dry Material Content<br>Ash Content<br>pH<br>Water Soluble Chloride<br>Relative density                                                                |                                                                                       | No                     |
| 16  | Joint Ceiling<br>Compound | Penetration<br>Flow<br>Bond<br>Resilience                                                                                                              | ASTM:D-5329-Sec.6<br>ASTM:D-5329-Sec.8<br>ASTM:D-5329-Sec.9<br>ASTM:D-5329-<br>Sec.12 |                        |
| 17  | Reinforcing Steel         | Requirement of IS:1786 & IS:2062                                                                                                                       |                                                                                       |                        |
|     |                           | PhysicalUnit Weight (kg/m)Yield Strength (0.2% proof stress)(N/mm²)Ultimate Tensile Strength (N/mm²)% ElongationBend & Re- bend testChemicalCarbon (%) | IS:1608                                                                               | No                     |
|     |                           | Sulphur (%)<br>Phosphorus (%)<br>Sulphur (%) +<br>Phosphorus(%)                                                                                        |                                                                                       |                        |

| SI. | Factory                  | Testing requireme                                                                                                                                          | ents                                                      | Test facility          |
|-----|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------|
| No. | manufactured<br>material | Test                                                                                                                                                       | Applicable<br>Code of Practice                            | at field<br>laboratory |
| 18  | Structural Steel         | Requirement of IS:11587, IS:1977,<br>IS:8500 & IS:2062                                                                                                     |                                                           |                        |
|     |                          | PHYSICAL<br>Tensile Strength (N/mm <sup>2</sup> )<br>Bend Test<br>Impact Test<br>Flattening Test                                                           | IS:1608<br>IS:1599<br>IS:1757<br>IS:2328                  | No                     |
|     |                          | CHEMICAL<br>Carbon (%)<br>Sulphur (%)<br>Phosphorus (%)<br>Sulphur (%)<br>Phosphorus (%)                                                                   | IS:11587                                                  |                        |
| 19  | Pre-Stressing            | Requirements of IS:14268                                                                                                                                   |                                                           |                        |
|     | Steel Stands             | Nominal Diametre<br>Nominal Area<br>Nominal Mass<br>Proof Load<br>Breaking Strength of Strand<br>% Elongation                                              | IS:14268<br>IS:1608                                       | No                     |
| 20  | Fusion Bonded            | Requirements of IS:13620                                                                                                                                   |                                                           |                        |
|     | Epoxy Coated<br>Steel    | Coating Thickness<br>Chemical Resistance<br>Corrosion Test<br>Adhesion<br>Bond Strength to Concrete<br>Abrasion Resistance<br>Impact Test<br>Hardness Test | IS:1786<br>IS:6885                                        | No                     |
| 21  | Stainless Steel          | Requirements of IS:6603, IS:6911                                                                                                                           |                                                           |                        |
|     |                          | Chemical composition<br>Titanium<br>Niobium<br>Molybdenum<br>Copper                                                                                        | IS:228<br>IS:1608<br>IS:1599                              | No                     |
|     |                          | Mechanical property<br>Tensile test<br>Bend test<br>Hardness<br>Charpy impact test<br>Dimensional tolerances                                               | IS:1500<br>IS:1501 (Pt1)<br>IS:1586<br>IS:1499<br>IS:6603 | INU                    |

| SI. | Factory                  | Testing requirem                                                                                                                                                                                                                                      | ents                                                                                            | Test facility<br>at field<br>laboratory |
|-----|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------|
| No. | manufactured<br>material | Test                                                                                                                                                                                                                                                  | Applicable<br>Code of Practice                                                                  |                                         |
| 22  | Tubular Steel            | Requirements of IS:1161                                                                                                                                                                                                                               |                                                                                                 |                                         |
|     |                          | Mechanical Test<br>Tensile Test<br>Flattening Test<br>Bend Test<br>Retest                                                                                                                                                                             | IS:1608<br>IS:2328<br>IS:2329<br>IS:228<br>IS:4376                                              | No                                      |
|     |                          | <b>Chemical analysis test</b><br>Hot-dip Zinc Coating<br>Tolerance<br>Sizes and Properties                                                                                                                                                            | IS:1161                                                                                         | -                                       |
|     |                          | Steel & Supply<br>Manufacturing Process<br>H F W<br>H F S<br>E R W/ H R I W                                                                                                                                                                           | IS:10748                                                                                        |                                         |
| 23  | GI Pipe                  | Requirement of IS:4736                                                                                                                                                                                                                                |                                                                                                 |                                         |
|     |                          | Quality of zinc<br>Galvanizing<br>Basic Metal for Tubes<br>Mass of Zinc Coating<br>Freedom from defect<br>Free Bore Test<br>Uniformity of Galvanized Coating<br>Adhesion Test<br>Sampling & Preparation of<br>Test Specimen<br>Re Test                | IS:4736<br>IS:2629<br>IS:4736<br>IS:6745<br>IS:2629<br>IS:4736<br>IS:2633<br>IS:2629<br>IS:4736 | No                                      |
| 24  | Cast Iron                | Requirement of IS:1030                                                                                                                                                                                                                                |                                                                                                 |                                         |
|     |                          | Tensile Test<br>Brindell Hardness Test<br>Impact Test<br>Bend Test<br>Chemical Analysis<br>Chemical Composition<br>Non Destructive Test<br>Hydraulic Test<br>Radiographic Test<br>Liquid Penetrant Flaw Detection<br>Magentic particle flaw Detection | IS:1608<br>IS:1500<br>IS:1757<br>IS:1599<br>IS:228<br>IS:1030<br>IS:2595<br>IS:3658<br>IS:3703  | No                                      |

| SI. | Factory                                         | Testing requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                   | Test facility          |
|-----|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------|
| No. | manufactured<br>material                        | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Applicable<br>Code of Practice                                                                                    | at field<br>laboratory |
| 25  | Steel Forgings                                  | Requirement of IS:1875Tensile TestHardness TestRetestBend TestGrain SizeMacro structureUltrasonic TestMagnetic Particle TestBlue Fracture TestDimensional ToleranceMacro streak flaw testChemical Analysis                                                                                                                                                                                                                                                                              | IS:1608<br>IS:1500<br>IS:1599<br>IS:4748<br>IS:11371<br>IS:10138<br>IS:4075<br>IS:3739<br>IS:4075<br>IS:228       | No                     |
| 26  | Steel Nut Bolt<br>Washers                       | Requirements of IS:1364 and IS:1367Dimensions & Mechanical<br>PropertiesPropertiesPreferred ThreadsNon Preferred ThreadToleranceProperty ClassProduct GradeFinish and or CoatingFor ElectroplatingFor non electrolyticallyApplied Zinc Flake CoatingPlain washerHole DiameterOutside DiameterHardness Test                                                                                                                                                                              | IS:1364<br>ISO:724<br>ISO:965-1<br>ISO:898-1<br>ISO:4759-1<br>ISO:4042<br>ISO:10683<br>IS:1367 (Pt17)<br>ISO:3269 | No                     |
| 27  | Aluminium<br>Composite<br>Material<br>Substrate | Requirements of         MORT&H Specifications         Mechanical properties of ACM         Peel off strength with Retro-reflective         Sheeting (Drum Peel Test)         Tensile Strength         0.2% Proof Stress         Elongation         Flexural Strength         Flexural Modulus         Shear Strength with punch Shear Test         Properties of Aluminium Skin         Tensile Strength(Rm)         Modulus of Elasticity         Elongation         0.2% Proof Stress | ASTM:D-903<br>ASTM:E-8<br>ASTM:393<br>ASTM:732                                                                    | No                     |

| SI. | Factory                                      | Testing requirements                                                                                                                                                                                                                    |                                                                                                                                                                           | Test facility          |
|-----|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| No. | manufactured<br>material                     | Test                                                                                                                                                                                                                                    | Applicable<br>Code of Practice                                                                                                                                            | at field<br>laboratory |
| 28  | Retro-Reflective<br>Sign Board &<br>Sheeting | Tensile Strength<br>% Elongation<br>Aluminium<br>Heat Stability<br>Cracking Resistance<br>Retro Sheeting                                                                                                                                | ASTM:B-209M                                                                                                                                                               | No                     |
| 29  | Ordinary Road<br>Marking Paint               | Requirement of IS:164DurabilityDrying time on BituminousSurfaceSurface DryHard DryConsistencyFinishApplicationColourWet CapacityResistance to BleedingRecoating PropertyResistance to WearResidue on SieveFlash pointKeeping properties | IS:164<br>IS:101                                                                                                                                                          | No                     |
| 30  | Thermo Plastic<br>Road Marking<br>Paint      | Luminance<br>Drying Time<br>Skid Resistance<br>Cracking Resistance at low<br>Temperature<br>Softening Point<br>Flow Resistance<br>Yellowness Index                                                                                      | AASHTO: M-249<br>MORTH<br>Specifications<br>BS:604<br>ASTM:D-36<br>AASHTO: M-249<br>AASHTO: M-249                                                                         | No                     |
| 31  | Reflectorising<br>Glass Beads                | Gradation<br>Roundness<br>Refractive Index<br>Free Flowing Properties                                                                                                                                                                   | BS:6088<br>BS:6088<br>BS:3262 (Pt1)<br>MORTH<br>Specifications                                                                                                            | No                     |
| 32  | Cold Applied<br>Reflective Paint             | Requirements of MORT&H SpecificationsBinderTitanium DioxideCalcium Carbonate & InterfillerYellow PigmentDensityDrying TimeSand Abrasion TestElongation (Unbeated Dry Film)Water ResistanceSkid ResistanceRetro-Reflective Property      | MORT&H Spec.<br>ASTM:D-1475<br>ASTM:D-711<br>ASTM:D-968<br>ASTM:D-1737<br>ASTM:D-1647<br>BS:6044<br>BS:EN-1436-1998<br>ASTM:D-711<br>ASTM-D-4060<br>ASTM:D-968<br>BS:6088 | No                     |

| SI. | Factory                                    | Testing requirements                                                                                                                                                                                                                                             |                                                              | Test facility          |
|-----|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------|
| No. | manufactured<br>material                   | Test                                                                                                                                                                                                                                                             | Applicable<br>Code of Practice                               | at field<br>laboratory |
|     |                                            | Luminous Coefficient<br>No- Pick Up Time<br>Resistance to Wear<br>Gradation of Glass Beads                                                                                                                                                                       |                                                              |                        |
| 33  | Burnt Clay Bricks                          | Requirements of IS:1077                                                                                                                                                                                                                                          |                                                              |                        |
|     |                                            | Compressive Strength<br>Water Absorption<br>Efflorescence                                                                                                                                                                                                        | IS:3495 (Pt1)<br>IS:3495 (Pt2)<br>IS:3495 (Pt3)              | Yes                    |
| 34  | Hume Pipe (NP-4)                           | Requirements of IS:458                                                                                                                                                                                                                                           |                                                              |                        |
|     |                                            | Compressive Strength<br>Splitting tensile Strength<br>Hydrostatic Test<br>Three Edge Bearing Test<br>Permeability Test<br>Working Pressure<br>Site Test Pressure<br>Surge (Water Hammer)<br>Pressure<br>Design & Strength Test<br>Spigot & Socket Dimension Test | IS:516<br>IS:5816<br>IS:3597<br>IS:3597<br>IS:3597<br>IS:458 | No                     |
| 35  | Sheathing Duct                             | Workability<br>Transverse Load Rating Test<br>Tension Load Test<br>Water Loss Test<br>Bond Test<br>Compression Test for the<br>Loss of Wall Thickness                                                                                                            | IS:1343                                                      | No                     |
| 36  | Anchorage for                              | Requirements of IS:1343                                                                                                                                                                                                                                          | IS:1343                                                      |                        |
|     | Pre-Stressing                              | Static Load Test with Tendon Anchorage<br>Assembly Dynamic Load Test with<br>Tendon Anchorage Assembly Load<br>Transport Test                                                                                                                                    |                                                              | No                     |
| 37  | Chemical Resistant<br>Anti corrosive Paint | Requirements of draft<br>RDSO Specification No.<br>M & C/PCN/123-II                                                                                                                                                                                              |                                                              |                        |
|     |                                            | Drying time<br>Consistency<br>Dry Thickness and Rate of<br>Consumption                                                                                                                                                                                           | IS:101                                                       | No                     |

| SI. | Factory                  | Testing requirement                                                                                                                                                                                                                  | S                                                                                                                                                                         | Test facility<br>at field<br>laboratory |
|-----|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| No. | manufactured<br>material | Test                                                                                                                                                                                                                                 | Applicable<br>Code of Practice                                                                                                                                            |                                         |
| 38  | Epoxy Based Paint        | Requirements of IS:14589ConsistencyDrying TimeFinishColourVolatile MatterPigment ContentVolume SolidsDry Film ThicknessFlash PointProtection against corrosionResistance to Salt SprayEffect of weldingKeeping qualityPot life       | IS:101                                                                                                                                                                    | No                                      |
| 39  | Grease                   | Requirements of IS:508Kinematic Viscosity in CSTFlash PointPenetration TestGraphite ContentDrop PointCopper Strip CorrosionWater ContentFree AcidityFree AlkalinityHeat StabilityLow Temperature Pumping PropertiesGlycerine Content | IS:1448 (Pt25)<br>IS:1448 (Pt69)<br>IS:1448 (Pt60)<br>IS:1448 (Pt58)<br>IS:1448 (Pt52)<br>IS:1448 (Pt51)<br>IS:1448 (Pt53)<br>IS:1448 (Pt53)<br>IS:1448 (Pt62)<br>IS:1448 | No                                      |
| 40  | Mild Steel               | Requirements of IS:432 (Pt1)<br>Chemical Composition<br>Mechanical Properties of Bars<br>Tensile test<br>Bend test                                                                                                                   | IS:226<br>IS:432 (Pt1)<br>IS:1608<br>IS:1599                                                                                                                              | No                                      |
| 41  | Ероху                    | Requirements of MORTH SpecificationsViscosityPot Life Test in MinuteBond TestShear TestCore TestTest for Injection EquipmentPressure TestRatio Test                                                                                  | MORT&H<br>Specifications                                                                                                                                                  | No                                      |

| SI. | Factory                        | Testing requirements                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                            | Test facility          |
|-----|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| No. | manufactured<br>material       | Test                                                                                                                                                                                                                                                                                                                                                              | Applicable<br>Code of Practice                                                                                                                                               | at field<br>laboratory |
| 42  | Mechanically Woven<br>Wire     | Mechanical propertiesTensile Strength of wire for doubletwistedPhysical propertiesZinc CoatingMass Zinc CoatingAdhesion of Zinc CoatingPVC for coatingSpecific GravityTensile StrengthHardness TestResistance of PVC Coating to sodiumChlorideSalt spray Exposure                                                                                                 | IS:280<br>IS:4826<br>IS:4826<br>IS:13360                                                                                                                                     | No                     |
| 43  | Latex Acrylic Polymer          | Appearance Melting point/<br>glass-transition Temperature<br>Specific Gravity<br>Water Solubility<br>Flammability Limit<br>Autoignition Temp.<br>Explosive Properties<br>Reactivity<br>Particle size Distribution<br>Purity of Chemical<br>Maximum weight % of<br>Residual Impurities                                                                             | Acrylic Polymer<br>Latex WB-111                                                                                                                                              | No                     |
| 44  | Acrylic Elastomeric<br>Coating | Requirements of MORT&H Specifications<br>Specific Gravity<br>Solid Content<br>Ultra Violet Resistance<br>IR-spectrum<br>Adhesion with Concrete<br>Dry Film Thickness<br>Coverage<br>Physical Properties<br>Diffusion Resistance against<br>Carbon Dioxide<br>Diffusion Resistance against<br>Water Vapour<br>Water Proofing<br>Characteristics<br>Re-coat Ability | IS:345<br>IS:345<br>ASTM:G-53/<br>DINEN-150-105<br>IR-spectrometer<br>standard<br>ASTM: D-4541-<br>02/DIN 500014<br>MORT&H<br>Specifications<br>DIN: 53122-P-1<br>DIN: 52615 | No                     |

| SI. | Factory                  | Testing requirements                                                                                                                                                                                                                                                                                                                                                                  | \$                                                                                                                            | Test facility          |
|-----|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------|
| No. | manufactured<br>material | Test                                                                                                                                                                                                                                                                                                                                                                                  | Applicable<br>Code of Practice                                                                                                | at field<br>laboratory |
| 45  | Soil Reinforcing         | Requirements of<br>MORT&H Specifications                                                                                                                                                                                                                                                                                                                                              |                                                                                                                               |                        |
|     |                          | Ultimate Tensile Strength<br>Pull-out Resistance in Soil<br>Coefficient of Interaction between<br>Reinforced fill Soil and Geo grid<br>Determining the Coefficient of<br>soil and Geo Synthetic Friction<br>by Direct Shear method<br><b>Electrochemical Properties</b><br><b>for Reinforced Fills with</b><br><b>Steel Reinforcement</b><br>Resistivity<br>pH<br>Chlorides Sulphates | ISO:10319<br>ASTM: D-6706<br>ASTM: D-5321<br>IS:13326 (Pt1)<br>AASHTO: T-288<br>AASHTO: T-289<br>ASTM: D-4327<br>ASTM: D-4327 | No                     |
| 46  | Soil Nailing             | Requirements of MORTH<br>Specifications                                                                                                                                                                                                                                                                                                                                               | IS:1786<br>IS:9012                                                                                                            |                        |
|     |                          | Steel<br>Grout Mix<br>Field Pull Out Testing<br>Verification Test<br>Proof Test<br>Creep Test                                                                                                                                                                                                                                                                                         | MORT&H<br>Specifications                                                                                                      | No                     |

## Annexure 5.2

# TENTATIVE LIST OF FACTORY MANUFACTURED FINISHED ITEMS USED IN ROAD CONSTRUCTION

|            | Factory                    | Testing require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ements                                                                                                                      | Test                              |
|------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| SI.<br>No. | manufactured finished item | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Applicable<br>Code of Practice                                                                                              | facility<br>at site<br>laboratory |
| 1          | Joint Filler Board         | Requirements of IS:1838 (Pt1)Resistance to handlingRecoveryCompressionExtrusionWater AbsorptionDensityBitumen ContentWeatheringPenetration of re-coveredBitumen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IS:10566<br>IS:10566<br>IS:10566<br>IS:10566<br>IS:10566<br>IS:10566<br>IS:10566<br>IS:10566                                | No                                |
| 2          | Pre Formed<br>Joint Seals  | Requirements of ASTM:D-2628<br>Tensile Strength<br>Elongation at break<br>Hardness, Type A Durometer<br>Oven aging, 70h at 100°C<br>Tensile Strength Loss<br>Elongation Loss<br>Hardness Change Type A<br>Durometer<br>Oil swell, ASTM oil 3, 70h at 100° C<br>Weight Change<br>Ozone Resistance 20 %<br>strain, 300 pphm in air, 70h at<br>40° C<br>Low Temperature stiffening,<br>7 days at -10°C Hardness change<br>Type A Durometer<br>Lower temperature recovery,<br>72h at -10°C , 50% deflection<br>Lower temperature recovery,<br>22h at -29°C, 50% deflection<br>High temperature recovery,<br>70h at 100°C, 50% deflection<br>Compression, Deflection, at<br>80% of normal width (min) | ASTM:D-412<br>ASTM:D-2240<br>ASTM:D-573<br>ASTM:D-471<br>ASTM:D-1149<br>ASTM:D-2240<br>ASTM:D-9.2D-2628<br>ASTM:D-9.3D-2628 | No                                |

|            | Factory                                    | Testing requi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | irements                                                                                             | Test                              |
|------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------|
| SI.<br>No. | manufactured finished item                 | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Applicable<br>Code of Practice                                                                       | facility<br>at site<br>laboratory |
| 3          | Geo Synthetics                             | General<br>Width<br>Thickness<br>Tensile strength<br>Elongation at break<br>Discharge Capacity<br>i= 1.0 at. 300 kPa pressure                                                                                                                                                                                                                                                                                                                                                                                      | ASTM:D-5199<br>ASTM:D-4595<br>ASTM:D-4716<br>— ASTM:D-5261                                           |                                   |
|            | Composite Drain                            | Filter Material<br>(Polyster/Polypropylene)<br>Mass per unit area<br>Tensile Strength<br>Elongation at Break<br>Trapezoid Tear Strength<br>Permeability<br>Apparent opening size                                                                                                                                                                                                                                                                                                                                   | ASTM:D-4632<br>ASTM:D-4533<br>ASTM:D-4491<br>ASTM:D-4751                                             | No                                |
| 4          | Perforated/<br>Imperforated Pipes<br>(PVC) | Tubings & FittingsCorrugated Polyethylene (PE)tubing and fittings 3-6 inCorrugated Polyethylene (PE)tubing and fittings 8-24 inCorrugated Polyethylene (PE)drainage pipe 3-10 inCorrugated Polyethylene (PE)drainage pipe 12-60 inDual wall High Densitypolyethylene (HDPE) pipeand fittings 3-6 inDual wall High Densitypolyethylene (HDPE) pipeand fittings 8-24 inCorrugated PolyvinylChloride (PVC) pipe andfittingsPolyvinyl Chloride (PVC)dual wall sewer pipe andfittingsPolyvinyl Chloride (PVC)sewer pipe | ASTM:F-405<br>ASTM:F-667<br>AASHTO:M-252<br>ASSHTO:M-294<br>ASTM:D-3034<br>ASTM:F-949<br>ASTM:D-2729 | No                                |

| 01         | Factory                         | Testing requir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rements                                                                                                                                                                                                                                      | Test                              |
|------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| SI.<br>No. | manufactured<br>finished item   | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Applicable<br>Code of Practice                                                                                                                                                                                                               | facility<br>at site<br>laboratory |
| 5          | Prefabricated<br>Vertical Drain | Requirements of MORT&H<br>Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                              |                                   |
|            |                                 | <ul> <li>1. Composite drain <ul> <li>Width</li> <li>Thickness</li> <li>Tensile Strength</li> <li>Elongation at break</li> <li>Discharge Capacity</li> <li>i= 1.0 at. 300 kPa pressure</li> </ul> </li> <li>2. Core <ul> <li>Material</li> <li>Configuration</li> </ul> </li> <li>3. Filter <ul> <li>Material</li> <li>Structure</li> <li>Mass per unit Area</li> <li>Tensile Strength</li> <li>Elongation at Break</li> <li>Trapezoid Tear Strength</li> <li>Permeability</li> <li>Apparent opening size</li> </ul> </li> </ul>                                                                                 | ASTM:D-5199<br>ASTM:D-4595<br>ASTM:D-4716<br>ASTM D 5261<br>ASTM D 4632<br>ASTM D 4632<br>ASTM D 4632<br>ASTM D 4533<br>ASTM D 4491<br>ASTM D 4751                                                                                           | No                                |
| 6          | Tiles                           | Water Absorption & Bulk DensityMoisture Expansion using<br>Boiling water –Unglazed Tiles<br>Linear Thermal Expansion<br>Resistance to Thermal Shock<br>Modulus of Rupture and<br>Breaking Strength<br>Chemical Resistance<br>Unglazed Tiles<br>Chemical Resistance Glazed<br>Tiles<br>Crazing Resistance Glazed Tile<br>Frost Resistance<br>Resistance of Surface<br>Abrasion Glazed Tiles<br>Resistance to Deep Abrasion<br>Unglazed Tiles<br>Scratch Hardness of surface<br>according to MOHS<br>Impact Resistance by<br>Measurement of Coefficient of<br>Restitution<br>Sampling and basis for<br>acceptance | IS:13630(Pt-2)<br>IS:13630(Pt-3)<br>IS:13630(Pt-4)<br>IS:13630(Pt-5)<br>IS:13630(Pt-6)<br>IS:13630(Pt-7)<br>IS:13630(Pt-8)<br>IS:13630(Pt-10)<br>IS:13630(Pt-10)<br>IS:13630(Pt-11)<br>IS:13630(Pt-13)<br>IS:13630(Pt-14)<br>IS:13630(Pt-15) | Yes                               |

| 0          | Factory                           | Testing require                                                                                                                                                                                                                             | ements                                                               | Test                              |
|------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|
| SI.<br>No. | manufactured<br>finished item     | Test                                                                                                                                                                                                                                        | Applicable<br>Code of Practice                                       | facility<br>at site<br>laboratory |
| 7          | Reflective<br>Pavement<br>Markers | Load Test<br>Coefficient Luminance<br>Lenses of Methyl<br>Methecrylate                                                                                                                                                                      | ASTM:D-4280<br>ASTM:E -809<br>BS:873 (Pt4)<br>ASTM:D 788             | No                                |
|            | Solar Powered                     | Load Test                                                                                                                                                                                                                                   | ASTM:D-4280                                                          | No                                |
| 8          | Road Markers                      | Water Resistance<br>Dimensional tolerance                                                                                                                                                                                                   | IS:12063                                                             |                                   |
| 9          | Road Delineators                  | Requirements of IRC:79                                                                                                                                                                                                                      |                                                                      |                                   |
|            |                                   | Physical Dimension Test                                                                                                                                                                                                                     | -                                                                    | No                                |
| 10         | Metal Beam                        | Requirements of IS:5986, IS:4759                                                                                                                                                                                                            |                                                                      |                                   |
|            | Crash Barriers                    | 'W' Beam, Post, Spacer<br>Thickness<br>Yield strength, N/mm <sup>2</sup><br>Ultimate Strength N/mm <sup>2</sup><br>Elongation %<br>Carbon %<br>Sulphur %<br>Phosphorus %<br>Silicon %<br>Manganese %<br>Carbon Equivalent %<br>Zinc Coating | IS:1367(PtXIII)                                                      | No                                |
| 11         | Wire Rope<br>Crash Barrier        | Conformance with the requirements<br>of Australian Standard Road Safety<br>Barrier Systems.<br>Satisfactory crash testing at least<br>Test Level 4 including the 4-11<br>test designation, or other accepted<br>equivalent procedures.      |                                                                      | No                                |
| 12         | Traffic Cones                     | Crash Test                                                                                                                                                                                                                                  | BS 873<br>BS EN-13422                                                | No                                |
| 13         | Traffic Attenuator                | Crash Test                                                                                                                                                                                                                                  | NCHRP Report 350                                                     | No                                |
| 14         | Filler Joints                     | Requirements of IS:1838 (Pt3)<br>Resistance to Handling<br>Recovery<br>Compression<br>Extrusion<br>Water Absorption<br>Density<br>Weathering                                                                                                | IS:10566<br>IS:10566<br>IS:10566<br>IS:10566<br>IS:10566<br>IS:10566 | No                                |

|            | Factory                                         | Testing require                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ements                                                                                                                                                                                                                                                    | Test<br>facility      |
|------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| SI.<br>No. | manufactured finished item                      | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Applicable<br>Code of Practice                                                                                                                                                                                                                            | at site<br>laboratory |
| 15         | Reinforced<br>Elastomeric<br>Joints             | Requirements of MORT&H<br>Specifications<br>Mild Steel for Reinforcing<br>plates, Inserts and Anchorage<br>Cast Steel for Reinforcing<br>Plates<br>Elastomer<br>Laminates                                                                                                                                                                                                                                                                                                   | IS:2062<br>IS:1030<br>IRC:83 (PtII)<br>IS:3400 (PtI)<br>IS:3400 (PtII)<br>IS:3400 (PtIV)<br>IS:3400 (PtX)<br>IS:3400 (PtXIV)<br>IS:3400 (PtXX)<br>IS:226                                                                                                  | No                    |
| 16         | Single<br>Strip/Modular<br>Strip Seal<br>Joints | Requirements of MORT&H<br>SpecificationsEdge Beam & Central<br>Beam/Lamella<br>Anchorage<br>Chloroprene Seal<br>HardnessTensile StrengthElongation at FractureTear Propagation Strength<br>Longitudinal transverse<br>Shock Elasticity<br>Abrasion<br>Residual Compression StrainAgeing in Hot air<br>Ageing in Ozone<br>Swelling Behaviour in Oil<br>Cold Hardening Point                                                                                                  | DIN:17100<br>ASTM:A-36<br>ASTM:A-588<br>IS:2062<br>ASTM:D-2240<br>ASTM:D-412<br>ASTM:D-624<br>DIN:53504<br>DIN:53505<br>DIN:53505<br>DIN:53507<br>DIN:53512<br>DIN:53516<br>DIN:53517<br>ASTM:D-395<br>DIN:53508<br>DIN:53509<br>DIN:53521<br>ASTM:D-1043 | No                    |
| 17         | Asphaltic Plug<br>Joint                         | Requirements of MORT&H         Specifications         Binder         Softening point         Cone Penetration at 25° C.         0.1 MM         Flow Resistance at 70°C. 05 Hrs.         Extension Test         Safe heating Temperature, 210°         Aggregate         Grading Requirement         Polished Stone Value         Aggregate Impact Value         Aggregate Crush value         Aggregate Crush value         Closure plate         Foam caulking/Backer road | BS:2499<br>ASTM:D-1190<br>MORTH Specifications<br>IS:2062                                                                                                                                                                                                 | No                    |

| 0          | Factory                           | Testing require                                                                                                                                                                            | ements                                                                                                                                                                                                                                                                                  | Test                              |
|------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| SI.<br>No. | manufactured finished item        | Test                                                                                                                                                                                       | Applicable<br>Code of Practice                                                                                                                                                                                                                                                          | facility<br>at site<br>laboratory |
| 18         | Compression<br>Seal Joint         | Requirements of MORT&H<br>Specifications<br>Steel for Nosing and<br>Anchorage<br>Chloroprene Seal<br>Closed Cell Foam Seal                                                                 | IS:2062<br>ASTM:D-2240<br>ASTM:D-412<br>ASTM:D-624<br>DIN:53504<br>DIN:53505<br>DIN:53507<br>DIN:53512<br>DIN:53516<br>DIN:53517<br>ASTM:D-395<br>DIN:53509<br>DIN:53509<br>DIN:53521<br>ASTM:D-1043<br>ASTM:D-3575<br>IS:3400 (PtXIV)<br>ASTM:D-797<br>IS:3400 (PtXXII)<br>ASTM:D-3677 | No                                |
| 19         | Steel Bearing                     | Requirements of IRC:83-2014 (Pt. I)                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                                   |
|            |                                   | Raw Materiala) Mild Steelb) Forged Steelc) High Tensile Steeld) Stainless Steele) Cast SteelTest on welding Drypenetration testTest on dimensionsUltrasonic TestingLoad testChemical Test  | IS:1030<br>IS:2062<br>IS:1875<br>IS:2004<br>IS:961<br>IS:6603<br>IS:7666<br>IS:1024<br>IS:814<br>IS:919<br>IS:3073<br>IS:9565<br>IRC:83 (PtI)                                                                                                                                           | No                                |
| 20         | Spherical/<br>Cylindrical Bearing | RequirementsofIRC:83-2014(Pt.IV)Raw Materiala) Cast Steelb) Rolled Steelc) Forged Steeld) Stainless Steele) Duplex Steelf) PTFEg) UHMWPEh) CM 1i) CM 2j) Lubricantk) Anchoring Arrangement | IRC:83-2014 (PtIV)                                                                                                                                                                                                                                                                      | No                                |

|            | Factory                       | Testing require                                                                                                                                                                                                                                                                                                                                      | ements                                                                                                | Test                              |
|------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------|
| SI.<br>No. | manufactured<br>finished item | Test                                                                                                                                                                                                                                                                                                                                                 | Applicable<br>Code of Practice                                                                        | facility<br>at site<br>laboratory |
|            |                               | Test on Corrosion Protection<br>Overall dimension<br>Ferroxyl Test for Chromium<br>Plating<br>Test on welding e. g. Dye<br>Penetration Test<br>Ultrasonic inspection of the<br>steel components<br>Finished Bearing<br>a) Surface Finish<br>b) Overall Dimension<br>c) Vertical Load Test<br>d) Coefficiient of Friction<br>e) Permisisible Rotation |                                                                                                       |                                   |
| 21         | Elastomeric<br>Bearing        | Requirements of IRC:83 (PtII)Identification of PolymerPolymer ContentSp. Gravity TestAsh ContentHardnessTensile StrengthElongation at BreakCompression SetAceelerated AgeingAdhesion StrengthOzone Resistance ofElastomerLaminate                                                                                                                    | ASTM:D-3677<br>ASTM:D-297<br>IS:3400(P-I, II, IV, X, XIV,<br>XX & XXII)<br>IS:226<br>IRC:83 (Part-II) | No                                |
|            |                               | <ul> <li>Test on hole Bearing</li> <li>1) Shear Modulus</li> <li>2) Elastic Modulus</li> <li>3) Visual test</li> <li>4) Dimensional tolerance</li> <li>5) Axial load on 15 Mpa</li> <li>Deflection under load 5 Mpa</li> <li>15 Mpa (Ultimate Compressive Strength)</li> <li>6) Adhesion Strength</li> </ul>                                         |                                                                                                       |                                   |

| SI.<br>No. | Factory                                           | Testing requ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | irements                                                                                                                                                                                                                                                                                                                                          | Test                              |
|------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|            | manufactured<br>finished item                     | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Applicable<br>Code of Practice                                                                                                                                                                                                                                                                                                                    | facility<br>at site<br>laboratory |
| 22         | POT, PTFE,<br>PIN & Mettalic<br>Guide<br>Bearings | Requirements of IRC 83<br>(PtIII)<br><b>Test on Raw Material</b><br>a) Mild steel<br>b) High Tensile Steel<br>c) Cast Steel<br>d) Forged Steel<br>e) Stainless Steel<br>f) PTFE<br>g) Adhesive<br>h) Elastomer<br>i) Internal Seal<br>j) Poly Oxy Methylene<br>Sealing Chain<br>k) Fasteners<br><b>Test on Corrosion protection</b><br><b>Test on Corrosion protection</b><br><b>Test on Corrosion protection</b><br><b>Test on Casting</b><br><b>Test on Welding</b><br><b>Test on Bearing</b><br><b>Overall dimension</b><br><b>Surface Finish</b><br>Load Test<br><b>Friction Test</b><br><b>Rotation Test</b> | IS:1030<br>IS:2062<br>IS:961<br>IS:1875<br>IS:6911<br>BS:3784<br>BS:5350:(Part C9)<br>IRC:83 (Part III)<br>IS:410<br>ISO:1183<br>ISO:1133<br>ISO:572-2<br>IS:1363<br>IS:1364<br>IS:1365<br>IS:2269<br>IS:3138<br>IS:6761<br>IS:6639<br>IS:1367<br>IS:4218<br>IS:2016<br>IS:6610<br>IS:9954<br>IS:816<br>IS:9595<br>IS:814<br>AISI 316L<br>IS:2004 | No                                |

#### Annexure 5.3

## LIST OF DOCUMENTS TO BE FURNISHED BY SUPPLIER/MANUFACTURER

#### 1. Quality Policy of the Manufacturer

#### 2. Quality Management Plan (QMP)

The QMP of the supplier/manufacturer is expected to give accurate information about the following aspects but not limited to it in so far as it relates to the particular manufactured material/finished item being sourced from it. However, in case some aspect is not covered, specific information may be called by Concessionaire/Contractor/Engineer/Consultant/ Employer/Authority from the supplier/manufacturer.

- Raw materials sourcing
- Manufacturing process of raw materials and finished product (The supplier/manufacturer shall furnish details of manufacturing process of the manufactured material/finished items along with manufacturing process of different raw materials by the respective raw material manufacturers. For example, bearing manufacturer shall furnish smelting/remelting and any subsequent process involved with steel manufacturing such as rolling, extruding, machining, bending, grinding, drilling and applying coatings.)
- Testing facilities
- Laboratory accreditation
- Calibration Process
- Personnel
- Details of sub contractors e.g. fabricators, galvanizers, and painters etc.
- Reference to applicable BIS/International Code of Practice
- Acceptance Mechanism
- Documentation system (internal as well as external) e.g. accurate communication of moulding, cutting, drilling, processing and testing operations in case of bearing to shop personnel
- Third party testing
- Traceability of materials, processes and testing
- Evaluation method
- 3. Copy of Certification by ISO or any other organization
- 4. Place and Period of manufacturing
- 5. Shipment/Lot Identification Number and Individual Product Identification Number wherever applicable
- 6. Manufacturer's Certificate about compliance to QMP Shipment/Lot wise

## 7. Certified Laboratory Test Reports Shipment/Lot wise

The test results shall include the following:

- Test reports from raw material manufacturers and sub contractors
- Test reports of material/finished item including destructive testing, acceptance testing etc.
- 8. As-built Shop Drawings and Installation Drawings (showing proper orientation) wherever applicable

# **SECTION 6**

## FIELD LABORATORY SET UP

#### 6.1 Introduction

Quality Control requires testing of materials, processes and workmanship in various stages of road construction. Adequate number of field laboratories shall be set up by the Contractor at the project site by installing the equipments suggested in section 100 of the MORTH Specifications for Road and Bridge Works. The number and size of laboratories depend on the establishment and oraganisation structure at site. It also depends on the location of crushers, concrete batching plant, wet mix plant, hot mix plant and the camp office. If all are located in the same place, one single laboratory with the facilities to test all the construction materials shall be established in the camp site. If the plants are located in different locations, test facilities are required at the respective plant site for conducting corresponding tests and accordingly, it is a general practice to establish small plant laboratories to cater to the requirements of individual plants.

Generally, it is Contractor's obligation to establish the test laboratories but where a project includes different packages, the Employer/Authority may choose to establish a Central Labortaory at a convenient location, where the Engineer may also be able to conduct tests on all types of materials and mixes.

#### 6.2 Objective

Field Laboratory is the real bastion of quality control. Infrastructure and equipments of Field Laboratory play critical role in quality control and, in fact, is a cornerstone in the process of quality assurance. The objectives of an ideal Field Laboratory can therefore, be summarized as:

- i) Lay out plan is such that it accommodates the equipments in proper manner and provides good and efficient working environment.
- ii) Intended equipments and accessories are available and properly maintained.
- iii) Intended consumables are available and properly stored.
- iv) Documentation management system is efficient.

#### 6.3 General Features

#### **6.3.1** *Type of Laboratory*

Depending on the size, packaging, field organization structure and geographical spread of the project site, there can be a central/main laboratory for each package. Further, plant laboratories can be established if they are located in different locations than the main camp site. Test equipments at each plant laboratory will be specific to the plant established at that location. The Authority/Employer may choose to establish a central laboratory, for conducting some important and critical tests.

## 6.3.2 Lay out of Laboratory

The layout of the laboratory depends on the test facilities required at that location. Test facilities can be divided in to three principal sections namely, soil and aggregate testing section, concrete section, asphalt section.

Plant laboratories will have a concrete section for concrete batching plant and aggregate and asphalt section for wet mix macadom and hot mix plants. However, the facilities required for mix designs need not be established at the plant laboratory. Depending on the Contractor's plans for establishing the plants and their relative positioning with the field laboratories, the placement of facilities may be optimized.

Considering that a field laboratory is established for each package and plant laboratory is established at the plant site, suggestive lay outs are furnished in **Annexure 6.1** of this Section.

## 6.3.3 List of Equipment & Accessories

The list of equipment and various accessories in each laboratory depends on the type of laboratory and the test facilities envisaged or planned by the Contractor at that location. With the same assumptions used for deciding the layout of various laboratories presented in para 6.3.1, a comprehensive list of equipment in each laboratory and the suggested inventory of consumables are furnished in **Annexure 6.2 and Annexure 6.3** of this Section, respectively. As such, this list shall be consistent with section 100 of MORTH Specifications for Road and Bridge Works. However, it may vary depending on the actual test facility envisaged at that location subject to approval of Engineer.

#### 6.3.4 Man Power

Deployment of manpower depends on the size of the laboratory, the test facilities planned and the volume of work involved. The central/main laboratory shall be headed by Quality Control/Asst. Quality Control Engineer. The qualification and experience shall be as per the requirements of Section 3 of this Manual. Each plant laboratory shall be manned by atleast one lab technician.

## 6.3.5 Codes of Practice

All the tests shall be conducted as per relevant Indian Standard Codes of Practice, which have been mentioned in Section 900 and other sections of MORTH Specifications for Road and Bridge Works. In the absence of Indian Standards for any test, reference may be drawn from any other appropriate international code of practice such as BS, ASTM etc. A list of suggested codes of practice for various tests to be conducted on naturally occurring materials in original/crushed form is given in **Section 8** whereas the same for factory manufactured materials/finished products is furnished in **Section 5**.

#### 6.3.6 Test Procedures

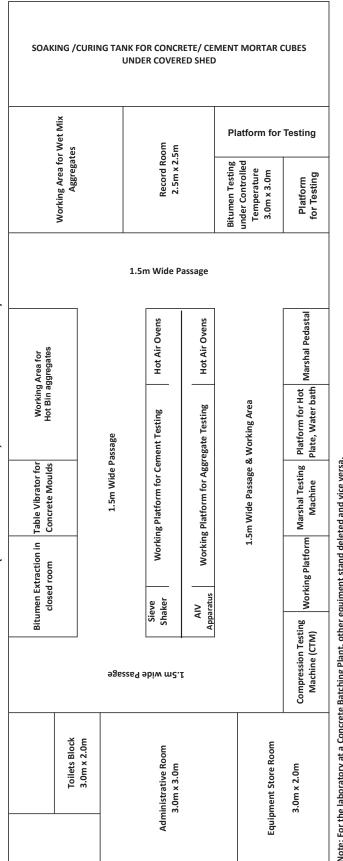
Test procedures shall be drawn from the suggested Codes of Practice in Para 6.3.5 above and included in the Quality Assurance Plan. Further, all the procedures shall be converted in to brief work instructions and displayed near the individual test facility.

## 6.3.7 Documentation and Records

All the formats to be used for recording the results of various tests shall be included in the Quality Assurance Plan. A copy of the QAP shall be made available in the central/main & plant laboratories. Test results shall be promptly entered in suitable registers and/or forms (paper/electronic) soon after conducting the tests. All the linked test reports and RFIs, if applicable, shall be filed in a single location so that the records can be effectively retrieved at the time of future investigations. Quality records should be properly indexed and linked to suitable strip maps for traceability. They should be stored in an orderly manner in the safe custody of the laboratory-in-charge. An electronic copy of the records shall be maintained in a form that facilitates quick and easy retrieval.

