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PREFACE

Vertical curves constitute an important component in the

design of the longitudinal profile of a road. For providing guidance

to the designers in this regard, the Specifications and Standards

Committee of the Indian Roads Congress had published a detailed

Paper on the subject in the year 1952 (Vertical Curves for High-

ways, Paper No. 156, Journal of .the Indian Roads Congress,

Vol. XVI- 1). For many years, this Paper served as a useful guide

in the design of highways in the country.

In the meantime, a lot of changes have taken place in the

geometric design standards as also in the design concepts. The
revised geometric design standards have been published separately

by the Indian Roads Congress, vvie IRC: 73-1980 for Rural (Non-

Urban) Highways and IRC: 86-1983 for Urban Roads. For provid-

ing guidance on the design of vertical curves in the light of the

current geometric * design standards and concepts, the original

Paper No. 156 was modified and rewritten by Shri K. Arunachalam,

Deputy Secretary (Research), Indian Roads Congress.

.

It is hoped that this Publication will be useful in the design of

proper vertical curves for roads in the country besides being a guide

to engineering students.

New Delhi

December, 1983

Ninan Koshi

Secretary

Indian Roads Congress
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VERTICAL CURVES FOR HIGHWAYS

1 . INTRODUCTION

1.1. In the alignment of a highway, it is a generally accepted

practice to follow, as closely as possible, the natural lie of the

land. This practice, while satisfying the aesthetic principles of

road location, tends itself to economical road construction. As

the natural ground is rarely level, the road located therein accord-

ing to these principles will also have a series of grades, often

chancing to suit the ground level. For the economical and safe

operation of vehicular traffic, however, certain other important

considerations set definite limits to the grades and also .define the

way the changes in grades are to be effected by the introduction of

vertical curves in the longitudinal profile of the road.

1.2. Not so long ago, the average speed of motor vehicles on

the main roads in this country was about 35 km/h. In recent

years there has been a rapid advance in design. Motor vehicles,

with low centres of gravity and equipped with powerful brakes,

are now built to travel at high speeds. To provide full advantage to

these improved vehicles and thereby to increase the speed of road

transport, it is necessary to improve the design of the road itself

by applying proper geometric standards and by other means.

1.3. To attain the primary objectives of safety and comfort

in travelling over different grades, the design of vertical curves

has to be given due attention. This publication gives a rational

conception of the principles governing the de ign of vertical curves

on roads.

1.4. The design of vertical curves on highways is not entirely

a matter of mathematical analysis. Factors such as the "personal

equation" of the driver of the vehicle have to be taken into

account and subjected to extensive research. On many such

factors, research work and field observations carried out in other

countries, particularly the United States of America, the United

Kingdom, and Australia have supplied valuable material. Not
all the data used in this publication have been supported by adequ-

ate experimental observations. As further investigations are made
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some of the conclusions may need revision in the course of time.

2. GRADIENTS

2.U- The rate of rise or fall with respect to the horizontal

along the length of a road, expressed as a ratio or a percentage,

is termed the "Gradient". It is customary to express a gradient

in terms of the natural tangent of the angle of its inclination to the

horizontal. This may also be stated as a ratio, e.g,, 1 in 20, 1 in

25, etc. In the U.S.A. and some other countries the grade is more

often expressed as a percentage as 5 per cent or 4 per cent, etc.
v

2.2. When an angle is small, its tangent is approximately

equal to its circular measure. For this purpose all angles within

the practical range of gradients on roads may be treated as small.

2.3. In this publication «i and «2 are used to denote the

natural tangents as well as circular measures of the angles of

inclination to the horizontal of the two intersecting grade lines.

Thus in Fig. 1, nx is the tangent (or circular measure) of the

angle BAE and n2 that of the angle BCF. Signs 4- and — are used

to denote ascending and descending gradients respectively, in the

line of travel, which, by convention, is generally left to right in

figures.

S 0ys
s

Fig. 1.

2.4. The angle which measures the change of direction in the

path of motion at the intersection of two grade lines is called the

deviation angle. Thus in Fig. 1, angle DBC is the total deviation
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angle. In this publication 'N' will denote the natural tangent or

the' circular measure of the deviation angle.

The deviation angle 'N' is given by the algebraic difference

between the two grade angles.

Thus N — n
}
—no

Example^

1 5
Let tii = +26 or h

fod
° r per CCnt

1 4no^~ ^or
j Q0

or -4 per cent

=
! 0.09

2.5. Gradients must be fixed before a vertical curve can be

designed. The designer has always to keep an eye on economy

in selecting the alignment and suggesting the longitudinal profile

of a road. The choice of the alignment of a projected road is

influenced by many considerations, gradients being one of the

most important. The necessity of securing easy grades some-

times compels a long and expensive alignment. On many an

existing road, grcdes can be improved only by abandoning the

present alignment and re-locating it. T-nus, for road projects it

is necessary for the designer to know what gradients are to be

aimed at. With this knowledge the designer is in a position to

achieve a balance between the economy of design and its utility to

the road user.