## 6.4 **Project Preparation**

It is preferable that the design consultants carry out the tests in their own laboratories as far as possible. In case, the Consultants do not have their own laboratories, they shall arrange to conduct the tests in the laboratories of reputed academic institutions or in accredited third party laboratories consistent with the requirements of this Manual.


## 6.5 Construction

During Construction, the Contractor is required to conduct tests on every material that is being incorporated in to the Project including raw materials, processed materials, manufactured materials, proprietory materials etc. Laboratories shall be established as per the requirement of the Project with all the equipment listed in the Contract/Section 100 of MORTH. Plant laboratories shall be established as per site requirement i.e wherever a plant or group of plants is established.

## 6.6 Upkeep and Manitenance

The laboratories shall be adequately lit, ventilated and well maintained with proper water supply and sanitary arrangements. The equipment/apparatus requiring temperature controlled environment shall be housed in air conditioned rooms. The tests that use infammable substances shall be conducted in separate room having adequate ventillation / windows.

All the equipment provided in the central/main as well as the plant laboratories shall be checked periodically for their functioning and serving the intended purpose. To ensure this, maintenance for all the equipment shall be carried out at fixed intervals through authenticated service provider and also as and when the equipment warrants repair or maintenance. Calibration of measuring equipments shall be carried out as per specified frequency or whenever the equipment undergoes repair. Thus all the time, all the equipment set in the laboratory shall be in working condition within the tolerable limits. Any inspection, measurement and testing equipment that undergoes excessive wear and tear and requires calibration more frequently than the frequency recommended by the manufacturer shall be replaced. Similarly, all the dial gauges, pressure gauges and similar equipment, whose actual readings vary by more than **25%** of the indicated readings shall be replaced. Equipment which may be more than 15 years also may be considered for replacement unless it is certified by the accredited laboratoried to be fit for use.



Note: For the laboratory at a Concrete Batching Plant, other equiment stand deleted and vice versa.

Wash Basin & Wash Area Area for Concrete Baby Mixer Platform for testsing Record Room 3.0m x 2.5m **Bitumen Testing under** Working Area for Modified Proctor Platfor for Testing Temperature 3.0m x 3.0m Working Area for Concrete Mix Designs Compaction Controlled agesse¶ abiw m2.£ Marshal Pedastal Mortar Cube Vibrator Working Area For CBR Compaction Hot Air Ovens **CBR Testing** Marshal Automatic Compactor Table Vibrator for Concrete Moulds SOAKING /CURING TANK FOR CONCRETE/ CEMENT MORTAR/ CBR MOULDS UNDER COVERED SHED Platform for Hot Plate, Water bath Working Platform for Cement Testing **Working Platform for any other purpose** 1.5m Wide Passage & Working Area Utility space Working Platform for Aggregate Testing Marshal Testing Working Platform for Soil Testing 1.5m Wide Passage 1.5m Wide Passage Machine **Core Cutting machine** Direct Shear Apparatus Platform for Balance & Utility Aggregate Abrasion Test Bitumen Extraction in closed room Compression Testing Machine (CTM) Hot Air Ovens AIV Apparatus Sieve Shaker agesse9 abiw m2.1 Engineer/Technicians Room Toilets Block 3.0m x 2.0m Administrative Room 3.0m x 3.0m Equipment Store Room 3.0m x 2.0m 3.0m x 3.0m

Annexure 6.1 Layout Plan for Central/ Main Laboratory (20.0m X 10.0m)

# LIST OF EQUIPMENTS FOR CENTRAL/MAIN LABORATORY

#### 1. Soil Testing Equipment

- a. Weigh Balances
  - i. 5 -20 kg capacity Electronic type Accuracy 1 gm
  - ii. 500 gm capacity Electronic type Accuracy 0.01 gm
  - iii. Electronic 5 kg capacity Accuracy 0.5 gm
  - iv. Chemical Balance 100 gm capacity accuracy 0.001 gm
- b. Oven-electrically operated, thermostatically controlled (including thermometer), stainless steel interior from 0°C to 220°C
- c. IS Sieves: 200 mm internal dia (brass frame and steel/or brass wire cloth mesh) consisting of sieve sets of required sieve sizes complete with lid.
- d. Sieve shaker capable of shaking 200mm dia sieves- electrically operated with time switch.
- e. Stop watches 1/5 sec. Accuracy
- f. Glass ware compressing beakers, pipettes, dishes, measuring cylinders (100 to 1000 cc)
- g. Enamel trays
  - i. 600 mm x 450 mm x 5 mm
  - ii. 450 mm x 300 mm x 40 mm
  - iii. 300 mm x 250 mm x 40 mm
- h. Liquid Limit device with ASTM grooving tools as per IS:2720(Part 5).
- i. Sampling pipettes fitted with pressure and suction inlets, 10 ml. capacity.
- j. Compaction apparatus (Proctor) as per IS:2720 (Part 7) complete with collar, base plate and hammer and all other accessories.
- k. Modified AASHTO compaction apparatus as per IS:2720 (Part 8) or heavy compaction
- I. Sand pouring cylinder with conical funnel and tap and complete as per IS:2720 (Part 28) including modern equipment.
- m. Natural sand passes through 1 mm and retained on 600 mm as per IS: 2720 Part 28.
- n. Sampling tins with lids 100 mm dia x 75 mm ht. ½ kg capacity and miscellaneous items like moisture tins with lid 50 gm etc.
- Lab CBR testing equipment for conducting CBR testing, load frame with 5 Tonne capacity, electrically operated with speed control as per IS:2720 (Part 16) and consisting of following
  - i. CBR moulds 150 mm dia 175 mm ht
  - ii. Tripod stands for holding dial gauge

- iii. CBR plunger with settlement dial gauge
- iv. Surcharge weight 147 mm dia 2.5 kg wt. spacers disc 148 mm dia 47.7 mm ht. with handle
- v. Perforated plate (Brass)
- vi. Soaking tank for accommodating CBR moulds
- vii. Proving rings capacity of 10kN, 20 kN, 25kN and 30kN.
- viii. Dial gauges 25 mm travel 0.01 mm/division
- p. Dynamic cone penetration test equipment
- q. Nuclear moisture density meter or equivalent
- r. Speedy moisture meter complete with chemicals
- s. Rifle Box
- t. Differential Free Swell Index as per IS: 2720 (Part 40)
- u. Hydrometer & Hydrometer jar

#### 2. Aggregate Testing Equipment

- a. Sieves: as per IS:460
  - i. IS sieves of required sizes (450 mm internal dia) sets as per BIS complete with lid and pan
  - ii. IS sieve 200 mm internal dia (brass frame and steel/or brass wire cloth mesh) consisting of sieve sets of required sieve sizes complete with lid
- b. Sieve shaker capable of shaking 200mm, 300 mm and 450mm dia sieveselectrically operated with time switch
- c. Enamel trays
  - i. 600 mm x 450 mm x 50 mm
  - ii. 450 mm x 300 mm x 40 mm
  - iii. 300 mm x 250 mm x 40 mm
  - iv. Circular plates of 250 mm dia
- d. Flakiness and Elongation index test apparatus
- e. Aggregate impact test apparatus as per IS:2386 (Part 4)
- f. Los-Angeles abrasion test apparatus as per IS:2386 (Part 4)
- g. Apparatus for determination of specific gravity of fine and coarse aggregate as per IS:2386(Part 3)
- h. 3 liter,15 liter and 30 liter cylinder as per IS:2386 Part 3 for checking bulk density of aggregate with tamping rod.
- i. Electronic balance of 500 gm,2.0 kg,5.kg and 10.0 kg sensitive to 0.1gm

#### 3. Cement and Cement Concrete Testing Equipment

- a. High frequency mortar cube vibrator for cement testing
  - i. Cement motor moulds (70.6 mm W x 70.6 mm L x 70.6 mm H)

- b. Vicat needle apparatus for setting time with plungers as per IS:269
- c. Soundness testing apparatus for cement (Le Chattlier)
- d. Weigh Balances
  - i. 5 -20 kg capacity electronic type accuracy 1 gm
  - ii. 500 gm capacity electronic type accuracy 0.01 gm
  - iii. Electronic 5 kg capacity accuracy 0.5 gm
  - iv. 50 kg capacity electronic type accuracy 2 gm
- e. Concrete mixer power driven, 1 cft capacity
- f. Moulds
  - i. 150 mm x 300 mm ht. cylinder with capping component along with the capping set.
  - ii. Cube 150 mm and 100 mm (each size)
- g. Appartus for slump test
- h. Variable frequency and amplitude vibrating table size 1m x 1m as per the relevant British standard
- i. Compression and Flexural strength testing machine of 2000 KN capacity with additional dial for flexural testing
- j. Core cutting machine with 10cm dia. diamond cutting edge
- k. Lechatelier flask

#### 4. Bitumen Testing Equipment

- a. Constant temperature bath for accommodating bitumen test specimen, electrically operated and thermostatically controlled (to accommodate minimum six specimens)
- b. Penetrometer automatic type, including adjustable weight arrangement and needles as per IS:1203
- c. Bitumen laboratory mixer including required accessories (20 ltrs.)
- d. Ductility meter
- e. Furol Viscometer
- f. Softening Point Test Apparatus (Ring and Ball app)
- g. Digital thermometer
- h. Rifle box
- i. Thin film oven test apparatus for modified binder either with PMB or CMRB
- j. Mastic Asphalt hardness testing equipment
- k. Sand equivalent test apparatus
- I. Thermometers
- m. Gas Stove and Cylinder
- n. Soxhlet extraction or centrifuge type apparatus complete with extraction thimbles with solvent and filter paper

- o. Glass ware compressing beakers, pipettes, dishes, measuring cylinders (100 to 1000 cc and metallic thermometers range up to 300°c.)
- p. Hot plates 200 mm dia (1500 watt)
- q. Oven-electrically operated, thermostatically controlled(including thermometer), stainless steel interior from 0°C to 220°C
- r. Cannon Manning Viscometer for determination of Absolute viscosity and Cannon Fenske Viscometer for determination of Kinematic viscosity.
- s. Marshall stability test apparatus as per ASTM-D6927 with 25 KN and 50 KN proving ring and automatic compactor and mould for marshall and modified Marshall test.
- t. Core cutting machine suitable for up to 150 mm dia core.

#### 5. Sub-Soil Testing Equipment

- a. Direct shear test apparatus having 12 variable speed and 2 KN proving ring with all the accessories given in IS:2720 Part 13.
- b. Weigh Balances
  - i. Electronic 5 kg capacity accuracy 0.5 gm
  - ii. 500 gm capacity electronic type accuracy 0.01 gm
- c. Oven-electrically operated, thermostatically controlled (including thermometer), stainless steel interior from 0°C to 220 °C
- d. Sieves: as per IS:460 IS sieve 200 mm internal dia (brass frame and steel/ or brass wire cloth mesh) consisting of sieve sets of required sieve sizes complete with lid and pan.
- e. Liquid limit device with ASTM grooving tools as per IS:2720(Part 5)
- f. Sampling pipettes fitted with pressure and suction inlets, 10 ml. Capacity.
- g. Sampling tins with lids (100 mm dia x 75 mm ht.) of 500gm capacity and miscellaneous items like moisture tins with lid 50 gm etc.

# LIST OF EQUIPMENTS FOR PLANT LABORATORY

#### 1. Wet Mix Plant

- a. Sieves: as per IS:460
  - i. IS sieves of required sizes (450 mm internal dia) sets as per BIS complete with lid and pan
  - ii. IS sieve 200 mm internal dia. (brass frame and steel/or brass wire cloth mesh) consisting of sieve sets of required sieve sizes complete with lid and pan.
- b. Sieve shaker capable of shaking 200 mm and 450 mm dia sieves-electrically operated with time switch.
- c. Apparatus for testing Aggregate Impact Value (AIV), Soundness, Flakiness & Elongation Index, Stone Polishing Value.

#### 2. Hot Mix Plant

- a. Sieves: as per IS:1460
  - i. IS sieves 450 mm internal dia. of sieve sets as per BIS of required sieve sizes complete with lid and pan
  - ii. IS sieve 200 mm internal dia. (brass frame and steel/or brass wire cloth mesh) consisting of sieve sets of required sieve sizes complete with lid
- b. Sieve shaker capable of shaking 200 mm and 450 mm dia. sieves- electrically operated with time switch
- c. Aggregate Impact Value (AIV), Soundness, Crushing Value, Flakiness & Elongation Index, Polished Stone Value.
- d. Oven-electrically operated, thermostatically controlled (including thermometer), stainless steel interior from 0°C to 220°C
- e. Constant temperature bath for accommodating bitumen test specimen, electrically operated, and thermostatically controlled (to accommodate minimum six specimens).
- f. Penetrometer automatic type, including adjustable weight arrangement and needles as per IS:1203.
- g. Furol Viscometer
- h. Softening point(Ring and Ball app)
- i. Distant reading thermometer
- j. Mastic Asphalt Hardness testing equipment
- k. Sand Equivalent test apparatus
- I. Thermometers
- m. Gas Stove and Cylinder
- n. Soxhlet extraction or centrifuge type apparatus complete with extraction thimbles with solvent and filter paper

- o. Glassware compressing beakers, pipettes, dishes, measuring cylinders (100 to 1000 cc and metallic thermometers range up to 300°C)
- p. Hot plates 200 mm dia (1500 watt)
- q. Oven-electrically operated, thermostatically controlled (including thermometer), stainless steel interior from 0°C to 220°C

#### 3. Concrete Batching Plant

- a. Moulds
  - i. 150 mm x 300 mm ht. cylinder with capping component along with the capping set.
  - ii. Cube 150 mm and 100 mm (each size)
- b. Apparatus for slump test
- c. High frequency mortar cube vibrator for cement testing
  - i. Cement motor moulds (70.6 mm W x 70.6 mm L x 70.6 mm H)
- d. Vicat needle apparatus for setting time with plungers as per IS:269-1967
- e. Soundness testing apparatus for cement(Le Chattlier)
- f. Weigh Balances
  - i. 5 -20 kg capacity Electronic type Accuracy 1 gm
  - ii. 500 gm capacity Electronic type Accuracy 0.01 gm
  - iii. Electronic 5 kg capacity Accuracy 0.5 gm
  - iv. 50 kg capacity Electronic type Accuracy 2 gm
- g. Variable frequency and amplitude vibrating table size 1 m x 1 m as per the relevant British standard
- h. Compression and Flexural strength testing machine of 2000 KN capacity with additional dial for flexural testing
- i. Lechatelier flask

#### Annexure 6.3

## SUGGESTED INVENTORY OF CONSUMABLES

#### 1. Soil Testing

Distilled water, Filter Paper, Sodium hexameta phosphate and Sodium carbonate, Kerosene,

2. Aggregate Testing

Sodium Sulphate, Magnesium Sulphate,

3. Cement Testing

Cement, Admixtures, Distilled water,

- **4. Bitumen Testing** Bitumen, Benzene, gas cylinder, filter paper,
- 5. Concrete Testing Nil
- 6. Sub-Soil Testing Distilled water, Filter Paper, Sodium hexameta phosphate and Sodium carbonate, Kerosene

# **SECTION 7**

# CALIBRATION OF INSPECTION, MEASURING AND TESTING EQUIPMENT

#### 7.1 Introduction

Most of the equipment listed in **Section 6** of this Manual contain/involve use of measuring devices namely proving rings, extension meters, dial gauges, temperature gauges, load cells, weighing pads /scales etc. which measure the values of various test parameters.

The accuracy of the equipment/measuring devices degrade over time. This is typically caused by normal wear and tear. However, changes in accuracy can also be caused by electric or mechanical shock or a hazardous working environment. Depending on the type of the instrument and the environment in which it is being used, it may degrade very quickly or over a long period of time. The bottom line is that, calibration restores the accuracy of a measuring device as prescribed by the manufacturer and thereby reliability of the material/ mix/finished product in terms of quality is ensured.

To ensure valid results, the measuring equipment shall be calibrated or verified prior to use and also at specific intervals normally as specified by the equipment manufacturer, against measurement stadards traceable to national or international measurement stadards, and where such standards do not exist, the basis for calibration or verification needs to be documented.

#### 7.2 Objective

Calibration is a comparison between a known measurement (the standard) and the measurement using the instrument to be calibrated.

Primary objective of calibration is to check and ensure that the measurements made by the IMT equipment has the same accuracy as specified by the equipment manufacturer. In practice, calibration also includes repair of the device. A report is provided by the calibration expert, which shows the error in the measurements with the measuring device before and after the calibration.

Hidden costs and risks associated with the un-calibrated measuring device could be much higher than the cost of calibration. Therefore, it is absolutely essential that the IMT equipment/measuring devices are calibrated regularly, to ensure that errors associated with the measurements are in the acceptable range.

#### 7.3 Scope

All the IMT equipment, which is used for inspection, measuring and testing during project preparation, construction and operation & maintenance fall within the purview of calibration. Besides production units such as Hot Mix Plant, Wet Mix Plant, Batching Plant, Crusher etc. also need to be calibrated. Further, the measuring devices of laying units such as asphalt paver, concrete paver need to be calibrated. Calibration of the machine parts does not fall

within the purview of this Manual. However, the Contractor needs to ensure that the Plant, Equipment and the Machinery deployed on the Project are well maintained and calibrated for the intended use. The scope of calibration in all the three stages of Project Development, Construction and O&M are detailed below:

### 7.3.1 Project Preparation and Project Development

The Design Consultants, who carry out the feasibility study or prepare detailed project reports for the client, carry out various investigations as a part of their assignment, including Topographic Surveys, Pavement Investigations, Traffic Sudies, Sub-Soil investigations, Hydrographic Surveys (where applicable), laboratory tests, field tests on materials etc., where different kinds of IMT equipment is used. GPS, Total Station, Auto Levels, Staff, Tape used in topographic surveys, FWD, BBD equipment, Bump Integrator, thermometers, dial gauges used in pavement investigations, Traffic Counters & Weighing pads used in traffic surveys, proving rings, load gauges, dial gauges/extensometers, weights, simple/physical/electronic balances, thermometers, thermostats, used in the laboratories etc. need to be calibrated prior to carrying out the measurements or tests periodically for its continuing accuracy by appropriate means.

The Design Consultants shall use standard and approved equipment for carrying out various studies and well established laboratories for carrying out the tests. All the IMT equipment being used in the assignment shall be calibrated as per the requirements of this section.

### 7.3.2 Construction

The Contractor, Engineer and Employer/Authority need to carry out various tests in the field and the laboratory during construction. Apart from the IMT equipment required to carry out quality control tests, there are some important Plants, which require calibration to produce the desired mixes including cement concrete mixes, asphalt mixes and wet mix macadam. The most commonly used IMT equipment require calibration of proving rings, load gauges, dial gauges/extensometers, weights, simple/physical/electronic balances, the romometers, thermostats etc., which are used in testing of soil, cement, aggregate, bitumen, asphalt/ concrete mixes, pavement and sub-soil investigations.

### 7.3.3 Operation & Maintenance

During the Operation & Maintenance, the agencies are required to carry out maintenance and repair works as a part of routine and periodic maintenance. In order to verify compliance to the requirements of maintenance schedules and annexes, the Contractor/Engineer have a mandate to conduct BBD and roughness measurements periodically. Various materials/ mixes/works are required during Operation & Maintenance. All the IMT equipment specified in the preceding para are used during this stage, and would require calibration.

**7.3.4** IMT equipment may be used in various stages of the Project but, the calibration requirements, calibration procedure, frequency and the acceptability criteria continue to be same.

## 7.4 Type of Calibration

All the IMT equipment/measuring devices require frequent/routine inspection and verification for dimensions, weight, clearances etc., which are specified in the codes of practice for each individual test. When some of the parameters are found to be deviating from the codal requirements, the following options emerge:

- a. Adjust when the load cells/balances do not show the appropriate reading, the load cells / balances may be adjusted by the equipment manufacturer to show the correct reading with reference to the required standard.
- b. Calibrate when the load gauges in the compression testing machine do not show the correct reading, the load gauge shall be verified against a master proving ring. Indicated load gauge readings will be compared with those of the master proving ring and a graph or chart is drawn between the indicated gauge readings and the actual readings.
- c. Replace for example, when the appurture of the sieves does not conform to the requirements, the sieve should be rejected and replaced by a new sieve conforming to the national standards. When the size of a mould does not conform to the required size, when the graduations on a measuring jar, or scale fade away, they should be replaced. Further, when a device can neither be adjusted nor calibrated, it should be replaced.
- **7.4.1** Calibrations and checks to be carried out on IMT equipment/measuring devices can be classified into four categories:
  - a. Visual check where the item is inspected to provide assurance that the equipment meets the requirement of appropriate standard, but no measurements are required. This can be done as frequently as possible but not later than 6 months.
  - b. Physical check which may be performed by the competent staff in-house, using appropriately calibrated equipment to a documented procedure
  - c. Inhouse calibration which may be performed to a documented method by competent staff inhouse, using appropriate reference standard / equipment. The reference standard / equipment will need to be calibrated by a laboratory that can demonstrate competence, measurement capability and traceability e.g. NABL accredited calibrating facility.
  - d. External calibration which is carried out by the laboratory accredited by NABL for the measurement concerned and for which NABL has issued certificate.

**7.4.2** Some of the calibrations can be done at site by an external agency, which is qualified and acceredited to perform a specific calibration. Static Weigh bridge shall be calibrated by the legal metrology department at site itself. Compressing Testing Machine can be calibrated against a master proving ring at site itself by competent external agencies. Similarly, the load cells in the Concrete Batching Plant or Asphalt Batching Unit can be calibrated at site only. But, the proving rings used for measuring CBR, Marshal Stability, dial gauges, thermometers, electronic balances etc. will have to be sent to the accredited laboratories for calibration.

The IMT equipment which can be calibrated with inhouse facilities shall be identified and suitable methodologies shall be drawn for the approval of the Competent Authority.

### 7.5 Requirements for Calibration

In order to carry out the calibration, it is necessary to have the required Master Calibrating Devices, ambient conditions and trained man power. Master Calibrating Device is the instrument having capacity higher than the instrument/ equipment to be calibrated and whose measurements are already verified and certified by authenticated master calibration, whose details are traceable.

Typically, the accuracy of the standard should be ten times the accurate of the measuring device being tested. However, accuracy ratio of 3:1 is acceptable by most standards organizations.

## 7.6 Frequency of Calibration

As a general rule, the IMT equipment/measuring devices shall be calibrated at the frequency specified by the manufacturers of the specific equipment. In some of the cases, frequency depends on the use and wear and tear of the equipment. For example, the Bump Integrator may have to be calibrated after running a specific distance (km). Calibration shall also be done invariably after repair or mechanical maintenance of the equipment.

For each of the measuring and testing equipment the manufacturer specifies the time interval for its calibration. In addition to manufacturers' recommendations, depending upon the usage wear and tear that takes place to the instrument/equipment and the limitations on master calibrating unit, certain interval shall be fixed for individual equipment/instruments. Details of calibration requirements and intervals are listed in **Annexure 7.1**. Wherever time interval for calibration specified by the manufacturer is smaller than the time interval indicated in the **Annexure 7.1**, the manufacturer's recommendation shall be followed.

### 7.7 Calibration Records

Calibration records shall be maintained and associated with a unique identifier of each piece of equipment. These records shall include:

- Identity of item of equipment
- Name of the manufacturer
- Serial number
- Date of calibration
- Current location
- Manufacturer's instructions
- Reference standard, and reference used for calibration
- Copies of all reports, results of calibration and certificate of calibration
- Maintenance plan and due date of next calibration
- Identity of the individual performing the calibration

Status of calibration and the calibration certificate shall be displayed near the respective IMT equipment.

### 7.8 Recall Procedures

Soon after recalibration of the IMT equipment, it shall be verified whether there is any major difference in the old and new calibrations, and if they would affect the readings taken in the past. Any borderline results deduced from the readings of the equipment under reference in the past 3-6 months may be verified against the new calibration. If there is any point of concern, then the corresponding elements or components may be identified for carrying out suitable confirmatory tests in field. On review of the field tests and on verification of their compliance with the specifications and standards, if necessary, suitable action will be iniated as per the requirements of **Section 11** of this Manual. To this extent, it is recommended that the agency shall maintain a separate record of all the borderline cases in a separate location so that positive recall procedures can be easily applied, when found necessary.

|                        |                                                                                         | 1                                                                                                                                           | r                                                                                                                              |                                 |                                                                                    |                                                                       |
|------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Type of<br>Certificate | NABL – at site<br>External                                                              | NABL<br>Inhouse                                                                                                                             | NABL<br>Inhouse                                                                                                                | Inhouse                         | NABL                                                                               | Inhouse                                                               |
| Interval               | Should not<br>exceed 1 year                                                             | Should not<br>exceed 1 year<br>every 3 months                                                                                               | Annual<br>Before use                                                                                                           | Annual                          | Annual /<br>Biannual based<br>on the use                                           | Every 3 months                                                        |
| Level                  | External                                                                                | External<br>Inhouse                                                                                                                         | External<br>Internal                                                                                                           | Check                           | External                                                                           | Inhouse                                                               |
| Calibration or check   | Check rate of loading, calibrate in<br>accordance with ISO 7500: Part 1                 | Calibrate in accordance with<br>BS EN 10002: Part 4, over the entire<br>extension range or working range.<br>Check for readability and wear | Calibrate for precision in the range of<br>measurement required with calibrated<br>reference thermometer Check at ice<br>point | Check against BT speaking clock | To be calibrated in accordance with<br>the procedures of weights under<br>measures | Calibration of individual gate openings Inhouse and the batching unit |
| IMT Equipment          | Compression Testing<br>machine, CBR,<br>Marshall Stability<br>Machines<br>Proving Rings | Micrometers<br>Calipers<br>Steel rules<br>Dial gauges                                                                                       | Thermometers<br>Ovens<br>Water baths                                                                                           | Stop Watches                    | Physical, electronic<br>and common<br>balances, Weights                            | Hot Mix Plant<br>Wet Mix Plant<br>Batching Plant                      |
| Category               | Load Measuring<br>Devices                                                               | Length Measuring Micrometers<br>Devices Calipers<br>Steel rules<br>Dial gauges                                                              | Temperature<br>Measuring<br>Instruments                                                                                        | Time Measuring<br>Devices       | Weighing<br>machines                                                               | Plants                                                                |
| S. No.                 | ~                                                                                       | 2                                                                                                                                           | ო                                                                                                                              | 4                               | 5                                                                                  | 9                                                                     |

**CALIBRATION REQUIREMENTS & FREQUENCY** 

Annexure-7.1

# **SECTION 8**

# INSPECTION AND TESTING

#### 8.1 Introduction

Inspection and Testing is an integral part of the construction activities. All the materials being incorporated in the product, all the processes being followed and all the finished products will be subjected to inspection and testing to ensure conformity of the product with the standards and specifications. The Contractor shall submit the Quality Assurance Plan at commencement and carry out quality control during the currency of contract through inspection and testing at various hold points specified therein.

#### 8.2 Objective

The primary objective of inspection and testing at various stages is to ensure that the all the materials being incorporated in the product and the end product fulfill the quality requirements of the MORTH Specifications for Road and Bridge Works. Contractor is responsible for the Quality Assurance and Quality Control i.e planning and conducting the inspection and testing activities. Other entities will perform their roles as envisaged in the contract agreement.

#### 8.3 Scope

The current section specifies the inspection and testing requirements during project preparation, construction and operation & maintenance. It covers the stages of inspection, codes, test procedures to be followed, documentation and records to be maintained.

### 8.4 **Project Preparation**

During the project preparation, the Design Consultants need to carry out various surveys and investigations including pavement investigations, sub-soil investigations, material investigations etc. as per the Manual for Surveys, Investigation and Preparation of Road Projects IRC:SP:19. Inspection and Testing requirements will be as per the Terms of Reference (TOR) of the consultancy contract. When the TOR is silent about the frequency of testing, the same shall be as per good industry practice. Various tests to be conducted and the performance and acceptance criteria are given in **Table 8.1**.

| S.<br>No. | Test                    | Applicable Code of<br>Practice | Acceptance Criteria |
|-----------|-------------------------|--------------------------------|---------------------|
| Α         | Pavement investigations |                                |                     |
| 1         | Visual Condition Survey | IRC:81                         | IRC:81              |
| 2         | Bump Integrator         | IRC:SP:16; IS:3073             | IRC:SP:16; IS:3073  |
| 3         | BBD                     | IRC:81                         | IRC:81              |
| 4         | FWD                     | IRC:115                        | IRC:115             |

Table 8.1

| S.<br>No. | Test                      | Applicable Code of<br>Practice        | Acceptance Criteria                                                                  |
|-----------|---------------------------|---------------------------------------|--------------------------------------------------------------------------------------|
| 5         | Subgrade Strength         | IS:2720, Part-16                      | IRC:37 & CA                                                                          |
| 6         | Pavement Composition      | ASTM C 174/ 174M &<br>MS 23 Manual    |                                                                                      |
| В         | Sub-Soil Investigations   |                                       | -                                                                                    |
| 1         | Collection of UDS         | IS:1892 & 2132                        | MORTH Specifications for                                                             |
| 2         | Standard Penetration Test | IS:2131                               | Road & Bridge Works                                                                  |
| 3         | Triaxial Test             | IS:2720, Part-11 & Part -13           |                                                                                      |
| 4         | UCS                       | IS:2720, Part-10                      |                                                                                      |
| 5         | Consistency limits        | IS:2720, Part-5                       |                                                                                      |
| 6         | Classification of Soils   | IS:1498                               |                                                                                      |
| 7         | Silt factor               | IS:2720, Part-4 & IRC:78              |                                                                                      |
| 8         | Direct Shear Test         | IS:2720-13                            |                                                                                      |
| С         | Borrow Areas (Soil)       |                                       | -                                                                                    |
| 1         | Sieve Analysis            | IS:2720, Part-4                       | MORTH Specifications for                                                             |
| 2         | Atterberg's Limits        | IS:2720, Part-5                       | Road & Bridge Works                                                                  |
| 3         | Compaction Test           | IS:2720, Part-7 & 8                   |                                                                                      |
| 4         | CBR                       | IS:2720, Part-16                      |                                                                                      |
| 5         | Free Swell index          | IS:2720, Part-40                      |                                                                                      |
| D         | Quarries (Aggregate)      |                                       |                                                                                      |
| 1         | Sieve Analysis            | IS:2386, Part-2                       | MORTH Specifications for                                                             |
| 2         | Impact Value              | IS:2386, Part-4 or<br>IS:5640, Part-4 | Road & Bridge Works Section                                                          |
| 3         | Abrasion Value            | IS:2386, Part-4                       |                                                                                      |
| 4         | Soundness                 | IS:2386, Part-5                       |                                                                                      |
| 5         | Stripping Value           | IS:6241                               | MORTH Specifications for<br>Road & Bridge Works Section<br>500                       |
| 6         | Water absorption          | IS:2386, Part-3                       | MORTH Specifications<br>for Road & Bridge Works<br>Sections: 400, 500, 600 &<br>1000 |
| 7         | Polished Stone Value      | BS 812 Part-114                       | MORTH Specifications for<br>Road & Bridge Works Section<br>500                       |
| 8         | Sand Equivalent value     | IS:2720, Part-37                      | MORTH Specifications for<br>Road & Bridge Works Section<br>500                       |

| S.<br>No. | Test                                     | Applicable Code of<br>Practice      | Acceptance Criteria                                             |
|-----------|------------------------------------------|-------------------------------------|-----------------------------------------------------------------|
| 9         | Ten percent Fines value & Crushing value | IS:2386, Part-4                     | MORTH Specifications for<br>Road & Bridge Works Section<br>400  |
| E         | Cement                                   |                                     |                                                                 |
| 1         | Consistency                              | IS:4031, Part-4                     | MORTH Specifications for                                        |
| 2         | Setting Time                             | IS:4031, Part-5                     | Road & Bridge Works Section                                     |
| 3         | Compressive Strength                     | IS:4031, Part-6                     |                                                                 |
| 4         | Fineness                                 | IS:4031, Part-1                     |                                                                 |
| 5         | Soundness                                | IS:4031, Part-3                     |                                                                 |
| F         | Bitumen                                  |                                     |                                                                 |
| 1         | Penetration                              | IS:1203                             | IS:73                                                           |
| 2         | Softening Point                          | IS:1205                             |                                                                 |
| 3         | Ductility                                | IS:1208                             |                                                                 |
| 4         | Viscosity                                | IS:1206 (Part II & III)             |                                                                 |
| 5         | Specific Gravity                         | IS:1202                             |                                                                 |
| G         | Concrete Mix Design                      |                                     |                                                                 |
| 1         | Sampling                                 | IS:10262                            | MORTH Specifications for                                        |
| 2         | Mix Design                               | IS:10262<br>IRC:SP:23 & IRC:112     | Road & Bridge Works Section                                     |
| 3         | Workability                              | IS:1199                             |                                                                 |
| 4         | Compressive Strength                     | IS:516                              |                                                                 |
| 5         | Flexible Strength                        | IS:516                              |                                                                 |
| G         | Asphalt Mix Design                       |                                     |                                                                 |
| 1         | Mix Design                               | MS-2                                | MORTH Specifications for                                        |
| 2         | Stability testing                        |                                     | Road & Bridge Works Section 500                                 |
| 3         | Void Analysis                            |                                     |                                                                 |
| Ι         | RE Wall                                  |                                     |                                                                 |
| 1         | Fill                                     | IS:2720,Part-13, Part-4 &<br>Part-5 | MORTH Specifications for<br>Road & Bridge Works Section<br>3100 |

Note: Latest versions of the codes indicated above shall be used.

#### 8.5 Construction

All the tests prescribed in MORTH Specifications for Road & Bridge Works shall be conducted at various stages and frequencies stipulated therein, during the construction stage. Besides

additional tests shall be conducted for factory manufactured materials, products and specialized items as per **Section 5** of this Manual. Requirement and procedure of testing during different stages of construction are given below:

#### **8.5.1** Approval of Sources

The Contractor will identify the sources of raw materials viz., soil, morrum, sand, fly ash, guarry stone etc. and thoroughly inspect the sources for adequacy of guantity, guality and consistency including the history of usage of the material from the quarry, details of the projects where the material was used and the problems observed if any. Subsequently, Contractor shall collect the samples and subject them to the prescribed tests to verify their conformity with the requirements. The proposed sources of manufactured materials viz., Cement, Steel, Bitumen, Emulsions, Admixtures etc. also shall be subjected to tests as detailed in Section 5 of this Manual at the site laboratories or third party labortories as applicable. The Contractor shall submit the test results along with the location and layout of the borrow pit or quarry and the locations of the samples and the depth of collection. For manufactured materials the test results shall be submitted along with the further details as specified in Section 5 of this Manual. The Engineer will determine the necessity of further tests at the site laboratory or elsewhere and communciate the approval for the sources. Unless the approval is received, the Contractor shall not procure the material. Engineer shall communciate his approval expeditiously to avoid delay in procurment of the material. The Contractor shall plan the activities carefully so that approval of the sources is done well ahead of the actual construction.

### 8.5.2 Testing of Sources of Materials

The Contractor shall subject all the raw materials and the manufactured materials to testing as per the procedures and frequencies stipulated in **Section 900** for road works and other applicable sections for bridges and structures of MORTH Specifications for Road & Bridge Works.

For soil and moorum materials, adequate number of samples shall be collected from the borrow areas so that the entire borrow pit is representated in both area and depth. If the Contractor intends to collect samples from a deeper level, samples shall suitably cover the entire depth. After mapping the densities, consistency and strength properties of the material, the borrow area will be segragated based on their properties and an average density value is determined for different parts for the purpose of verifying the degree of compaction achieved in the field. If there is any considerable variation in the densities or visible change in the quality of material, the material in the borrow pits will be retested and the reference density is revalidated.

Samples of aggregates shall be collected from stock piles in the stacking area or the crushers. Sample size depends on the quantity of stock pile and the guidelines given in IS:383 and IS:2386 for condcting various tests. All manufactured materials Viz., cement, steel and bitumen procured from pre-approved sources shall be tested prior to use. Manufacturer's Test Certificates and other details specified in **Section 5** of this Manual pertaining to the lot received shall be submitted by the Contractor for reference. In addition, the Engineer shall determine the tests to be conducted at the site laboratory and the 3<sup>rd</sup> party laboratory as relevant, as per the Qulaity Assuarnce Plan approved for the project. Only after obtaining the approval of the Engineer, the materials shall be incorporated in the works, as concrete elements and bituminous courses are irreversible in nature and if any test fails, it is difficult to rectify.

#### 8.5.3 In-Process Inspection & Testing

It is advisable that test sections are prepared using any material or mix being incorporated in the pavement, sub-grade and filling and all the parameters are verified. This will not only be useful in optimising the compaction effort i.e the number passes, rolling pattern, overlaps, speed etc. but also to train the team in verification of process parameters viz., temperature, moisture, line, level etc. The compaction factor can be determined for a specific borrow area or the mix so that loose material can be accordingly laid in a manner that the desired levels are achieved at the required degree of compaction.

Test sections also ensure that the performance of the plant and equipment used for producing the mix and laying the mix is verified and confirmed with the requirments of the specifications. Material shall be collected from the cold bins/hot bins of the WMP/HMP/Concrete Batching Plant etc. to verify the calibration of the motors/load cells and tested for conformance to the mix proportions envisaged in the design. The mix finally delivered in the hopper shall be collected and verified for the proportions and respective properties of the ingradients and mixes.

The performance of the paver or grader etc., in producing the desired workmanship and finished properties shall be verified in the field and suitable corrections shall be made to the equipment/processes. The plant or equipment, which is unable to produce the desirable quality at site shall be removed and replaced with the approved equipment as per Contract.

All the ingredients of the concrete, GSB, WMM and Asphalt courses shall be tested on a day to day basis at various stages including in stock piles, bins, dry mix, final mix loaded in the truck and at field as applicable and relevant. This will clearly isolate the deficiency and provide insignts in to the reasons for variation in quality.

Samples shall be collected from the pavement layers prior to compaction and routine tests shall be conducted to verify the reference density and other properties if necessary. These control tests will explain the variation in the degree of compaction if compaction is done under controlled conditions, duly verifying all the process parameters. The results of the control tests shall be documented and monitored.

Generally, the reference values shall be those obtained during the mix design process. But, if necessary and found advisable, the reference densities may be obtained on a day to day basis from the material actually laid at site.

Process parameters viz., moisture, temperature, line and level shall be checked prior to compacting the layers so that the end product fulfills the requirements of the specifications. Record of such inspection and verification shall be maintained in relevant check lists and formats.

For concrete works various pre-concrete and post-concrete checks shall be made as per the provisions of applicable codes and good industry practice. It shall be ensured that the staging

conforms to pre-approved designs and all the joints are tight and safe. Further, the shuttering shall be as per the lines and levels given in the drawings and the joints are sealed to prevent leakage. It shall also be ensured that chairs and cover blocks are placed to achieve the spacing of reinforcement and the concrete cover respectively. All the arrangements shall be verified against the checklists provided in the QAP.

Reinforced Earth Walls require thorough inspection during the erection of panels itself as correction of the deficiency after construction is extremely difficult. Horizontal and vertical alignment shall be checked at each stage by appropriate means i.e total station and plumb bob. The c,  $\phi$  and density of the reinforced soil fill should be checked regularly. Further, the grids or the strips should be protected from exposure to fire, sun etc. as per the manufacturer's specifications and kept adequately covered. Adequate earth cushion should be ensured to prevent damage of the grids while compacting. Low capacity compactors should be used while compacting near the panels. Casting, storing and erection of friction crash barriers should be done with adequate care to ensure a good finish. It is emphasized that adequate care should be taken at each step during the construction itself.

#### 8.5.4 Final Inspection & Testing

It is important that the final product conforms to the requirements of the specification and standards and the same is verified prior to taking up the next component.

In case of road works, each layer shall be inspected and put to tests as required by **Section 900** of MORTH Specifications for Road and Bridge Works. Initially, the layer shall be visually inspected for its workmanship, uniformity in texture, undulations, roller marks, segregation, pumping etc. All the cross sectional elements including the width of the carriageway, paved shoulder, earthen shoulder, toe width, camber, side slope, surface regularity shall be measured and verified. Any defects shall be corrected prior to taking up final testing. Levels, thickness and degree of compaction of the layer shall be checked at prescribed spacing and intervals and checked whether they are within the specified tolerances. Any nonconformance shall be identified and corrected before proceeding to the next stage. NCRs shall be issued in case of any irreversible processes and the required corrective and preventive actions shall be initiated and disposed as per the provisions of **Section 11** of this Manual.

All concrete works shall be inspected after the removal of the false work, staging, shuttering and inspected for undulations, segregation, bleeding etc. and suitable rectification shall be carried out, if necessary. All elements shall be verified for lines, levels, dimensions and surface regularity for conformity to the tolerances. It shall also be verified if the concrete fulfills the other acceptance criteria of compressive and / or flexural strength which is generally verified by casting cubes, beams, cylinders etc. as required during the casting of concrete. In case of any shortfall in strength properties, NCR shall be issued and cores shall be collected from the respective components to verify the corresponding properties and the required corrective and preventive actions as necessary, shall be initiated and disposed as per the provisions of **Section 11** of this Manual.

#### 8.6 Operation & Maintenance

During the O&M stage, the Contractor shall carry out rountine inspection of the highway at the time and intervals specified in the contract agreement and identify the defects and deficiencies

to be rectified. Generally, the contract specifies a definite time period of rectification for each type of distress. Accordingly, the Contractor shall prepare a maintenance programme and carry out the rectification accordingly.

Engineer shall inspect the works at all the 3 stages i.e. before, during and after rectification and verify compliance to the requirements of the Specifications. The requirements of subsection 8.5 of this Manual shall apply mutatis mutandis to the various inspection and test requirements during O&M.

Any other tests or surveys required during O&M viz., visual condition surveys, BBD/FWD and roughness tests shall be carried out in accordance with relevant codes and conformance to the requirements of the agreement shall be verified and ensured. Any non-conformance shall be processed as per **Section 11** of this Manual.

## 8.7 Third Party testing

Some of the tests may have to be conducted in the third party laboratories in case of special tests and also if the Contractor does not have the test equipment and expertise to carry out the tests, which include special tests on Cement, Bitumen, Steel, Bearings, Agregate, Geogrid, other forms of soil reinforcement, RE fill, stone polishing value of aggregate etc. In some cases the Employer/Authority or the Engineer may like to order confirmatory tests in external laboratories, even though the Contractor has the test facility at site. Such cases may also include extensive and poorly explained failure of structural and pavement elements.

Sampling shall be carried out jointly by the parties including the Authority, Contractor and the Engineer and the samples shall be carefully numbered for unique identification and packed for despatch. If the laboratory allows, the tests shall also be conducted in the presence of the parties who sampled the materials. The external laboratories shall fulfill the requirements of **Section 5** and **6** of this Manual.

### 8.8 Sampling

Sampling of the materials should be done with utmost care as the right product may fail on account of preparing and / or testing a wrong sample and vice versa. Moreover, the consituent materials of road are of heterogeneous quality and further subjected to heterogeneous processes. Hence, sampling done at adjacent locations may still yield different results. Hence, statistical procedures shall be applied for sampling and testing as per **Section 10** of this Manual.

### 8.8.1 Sampling of Quarries

While sampling the stone quarries, the entire quarry shall be visually inspected for its homogenity of surface, quality and the quality and extent of over burden. Representative sample shall be carefully selected for conducting various tests. If the quarry is being used in any of the crushers, crushed aggregared shall also be collected from the crushers for approval of the source.

### 8.8.2 Sampling of Borrow Pits

The extent of the borrow pit shall be identified and marked for delineating the area in to various sections of atleast 25 m X 25 m. Samples shall be collected from each such section

with an excavator if possible. Sample should represent the entire depth up to which the Contractor proposes to extract. Approval shall indicate the plot number and the depth of such plot.

### 8.8.3 Sampling of Stock Piles

Material is generally segregated in the stock piles. The extent of segregation depends on the size of the stock pile. Well Stocked piles up to a height 2 m do not pose much problems. But, huge stock piles of 10 to 20 m also are sampled at times. A back hoe can be used for collection of samples from such piles. Samples should be collected from all the sides and from deep inside the stock pile. Surface samples are generally segregated. Alternatively, front end loaders can be used to take out samples from deep inside and the required quantity can be collected from each such scoop. The material so collected shall be subjected to quartering and coning to arrive at the required sample for testing. The number and quantity of sample shall be as per IS:383.

### 8.8.4 Sampling of Trucks and Pavers

Segregation is possible at each location in the process. Material shall be dumped incrementally in the trucks or pavers to avoid segregation. Representative samples can be collected with ease if such loading process is followed. It is always ideal to collect the sample at site from behind the paver than the hopper.

#### 8.8.5 Sampling on layers

Sample of adequate size shall be cut from the layer without affecting the size of the aggregates. In sampling an asphalt layer, it is always better to cut a rectangular section than the core, if we want to carry out tests for gradation and bitumen content. Core, cuts the aggregates and the gradation or bitumen content found from such samples is not correct.

### 8.8.6 Statistical Sampling

Sample locations on the road layers can be chosen by way of random numbers to be generated by some electronic gadgets. The numbers can be applied on the length and width sequentially, to choose the locations. This prevents the bias of the testing personnel in selecting the location. However, all the defects shall be rectified prior to taking up the testing so that sampling is representative and reflects the quality of the layer.

### 8.9 General Guidelines for Inspection & Testing

In-process inspection and final inspection are very important aspects in Quality Assurance and Control. Inspection should be done against a standard checklist at all important hold points, requiring final or stage approvals. The check list shall include all the steps and parameters indicated in the method statements and the MORTH Specifications for Road & Bridge Works. The work carried out using a set of equipment, materials and conditions in a day can be grouped for the purpose of determing the frequency/no. of tests, irrespective of the spread of the locations. If the frequency specified in the codes result in excessive puncturing of the layer or component, the frequency may be suitably reduced subject to prior approval of the Engineer. Reduction in number of destructive tests may be compensated by conducting more non-destructive tests like nuclear density tests etc.

### Annexure 8.1

# SAMPLE FORMATS

| SI.<br>No | Description                                                          | Format ID   |
|-----------|----------------------------------------------------------------------|-------------|
| 1         | Test Frequency Schedule                                              | A-1         |
| 2         | Formwork Inspection Checklist                                        | B-1         |
| 3         | Reinforcement Inspection Checklist                                   | B-2         |
| 4         | Inspection Checklist before approval to concrete                     | B-3         |
| 5         | Proforma for Concrete Delivery and Pour Record                       | B-4         |
| 6         | Post Concreting Inspection                                           | B-5         |
| 7         | Grain Size Analysis                                                  | C-1         |
| 8         | Determination of Particle Size by Hydrometer Method                  | C-2         |
| 9         | Liquid Limit & Plastic Limit                                         | C-3         |
| 10        | Free Swell Index                                                     | C-4         |
| 11        | Soil Specific Gravity Test                                           | C-5         |
| 12        | Compaction Test                                                      | C-6         |
| 13        | CBR Test Results & CBR Test                                          | C-7 & C-8   |
| 14        | Direct Shear Test                                                    | C-9         |
| 15        | Triaxial Shear Test                                                  | C-10        |
| 16        | Consolidation Test                                                   | C-11        |
| 17        | Soil Permeability Test - Constant Head Method & Variable Head Method | C-12 & C-13 |
| 18        | Swell Pressure Test by Constant Volume Method                        | C-14        |
| 19        | Unconfined Compressive Strength                                      | C-15        |
| 20        | Aggregate Impact Value - AIV                                         | C-16        |
| 21        | Flakiness Index & Elongation Index                                   | C-17        |
| 22        | Individual Gradation of Coarse Aggregate                             | C-18        |
| 23        | Sieve Analysis of Fine Aggregate                                     | C-19        |
| 24        | Deleterious Material and Organic Impurities                          | C-20        |
| 25        | Point Load Test                                                      | C-21        |
| 26        | Soundness Test by using Sodium Sulphate                              | C-22        |
| 27        | Specific Gravity & Water absorption of Fine Aggregate                | C-23        |
| 28        | Specific Gravity & Water absorption of Coarse Aggregate              | C-24        |

| SI.<br>No | Description                                                                           | Format ID |
|-----------|---------------------------------------------------------------------------------------|-----------|
| 29        | 10% Fines Value Test                                                                  | C-25      |
| 30        | Uniaxial Compression Strength test                                                    | C-26      |
| 31        | Fineness of Cement                                                                    | C-27      |
| 32        | Normal Consistency of Cement                                                          | C-28      |
| 33        | Initial & Final Setting Time of Cement                                                | C-29      |
| 34        | Soundness of Cement by Le-Chatelier Method                                            | C-30      |
| 35        | Specific Gravity of Cement                                                            | C-31      |
| 36        | Compressive Strength of Mortar Cubes                                                  | C-32      |
| 37        | Compressive Strength of Concrete Cubes                                                | C-33      |
| 38        | Penetration Value of Bitumen                                                          | C-34      |
| 39        | Bitumen Specific Gravity                                                              | C-35      |
| 40        | Determination of Softening Point                                                      | C-36      |
| 41        | Determination of Viscosity                                                            | C-37      |
| 42        | Gradation Aggregate Sector Binder Content Paving Mixtures Centrifuge Method BC/DBM/BM | C-38      |
| 43        | Flash & Fire Point                                                                    | C-39      |
| 44        | Marshall Test Result                                                                  | C-40      |
| 45        | Core Test                                                                             | C-41      |
| 46        | Field Density Test Core Cutter Method                                                 | C-42      |
| 47        | Benkelman Beam Deflection (BBD) Survey                                                | C-43      |
| 48        | Pavement Roughness Survey using Bump Integrator                                       | C-44      |
| 49        | Dynamic Cone Penetrometer Test (Pavement DCP)                                         | C-45      |
| 50        | Determination of Dry Density of Soil in place (Sand Replacement Method)               | C-46      |
| 51        | Falling Weight Deflectometer                                                          | C-47      |
| 52        | Calibration Chart for Batching Plant for Aggregate Gauge                              | D-1       |
| 53        | Calibration Chart for Batching Plant for Water Meter                                  | D-2       |
| 54        | Calibration Chart for Batching Plant for Cement Gauge                                 | D-3       |
| 55        | Calibration Report (Cube Testing Machine)                                             | D-4       |
| 56        | Material Quality Surveillance Form                                                    | E-1       |
| 57        | Product Quality Surveillance Form                                                     | E-2       |

| SI.<br>No | Description                                                                | Format ID |
|-----------|----------------------------------------------------------------------------|-----------|
| 58        | Surveillance form Pre-Concreting Operation                                 | E-3       |
| 59        | Quality Surveillance form for Workmanship of Concrete                      | E-4       |
| 60        | Surveillance Form for Pavement Layers                                      | E-5       |
| 61        | Particulars of Work                                                        | F-1       |
| 62        | Register of Drawings                                                       | F-2       |
| 63        | Cement Register                                                            | F-3       |
| 64        | Consumption of Cement on Different Items of Works (Theoretical and Actual) | F-4       |
| 65        | Records of Calibration of Equipment                                        | F-5       |
| 66        | Daily Progress Report                                                      | F-6       |
| 67        | Register of Inspection Notes                                               | F-7       |
| 68        | Register of Observations, Memos issued from Quality Control Cell           | F-8       |
| 69        | Bitumen Register                                                           | F-9       |
| 70        | Record of Pre-Stressing Work                                               | F-10      |
| 71        | Grouting Record                                                            | F-11      |
| 72        | Proforma for Result Analysis (Cement)                                      | F-12      |
| 73        | Proforma for Result Analysis (Concrete)                                    | F-13      |

|              |                                      |                                                                                                                                                                                                                                      | TEST FREQUENCY SCHEDULE            | QUENCY S                       | CHEDULE                        |                                    |                                   |                          |
|--------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------|--------------------------------|------------------------------------|-----------------------------------|--------------------------|
| un n         | Consignment<br>Identification<br>No. | Specified<br>Test                                                                                                                                                                                                                    | Performance<br>standard            | Performing<br>Agency           | Quality<br>Assurance<br>Agency | Frequency<br>of<br>Performance     | Frequency<br>of<br>Assurance      | Frequency<br>of<br>Audit |
|              |                                      | <ul> <li>a) Chemical Properties</li> <li>b) Physical Properties</li> <li>c) Special</li> <li>Requirements</li> <li>(As specified)</li> </ul>                                                                                         |                                    |                                |                                |                                    |                                   |                          |
| <del>,</del> | Admixture<br>to take pre             | Admixture shall be stored as per direction of manufacture in a 10 ton cylinder horizontal container specially designed to take pressure and to minimize wastage.                                                                     | rection of manı<br>astage.         | ufacture in a                  | 10 ton cylind                  | er horizontal co                   | ontainer specia                   | ally designed            |
| 3) 2)        | Admixture<br>Monthly si              | Admixture shall be agitated once in a day and solids if any shall not be allowed to settle.<br>Monthly statement of consumption of admixture shall be maintained.                                                                    | a day and soli<br>of admixture sh  | ds if any sha<br>nall be maint | ll not be allov<br>ained.      | ved to settle.                     |                                   |                          |
| 4            | Total chlo<br>not excee              | Total chloride, sulphate content and pH value of admixture when 4 kg of admixture is added to 160kgs of water shall<br>not exceed permissible limits of chloride, sulphate content and pH value of mixing water calculated separate. | l pH value of a<br>oride, sulphate | idmixture wh<br>content and    | en 4 kg of ac<br>pH value of i | lmixture is add<br>mixing water ca | ed to 160kgs c<br>alculated separ | of water shall<br>ate.   |
| Sigu         | Signed                               |                                                                                                                                                                                                                                      |                                    |                                |                                | Signed                             |                                   |                          |
| Date         | <u>0</u>                             |                                                                                                                                                                                                                                      |                                    |                                |                                | Date                               |                                   |                          |
|              |                                      |                                                                                                                                                                                                                                      |                                    |                                |                                |                                    |                                   |                          |
| Pre<br>(Fo   | Prepared by<br>(For Contractor)      | (                                                                                                                                                                                                                                    |                                    |                                |                                | Approved by<br>(For QA Engineer)   | leer)                             |                          |

90

Category A: Planning proforma A-1

# FORMWORK INSPECTION CHECK LIST

LOCATION:

DATED:

## CONTRACTOR'S INSPECTION REQUEST NO.

## CONTRACTORS DRG OR SKETCH NO.

| 1       Formwork design/drawing/sketch approved including de-shuttering arrangements         2       Trial panel approved(if required)         3       Formwork alignment correct         4       Formwork levels correct, including screeds         5       Formwork dimensions correct         6       Formwork member spacing correct         7       Formwork member material quality acceptable         8       False work member spacing correct         9       False work member spacing correct         10       False work member material quality acceptable         11       Gaps between primary and secondary members closed/<br>wedged         12       Face boarding/plywood/metal thickness correct         13       Joints between panels closed (no gaps)         14       Joints between panels flush(no steps/lips)         15       Panel flatness acceptable         16       Gaps between secondary members and face panels closed         17       Tie rod material and sizes correct         18       Tie rod spacing correct         19       Tie rods tight, face cones flush         20       Spacers between shutter surface tightly fitting         21       Box outs, cast-in items, ducts fixed correct, securely         22       Pre-stressing, sheathing and vents, alignments and spa                                                                                             | S.<br>NO. | DESCRIPTION                                             | YES | NO | N.A. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------|-----|----|------|
| 3       Formwork alignment correct         4       Formwork levels correct, including screeds         5       Formwork dimensions correct         6       Formwork member spacing correct         7       Formwork member material quality acceptable         8       False work member sizes correct         9       False work member spacing correct         10       False work member material quality acceptable         11       Gaps between primary and secondary members closed/<br>wedged         12       Face boarding/plywood/metal thickness correct         13       Joints between panels closed (no gaps)         14       Joints between panels flush(no steps/lips)         15       Panel flatness acceptable         16       Gaps between secondary members and face panels closed         17       Tie rod material and sizes correct         18       Tie rod spacing correct         19       Tie rods stight, face cones flush         20       Spacers between shutter surface tightly fitting         21       Box outs, cast-in items, ducts fixed correct, securely         22       Pre-stressing, sheathing and vents, alignments and spacing of supports acceptable         23       Empty sheathing secured against floatation                                                                                                                                                      | 1         |                                                         |     |    |      |
| 4       Formwork levels correct, including screeds         5       Formwork dimensions correct         6       Formwork member spacing correct         7       Formwork member material quality acceptable         8       False work member sizes correct         9       False work member spacing correct         10       False work member material quality acceptable         11       Gaps between primary and secondary members closed/<br>wedged         12       Face boarding/plywood/metal thickness correct         13       Joints between panels closed (no gaps)         14       Joints between panels closed (no gaps)         15       Panel flatness acceptable         16       Gaps between secondary members and face panels closed         17       Tie rod material and sizes correct         18       Tie rod spacing correct         19       Tie rods tight, face cones flush         20       Spacers between shutter surface tightly fitting         21       Box outs, cast-in items, ducts fixed correct, securely         22       Pre-stressing, sheathing and vents, alignments and spacing of supports acceptable         23       Empty sheathing secured against floatation                                                                                                                                                                                                      | 2         | Trial panel approved(if required)                       |     |    |      |
| 5       Formwork dimensions correct         6       Formwork member spacing correct         7       Formwork member material quality acceptable         8       False work member sizes correct         9       False work member spacing correct         10       False work member material quality acceptable         11       Gaps between primary and secondary members closed/<br>wedged         12       Face boarding/plywood/metal thickness correct         13       Joints between panels closed (no gaps)         14       Joints between panels flush(no steps/lips)         15       Panel flatness acceptable         16       Gaps between secondary members and face panels closed         17       Tie rod material and sizes correct         18       Tie rod spacing correct         19       Tie rods tight, face cones flush         20       Spacers between shutter surface tightly fitting         21       Box outs, cast-in items, ducts fixed correct, securely         22       Pre-stressing, sheathing and vents, alignments and spacing of supports acceptable         23       Empty sheathing secured against floatation                                                                                                                                                                                                                                                             | 3         | Formwork alignment correct                              |     |    |      |
| 6       Formwork member spacing correct       Image: Spacing correct         7       Formwork member material quality acceptable       Image: Spacing correct         8       False work member spacing correct       Image: Spacing correct         9       False work member material quality acceptable       Image: Spacing correct         10       False work member material quality acceptable       Image: Spacing correct         11       Gaps between primary and secondary members closed/<br>wedged       Image: Spacing correct         12       Face boarding/plywood/metal thickness correct       Image: Spacing correct         13       Joints between panels closed (no gaps)       Image: Spacing correct         14       Joints between panels flush(no steps/lips)       Image: Spacing correct         15       Panel flatness acceptable       Image: Spacing correct         16       Gaps between secondary members and face panels closed       Image: Spacing correct         18       Tie rod spacing correct       Image: Spacing correct       Image: Spacing correct         19       Tie rods tight, face cones flush       Image: Spacing correct       Image: Spacing correct         20       Spacers between shutter surface tightly fitting       Image: Spacing correct       Image: Spacing correct         21       Box outs, cast-in items, ducts fixed correct, securely | 4         | Formwork levels correct, including screeds              |     |    |      |
| 7       Formwork member material quality acceptable         8       False work member sizes correct         9       False work member spacing correct         10       False work member material quality acceptable         11       Gaps between primary and secondary members closed/<br>wedged         12       Face boarding/plywood/metal thickness correct         13       Joints between panels closed (no gaps)         14       Joints between panels closed (no gaps)         15       Panel flatness acceptable         16       Gaps between secondary members and face panels closed         17       Tie rod material and sizes correct         18       Tie rod spacing correct         19       Tie rods tight, face cones flush         20       Spacers between shutter surface tightly fitting         21       Box outs, cast-in items, ducts fixed correct, securely         22       Pre-stressing, sheathing and vents, alignments and spacing of supports acceptable         23       Empty sheathing secured against floatation                                                                                                                                                                                                                                                                                                                                                             | 5         | Formwork dimensions correct                             |     |    |      |
| 8       False work member sizes correct       9         9       False work member spacing correct       9         10       False work member material quality acceptable       9         11       Gaps between primary and secondary members closed/<br>wedged       9         12       Face boarding/plywood/metal thickness correct       10         13       Joints between panels closed (no gaps)       10         14       Joints between panels flush(no steps/lips)       11         15       Panel flatness acceptable       11         16       Gaps between secondary members and face panels closed       11         17       Tie rod material and sizes correct       11         18       Tie rod spacing correct       11         19       Tie rods tight, face cones flush       12         20       Spacers between shutter surface tightly fitting       12         21       Box outs, cast-in items, ducts fixed correct, securely       12         22       Pre-stressing, sheathing and vents, alignments and spacing of supports acceptable       12         23       Empty sheathing secured against floatation       12                                                                                                                                                                                                                                                                         | 6         | Formwork member spacing correct                         |     |    |      |
| 9       False work member spacing correct         10       False work member material quality acceptable         11       Gaps between primary and secondary members closed/<br>wedged         12       Face boarding/plywood/metal thickness correct         13       Joints between panels closed (no gaps)         14       Joints between panels flush(no steps/lips)         15       Panel flatness acceptable         16       Gaps between secondary members and face panels closed         17       Tie rod material and sizes correct         18       Tie rod spacing correct         19       Tie rods tight, face cones flush         20       Spacers between shutter surface tightly fitting         21       Box outs, cast-in items, ducts fixed correct, securely         22       Pre-stressing, sheathing and vents, alignments and spacing of supports acceptable         23       Empty sheathing secured against floatation                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7         | Formwork member material quality acceptable             |     |    |      |
| 10False work member material quality acceptable11Gaps between primary and secondary members closed/<br>wedged12Face boarding/plywood/metal thickness correct13Joints between panels closed (no gaps)14Joints between panels flush(no steps/lips)15Panel flatness acceptable16Gaps between secondary members and face panels closed17Tie rod material and sizes correct18Tie rod spacing correct19Tie rods tight, face cones flush20Spacers between shutter surface tightly fitting21Box outs, cast-in items, ducts fixed correct, securely22Pre-stressing, sheathing and vents, alignments and spacing<br>of supports acceptable23Empty sheathing secured against floatation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8         | False work member sizes correct                         |     |    |      |
| 11Gaps between primary and secondary members closed/<br>wedged12Face boarding/plywood/metal thickness correct13Joints between panels closed (no gaps)14Joints between panels flush(no steps/lips)15Panel flatness acceptable16Gaps between secondary members and face panels closed17Tie rod material and sizes correct18Tie rod spacing correct19Tie rods tight, face cones flush20Spacers between shutter surface tightly fitting21Box outs, cast-in items, ducts fixed correct, securely22Pre-stressing, sheathing and vents, alignments and spacing<br>of supports acceptable23Empty sheathing secured against floatation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9         | False work member spacing correct                       |     |    |      |
| wedged12Face boarding/plywood/metal thickness correct13Joints between panels closed (no gaps)14Joints between panels flush(no steps/lips)15Panel flatness acceptable16Gaps between secondary members and face panels closed17Tie rod material and sizes correct18Tie rod spacing correct19Tie rods tight, face cones flush20Spacers between shutter surface tightly fitting21Box outs, cast-in items, ducts fixed correct, securely22Pre-stressing, sheathing and vents, alignments and spacing<br>of supports acceptable23Empty sheathing secured against floatation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10        | False work member material quality acceptable           |     |    |      |
| 13Joints between panels closed (no gaps)14Joints between panels flush(no steps/lips)15Panel flatness acceptable16Gaps between secondary members and face panels closed17Tie rod material and sizes correct18Tie rod spacing correct19Tie rods tight, face cones flush20Spacers between shutter surface tightly fitting21Box outs, cast-in items, ducts fixed correct, securely22Pre-stressing, sheathing and vents, alignments and spacing<br>of supports acceptable23Empty sheathing secured against floatation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11        |                                                         |     |    |      |
| 14Joints between panels flush(no steps/lips)15Panel flatness acceptable16Gaps between secondary members and face panels closed17Tie rod material and sizes correct18Tie rod spacing correct19Tie rods tight, face cones flush20Spacers between shutter surface tightly fitting21Box outs, cast-in items, ducts fixed correct, securely22Pre-stressing, sheathing and vents, alignments and spacing of supports acceptable23Empty sheathing secured against floatation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12        | Face boarding/plywood/metal thickness correct           |     |    |      |
| 15Panel flatness acceptable16Gaps between secondary members and face panels closed17Tie rod material and sizes correct18Tie rod spacing correct19Tie rods tight, face cones flush20Spacers between shutter surface tightly fitting21Box outs, cast-in items, ducts fixed correct, securely22Pre-stressing, sheathing and vents, alignments and spacing<br>of supports acceptable23Empty sheathing secured against floatation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13        | Joints between panels closed (no gaps)                  |     |    |      |
| 16Gaps between secondary members and face panels closed17Tie rod material and sizes correct18Tie rod spacing correct19Tie rods tight, face cones flush20Spacers between shutter surface tightly fitting21Box outs, cast-in items, ducts fixed correct, securely22Pre-stressing, sheathing and vents, alignments and spacing<br>of supports acceptable23Empty sheathing secured against floatation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14        | Joints between panels flush(no steps/lips)              |     |    |      |
| 17Tie rod material and sizes correct18Tie rod spacing correct19Tie rods tight, face cones flush20Spacers between shutter surface tightly fitting21Box outs, cast-in items, ducts fixed correct, securely22Pre-stressing, sheathing and vents, alignments and spacing<br>of supports acceptable23Empty sheathing secured against floatation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15        | Panel flatness acceptable                               |     |    |      |
| 18Tie rod spacing correctImage: Constraint of the system19Tie rods tight, face cones flushImage: Constraint of the system20Spacers between shutter surface tightly fittingImage: Constraint of the system21Box outs, cast-in items, ducts fixed correct, securelyImage: Constraint of the system22Pre-stressing, sheathing and vents, alignments and spacing of supports acceptableImage: Constraint of the system23Empty sheathing secured against floatationImage: Constraint of the system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16        | Gaps between secondary members and face panels closed   |     |    |      |
| 19Tie rods tight, face cones flush20Spacers between shutter surface tightly fitting21Box outs, cast-in items, ducts fixed correct, securely22Pre-stressing, sheathing and vents, alignments and spacing<br>of supports acceptable23Empty sheathing secured against floatation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17        | Tie rod material and sizes correct                      |     |    |      |
| 20       Spacers between shutter surface tightly fitting         21       Box outs, cast-in items, ducts fixed correct, securely         22       Pre-stressing, sheathing and vents, alignments and spacing of supports acceptable         23       Empty sheathing secured against floatation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18        | Tie rod spacing correct                                 |     |    |      |
| 21       Box outs, cast-in items, ducts fixed correct, securely         22       Pre-stressing, sheathing and vents, alignments and spacing of supports acceptable         23       Empty sheathing secured against floatation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19        | Tie rods tight, face cones flush                        |     |    |      |
| 22       Pre-stressing, sheathing and vents, alignments and spacing of supports acceptable         23       Empty sheathing secured against floatation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20        | Spacers between shutter surface tightly fitting         |     |    |      |
| of supports acceptable       23       Empty sheathing secured against floatation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21        | Box outs, cast-in items, ducts fixed correct, securely  |     |    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22        |                                                         |     |    |      |
| 24 Pre-stressing anchorage positions and fixing acceptable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23        | Empty sheathing secured against floatation              |     |    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24        | Pre-stressing anchorage positions and fixing acceptable |     |    |      |

| S.<br>NO. | DESCRIPTION                                                               | YES | NO | N.A. |
|-----------|---------------------------------------------------------------------------|-----|----|------|
| 25        | Chamfers/fillets sizes, straightness, fixing acceptable                   |     |    |      |
| 26        | Form work clean                                                           |     |    |      |
| 27        | Form work release oil material approved                                   |     |    |      |
| 28        | Form work release oil applied correctly                                   |     |    |      |
| 29        | Construction joint preparation satisfactory                               |     |    |      |
| 30        | Contraction/expansion joint preparation satisfactory                      |     |    |      |
| 31        | Safe access constructed                                                   |     |    |      |
| 32        | Adequate workspace provided for labour, equipment                         |     |    |      |
| 33        | Shutter vibrators (if required) location and fixing arrangements approved |     |    |      |

Inspected by: (For Contractor)

Name:

Signed:

Date:

Approved by:Name:Signed:Date:(For Engineer)

# **REINFORCEMENT INSPECTION CHECKLIST**

LOCATION:

DATED:

CONTRACTORS INSPECTION REQUEST NO .:

REF DRG NO .:

| S. No. | DESCRIPTION                                                                    | YES | NO | N.A. |
|--------|--------------------------------------------------------------------------------|-----|----|------|
| 1      | Working drawing checked & approved                                             |     |    |      |
| 2      | Latest revision being used                                                     |     |    |      |
| 3      | Bar schedules approved                                                         |     |    |      |
| 4      | Reinforcing steel material approved                                            |     |    |      |
| 5      | Bar bending & cutting satisfactory                                             |     |    |      |
| 6      | Corrosion treatment of bars if required, satisfactory                          |     |    |      |
| 7      | Bar sizes correct                                                              |     |    |      |
| 8      | Bar spacing correct                                                            |     |    |      |
| 9      | Bar lap lengths correct                                                        |     |    |      |
| 10     | Bar laps at correct locations                                                  |     |    |      |
| 11     | Bar tied as specified                                                          |     |    |      |
| 12     | Bar assembly rigid and adequately supported (including spacers/chair supports) |     |    |      |
| 13     | Cover to bottom bars correct                                                   |     |    |      |
| 14     | Cover to side bars correct                                                     |     |    |      |
| 15     | Cover to top bars correct                                                      |     |    |      |
| 16     | Cover blocks approved including fixing                                         |     |    |      |

| Inspected by:<br>(For Contractor) | Name: | Signed: | Date: |
|-----------------------------------|-------|---------|-------|
|                                   |       |         |       |
|                                   |       |         |       |

Approved by: (For Engineer)

Name:

Signed:

Date:

# INSPECTION CHECKLIST BEFORE APPROVAL TO CONCRETE

LOCATION:

#### DATED:

#### CONTRACTOR'S INSPECTION REQUEST NO .:

| S. NO. | DESCRIPTION                                                                                                           | YES | NO | N.A. |
|--------|-----------------------------------------------------------------------------------------------------------------------|-----|----|------|
| 1      | Method statement approved                                                                                             |     |    | ĺ    |
| 2      | Batching plant mixtures in working order (separate dispenser for admixture, if required, available)                   |     |    |      |
| 3      | Stand-by batcher in working order                                                                                     |     |    |      |
| 4      | Water, sand, coarse aggregate, admixture, cement stock approved                                                       |     |    |      |
| 5      | Water, sand, coarse aggregate, admixture, cement stock sufficient                                                     |     |    |      |
| 6      | Concrete conveying arrangement (including transit mixtures) available in working condition and of sufficient capacity |     |    |      |
| 7      | Formwork approved                                                                                                     |     |    |      |
| 8      | Reinforcement approved                                                                                                |     |    | Ì    |
| 9      | Pre-stressing sheathing approved                                                                                      |     |    |      |
| 10     | Concreting equipment in working order                                                                                 |     |    |      |
| 11     | Stand-by crane, vibrators present                                                                                     |     |    |      |
| 12     | Tromie in working order (for under water work)                                                                        |     |    |      |
| 13     | Concrete gang present, including carpenter, steel fixer, mechanics and electricians                                   |     |    |      |
| 14     | Access provided                                                                                                       |     |    | Ì    |
| 15     | Safety arrangements adequate                                                                                          |     |    |      |
| 16     | Lighting provided                                                                                                     |     |    | Ì    |
| 17     | Communications between various points provided                                                                        |     |    |      |
| 18     | Arrangements for arranging suspension/stoppage of concrete provided                                                   |     |    |      |
| 19     | Curing arrangements made                                                                                              | ĺ   |    |      |
| 20     | Laboratory notified                                                                                                   | ĺ   |    |      |

| Inspected by:<br>(For Contractor) | Name: | Signed: | Date: |
|-----------------------------------|-------|---------|-------|
| Approved by:<br>(For Engineer)    | Name: | Signed: | Date: |

# PROFORMA FOR CONCRETE DELIVERY AND POUR RECORD

## 1. CONCRETE BATCHING DELIVERY TICKET NO:

|    | Location of pour                     | : | Date             | :        |
|----|--------------------------------------|---|------------------|----------|
|    | Concrete grade                       | : | Mix Temp         | :        |
|    | W/C ratio                            | : | Slump            | :        |
|    | Cement contents                      | : | No. of cubes ta  | ken :    |
|    | Max. Aggregate size                  | : |                  |          |
|    | Admixture                            | : |                  |          |
|    | (Type and dosage)                    |   |                  |          |
|    | Batching started, Hrs                | : | Batching finishe | ed, Hrs: |
|    | Quantity batched, Cum                | : | Truck no         | :        |
| 2. | TRUCK ARRIVED ON SITE                |   |                  |          |
| 4. | Slump test result(S)                 |   | Hrs              |          |
|    | • • • • •                            |   | mm at            | Hrs      |
|    | Discharge started                    | • | iiiiii at        |          |
|    | Placement completed                  | : | Hrs              |          |
|    | No of site cubes taken               | : | Hrs              |          |
|    | Place where cubes taken              | : | Hrs              |          |
|    | Placement temperature of<br>concrete | : |                  |          |
|    | Ambient temp                         | : |                  |          |
|    | Weather condition                    | : |                  |          |
|    |                                      |   |                  |          |
|    |                                      |   |                  |          |
|    |                                      |   |                  |          |

| Inspected by:<br>(For Contractor) | Name: | Signed: | Date: |
|-----------------------------------|-------|---------|-------|
| Approved by:<br>(For Engineer)    | Name: | Signed: | Date: |

## POST CONCRETING INSPECTION

Note: Post concreting inspection shall be carried at various stages such as after stripping of side shuttering, each stage of pre-stressing, decentring and/or as per designer stipulation.

| Location        | : |                     |   |
|-----------------|---|---------------------|---|
| Date of pour    | : | Stage of Inspection | : |
| Specified class | : | Date of inspection  | : |

S or NS\*

| S. No | Observation                         | Type of remark<br>(S or NS*)             |                       |
|-------|-------------------------------------|------------------------------------------|-----------------------|
| 1     | Position/Dimensions of member       | Alignment                                | S or NS               |
|       |                                     | Levels                                   | S or NS               |
|       |                                     | Dimensions                               | S or NS               |
| 2     | Surface defects (honey combing/sand | No defects                               | (Note type and extent |
|       | streaks/air bubbles/cold joints)    | Minor defects                            | of defect)            |
|       |                                     | Major defects                            |                       |
| 3     | Class of finish                     | S or NS                                  |                       |
| 4     | Cracks                              | No cracks<br>Cracks<br>Nature of cracks: | Date first observed   |
| 5     | Any other defect                    |                                          |                       |
| 6     | Non-conformance report no.          | Report no /<br>Not applicable            |                       |

#### **Remarks:**

In case of NS report in item (1) to (5), it should be examined by competent authority before approval or non-approval. If required, a separate non-conformance report (including sketches, photographs, etc.,) shall be prepared for further action.

| *S = Satisfactory,                | NS = Not sa | itisfactory |       |
|-----------------------------------|-------------|-------------|-------|
| Inspected by:<br>(For Contractor) | Name:       | Signed:     | Date: |
| Approved by:<br>(For Engineer)    | Name:       | Signed:     | Date: |

÷

## Category C: Testing proforma C-1

# **GRAIN SIZE ANALYSIS (IS:2720 PART-4)**

Lab location

Date of Testing

Wt. of Sample retained on

0.075mm Sieve :

Empty weight of Container(g)( $W_1$ ):

.

:

:

:

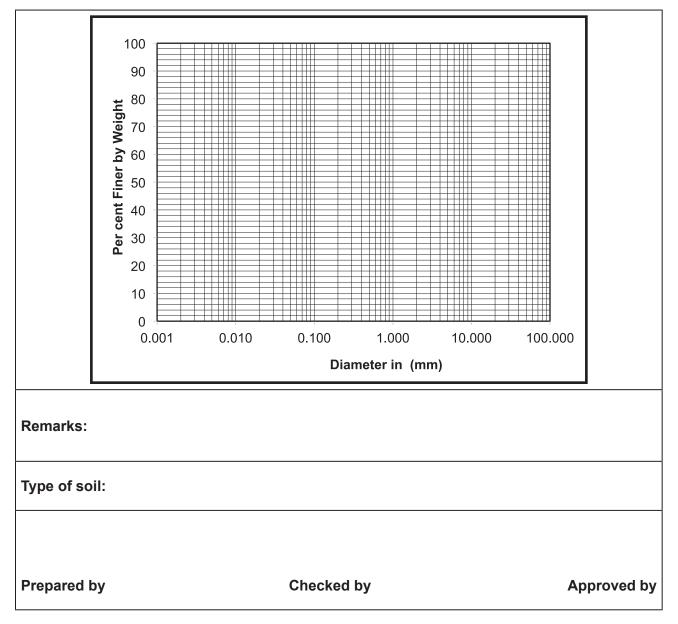
Wt. Container + Wet Soil

 $(g) (W_2)$ 

Wt. of Container+dry :

 $Soil(g)(W_3)$ 

Sampled Location/Chainage


Weight of Sample Taken :

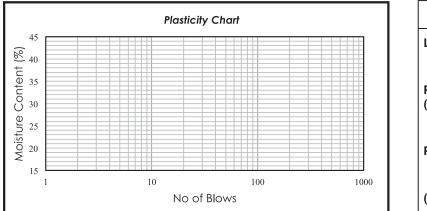
Wt. of Water  $(W_4 = W_2 - W_3)$  :

Moisture Content  $(w_4)/(w_3)-(w_1))*100$ 

| I.S Sieve<br>Designation<br>(mm) | Weight of<br>Soil retained<br>(g) | Cumulative<br>Wt. of Soil<br>retained (g) | Cumulative<br>Percentage<br>retained (%) | Cumulative<br>Percentage<br>Passing (%) | Results       |  |
|----------------------------------|-----------------------------------|-------------------------------------------|------------------------------------------|-----------------------------------------|---------------|--|
| 100.000                          |                                   |                                           |                                          |                                         |               |  |
| 75.000                           |                                   |                                           |                                          |                                         |               |  |
| 60.000                           |                                   |                                           |                                          |                                         | Gravel =      |  |
| 40.000                           |                                   |                                           |                                          |                                         |               |  |
| 19.000                           |                                   |                                           |                                          |                                         |               |  |
| 10.000                           |                                   |                                           |                                          |                                         |               |  |
| 4.750                            |                                   |                                           |                                          |                                         |               |  |
| 2.000                            |                                   |                                           |                                          |                                         | Sand =        |  |
| 1.180                            |                                   |                                           |                                          |                                         |               |  |
| 0.425                            |                                   |                                           |                                          |                                         |               |  |
| 0.075                            |                                   |                                           |                                          |                                         | Silt & Clay = |  |
| Pan                              |                                   |                                           |                                          |                                         | Silt & Clay = |  |

#### Grain size distribution curve




# Category C: Testing proforma C-2

# DETERMINATION OF PARTICLE SIZE BY HYDROMETER METHOD (IS:2720 PART-4)

| a)       | i) Percentage of soil passing 75m IS Sieve:         |                             |                                       |                    |                             |                                                           | Height of the bulb (h): |                 |                    |                             | cm                              |                                          |                                                 |
|----------|-----------------------------------------------------|-----------------------------|---------------------------------------|--------------------|-----------------------------|-----------------------------------------------------------|-------------------------|-----------------|--------------------|-----------------------------|---------------------------------|------------------------------------------|-------------------------------------------------|
| b)       | Mass of sample taken for sedimentation<br>Analysis: |                             |                                       |                    |                             | Volum<br>(vh)l:                                           | e of the H              | lydromet        | er                 |                             | ml                              |                                          |                                                 |
| c)       | Specific                                            | Gravity ((                  | G):                                   |                    |                             |                                                           |                         | Cross<br>Cylind |                    | area of t                   | he                              |                                          | Sq cm                                           |
| d)       | Meniscu                                             | s Correct                   | ion (cm):                             |                    |                             |                                                           |                         | Consta          | ant = (1/2         | (h-(Vh/A)                   | )                               |                                          |                                                 |
|          |                                                     | O                           | bservatio                             | ns                 |                             |                                                           |                         |                 | Calcu              | lations                     |                                 |                                          |                                                 |
| S.<br>NO | Elapsed Time<br>(t) min                             | Hydrometer<br>Reading (Rh') | Meniscus<br>correction C <sub>m</sub> | Temperature<br>(t) | Composite<br>Correction (C) | Corrected Reading<br>(Rh) = Rh'+C <sub>m</sub><br>(2)+(3) | Height (He)<br>cm       | R=Rh'+C         | Value (ŋ) in poise | Factor (M) =<br>√30η/g(G-1) | Particle Size<br>D = (M√He/t)mm | % Finer (N')<br>= 100*G/(Ms*<br>(G-1))*R | % finer based<br>on whole weight<br>N=N'*(w'/w) |
|          | 1                                                   | 2                           | 3                                     | 4                  | 5                           | 6                                                         | 7                       | 8               | 9                  | 10                          | 11                              | 12                                       | 13                                              |
| 1        |                                                     |                             |                                       |                    |                             |                                                           |                         |                 |                    |                             |                                 |                                          |                                                 |
| 2        |                                                     |                             |                                       |                    |                             |                                                           |                         |                 |                    |                             |                                 |                                          |                                                 |
| 3        |                                                     |                             |                                       |                    |                             |                                                           |                         |                 |                    |                             |                                 |                                          |                                                 |
| 4        |                                                     |                             |                                       |                    |                             |                                                           |                         |                 |                    |                             |                                 |                                          |                                                 |
| 5        |                                                     |                             |                                       |                    |                             |                                                           |                         |                 |                    |                             |                                 |                                          |                                                 |
|          | <u>.</u>                                            | ·                           |                                       |                    | <u>.</u>                    | <u>.</u>                                                  | ·                       |                 |                    | ·                           |                                 | ·                                        |                                                 |
| Pre      | pared by                                            |                             |                                       |                    |                             | Checke                                                    | ed by                   |                 |                    |                             |                                 | Approv                                   | ved by                                          |

# Category C: Testing proforma C-3

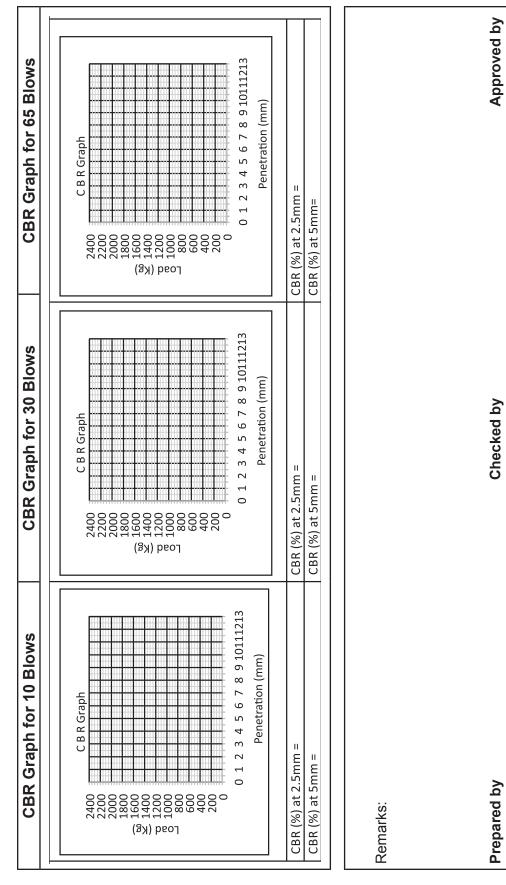
| LIQUID                          |   |   | PLA | STIC | LIMIT | (IS:27                      | 20 PA         | RT-5)     |          |   |
|---------------------------------|---|---|-----|------|-------|-----------------------------|---------------|-----------|----------|---|
| Lab location                    |   | : |     |      |       | Sampl<br>Locatio            | ed<br>on/Chai | nage      | :        |   |
| Date of Testing                 |   | : |     |      |       | Weigh <sup>.</sup><br>Taken | t of San      | nple      | :        |   |
| Liquid Limit :-                 | _ |   |     |      |       |                             |               | Plastic L | .imit :- |   |
| Determination no.               |   | 1 | 2   | 3    | 4     | 5                           |               | 1         | 2        | 3 |
| No. of Blows                    | 1 |   |     |      |       |                             |               |           |          |   |
| Container no.                   | 1 |   | İ   |      |       |                             |               |           |          |   |
| Wt. of empty Container(g)       |   |   | İ   |      |       |                             |               |           |          |   |
| Wt. of Container + wet soil (g) | 1 |   |     |      |       |                             |               |           |          |   |
| Wt. of Container + dry soil (g) | 1 |   | İ   |      |       |                             |               |           |          |   |
| Wt. of Water (g)                |   |   | İ   |      |       |                             |               |           |          |   |
| Wt. of oven dry soil (g)        | 1 |   |     |      |       |                             |               |           |          |   |
| Moisture Content (%)            | 1 |   | ĺ   |      |       |                             |               |           |          |   |
|                                 | ] |   |     |      |       |                             |               |           |          |   |



|         | Test Results               |
|---------|----------------------------|
| Liquid  | Limit (LL%):               |
|         | Limit (PL%) :<br>ge Value) |
| Plastic | ity Index:                 |
| (LL-PL) | )                          |

| Remarks:    |            |             |
|-------------|------------|-------------|
|             |            |             |
|             |            |             |
| Prepared by | Checked by | Approved by |