On motor roads in hilly coxintry the gradients should be such

that they can be negotiated with the least changing of gears by

the heavier vehicles (there is not much animal-drawn traffic on

such roads). This saves time and operation costs. The problem

is somewhat complicated in the plains where roads are used by

the slow moving bullock cart on the one hand, and the fast

modern motor vehicle on the other. For many years to come the

bullock cart will remain a dominating element in the agricultural

economy of this country. Gradients adopted on roads in the

plains should, therefore not be such as to have an adverse effect
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on bullock cart traffic. There are many varieties of bullock carts,

differing in design and capacity, and in the strength, and number
of bullocks used to pull. Taking ail these factors into account,

the Indian Roads Congress has laid down standards for gradients

to be adopted in different terrains, vide Table 1. Terrain is classi-

fied by the general slope of the country across the highway align-

ment, fo»- which the following criteria should be followed :

Terrain classification

Plain

Rolling

Mountainous

Steep

Per cent cross slope of the country

0—10
> 10-25
>25-60

>60

While classifying a terrain, short isolated stretches of varying

terrain should not be taken into consideration.

Table 1. Gradients for Roads in Different Terrains

s.

No.
Terrain Ruling

gradient
Limiting
gradient

Exceptional
gradient

1. Plain or rolling 3.3 per cent

(1 in 30)

5 per cent

(1 in 20)

6.7 per cent

(1 in 15)

2. Mountainous terrain,

and steep terrain

having elevation more
than 3,000 m above
the mean sea level

5 per cent

(1 in 20)

6 per cent

(1 in 16.7)

7 per cent

(1 in 14.3)

3. Steep terrain upio
3,000 m height above
mean sea level

6 per cent

(1 in 16.7)

7 per cent

(1 in 14.3)

8 per cent

(1 in 12.5)

Gradients upto the 'ruling gradient* may be used as a matter

of course in design. However in special situations such as isolated

ever-bridges in flat country or roads carrying a large volume of

slow moving traffic, it will be desirable to adopt a flatter gradient

of 2 per cent from the angle of aesthetics, traffic operation, and

safety.

The 'limiting gradients' may be used where the topography of

a place compels this course or where the adoption of gentler
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gradients would add enormously to the cost. In such cases, the

length of continuous grade steeper than the ruling gradient should

be as short as possible.

'Exceptional gradients' are meant to be adopted only in very

difficult situations and for short lengths not exceeding 100 m at a

stretch. In mountainous and steep terrain, successive stretches of

exceptional gradients must be* separated by a minimum length of

100 m having gentler gradient (i.e. limiting gradient or flatter).

The rise in elevation over a length of 2 km shall not exceed

100 m in mountainous terrain and 120 m in steep terrain.

2.6. Compensation in Grade for Horizontal Curves

2.6.1. When a vehicle driven by the rear wheels travels on

a curve there is some loss in the tractive force as is explained

below.

big. 2.

Lei A and B be the rear driving wheels and C and D the front

wheels of a motor vehicle in plan travelling on a curve (Fig. 2). It

is seen that the tractive force acts in the direction EF while the

front wheels should move in the direction GH so as to follow the

curve. As GH is inclined to EF there will be a tendency for the

vehicle to slide in the direction EF. This tendency is resisted by

the friction between the wheels and the road surface, but in effect

there will be a sliding movement when the curve is sharp. This

action takes up some of the tractive force driving the vehicle for-
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ward. In the case of a vehicle with driving wheels in the front

this action would be absent. To maintain the same speed on curve

as on a straight, more of the tractive effort of the vehicle has there-

fore to be mobilised in case of vehicles driven by rear wheels. The
effect of the curve on the tractive effort is, therefore, the same as

that of a grade. If, in addition to the curve, there occurs also a

sharp grade the total effect of the curve and grade should not

exceed that of the limiting gradient specified.

2.6.2. The amount by which the gradients should be eased to

offset the extra tractive effort involved at horizontal curves is

known as 'grade compensation'. This should be calculated by the

following formula :

Grade compensation (per cent) = —jjjr—

Subject to a maximum of 75//? where R is the radius of the

curve in metres.

Since grade compensation is not necessary for gradients flatter than

4 per cent, when applying grade compensation correction, the

gradients need not be eased beyond 4 per cent.

3. DESIGN SPEEDS

3.1. As stated earlier in para 1, the purpose of designing

proper vertical curves is to achieve a safe and sustained speed of

travel on a road. The designer must therefore know what maxi-

mum speed is to be sustained on each class of the roads. The

analytical treatment of vertical curves centres round the one domi-

nating factor "speed".

3.2. The design speeds laid down by the Indian Roads

Congress for the various classes of roads are given in Tables 2

and 3. While Table 2 pertains to rural (non-urban) highways,

Table 3 is for urban roads in plains.

4. THE PURPOSE OF VERTICAL CURVES

4.1. It is a well known fact that considerable forces are

involved, when a change takes place m the direction of motion of

a body. When a motor vehicle travelling along one grade is to
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move on to another grade, a change of direction of motion in the

vertical plane is involved. If this change is not effected gradually

the vehicle will be subjected to shock and the occupants of the

vehicle will experience discomfort. Therefore vertica curves are

required to ease off the changes in gradients.

4.2. Vertical curves can be classed into two types viz.,

(1) Summit curves to ease off intersections convex upwards, and

(2) Valley curves to ease off intersections concave upwards.

4.3. When a vehicle approaches a summit curve, the view of

the road is cut off beyond the summit. Therefore to secure the

required sight distance, the intersection of the two grades should

be eased off by interposing a properly designed vertical curve.

For valley curves, visibility is not a problem during day time.

However, for night travel, the design must ensure that the roadway
ahead is illuminated by vehicle headlights to a sufficient length

enabling the vehicle to brake to a stop if necessary.

4.4. Sight Distance Considerations

4.4.1. Three types of sight distance (see IRC : 66-1976 for

more details) arc relevant for the design of summit curves. These

arc Stopping Sight Distance, Overtaking Sight Distance, and Inter-

mediate Sight Distance. Sight distance values for different design

Table 4. Sight Distance por Various Speeds

Speed
km/h

Sight distance (metre)

Stopping intermediate Overtaking

20

25

30

35

40

50

60

65

80

100

20

25

30

40

45

60

80

90

120

180

40

50

60

80

90

120

160

180

240

360

165

235

300

340

470

640
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Table 5. Criteria for Measuring Sight Distance

s.
No.

Sight distance
j

Driver's eye
height

Height
of object

1. Safe stopping sight distance 1.2 m 0.15 m
2. Intermediate sight distance 1,2 m 1.2 m
a. Overtaking sight distance 1.2 m 1.2 m

speeds are given in Table 4. The criteria for measurement of the

sight distance are indicated in Table 5.

4.4.2. For valley curves, the design is governed by night

visibility which is reckoned in terms of Headlight Sight Distance.

This distance should at least equal the safe stopping sight distance

given in Table 4.

5. SUMMIT CURVES

5.1. A curve with convexity upwards is called a summit
Curve. Figure 3 illustrates cases where Summit Curves have to

be used.

la ascending Qrode Meeting

a descending 9 r ade

'0 dsctfnding grade nutting
another ascending grade
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to interfere with visibility. The dynamics of movement over an

ordinary summit curve is of little consequence. This can be

inferred from two considerations : (1) The centrifugal force

generated by the movement of the vehicle along the curve acts

practically in opposition to the force of gravity i and is, therefore,

beneficial in so far as it relieves the pressure on the tyres and

springs of the vehicle; (2) Vertical deviation angles on roads are

so small because the summit curves prescribed by the sight dis-

tance are so long and easy that "shock" is automatically rendered

imperceptible to the travellers.

5.3. It, therefore, follows that on summit curves transitions

are not essential and simple circular arcs are good enough. Since

a circular arc has a constant radius of curvature throughout its

length, it gives a constant sight distance all along. From this

viewpoint the alternative of a curve fully transitional and

symmetrical about the intersection is unsuitable, as the radius of

the curve decreases towards its apex and the visibility on a vertical

transition curve varies from point to point and is smallest across its

apex, At a given intersection of gradients a transition curve will

have to be much longer than a circular arc for equal visibility across

the apex. Because of this disadvantage a transition curve is not

recommended.

5.4. In actual practice a simple parabolic curve is used

instead of the circular arc. The reasons are :

(i) A simple parabola is nearly congruent with a circular

arc between the same tangent points, because on

road work the vertical deviation , angles are very

small and lengths of curves are very great.

(ii) A parabola is very easy of arithmetical manipulation

for computing ordinates.

5.5. Summit Carve Formulae

In Fig. 4, let AD and DC be the two grade lines intersecting

at D and inclined at -f nx and -«
2 t0 tne horizontal. Let ABC

be a parabolic curve between the langent points A and C. With

A as origin, measure a horizontally and take y as the vertical
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intercept between the curve and the grade line ADE. Let the

equation of the curve be
v2>•=- i«j

Fig. 4.

From the geometry of the figure it is clear that

EC = EF + FC

_ Lni L Lttz

2 2

L . LN

Since summit curves are long and flat, the length of the curve ABC
and its horizontal projection AM are for all practical purposes

equal, each L.

I N
At the point C on the curve, x r* L and v — EC —

^

Putting these values in the equation of the curve.

LN _ L2

2 «

Therefore a = ~ [21
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5.6. Radius of Curvature of Summit Curve

Let (x, y) be the scartesian coordinates of any point on any
curve. Let R be the radius of curvature at that point. If the

curve is flat,^ = „ f3]

The equation to the summit parabolic curve y — ~
Therefore -% = —

ax a

a d2y 2
and = —

dx* a

that is R = [4]

But in equation (2), we have shown that

2L
a —

Hence R = -~ [5]

5.7. Formulae for Length of Summit Curves

5 7.1. The length of a summit curve depends on (i) the

deviation angle, (N), and (ii) the required sight distance (5),

which may be either the overtaking sight distance or the inter-

mediate sight distance, or the minimum sight distance whjch is

equal to the safe stopping distance.

5.7.2. The gradients on both sides of the intersection are

setocred on the principles already discussed in para. 2.5. The

deviation angle and the chainage of the point of intersection of

the gradients can then be measured and recorded.

5.7.3. In calculating the length of the curve two cases have

to be considered:
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Kor Overtaking Sight Distances*

Case I : When the length of the curve exceeds the required

sight distance, that is, /. is greater than S. In Fig. 5, ABC is a

parabolic curve; A and C are tangent- points, ExE2— S t the

required sight distance
; //, the height of the driver's eye above

the road level ; N, the deviation angle ODC ; and L, the hori-

zontal projection (AM) of the curve ABC.

From the geometry of the Figure it is obvious that

OC - OF ] FC

Fig. 5.

Since grade angles are always small, the lengths of the curve ABC
and the lines AC and AM can each be taken as very nearly
equal to L.