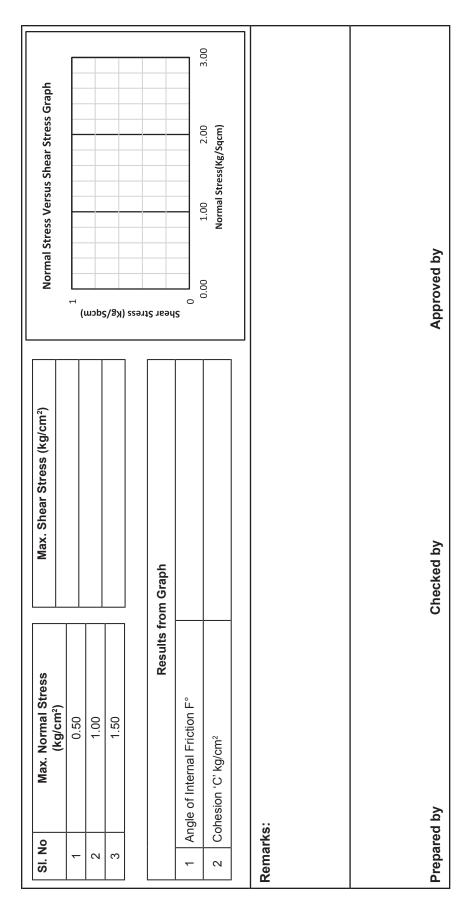
|           | FRI                 | EE SWEL             | L INDE             | X (FSI)            | (IS:2720 F           | PART-40)                                             |                                                         |                                                                |
|-----------|---------------------|---------------------|--------------------|--------------------|----------------------|------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|
| Sect      | tion/Lab location   | :                   |                    | Sam                | pled Locati          | on/Chaina                                            | ge :                                                    |                                                                |
| Date      | e of Testing        | :                   |                    | Weig               | ht of Samp           | le Taken                                             | :                                                       |                                                                |
| S.<br>No. | Chainage/Side/Depth | Date of<br>Sampling | Date of<br>Testing | Duration<br>in Hrs | Wt. of<br>Sample (g) | Volume of<br>Soil<br>in Water<br>(W <sub>1</sub> cc) | Volume<br>of Soil in<br>Kerosene<br>(W <sub>2</sub> cc) | FSI = (W <sub>1</sub> -<br>W <sub>2</sub> )/W <sub>2</sub> (%) |
|           |                     |                     |                    |                    |                      |                                                      |                                                         |                                                                |
|           |                     |                     |                    |                    |                      |                                                      |                                                         |                                                                |
|           |                     |                     |                    |                    |                      |                                                      |                                                         |                                                                |
|           |                     |                     |                    |                    |                      |                                                      |                                                         |                                                                |
|           |                     |                     |                    |                    |                      |                                                      |                                                         |                                                                |
| Rema      | <br>Irks:           |                     |                    |                    |                      |                                                      |                                                         |                                                                |
|           |                     |                     |                    |                    |                      |                                                      |                                                         |                                                                |
|           |                     |                     |                    |                    |                      |                                                      |                                                         |                                                                |
| Prep      | ared by             |                     | Check              | ed by              |                      |                                                      | Арј                                                     | proved by                                                      |


|                                                     | SOIL SPECIFIC GRAVITY                               | TEST (IS:2 | 2720 PAR1   | [-   /  ) |            |  |  |  |  |
|-----------------------------------------------------|-----------------------------------------------------|------------|-------------|-----------|------------|--|--|--|--|
| Sect                                                | ion/Location of Lab :                               | Date       | e of Sampli | ng :      |            |  |  |  |  |
| Loca                                                | ation/Chainage :                                    | Sou        | rce of Mate | erial :   |            |  |  |  |  |
| Date                                                | e of Testing                                        | Sam        | ple Code/I  | No :      |            |  |  |  |  |
| S.<br>No.                                           | Description                                         | Trial 1    | Trial 2     | Trial 3   | Average    |  |  |  |  |
| 1                                                   | Wt. of Density Bottle with Lid (W <sub>1</sub> )    |            |             |           |            |  |  |  |  |
| 2                                                   | Wt. Density Bottle + soil (W <sub>2</sub> )         |            |             |           |            |  |  |  |  |
| 3                                                   | Wt. Density Bottle + Soil + Water (W <sub>3</sub> ) |            |             |           |            |  |  |  |  |
| 4                                                   | Wt. Density Bottle + Water (W <sub>4</sub> )        |            |             |           |            |  |  |  |  |
| 5 Weight of Soil (W <sub>2</sub> -W <sub>1</sub> )  |                                                     |            |             |           |            |  |  |  |  |
| 6 Specific Gravity (G)= $W_5/(W_4-W_1) - (W_3-W_2)$ |                                                     |            |             |           |            |  |  |  |  |
| Rem                                                 | arks:                                               |            |             |           |            |  |  |  |  |
| Prep                                                | ared by Checked b                                   | v          |             | Δ         | pproved by |  |  |  |  |
|                                                     |                                                     | 3          |             |           |            |  |  |  |  |

| C                                         | OMPACT    | ION | TEST (  | IS:2720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PART-8                 | 5)                        |      |         |
|-------------------------------------------|-----------|-----|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------|------|---------|
| Sampled Location                          |           |     | :       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           |      |         |
| Source of Sample                          |           |     | :       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           |      |         |
| Date of testing                           |           |     | :       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           |      |         |
| Volume of Mould                           |           |     | :       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           |      |         |
| Type of Compaction                        |           |     | :       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           |      |         |
| Serial No.                                |           |     | 1       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                      | 4                         | 5    | 6       |
| Wt. of Mould                              | (g)       |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           |      |         |
| Wt. of Mould + Soil                       | (g)       |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           |      |         |
| Wt. of Soil                               | (g)       |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           |      |         |
| Wet Density                               | (g/cc)    |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           |      |         |
| Container No.                             |           |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           |      |         |
| Wt. of Container                          | (g)       |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           |      |         |
| Wt. of C + Wet Soil                       | (g)       |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           |      |         |
| Wt. of C + Dry Soil                       | (g)       |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           |      |         |
| Wt. of Wet Soil                           | (g)       |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           |      |         |
| Wt. of Dry Soil                           | (g)       |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           |      | ĺ       |
| Wt. of Moisture                           | (g)       |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           |      | İ       |
| Moisture Content                          | (%)       |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           |      |         |
| Dry Density                               | (g/cc)    |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           |      |         |
| Test Results:<br>Maximum dry density (MDD |           |     |         | 2.25<br>() 2.20<br>2.15<br>() 2.07<br>2.00<br>() 2.00<br>() 2.00<br>() 2.00<br>() 1.95<br>1.95<br>1.88<br>A.1.75<br>() 1.75<br>()                         |                           |      |         |
| Optimum moisture content                  | (OMC) % = |     |         | $ \begin{array}{c} \square & 1.83 \\ \searrow & 1.80 \\ \square & \square & 1.75 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) <del>         </del> |                           |      |         |
| Remarks:                                  |           |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5678                   | 9 10 11 12<br>oisture cor |      | 5 17 18 |
|                                           |           |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           |      |         |
| Prepared by                               |           | Che | cked by |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           | Аррі | oved by |
|                                           |           |     | 102     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           |      |         |

| C-7      |
|----------|
| proforma |
| Testing  |
| ö        |
| Category |

|                        |                               |              | CBR TE              | ST RESUL                      | CBR TEST RESULTS (AASHTO T 193) | TO T 193)        |                               |           |                  |
|------------------------|-------------------------------|--------------|---------------------|-------------------------------|---------------------------------|------------------|-------------------------------|-----------|------------------|
| Location of Sample :   | nple :                        |              |                     |                               |                                 | Proving Rin      | Proving Ring Capacity (kN):   |           |                  |
| Type of Test           |                               |              | : Soaked/ Un-soaked | aked                          |                                 |                  | Date of Testing:              |           |                  |
| Mould No               |                               | 10           |                     |                               | 30                              |                  |                               | 65        |                  |
| No of Blows            |                               |              |                     |                               |                                 |                  |                               |           |                  |
| Dry Density (g/<br>cc) |                               |              |                     |                               |                                 |                  |                               |           |                  |
| Penetration<br>(mm)    | Proving Ring<br>Reading (div) | Load<br>(Kg) | CBR Value<br>(%)    | Proving Ring<br>Reading (div) | Load<br>(Kg)                    | CBR Value<br>(%) | Proving Ring<br>Reading (div) | Load (Kg) | CBR Value<br>(%) |
| 00.0                   |                               |              |                     |                               |                                 |                  |                               |           |                  |
| 0.50                   |                               |              |                     |                               |                                 |                  |                               |           |                  |
| 1.00                   |                               |              |                     |                               |                                 |                  |                               |           |                  |
| 1.50                   |                               |              |                     |                               |                                 |                  |                               |           |                  |
| 2.00                   |                               |              |                     |                               |                                 |                  |                               |           |                  |
| 2.50                   |                               |              |                     |                               |                                 |                  |                               |           |                  |
| 3.00                   |                               |              |                     |                               |                                 |                  |                               |           |                  |
| 4.00                   |                               |              |                     |                               |                                 |                  |                               |           |                  |
| 5.00                   |                               |              |                     |                               |                                 |                  |                               |           |                  |
| 7.50                   |                               |              |                     |                               |                                 |                  |                               |           |                  |
| 10.00                  |                               |              |                     |                               |                                 |                  |                               |           |                  |
| 12.50                  |                               |              |                     |                               |                                 |                  |                               |           |                  |
|                        |                               |              |                     |                               |                                 |                  |                               |           |                  |


#### IRC:SP:112-2017



|                      | CB                                  | BRTEST (IS:2  | 720 PA            | RT-16)       |                                  |             |
|----------------------|-------------------------------------|---------------|-------------------|--------------|----------------------------------|-------------|
| Section/Location of  | Lab :                               |               |                   | Surcharge V  | Vt.                              |             |
| Location of Sample   | :                                   |               |                   | O.M.C/N.M.   | C (%)                            | :           |
| Type of Test         | : Un-S                              | Soaked/Soaked |                   | M.D.D/F.D.D  | ) (g/cc)                         | :           |
| Date of Moulding     | :                                   |               |                   | 97% OF M.E   | D.D (g/cc)                       | :           |
| Date of Testing      | :                                   |               |                   | Type of Com  | npaction                         | :           |
| C.B.R. Compaction    | n :-                                |               |                   |              |                                  |             |
| No. of Blows         |                                     |               |                   | 10           | 30                               | 65          |
| Mould No             |                                     |               |                   |              |                                  |             |
| Moisture Determin    | nation                              |               |                   |              |                                  |             |
| Wt. of Mould (g)     |                                     |               |                   |              |                                  |             |
| Wt. of Mould + Soil  | (g)                                 |               |                   |              |                                  |             |
| Wt. of Soil (g)      |                                     |               |                   |              |                                  |             |
| Volume of the moul   | d (cc)                              |               |                   |              |                                  |             |
| Bulk density (g/cc)  |                                     |               |                   |              |                                  |             |
| Container No.        |                                     |               |                   |              |                                  |             |
| Wt. of Container (g) | )                                   |               |                   |              |                                  |             |
| Wt. of C + Wet Soil  | (g)                                 |               |                   |              |                                  |             |
| Wt. of C + Dry Soil  | (g)                                 |               |                   |              |                                  |             |
| Moisture Content (%  | %)                                  |               |                   |              |                                  |             |
| Dry density (g/cc)   |                                     |               |                   |              |                                  |             |
| TEST RESULTS:        |                                     |               |                   | CRI          | R Graph                          |             |
|                      | On Remoulded an<br>oaked/ Soaked Sa |               |                   | 0.0          |                                  |             |
| No of Blows          | Dry density<br>(g/cc)               | CBR (%)       | a                 | 0.0          |                                  |             |
| 10                   | (3.00)                              |               | 40                | 0.0          |                                  |             |
|                      |                                     |               | 0 <sup>2</sup> 20 | 0.0          |                                  |             |
| 30                   |                                     |               |                   | D.0 <b>1</b> |                                  |             |
| 65                   |                                     |               |                   |              | 1.90 2.00 2.2<br>/ density(g/cc) | 10 2.20     |
|                      |                                     |               |                   |              |                                  |             |
| CBR Value @ 97%      | % of MDD =                          |               |                   |              |                                  |             |
| Remarks:             |                                     |               |                   |              |                                  |             |
|                      |                                     |               |                   |              |                                  |             |
|                      |                                     |               |                   |              |                                  |             |
|                      |                                     |               |                   |              |                                  |             |
| Prepared by          |                                     | Checked by    | /                 |              | Α                                | Approved by |
| -1                   |                                     |               | ,                 |              |                                  |             |

|        |                                                          |                                 |                    |                                          |                                     |                                    |                             |                                                                      |                                 |                                          | category c. resuing protonina c-3 |
|--------|----------------------------------------------------------|---------------------------------|--------------------|------------------------------------------|-------------------------------------|------------------------------------|-----------------------------|----------------------------------------------------------------------|---------------------------------|------------------------------------------|-----------------------------------|
|        |                                                          |                                 | ō                  | RECT (                                   | DIRECT SHEAR TEST (IS:2720 PART-13) | EST (IS:27                         | 20 PAR                      | T-13)                                                                |                                 |                                          |                                   |
| Sectio | Section/Lab Location                                     |                                 |                    |                                          |                                     |                                    |                             |                                                                      |                                 |                                          |                                   |
| Sampl  | Sample Location                                          |                                 |                    |                                          |                                     |                                    |                             | Testing Date                                                         | a                               |                                          |                                   |
| Metho  | Method of Test                                           | : U.U Test                      | st                 |                                          |                                     |                                    |                             | Proving Rin                                                          | Proving Ring Constant kg/ div : | <pre><g :<="" div="" pre=""></g></pre>   |                                   |
| Prepa  | Preparation of Test Specimen:                            | <u>pecimen:</u>                 |                    |                                          |                                     |                                    |                             |                                                                      |                                 |                                          |                                   |
| O.M.C  | O.M.C. (%) (from Modified Proctors test)                 | ied Proctors test)              |                    |                                          |                                     | Wt. of wet sam                     | iple Requir                 | Wt. of wet sample Required(grams) $g_{\rm d}  x  90  x  (1 + w/100)$ | 90 x (1+w/10                    | : (0                                     |                                   |
| M.D.D  | M.D.D. (g/cc) (from Modified Proctors test)              | dified Proctors te              | st)                |                                          |                                     | Wt. of Dry Sar                     | id/Soil Requ                | Wt. of Dry Sand/Soil Required in case of U.U. Test (grams)           | U.U. Test (gi                   | rams) :                                  |                                   |
| F.D.D  | F.D.D from core cutter method(g/cc)                      | nethod(g/cc)                    |                    |                                          |                                     | Wt. of Dry Sand/Soil taken (grams) | id/Soil takei               | n (grams)                                                            |                                 |                                          |                                   |
| Requir | Required Max. dry density $g_{ m d}$ (g/cc) (95% of MDD) | sity g <sub>d</sub> (g/cc) (95% | 6 of MDD)          |                                          | -                                   | Volume of Water added (ml)         | er added (r                 | nl)                                                                  |                                 |                                          |                                   |
| Volum  | Volume of the mould (6x6x2.5)                            | x6x2.5)                         |                    | 06 :                                     |                                     | Rate of Strain Applied (mm/minute) | Applied (mr                 | n/minute)                                                            |                                 |                                          |                                   |
| Cross  | Cross sectional Area -A (cm <sup>2</sup> )               | v (cm <sup>2</sup> )            |                    | : 36                                     | Q                                   |                                    |                             |                                                                      |                                 |                                          |                                   |
| Test O | Test Observations:                                       |                                 |                    |                                          |                                     |                                    |                             |                                                                      |                                 |                                          |                                   |
|        |                                                          |                                 |                    |                                          |                                     |                                    |                             |                                                                      |                                 |                                          |                                   |
|        |                                                          |                                 |                    |                                          |                                     |                                    |                             |                                                                      |                                 |                                          |                                   |
| SI.    | Horizontal                                               | Corrected Area                  | Norr               | Normal Stress (kg/cm <sup>2</sup> ) =0.5 | /cm²) =0.5                          | Norm:                              | Normal Stress (kg/cm²) =1.0 | :m²) =1.0                                                            | Norr                            | Normal Stress (kg/cm <sup>2</sup> ) =1.5 | cm²) =1.5                         |
|        | d) cm                                                    |                                 | Shear Lo<br>Provin | Shear Load from<br>Proving Ring          | Shear Stress                        | Shear Load from<br>Proving Ring    | ld from<br>Ring             | Shear Stress                                                         | Shear Lo<br>Provin              | Shear Load from<br>Proving Ring          | Shear Stress                      |
| -      |                                                          |                                 | Divisions          | kg                                       | kg/cm⁴                              | Divisions                          | kg                          | kg/cm⁴                                                               | Divisions                       | kg                                       | kg/cm⁴                            |
| 7      |                                                          |                                 |                    |                                          |                                     |                                    |                             |                                                                      |                                 |                                          |                                   |
| 'n     |                                                          |                                 |                    |                                          |                                     |                                    |                             |                                                                      |                                 |                                          |                                   |
| 4      |                                                          |                                 |                    |                                          |                                     |                                    |                             |                                                                      |                                 |                                          |                                   |
| ъ      |                                                          |                                 |                    |                                          |                                     |                                    |                             |                                                                      |                                 |                                          |                                   |
| 9      |                                                          |                                 |                    |                                          |                                     |                                    |                             |                                                                      |                                 |                                          |                                   |
|        |                                                          |                                 |                    |                                          |                                     |                                    |                             |                                                                      |                                 |                                          |                                   |

# σ ¢ Ĥ C



86.19 cc

#### Category C: Testing proforma C-10

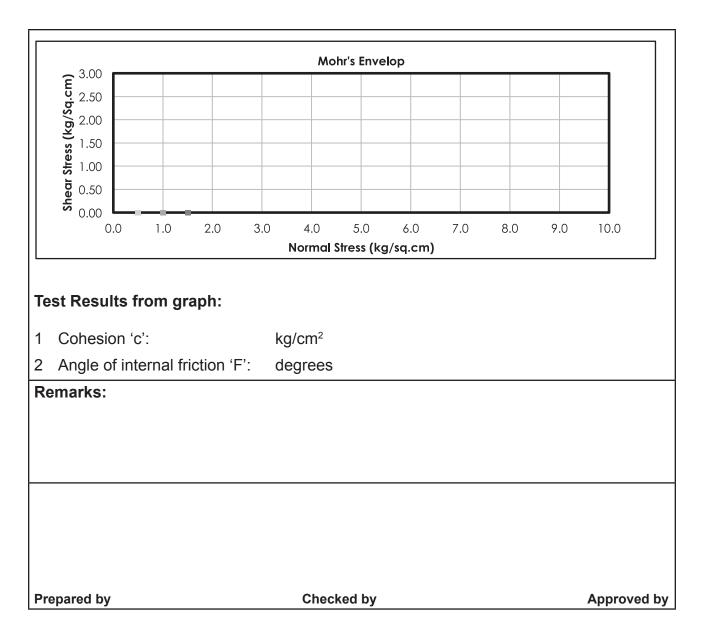
#### TRIAXIAL SHEAR TEST (IS:2720 PART-11, IS:2720 PART-12, ASTM-D 7181)

Section/Lab Location :

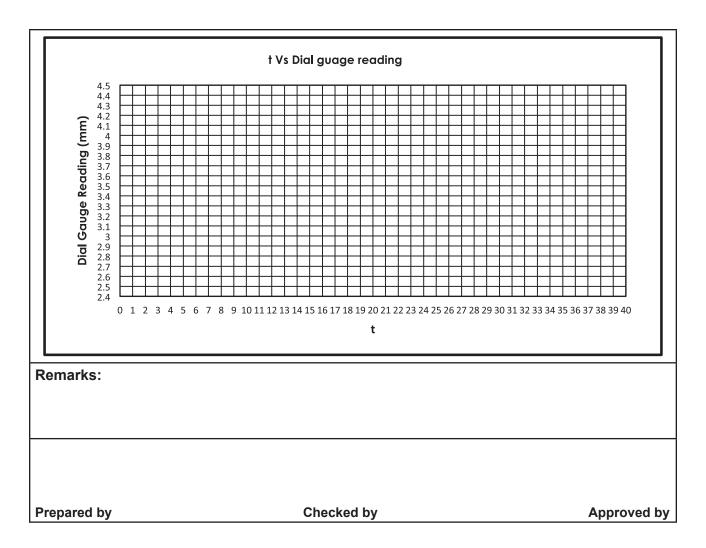
Sample Type & Location:

Type of Test (UU/CD/CU): UU

Depth of Sample:


Date of Testing:

Sample Dia:3.8 cmSample Height (I):7.6 cmProving Ring Constant:kg/div


Volume of mould :

| ċ       | Gauge<br>II) mm                      | Provin<br>(div) @ | ng Ring Re<br>Cell Press | adings<br>ure (s3) | Load in<br>X Pro | n Kg (Prov<br>v. Ring Re | r Const.<br>ading) | Length of        | Corrected                      | Norma<br>kç<br>P | ll Stress (<br>g/cm² @ C<br>ressure (s | σ <sub>1</sub> – s <sub>3</sub> )<br>ell<br>i3) | Axial       |
|---------|--------------------------------------|-------------------|--------------------------|--------------------|------------------|--------------------------|--------------------|------------------|--------------------------------|------------------|----------------------------------------|-------------------------------------------------|-------------|
| SI. No. | Strain Dial Gauge<br>Reading (dl) mm | 0.5               | 1.0                      | 1.5                | 0.5              | 1.0                      | 1.5                | Specimen<br>(cm) | Area<br>(cm²) [A/<br>(1-dl/l)] | 0.5              | 1.0                                    | 1.5                                             | Strain<br>% |
| 1       | 2                                    | 3                 | 4                        | 5                  | 6                | 7                        | 8                  | 9                | 10                             | 11               | 12                                     | 13                                              | 14          |
| 1       | 0.0                                  |                   |                          |                    |                  |                          |                    |                  |                                |                  |                                        |                                                 |             |
| 2       | 0.2                                  |                   |                          |                    |                  |                          |                    |                  |                                |                  |                                        |                                                 |             |
| 3       | 0.4                                  |                   |                          |                    |                  |                          |                    |                  |                                |                  |                                        |                                                 |             |
| 4       | 0.6                                  |                   |                          |                    |                  |                          |                    |                  |                                |                  |                                        |                                                 |             |
| 5       | 0.8                                  |                   |                          |                    |                  |                          |                    |                  |                                |                  |                                        |                                                 |             |
| 6       | 1.0                                  |                   |                          |                    |                  |                          |                    |                  |                                |                  |                                        |                                                 |             |
| 7       | 1.2                                  |                   |                          |                    |                  |                          |                    |                  |                                |                  |                                        |                                                 |             |
| 8       | 1.4                                  |                   |                          |                    |                  |                          |                    |                  |                                |                  |                                        |                                                 |             |
| 9       | 1.6                                  |                   |                          |                    |                  |                          |                    |                  |                                |                  |                                        |                                                 |             |
| 10      | 1.8                                  |                   |                          |                    |                  |                          |                    |                  |                                |                  |                                        |                                                 |             |
| 11      | 2.0                                  |                   |                          |                    |                  |                          |                    |                  |                                |                  |                                        |                                                 |             |
| 12      | 2.2                                  |                   |                          |                    |                  |                          |                    |                  |                                |                  |                                        |                                                 |             |
| 13      | 2.4                                  |                   |                          |                    |                  |                          |                    |                  |                                |                  |                                        |                                                 |             |
| 14      | 2.6                                  |                   |                          |                    |                  |                          |                    |                  |                                |                  |                                        |                                                 |             |
| 15      | 2.8                                  |                   |                          |                    |                  |                          |                    |                  |                                |                  |                                        |                                                 |             |
| 16      | 3.0                                  |                   |                          |                    |                  |                          |                    |                  |                                |                  |                                        |                                                 |             |
| 17      | 3.2                                  |                   |                          |                    |                  |                          |                    |                  |                                |                  |                                        |                                                 |             |
| 18      | 3.4                                  |                   |                          |                    |                  |                          |                    |                  |                                |                  |                                        |                                                 |             |
| 19      | 3.6                                  |                   |                          |                    |                  |                          |                    |                  |                                |                  |                                        |                                                 |             |
| 20      | 3.8                                  |                   |                          |                    |                  |                          |                    |                  |                                |                  |                                        |                                                 |             |

| 1     4.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |      |  | <br> |  |  | <br> |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|--|------|--|--|------|--|
| 23     4.4                                                                                                                                                 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21 | 4.0  |  |      |  |  |      |  |
| 24     4.6     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22 | 4.2  |  |      |  |  |      |  |
| 26     4.8 <td>23</td> <td>4.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23 | 4.4  |  |      |  |  |      |  |
| 26     50     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 | 4.6  |  |      |  |  |      |  |
| 27     52     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25 | 4.8  |  |      |  |  |      |  |
| 28     54     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26 | 5.0  |  |      |  |  |      |  |
| 29     5.6     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27 | 5.2  |  |      |  |  |      |  |
| 3058IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII <t< td=""><td>28</td><td>5.4</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28 | 5.4  |  |      |  |  |      |  |
| 31     6.0     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29 | 5.6  |  |      |  |  |      |  |
| 326.2IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30 | 5.8  |  |      |  |  |      |  |
| 336.4IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31 | 6.0  |  |      |  |  |      |  |
| 346.611111111111356.81111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 <td>32</td> <td>6.2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32 | 6.2  |  |      |  |  |      |  |
| 356.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33 | 6.4  |  |      |  |  |      |  |
| 36       7.0       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34 | 6.6  |  |      |  |  |      |  |
| 37       7.2       Image: state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state sta         | 35 | 6.8  |  |      |  |  |      |  |
| 38 $7.4$ Image: Constraint of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the se                        | 36 | 7.0  |  |      |  |  |      |  |
| 39       7.6 $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ <td< td=""><td>37</td><td>7.2</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37 | 7.2  |  |      |  |  |      |  |
| 40 $7.8$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38 | 7.4  |  |      |  |  |      |  |
| 41 $8.0$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39 | 7.6  |  |      |  |  |      |  |
| 42 $8.2$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $43$ $8.4$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $44$ $8.6$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 | 7.8  |  |      |  |  |      |  |
| 43 $8.4$ Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se                        | 41 | 8.0  |  |      |  |  |      |  |
| 44 $8.6$ Image: Constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of the symbol constraint of th                        | 42 | 8.2  |  |      |  |  |      |  |
| 45 $8.8$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43 | 8.4  |  |      |  |  |      |  |
| 46 $9.0$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44 | 8.6  |  |      |  |  |      |  |
| 47       9.2       Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second          | 45 | 8.8  |  |      |  |  |      |  |
| 48       9.4       Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second          | 46 | 9.0  |  |      |  |  |      |  |
| 49       9.6       Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second          | 47 | 9.2  |  |      |  |  |      |  |
| 50         9.8         Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco | 48 | 9.4  |  |      |  |  |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 49 | 9.6  |  |      |  |  |      |  |
| 51 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50 | 9.8  |  |      |  |  |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 51 | 10.0 |  |      |  |  |      |  |



|                     | CONSOLIDATIO | ON TEST (IS: | 2720 (PAR  | T-15)                      |          |
|---------------------|--------------|--------------|------------|----------------------------|----------|
| Section/Lab Lo      | ocation :    |              | Sample Dia | a :                        |          |
| Sample Type a       | and No :     |              | Height     | :                          |          |
| Sampling Date       | ) :          |              | Sampling D | Date :                     |          |
| Testing Date        | :            |              |            |                            |          |
| Time in Min.<br>(t) | $\sqrt{t}$   | Dial Ga      |            | ngs in (mm) f<br>es kg/cm² | or Diff. |
| 0                   | 0            | 0.5          | 1          | 1.5                        | 2        |
| 0.25                | 0.5          |              |            |                            |          |
| 1                   | 1            |              |            |                            |          |
| 2.25                | 1.5          |              |            |                            |          |
| 4                   | 2            |              |            |                            |          |
| 6.25                | 2.5          |              |            |                            |          |
| 9                   | 3            |              |            |                            |          |
| 12.25               | 3.5          |              |            |                            |          |
| 16                  | 4            |              |            |                            |          |
| 20.25               | 4.5          |              |            |                            |          |
| 25                  | 5            |              |            |                            |          |
| 36                  | 6            |              |            |                            |          |
| 49                  | 7            |              |            |                            |          |
| 64                  | 8            |              |            |                            |          |
| 100                 | 10           |              |            |                            |          |
| 144                 | 12           |              |            |                            |          |
| 196                 | 14           |              |            |                            |          |
| 225                 | 15           |              |            |                            |          |
| 252                 | 15.9         |              |            |                            |          |
| 1440                | 37.9         |              |            |                            |          |



|          | SOIL PER         |          | EST -CONSTAN<br>2720 PART-17) | NT HEAD MET                       | HOD                                   |
|----------|------------------|----------|-------------------------------|-----------------------------------|---------------------------------------|
| Lab lo   | cation           | :        | Sampled                       | Location/Chainage                 | e :                                   |
| Date o   | of Testing       | :        | Weight o                      | f Sample Taken                    | :                                     |
| NMC o    | or OMC           | :        | Depth                         |                                   | :                                     |
| Diame    | eter of mould(D) | :        | FDD or N                      | /IDD                              | :                                     |
| Length   | n of mould (L)   | :        | Dia of St                     | and Pipe (d)                      | :                                     |
| Area c   | of mould(A)      | :        | Area of s                     | stand pipe (a)                    | :                                     |
| S.<br>No | Head (h)         | Time (t) | Quantity of<br>water (ml)     | Avg. Quantity<br>of water<br>(ml) | Coefficient of<br>permeability<br>(K) |
|          |                  |          |                               |                                   |                                       |
|          |                  |          |                               |                                   |                                       |
|          |                  |          |                               |                                   |                                       |
|          |                  |          |                               |                                   |                                       |
|          |                  |          |                               |                                   |                                       |
| Rema     | rks:             |          |                               |                                   |                                       |
|          |                  |          |                               |                                   |                                       |
| Prepar   | ed by            | C        | Checked by                    |                                   | Approved by                           |

|          | SOIL PI              | ERMIABILIT         | Y TEST -VA<br>(IS:2720 PAI | <b>RIABLE HE</b><br>RT-17) | AD METHO        | D                                        |  |  |
|----------|----------------------|--------------------|----------------------------|----------------------------|-----------------|------------------------------------------|--|--|
| Sectio   | n Lab location       | :                  |                            | Sampled Locat              | ion/Chainage    | :                                        |  |  |
| Date c   | of Testing           | :                  |                            | Weight of Samp             | ole Taken       | :                                        |  |  |
| NMC o    | or OMC               | :                  |                            | Depth                      |                 | :                                        |  |  |
| Diame    | ter of mould(D)      | :                  |                            | FDD or MDD                 |                 | :                                        |  |  |
| Length   | n of mould (L)       | :                  |                            | Dia of Stand Pi            | pe (d)          | :                                        |  |  |
| Area c   | of mould(A)          | :                  |                            | Area of stand p            | ipe (a)         | :                                        |  |  |
| S.<br>No | Initial Head<br>(h1) | Final Head<br>(h2) | Initial Time<br>(t1)       | Final Time<br>(t2)         | Net Time<br>(t) | Coefficient<br>of<br>permeability<br>(K) |  |  |
| 1        |                      |                    |                            |                            |                 |                                          |  |  |
| 2        |                      |                    |                            |                            |                 |                                          |  |  |
| 3        |                      |                    |                            |                            |                 |                                          |  |  |
| Calcu    | lation:              |                    |                            |                            |                 |                                          |  |  |
| Rema     | -                    |                    | Checked by                 | ,                          |                 | Approved by                              |  |  |

| SWELL PRESSURE TEST BY CONSTANT VOLUME METHOD<br>(IS:2720 PART-41) |           |                                                         |                             |                |                                |                               |  |  |
|--------------------------------------------------------------------|-----------|---------------------------------------------------------|-----------------------------|----------------|--------------------------------|-------------------------------|--|--|
| Lab lo                                                             | cation    | :                                                       | Sampled Locat               | ion/Chainage   | :                              |                               |  |  |
| Date o                                                             | f Testing | :                                                       |                             | Weight of Sam  | ple Taken                      | :                             |  |  |
|                                                                    |           |                                                         |                             | Proving Ring C | onstant                        | : Kg/Div.                     |  |  |
|                                                                    |           |                                                         |                             | Area of Specim | nen                            | : Sq.cm                       |  |  |
| OMC =                                                              | =         |                                                         | Dry density:                |                |                                |                               |  |  |
| Date                                                               | Time      | Strain dial<br>Gauge<br>Reading<br>before<br>Adjustment | Proving<br>Ring<br>Readings | Load in Kg     | Swell<br>pressure in<br>Kg/cm² | Swell<br>Pressure in<br>kN/m² |  |  |
|                                                                    |           |                                                         |                             |                |                                |                               |  |  |
|                                                                    | Remarks:  |                                                         |                             |                |                                |                               |  |  |
| Prepar                                                             | ed by     |                                                         | Checked b                   | у              |                                | Approved by                   |  |  |

|               | UNCONFINED COMPRESSIVE STRENGTH<br>(IS:2720 PART-10) |                     |                 |              |   |                                   |                                |                 |                          |  |
|---------------|------------------------------------------------------|---------------------|-----------------|--------------|---|-----------------------------------|--------------------------------|-----------------|--------------------------|--|
| Section/      | Section/Location of Lab : Date of Testing :          |                     |                 |              |   |                                   |                                |                 |                          |  |
| Initial He    | eight of Samp                                        | le :                |                 |              | R | ate of Strai                      | n                              | :               |                          |  |
| Initial Dia   | a. of Sample                                         | :                   |                 |              | S | ample Cod                         | е                              | :               |                          |  |
| OMC %         |                                                      | :                   |                 |              | Μ | DD(g/cc)                          |                                | :               |                          |  |
| Sample<br>No. | Vol. of<br>Sample                                    | Weight of<br>Sample | Container<br>No | Contai<br>Wt |   | Wt. of<br>Container<br>+ Wet Soil | Wt.<br>Container<br>+ Dry Soil | M.C %           | g <sub>dry</sub><br>g/cc |  |
| 1             |                                                      |                     |                 |              |   |                                   |                                |                 |                          |  |
| 2             |                                                      |                     |                 |              |   |                                   |                                |                 |                          |  |
| 3             |                                                      |                     |                 |              |   |                                   |                                |                 |                          |  |
|               |                                                      |                     |                 |              |   |                                   |                                |                 |                          |  |
| SI.<br>No.    | Strain Dial<br>Gauge<br>Reading<br>(mm)              |                     | Sample 1        |              |   | al Gauge Rea<br>Sample            |                                | r.)<br>Sample 3 |                          |  |
| 1             | 0.0                                                  |                     |                 |              |   |                                   |                                |                 |                          |  |
| 2             | 0.2                                                  |                     |                 |              |   |                                   |                                |                 |                          |  |
| 3             | 0.4                                                  |                     |                 |              |   |                                   |                                |                 |                          |  |
| 4             | 0.6                                                  |                     |                 |              |   |                                   |                                |                 |                          |  |
| 5             | 0.8                                                  |                     |                 |              |   |                                   |                                |                 |                          |  |
| 6             | 1.0                                                  |                     |                 |              |   |                                   |                                |                 |                          |  |
| 7             | 1.2                                                  |                     |                 |              |   |                                   |                                |                 |                          |  |
| 8             | 1.4                                                  |                     |                 |              |   |                                   |                                |                 |                          |  |
| 9             | 1.6                                                  |                     |                 |              |   |                                   |                                |                 |                          |  |
| 10            | 1.8                                                  |                     |                 |              |   |                                   |                                |                 |                          |  |
| 11            | 2.0                                                  |                     |                 |              |   |                                   |                                |                 |                          |  |
| 12            | 2.2                                                  |                     |                 |              |   |                                   |                                |                 |                          |  |
| 13            | 2.4                                                  |                     |                 |              |   |                                   |                                |                 |                          |  |
| 14            | 2.6                                                  |                     |                 |              |   |                                   |                                |                 |                          |  |
| 15            | 2.8                                                  |                     |                 |              |   |                                   |                                |                 |                          |  |
| 16            | 3.0                                                  |                     |                 |              |   |                                   |                                |                 |                          |  |

| SI. | Strain Dial              | Stress Dial Gauge Readings (div.) |          |          |  |  |  |  |  |
|-----|--------------------------|-----------------------------------|----------|----------|--|--|--|--|--|
| No. | Gauge<br>Reading<br>(mm) | Sample 1                          | Sample 2 | Sample 3 |  |  |  |  |  |
| 17  | 3.2                      |                                   |          |          |  |  |  |  |  |
| 18  | 3.4                      |                                   |          |          |  |  |  |  |  |
| 19  | 3.6                      |                                   |          |          |  |  |  |  |  |
| 20  | 3.8                      |                                   |          |          |  |  |  |  |  |
| 21  | 4.0                      |                                   |          |          |  |  |  |  |  |
| 22  | 4.2                      |                                   |          |          |  |  |  |  |  |
| 23  | 4.4                      |                                   |          |          |  |  |  |  |  |
| 24  | 4.6                      |                                   |          |          |  |  |  |  |  |
| 25  | 4.8                      |                                   |          |          |  |  |  |  |  |
| 26  | 5.0                      |                                   |          |          |  |  |  |  |  |
| 27  | 5.2                      |                                   |          |          |  |  |  |  |  |
| 28  | 5.4                      |                                   |          |          |  |  |  |  |  |
| 29  | 5.6                      |                                   |          |          |  |  |  |  |  |
| 30  | 5.8                      |                                   |          |          |  |  |  |  |  |

Remarks:

Prepared by

Checked by

Approved by

| AGGREGATE IMPACT VALUE<br>IS: 2386 (PART-IV)     |                         |                                       |           |    |           |     |  |  |  |
|--------------------------------------------------|-------------------------|---------------------------------------|-----------|----|-----------|-----|--|--|--|
| Location/Secion of Lab : Source of Material :    |                         |                                       |           |    |           |     |  |  |  |
| Sample Location                                  | :                       | Date of                               | f testing |    | :         |     |  |  |  |
| Purpose of Use                                   | :                       |                                       |           |    |           |     |  |  |  |
| Sample size                                      | : 12.5 mm Passin        | g & 10 mm retaine                     | əd        |    |           |     |  |  |  |
| Deserin                                          | tion                    | Symbol                                | unit      | De | terminati | ons |  |  |  |
| Descrip                                          | Symbol                  | unit                                  | 1         | 2  | 3         |     |  |  |  |
| Weight of aggregate(dr<br>IS Sieve12.5 mm & reta | W <sub>1</sub>          | g                                     |           |    |           |     |  |  |  |
| Weight of fraction reta<br>IS sieve              | ained on 2.36 mm        | $W_2$                                 | g         |    |           |     |  |  |  |
| Weight of fraction pass<br>2.36 mm IS sieve      | $W_{3} = W_{1} - W_{2}$ | g                                     |           |    |           |     |  |  |  |
| $W_4 = W_1 - (W_2 + W_3)$                        |                         | $W_4$                                 | %         |    |           |     |  |  |  |
| (if $W_4$ >1g, discard and                       |                         |                                       |           |    |           |     |  |  |  |
| Aggregate Impact value                           |                         | (W <sub>3</sub> /W <sub>1</sub> )*100 | %         |    |           |     |  |  |  |
|                                                  | pact value              |                                       | 1 1       |    |           |     |  |  |  |

| Remarks:    |            |             |
|-------------|------------|-------------|
|             |            |             |
|             |            |             |
|             |            |             |
|             |            |             |
| Prenared by | Checked by | Annroved by |
| Prepared by | Checked by | Approved by |

|                                                                    | FLAKINESS INDEX AND ELONGATION INDEX<br>(IS:2386 PART-I) |                                        |                                                                 |                                                                  |                                                                                                      |  |  |  |
|--------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|
| Section/Lo                                                         | ocation of I                                             | _ab:                                   | Purpose                                                         | of Use                                                           | :                                                                                                    |  |  |  |
| Sampling                                                           | location                                                 | :                                      | Date of S                                                       | Sampling                                                         | :                                                                                                    |  |  |  |
| Source of                                                          | Materials                                                | :                                      | Date of 7                                                       | Testing                                                          | :                                                                                                    |  |  |  |
| Type of M                                                          | aterial                                                  | :                                      |                                                                 |                                                                  |                                                                                                      |  |  |  |
| IS:Sieve Size mm                                                   |                                                          | Total Weight of<br>Aggregate taken (g) | Weight of<br>Aggregate<br>retained on<br>Thickness gauge<br>(g) | Weight of<br>Aggregate passing<br>through Thickness<br>gauge (g) | Weight of<br>Aggregate<br>retained on<br>length gauge<br>after retained on<br>Thickness gauge<br>(g) |  |  |  |
| Passing                                                            | Retained                                                 |                                        |                                                                 |                                                                  |                                                                                                      |  |  |  |
| 63                                                                 | 50                                                       |                                        |                                                                 |                                                                  |                                                                                                      |  |  |  |
| 50                                                                 | 40                                                       |                                        |                                                                 |                                                                  |                                                                                                      |  |  |  |
| 40                                                                 | 31.5                                                     |                                        |                                                                 |                                                                  |                                                                                                      |  |  |  |
| 31.5                                                               | 25                                                       |                                        |                                                                 |                                                                  |                                                                                                      |  |  |  |
| 25                                                                 | 20                                                       |                                        |                                                                 |                                                                  |                                                                                                      |  |  |  |
| 20                                                                 | 16                                                       |                                        |                                                                 |                                                                  |                                                                                                      |  |  |  |
| 16                                                                 | 12.5                                                     |                                        |                                                                 |                                                                  |                                                                                                      |  |  |  |
| 12.5                                                               | 10                                                       |                                        |                                                                 |                                                                  |                                                                                                      |  |  |  |
| 10                                                                 | 6.3                                                      |                                        |                                                                 |                                                                  |                                                                                                      |  |  |  |
| Total                                                              | (gm)                                                     | A=                                     | B=                                                              | C=                                                               | D=                                                                                                   |  |  |  |
|                                                                    | Flakines                                                 | ss Index (C/A) =                       | E                                                               | Elongation Index (D/B                                            | ) =                                                                                                  |  |  |  |
| Combined Flakiness and Elongation Indices = ((C/A) + D/B)) X 100 = |                                                          |                                        |                                                                 |                                                                  |                                                                                                      |  |  |  |
| Remarks:                                                           |                                                          |                                        |                                                                 |                                                                  |                                                                                                      |  |  |  |
| Prepared b                                                         | у                                                        | Ch                                     | ecked by                                                        |                                                                  | Approved by                                                                                          |  |  |  |

|               | INDIVIDUAL GRADATION OF COARSE AGGREGATE<br>(IS:383) |                          |                            |         |          |            |           |         |  |
|---------------|------------------------------------------------------|--------------------------|----------------------------|---------|----------|------------|-----------|---------|--|
| Location of l | Location of Lab : Date of Sampling :                 |                          |                            |         |          |            |           |         |  |
| Location/Ch   | ainage :                                             |                          |                            |         | Source   | of Materi  | al :      |         |  |
| Date of Test  | ing :                                                |                          |                            |         | Total wt | of samp    | ole (g) : |         |  |
| Sieve         | Wt.                                                  | Cumulative               | %                          | %       | S        | pecified % | of passin | g       |  |
| size(mm)      | Retained<br>(g)                                      | wt.<br>Retained<br>= (g) | Cumulative<br>wt. Retained | passing | 40mm     | 20mm       | 12.5mm    | 10mm    |  |
| 63mm          |                                                      |                          |                            |         | 100      | -          | -         | -       |  |
| 40mm          |                                                      |                          |                            |         | 85-100   | 100        | -         | -       |  |
| 20mm          |                                                      |                          |                            |         | 0-20     | 85-100     | -         | -       |  |
| 16mm          |                                                      |                          |                            |         | -        | -          | 100       | -       |  |
| 12.5mm        |                                                      |                          |                            |         | -        | -          | 85-100    | 100     |  |
| 10.0mm        |                                                      |                          |                            |         | 0-5      | 0-20       | 0-45      | 85-100  |  |
| 4.75mm        |                                                      |                          |                            |         | -        | 0-5        | 0-10      | 0-20    |  |
| 2.36mm        |                                                      |                          |                            |         | -        | -          | -         | 0-5     |  |
| Remarks:      |                                                      |                          |                            |         |          |            |           |         |  |
| Prepared by   |                                                      |                          | Checked k                  | у       |          |            | Appr      | oved by |  |

| SIEVE ANALYSIS OF FINE AGGREGATE |                                          |                                                                              |                       |                      |             |              |               |            |  |  |
|----------------------------------|------------------------------------------|------------------------------------------------------------------------------|-----------------------|----------------------|-------------|--------------|---------------|------------|--|--|
| Location of                      | Location of Lab : Date of Sampling :     |                                                                              |                       |                      |             |              |               |            |  |  |
| Location/Ch                      | Location/Chainage : Source of Material : |                                                                              |                       |                      |             |              |               |            |  |  |
| Date of Tes                      | ting                                     | :                                                                            |                       |                      | Г           | otal wt. of  | sample (g     | ):         |  |  |
| IS Sieve Size                    |                                          | /t; of                                                                       | Cum.Wt. of            | Cum. % of            | Per         | centage Weig | ght of Passin | g          |  |  |
| (mm)                             | Re                                       | aterial<br>tained                                                            | Material Ret.<br>(gm) | Material<br>Retained | As per Test | Specific     | ation Limits  | (1000-2)   |  |  |
|                                  |                                          | gm)                                                                          |                       |                      |             | ZONE-I       | ZONE-II       | ZONE-III   |  |  |
| 10.00                            |                                          |                                                                              |                       |                      |             | 100          | 100           | 100        |  |  |
| 4.75                             |                                          |                                                                              |                       |                      |             | 90-100       | 90-100        | 90-100     |  |  |
| 2.36                             |                                          |                                                                              |                       |                      |             | 60-95        | 75-100        | 85-100     |  |  |
| 1.18                             |                                          |                                                                              |                       |                      |             | 30-70        | 55-90         | 75-100     |  |  |
| 0.60                             |                                          |                                                                              |                       |                      |             | 15-34        | 35-59         | 60-79      |  |  |
| 0.30                             |                                          |                                                                              |                       |                      |             | 5-20         | 8-30          | 12-40      |  |  |
| 0.15                             |                                          |                                                                              |                       |                      |             | 0-10         | 0-10          | 0-10       |  |  |
|                                  | FINENESS MODULUS                         |                                                                              |                       |                      |             |              |               |            |  |  |
| Remarks:                         | % of passing                             | 110<br>100<br>90<br>80<br>70<br>60<br>50<br>40<br>30<br>20<br>10<br>0<br>0.1 |                       | LOWER<br>MIDDLE      |             | PER<br>TUAL  | 10            |            |  |  |
| Prepared by                      |                                          |                                                                              |                       | Checked by           | 1           |              | Aŗ            | pproved by |  |  |

|         | DELETERIOUS MA                                         |       | S AND ORG/<br>86 PART-II) | ANIC IMPURI      | TIES        |
|---------|--------------------------------------------------------|-------|---------------------------|------------------|-------------|
| Section | Location of Lab                                        | :     | F                         | Purpose of Use   | :           |
| Locatio | n/Chainage                                             | :     | Γ                         | Date of Sampling | :           |
| Source  | of material                                            | :     | Γ                         | Date of testing  | :           |
| Descrip | tion of material                                       | :     |                           |                  |             |
|         |                                                        |       |                           |                  |             |
| S. NO   | DETERMINATION I                                        | NO.   | 1                         | 2                | AVERAGE     |
|         |                                                        |       |                           |                  |             |
| 1       | Total weight of sample (W                              | ) g   |                           |                  |             |
| 2       | Total weight of sample after removing clay lumps (R) g |       |                           |                  |             |
| 3       | Percentage of clay (%);<br>(L = (W – R)/(W) x 100)     |       |                           |                  |             |
| Remarks | :                                                      |       |                           |                  |             |
| Prepare | d by                                                   | Checl | ked by                    |                  | Approved by |

|           | POINT LOAD TEST (IS:8764)                                                                       |         |              |          |            |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------|---------|--------------|----------|------------|--|--|--|--|
| Section/  | Location of Laboratory :                                                                        |         |              |          |            |  |  |  |  |
| Location  | :                                                                                               |         | Bore Hole N  | o :      |            |  |  |  |  |
| Sample    | No :                                                                                            |         | Depth        | :        |            |  |  |  |  |
| Date of S | Sampling :                                                                                      |         | Date of Test | ing :    |            |  |  |  |  |
| SI. No.   | Description                                                                                     | Trial 1 | Trial 2      | Trial 3  | Trial 4    |  |  |  |  |
| 1         | Ave. Height of the specimen (H) mm                                                              |         |              |          |            |  |  |  |  |
| 2         | Ave. Dia. of Specimen (D)mm                                                                     |         |              |          |            |  |  |  |  |
| 3         | Area of the specimen (A) mm <sup>2</sup>                                                        |         |              |          |            |  |  |  |  |
| 4         | Failure Load (P) kN                                                                             |         |              |          |            |  |  |  |  |
| 5         | Standard Core Diameter (mm)                                                                     |         |              |          |            |  |  |  |  |
| 6         | Point Load Strength Index kg/cm <sup>2</sup><br>I <sub>s</sub> = P/(sqrt(D <sup>1.5</sup> X D*) |         |              |          |            |  |  |  |  |
| 7         | Uniaxial Compressive Strength t/m <sup>2</sup><br>$Q_c = 22XI_s(50)$                            |         |              |          |            |  |  |  |  |
| 8         | Average Value neglecting Highest and Lowest values                                              |         |              |          |            |  |  |  |  |
| Remarks:  | <u> </u>                                                                                        |         |              | <u>.</u> | <u>.</u>   |  |  |  |  |
| Preparec  | by Checked b                                                                                    | y       |              | Α        | pproved by |  |  |  |  |

|                       | SOUNDNESS TEST BY USING SODIUM SULPHATE<br>(IS:2386 (PART-V) |                                               |                                                                                                                |                                                     |                                                                                      |                                                       |  |  |  |
|-----------------------|--------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|
| Location of L         | ab                                                           | :                                             | Date of Sampling :                                                                                             |                                                     |                                                                                      |                                                       |  |  |  |
| Location/Cha          | inage                                                        | :                                             |                                                                                                                | Source                                              | of Material                                                                          | :                                                     |  |  |  |
| Type of mate          | rial                                                         | :                                             |                                                                                                                | Tested                                              | by                                                                                   | :                                                     |  |  |  |
| Date of Testir        | ng                                                           | :                                             |                                                                                                                | Propos                                              | ede Use                                                                              | :                                                     |  |  |  |
|                       | COARSE AGGREGATE                                             |                                               |                                                                                                                |                                                     |                                                                                      |                                                       |  |  |  |
| Passing<br>sieve size | Retained<br>sieve<br>size                                    | Grading<br>of<br>Orignal<br>Sample<br>Percent | Weight<br>of Test<br>Fraction<br>Before Test<br>(gm)                                                           | Weight<br>of Test<br>Fraction<br>After Test<br>(gm) | Percentage<br>Passing<br>Finer Sieve<br>After Test<br>(Actual<br>Percentage<br>Loss) | Weighted<br>Average<br>(Corrected<br>Percent<br>Loss) |  |  |  |
| 63mm                  | 40mm                                                         |                                               |                                                                                                                |                                                     |                                                                                      |                                                       |  |  |  |
| 40mm                  | 20mm                                                         |                                               |                                                                                                                |                                                     |                                                                                      |                                                       |  |  |  |
| 20mm                  | 10mm                                                         |                                               |                                                                                                                |                                                     |                                                                                      |                                                       |  |  |  |
| 10mm                  | 4.75mm                                                       |                                               |                                                                                                                |                                                     |                                                                                      |                                                       |  |  |  |
| Total                 |                                                              |                                               |                                                                                                                |                                                     |                                                                                      |                                                       |  |  |  |
| Passing<br>sieve size | Retained<br>sieve<br>size                                    | Grading<br>of<br>Orignal<br>Sample<br>Percent | fof Testof TestPassingAveragenalFractionFractionFiner Sieve(CorrectedpleBefore TestAfter TestAfter TestPercent |                                                     |                                                                                      |                                                       |  |  |  |

|             |        | Sample<br>Percent | Before Test<br>(gm) | After Test<br>(gm) | After Test<br>(Actual<br>Percentage<br>Loss) | Percent<br>Loss) |
|-------------|--------|-------------------|---------------------|--------------------|----------------------------------------------|------------------|
| 600 mic     | 300mic |                   |                     |                    |                                              |                  |
| 1.18 mm     | 600mic |                   |                     |                    |                                              |                  |
| 2.36mm      | 1.18mm |                   |                     |                    |                                              |                  |
| 4.75mm      | 2.36mm |                   |                     |                    |                                              |                  |
| 10mm        | 4.75mm |                   |                     |                    |                                              |                  |
| Total       |        |                   |                     |                    |                                              |                  |
| Remarks:    |        |                   |                     |                    |                                              |                  |
| Prepared by |        | (                 | Checked by          |                    |                                              | Approved by      |

| SPECIFIC GRAVITY & WATER ABSORPTION OF FINE AGGREGATES<br>IS:2386 (PART-III) |                                   |        |            |   |            |  |
|------------------------------------------------------------------------------|-----------------------------------|--------|------------|---|------------|--|
| Section/Location of Lab                                                      | :                                 |        |            |   |            |  |
| Source                                                                       | :                                 | Date o | f sampling | : |            |  |
| Location                                                                     | :                                 | Date o | of testing | : |            |  |
| Proposed Use                                                                 | :                                 |        |            |   |            |  |
| ВҮ                                                                           | PYCNOMETE                         |        | )          |   |            |  |
| Description                                                                  | า                                 |        | 1          | 2 | 3          |  |
| Pycnometer Bottle Number                                                     |                                   |        |            |   |            |  |
| Weight of SSD Sample $(W_1)$ (g)                                             |                                   |        |            |   |            |  |
| Weight of Pycnometer bottle + water                                          | + Sample(W <sub>2</sub> )         | (g)    |            |   |            |  |
| Weight of Pycnometer bottle + water                                          | (W <sub>3</sub> ) (g)             |        |            |   |            |  |
| Weight of oven dry sample ( $W_4$ ) (g)                                      |                                   |        |            |   |            |  |
| Bulk Specific Gravity = $W_4/(W_1 - (W_2 - W_2))$                            | – W <sub>3</sub> ))               |        |            |   |            |  |
| Apparent Specific Gravity = $W_4/(W_4-)$                                     | (W <sub>2</sub> –W <sub>3</sub> ) |        |            |   |            |  |
| Water Absorption = $(W_1 - W_4) / W_4 * 1$                                   | 00                                |        |            |   |            |  |
| Average Specific Gravity                                                     |                                   |        |            |   |            |  |
| Average Water absorption (%)                                                 |                                   |        |            |   |            |  |
| Remarks:                                                                     |                                   |        |            |   |            |  |
| Prepared by                                                                  | Checked b                         | у      |            | A | pproved by |  |

| SPECIFIC GRAVITY & WATER ABSORPTION OF     |                            |             |  |  |  |  |
|--------------------------------------------|----------------------------|-------------|--|--|--|--|
| COARSE AGGREGATES                          |                            |             |  |  |  |  |
|                                            | :2386 (PART-III)           |             |  |  |  |  |
| PROJECT                                    | :                          |             |  |  |  |  |
| Type of Sample                             | : (Rock sample/ Aggregate) |             |  |  |  |  |
| Sample Location                            | :                          |             |  |  |  |  |
| Co-ordinate/Chainage                       | :                          |             |  |  |  |  |
| Date of Sampling                           | :                          |             |  |  |  |  |
| Date of Testing                            | :                          |             |  |  |  |  |
| Determination                              |                            |             |  |  |  |  |
| Before Soaking                             |                            |             |  |  |  |  |
| Weight of sample in air (W <sub>1</sub> )g |                            |             |  |  |  |  |
| Weight of sample in water $(W_2)g$         |                            |             |  |  |  |  |
| Volume of Specimen (V = $W_2 - W_1$ ) cc   |                            |             |  |  |  |  |
| After Soaking                              |                            |             |  |  |  |  |
| Weight of SSD sample in water $(W_3)g$     |                            |             |  |  |  |  |
| S.S.D weight of sample $(W_4)$             |                            |             |  |  |  |  |
| Volume of specimen $V=(W_4-W_3)$ cc        |                            |             |  |  |  |  |
| Bulk Density of sample                     |                            |             |  |  |  |  |
| Weight of Oven dried Sample ( $W_5$ )g     |                            |             |  |  |  |  |
| Moisture Content (w)%                      |                            |             |  |  |  |  |
| Dry density γd= γb/1+(w/100)               |                            |             |  |  |  |  |
| Specific Gravity of sample (G)             |                            |             |  |  |  |  |
| Apparent Specific gravity(G <sub>m</sub> ) |                            |             |  |  |  |  |
| Water Absorption                           |                            |             |  |  |  |  |
| Void ratio (e)                             |                            |             |  |  |  |  |
| Porosity = (e/1+e)*100                     |                            |             |  |  |  |  |
| Remarks:                                   | ·                          | ·           |  |  |  |  |
|                                            |                            |             |  |  |  |  |
|                                            |                            |             |  |  |  |  |
|                                            |                            |             |  |  |  |  |
|                                            |                            |             |  |  |  |  |
|                                            |                            |             |  |  |  |  |
|                                            |                            |             |  |  |  |  |
| Prepared by                                | Checked by                 | Approved by |  |  |  |  |

| 10% FINES VALUE TEST<br>(BS: 812 PART-III)                                                        |                    |          |             |  |  |  |
|---------------------------------------------------------------------------------------------------|--------------------|----------|-------------|--|--|--|
| Location of Lab : [                                                                               | Date of sampling : |          |             |  |  |  |
| Location/Chainage :                                                                               | Source of Mat      | erial    | :           |  |  |  |
| Date of Testing :                                                                                 | Proposed Use       | ;        | :           |  |  |  |
| Proposed Use :                                                                                    |                    |          |             |  |  |  |
| Determination                                                                                     |                    | Trial No |             |  |  |  |
|                                                                                                   | 1                  | 2        | 3           |  |  |  |
| Weight of Saturated surface dry Sample passing IS Sieve 14 mm and retained on IS Sieve 10mm (A) g |                    |          |             |  |  |  |
| Oven dried weight of fraction retained on IS Sieve 2.36 mm after the test (g)                     |                    |          |             |  |  |  |
| Oven dried weight of fraction passing IS Sieve 2.36 mm after the test (B) g                       |                    |          |             |  |  |  |
| The Maximum force 'X' (Tonne)                                                                     |                    |          |             |  |  |  |
| Y = % of material passing IS Sieve 2.36 mm at the maximum force (B/A X100)                        |                    |          |             |  |  |  |
| 10 % Fines Value (TFV) = 14X/ (Y+4) (kN)                                                          |                    |          |             |  |  |  |
| Average Value of 10 % Fines Value (kN)                                                            |                    |          |             |  |  |  |
| Remarks:                                                                                          |                    |          |             |  |  |  |
| Prepared by Checked by                                                                            |                    |          | Approved by |  |  |  |

| UNIAXIAL COMPRESSION STRENGTH TEST<br>(IS:9143-1979) |                                                           |                           |                  |                          |                                    |  |  |
|------------------------------------------------------|-----------------------------------------------------------|---------------------------|------------------|--------------------------|------------------------------------|--|--|
| Section Locatio                                      | n of Lab                                                  | :                         |                  |                          |                                    |  |  |
| Location                                             |                                                           | :                         |                  |                          |                                    |  |  |
| BH No.                                               |                                                           | :                         | De               | epth(m)                  | :                                  |  |  |
|                                                      |                                                           |                           | Pie              | ece No                   | :                                  |  |  |
| Sample<br>No:                                        | Dia. of sample<br>(D) m                                   | Height of<br>Sample (H) m | Area (m²)        | Load at<br>Failure (kN)  | Compression<br>Strength<br>(kN/m²) |  |  |
| 1                                                    |                                                           |                           |                  |                          |                                    |  |  |
| 2                                                    |                                                           |                           |                  |                          |                                    |  |  |
| 3                                                    |                                                           |                           |                  |                          |                                    |  |  |
|                                                      |                                                           |                           | Compre           | ssion strength<br>(t/m²) |                                    |  |  |
|                                                      |                                                           | Young's Modulu            | s (IS:7317-1974) |                          |                                    |  |  |
| Dia. of Sample (                                     | Dia. of Sample (m) : Height of<br>sample(m) : Area (m²) : |                           |                  |                          |                                    |  |  |
| S. No.                                               | Dial                                                      | Deformation               | Strain           | Load Dial                | Stress                             |  |  |
|                                                      | Gauge                                                     | ( <b>∆</b> I)             | (∆I/(I*1000)     | Reading (kN)             | (kN/m²)                            |  |  |
|                                                      | reading                                                   | (mm)                      |                  |                          |                                    |  |  |
| 0                                                    | 0                                                         |                           |                  |                          |                                    |  |  |
| 1                                                    | 10                                                        |                           |                  |                          |                                    |  |  |
| 2                                                    | 20                                                        |                           |                  |                          |                                    |  |  |
| 3                                                    | 30                                                        |                           |                  |                          |                                    |  |  |
| 4                                                    | 40                                                        |                           |                  |                          |                                    |  |  |
| 5                                                    | 50                                                        |                           |                  |                          |                                    |  |  |
| 6                                                    | 60                                                        |                           |                  |                          |                                    |  |  |
| 7                                                    | 70                                                        |                           |                  |                          |                                    |  |  |
| 8                                                    | 80                                                        |                           |                  |                          |                                    |  |  |
| 9                                                    | 90                                                        |                           |                  |                          |                                    |  |  |
| 10                                                   | 100                                                       |                           |                  |                          |                                    |  |  |
| 11                                                   | 110                                                       |                           |                  |                          |                                    |  |  |
| Remarks:                                             |                                                           |                           |                  |                          |                                    |  |  |
| Prepared by                                          |                                                           | Checked                   | l by             |                          | Approved by                        |  |  |

| Section/Location of Lab :                             |                                             |  |  |  |  |  |  |
|-------------------------------------------------------|---------------------------------------------|--|--|--|--|--|--|
| Description of cement : Date of Sampling              | :                                           |  |  |  |  |  |  |
| Week No. : Date of testing                            | :                                           |  |  |  |  |  |  |
| OBSERVATIONS:                                         |                                             |  |  |  |  |  |  |
| S. No. DESCRIPTION 1 2 3 AVERAGE (%)                  | E SPECIFIED<br>LIMITS AS<br>PER<br>IS: 8112 |  |  |  |  |  |  |
| 1     Wt. of Sample taken (W <sub>1</sub> ) gm        |                                             |  |  |  |  |  |  |
| 2 Wt. of residue on 90µ sieve (W <sub>2</sub> ) gm    | Max. 10%                                    |  |  |  |  |  |  |
| 3 Fineness (%) (W <sub>2</sub> /W <sub>1</sub> ) X100 |                                             |  |  |  |  |  |  |
| Remarks:                                              |                                             |  |  |  |  |  |  |
|                                                       |                                             |  |  |  |  |  |  |
| Prepared by Checked by                                | Approved by                                 |  |  |  |  |  |  |

| NORMAL CONSISTENCY OF CEMENT<br>(IS:4031 PART-V) |                                  |                              |                                                        |                                                          |                              |  |  |
|--------------------------------------------------|----------------------------------|------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------------|--|--|
| Sectior                                          | n/Location of Lab                | :                            |                                                        |                                                          |                              |  |  |
| Descrip                                          | otion of cement                  | t : Date of Sampling :       |                                                        |                                                          |                              |  |  |
| Week I                                           | No.                              | :                            | Date                                                   | of testing                                               | :                            |  |  |
| Tempe                                            | rature (°C)                      | : 28°0                       | C                                                      |                                                          |                              |  |  |
| NORM                                             | AL CONSISTENC                    | <u>Y</u>                     |                                                        |                                                          |                              |  |  |
| SI.<br>No.                                       | Weight of<br>Cement taken<br>(g) | Weight of<br>water taken (g) | Plunger<br>penetration<br>from bottom of<br>Mould (mm) | Time taken<br>from adding<br>of water to<br>Cement (min) | Consistency of<br>Cement (%) |  |  |
| 1                                                |                                  |                              |                                                        |                                                          |                              |  |  |
| 2                                                |                                  |                              |                                                        |                                                          |                              |  |  |
| 3                                                |                                  |                              |                                                        |                                                          |                              |  |  |
| 4                                                |                                  |                              |                                                        |                                                          |                              |  |  |
| 5                                                |                                  |                              |                                                        |                                                          |                              |  |  |
| Remarks:                                         |                                  |                              |                                                        |                                                          |                              |  |  |
| Prepare                                          | ed by                            | Ch                           | ecked by                                               |                                                          | Approved by                  |  |  |

| INITIAL AND FINAL SETTING TIME OF CEMENT<br>(IS:4031 PART-V) |                                    |                               |                                  |     |           |                           |                               |                                |
|--------------------------------------------------------------|------------------------------------|-------------------------------|----------------------------------|-----|-----------|---------------------------|-------------------------------|--------------------------------|
| Loca                                                         | tion of Lab                        | :                             |                                  |     |           |                           |                               |                                |
| Desc                                                         | ription of ceme                    | ent :                         |                                  |     |           |                           |                               |                                |
| Week No. : Date of Sampling :                                |                                    |                               |                                  |     |           |                           |                               |                                |
| Temp                                                         | perature (°C) :                    | 28°C                          |                                  |     | C         | Date of testing           | ı :                           |                                |
| A) IN                                                        | IITIAL SETTIN                      | <b>IG TIME</b>                |                                  |     |           |                           |                               |                                |
| Weig                                                         | ht of Cement t                     | aken (g) :                    |                                  |     |           |                           |                               |                                |
| Weig                                                         | ht of water add                    | ded = 0.85 of N               | Iormal Consist                   | enc | y:        |                           |                               |                                |
| A) IN                                                        | ITIAL SETTIN                       | <b>G TIME</b>                 |                                  |     | E         | B) FINAL SET              | TING TIME                     |                                |
| S.<br>No.                                                    | Time of<br>water added             | Needle<br>penetration<br>(mm) | Initial<br>Setting Time<br>(min) |     | S.<br>No. | Time of<br>water<br>added | Needle<br>penetration<br>(mm) | Final<br>Setting<br>Time (min) |
| 1                                                            |                                    |                               |                                  |     | 1         |                           |                               |                                |
| 2                                                            |                                    |                               |                                  |     | 2         |                           |                               |                                |
| 3                                                            |                                    |                               |                                  |     | 3         |                           |                               |                                |
| 4                                                            |                                    |                               |                                  |     | 4         |                           |                               |                                |
| 5                                                            |                                    |                               |                                  |     | 5         |                           |                               |                                |
| Initia                                                       | I Setting time:                    |                               |                                  |     | Final S   | etting time:              |                               |                                |
|                                                              | ptance Criteria                    |                               |                                  |     |           |                           |                               |                                |
|                                                              | Setting Time                       | : ≥ 30min                     |                                  |     |           |                           |                               |                                |
| Final                                                        | Setting Time                       | : ≤ 600min                    |                                  |     |           |                           |                               |                                |
| Rema                                                         | rks:                               |                               |                                  |     |           |                           |                               |                                |
|                                                              |                                    |                               |                                  |     |           |                           |                               |                                |
|                                                              |                                    |                               |                                  |     |           |                           |                               |                                |
|                                                              |                                    |                               |                                  |     |           |                           |                               |                                |
|                                                              |                                    |                               |                                  |     |           |                           |                               |                                |
|                                                              |                                    |                               |                                  |     |           |                           |                               |                                |
| Prepa                                                        | Prepared by Checked by Approved by |                               |                                  |     |           |                           |                               |                                |

| SOUNDNESS OF CEMENT BY LE-CHATELIER METHOD<br>(IS:4031 PART-III)                                 |                                                             |                                                                                                     |                                                                                                            |                                                               |  |  |  |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|--|
| Sectio                                                                                           | on/ Location of Lab                                         | :                                                                                                   |                                                                                                            |                                                               |  |  |  |
| Descr                                                                                            | iption of cement                                            | :                                                                                                   | Sample Cod                                                                                                 | e :                                                           |  |  |  |
| Week                                                                                             | No.                                                         | :                                                                                                   | Date of testi                                                                                              | ng :                                                          |  |  |  |
| Temp                                                                                             | erature (°C)                                                | : 28ºC                                                                                              | Date of testi                                                                                              | ng :                                                          |  |  |  |
| Quantity of Water AddedQuantity of Cement(0.78*Standard Consistency):Added:SOUNDNESS OF CEMENT:: |                                                             |                                                                                                     |                                                                                                            |                                                               |  |  |  |
| S.<br>No.                                                                                        | Initial Distance<br>Between Indicators<br>(L <sub>1</sub> ) | Distance Between<br>Indicators after 24<br>hrs of submersion in<br>water at 27+2°C(L <sub>2</sub> ) | Distance Between<br>Indicators after<br>submersion in boiling<br>water for three<br>hours(L <sub>3</sub> ) | Soundness of cement<br>(L <sub>2</sub> -L <sub>3</sub> )-(mm) |  |  |  |
| 1                                                                                                |                                                             |                                                                                                     |                                                                                                            |                                                               |  |  |  |
| 2                                                                                                |                                                             |                                                                                                     |                                                                                                            |                                                               |  |  |  |
| 3                                                                                                |                                                             |                                                                                                     |                                                                                                            |                                                               |  |  |  |
| 4                                                                                                |                                                             |                                                                                                     |                                                                                                            |                                                               |  |  |  |
| 5                                                                                                |                                                             |                                                                                                     |                                                                                                            |                                                               |  |  |  |
| Remar                                                                                            | ks:                                                         |                                                                                                     |                                                                                                            |                                                               |  |  |  |
| Prepa                                                                                            | Prepared by Checked by Approved by                          |                                                                                                     |                                                                                                            |                                                               |  |  |  |

| SPECIFIC GRAVITY OF CEMENT<br>(IS: 4031)                                  |                  |            |       |             |  |  |
|---------------------------------------------------------------------------|------------------|------------|-------|-------------|--|--|
| Section/Location of Lab :                                                 |                  |            |       |             |  |  |
| Name/ Brand of cement :                                                   | Date of          | f Sampling | :     |             |  |  |
| Grade of Cement :                                                         | Date of          | f testing  | :     |             |  |  |
| Week No.                                                                  |                  |            |       |             |  |  |
| Determination                                                             |                  | Tria       | l No. |             |  |  |
| Determination                                                             | 1                | 2          | 3     | Average     |  |  |
| Weight of bottle $(w_1)$                                                  |                  |            |       |             |  |  |
| Weight of bottle with sample $(w_2)$                                      |                  |            |       |             |  |  |
| Weight of bottle with sample and kerosene (                               | w <sub>3</sub> ) |            |       |             |  |  |
| Weight of bottle with water $(w_4)$                                       |                  |            |       |             |  |  |
| Weight of bottle with kerosene $(W_5)$                                    |                  |            |       |             |  |  |
| Specific Gravity of Kerosene( $w_6$ )<br>=( $w_5 - w_1$ )/( $w_4 - w_1$ ) |                  |            |       |             |  |  |
| Specific Gravity of Sample=<br>$(w_2-w_1) * w_6/(w_2-w_1)-(w_3-w_5)$      |                  |            |       |             |  |  |
| Remarks:                                                                  |                  |            |       |             |  |  |
| Prepared by Check                                                         | ked by           |            |       | Approved by |  |  |

| COMPRESSIVE STRENGTH OF MORTAR CUBES<br>(AS PER IS:516) |                           |            |                |               |             |                                                                                   |  |  |  |
|---------------------------------------------------------|---------------------------|------------|----------------|---------------|-------------|-----------------------------------------------------------------------------------|--|--|--|
| Sectio                                                  | Section/Location of Lab : |            |                |               |             |                                                                                   |  |  |  |
| Descri                                                  | iption of cement          | : :        |                | Date c        | of Casting  | :                                                                                 |  |  |  |
| Week                                                    | No.                       | :          |                | Date c        | of testing  | :                                                                                 |  |  |  |
| Size o                                                  | f Mortar Cube             | :          |                | Grade         | of Cement   | :                                                                                 |  |  |  |
| SI.<br>No                                               |                           |            |                |               |             | Average<br>Compressive<br>Strength (f <sub>avg</sub> )<br>in (N/mm <sup>2</sup> ) |  |  |  |
|                                                         |                           |            |                |               |             |                                                                                   |  |  |  |
|                                                         |                           |            |                |               |             |                                                                                   |  |  |  |
|                                                         |                           |            |                |               |             |                                                                                   |  |  |  |
|                                                         |                           |            |                |               |             |                                                                                   |  |  |  |
|                                                         |                           |            |                |               |             |                                                                                   |  |  |  |
|                                                         | f <sub>ck</sub>           | : Characte | ristic Compres | ssive Strengt | h of Cement |                                                                                   |  |  |  |

| Remarks:    |            |             |
|-------------|------------|-------------|
|             |            |             |
|             |            |             |
|             |            |             |
|             |            |             |
|             |            |             |
|             |            |             |
| Prepared by | Checked by | Approved by |

| COMPRESSIVE STRENGTH OF CONCRETE CUBES<br>(IS:516)                                                                                                                                   |                  |             |               |               |                 |   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|---------------|---------------|-----------------|---|--|
| Sectio                                                                                                                                                                               | n/Location of La | ab          | :             |               |                 |   |  |
| Grade of Concrete : Date of Casting                                                                                                                                                  |                  |             |               |               |                 | : |  |
| Water                                                                                                                                                                                | -Cement Ratio    |             | :             | Da            | te of testing   | : |  |
| Descri                                                                                                                                                                               | iption of Cemen  | t           | :             | Str           | ucture location | : |  |
| Size o                                                                                                                                                                               | f Concrete Cub   | е           | :             |               |                 |   |  |
| Part o                                                                                                                                                                               | of Structure     |             |               |               |                 |   |  |
| SI.       Age in Days       Weight<br>(g)       Density<br>(g/cc)       Load at<br>Failure (kN)       Compressive<br>Strength of<br>Individual<br>Sample (f1) in<br>(N/mm2)       Av |                  |             |               |               |                 |   |  |
|                                                                                                                                                                                      |                  |             |               |               |                 |   |  |
|                                                                                                                                                                                      |                  |             |               |               |                 |   |  |
|                                                                                                                                                                                      |                  |             |               |               |                 |   |  |
|                                                                                                                                                                                      |                  |             |               |               |                 |   |  |
|                                                                                                                                                                                      |                  |             |               |               |                 |   |  |
|                                                                                                                                                                                      |                  |             |               |               |                 |   |  |
|                                                                                                                                                                                      |                  |             |               |               |                 |   |  |
|                                                                                                                                                                                      |                  |             |               |               |                 |   |  |
|                                                                                                                                                                                      |                  |             |               |               |                 |   |  |
|                                                                                                                                                                                      |                  |             |               |               |                 |   |  |
|                                                                                                                                                                                      |                  |             |               |               |                 |   |  |
|                                                                                                                                                                                      |                  |             |               |               |                 |   |  |
|                                                                                                                                                                                      | f <sub>ck</sub>  | : Character | istic Compres | sive Strength | of Concrete     | L |  |

| Remarks:    |            |             |
|-------------|------------|-------------|
|             |            |             |
|             |            |             |
|             |            |             |
|             |            |             |
|             |            |             |
|             |            |             |
| Prepared by | Checked by | Approved by |

|        |                |             | LUE OF BIT<br>D IS:1203-1978 |               |             |
|--------|----------------|-------------|------------------------------|---------------|-------------|
| Locati | on of Lab :    |             | Date of                      | f Sampling :  |             |
| Locati | on/Chainage :  |             | Source                       | of Material : |             |
| Date o | of Testing :   |             | Sample                       | e Code/No :   |             |
| Bitume | en grade :     |             | Propos                       | ed Use :      |             |
| SI.    |                | Dial Readii | ng (0.1 mm)                  | Penetration   |             |
| No     | Test temp (°C) | Initial     | Final                        | (0.1mm)       | Remarks     |
| 1      |                |             |                              |               |             |
| 2      |                |             |                              |               |             |
| 3      |                |             |                              |               |             |
|        |                |             |                              |               |             |
| Avera  | ge             |             |                              |               |             |
| Rema   | rks:           |             |                              |               |             |
| Prepa  | red by         | Checke      | d by                         |               | Approved by |

|           | BITUMEN SPECIFIC G<br>(IS:1202-1978)                                    | RAVITY      |          |             |
|-----------|-------------------------------------------------------------------------|-------------|----------|-------------|
| Source    | of Material :                                                           | Date of San | npling : |             |
| Locatio   | on :                                                                    | Date of Tes | ting :   |             |
|           |                                                                         | Proposed U  | lse :    |             |
| S.<br>No. | Description                                                             | Trial 1     | Trial 2  | Trial 3     |
| 1         | Weight of Pycnometer $(W_1)$ g                                          |             |          |             |
| 2         | Weight of Pycnometer + Sample (W <sub>2</sub> ) g                       |             |          |             |
| 3         | Weight of Pycnometer + Sample + Water $(W_3)$ g                         |             |          |             |
| 4         | Weight of Pycnometer + Water $(W_4)$ g                                  |             |          |             |
| 5         | Weight of Sample $(W_2 - W_1)$ g                                        |             |          |             |
| 6         | Specific Gravity of Sample =<br>$(W_2 - W_1)/(W_4 - W_1) - (W_3 - W_2)$ |             |          |             |
|           | Average                                                                 |             | ·        |             |
| Remark    | s:                                                                      |             |          |             |
| Prepare   | d by Checked by                                                         |             |          | Approved by |
| Prepare   | d by Checked by                                                         |             |          | Approved    |

| DE                                                              |                                 | SOFTENING POIL<br>5-1978)        | NT                                |
|-----------------------------------------------------------------|---------------------------------|----------------------------------|-----------------------------------|
| Section/Location of Lab                                         | :                               |                                  |                                   |
| Source of Material                                              | :                               | Date of Sampl                    | ing :                             |
| Bitumen Grade                                                   | :                               | Date of Testin                   | g :                               |
| Apparatus Used                                                  | : Ring and Ball Appar           | atus                             |                                   |
| Period of Cooling at<br>Room Temperature (min                   | : 30°C<br>I)                    | Period of Cool<br>Temperature (i | ing in Water bath @ 5°C<br>min) : |
| Rate of Heating                                                 | : 5°C ± 0.5°C                   |                                  |                                   |
| Time (min)                                                      | Temperature of water<br>bath °C | Time (min)                       | Temperature of water<br>bath °C   |
| 1                                                               |                                 | 7                                |                                   |
| 2                                                               |                                 | 8                                |                                   |
| 3                                                               |                                 | 9                                |                                   |
| 4                                                               |                                 | 10                               |                                   |
| 5                                                               |                                 | 11                               |                                   |
| 6                                                               |                                 | 12                               |                                   |
| Description                                                     | Bill No. 1                      | Bill No. 2                       | Mean Value of<br>Softening Point  |
| Temperature at which<br>sample touches the<br>bottom plate (°C) |                                 |                                  |                                   |
| Remarks:                                                        |                                 |                                  |                                   |
| Prepared by                                                     | Checke                          | d by                             | Approved by                       |

|                                                           | DETERMINATION OF V<br>(IS:1206-1978) | ISCOSITY         |             |
|-----------------------------------------------------------|--------------------------------------|------------------|-------------|
| Section/Location of Lab                                   | :                                    |                  |             |
| Source                                                    | :                                    | Date of Sampling | :           |
| Sample Location                                           | :                                    | Date of Testing  | :           |
| Bitumen Grade                                             | :                                    |                  |             |
| Observations                                              |                                      |                  |             |
| Pouring Temperature, °C                                   | :                                    |                  |             |
| Test Temperature, °C                                      | :                                    |                  |             |
| Size of Orifice (mm)                                      | :                                    |                  |             |
| Viscosity in (sec)                                        | :                                    |                  |             |
| Viscosity in (Cst)                                        | :                                    |                  |             |
| (Note 1: 1 sec = 400 Cst fo<br>(Note 2 : 1 sec = 13.2 Cst |                                      |                  |             |
| Remarks:                                                  |                                      |                  |             |
|                                                           |                                      |                  |             |
|                                                           |                                      |                  |             |
|                                                           |                                      |                  |             |
| Prepared by                                               | Checked by                           |                  | Approved by |

3

#### GRADATION AGGREGATE FACTORS BINDER CONTENT PAVING MIXTURES CENTRIFUGE METHOD BC /DBM/ BM (IRC:SP:11)

Section/Location of Lab :

Date of Sampling :

Date of Testing

:

Date of Location :

Layer

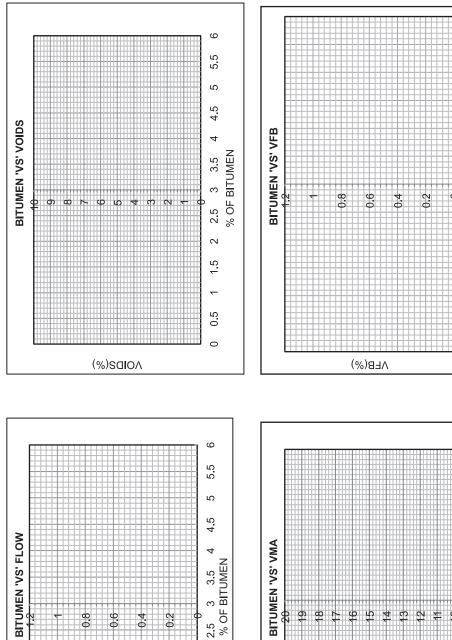
#### **BINDER CONTENT TEST**

| S. No. | Deta                                                         | ilo                | Samp | ole No. |
|--------|--------------------------------------------------------------|--------------------|------|---------|
| 5. NO. | Deta                                                         | 115                | 1    | 2       |
| 1      | Weight of Mix                                                | : W <sub>1</sub> g |      |         |
| 2      | Initial weight of filter paper                               | :                  |      |         |
| 3      | Weight of Aggregate after extraction                         | : W <sub>2</sub> g |      |         |
| 4      | Weight of filter paper after extraction with fine materials  | : W <sub>3</sub> g |      |         |
| 5      | Increased weight of filter                                   | : W <sub>4</sub> g |      |         |
| 6      | Weight of Binder<br>$W_1$ -( $W_2$ + $W_4$ )                 | : W <sub>5</sub> g |      |         |
| 7      | Binder Content (BC)<br>= W <sub>5</sub> /W <sub>1</sub> X100 | : BC %             |      |         |

#### GRADATION OF AGGREGATE FRACTION (BC - MoRT&H Table 500-18), (DBM - MoRT&H Table 500-10)&(BM - MoRT&H Table 500-4)

|              | •               |                     |               | ,         | •      |                             | ,                           |
|--------------|-----------------|---------------------|---------------|-----------|--------|-----------------------------|-----------------------------|
| Sieve        | Wt.             | Cumulative          | %<br>Detained | %         | JMF    | Grading 1                   | Grading 2                   |
| size<br>(mm) | retained<br>(g) | Wt.<br>retained (g) | Retained      | Passing   | LIMITS | Nominal Size<br>Aggregate = | Nominal Size<br>Aggregate = |
|              |                 |                     |               |           |        | Layer thickness =           | Layer thickness =           |
|              |                 |                     |               |           |        |                             |                             |
|              |                 |                     |               |           |        |                             |                             |
| Remark       | (S:             |                     |               |           |        |                             |                             |
| Prepare      | ed by           |                     | (             | Checked b | у      |                             | Approved by                 |

|                         | Fl     | AS    |       |       | FIRE<br>209-1 |   | INT | TES   | Т      |       |    |    |  |
|-------------------------|--------|-------|-------|-------|---------------|---|-----|-------|--------|-------|----|----|--|
| Section/Location of Lab | :      |       |       |       |               |   |     |       |        |       |    |    |  |
| Source                  | :      |       |       |       |               |   | Da  | te of | samp   | oling | :  |    |  |
| Location                | :      |       |       |       |               |   | Da  | te of | testir | ng    | :  |    |  |
| Proposed Use            | :      |       |       |       |               |   |     |       |        |       |    |    |  |
| 1. Bitumen grade/ Cutba | ick ty | vpe & | grad  | le:   |               |   |     |       |        |       |    |    |  |
| 2. Type of equipment: C | losed  | l cup | / Ope | en cu | р             |   |     |       |        |       |    |    |  |
| Rate of heating         |        |       |       |       |               |   |     |       |        |       |    |    |  |
| Time, minutes           | 1      | 2     | 3     | 4     | 5             | 6 | 7   | 8     | 9      | 10    | 11 | 12 |  |
| Temperature, °C         |        |       |       |       |               |   |     |       |        |       |    |    |  |


| Test prope     | erty |            | Test Number |   | Mean        |
|----------------|------|------------|-------------|---|-------------|
|                |      | 1          | 2           | 3 | value       |
| 1. Flash point |      |            |             |   |             |
| 2. Fire point  |      |            |             |   |             |
| 3. Mean value  |      |            |             |   |             |
| Remarks:       |      |            |             |   |             |
| Prepared by    |      | Checked by |             |   | Approved by |

|                              |                                              |           |                        |        |                |     |                        |                              |                                                 |                  |           | )          | -<br>)<br>)                                 | )                     |          |                    |
|------------------------------|----------------------------------------------|-----------|------------------------|--------|----------------|-----|------------------------|------------------------------|-------------------------------------------------|------------------|-----------|------------|---------------------------------------------|-----------------------|----------|--------------------|
|                              |                                              |           |                        |        |                | MAR | HALL<br>(ASTI          | - TES<br>M: D -              | MARSHALL TEST RESULTS<br>(ASTM: D - 1559)       | SULTS            | (0        |            |                                             |                       |          |                    |
| Type of Mix:                 | f Mix:                                       |           |                        |        |                |     | Max. S<br>Mix(G        | Sp. Gr (<br><sup>mm</sup> ): | Max. Sp. Gr of Paving<br>Mix(G <sub>mn</sub> ): | D                |           |            | Date of Testing :<br>Grade of Bitumen:      | Festing :<br>f Bitume | :.       |                    |
| Comp                         | Compaction : 75 Blows (Both Sides)           | 5 Blows   | (Both S                | Sides) |                |     | BC Tri                 | BC Trial -1 Blend:           | lend:                                           |                  |           |            |                                             |                       |          |                    |
| Specif                       | Specific Gravity of Bitumen ( $G_{_{D}}$ ) : | ' of Bitu | men (G <sub>t</sub>    | : (°   |                |     | Size<br>(mm)           | ) Size-1                     | e-1 Size-2                                      |                  | Size-3    | Size-4     |                                             |                       |          |                    |
| Bulk S                       | Bulk Sp.Gr. of Aggregates( $G_{s_b}$ ) :     | vggrega   | ltes(G <sub>sb</sub> ) |        |                |     | %<br>Feed              |                              |                                                 |                  |           |            | Effective Sp.Gr. Of Agg.(G <sub>se</sub> ): | Sp.Gr.                | Of Agg.( | G <sub>se</sub> ): |
| %                            | Specimen                                     | % of      | Spec. Ht.              | ž      | Mass in grams. |     |                        |                              | Prop                                            | Properties       |           |            | ů.                                          | Stability in kg.      |          | Flow               |
| Bitumen<br>by Wt.<br>of Mix. | 0<br>N                                       | Agg.      | (mm)                   | In Air | In Water       | SSD | Bulk<br>Volume<br>(cc) | Bulk<br>Density<br>(g/cc)    | Max.<br>Sp.Gr.                                  | Air Voids<br>(%) | s VMA (%) | %) VFA (%) | ) Measured<br>Kgs                           | Corr.<br>factor       | Adjusted | (mm)               |
|                              |                                              |           |                        |        |                |     |                        |                              |                                                 |                  |           |            |                                             |                       |          |                    |
|                              |                                              |           |                        |        |                |     |                        |                              |                                                 |                  |           | _          |                                             |                       |          |                    |
|                              |                                              |           |                        |        |                |     |                        |                              |                                                 |                  |           |            |                                             |                       |          |                    |
|                              |                                              |           |                        |        |                |     |                        |                              |                                                 |                  |           |            |                                             |                       |          |                    |
|                              | Average                                      |           |                        |        |                |     |                        |                              |                                                 |                  |           |            |                                             |                       |          |                    |
|                              |                                              |           |                        |        |                |     |                        |                              |                                                 |                  |           |            |                                             |                       |          |                    |
|                              |                                              |           |                        |        |                |     |                        |                              |                                                 |                  |           |            |                                             |                       |          |                    |
| -                            |                                              |           |                        |        |                |     |                        |                              |                                                 |                  |           |            |                                             |                       |          |                    |
|                              | Average                                      |           |                        |        |                |     |                        |                              |                                                 |                  |           |            |                                             |                       |          |                    |
|                              |                                              |           |                        |        |                |     |                        |                              |                                                 |                  |           |            |                                             |                       |          |                    |
|                              |                                              |           |                        |        |                |     |                        |                              |                                                 |                  |           |            |                                             |                       |          |                    |
|                              |                                              |           |                        |        |                |     |                        |                              |                                                 |                  |           |            |                                             |                       |          |                    |
|                              | Average                                      |           |                        |        |                |     |                        |                              |                                                 |                  |           |            |                                             |                       |          |                    |
|                              |                                              |           |                        |        |                | 1   |                        |                              | _                                               |                  |           | -          | -                                           | _                     |          |                    |

|         |         |                      | VFB (%)                      |                 |                                                                                                              |
|---------|---------|----------------------|------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------|
|         |         |                      | VMA (%)                      |                 | BITUMEN 'VS' DENSITY<br>2.47<br>2.43<br>2.43<br>2.41<br>2.41<br>2.39<br>2.37<br>2.35                         |
|         |         | st Results           | Air Voids V <sub>a</sub> (%) | - CURVES        | DENSITY (gm/cc)                                                                                              |
|         |         | Marshal Test Results | Flow (mm)                    | MARSHALL CURVES |                                                                                                              |
|         |         |                      | Stability (kN)               |                 | BITUMEN 'VS' STABILITY<br>1800<br>1500<br>1500<br>1300<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>12 |
| Average | Average |                      | Bitumen Content (%)          |                 | CONTRACTION (CONTRACT)                                                                                       |

2.5 3 3.5 4 4.5 % OF BITUMEN

% OF BITUMEN



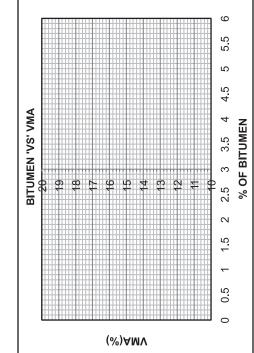
0.2

 $\sim$ 

1.5

~

0.5


0

<u>0</u>.4

<u>0.</u>0

(mm) WOJA

8. 0



ശ

5.5

ß

4.5

4

3.5

ო

2.5

 $\sim$ 

1.5

~

0.5

0

% OF BITUMEN

|                           | Narrow              | Narrow Range Acceptable Limit                | t                                                 |                 |
|---------------------------|---------------------|----------------------------------------------|---------------------------------------------------|-----------------|
| Stability                 |                     |                                              |                                                   |                 |
|                           |                     |                                              |                                                   |                 |
| Flow                      |                     |                                              |                                                   |                 |
| -                         |                     |                                              |                                                   |                 |
| Density                   |                     |                                              |                                                   |                 |
| Air Voids                 |                     |                                              |                                                   |                 |
| VFB                       |                     |                                              |                                                   |                 |
| VMA                       |                     |                                              |                                                   |                 |
| 3.50%                     | 4.00% 4.5           | 4.50% 5.00%                                  | 5.50% 6.00%                                       | 6.50%           |
|                           | 0                   | % of Bitumen                                 |                                                   |                 |
|                           | Final Optimum Bitur | ptimum Bitumen Content (Narrow Strip Method) | Strip Method)                                     |                 |
| Bitumen % @ Max Stability | 11                  | Properties of Mix at A                       | Properties of Mix at Average Bitumen Content of % | Specific Limits |
| Bitumen % @ Max Density   | П                   | Stability (Kg)                               | п                                                 |                 |
|                           |                     | Density (g/cc)                               | 11                                                |                 |
|                           |                     | Air Voids (%)                                | 11                                                |                 |
| Bitumen % @ 4% voids      | Ш                   | V.F.B (%)                                    | 11                                                |                 |
|                           |                     | V.M.A (%)                                    | 11                                                |                 |
| Average (%)               | 11                  | Flow (mm)                                    | 11                                                |                 |
| Remarks:                  |                     |                                              |                                                   |                 |
|                           |                     |                                              |                                                   |                 |
| Prepared by               |                     | Checked by                                   |                                                   | Approved by     |

|                               |       |                |            |   | )             |       |             |
|-------------------------------|-------|----------------|------------|---|---------------|-------|-------------|
|                               |       | COR            | CORE TEST  |   |               |       |             |
| LOCATION :                    |       | DATE SAMPLED : | PLED :     |   | DATE TESTED : | <br>D |             |
| Material Description : DBM/AC |       |                |            |   |               |       |             |
| Density Determination         | Core  |                | JMF dens   |   |               |       |             |
| SAMPI F NO                    | UNIT  | -              | 7          | m | 4             | 5     | 9           |
| 1. Core no.                   |       |                |            |   |               |       |             |
| 2. Core chainage              | Km    |                |            |   |               |       |             |
| 3. Core Thickness             | шш    |                |            |   |               |       |             |
| 4. Wt. in air                 | Gms   |                |            |   |               |       |             |
| 5. Wt. in water               | Gm    |                |            |   |               |       |             |
| 6. Volume                     | 22    |                |            |   |               |       |             |
| 7. Density                    | Gm/cc |                |            |   |               |       |             |
| 8. Compaction (Core)          | %     |                |            |   |               |       |             |
| Remarks:                      |       |                |            |   |               |       |             |
|                               |       |                |            |   |               |       | :           |
| Prepared by                   |       | Che            | Checked by |   |               |       | Approved by |
| *JMF: Job Mix Formula         |       |                |            |   |               |       |             |

|       | FIELD DENSITY TEST BY CORE CUTTER METHOD   |                 |    |   |         |     |          |  |
|-------|--------------------------------------------|-----------------|----|---|---------|-----|----------|--|
| Redu  | iced level :                               | Layer No.       |    |   | MDD =   | gm  | /cc      |  |
| Bulk  | Density : gm/cc                            | Layer Thickness |    |   | OMC = % |     |          |  |
| No.   | CHAINAGE                                   | Unit            | 1  | 2 | 3       | 4   | 5        |  |
| 1     | Mass of mould+Compacted soil               | Gms             |    |   |         |     |          |  |
| 2     | Mass of mould                              | Gms             |    |   |         |     |          |  |
| 3     | Mass of compacted soil (2-1)               | Gms             |    |   |         |     |          |  |
| 4     | Volume of mould                            | CC              |    |   |         |     |          |  |
| 5     | Wet Density of soil (3/4)                  | Gms/CC          |    |   |         |     |          |  |
|       | Moisture Determination                     | -               |    |   |         |     |          |  |
| 6     | Wt. Wet soil                               | Gms             |    |   |         |     |          |  |
| 7     | Wt. Dry soil                               | Gms             |    |   |         |     |          |  |
| 8     | Wt. Water (6)-(7)                          | Gms             |    |   |         |     |          |  |
| 9     | Moisture content (8)/(7)x100               | %               |    |   |         |     |          |  |
| 10    | Field Dry density of soil<br>(5)/1+(9)/100 | Gms/CC          |    |   |         |     |          |  |
| Degr  | ee of compaction (10/MDD x 100)            | %               |    |   |         |     |          |  |
| Avera | age degree of Compaction :                 |                 |    |   |         |     |          |  |
| Stan  | dard Deviation :                           |                 |    |   |         |     |          |  |
| REM   | ARKS:                                      |                 |    |   |         |     |          |  |
|       |                                            |                 |    |   |         |     |          |  |
|       |                                            |                 |    |   |         |     |          |  |
|       |                                            |                 |    |   |         |     |          |  |
|       |                                            |                 |    |   |         |     |          |  |
|       |                                            |                 |    |   |         |     |          |  |
|       |                                            |                 |    |   |         |     |          |  |
| Prepa | ared by                                    | Checked b       | ру |   |         | Арр | roved by |  |

| BENKELIMAN BEAM DEFLECTION (BBD) SURVEY         Section/Location of Lab       No of Traffic lanes         Section/Location of Lab       No of Traffic lanes         Pavement       Tomperative (%)       Dial Gauge Reading         Pavement       Consistence (%)       Dial Gauge Reading         Reading (mm)       Dial Gauge Reading       Dial Gauge Reading       Dial Gauge Reading         Reading (mm)       Dial Gauge Reading       Dial Gauge Reading       Dial Gauge Reading       Dial Gauge Reading         Reading (mm)       Dial Gauge Reading         Reading (mm)       Dial Gauge Reading         Reading (mm)       Dial Gauge Reading         Reading (mm)       Dial Gauge Reading       Dial Gauge Reading       Dial Gauge Reading       Dial Gauge Reading       Dial Gauge Reading |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| P                                                                                                                                                                                                                                                                               | PAVEMENT ROUGHNESS SURVEY USING BUMP INTEGRATOR         |                        |         |           |          |            |            |                 |               |              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------|---------|-----------|----------|------------|------------|-----------------|---------------|--------------|
| Name o                                                                                                                                                                                                                                                                          | f the Pro                                               | ject :                 |         |           |          |            |            |                 |               |              |
| No. of L                                                                                                                                                                                                                                                                        | No. of Lanes : Date :                                   |                        |         |           |          |            |            |                 |               |              |
| Climatio                                                                                                                                                                                                                                                                        | Climatic Condition : Vehicle Speed :32 ± 0.5 km per hr. |                        |         |           |          |            |            |                 |               |              |
|                                                                                                                                                                                                                                                                                 |                                                         |                        |         |           |          |            |            |                 |               |              |
| Carriage                                                                                                                                                                                                                                                                        | Carriageway Surface : Tyre Pressure: 30 Psi             |                        |         |           |          |            |            |                 |               |              |
| Chainage (km) Distance (No. of Bumps in cm) (Ul in mm/km)                                                                                                                                                                                                                       |                                                         |                        |         |           | Remarks  |            |            |                 |               |              |
| From                                                                                                                                                                                                                                                                            | То                                                      | (m)                    | Lł      | IS        | RI       | HS         | Average    | For Two<br>Lane | Mean<br>Value |              |
|                                                                                                                                                                                                                                                                                 |                                                         |                        | Trial-1 | Trial-2   | Trial-3  | Trial-4    | Avenuge    |                 |               |              |
|                                                                                                                                                                                                                                                                                 |                                                         |                        |         |           |          |            |            |                 |               |              |
|                                                                                                                                                                                                                                                                                 |                                                         |                        |         |           |          |            |            |                 |               |              |
|                                                                                                                                                                                                                                                                                 |                                                         |                        |         |           |          |            |            |                 |               |              |
| <u>Specifications:</u> Vehicle operating speed shall be 32 +/- 0.5 kmph and tyre pressure shall be 2.1kg/cm <sup>2</sup> or 30lb/sq.in<br>Observed Roughness or UI (mm/Km) = BI Counter Reading (Cm) X 10 X Distance Reading per Km/ Distance Counter<br>Reading in Test Length |                                                         |                        |         |           |          |            |            |                 |               |              |
|                                                                                                                                                                                                                                                                                 |                                                         | from CRRI<br>with ARUR |         |           |          | vhere Y is | Calibrated | roughness       | in mm/km      | and X is the |
| Remarks                                                                                                                                                                                                                                                                         | -                                                       |                        |         | 00 04) 11 |          |            |            |                 |               |              |
|                                                                                                                                                                                                                                                                                 |                                                         |                        |         |           |          |            |            |                 |               |              |
|                                                                                                                                                                                                                                                                                 |                                                         |                        |         |           |          |            |            |                 |               |              |
|                                                                                                                                                                                                                                                                                 |                                                         |                        |         |           |          |            |            |                 |               |              |
|                                                                                                                                                                                                                                                                                 |                                                         |                        |         |           |          |            |            |                 |               |              |
|                                                                                                                                                                                                                                                                                 |                                                         |                        |         |           |          |            |            |                 |               |              |
| Prepare                                                                                                                                                                                                                                                                         | d by                                                    |                        |         | С         | hecked b | у          |            |                 | Ар            | proved by    |

| DYNAMIC CONE PENETROMETER TEST<br>(PAVEMENT DCP) |                              |                          |                          |                                   |                            | ER TEST                              |                                                                                                            |
|--------------------------------------------------|------------------------------|--------------------------|--------------------------|-----------------------------------|----------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------|
| Section/Lo                                       | ocation of La                | ab                       | :                        |                                   | -                          |                                      |                                                                                                            |
| Location                                         |                              |                          | :                        |                                   |                            |                                      |                                                                                                            |
| Date of Te                                       | sting                        |                          | :                        |                                   |                            |                                      |                                                                                                            |
| Angle of C                                       | one Used i                   | n Test                   | : 60°                    |                                   |                            |                                      |                                                                                                            |
| No of<br>Blows                                   | Cumulative<br>No of<br>Blows | Scale<br>Reading<br>(mm) | Penetration<br>(mm)      | Cumulative<br>Penetration<br>(mm) |                            | D                                    | Dynamic Cone Penetrometer Test                                                                             |
|                                                  |                              |                          |                          |                                   |                            |                                      | Results           0         5         10         15         20         25         30         35         40 |
|                                                  |                              |                          |                          |                                   | Cumulative DCP Penetration | 0<br>100<br>200<br>300<br>400<br>500 |                                                                                                            |
|                                                  |                              |                          |                          |                                   |                            |                                      | Cumulative No of Blows                                                                                     |
| Rate of Pe                                       | enetration P                 | er Blow in               | mm for 1 <sup>st</sup> I | ayer =                            |                            |                                      |                                                                                                            |
| Rate of Pe                                       | enetration P                 | er Blow in               | mm for 2 <sup>nd</sup>   | layer =                           |                            |                                      |                                                                                                            |
| CBR From                                         | Correlation                  | n Curves fo              | r 60-degree              | e cone (%):                       |                            |                                      |                                                                                                            |
|                                                  |                              |                          | F                        | or 1 <sup>st</sup> layer          |                            |                                      |                                                                                                            |
|                                                  |                              |                          | Fo                       | or 2 <sup>nd</sup> layer          |                            |                                      |                                                                                                            |
| Remarks:                                         |                              |                          |                          |                                   |                            |                                      | <u> </u>                                                                                                   |
| Prepared b                                       | у                            |                          | CI                       | necked by                         |                            |                                      | Approved by                                                                                                |

#### DETERMINATION OF DRY DENSITY OF SOIL IN-PLACE (SAND REPLACEMENT METHOD) AS PER IS:2720-PART 29

Source/Location of Lab:

#### Material Source Details

1 Borrow area Name/ Pit No /Any other Reference

2 Optimum Moisture Content (OMC) % :

#### Pre-Test Data

| 1 | Chainage | of Stretch  | (From    | Km -   | To Km  | ) |
|---|----------|-------------|----------|--------|--------|---|
|   | onanago  | 01 01101011 | (1.1011) | 1 (111 | 101011 | , |

2 Layer No:

3 Bulk Density of Sand,  $g_s$  (g/cc)

4 Weight of sand in Cone  $w_3$  (grams from lab)

#### Field Density Determination SI. Description Unit **Observations at Pit Location** No. 1 Chainage & Pit location g 2 Weight of wet soil from hole W g 3 Weight of sand with cylinder before pouring (W<sub>1</sub>) g Weight of sand with cylinder after pouring (W<sub>2</sub>) 4 g 5 Weight of sand in hole $(W_2 = W_1 - W_2 - W_3)$ g Volume of the hole $V = W_{g}$ 6 g 7 Bulk Density of Soil $g_{bulk} = (W/V)$ g/cm<sup>3</sup> **Moisture Content Determination** Container No. 1 -Weight of Container (W<sub>4</sub>) 2 gms Wt. of Container + wet soil $(W_5)$ 3 gms Weight of Container + dry Soil (W<sub>6</sub>) 4 gms Moisture Content 'w' = $(W_{5}-W_{6})/(W_{6}-W_{4}) \times 100$ 5 % **Test Results** 1 Dry Density $g_d = g_{bulk}/(1+w/100)$ g/cm<sup>3</sup> Percentage Compaction= (g<sub>d</sub>/MDD) x 100 2 -3 Mean Density (g/cc) 4 Compaction Density Required (g/cc) (97% of MDD) 5 Standard Deviation. SD 6 Acceptance Criteria {Mean > Required Compaction+ [1.65- (1.65/(No of Samples)<sup>0.5</sup>] x SD} Remarks

Prepared by

Date.

MDD. (g/cc):

Date:

| Date of Testing:       Date of Testing:       Chainage:       From:       From:       Bituminous       Bituminous       Bituminous       Calculated Moduli       Moduli (Mpa)       Moduli (Mpa)       Chainage:       Join       Tom:       Bituminous       Bituminous       Bituminous       Corrected Back Calculated       Moduli (Mpa)       Moduli (Mpa)       Corrected Back Calculated       Bituminous       Bituminous       Bituminous       Bituminous       Bituminous       Bituminous       Corrected Back Calculated       Moduli (Mpa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date of Testing:<br>Chainage:<br>Chainage:<br>From:<br>From:<br>From:<br>Packed by<br>Abbroved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Jainage:       Om:       Om:       Om:       Om:       Image:       Image: <td>DOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:<br/>OOT:</td> <td></td> | DOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT:<br>OOT: |                       |
| OB:     Subgrade     OB:       Image: Subgrade     Subgrade     Oduii       Image: Subgrade     Subgrade       Image: Subgrade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O     1600     1600     1600       Image: Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| Image: second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Back calculated Moduli       Back calculated Moduli       Back calculated Moduli       Back calculated Moduli       Back calculated Moduli       Corrected Moduli       Corrected Moduli       Back calculated Moduli       Back calculated Moduli       Back calculated Moduli       Corrected Moduli       Corrected Moduli       Corrected Moduli       Corrected Moduli       Corrected Moduli       Back calculated Moduli       Corrected Moduli       Corrected Moduli       Corrected Moduli       Back calculated Moduli       Corrected Moduli       Corrected Moduli       Back calculated Moduli       Corrected Moduli       Corrected Moduli       Back calculated       Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| Image: state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observed     1200       Observed     Image: state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rmalizec<br>at a radi |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |

# CALIBRATION CHART OF BATCHING FOR AGGREGATE GUAGE

| LOAD       |         |           | DIAI    | GUAGE REAL | DINGS   |           |             |
|------------|---------|-----------|---------|------------|---------|-----------|-------------|
| APPLIED    | TRIAL-1 |           | TR      | TRIAL-2    |         | AL-3      | AVERAGE     |
| (KG)       | LOADING | UNLOADING | LOADING | UNLOADING  | LOADING | UNLOADING |             |
| 0          |         |           |         |            |         |           |             |
| 50         |         |           |         |            |         |           |             |
| 100        |         |           |         |            |         |           |             |
| 150        |         |           | Ì       |            |         |           |             |
| 200        |         |           | İ       |            |         |           |             |
| 250        |         |           |         |            |         |           |             |
| 300        |         |           | İ       |            |         |           |             |
| 350        |         |           |         |            |         |           |             |
| 400        |         |           |         |            |         |           |             |
| 450        |         |           |         |            |         |           |             |
| 500        |         |           |         |            |         |           |             |
| 550        |         |           |         |            |         |           |             |
| 600        |         |           |         |            |         |           |             |
| 650        |         |           |         |            |         |           |             |
| 700        |         |           |         |            |         |           |             |
| 750        |         |           |         |            |         |           |             |
| 800        |         |           |         |            |         |           |             |
| 850        |         | 1         |         |            |         |           |             |
| 900        |         |           |         |            |         |           |             |
| 950        |         |           |         |            |         |           |             |
| 1000       |         |           |         |            |         |           |             |
| 1050       |         |           |         |            |         |           |             |
| 1100       |         |           |         |            |         |           |             |
| 1150       |         |           |         |            |         |           |             |
| REMARKS    | :       |           |         | ·          |         |           |             |
| For Contra | actor   |           |         |            |         | F         | or Engineer |

#### CALIBRATED DATE:

|       |                            |                             | CALIB                      | RATED DATE:                 |                            |                             |            |
|-------|----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|------------|
| SL.   | TRI                        | AL-1                        | TRIAL-2                    |                             | TR                         | AVERAGE                     |            |
| NO.   | METRE<br>READING<br>(LTRS) | WATER<br>MEASURED<br>(LTRS) | METRE<br>READING<br>(LTRS) | WATER<br>MEASURED<br>(LTRS) | METRE<br>READING<br>(LTRS) | WATER<br>MEASURED<br>(LTRS) |            |
| 1     | 10                         |                             | 10                         |                             | 10                         |                             |            |
| 2     | 20                         |                             | 20                         |                             | 20                         |                             |            |
| 3     | 30                         |                             | 30                         |                             | 30                         |                             |            |
| 4     | 40                         |                             | 40                         |                             | 40                         |                             |            |
| 5     | 50                         |                             | 50                         |                             | 50                         |                             |            |
| 6     | 60                         |                             | 60                         |                             | 60                         |                             |            |
| 7     | 70                         |                             | 70                         |                             | 70                         |                             |            |
| 8     | 80                         |                             | 80                         |                             | 80                         |                             |            |
| 9     | 90                         |                             | 90                         |                             | 90                         |                             |            |
| 10    | 100                        |                             | 100                        |                             | 100                        |                             |            |
| 11    | 110                        |                             | 110                        |                             | 110                        |                             |            |
| 12    | 120                        |                             | 120                        |                             | 120                        |                             |            |
| 13    | 130                        |                             | 130                        |                             | 130                        |                             |            |
| 14    | 140                        |                             | 140                        |                             | 140                        |                             |            |
| 15    | 150                        |                             | 150                        |                             | 150                        |                             |            |
| ξEMA  | RKS:                       | I                           |                            | 1                           |                            | 1                           |            |
| or Co | ontractor                  |                             |                            |                             |                            | Fa                          | r Engineer |

## **CALIBRATION CHART OF BATCHING FOR CEMENT GUAGE**

#### CALIBRATED DATE:

|                 | r _=    | ···· ·    |         | UAGE READINGS |         |           |         |
|-----------------|---------|-----------|---------|---------------|---------|-----------|---------|
| LOAD<br>APPLIED |         | RIAL-1    |         | IAL-2         |         | AIL-3     | AVERAGE |
| (KG)            | LOADING | UNLOADING | LOADING | UNLOADING     | LOADING | UNLOADING |         |
| 0               |         |           |         |               |         |           |         |
| 50              |         |           |         |               |         |           |         |
| 100             |         |           |         |               |         |           |         |
| 150             |         |           |         |               |         |           |         |
| 200             |         |           |         |               |         |           |         |
| 250             |         |           |         |               |         |           |         |
| 300             |         |           |         |               |         |           |         |
| 350             |         |           |         |               |         |           |         |
| 400             |         |           |         |               |         |           |         |
| 450             |         |           |         |               |         |           |         |
| 500             |         |           |         |               |         |           |         |
| 550             |         |           |         |               |         |           |         |
| 600             |         |           |         |               |         |           |         |
| 650             |         |           |         |               |         |           |         |
| 700             |         |           |         |               |         |           |         |
| 750             |         |           |         |               |         |           |         |
| 800             |         |           |         |               |         |           |         |
| 850             |         |           |         |               |         |           |         |
| 900             |         |           |         |               |         |           |         |
| 950             |         |           |         |               |         |           |         |
| 1000            |         |           |         |               |         |           |         |
| 1050            |         |           |         |               |         |           |         |
| 1100            |         |           |         |               |         |           |         |
| 1150            |         |           |         |               |         |           |         |
|                 |         |           |         |               |         |           |         |
| REMARK          | (S:     | 11        |         |               | 1       | l         |         |
|                 |         |           |         |               |         |           |         |
|                 |         |           |         |               |         |           |         |
|                 |         |           |         |               |         |           |         |
|                 |         |           |         |               |         |           |         |
|                 |         |           |         |               |         |           |         |
|                 |         |           |         |               |         |           |         |
|                 |         |           |         |               |         |           |         |

**For Contractor** 

For Engineer

|                               | CALIBRATION REPORT<br>(CUBE TESTING MACHINE)                     |                        |                             |                                  |  |  |
|-------------------------------|------------------------------------------------------------------|------------------------|-----------------------------|----------------------------------|--|--|
| DATE OF CALIBRATION : TEMP. : |                                                                  |                        |                             |                                  |  |  |
| GAUGE                         | NO. :                                                            |                        | CAPACITY :                  |                                  |  |  |
| EQUIPN                        | IENT :                                                           |                        | MODEL :                     |                                  |  |  |
| FORCE                         | MEASURING DEVICE :                                               |                        | SL. NO. :                   |                                  |  |  |
| CERTIF                        | IED BY :                                                         |                        | PLACE :                     |                                  |  |  |
|                               |                                                                  |                        | REF :                       |                                  |  |  |
| SL.<br>NO.                    | DEFLECTION IN DIAL GAUGE<br>IN PROVING RING                      | ACTUAL LOAD<br>APPLIED | AVERAGE OF<br>THREE READING | INDICATED LOAD<br>IN GAUGE ERROR |  |  |
| 1                             |                                                                  |                        |                             |                                  |  |  |
| 2                             |                                                                  |                        |                             |                                  |  |  |
| 3                             |                                                                  |                        |                             |                                  |  |  |
| 4                             |                                                                  |                        |                             |                                  |  |  |
| 5                             |                                                                  |                        |                             |                                  |  |  |
| 6                             |                                                                  |                        |                             |                                  |  |  |
| 7                             |                                                                  |                        |                             |                                  |  |  |
| 8                             |                                                                  |                        |                             |                                  |  |  |
| 9                             |                                                                  |                        |                             |                                  |  |  |
| 10                            |                                                                  |                        |                             |                                  |  |  |
| 1                             | To obtain correct result posit<br>to the indicated load readings |                        |                             | ve (-) error to be               |  |  |
| For Con                       | tractor                                                          |                        |                             | For Engineer                     |  |  |

# MATERIAL QUALITY SURVEILLANCE FORM

| Contracto          | pr                             | C                     | ontract No.         |                           |                         |
|--------------------|--------------------------------|-----------------------|---------------------|---------------------------|-------------------------|
| Manufact<br>Source | urer/supplier/                 | P                     | urchase order       | Inspecting A              | gency                   |
| Inspecte           | ed at Inspectio<br>Certificate | n Deliver<br>e Challa |                     | iguishing<br>⁄lark        | Date of MFR.<br>/supply |
| Shipping           | storage and other R            |                       | (Satis              | factory/Not satisfactory) |                         |
| SI. No             | Test                           | Method of test        | Acceptance<br>range | Obtained value            | Remarks                 |
|                    |                                |                       |                     |                           |                         |
|                    |                                |                       |                     |                           |                         |
|                    |                                |                       |                     |                           |                         |

Remarks:

| Inspected by:<br>(For QA Engineer)  | Name: | Signed: | Date: |
|-------------------------------------|-------|---------|-------|
| In presence of:<br>(For Contractor) | Name: | Signed: | Date: |

# PRODUCTS QUALITY SURVEILLANCE FORM

#### NAME OF PRODUCT:

| Contractor                       |                  | Contract to         |                                |
|----------------------------------|------------------|---------------------|--------------------------------|
| Manufacturer/supplier/<br>Source |                  | Purchase order      | Inspecting Agency              |
| Inspection<br>certificate        | Delivery challan | Distinguishing mark | Date of manufacture<br>/supply |
| Drawing Nos.                     |                  | Tende               | er specification clause        |

Shipping storage and other Remarks

| SI. no | Test | Method of test | Acceptance<br>range | Obtained value | Remarks |
|--------|------|----------------|---------------------|----------------|---------|
|        |      |                |                     |                |         |
|        |      |                |                     |                |         |
|        |      |                |                     |                |         |

| Inspected by:<br>(For QA Engineer)  | Name: | Signed: | Date: |
|-------------------------------------|-------|---------|-------|
| In presence of:<br>(For Contractor) | Name: | Signed: | Date: |

## SURVEILLANCE FORM FOR PRE-CONCRETING OPERATIONS

| CON | ITRACTOR                                                   | CON                    | CONTRACT NO. |  |  |  |
|-----|------------------------------------------------------------|------------------------|--------------|--|--|--|
| ELE | MENTS OF STRUCTURE                                         | IDENTIFICATION NO.     | LOCATION     |  |  |  |
|     | SURV                                                       | /EILLANCE OBSERVATIONS |              |  |  |  |
| WOF | RK DESCRIPTION                                             |                        |              |  |  |  |
| 1   | Line, level and<br>Dimension as per Drg                    |                        |              |  |  |  |
| 2   | Availability of adequate<br>Approved material              |                        |              |  |  |  |
| 3   | Placing of reinforcement (Including supports/spacers etc.) |                        |              |  |  |  |
| 4   | Formworks and scaffolding as per drawing                   |                        |              |  |  |  |
| 5   | Box outs/embedded parts, if any                            |                        |              |  |  |  |
| 6   | Cleaning of forms                                          |                        |              |  |  |  |
| 7   | Arrangements of plant<br>& equipment                       |                        |              |  |  |  |
| 8   | Walkway for pouring and inspection                         | ns                     |              |  |  |  |
| 9   | Safety arrangements                                        |                        |              |  |  |  |
| 10  | Curing arrangement                                         |                        |              |  |  |  |

| Inspected by:<br>(For QA Engineer)  | Name: | Signed: | Date: |
|-------------------------------------|-------|---------|-------|
| In presence of:<br>(For Contractor) | Name: | Signed: | Date: |

# QUALITY SURVEILLANCE FORM FOR WORKMANSHIP OF CONCRETE

| CON | TRACTOF          | 2                                                                                                  | CONTRACT NO.                    |
|-----|------------------|----------------------------------------------------------------------------------------------------|---------------------------------|
|     | IENTS OF         | IDENTIFICATION NO.                                                                                 | LOCATION                        |
|     | The f            | SURVEILLANCE OBSERVATIONS ollowing items should be observed during concrete pour by the            | QA surveillance team.           |
| (1) | Mixing           | of concrete                                                                                        |                                 |
|     | • 0              | Check the concrete class and the respective mix design already                                     | approved.                       |
|     | • 0              | Check the condition of aggregates to be used.                                                      |                                 |
|     | • 0              | Check the weighing and water dispensing methods adopted duri                                       | ing the mixing.                 |
|     | • 0              | Check that the mixer machine has been cleaned properly.                                            |                                 |
|     | • 0              | Check that the required mixing time is allowed.                                                    |                                 |
| (2) | Transp           | ortation/conveyance (as specified, but generally to cover f                                        | ollowing)                       |
|     | • 0              | check if the equipment is in proper working order.                                                 |                                 |
|     | • 0              | Check if the specified methods are being followed.                                                 |                                 |
|     | • 0              | check if the stipulated time limits are observed.                                                  |                                 |
|     | • 0              | Check if the non-conforming wet concrete is being rejected and                                     | disposed off.                   |
| (3) | Placing<br>Check | g of concrete<br>that:                                                                             |                                 |
|     | • T              | he concrete is not segregated during pour. The height of dropp                                     | ing is controlled.              |
|     | • T              | he concrete is poured in layers.                                                                   |                                 |
|     |                  | he vibrators are being applied systematically to compact unifor ver vibration.                     | mly and adequately, avoiding    |
|     | • T              | he concrete is not being pulled or pushed. Pouring is being dor                                    | ne lose to the final position.  |
|     | • T              | he cold joints are not allowed to be developed.                                                    |                                 |
|     | • T              | he underwater concrete is being poured only by tremies or pipe                                     | eline.                          |
|     | • T              | he forms are not getting displaced or deformed during the conc                                     | crete pour and vibrating.       |
|     |                  | lo cement slurry is getting lost. Suitable numbers of carpenters prmwork during pour, if required. | are present to watch and repair |
|     | • T              | he concrete is being poured within the allowable time limits from                                  | n the time of batching.         |
|     | • T              | he concrete cubes are taken as required.                                                           |                                 |

- The curing arrangements are satisfactory.
- The equipment is in working condition.
- The equipment is cleaned properly.
- The quality of wet concrete is as per specifications (slump, homogenous mix etc.)
- Continuous supply of concrete is assured.

| Inspected by:<br>(For QA Engineer)  | Name: | Signed: | Date: |
|-------------------------------------|-------|---------|-------|
| In presence of:<br>(For Contractor) | Name: | Signed: | Date: |

## SURVEILLANCE FORM FOR PAVEMENT LAYERS

#### SURVEILLANCE OBSERVATIONS

|     | PAVEMENT LAYER<br>DESIGNATION                |     | LAYER NO./REQUIRED LEVEL                        |    | LOCATION                                             |  |
|-----|----------------------------------------------|-----|-------------------------------------------------|----|------------------------------------------------------|--|
| Ma  | Materials/Workmanship                        |     |                                                 |    |                                                      |  |
| Ear | Earth works/Granular sub-base                |     | t mix macadam                                   | As | phalt                                                |  |
| 1.  | Check material is from                       | 1.  | Conforms to job mix formula                     | 1. | Conforms to job mix formula                          |  |
|     | approved borrow                              | 2.  | Free from deleterious                           | 2. | Free from deleterious                                |  |
| 2.  |                                              |     | materials                                       |    | materials                                            |  |
|     | perishable material                          |     | Spread layer thickness is                       | 3. | Spread layer thickness is                            |  |
| 3.  | Grading is acceptable                        |     | acceptable                                      |    | acceptable                                           |  |
| 4.  | Spread layer thickness is<br>acceptable      | 4.  | Moisture is near optimum<br>prior to compaction | 4. | Temperature at break down<br>rolling is within specs |  |
| 5.  | Moisture is near optimum prior to compaction | 5.  | No segregation during transport                 | 5. | No segregation during transport                      |  |
| 6.  | Lines/levels are within                      | 6.  | No segregation during paving                    | 6. | No segregation during paving                         |  |
|     | tolerance                                    | 7.  | Lines and levels within                         | 7. | Lines and levels within                              |  |
| Equ | uipments                                     |     | tolerance                                       |    | tolerance                                            |  |
| Che | eck                                          | Eq  | uipments                                        | Eq | uipments                                             |  |
| 1.  | Adequate for the work                        | Che | ack                                             | Ch | eck                                                  |  |
| 2.  | In condition                                 |     |                                                 | 1. | Adequate for the work                                |  |
|     |                                              |     | Adequate for the work                           | 2. | In condition                                         |  |
|     |                                              | 2.1 | n condition                                     |    |                                                      |  |

| Inspected by:<br>(For QA Engineer)  | Name: | Signed: | Date: |
|-------------------------------------|-------|---------|-------|
| In presence of:<br>(For Contractor) | Name: | Signed: | Date: |

### PARTICULARS OF WORK

- Name of work :
- Name of contractor :
- Address of contractor :
- Contract agreement no. :
- Contract amount :
- Applicable schedule of rates :
- Period of Completion :
- Date of Work order :
- Stipulated date of completion :
- Actual date of starting of work :
- Extensions
  - (1)\_\_\_\_\_

(2)\_\_\_\_\_

#### INCUMBANCY

| SI. No | Decignation* | Name | Per  | riod |
|--------|--------------|------|------|------|
| 31. NO | Designation* |      | From | То   |
|        |              |      |      |      |
|        |              |      |      |      |
|        |              |      |      |      |
|        |              |      |      |      |

\*Departmental officers' designations covering all officers having execution responsibilities for the project

| For Contractor | For Engineer |
|----------------|--------------|
| Name :         | Name :       |
| Signed :       | Signed :     |
| Date:          | Date:        |

## **REGISTER OF DRAWINGS**

Name of work

Name of contractor

#### 1. Receipt of drawings

:

:

| SI.<br>No | Drawing<br>No./ Date | Revision<br>No | Brief title | Issued<br>by/<br>(source) | Date of<br>receipt | No. of<br>copies | Status of<br>drgs | Further action | Signature<br>and date |
|-----------|----------------------|----------------|-------------|---------------------------|--------------------|------------------|-------------------|----------------|-----------------------|
|           |                      |                |             |                           |                    |                  |                   |                |                       |
|           |                      |                |             |                           |                    |                  |                   |                |                       |
|           |                      |                |             |                           |                    |                  |                   |                |                       |

#### 2. Issue of drawings

| SI.<br>No | Drawing<br>No./ Date | Revision<br>No | Brief title | SI.no of<br>receipt<br>register | Issued to | No. of<br>copies | Status<br>of drgs | Drg<br>supersedes<br>Drg no (if<br>any) | Signature |
|-----------|----------------------|----------------|-------------|---------------------------------|-----------|------------------|-------------------|-----------------------------------------|-----------|
|           |                      |                |             |                                 |           |                  |                   |                                         |           |
|           |                      |                |             |                                 |           |                  |                   |                                         |           |

For Contractor

Name :

Signed :

Date:

For Engineer

Name :

Signed :

Date:

## **CEMENT REGISTER**

1. Weekly Receipt Issue (For week from \_\_\_\_\_to\_\_\_\_)

Name of Work :

Name of Contractor:

Closing Balance at the Site of Work from

Previous week\_\_\_\_\_bags.

| Date  | Quantity Received | Qnty. Used Bags/<br>MT | Purpose | Closing balance<br>at the end of day |  |
|-------|-------------------|------------------------|---------|--------------------------------------|--|
|       | Bags/MT Source    |                        |         | (bags/MT)                            |  |
|       |                   |                        |         |                                      |  |
|       |                   |                        |         |                                      |  |
|       |                   |                        |         |                                      |  |
|       |                   |                        |         |                                      |  |
|       |                   |                        |         |                                      |  |
|       |                   |                        |         |                                      |  |
|       |                   |                        |         |                                      |  |
| Total |                   |                        |         |                                      |  |
|       |                   |                        |         |                                      |  |

For Contractor

Name :

Signed :

Date:

For Engineer

Name :

Signed :

Date:

# CONSUMPTION OF CEMENT ON DIFFERENT ITEMS OF WORKS (THEORETICAL AND ACTUAL)

Name of contractor Name of work

. .