•This also applies to Intermediate Sight Distance as the criteria for measurement
are the same.
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From the properties of the parabola—

BG
BJ

(PQ)-

Putting BG — H
BJ =

—

IDJ

IN
i x —

PQ s

and AC L,

We .get LN
(S)i

(Lj*

Or L
N.S*

[6]

As indicated in Table 5, H = 1.2 m

Hence L = -^-g- [7]

Case II : J
When the length of the curve is less than the

required sight distance, that is L is less than 5. In Fig. 6, ABC is

the parabolic curve and EiE2 is the sight distance 5.

Fig. 6.



Now DB ^ IDJ

- i LN
Also from the geometry of the figure,

BZ = //, and DZ=D£+£Z

Therefore Z)Z = LN
8

but DZ « \ KQ

15

Equating the two values of DZ,

LN
8

Hence

Putting // =. 1.2 m

L = 25 — 9.6

[8]

19)

For Safe Stopping Sight Distance

In this case, the situation corresponds to that shown in

Fig. 7. The driver of the vehicle sights the top of an object 0.15 m
high lying beyond the apex of the curve.

•ifht Hut
•fejttt

Fig. 7.
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Case 1 : When (he length of the curve exceeds the required

sight distance, that is, L is greater than S. From geometry of the

parabola,

(BQ* _ H 1.2

(GZ>)2
~~

h ~ 0,15
~

. . CD = = 0.354 5C
v' 8

5 = BC+CD = 1.354 £C or

i?C = 0.738 5

CJ AJ

But C7 = ~- and BB1 = H

%H _ (0.738 ST- _ 2.18 52

LN ~
/ L \2 ~ L2

2.18 5 ^ _ 2.18 7^52 _ jV5g
- ~ 8/T 8x1.2 ~ ~4A~ liUJ

Case II : When the length of the curve is less than the requir-

ed sight distance, that is, L is less than S. The formula works

out to

—

4.4L^2S--^ [11]

5.7.4. The length of summit curve for various cases men-

tioned above can be read from Plates 1, 2 and 3. In these Plates,

value of the ordinate 4M* to the curve from the intersection point

of the grade lines is also shown.

5.7.5. For quick comparison of the length of summit curve

for the three types of sight distance for the case when L is greater

than S, the lengths are shown in terms of the grade difference in

Table 6.
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Table 6. Length of Vertical Curves for Different Speeds when
Length of Curve is Greater Than Sight Distance

Design
speed
(km/h)

Length of summit curve (metre) for 1 *»n at\\ r\fLvllglll Ul

valley curve
(metre) for

distance
Stopping

sight distance
Intermediate

sight distance
Overtaking

sight distance

20 0.9A 1 .7A 1.8A

25 1 4A ? fiA 2.6A

30 2.0A 3.8A 3.5A

3.6A 6.7A J.JfV

40 4.6A 8.4A 28.4A 6.6A

50 8.2A 15.0A 57.5A 10.0A

60 14.5A 26.7A 93.7A 15.0A
65 18.4A 33.8A 120.4A 17.4A
80 32.6A 60.0A 230.1 A 25.3A

100 73.6A 135.0A 426.7A 4I.5A

Notes : 1. «A' in the above Table is the algebraic difference in grades expres-

sed as percentage.

2. The length of curves should be subject to minimum values given

in Table 7.

5.8. Minimum Length of Vertical Curve

From equations (6) to (9), it is seen that the length L of a

vertical curve decreases as N and/or S decreases. Therefore,
in some cases the length of the curve needed for providing the

required sight distance would be very small. Further in flat grades
no vertical curve may be necessary for visibility; but for comfort
in driving and to avoid shock, it is necessary to introduce a vertical

curve except perhaps in very flat grades. The minimum length of
the curve should be as indicated in Table 7. This Table also shows
the maximum grade change not requiring a vertical curve.

5.9. Calculating Ordinates of Summit Curves

For the purposes of plotting and laying out a curve, its length
is divided into a number of equal chords and the ordinates to the
curve calculated at the ends of these chords.
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Table 7. Minimum Length of Vertical Curves

Design speed (km/h) Maximum grade change
(per cent) not requiring

a vertical curve

Minimum length of
vertical curve

(metre)

Upto 35 1.5 15

40 f.2 20

50 1.0 30

6« 0.8 40

80 0.6 50

100 0.5 60

Ordinates ylt y2t yz, yr at stations 1,2, 3 r (Fig. 8)

are calculated as under :

Since y = *2

a

vi = (where u is the chosen length of the chord)
a

(2l/)2
or V! x 22 .t sfdst m

;
;
3 = ;i x 32

yr= Vi X r
2

adt gaibivoiq iol babssfi sviuo ddllo dSfitsf srfl bmao omoYloi

liolmos t©1 Sad j^lHidttiv 10I j^a.^o sd vsm svhijo fsomsv on

F»g.8.
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Let C be the point on the road surface curve at the end of the

sub-chord. . Let Ci be the point on the grade line vertically

above C. Let the reduced level of the tangent point A be 100.00.

Then R. L. of Ct = 100.00+r (uxni)

R. L. of C = R. L. of Ct-yr

Similarly, the R. Ls. of other points on the curve should be worked

out.

5.10. Highest Point on Summit Curve

It is sometimes important to know the position of the highest

point on a vertical curve for the purpose of layout of drainage

appurtenances and for ascertaining vertical clearances in restricted

locations as road under bridges, etc.

When thfc two grades are equal the curve would be symmet-

rical about the vertical bisector of the intersecting angle and the

highest point would also lie on this bisector. When the two grades

are unequal the curve would be tilted and the highest point of the

curve would lie on the side of the flatter gradient.