Weekly record of items of works  $(\forall)$ 

|   | Quantity of work done during the week |  |
|---|---------------------------------------|--|
|   | Item of work                          |  |
|   | SI. No                                |  |
| 5 |                                       |  |

Abstract for the week ending : (Indicate cement consumption) (B

167

| Ă                     | consumed<br>(Bags/MT)                        |  |
|-----------------------|----------------------------------------------|--|
| Cement required       | to be consumed<br>theoretically<br>(Bags/MT) |  |
| Rate of cement per    | unit<br>(Bags/MT)                            |  |
| Quantity of work done | Unit                                         |  |
| Quantity of           | Quantity                                     |  |
| Item of work          |                                              |  |
| S. No.                |                                              |  |

For Engineer

Date:

For Contractor Name

Signed

Date:

Signed

Name

## **RECORDS OF CALIBRATION OF EQUIPMENT**

Name of Work :

Name of Contractor :

| ITEM | DATE<br>CALIBRATED<br>& PERSON<br>CERTIFYING(FOR<br>VENDOR OR<br>CONTRACTOR) | *DATE OF NEXT<br>CALIBRATION | DATE OF<br>INSPECTION<br>& PERSON<br>APPROVING (FOR<br>DEPARTMENT) | RESULT OF<br>INSPECTIONS |
|------|------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------|--------------------------|
|      |                                                                              |                              |                                                                    |                          |
|      |                                                                              |                              |                                                                    |                          |
|      |                                                                              |                              |                                                                    |                          |
|      |                                                                              |                              |                                                                    |                          |
|      |                                                                              |                              |                                                                    |                          |

\*Frequency of calibration for different equipment to be specified in advance.

| For Contractor | For Engineer |
|----------------|--------------|
| Name :         | Name :       |
| Signed :       | Signed :     |
| Date:          | Date:        |

## DAILY PROGRESS REPORT

Name of Work :

Name of Contractor :

| Date | Activity | Item of | Weather   | Special                   | Remarks | Signature | with date |
|------|----------|---------|-----------|---------------------------|---------|-----------|-----------|
|      | Location | work    | Condition | problems/<br>Difficulties |         | Recorded  | Checked   |
|      |          |         |           |                           |         |           |           |
|      |          |         |           |                           |         |           |           |
|      |          |         |           |                           |         |           |           |
|      |          |         |           |                           |         |           |           |
|      |          |         |           |                           |         |           |           |
|      |          |         |           |                           |         |           |           |
|      |          |         |           |                           |         |           |           |
|      |          |         |           |                           |         |           |           |
|      |          |         |           |                           |         |           |           |
|      |          |         |           |                           |         |           |           |
|      |          |         |           |                           |         |           |           |
|      |          |         |           |                           |         |           |           |
|      |          |         |           |                           |         |           |           |

| For Contractor | For Engineer |
|----------------|--------------|
| Name :         | Name :       |
| Signed :       | Signed :     |
| Date:          | Date:        |

## **REGISTER OF INSPECTION NOTES**

Name of Work :

Name of Contractor :

| No. of<br>Inspection<br>Note | No. and<br>date under<br>which<br>received | Reviewed<br>by | Signature | Number<br>& date of<br>compliance<br>submitted | Reviewed<br>by | Signature | Remarks |
|------------------------------|--------------------------------------------|----------------|-----------|------------------------------------------------|----------------|-----------|---------|
|                              |                                            |                |           |                                                |                |           |         |
|                              |                                            |                |           |                                                |                |           |         |
|                              |                                            |                |           |                                                |                |           |         |
|                              |                                            |                |           |                                                |                |           |         |
|                              |                                            |                |           |                                                |                |           |         |

| For Contractor | For Engineer |
|----------------|--------------|
| Name :         | Name :       |
| Signed :       | Signed :     |
| Date:          | Date:        |

## REGISTER OF OBSERVATIONS MEMOS ISSUED FROM THE QUALITY CONTROL CELL

Name of Work :

Name of Contractor :

| Year | Observation<br>Memo No. | No. and date<br>under which<br>received | Reviewed by | Signature | Number & date<br>of compliance<br>submitted | Reviewed by | Signature | Remarks |
|------|-------------------------|-----------------------------------------|-------------|-----------|---------------------------------------------|-------------|-----------|---------|
|      |                         |                                         |             |           |                                             |             |           |         |
|      |                         |                                         |             |           |                                             |             |           |         |
|      |                         |                                         |             |           |                                             |             |           |         |
|      |                         |                                         |             |           |                                             |             |           |         |

For Contractor

Name :

Signed :

Date:

For Engineer

Name :

Signed :

Date:

## **BITUMEN REGISTER**

1. Weekly Receipt/Issue (For week from \_\_\_\_\_\_ to \_\_\_\_\_)

Name of Work :

Name of Contractor :

Closing Balance at site of work :

Previous week \_\_\_\_\_ MT/Packs

| Date  | Quantity Received |       | Source | Quantity | Purpose | Closing Balance                 |
|-------|-------------------|-------|--------|----------|---------|---------------------------------|
|       | МТ                | Grade |        | used MT  |         | at the end of day<br>(Packs/MT) |
|       |                   |       |        |          |         |                                 |
|       |                   |       |        |          |         |                                 |
|       |                   |       |        |          |         |                                 |
|       |                   |       |        |          |         |                                 |
|       |                   |       |        |          |         |                                 |
|       |                   |       |        |          |         |                                 |
|       |                   |       |        |          |         |                                 |
|       |                   |       |        |          |         |                                 |
|       |                   |       |        |          |         |                                 |
| Total |                   |       |        |          |         |                                 |
|       |                   |       |        |          |         |                                 |
|       |                   |       |        |          |         |                                 |

| For Contractor | For Engineer |
|----------------|--------------|
| Name :         | Name :       |
| Signed :       | Signed :     |
| Date:          | Date:        |

# **RECORD OF PRESTRESSING WORK**

- 1. Name of work
- 2. Name of contractor :
- 3. Span length : (indicate avg cube strength at 7 and 28 days as per design)

:

4. Span number :

- 5. Name and number of component :
- 6. Date of Casting:\_\_\_\_\_
- 7. Gauge pressure not to exceed : \_\_\_\_\_

| Date of pre- | No. of cable                | Side             |                               |                     |                           |                    |  |  |  |  |  |
|--------------|-----------------------------|------------------|-------------------------------|---------------------|---------------------------|--------------------|--|--|--|--|--|
| stressing    | or wire or<br>pair of wires | Gauge<br>Reading | Initial<br>extension in<br>mm | Locking<br>pressure | Slip<br>observed in<br>mm | Final<br>Extension |  |  |  |  |  |
| 1            | 2                           | 3(i)             | 3(ii)                         | 3(iii)              | 3(iv)                     | 3(v)               |  |  |  |  |  |
|              |                             |                  |                               |                     |                           |                    |  |  |  |  |  |

|                  | Ş                             | Side                |                           |                    | Calculated                     |                                                                           |  |
|------------------|-------------------------------|---------------------|---------------------------|--------------------|--------------------------------|---------------------------------------------------------------------------|--|
| Guage<br>reading | Initial<br>extension<br>in mm | Locking<br>pressure | Slip<br>observed in<br>mm | Final<br>Extension | Total final<br>extension in mm | extension in mm<br>for an initial pull<br>per cable/wire/<br>pair of wire |  |
| 4(i)             | 4(ii)                         | 4(iii)              | 4(iv)                     | 4(v)               | 5                              | 6                                                                         |  |
|                  |                               |                     |                           |                    |                                |                                                                           |  |

| Theoretical                    | Losses or gain  | Progressive                  | Slip observed, |                                           | Signatures |         |                               |  |  |
|--------------------------------|-----------------|------------------------------|----------------|-------------------------------------------|------------|---------|-------------------------------|--|--|
| Extension<br>required in<br>mm | Extension in mm | Extension in Extension in if |                | tension in Extension in Extension in days | AE         | EE      | Contractors<br>Representative |  |  |
| 7                              | 8               | 9                            | 10 11 12(i)    |                                           | 12(ii)     | 12(iii) |                               |  |  |
|                                |                 |                              |                |                                           |            |         |                               |  |  |

| For Contractor | For Engineer |
|----------------|--------------|
| Name :         | Name :       |
| Signed :       | Signed :     |
| Date:          | Date:        |
|                |              |

| GROUTING | RECORD |
|----------|--------|
|----------|--------|

| Name of the work                          |                        | :            |     |          |          |            |   |        |
|-------------------------------------------|------------------------|--------------|-----|----------|----------|------------|---|--------|
| Name of Contractor                        |                        | :            |     | Cable    | No.      | :          |   |        |
| Span No.                                  |                        | :            |     | Date c   | of Grout | ing :      |   |        |
| Date of Cable Installat                   | ion                    | :            |     |          |          |            |   |        |
| Type of Cement OPC/                       | IISOPC                 | :            |     |          |          |            |   |        |
| Week & Year of Manuf                      | acture of OPC/IISOPC   | :            |     |          |          |            |   |        |
| W/C Ratio                                 |                        | :            |     |          |          |            |   |        |
| Name & Amount of ad used, if any          | mixture                | :            |     |          |          |            |   |        |
| Temp                                      | :                      | Mixing Water |     |          | Grout    | t _        |   |        |
| Time                                      | :                      | Start        |     |          | Finish   | ו <u> </u> |   |        |
| Equipment                                 | :                      | Grout Mixer  |     |          | Grout    | Pump       |   |        |
| Cable Duct                                | :                      | Diameter     |     |          | Lengt    | th         |   |        |
| Volume of Grout in lite                   | rs                     |              |     |          | Regro    | outing     |   |        |
| Grouting pressure                         |                        |              |     |          |          |            |   |        |
| Cement consumption<br>Theoretical         |                        | Actual       |     |          |          |            |   |        |
| Pre-grouting checks:                      |                        |              |     |          |          |            |   |        |
| Free of blockage                          |                        | Inlet        | :   | Yes/No   | C        | Dutlet     | : | Yes/No |
|                                           |                        | Vents        | :   | Yes/No   | C        | Cable duct | : | Yes/No |
| Leakage observed                          |                        |              |     | Yes/No   | S        | Sealed     | : | Yes/No |
| If cable duct blocked: I                  | Remedial measures      |              |     |          |          |            |   | _      |
| Grouting observations                     | :                      |              |     |          |          |            |   |        |
| Passage of grout throu                    | igh vents :            | Yes/No       |     |          |          |            |   |        |
| Passage of grout throu                    | igh outlet :           | Yes/No       |     |          |          |            |   |        |
| Any equipment failure                     | Post grouting checks : |              |     |          |          |            |   |        |
| Probing by stiff wire                     | :                      |              |     |          |          |            |   |        |
| Remarks                                   | :                      |              |     |          |          |            |   |        |
| Signatures of officers<br>during grouting | present                |              |     |          |          |            |   |        |
| For Contractor                            |                        |              | For | Engineer |          |            |   |        |
| Name :                                    |                        |              | Nar | me :     |          |            |   |        |
| Signed :                                  | Date:                  |              | Sig | ned :    |          | Date:      |   |        |

# PROFORMA FOR RESULT ANALYSIS (CEMENT)

Name of work

Name of contractor :

:

:

Type of Cement

Grade of Cement :

| S. No.                                                | Consignment No./Date | Sample<br>Reference No./<br>Date | Results of<br>Chemical Test<br>C3A, Etc. | Results of<br>physical test<br>(Fineness,<br>Strength etc.) | Results of<br>special tests,<br>if any |
|-------------------------------------------------------|----------------------|----------------------------------|------------------------------------------|-------------------------------------------------------------|----------------------------------------|
|                                                       |                      |                                  |                                          |                                                             |                                        |
| No. of samples<br>Mean<br>Standard Deviation<br>Range |                      |                                  |                                          |                                                             |                                        |
| Remarks                                               | 6:                   |                                  |                                          |                                                             |                                        |

For Contractor

Name :

Signed :

Date:

For Engineer

Name :

Signed :

Date:

# **PROFORMA FOR RESULT ANALYSIS (CONCRETE)**

Name of work

Name of contractor :

:

:

Type of Cement

Grade of Cement :

| SI.<br>No. | Sample Ref No. | Structure<br>Element | Wet Concrete<br>properties |       | Hardened Concrete Properties<br>Strength at age in days |        |         |  |  |
|------------|----------------|----------------------|----------------------------|-------|---------------------------------------------------------|--------|---------|--|--|
|            |                |                      | Temp                       | Slump | 3 days                                                  | 7 days | 28 days |  |  |
|            |                |                      |                            |       |                                                         |        |         |  |  |
|            |                |                      |                            |       |                                                         |        |         |  |  |
|            |                |                      |                            |       |                                                         |        |         |  |  |
|            |                |                      |                            |       |                                                         |        |         |  |  |
|            | e              |                      |                            |       |                                                         |        |         |  |  |

For Contractor

Name :

Signed :

Date:

For Engineer

Name :

Signed :

Date:

# **SECTION 9**

# DOCUMENTATION AND COMMUNICATION

## 9.1 Introduction

During implementation and upon completion of a road project, several documents are required to be prepared. Communication among Authority/Employer, Engineer and Concessionaire/ Contractor is a part of operational requirements of a Contract. The interaction takes places on issues like project execution, progress reporting, quality of works, invoicing, revised plans, change of scope, statutory and regulatory requirements as per Contract and any other requirements of Authority/Employer, Engineer and Concessionaire/Contractor.

## 9.2 General Principles of Documentation and Communication

## 9.2.1 Overview of documentation

Documentation is involved in the process of planning, design, reviews, procurement, storage & issue of materials, plant and machinery operations, changes, amendments, approvals, subcontracting, payment, accounting and control of obsolete documents. It also includes methods of controlling records, which are generated as a part of Quality Management System during project implementation. All the stakeholders shall ensure that the documents are legible, readily available and retrievable at alter date.

## **9.2.2** Overview of communication practices

Communication practices should be such that there is quick and objective interaction among all stake-holders for the day-to-day needs. For this purpose, e-tools may be the preferred option for the communication. The internal and external communication needs are required to be identified with respect to what will be communicated, when, with whom and how- related to all aspects of project implementation including total quality management of the project.

## 9.2.3 Requirement of Digital Technology in documentation

Document digitization is the process of converting manual documents into digital formats. In the process of document digitization, any type of document like text, images and videos are digitized and converted into digital formats such as .txt, .html, .xml, .pdf, .doc, .xls, .gif, .jpeg or .tif. Some of the advantages of digitization are perpetual preservation of vulnerable physical documents, quick and easy retrieval, easy access and easy to share.

All original records must be examined for their digitization suitability prior to the digitization process. This process will determine the extent of preparation required and ensure that successful images are obtained from the digitization process

## **9.2.4** *Requirement of E-Tools in communication*

E-Tools or electronic tools imply the application of modern ICT (Information and Communication Technology) tools to automate certain tasks. E-Tools is a generic term, which covers usage of a combination of computer hardware, software, communication tools and technologies for

a specific purpose or application. Key benefits of E-Tools are:

- Better quality, speed and effective flow of information.
- Improved accuracy and consistency of documentation.
- Paperless interaction environment friendly.
- Builds transparency and accountability at all levels.

E-Tools should be preferred and used for communication as far as possible.

### 9.3 Guidelines for establishing mechanism for documentation

#### **9.3.1** *Project preparation*

During the course of DPR preparation, several discussions are made at site as well as office, which impact different aspects of the project. Both Authority and Consultant shall maintain records of all such discussions/meetings and related communication held for finalization of the alignment and various provisions/components of the project in a systematic and chronological manner. All volumes/parts forming part of DPR shall have proper index and the main report shall contain consolidated index of all volumes/parts. All revisions to DPR/ any particular part of it shall be properly identified and a table inserted in the main report chronicling each revision. The soft and hard copies of various reports (like DPRs, Feasibility Reports, LA plans) submitted by the Consultant shall be maintained at the site office of Authority.

#### 9.3.2 Construction

- (i) Drawings, Specifications, Work related documents: The issuing authority should maintain the records of drawings/documents giving information about reference number, revision, reference, title, date of issue, to whom issued, number of copies issued, status of issue, date of approval, purpose of issue etc. Receiving officer to whom documents are issued at site should maintain similar record.
- (ii) Inspection Proforma: These are used for the purpose of seeking approvals from the 'Engineer or his representative' before commencing any operation, such as, pour cards for concrete, approval to reinforcement, approval to formwork, approval to setting out, approval to pre-stressing, approval to grouting, etc. These are usually supplemented by standard checklists which have to be verified by the 'Engineer' and after he is satisfied about contents, approval is then accorded on that form.
- (iii) Test Results: The results of day-to-day tests carried out in accordance with the requirements or specifications should be recorded in the prescribed Proforma. The Proforma are usually maintained in two forms - one for recording the observations during each test and calculation of quality characteristics. The second is for recording the summary of test results to facilitate later analysis.
- (iv) **Method Statements:** The method statements give a detailed proposal of the constructing agency for carrying out each and every activity in the

Project. These are written in form of various steps in a particular sequence supplemented by suitable sketches to be self-explanatory. These method statements shall be approved by Engineer prior to implementation.

- (v) Daily Dairy of Work and Quantity Records: Records are required to be maintained at site for the day-to-day operations, activities and events taking place at the site of work, such as equipment deployed, manpower deployed, activities carried out, different types of materials consumed, detailed observations of the activities at site (foundation strata, tilts, shifts, etc.), visits by senior level engineers and follow-up of their instructions. These records will enable preparation of the completion report as well as investigation of any unusual observations, which come to notice afterward.
- (vi) Non-conforming Products: Detailed statements have to be prepared describing the procedures to be followed as soon as any result not conforming to the requirements is obtained. Such statements include the (a) procedures to be adopted for rectification of a particular component where such result has been noticed, (b) the long term corrective action, (c) immediate preventive action in other similarly affected activities till the long term corrective actions are implemented and (d) dismantling/removal/disposal of unsuitable components/materials.

For the quality of the finished work, it is necessary for the materials and workmanship to fully comply with the work requirement.

Special situations may, however, arise where non-conformance may only be known after sometime e.g., strength of concrete 28 days after casting. Separate recall procedures should be laid out for dealing with such nonconforming situations.

- (vii) Quality Audit Records: The audit programme shall assign qualified personnel to perform such audits and define the frequency and procedure of audit. The method of reporting the findings and recommendations and the means for corrective actions shall be documented.
- (viii) **Mechanism** shall also be developed for recording and maintaining documents with regards to other aspects of construction such as procurement, storage and issue of materials, operation of plant and machinery, payment, accounting, approvals, traffic diversion, safety and environmental safeguards measures etc.

#### 9.3.3 After Construction

#### a) The As-built drawings/plans:

The conditions of Contract/Concession Agreement provide all information and the required content of "As-built Drawings", and responsibilities for their preparation. It is the Contractor's/Concessionaire's responsibility to prepare the As-built Drawings. The Engineer must supervise, monitor, and check the preparation of the As-built Drawings. The preparation of these drawings must be performed during the course of the works and must not be left until "substantial completion" to commence. As the works are completed they are to be surveyed / measured and the drawings prepared.

#### b) Final Completion report

Although final documentation is to be submitted on completion of a section / mile stone and/or at the end of Contract, they have to be prepared as work progresses, and finalized when works near completion.

#### 9.3.4 Operation

Records of all the maintenance activities carried out during Operation Period should be prepared by the Contractor and checked by the Engineer. A copy of such records should be maintained at site office of Authority.

#### 9.4 Guidelines for security/authentication of documents

The documents need to be authenticated by Engineer. The authenticated documents should be kept under the safe custody of site office of Authority after completion of the work.

### 9.5 Sample formats for communication

#### **9.5.1** Request for Inspection Form (RFI)

The Concessionaire/Contractor shall submit Request for Inspection Form (RFI) to the Engineer in advance. A sample of the RFI is given in **Annexure 9.1**.

## 9.5.2 Forms for Reports and Records

Sample forms for Reports and Records are in **Annexure 9.2**.

Annexure 9.1

# **REQUEST FOR INSPECTION FORM**

| Contractor | Contractor Contractor Inspection |          |  |  |  |  |
|------------|----------------------------------|----------|--|--|--|--|
|            | Activity                         |          |  |  |  |  |
| Section    | Item                             |          |  |  |  |  |
|            | Chainage                         | Chainage |  |  |  |  |
| Package    | Activity Location                |          |  |  |  |  |

| 1   |
|-----|
| - 1 |
|     |
| ~   |
| 6   |
| _   |
| S.  |
| Ψ   |
| ŝ   |
| Ð   |
|     |
| ğ   |
| ω.  |
| 11  |

Date/Time Contractor

|           | Contractor to submit the Request by minimum of 48 hours in advance of work requirements. | Engineer to return approved or<br>disapproved original and one copy<br>to the contractor before the work<br>proceeds. |
|-----------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Notes:    | ÷                                                                                        | તં                                                                                                                    |
| Comments: |                                                                                          |                                                                                                                       |

Request to begin activity is: APPROVED/DISAPPROVED Designation: Signature : Date: Name :

## **DRAWING ISSUE FORM**

Sheet No.

of

|                            |              | <br>  |    |       | 0510  |        |    |   |   |   |  |
|----------------------------|--------------|-------|----|-------|-------|--------|----|---|---|---|--|
|                            |              |       |    | DATE  | OF IS | SUE    |    |   |   | - |  |
|                            | Day          |       |    |       |       |        |    |   |   |   |  |
|                            | Month        |       |    |       |       |        |    |   |   |   |  |
|                            | Year         | İ     |    | İ     | İ     |        |    | İ | İ |   |  |
| DRAWING TITLE DRAWING NO.  |              | <br>, | DR | AWING | REVIS | SION N | 0. |   |   |   |  |
|                            |              |       |    |       |       |        |    |   |   |   |  |
|                            |              |       |    |       |       |        |    |   |   |   |  |
|                            |              |       |    |       |       |        |    |   |   |   |  |
|                            |              | Ì     |    |       |       |        |    |   |   |   |  |
|                            |              | ĺ     |    |       |       |        |    |   | ĺ |   |  |
|                            |              |       |    |       |       |        |    |   |   |   |  |
|                            |              | İ     |    | ĺ     | ĺ     |        |    | ĺ | İ |   |  |
|                            |              | İ     |    | ĺ     | İ     |        | İ  | İ | İ |   |  |
|                            |              |       |    |       |       |        |    |   |   |   |  |
|                            |              | İ     |    | ĺ     | ĺ     |        |    | ĺ | İ |   |  |
| NO. OF DRAWINGS ISSUED TO: |              | ĺ     |    | İ     | İ     |        | İ  | İ | İ |   |  |
| Legend                     | Client       |       |    |       |       |        |    |   |   |   |  |
|                            | Contractor   | İ     |    | ĺ     | ĺ     |        |    | ĺ | İ |   |  |
|                            | Site Office  | İ     |    | ĺ     | İ     |        | İ  | İ | İ |   |  |
|                            | Other        |       |    |       |       |        |    |   |   |   |  |
| PURPOSE OF ISSUE           | Information  |       |    |       |       |        |    |   |   |   |  |
|                            | Approval     |       |    |       |       |        |    |   | ĺ |   |  |
|                            | Comment      |       |    |       |       |        |    |   |   |   |  |
|                            | Construction |       |    |       |       |        |    |   |   |   |  |
|                            | Other        | ĺ     |    |       |       |        |    |   |   |   |  |

Attached drawings have been checked and agreed with above list

Issued by: \_\_\_\_\_ Receipt Acknowledged : \_\_\_\_\_

#### FORM II-2

## **DAILY REPORT**

DATE: \_\_\_\_\_

PAGE: \_\_\_\_\_

BILL NO.

Weather -----A.M. ----- P.M.

**ACTIVITIES** (Item No., description, locations, quantity or work, etc.)

**MANPOWER** (Engineers, foremen, skilled laborers, operators, others)

**EQUIPMENT** (Type, No. working/idle)

PROBLEMS/ISSUES ENCOUNTERED (Disturbances, accidents, etc.)

**REMARKS** (Inspecting officers, site instructions, emergency work orders, etc.)

| FOR EPC CONTRACTOR (If applicable) | FOR CONC<br>(If applicabl |
|------------------------------------|---------------------------|
| Name :                             | Name :                    |
| Designation:                       | Designation               |
| Signature :                        | Signature :               |
| Date:                              | Date                      |

R CONCESSIONAIRE applicable) me : signation nature : te FOR ENGINEER

Name : Designation Signature : Date

# **INSPECTION REPORT FOR MECHANICAL PLANT /MACHINERY**

| Contractor         | Package No        |
|--------------------|-------------------|
| Inspection Date    | Time              |
| Plant Machine Type | Model No          |
| Manufacturer       | Manufacturer date |

#### **General Conditions**

| Description                     | Condition<br>O.K./Poor/Not O.K. | Remarks/Defects |
|---------------------------------|---------------------------------|-----------------|
| Overall Appearance              |                                 |                 |
| Tyres/Drums/Tracks              |                                 |                 |
| Steering Brakes                 |                                 |                 |
| Operator/Understanding/Training |                                 |                 |
| Environmental Condition         |                                 |                 |

#### **Specification Requirements**

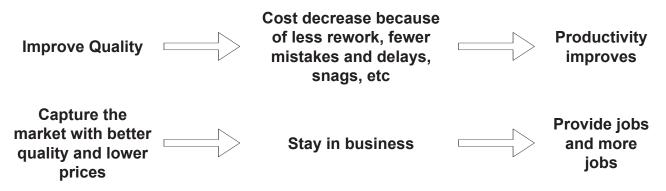
| Spec. Clause No. | Description<br>Specification<br>requirement | Rating<br>O.K./Poor/Not O.K. | Remarks/Defects |
|------------------|---------------------------------------------|------------------------------|-----------------|
|                  |                                             |                              |                 |
|                  |                                             |                              |                 |
|                  |                                             |                              |                 |

#### Final Recommendations:

| FOR EPC CONTRACTOR<br>(If applicable) | FOR CONCESSIONAIRE<br>(If applicable) | FOR ENGINEER |
|---------------------------------------|---------------------------------------|--------------|
| Name :                                | Name :                                | Name :       |
| Designation:                          | Designation                           | Designation  |
| Signature :                           | Signature :                           | Signature :  |
| Date:                                 | Date                                  | Date         |

# **SECTION 10**

## STATISTICAL ANALYSIS


#### 10.1 Introduction

#### **10.1.1** *History of Statistical Quality Control*

Prior to second decade of 20<sup>th</sup> century, industrial quality control meant inspection of products and removing defective ones. Dr. Shewhart started the Process Control while working in Western Electric Company in the year 1924 and further developed it when he moved to Bell Laboratories. A physicist, engineer and statistician by profession, Dr. Shewhart is also called father of Statistical Process Control.

Shewhart framed the problem in terms of *assignable-cause* and *chance-cause* variation and introduced the control chart as a tool for distinguishing between the two. Shewhart stressed that bringing a production process into a state of statistical control, where there is only chance-cause variation, and keeping it in control, is necessary to predict future output and to manage a process economically.

The next leap in quality control was Total Quality Management, which was developed in post war Japan under the aegis of William Edwards Deming a protégée of Shewhart. Apart from his statistical prowess, it was Deming's philosophy to manage a "system" to achieve a high quality product or service that resulted in the grand success of Japanese manufacturing industry. Deming's chain reaction is given below:



The next step forward in quality management is six-sigma ( $6\sigma$ ). A six sigma process is one in which 99.99966% of all opportunities to produce some feature of a part are statistically expected to be free of defects (3.4 defective features per million opportunities). Introduced by Bill Smith while working at Motorola in 1986, it was substantially developed by Jack Welch at General Electric in 1995.

The fundamental concept of six sigma process is that upper and lower specification limits (marked USL and LSL) are kept at a distance of 6 $\sigma$  from the mean. Because of the properties of the normal distribution, values lying that far away from the mean are extremely unlikely: approximately 1 in a billion too low, and the same too high. Even if the mean were to move

right or left by 1.5 $\sigma$  at some point in the future, there is still a good safety cushion. This is why Six Sigma aims to have processes where the mean is at least 6 $\sigma$  away from the nearest specification limit.

Specific management tools are employed in all the 3 methods mentioned above by monitoring certain statistical parameters in different stages of manufacturing.

10.1.2 Variability is a reality in road construction like any other manufacturing process. It is like a settled order of the nature. Variability occurs in materials and processes used for road construction. It also occurs in different stages of road construction, has different dimensions and impact on quality of various components of road and bridge works in different manners. Limiting the variability is a prime objective of QA Plan but variability does exist and needs to be duly accounted for while evaluating quality of a component of road and bridge works for the purpose of its acceptance. Adding to the variability of materials and processes, there is also considerable variation in the process of sampling of materials carried out for testing and actual testing of materials resulting in measurement errors. Under such circumstances, statistical analysis helps in taking informed decisions about acceptance. While the guidelines stated elsewhere in this Manual shall be followed to achieve desired quality, the quality control test results of certain materials/layers/components as specified in Section 11 of this Manual shall be subjected to statistical analysis as stated in this Section for the purpose of acceptance of the particular material/laver/component. Essentially, statistical guality control for road and bridge works relates to statistical Lot inspection of an item of work and its acceptance.

#### 10.2 Glossary of Terms

Before proceeding with a particular method of analysis, it is necessary to understand various terms associated with statistical analysis. Whereas some of the terms are common to all methods, some are unique to a particular method. The standard definitions as given in different international codes of practice, literature are given below:

**Quality Characteristics:** Quality Characteristics are parameters/properties, measured values of which define the quality of a product i.e. material/layer/component with reference to its functionality, reliability, usability, efficiency, maintainability, and portability.

**Attributes:** Characteristics that are measured as either "acceptable" or "not acceptable" are called Attributes. Thus Attributes have only discrete, binary, or integer values.

Variables: Characteristics that are measured on a continuous scale are called Variables.

**Population:** Population is a set of similar items or events, which is of interest for some question or experiment in statistics.

**Lot:** In statistical quality control for road & bridge works, Lot represents Population. For example it may be a section of a particular layer of pavement made from same type of materials and constructed on the same day.

**Sample:** Sample is a set of data collected and/or selected from a Lot by a defined procedure. The elements of a Sample are known as sample points, sampling units or observations.

**Sample Space:** In probability theory, the Sample Space of an experiment or random trial is the set of all possible outcomes or results of that experiment.

**Random Sampling:** Random Sample is a subset of a statistical population (Lot) in which each member of the subset has an equal probability of being chosen. A simple Random Sample is meant to be an unbiased representation of the Lot. The process of selecting a random sample is called Random Sampling.

**Mean:** Mean refer to a measure of the central tendency either of a Probability Distribution or of the Random Variable characterized by that distribution.

**Variance:** Variance measures how far a set of numbers is spread out. The variance of a Random VariableX is the expected value of the squared deviation from the Mean.

**Standard Deviation:** Standard Deviation (SD, also represented by the Greek letter sigma  $\sigma$  or s) is a measure that is used to quantify the amount of variation or dispersion of a set of data values. The Standard Deviation of a Random Variable, Statistical Population, data set, or Probability Distribution is the square root of its Variance.

**Continuous Probability Distribution:** A Probability Distribution is a statistical function that describes all the possible values and likelihoods that a Random Variable can take within a given range. If a Random Variable is a Continuous Variable, its probability Distribution is called a Continuous Probability Distribution. The equation used to describe a Continuous Probability Distribution is called a probability density function (pdf). All probability density functions satisfy the conditions i.e. (i) The Random Variable Y is a function of X; that is, Y = f(X), (ii) The value of Y is greater than or equal to zero for all values of X and (iii) The total area under the curve of the function is equal to one.

**Normal Distribution:** The Normal Distribution is a Probability Distribution that associates the normal Random Variable *x* with acumulative probability. Physical quantities that are expected to be the sum of many independent processes (such as measurement errors) often have distributions that are nearly normal. The Probability Density of the Normal Distribution is given by:

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Where:

 $\mu$  is mean or expectation of the distribution

 $\sigma$  is standard deviation

 $\sigma^2$  is variance

Normal Distribution curve is flatter if variation of data from mean is more and vice versa.

Standard Normal Distribution is the simplest case where Mean is 0 and Standard Deviation is 1.

**Specification Limit(s):** The limiting value(s) placed on a Quality Characteristic around a nominal or target value of the characteristic that may be either an individual upper or lower specification limit, USL or LSL, called a single specification limit; or USL and LSL together, called double specification limits. Specification Limits set forth in MoRT&H Specifications

for Road and Bridge Works or in applicable code of practice in respect of additional Quality Characteristics mentioned in the Section 5 of this Manual are to be considered for the purpose of acceptance.

**Quality Measure:** Quality Measure is a tool used in statistical acceptance of a material/ layer/component with respect to a certain Quality Characteristic. There are several quality measures such as Percent Defective (PD), Percent Within Limits (PWL), Average Absolute Deviation, Moving Average, Conformal Index etc. However PD/PWL have been preferred in recent years because they simultaneously measure both the average level and the variability in a statistically efficient way.

**Percentage Within Limit (PWL):** PWL is the percentage of the Lot falling above the LSL, beneath the USL, or between the LSL and USL. Conceptually, it is similar to determining the area under the normal curve bounded by LSL and/or USL. PWL is estimated using the Sample Mean and the Population/Sample Standard Deviation. PWL is also function of sample size.

### Percentage Defective (PD): 100-PWL

**Average Absolute Deviation:** The Average Absolute Deviation (or Mean Absolute Deviation) of a data set is the average of the absolute deviations from a central point, usually Mean. It is a summary statistic of statistical dispersion or variability.

**Moving Average:** Moving Average (rolling average or running average) is a calculation to analyze data points by creating series of averages of different subsets of the full data set. It is also called a moving mean or rolling mean and is a type of finite impulse response filter.

**Conformal Index:** Conformal Index is a measure of the dispersion of a series of results around a target or specified value, expressed as the square root of the quantity obtained by summing the squares of the deviations from the target value and dividing by the number of observations. The standard deviation is a measure of precision, but the CI is a measure of exactness (accuracy) or degree of conformance with the target.

**Producer's Risk:** Probability of the sampling and decision plan resulting in work of a satisfactory quality being rejected.

**Consumer's Risk:** Probability of the sampling and decision plan resulting in work of an unsatisfactory quality being accepted.

**Operating Characteristic Curve:** A curve corresponding to a particular PD. The Producer may increase the probability of his work being accepted by reducing the PD. Conversely any increase in PD will increase the probability of rejection. The relationship between the probability of acceptance and PD for a particular quality control scheme is referred to as its OC curve.

## **10.3** Sampling and Testing

**10.3.1** Statistical quality control for road works involves statistical Lot inspection and acceptance or otherwise of the Lot but not rigorous statistical process control as used in industrial quality control. Like statistical analysis for any other product, statistical analysis for road works deal with samples to draw inference about Quality Characteristic of the Population (Lot).

### **10.3.2** Salient Aspects of Sampling

Following are the important aspects of sampling:

- Sampling plan has to be prepared for each Quality Characteristic.
- The purpose of acceptance sampling is to sentence Lots i.e. not to precisely estimate the Lot quality.
- The most effective use of acceptance sampling is not to "inspect quality into the product," but rather as an audit tool to ensure that the output of a process conforms to requirements.
- When testing is destructive, there is no substitute for sampling.
- Acceptance sampling often greatly reduces the amount of inspection/testing error.
- There are risks of accepting "bad" Lots and rejecting "good" Lots.
- Acceptance sampling requires rigorous planning and documentation of the acceptance-sampling procedure.
- Variables acceptance-sampling plans assume that the distribution of the Quality Characteristic is nearly normal. Any substantial departure of the distribution of the Quality Characteristic from being normal, adversely impacts reliability of the analysis.

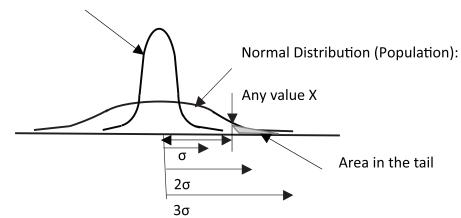
### 10.3.3 Lot Selection

Lot selection is very important so that statistical analysis of samples presents good approximation of the Quality Characteristics of the Lot. The following criteria shall be followed in Lot selection for road works:

- The Lot must be defined before testing commences.
- The Lot may be of any size, but is restricted to a single day's production.
- The Lot must be homogeneous with only random variation in characteristics such as density, moisture content, thickness, colour and finish.

## **10.3.4** *Random Sampling*

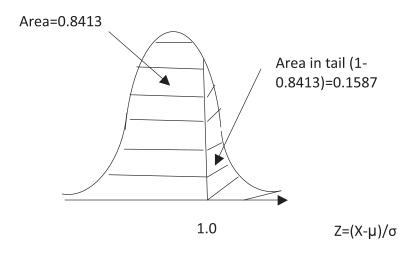
Random Sampling gives us a way to study Population characteristics without systematic bias. Random Sampling is not arbitrary sampling but there are defined ways to do it. In simple Random Sampling each possible Sample has equal probability of being drawn. Number of Samples to be taken from each Lot is specified in MoRT&H Specifications and to be followed although statistical tools are available to determine sample size for different conditions. The samples are collected in a relatively homogeneous set of conditions over time/space, which helps to separate "signal" from "noise".


## **10.4** Fundamental Principles of Statistical Analysis

The Bell-shaped normal probability distribution curve is symmetrical about the vertical axis. The intersection point of the vertical axis with the horizontal line asymptotic to the curve or the mid- point represents the mean (' $\mu$ '). The area of the curve is equal to unity representing probability of 1. Any value (x) of the variable can lie to the left (negative side) or right (positive

side) of the mean and its distance from the mean in terms of standard deviation ( $\sigma$ ) represents the deviation from the mean (e.g. 1,2 or 3 $\sigma$ ). No deviation beyond 3 $\sigma$  on either side is possible. The area of the curve bounded by two ordinates, representing two values, and the curve indicates the probability of the values lying between the two points (e.g. -1.6 $\sigma$  and +1.65 $\sigma$ ). The area left in either of the tails beyond any ordinate indicates the probability of the variable not having a value that is greater than that value (if the ordinate is on the positive side) or less than that value (if the ordinate is on the negative side).

Normal distribution is represented by two parameters, mean and standard deviation $\mu$  and  $\sigma$  for population or x and s for samples. Larger the value of standard deviation (as in the case of population) flatter is the curve and smaller is its value (as in the case of samples), the sharper it is. (See the figure below).


Normal Distribution (sample mean):  $\bar{x}$ ,s



Normal Distribution Curve for Population and Sample mean

Z statistic given by  $(x-\mu)/\sigma$  is an indication of the deviation of the value of the variable from the mean. The areas bound by the ordinate at any X corresponding to the Z (or vice versa) are tabulated in standard Statistical Tables. For example, for Z=1, the area is 0.8413, which means the remaining area in the tail is 0.1587. The interpretation is that there is 84.13 per cent probability that the given value of the variable will not be exceeded and 15.87 per cent probability that it will be. If Z is equal to -1, by symmetry, it can be said that there is 84.13 per cent probability that the given value X will not fall below that value and 15.87 per cent probability that it will. If the areas in the two tails is deducted from 1, it will give the probability of the values lying between Z=+1 and -1, which in this case is 68.26 per cent.

In statistical quality control, the objective is to predict with a certain level of confidence the probability of a value of the desired variable (a) being exceeded or falling below this value, or (b) the value lying within a certain range. This confidence level in Statistics is called 'Confidence Interval'. The probability of non-occurrence of any event, as explained above is equal to the area in the tail and that is called the 'significance level' in Statistics. Two sets of values of Z, (+/-) 1.65 and (+/-) 1.96 are of special importance as these relate to 95 per cent and 97.5 per cent Confidence Interval of any value of variable being exceeded or falling below that value (ref (a) above), which is the main concern in quality control.



The Table below presents a compilation drawn from the Standard Statistical Tables of the areas under the curve and the tail for various Z and their interpretation.

| Ζ= (x-μ)/σ | Area under<br>the Curve<br>for different<br>Z (A) | Area under<br>the tail<br>beyon d x=<br>μ+/-Zσ<br>(1-A)=B | Area<br>excluding<br>both tails<br>A-B= C | Probability<br>of x not<br>exceeding<br>its present<br>value=<br>Ax1/100 | Probability<br>of x lying<br>between<br>the two<br>tails (%)<br>Cx1/100 | Interpretation                                                                                                                                                                                             |
|------------|---------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| +1         | 0.8413                                            | 0.1587                                                    | 0.6826                                    | 84.13                                                                    | 68.26                                                                   | 84 % probability that x will<br>not exceed mean plus $\sigma$ ,<br>16% probability that it<br>can go as low as $\mu$ - $\sigma$ and<br>68% probability that it will<br>lie between $\mu$ +/- $\sigma$      |
| +1.64      | 0.9495                                            | 0.0505                                                    | 0.8990                                    | 94.95                                                                    | 89.90                                                                   | 95 % probability that x will not exceed mean plus 1.64 $\sigma$ , 5 % probability that it can go as low as $\mu$ -1.64 $\sigma$ and 90% probability that it will lie between $\mu$ +/- 1.64 $\sigma$       |
| +1.96      | 0.9750                                            | 0.0250                                                    | 0.9500                                    | 97.50                                                                    | 95.00                                                                   | 97.50 % probability that x will not exceed mean plus 1.96 $\sigma$ , 2.5 % probability that it can go as low as $\mu$ -1.96 $\sigma$ and 95 % probability that it will lie between $\mu$ +/- 1.96 $\sigma$ |

| +2 | 0.9772 | 0.0228 | 0.9544 | 97.72 | 95.44 | 97.7 % probability that x will not exceed mean plus $2\sigma$ , 2.23% probability that it can go as low as $\mu$ -2 $\sigma$ and 95.4% probability that it will lie between $\mu$ +/- 2 $\sigma$ |
|----|--------|--------|--------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| +3 | 0.9998 | 0.0002 | 0.9996 | 99.98 | 99.96 | 100 % probability that x will not exceed mean plus $3\sigma$ , 0.02 % probability that it can go as low as $\mu$ -3 $\sigma$ and 100% probability that it will lie between $\mu$ +/- 3 $\sigma$  |

The discussion so far has been on population mean and standard deviation, which refers to the 'lot' in this document. Samples are drawn from the lot and tested. A number of tests (say 6 or 8) are carried out on each set of sample and every set will throw up a sample mean and the sample standard deviation. How to predict the lot from these tests is the question. This problem is solved in three steps, viz.

- Each test, if carried out with uniform procedure, equipment and personnel,
   i.e. without any bias in the testing procedure, can be considered to follow a normal distribution with the sample mean (x) and sample standard deviation (s). At 95 per cent Confidence interval, it can be said that no test value can fall below 1.65 s.
- (ii) It is an established statistical principle that the samples follow normal distribution with sample mean and standard deviation of  $s/\sqrt{n}$ . This would mean that the lowest value obtained by (i) above (mean -1.65s) can further go down by 1.65s/ $\sqrt{n}$ .
- (iii) Thus at 95 per cent Confidence Interval the total deviation possible from the sample mean is  $(1.65-1.65/\sqrt{n})$  times s. In other words, if this quantity is subtracted from the sample mean, the value obtained should be more than the value specified for quality.

*Explanation:* If Specification requirement is compaction to 98 per cent density and the mean of 4 tests in a set of sample comes to 99 per cent with standard deviation of 3, the predicted lot density will be 99 -1.65 (1-  $1/\sqrt{4}$ ) 3, i.e. 97.525, which is less than 98 and hence unacceptable. However, if the variability in the tests is low and s is equal to 1.5 the predicted density would be 98.089 and the sample would pass.

# **SECTION 11**

# ACCEPTANCE/NON CONFORMANCE/RECTIFICATION

#### 11.1 Introduction

Any material/product/specialized item received/manufactured at site and any work carried out at site has to be finally either accepted for the work or rejected. Rejected work may however be reworked to meet acceptance process. The acceptance process typically comprises of the following steps:

- i) Identification of Attribute as well as Variable Quality Characteristics for acceptance
- ii) Selection of Lot
- iii) Sampling
- iv) Testing
- v) Statistical Analysis, if applicable
- vi) Acceptance/Rejection

**11.1.1** The Quality Characteristics of different materials/finished products/items of work are given in different Sections of MoRT&H Specifications for Road & Bridge Works whereas some additional Quality Characteristics of factory manufactured materials; products and specialized items are detailed in **Section 5** of this Manual.

**11.1.2** Guidelines for Lot selection is described in **Section 10** of this Manual. It is also prescribed in MoRT&H Specifications for Road & Bridge Works (Section 900 for road works and respective sections for structures).

**11.1.3** Sample size is prescribed in MoRT&H Specifications for Road & Bridge Works (Section 900 for road works and respective sections for structures). Guidelines for Random Sampling are described in **Section 10** of this Manual. Further sampling method prescribed in respective applicable BIS/International Codes of Practice for different Quality Characteristics of different materials/works shall be strictly followed.

**11.1.4** Applicable test methods for Quality Characteristics of different materials/works are prescribed in MoRT&H Specifications for Road & Bridge Works whereas additional Quality Characteristics for factory manufactured materials, products and specialized items are detailed in **Section 5** of this Manual.

**11.1.5** General aspects of Statistical Analysis are given in **Section 10** of this Manual. Applicability of Statistical Analysis to various Quality Characteristics of different materials/ works is given in following paragraph.

**11.1.6** General principles of Acceptance/Rejection are detailed in subsequent paragraphs, which shall be followed in conjunction with applicable provisions of MoRT&H Specifications for Road & Bridge Works.

## 11.2 Acceptance Criteria

Once the test result on the sample of a particular material/product/work is obtained for a particular Quality Characteristic, the following procedure shall be followed to check its acceptance or otherwise. Wherever multiple Quality Characteristics are specified in MoRT&H Specifications for Road & Bridge Works/Section 5 of this Manual for a particular material/ product/work, acceptance against each Quality Characteristic shall be established for final acceptance of the material/work.

**11.2.1** In respect of the following materials/works, statistical analysis procedure given in Section 10 of this Manual shall be applied for the Quality Characteristics mentioned against such materials/works.

| SI<br>No. | Material/work                                                       | Quality<br>Characteristic(s)  | Lot Size                                        | Sample<br>Size<br>(nos.) |
|-----------|---------------------------------------------------------------------|-------------------------------|-------------------------------------------------|--------------------------|
| 1         | Earthwork for<br>Embankment                                         | Compaction (Field<br>Density) | 3000 sqm but limited to single day's production | 10                       |
| 2         | Sub-Grade, Lime<br>Treated Soil for Sub-<br>Grade/Sub-Base          | Compaction (Field<br>Density) | 2000 sqm but limited to single day's production | 10                       |
| 3         | Cement Treated Soil/<br>Cement-Fly Ash<br>Treated Sub-Base/<br>Base | Compaction (Field<br>Density) | 2000 sqm but limited to single day's production | 10                       |
| 4         | Granular Sub Base                                                   | Compaction (Field<br>Density) | 2000 sqm but limited to single day's production | 5                        |
| 5         | Wet Mix Macadam Sub<br>Base/Base                                    | Compaction (Field<br>Density) | 2000 sqm but limited to single day's production | 6                        |
| 6         | DBM & BC                                                            | Compaction (Field<br>Density) | 3000 sqm but limited to single day's production | 4                        |
|           |                                                                     | VMA                           | 400 MT but limited to single day's production   | 3                        |

**11.2.2** In respect of the other Quality Characteristic(s) of the materials/works listed in Clause 11.2.1 than those mentioned there in and materials/products/works not listed in Clause 11.2.1, acceptance is established if the value of the test results of the sample is more than the specified value/less than the specified value/within tolerance limits of the specified value as applicable to the given Quality Characteristic based on MoRT&H Specifications for Road & Bridge Works.

11.2.2.1 In respect of Quality Characteristic(s) of the materials/works listed in Clause 11.2.1, acceptance is established if the mean value of all the test results of the sample is more than the specified value/less than the specified value  $\pm \left(1.65 - \frac{1.65}{(no. of samples) 0.5}\right)$  times the standard deviation (more & + if it is LSL and less & - if it is USL).

11.2.2.2 Acceptance of additional Quality Characteristics for factory manufactured materials, products and specialized items as detailed in **Section 5** of this Manual is established if the value of the test result is more than the specified value/less than the specified value/within tolerance limits of the specified value as applicable to the given Quality Characteristic based on relevant Code of Practice.

## 11.3 Failure to meet acceptance criteria

Whenever, a material/work does not pass acceptance criteria pursuant to Clause 11.2 of this Section for all the applicable Quality Characteristic(s) as per MoRT&H Specifications for Road & Bridge Works and additional Quality Characteristics for factory manufactured materials, products and specialized items as detailed in **Section 5** of this Manual, the following options are available:

- i) Item reworked to meet acceptance criteria: The Concessionaire/Contractor may rework the material/work to alter/enhance its properties so that the reworked item meets acceptance criteria. For example an aggregate stockpile failing gradation requirement for a particular work may be mixed with aggregates of suitable size so that the blended aggregates meet final gradation requirements or a compacted granular base layer failing compaction requirement may be loosened, mixed with additional water and re-compacted to required density. This option may not be applicable to all Quality Characteristics of a particular material/work or all the materials/works. The details of materials/works to be reworked for failing in acceptance criteria of specific Quality Characteristic(s) shall be provided in Quality Assurance Plan of the Concessionaire/Contractor along with procedure for reworking. In case of Quality Characteristic(s) of a particular material/work not included in QAP, reworking can only be done by the Concessionaire/Contractor with specific approval of Construction Supervision Consultant/Independent Engineer/Authority's Engineer along with procedure/methodology thereof.
- ii) Accepted with reduced pay factor: This option can be exercised only if specifically provided for in conditions of contract following the procedure specified therein.
- iii) Re-graded for alternate use: This option can be exercised only if specifically provided for in conditions of contract following the procedure specified therein. For example a material rejected for main carriageway may be utilized in service road after necessary correction in properties if allowed in contract.
- iv) Rejected and replaced: A material/work failing to meet acceptance criteria shall be rejected and replaced if none of the options mentioned at i, ii & iii are applicable or if the reworked material still fails to meet acceptance criteria.

Applicability of a particular option to a particular material/work other than option i & iv shall be in accordance with conditions of contract if it is specifically mentioned therein.

#### 11.4 Protocol for dealing with non-conformance works

Whenever a material/ work is found to fail acceptance criteria, Construction Supervision Consultant/Independent Engineer/Authority's Engineer will notify the Concessionaire/

Contractor of the non-conformance. Following the notice, the Concessionaire/Contractor and Construction Supervision Consultant/Independent Engineer/Authority's Engineer shall follow the protocol as detailed below:

## **11.4.1** A log shall be maintained for all the NCRs.

**11.4.2** If the QAP indicates a plan for rectification of the particular nonconformance, Concessionaire/Contractor may indicate within 2 working days from the date of receipt of non-conformance notice, its intent for rectification to the Supervision Consultant/Independent Engineer/Authority's Engineer along with plan of action and time schedule for carrying out the rectification work.

*11.4.2.1* Concessionaire/Contractor will complete the physical rectification works within 10 days from the date of receipt of non-conformance notice after which the material/work will be subjected to acceptance tests as per Clause 11.2 of this Section.

11.4.2.2 Inaction on the part of the Concessionaire/Contractor pursuant to Clause 11.4.2 & 11.4.2.1 of this Section or failure of the material/work to meet acceptance criteria after rectification shall make the material/work liable for rejection unless otherwise agreed to by the Engineer before the dateline.

**11.4.3** If the QAP does not indicate a plan for rectification of the particular nonconformance, Concessionaire/Contractor may still indicate within 5 working days from the date of receipt of non-conformance notice, its intent for rectification along with methodology, plan of action and time schedule for carrying out the rectification work.

*11.4.3.1* Engineer shall within 5 working days from the date of receipt of the proposal from the Concessionaire/Contractor shall either accept/reject the proposal with reasons recorded in writing.

*11.4.3.2* Concessionaire/Contractor will complete the physical rectification works within 10 days from the date of approval of the Supervision Consultant/Independent Engineer/Authority's Engineer after which the material/work will be subjected to acceptance tests as per Clause 11.2 of this Section.

*11.4.3.3* Rejection of the proposal of the Concessionaire/Contractor by the Engineer or inaction on the part of the Concessionaire/Contractor pursuant to Clause 11.4.3.2 of this Section or failure of the material/work to meet acceptance criteria after rectification shall make the material/work liable for rejection unless otherwise agreed to by the Engineer before the dateline.

**11.4.4** All the actions taken by all the parties in relation to non-conformance works shall be properly documented.

## 11.5 Standard Formats

Standard formats for following actions by the Construction Supervision Consultant/ Independent Engineer/Authority's Engineer are given in **Annexure 11.1**:

- i) Acceptance/Rejection
- ii) NCR
- iii) Acceptance on compliance to NCR

#### Annexure 11.1

# STANDARD FORMAT FOR ACCEPTANCE/REJECTION

#### **Project Name:**

Employer/ Authority:

IE/AE/Supervision Consultant:

Concessionaire:

Contractor:

Date of execution/completion:

RFI No.

Date:

Inspected by:

Witnessed by (Name, Designation, signature):

#### Accepted/Rejection. (comments, if any)

Name, Designation, signature, Date

#### Сору

- 1. File IE/AE/Supervision Consultant
- 2. Concessionaire/Contractor
- 3. Employer/Authority

#### **Standard Format for NCR**

| Project Name:                | Project Name:   |          |  |  |  |  |  |
|------------------------------|-----------------|----------|--|--|--|--|--|
| Employer / Authority         | :               |          |  |  |  |  |  |
| IE/AE/Supervision Consultant | :               |          |  |  |  |  |  |
| Concessionaire               | :               |          |  |  |  |  |  |
| Contractor                   | :               |          |  |  |  |  |  |
|                              | Non Conformance | Report   |  |  |  |  |  |
| Inspected by :               |                 | Report   |  |  |  |  |  |
|                              |                 | (NCR)    |  |  |  |  |  |
|                              |                 | No.      |  |  |  |  |  |
| RFI No. :                    |                 | Date :   |  |  |  |  |  |
| Non Conformance:             | Location:       | Details: |  |  |  |  |  |

#### IRC:SP:112-2017

| Detailed Description of Non Conformance :                           |                                     |            |             |                               |         |                |                |           |  |
|---------------------------------------------------------------------|-------------------------------------|------------|-------------|-------------------------------|---------|----------------|----------------|-----------|--|
| Name & Signature                                                    |                                     |            |             | NCR C                         | ategory |                |                |           |  |
| Name & Signature                                                    | 1                                   | 2          | 3           | 3 4 5 6 7<br>Completion Targe | 8       |                |                |           |  |
| Recommended Remedial Act                                            | ion:                                |            |             |                               |         |                |                |           |  |
|                                                                     |                                     |            |             |                               |         |                |                |           |  |
| Issued by Name/ Designation                                         | / Signatu                           | re         |             |                               |         | Complet        | ion Targ       | get Date: |  |
|                                                                     |                                     |            |             |                               |         |                |                |           |  |
| Сору                                                                | Сору                                |            |             |                               |         |                |                |           |  |
| 1 – File IE/AE/Supervision Consultant: 2. Concessionaire 3. Client: |                                     |            |             |                               |         |                |                |           |  |
|                                                                     |                                     |            |             |                               | 1       | -,             |                |           |  |
| Category:                                                           |                                     |            |             |                               |         |                |                |           |  |
| 1. Safety Arrangements                                              |                                     |            |             |                               | -       | Minor /N       | lajor          |           |  |
| 2. Defective Concrete wor                                           | ks                                  |            |             |                               | -       | Minor /Major   |                |           |  |
| 3. Defective Road Works                                             |                                     |            |             |                               | -       | Minor /Major   |                |           |  |
| 4. Tests not conducted as                                           | 4. Tests not conducted as specified |            |             |                               |         |                | - Minor /Major |           |  |
| 5. Check lists and records not authenticated                        |                                     |            |             |                               |         | - Minor /Major |                |           |  |
| 6. Non-compliance with specifications and standards                 |                                     |            |             |                               |         | Major          |                |           |  |
| 7. Non-compliance with R                                            | ecommer                             | ndations   |             |                               | -       | Major          |                |           |  |
| 8. Product not to acceptal                                          | ole standa                          | ards. (Red | quires reje | ection).                      | -       | Major          |                |           |  |

## Standard Format for Acceptance on Compliance to NCR

| Project Name :                      |            |                     |                       |  |  |
|-------------------------------------|------------|---------------------|-----------------------|--|--|
| Employer / Authority                |            | :                   |                       |  |  |
| IE/AE/Supervision Consultant        |            | :                   |                       |  |  |
| Concessionaire                      |            | :                   |                       |  |  |
| Contractor                          |            | :                   |                       |  |  |
|                                     | Corrective | Action Taken Report |                       |  |  |
| Inspected by :                      |            |                     | Ref. Report (NCR) No. |  |  |
| RFI No. :                           |            |                     | Date :                |  |  |
| Non Conformance:                    | Location:  |                     | Details:              |  |  |
| Detailed Description of Non Conforr | nance :    |                     |                       |  |  |

|                                          | NCR Issued by (Name / Designation)                            |           |         |       | NCR C | ategory      | /       |         |      |  |
|------------------------------------------|---------------------------------------------------------------|-----------|---------|-------|-------|--------------|---------|---------|------|--|
|                                          |                                                               | 5         | 6       | 7     | 8     |              |         |         |      |  |
| Rei                                      | Remedial Action Taken :                                       |           |         |       |       |              |         |         |      |  |
| Wit                                      | nessed by IE and Concessionaire (Name/ Designation            | ation / S | Signatu | re)   |       | С            | omplet  | ion Dat | e:   |  |
| Copy 1–File IE/AE/Supervision Consultant |                                                               |           | 2. C    | ONCES | SION  | AIRE         |         | 3.CI    | ient |  |
| Cat                                      | tegory:                                                       |           |         |       |       |              |         | •       |      |  |
| 1.                                       | Safety Arrangements                                           |           |         |       |       | Minor /Major |         |         |      |  |
| 2.                                       | Defective Concrete works                                      |           |         |       |       | Minor        | r /Majo | r       |      |  |
| 3.                                       | Defective Road Works                                          |           |         |       |       | Minor        | r /Majo | r       |      |  |
| 4.                                       | Tests not conducted as specified                              |           |         |       |       | Minor        | r /Majo | r       |      |  |
| 5.                                       | Check lists and records not authenticated                     |           |         |       |       | Minor        | r /Majo | r       |      |  |
| 6.                                       | Non-compliance with specifications and standards              |           |         |       |       | Major        |         |         |      |  |
| 7.                                       | Non-compliance with Recommendations                           | .         |         |       |       | Major        |         |         |      |  |
| 8.                                       | Product not to acceptable standards.<br>(Requires rejection). | - Major   |         |       |       |              |         |         |      |  |

# **SECTION 12**

# THIRD PARTY QUALITY AUDIT

## 12.1 Audit- Objectives and Principles

Audit is defined in ISO 9000-2005 as "Systematic, independent and documented process for obtaining audit evidence and evaluating it objectively to determine the extent to which audit criteria are fulfilled". Audit criteria and audit evidence are defined as follows:

Audit criteria: Set of policies, procedures or requirements used as a reference against which audit evidence is compared.

Audit evidence: Records, statements of fact or other information, which are relevant to the audit criteria and verifiable.

The principles of auditing should ensure that an audit is an effective and reliable tool in support of management policies and controls, by providing information on which an organization can act in order to improve its performance. The principles as outlined in ISO 19011:2011 include the following:

- Integrity
- Fair presentation
- Due professional care
- Confidentiality
- Independence
- Evidence-based approach

Scope of Audit is wide and varied. It applies to several management systems of an organization either individually or jointly. Audit is broadly classified into 3 types i.e. First Party Audit (the organization audits its own systems to measure the strengths and weaknesses of the management system against the system requirements), Second Party Audit (the customer or client audits the facilities of the organization with which it has a contract to supply goods and services) and Third Party Audit (carried out by an independent organization generally for the purpose of certification). Whereas the First Party Audit is an internal process, the Second Party Audit and Third Party Audit are external.

## 12.2 Third Party Quality Audit of Road Projects- General Overview

Whereas quality audit applies to several management systems of a Concessionaire/Contractor organization in implementation of a project, third party quality audit is generally carried out by an organization independent of the project implementation agencies i.e. Concessionaire/Contractor, Supervision Consultant/IE/AE and Employer/Authority. A Third Party Quality Audit is a review by an independent entity (a separate firm/group of experts) of how well the key areas of a project quality plan is being followed and whether it's effective in getting the quality results originally envisaged. It is a value addition to the project and not just fault finding with the contractor. Normally audit scope covers safety adherence, occupational health and environmental compliance of the project apart from quality of works.

## 12.3 Selection of Projects for Third Party Quality Audit

Employer/Authority shall take a decision on case-to-case basis for Third Party Quality Audit of a road project depending upon its size and complexity. However, projects fulfilling any or all of the following criteria may be considered for Third Party Quality Audit:

- i) Projects costing more than Rs. 1000 crore (cost of civil works at 2016 prices)
- ii) Projects involving tunnel
- iii) Projects involving at least one bridge having individual span length more than 100m or total bridge/viaduct length more than 2000m
- iv) Projects involving cable stay/suspension cable/any other innovative bridge design

### 12.4 Scope of Third Party Quality Audit

Scope of Third Party Audit for a typical road project is given in **Annexure 12.1**. Scope may be modified considering complexity and special features of a particular project. If road safety auditor is engaged for a project, scope of Third Party Audit shall be suitably modified to exclude safety related issues. Third Party Quality Audit shall cover physical verification of all major items of work. Inception Report shall list all such items. The Quality Characteristics of a particular item of work and sample size for physical verification shall also be identified in Inception Report.

#### 12.5 Audit Team

Typical composition of the TPA team and qualification and experience of the TPA team members is given in **Annexure 12.1**. Depending upon size and complexity of the project, composition of the team and qualification and experience of the members may be modified. Two requirements which are critical for meeting objective of Third Party Audit are (i) integrity of the team members and (ii) independence of the team. The bid documents for selection of consultant for TPA shall make adequate provision to prevent the experts with doubtful integrity from being selected. Further to ensure independence of audit team from any undesirable influence of the representative of [Employer/Authority] in charge of a particular project, selection of the consultant for TPA and administration of its contract shall be done by a special cell or Hqs of the Employer/Authority.

#### 12.6 National Level Project Monitor

MoRT&H has empanelled/in the process of empanelment of some retired Govt. officers in the rank of Superintending Engineer and above as National Level Project Monitor (NLPM) to examinee issues such as inferior quality works, delay in completion, inadequate provisions in the project & poor services by the concessionaire and suggest remedial actions for them. Although exact scope of services of NLPMs shall be as per relevant guidelines/circular of MoRT&H, the aspects related to Quality Control shall be similar to what prescribed in this Section for Third Party Audit.

# STANDARD TERMS OF REFERENCE FOR THIRD PARTY QUALITY AUDIT OF HIGHWAY PROJECTS

## 1. Brief overview of the Project

(Give brief features of the project such as location, terrain, scope, cost, mode of contract, particulars of Employer/Authority, Concessionaire/Contractor, IE/AE)

2. The Consultancy Services ("The Services") include conducting Third Party Audit as outlined hereafter. [Employer/Authority] intends that periodic Quality Auditing are carried out by a third-party to enable the Employer/Authority assess critically the in-place quality of the project. Third Party Quality Audit is required to be carried out once every six months over a period of .....months. The audit will be comprehensive, and include examination of the quality of works executed and services carried out, compliance of road and bridge works with the technical specifications and standards described in the contract documents, compliance of social and environmental safeguards, compliance of safety requirements and furnishing of recommendations for improvements in quality of the project and project implementation as a whole.

**3.** Employer/Authority invites bid offers from consulting firms hereinafter to be called Third Party Auditor (TPA) to assist it in auditing quality of the project. The TPA shall include a team of qualified and experienced technical and other experts to be able to satisfactorily fulfill the objectives of the Audit.

## 4. **Project Familiarization**

The TPA should clearly understand the scope and complexities of the project by studying all contract documents including drawings, specifications, materials reports and conditions of contract. The TPA shall visit the project site to acquaint himself with the ground conditions. A report in the nature of a Project Familiarization shall be submitted within 2 months of commencing the assignment.

#### 5. Scope of the Consultancy Services

- 5.1 The objectives of the Consultancy Services are to:
  - Verify if the quality of the Works are consistent with contract conditions as well as technical specifications including compliance to the social and environmental safeguards, occupational health and safety requirements by independent assessment / audit of quality of works at various stages of construction; and,
  - (ii) Identify and recommend improvements to achieve the quality.

## 5.2 Tasks to be performed by the TPA

The TPA will undertake the following tasks but not limited to it. TPA may suggest improvement over the services mentioned here below, without any additional burden to Employer/Authority.

#### 5.2.1 Task 1: Technical Examination of Works

- a) The TPA shall verify the adequacy of the Contractor's field laboratories, plant, equipment and personnel and general fitness for purpose of such inputs, including the accuracy/calibration of testing equipment used for measurement.
- b) The TPA shall review the Contractor's working practices e.g. material receipt, storing, consumption procedures, material testing, construction methods, and documentation system to assess whether sound practices are being employed to achieve quality.
- c) The TPA shall review degree of quality control exercised during the construction by the Contractor (tests, numbers, frequency, approach, timing etc.) and documentation (QC registers, test reports, observations of supervisory staff, compliance etc) to assess whether the same is compliant to technical specifications.
- d) The TPA shall review Contractor's plan and actual practices with respect to social and environmental safeguards, safety measures, working conditions, and employment legislation as stipulated under the contract and relevant national and state laws/regulations.
- e) The TPA shall verify whether the quality of Works is in accordance with contract specifications. This verification is to be implemented through independent materials testing of at least 75% BOQ items using a sample size, which needs to be approved by the Employer/Authority. Verification shall include surface profile in case of different layers of roadway and deviations from dimensions in case of embankment, pavement and structures. The TPA shall verify actual implementation of EMP and carry out safety audit (both design and construction stage).
- f) The TPA shall prepare Inspection Test Plans (ITPs), to be agreed with the Employer/Authority that set down the timetable and method for performing field inspections. The formats to be used in this assessment shall be provided in the Inception Report.
- g) The TPA shall audit and assess the Supervision Consultant's/IE/AE quality control practices and documentation thereof.
- h) The TPA shall under take follow up visits on a sample basis with prior intimation and approval of the Employer/Authority to verify actual compliance with previously identified quality enhancement measures and recommendations.

#### 5.2.2 Task 2: Training

The TPA shall provide on the job training to PIU staff on quality control procedures, safety and environmental management etc.

- 6. The above assessments/information should be presented to the Employer/ Authority as a summary report biannually highlighting the following:
  - i) Quality enhancement measures

ii) Clear recommendation, if any Work is to be rejected/regraded for use

**6.1** The Final Audit should commence at least six weeks before issuance of the Substantial Completion Certificate/Provisional COD is due.

## 7. Confidentiality

The TPA by virtue of their scope of work will come in contact with several confidential documents and their recommendations may have financial and legal implications. It is, therefore, essential that the TPA and its experts will exhibit and ensure highest sense of probity and integrity apart from knowledge and experience and maintain strict confidentiality.

## 8. Time frame

The TPA consultancy services will be for ......months. The expected date of commencement of Services is......

## 9. Organization

The TPA should have the capability to carry out the job on its own strengths (in terms of skilled manpower, equipment, technical skills etc.) with adequate logistical support at the project location. To ensure that TPA objective is duly carried out, the Organization should have carried out at least two assignments of similar nature in the last 3 years.

## 10. Reporting Requirements

The TPA shall furnish its reports in soft and 3 hard copies. The TPA shall submit the following documents in pursuance of its services:

- i) Inception Report (IR) containing the approach, methodology, audit/monitoring formats, etc. The report should contain a flow chart indicating the inputs / outputs by stages and type of work. The IR shall be submitted within 3 (three) weeks from the date of commencing the services. The TPA shall make a presentation to the Employer/Authority and modify the contents, if suggested by Employer/Authority.
- ii) Six monthly Audit Report and draft Final Audit Report within 14 days from the date of completion of audit
- iii) Final Audit Report within 21 days from the date of compliance of draft Final Audit Report findings by the Concessionaire/Contractor
- iv) TPA shall make a presentation to the Employer/Authority in presence of Concessionaire/Contractor and Supervision Consultant/IE/AE.

## 11. Deliverables and Payment Schedule

The payment schedule will be based on the outputs delivered as shown in the following Table:

| SI.<br>No. | Deliverable                  | Schedule of<br>Submission from<br>the start date                                                                                    | Payment<br>Schedule (in<br>% to the total<br>Value) | Remarks                                                                                                        |
|------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 1          | Inception Report             | Three weeks<br>from date of<br>commencement of<br>services                                                                          | Nil                                                 | A mobilization<br>advance of 10 per<br>cent will be provided<br>on request of<br>TPA against Bank<br>Guarantee |
| 2          | Six monthly Audit<br>Reports | Within 14 days<br>from the date of<br>completion of audit                                                                           |                                                     | of contract period,                                                                                            |
| 3          | Draft Final Audit<br>Report  | Within 14 days<br>from the date of<br>completion of audit                                                                           | 15%                                                 |                                                                                                                |
| 4          | Final Audit Report           | Within 21 days<br>from the date of<br>compliance of draft<br>Final Audit Report<br>findings by the<br>Concessionaire/<br>Contractor | 15%                                                 |                                                                                                                |

## 12. List of Key Experts

List of Key Experts required in the TPA team are given below along with their indicative man month for a 30 months period contract. The requirement may be modified for a particular contract keeping in view contract period, size and complexity of contract.

| Position                                         | Number | Period of<br>deployment<br>(months) |
|--------------------------------------------------|--------|-------------------------------------|
| Team Leader cum Sr. Highway Engineer             | 1      | 10                                  |
| Senior Bridge / Structural Engineer              | 1      | 3                                   |
| Senior Material Engineer cum Pavement Specialist | 1      | 3                                   |
| Environmental Specialist                         | 1      | 2                                   |
| Road Safety Expert                               | 1      | 2                                   |

## 13. Qualification / Experience of the Key Experts

These are senior positions calling for a very high level of probity in quality auditing. The qualification and experience requirement of key experts is given below:

#### Team Leader Cum Senior Highway Engineer:

The expert should be a graduate civil engineer preferably with master degree in construction management/transportation/highway engineering. Sound knowledge in construction and quality management practices is preferred. The overall experience should be more than 15 years in highway construction. He should have experience in third party quality auditing of at least 1 highway project of Rs. 200 crores magnitude at 2016 prices. Experience in having established Quality Control, Quality Management Systems in large sized highway projects will be essential. A good understanding of the contractual relationships between Concessionaire/ Contractors, Supervision Consultants/IE/AE and Employer/Authority is necessary.

#### Senior Bridge / Structural Engineer:

The expert should be a graduate civil engineer with master degree in structural/bridge engineering with 10 years of post-qualification experience in bridge construction/rehabilitation. Experience in quality control and quality assurance of bridge construction aspects such as foundation, formwork, launching, specialized components such as bearings, expansion joints etc. is essential.

### Senior Material Engineer cum Pavement Specialist:

The expert should be a graduate civil engineer. He should have minimum 10 years of postqualification experience in quality control/quality assurance. He should have thorough knowledge of relevant codes of practice for testing of different materials/finished products, testing apparatus, calibration, sampling, testing, recording test observations in proper formats and determination of test results. He should have good knowledge in pavement construction process, compaction, profile and pavement performance.

#### **Environmental Specialist**

The Environmental Expert must possess degree in environmental engineering/science or master degree in natural science. He should be familiar with national environmental regulations and guidelines of Ministry of Environment & Forests and Climate Change, Govt. of India. He must have at least 5 years of relevant experience, with minimum 3 years of experience in highway/ linear projects in India.

#### Road Safety Expert

The Road safety Expert must have a degree in civil engineering. He must have either post graduation in traffic/transportation engineering or a certified road safety auditor course. He must have 10 years of experience in highway projects involving highway geometrics design, traffic studies, road safety analysis intersection layout and design. He must have done road safety audit of at least 3 road projects involving design stage, construction stage as well as operation stage and should have reviewed and audited the road safety matters.

#### 14. Duties of the Key Experts

The duties of the key experts are broadly mentioned as follows:

#### Team Leader Cum Senior Highway Engineer:

Team Leader will remain overall charge of planning the activities, checking adequacy of Quality Assurance Plan of Contractor, determining sample sizes of different items, monitoring of activities of other key experts, scrutiny of test results produced by other key experts, preparation of reports and presentation before the Employer/Authority. As senior highway engineer, he will also personally remain responsible to check geometrics, verify all survey records, checksurface profile and all other aspects not covered by other key experts.

#### Senior Bridge / Structural Engineer:

His duties will involve verifying working drawings of bridges/ROBs/flyovers and culverts with respect to contract drawings/schedules, verifying the as built features of foundation with reference to working drawings and actual bearing capacity of soil, verifying pre-stressing schedule, checking dimensions, checking the adequacy of form-work etc.

#### Senior Material Engineer cum Pavement Specialist:

Senior Material Engineer will check adequacy of Quality Assurance Plan of the Contractor, adequacy of site laboratory, ability and expertise of quality control personnel, calibration details of equipment, testing records etc. He will also carry out physical tests on samples including destructive and nondestructive tests on completed works.

#### **Environmental Specialist**

Environmental Expert will review the records related to fulfillment of Environmental Management Plan of the project, will carry out review as per the environmental regulations/ conditions to environmental clearance and forest land diversion relevant to the project. He will also make sample check of above compliances and those relating to social safeguards.

#### Road Safety Expert

Road Safety Expert will carry out safety audit of sample critical components based on accident records/blacklists.

#### 15. Data, services, and facilities to be provided by Employer/Authority:

Apart from quality control and quality assistance records maintained by the Contractor and Engineer, copies of the civil works contract agreements and contract agreement with Supervision Consultant/IE/AE will be made available to the TPA.

# **SECTION 13**

# SAFETY, HEALTH AND ENVIRONMENT

#### 13.1 Introduction

Road construction has significant impacts on nearby communities, their health and safety as well as the natural environment. People and properties may be in the direct path of road works and affected in a major way. People may also be indirectly affected by construction, through the disruption of livelihood, loss of accustomed travel paths and community linkages, increases in noise and pollution, and more road accidents. Disturbances to the natural environment may include soil erosion, changes to streams and underground water, and interference with natural habitats and plant life. Quality in Safety, Health and Environment at work places is therefore of paramount importance to the nearby communities, road users and construction workers during construction stage. These factors also impact nearby communities and road users post construction. Therefore, a set of guidelines has been given in this Section to ensure quality in Safety, Health and Environment at work places. It is further established that better care for Safety, Health and Environment at work places quality in road construction.

### **13.2** Transportation Planning & Health

Transportation planning can affect human health, either positively or negatively, in several ways. For example:

- Safety: Motor vehicle crashes are a leading cause of death. Effective safety measures and responsible behaviors by all road users can reduce the number of fatalities and injuries. This is particularly important for vulnerable road users like pedestrians, bicyclists, children, differently abled persons and senior citizens.
- Air Quality: Transportation planning that reduces vehicle emissions improves air quality for everyone. On the other hand improper planning and or implementation during construction stage deteriorates air quality during construction/ operation stage.
- *Noise:* Alternatives can be designed to reduce noise and thereby prevent or reduce adverse health effects like hearing loss, sleep disturbances, cardiovascular problems, performance reduction, annoyance responses, and adverse social behavior - all of which are associated with exposure to varying levels of noise.

Transportation Planning and designing should take into account the above considerations for better health of society. Some of the aspects are also relevant during construction stage.

## 13.3 Safety, Health & Environmental Safeguards During Construction

Following are a set of suggestive actions for the Contractor during construction stage to safeguard safety, health and environment:

#### 13.3.1 General

The contractor which includes its Sub-Contractors and any other agency/person engaged by it shall be deemed to have acquainted himself with the requirements of all the prevalent statutes, ordinances by laws, rules, regulation or their instruments having the force of law in India including without limitation those relating to protection of the environment, health and safety, importation of labour, demolition of houses, protection of environment and procurement, transportation, storage and use of explosives, etc.

#### **13.3.2** Site Requirements

- i) The contractor will not carry out any work on the site other than that necessary for the completion of the contract.
- ii) The contractor will provide and maintain barriers fencing and lighting around the site and wherever necessary for the safety, security and convenience of the public including traffic on road and as otherwise needed to suit his working methods and timings.
- iii) The contractor will provide and maintain all necessary temporary buildings including, office sheds, stores, storage areas, explosive magazines and water storage tanks without limitation.
- iv) Contractor will be responsible for the provision and maintenance of all site services necessary for the execution of the works including, provision of electricity, water, and site communication facilities.
- v) Contractor will maintain the site in safe, clean, tidy and sanitary condition. Contractor will also be responsible for cleaning all general rubbish and waste from whatever source generated during execution of the works.

#### **13.3.3** Safety and Health

- i) Near towns, villages and all frequented places, trenches and foundation pits shall be securely fenced, provided with proper caution signs and marked with lights at night to avoid accidents. The contractor shall take adequate protective measures to see that the excavation operations do not affect or damage adjoining structures. For safety precautions, guidance may be taken from IS: 3764.
- ii) The contractor shall not use or generate any materials in the works, which are hazardous to the health of persons, animals or vegetation.
- iii) The contractor will take all measures necessary to safeguard the safety, health and welfare of all persons entitled to be on site and will ensure that works are carried out in a safe and efficient manner.
- iv) The contractor will provide, and ensure the utilization of appropriate personal protection equipment for all workmen and staff employed directly or indirectly by the contractor. Such equipment will include but not be limited to the safety helmets, goggles and other eye protectors, hearing protectors, safety harnesses, safety equipment for working over water, rescue equipment, fire

extinguishers and first-aid equipment. The personnel working at vulnerable locations at site will wear safety helmets and strong footwear.

v) The contractor will provide an adequate number of latrines and other sanitary arrangements at areas of the site where work is in progress and ensure that they are regularly cleaned and maintained in a hygienic condition.

#### **13.3.4** *Protection of Environment*

- i) The contractor will take all necessary measures and precautions and ensure that the execution of the works and all associated operations on site or offsite are carried out in conformity with statutory and regulatory environmental requirements including those prescribed in EMP.
- ii) The contractor will take all measures and precautions to avoid any nuisance or disturbance to inhabitants arising from the execution of works.
- iii) All liquid waste products arising on the sites will be collected and disposed of at a location on or off the sites and in a manner that will neither cause nuisance nor pollution.
- iv) The contractor will at all times ensure that all existing water bodies and drains within and adjacent to the site are kept safe and free from any contamination.
- v) The contractor will submit details of his temporary drainage work system (including all surface channels, sediment traps, washing basins and discharge pits) to the Employer/Authority for approval prior to commencing work on its construction.
- vi) The contractor will arrange all the equipment in good condition to minimize dust, gaseous or other air-borne emissions and carry out the works in such a manner as to minimize adverse impact on air.
- vii) Any vehicle with an open load-carrying area used for transporting potentially dust-producing material will have properly fitted side and tailboards. Materials having the potential to produce dust will not be loaded to a level higher than the side and tail boards and will be covered with a clean tarpaulin in good condition.
- viii) The contractor will take all necessary measures to ensure that the operation of all mechanical equipment and condition processes on and off the site will not cause any unnecessary or excessive noise, taking into account applicable environmental requirements.
- ix) The contractor will take necessary measures to maintain all plant and equipment in good condition.
- x) Where the execution of the works requires temporary closure of road to traffic, the contractor will provide and maintain temporary traffic diversions subject to the approval of the Employer/Authority.
- xi) Where the execution of the works requires single-lane operation on public road the contractor will provide and maintain all necessary barriers, warning signs and traffic control signals to the satisfaction of the Employer/Authority.

- xii) Wherever traffic diversions, warning signs, traffic control signals, barriers and the like are required, the contractor will install them to the satisfaction of Employer/Authority prior to commencing the work, in that area.
- xiii) Contractor will install asphalt plants and other machineries away from the populated areas as per laid down regulations.

## **13.3.5** Traffic Safety and Control in Works Zone

- i) All traffic safety and control measures shall be pursuant to IRC:SP:55.
- ii) The Contractor shall take all necessary measures for the safety of traffic during construction and provide, erect and maintain such barricades, including signs, marking, flags, lights and flagmen as may be required by the Engineer for the information and protection of traffic approaching or passing through the section of the project road under improvement. Before taking up any construction, an agreed phased programme for the diversion of traffic or closure of traffic on the highway shall be drawn up in consultation with the Employer/Authority.
- iii) At the points where traffic is to deviate from its normal path (whether on temporary diversion or part width of the carriageway) the lane width path for traffic shall be clearly marked with the aid of pavement markings, painted drums or a similar device to the directions of the IE/AE/Supervision Consultant. At night, the passage shall be delineated with suitable light source.
- iv) One-way traffic operation shall be established whenever the traffic is to be passed over part of the carriageway inadequate for two-lane traffic. This shall be done with the help of temporary traffic signals or flagmen kept positioned on opposite sides during all hours. For regulation of traffic, the flagmen shall be equipped with red and green flags and lanterns / lights.
- v) On both sides, suitable regulatory / warnings signs as approved by the IE/ AE/Supervision Consultant shall be installed for the guidance of road users. On each approach, at least two signs shall be put up, one close to the point where transition of carriageway begins and the other 120 m away.
- vi) Signs, lights, barriers and other traffic control devices, as well as the riding surface of diversion shall be maintained in a satisfactory condition till such time they are required as directed by the Engineer. The temporary traveled way shall be kept free of dust by frequent applications of water, if necessary.

## 13.4 Quality Process to take care of Safety & Environment

Quality assurance planning should duly consider the nuances of safety and environment aspects of the project and make due provision for ensuring safety of all stakeholders and preserving environment. Similarly during actual quality control exercises, due attention shall be given to ensure that construction zone safety requirements are not violated.