1

——

-

H ». *

.01 ;«! 1

Fig. 9.

In Fig. 9 let T be the highest point distant x0 from the

origin A.

x-
The equation of the curve is y = —

~ 2
Therefore ET =

a

x-

>?.
T>h n "In j?w> -jd i>lmow

,li;?n



Also EF — n\Xo

Hence Z = FT = EF—ET

T will be the highest point when 7 is maximum.

i.e., when''" ~ 0
fix

That is. when tu — (\.
1

r/

Or xo — ^ «j

Bllt 0 = —• = —
N n-\ -f- //o

Hence x0 --
'J

1
/.

6. VAI.LKY CURVFS

6.1. A vertical curve concave upwards is known as a valley

curve, dip or sag. Fig. 10 illustrates two cases where valley curves

have to be used.

I ig. 10. Valley curve

lig. 10 (a) is the case of a descending gradient intersecting an

ascending gradient, whereas in Fig 10 (b) a descending gradient

intersects another descending gradient. In between these two
cases would he the case of a descending gradient meeting a

!.<•• i/« ntal.
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6.2. Deviation angle on Valley Curves

According to the general rule already stated, the deviation

angle is the algebraic difference of the two grade angles. Thus, in

Fig. 10 (a)

N ^ angle CDE -
( //,) ( {n { j

ih>) and in Fig 10(b)

TV =^ angle CDE = (
— //|) (//•>) - («a -no)

6.3. Length of Valley Curves

6.3.1. Valley curves should have the shape of square

parabola similar to summit curves. A number of criteria are

available for establishing the lengths of valley curves. Most
commonly used among these arc (i) headlight sight distance which

is recommended in this publication and (ii) rider comfort.

6.3.2. When a vehicle traverses a valley curve at night, the

portion of road lighted ahead depends on the height of the head-

lights above the road surface and the direction of the light beam.
The valley curve should be long enough so that the distance ahead

lighted by the headlights is at least equal to the safe stopping

sight distance. For determining the length of valley curves based

on the above considerations the following criteria apply :

(i) Height of headlight above road surface is 0.75 m

(ii) The useful beam of headlight is upto one degree

•upwards from the grade of the road; and

(iii) The height of object is nil.

6.3.3. The design criteria for determining the length of

valley curves are depicted in Fig. 11. From the geometry,

equations for calculating the length are as follows :

Case (i) When the length of the curve exceeds the required

sight distance, i.e. L is greater than S

NS'1
^

1.50 + 0.035 S

Case (ii) When the iength of the curve is less than the

required sight distancv, .c L is less than S

1.50+ 0.035 S
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i ifi. 11.

In both cases

N — deviation angle, i.e. the algebraic difference between the

two grades

L ~ length of parabolic vertical curve in metres

5 = stopping sight distance in metres

Length of valley curve for various grade differences is given

in Table 6, and in graphical form in Plate 4. These are only

minimum values, and longer lengths should be provided wherever

feasible.

6.3.4. On valley curves, the gravitational and centrifugal

forces act combincdly resulting in extra pressure on the tyres and

springs of the vehicle The effect of this on travel comfort depends

on several factors such as the vehicle body suspension, tyre flexi-

bility, weight carried, etc. The broad conclusions from limited

observations show that for riding comfort on valley curves, the

radial acceleration should not exceed 0.3 metre per second per

second. The length of vertical curve required to satisfy this

comfort factor is only about 75 per cent of that required to satisfy

the headlight sight distance requirement. It is, therefore, recom-

mended that the length of valley curves for design should be based

on the considerations discussed in para 6.3.2. The values as

derived should, however, be subject to the minimum lengths

indicated in Table 7.
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6.3.5. Drainage considerations become important, for valley

curves between a descending grade and an ascending grade as in

Fig. 10(a). For drainage purposes, it is desirable that the curve

has a minimum gradient of 0.5 percent i( the side drains are lined

- and 1.0 per cent if these are unlined

6.4 Finding the Lowest point on a Valley Curve

When a valley curve is included between descending and

ascending grades, it is necessary to know the lowest point on the

curve for fixing the positions of culverts, drain outlets, etc. When
the two grades are unequal, the lowest point occurs on the side of

the flatter gradient

Fig. J 2.

In Fig. 12, let the lowest point be distant x, from A. From
derivations similar to those for summit curves given in para 5.10,

it can be shown that the lowest point is at a distance of—— L

from point A.

6.5. Computing Ordinates of Valley Curves

Since valley curve is also in the shape of a square parabola,

the ordinates can be calculated similar to summit curves described

in para 5.9.



l
;
ig. 13.

Referring to Fig. 13, the ordinates y\, r2 » J'a at

stations 1, 2, 3 r work out to :

y'l
— (where u is the chosen length ot the chord)

y2 yi x 2-

>':i
- Xi <3-

Vr — >'l
^-

Lct C be the point on the road surface at the end or the #•** sub-

chord. Let Ci be the point on the grade line vertically below C.

Let the reduced level of the tangent point A be 100.

Then R.L. ofd - 100-r (ma/<i)

R.L. of C = R.L. of Cx+yr

Similarly, R.Ls of other points on the curve can be worked' out.

7. PRACTICAL DESIGN OF VERTICAL CURV tS ON HIGHWAYS

7.1. General

In tne application to actual problems of the principles

enunciated in the previous Sections, the following points deserve

to be borne in mind.
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The vertical curvature of roads should 'bjt bold in design and

long easy curves should take in all minor changes in ground levels.

As far as possible, numerous changes in gradients joined together

with short vertical curves should be avoided, except in mountain-

ous country where the adoption of long and easy curves might

become very costly. The economic aspect of vehicle operation is

very important in the choice of grades since the greater consump-

tion of fuel and the heavier wear and tear of tyres and brakes of

vehicles in traversing a wide range of vertical rises and falls would

add heavily to operation costs.

In the design of the grade line of a road and its co-ordination

with the horizontal alignment, the following points of guidance will

be helpful :

(i) The vertical alignment should provide for a smooth longitudinal

profile consistent with category of the the road and lie of the terrain.

Grade changes should not be too frequent as to cause kinks and
visual discontinuities in the profile. Desirably, there should be no
change in grade within a distance of 150 m.

(it) A short valley curve within an otherwise continuous profile is unde-

sirable since this tends to distort the perspective view and can be

hazardous.

(iii) Broken-back grade lines, i.e. two vertical curves in the same direc-

tion separated by a short tangent, should be avoided due to poor

appearance, and preferably replaced by a single long curve.

(iv) Decks of small cross-drainage structures, (i.e. culverts and minor
bridges) should follow the same profile as the flanking road section,

without any break in the grade line.

(v) For small bridges upto 30 m span and having horizontal deck, it

would be preferable to combine the flanking sections into a single

vertical curve.

(vi) The overall appearance of a highway can be enhanced considerably

by judicious combination of the horizontal and vertical alignments.

Plan and profile of the road should not be designed independently

but in unison so as to produce an appropriate three-dimensional

effect. Proper co-ordination in this respect will ensure safety,

improve utility of the highway and contribute to overall aesthetics.

(vii) The degree of curvature should be in proper balance with the

gradients. Straight alignment or flat horizontal curves at the expense

of steep or long grades, or excessive curvature in a road with flat

grades, do not constitute balanced designs and should be avoided.
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(viii) Vertical curvature superimposed upon horizontal curvature gives a

pleasing effect. As such the vertical and horizontal curves should

coincide as far as possible and their length should be more or less

equal. If this is difficult for any reason, the horizontal curve should

be somewhat longer than the vertical curve.

(ix) Sharp horizontal curves should be avoided at or near the apex of

pronounced summit/sag vertical curves from safety considerations.

7.2. Design of Summit Carves

The design of summit curves follows the procedure given

below.

7.2.1. On a longitudinal section of the road drawn to scale

are fixed the economical gradients, selected by taking into consi-

deration the amount of earthwork and other incidental works

involved. The value of two gradients meeting at a point being

known, the deviation angle N is known (see para. 2.4).

7.2.2. The sight distance applicable to the section of the

road is selected, taking into account the classification of the road,

the topography of the country and whether the section lies in an

overtaking zone or non-overtaking zone (see IRC 66-1976).

7.2.3. The value of N and S being thus known, the appro-

priate length of the summit curve, L, corresponding to these values

is read off from Plate 1, 2 or 3, as applicable.

7.2.4. The value of L as read from the graph is then round-

ded off so that the modified value is divisible into a number of

equal chords of a reasonable length not exceeding JR/200, where R
is the radius of the curve at the apex given by R = L/N.

7.2.5. By reading the value of M for the length designed

from the graph, the depth of cutting required for constructing the

curve is obtained. This depth may be checked to see if the cutting

would be excessive.

7.2.6. The constant <4a" is calculated from equation [2] and

the first ordinate y\ % obtained. The other ordinates and reduced

levels of the various station points on the curve are then calculated

and tabulated for facility in setting out in the field.
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7.3. Design of Valley Curves

7.3.1. The gradient lines are marked on the longitudinal

section of the road and the deviation angle, N 9 calculated as

explained in para 7.2.1.

7.3.2. The design speed, V y appropriate to the class of road

and the topography of the country, is noted down.

7.3.3. By using the graphs in Plate 4 is obtained the length

of the curve for the corresponding values of TV and V. This length,

L, is rounded off so as to be divisible into a number of equal

chords of a convenient length not exceeding 7?/200.

7.3.4. From equation [2] the constant "a" and the first

ordinate y\ (para. 6.5) are obtained and the other ordinates and

reduced levels of the station points are calculated from these and

tabulated for setting out in the field.

7.4. Shock-free Curves at Humps

7.4.1. It is desirable that the deck or top level of culverts

should be fixed in line with the grade line of the flanking sections

of the road so that no hump occurs. This may not, however, be

possible on an existing road where culverts occur with deck levels

higher than the general road levels, but the height of hump not

sufficient enough to obstruct the sight line. For such cases, the

approaches on either side should be provided with smooth vertical

curves (summit and " valley curves). The length of these curves

should not be less than the minimum lengths indicated in Table 7.

7.5. Measurement of Vertical Sight Distance

7.5.1. As discussed in earlier paras, one of the important

pourposes of providing a vertical curve is to ensure the necessary

visibility or the sight distance along the grade line. Provision of

sight distance must therefore receive attention right from early

stages where the alignment is still flexible and subject to adjust-

ments. Quick appraisals are best had by graphical means. By
determining graphically the available sight distances from the

longitudinal sections and recording them at convenient intervals,

deficiencies in visibility become evident well before detailed design

is already under way. Perusal of such records will enable the
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designer to decide on what modifications to make in profile for the

required visibility, and to otherwise create a more balanced and

effective design. For existing roads under improvements too, such

a study will be highly useful in determining the visibility deficiencies

and making the necessary improvements to the grade line.

7.5.2. As recommended in IRC : SP : 19 "Manual for

Survey, Investigation and Preparation of Road Projects*', the longi-

tudinal sections are plotted to the following scales :.

(i) Built-up areas and stretches in hilly terrain—! : 1000 for horizontal

scale and 1 : 100 for vertical scale.

(ii) Plain and rolling terrain— 1 : 2500 for horizoni-.l scale and 1 : 250

for vertical scale.

If L is the length of the vertical curve required for gradient

N, its radius R is equal to~ . The radius «r' for purposes of plot-

V
ting is then i?x uo where V is the vertical scale of the drawing and

H the horizontal. Having known the value of *r\ the vertical

curve is easily drawn on the profile with the aid of spline or railway

curves. For the recommended scales of plotting having vertical :

horizontal scale ratio of 1:10, the error in measurement of sight

distance will not be more than about 5 per cent.

7.5.3. Measurement of vertical sight distance at summit

curves may be done from plotted profiles of the highway by the

method illustrated in Fig. 14. A transparent straight edge with

parallel edges 1.2 m apart and a dotted line 0.15 m from the

upper edge, as per the vertical scale of the profile, is the tool

. 1 . 20 m

0. IS m

available ttoppmg tight distance-

» a-aiiable overtaking / intermediate tight

distance

Fig. 14.
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employed for these measurements. The transparent strip is

placed on the profile with the lower edge at the station for which

the available sight distance is desired and the strip revolved about

this point until the upper edge touches the profile. Stopping sight

distance available is then the distance between the first station and

the point of intesection of the 0.15 m line with the profile. Over-

taking/intermediate sight distance, in similar manner, is the

distance between the initial station and the point where lower edge

of the strip meets the profile. Tf overhead obstructions to visibility

like underbridges, etc. have also been marked on the profile, then

the graphical method explained above will unveil visibility deficien-

cies caused by these.

7.5.4. Availability of headlight sight distance along valley

curves can also be checked in a similar way except that the tem-

plate for checking will be differ as explained in Fig. 15. At the

Fig. 15.

point where the sight distance is to be checked, the lower edge of
the tamplate is kept tangential to the road surface, and the head-
light distance is the distance between starting station and the point
of intetersection between the road profile and light ray line (marked
1° upward frorii the headlight)

8. EXAMPLES

Problem No. 1

Design of a Vertical Summit Curve on a

National Highway in Plain Terrain

Data (i) Gradients : tii = + 1/25 or 4 per cent

and n2 = - 1/30 or 3.33 per Cent

~
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(ii) Class of Road—National Highway

(iii) Design Speed— 100 km/h

(iv) The existing features near the locality permit the

adoption of only the minimum sight distances.

Case 1 will show the design for a curve providing

non-overtaking sight distance and Case II that for

over-taking sight distance.

(a) Deviation angle N=-\- ^ y
j

= 0.040 -!- 0.033

= 0.073

(b) Sight distance

Referring to Table 4, the minimum non-overtaking sight

distance for a speed of 1C0 km/h is 180 m and the corresponding

overtaking sight distance is 640 m for an undivided carriageway.

Case I : Non-overtaking sight distance

(c) Length of curve

From Plate 1 corresponding to A' — 0.073 and S 180 m, the

length of the curve is 540 m. Divide the curve into 18 equal chords

of 30 m each.

The radius of curvature L N --- 7360 m

(d) Calculation of the design chart :

Solution

a -

2L

N
Equation [2] (Para. 5.5.)

2 540
" 0.073

-14795

From equation —
a

(Para. 5.9)

First ordinate >'j —
30 , : 30

14795
- 0.061



The design is then worked out assuming the beginning of the

vertical curve (B V. C.) to be RL 100.00 as in Table £— 1.

(e) Highest point on the curve

From equation in para 5.10

XL

0.04x540
295.89~

o.04-f0.033

The reduced level of this point is worked as under :

/295.89 V
2 colc' 1 x^i=5.915

1 V

R.L. of the point along the 1/25 gradient corresponding to the

highest point on the curve

295.89= 100 -f-

= 111.84

100
X 4.00

R.L. of the highest point = 1 1 1.84 — 5.915

- 105.925

In the field it is essential to mark the highest point also. The

solution is indicated diagrammatically in Fig. 16.

R L>" III 84

Xnt.;o 073
r

'<)

* 4 * 4
' ^ \

- /l° n Curvt

y
?
-0 244 ^

H=0.O6l

R L-iOO O

295 89m

-270m — *270m

Fig. 16.
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Case II: Overtaking sight distance

(i) From Plate 3 corresponding to N = 0.073 and

V= 100 km/h the intersection point giving the length

of the curve for the given conditions is outside the

cha ts. Therefore using equation [7],

T
NS* 0.073x640x640 - €L==
976 = 9^ = 3115 m

Round off the length to 3200 m. The radius of curva-

ture of the curve is 43,836 m. Divide the curve into

32 stations of 100 m each.

(ii) Calculation of the design chart : From equation

[2] para 5.5.

2L
Q N

3200 * 2 = 87671
0.073

w2 100x100
yi ~ a ~ 87671

"

= 0.114

(iii) Highest point of the curve occurs at xq. From
equation (vide para 5.10.)

—-V XL

= — x 3200 = 1753.4

y max = 17.532 x0.114

=" 35.03 m

R. L. along the 4 per cent grade = 1 00.00 -f 17.53x4

= 170.12

.-. R. L. of the highest point = 170.12—35.03

= 135.09

The solution is diagrammatically indicated in Fig. 17.
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Fig. 17.

PROBLEM NO. 2

For the case in problem I, site conditions do not permit the

provision of a summit curve exceeding 300 m in length. For stopp-

ing sight distance considerations, find (i) the adjustments required

in the grades for permitting the design speed of 100 km/h, and (ii)

the safe speed if the grades are not changed.

(i) Adjusting the approach gradients

For the speed of 100 km/h, S = 180 m

L as given = 300 m

^ 52 - 180x180

The gradients should be so adjusted that their algebraic diffe-

rence is 0.04.

(ii) Limiting the safe speed

4.4

4.4 xL 4.4 x 300

L =

C2 -b - N
S - 134.5 m

0.073

The safe speed corresponding to stopping sight distance of

134.5 m-85 km/h.
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PROBLEM NO. 3

Design the approach to a long bridge on a National Highway
in plain terrain. The deck of the bridge is 5.5 m above the general

road level. Provide for intermediate sight distance.

Design speed — 100 km/h

S (intermediate) = 360 m
From Fig. 18, ignoring the straightline grade CZ>,

i (Ls+ Lr) x N = 5.5 m
Try N = 0.025 (i.e. 1 in 40)

Ls (from Plate 2) = 337.5 m or 340 m
Lv (from Plate 4) = 70 m

* (340 + 70) x 0.025 = 5.125 m

Fig. 18

This is near enough, and the balance fall (5.5 — 5.125) or

0.375 m will be covered by straight grade portion CD

. 0.375 1CLength of CD = 0025
^

(i) Design of summit curve

Divide the length of the curve in chords 30 m each. The

design chart may be calculated as under :

Constanta = ^=^?= 27,200
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First ordinate y\ =
QO
= 0.033

The other ordinates can be calculated and the levels on the

curve worked out similar to Problem No. I.

(ii) Design of valley curve

Divide the length of the curve in chords 10 m each. The
design chart may be prepared as under :

r 2L 2x70 _,nnConstant a = — =
q-^J

= 5600

First ordinate yi = = 0.0179

Since valley curve is also of square parabola, the other

ordinates can be calculated similar to summit curves.

The profile is shown in Fig. 18. The total length of one side

bridge approach works out to 425 m.

PROBLEM NO. 4

For the ease in Problem 3, work out the profile for a gradient

of 1 in 50 (2 per cent) and compare with the profile obtained with

the gradient of 1 in 40 (Problem No. 3).

S = 360 m
N = 0.02

Ls (from Plate 2) = 240 in

Lv (minimum) = 60 m

Assuming the general level of the road to be R.L. 100.0, Referring

to Fig. 18 for symbols,

R.L. of F = 100.0

-do- D = 100 4- J x 60 x 0.02 = 100.6

-do- £ = 100+ = 100.15

-do- C = 105.5 -
J x 240 x 0.02 = 103.1

-do- B - 105.5 - ~ = 104.9
4
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Difference in level between C and D — 103.1 — 100.6 = 2.5 m
Length of CD = 2.5x50 = 125 m

Total length of approach = 2404-60+125 =«= 425 m which is

the same as that obtained in problem No. 3 with 1 in 40 gradient.

PROBLEM NO. 5

An urban arterial having divided carriageway is to cross a

railway line over a bridge 25 m span. The difference in deck level

of the bridge and the general road level is 6.0 m. Design suitable

profile for the approaches.

As the location is in urban area where a lot of slow moving

traffic is expected, it is preferable to adopt a flat gradient of 1 in

40 to 1 in 50. For the present case, adopt a gradient of 1 in 50,

or 0.02.

Stopping sight distance will apply for divided carriageways.

For the design speed of 80 km/h (vide IRC : 86-1983),

S = 120 m

(i) Design of summit curve

As the bridge span is short, less than 30 m, it will be prefer-

able to provide a single summit curve encompassing the bridge

deck as well.

N = 0.02+0.02 = 0.04

L(from Plate 1) = 131 m, or adopt 150 m

=S = 3750 m

The maximum difference in level between the horizontal and

the curve at the centre of bridge (see Fig. 19)

Tbis can be accommodated in the wearing course.
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(ii) Valley curve

For the gradient of N = 0.Q2 and design speed of 80 km/h,

the minimum lengths given Table 7 will apply. That is, the length

of valley curve on either side will be 50 m.

The proposed profile is shown in Fig. 19.

PROBLEM NO. 6

The deck of a slab culvert on a National Highway is 0.6 m
above the general road level on the flanks. Design suitable shock-

free curves for the culvert approaches.

As the hump caused by the culvert will not obstruct the

visibility, the minimum lengths from riding comfort considerations

(see Table 7) will govern the design.

Referring to Fig. 20, let slope of the grade line be N.

* (Ls+ Lv)xN = 0.6

» -3& - «•»'

Let R.L of the road at A = 100.00

R.L of C = 100 -1- 2° x 0.01 = 100.30
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Levels of in-between points as also of the approach on the

other side can be calculated in a similar way.
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