RECOMMENDED PRACTICE FOR PREPARATION OF NOTATIONS

THE INDIAN ROADS CONGRESS

MEMBERS OF THE BRIDGES COMMITTEE

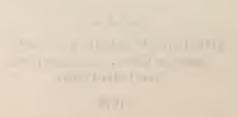
A 4.41 D'

1.	IN.S. Kamaswalliy	Addi. Director General (Bridges), Govt. of India,
2	(Convenor) A.D. Narain	Ministry of Shipping & Transport (Roads Wing) Superintending Engineer (Bridges), Govt. of India.
2.	(Member-Secretary)	Ministry of Shipping & Transport (Boads Wing)
3	Dr. Ramji Agrawal	Ministry of Shipping & Transport (Roads Wing) Reader, Civil Engg. Banaras Hindu University, Varanasi
	C.R. Alimchandani	Chairman & Managing Director, Stup (India) Ltd.,
7.	C.R. Annonandam	Bombay
5.	Dr. A.S. Arya	Director, School of Research & Training in Earthquake
6.	Amitava Banerjee	Engg. Roorkee Superintending Engineer, State Highway Circle No.II, Govt. of West Bengal
7	S.L. Bazaz	'Apurva' Main Road No. IV, Banjara Hills, Hyderabad.
	P.C. Bhasin	Chief Engineer (Bridges), Govt. of India, Ministry of Shipping & Transport (Roads Wing)
9.	Dr. P. Ray Chaudhuri	Scientist, Central Road Research Institute
	A. Chellam	Addl. Director, Stds. (B&D), R.D.S.O. Lucknow.
11.	Dr. V.N. Gunaji	108/19, Chadhranayan Bharati Niwas Cooperative
		Housing Society, Erandvane, Poona.
12.	D.T. Grover	Chief Engineer (Bridges), Govt. of India, Ministry of Shipping & Transport (Roads Wing)
13.	Dr. B.K. Gupta	Addl. Chief Engineer, P.W.D. B&R, Rajasthan
14.	Dr. S.P. Gupta	Prof & Head of Post Graduate Structural Engg. Deptt.
15.	S.H. Mahadevan	Punjab Engincering College, Chandigarh Chief Engineer, Pamban Bridge Project, Tamil Nadu,
		Madras
16.	M.S. Jalundhwala	Superintending Engineer, Design Circle (R&B), P.W.D. Gujarat
17.	N.V. Merani	Addl. Chief Engineer, Maharashtra Public Works & Housing Deptt.
18.	Lt. Col. H.M.S. Murthy	Commander Works Engineers, Visakhapatnam
	B.K. Panthakey	Chief Engineer (Civil), Hindustan Construction Co. Ltd.,
		Bombay
20.	J.R.K. Prasad	Chief Engineer (Bridges), Govt. of India Ministry of Shipping & Transport (Roads Wing)
21.	J.V. Prasad	Superintending Engineer (D&P), Govt. of Andhra Pradesh, (R&B) Deptt.
22.	Kartik Prasad	82/9, Balligunj Place, Flat No. 8, 4th Floor, Calcutta- 700019.
23.	Dr. V.K. Raina	Consulting Engineer, Gilcon Projects Services Ltd., New Delhi
24.	Dr. C.K. Ramesh	Head of the Civil Engg. Deptt. I.I.T., Bombay
	B. Balwant Rao	Chief Engineer (Bridges), Govt. of India, Ministry of
26.	Dr. K. Sreenivasa Rao	Shipping & Transport (Roads Wing) Superintending Engineer (H&RW), Design Circle, Tamil Nadu
27	T.N. Subba Rao	Managing Director, Gammon India Ltd., Bombay
	C.R. Gopala Sarma	Superintending Engineer, Directorate General Border
		Roads
29.	Shitla Sharan	Zonal Manager, U.P. State Bridge Corporation Ltd.,
30	D. Ajitha Simha	Lucknow Director (Civil Engineering), Indian Standards
50.	D. Aljana Shina	Institution
31.	S.P. Sharma	Superintending Engineer, H.P. P.W.D.
	J.S. Sodhi	Superintending Engineer, Planning & Investigation,
	vio. South	P.W.D. B&R., Punjab
33.	M.D. Tambekar	Superintending Engineer (Designs), Bombay Port Trust
	Dr. M.G. Tamhankar	Assistant Director, Structural Engg. Research Centre,
		Roorkee
35.	P.K. Thomas	Superintending Engineer, Govt. of India. Ministry of Shipping & Transport (Roads Wing)
36.	B.T. Unwalla	Acting Chief Engineer, The Concrete Association of India
	S.S. Varma	B 6/8, Vasant Vihar, New Delhi
	Director (Flood	Central Water Commission, New Delhi
	Estimation)	Contract fratter Contraction of a contraction of the
39.	J.S. Marya	Director General (Road Development) & Addl. Secretary

to the Govt. of India, Ministry of Shipping & Transport (Roads Wing)—(*Ex-officio*)

RECOMMENDED PRACTICE FOR PREPARATION OF NOTATIONS

Published by


THE INDIAN ROADS CONGRESS Jamnagar House, Shahjahan Road, New Delhi-110011

1978

Price Rs.60/-(Plus Packing & Postage)

First published : March 1978

(Rights of Publication and of Translation are reserved)

Printed at PRINTAID, New Delhi-110020

Convenor

RECOMMENDED PRACTICE FOR PREPARATION OF NOTATIONS

INTRODUCTION

The Bridges Committee of Indian Roads Congress in its meeting held in September, 1975 took note of the developments in international acceptance of a common logical system of notations and set up a Panel to recommend a system of notations in conformity with the same.

The following members served on the Panel :

P.C. Bhasin D.T. Grover D. Ajitha Simha Dr. V.K. Raina

The draft standard framed by the Panel was approved by the Bridges Committee in their meeting held on the 9th to 11th May 1977 and then by the Executive Committee. Later it was approved by the Council in their 90th meeting held on the 29th July 1977.

The object of issuing this Standard is to establish the usage of a logical and uniform system of notations in all IRC Standards as well as in all technical literature, design calculations and drawings. Certain changes necessary may cause inconvenience in initial use. But, an immediate and rigid adherence is recommended to achieve the desired results in shortest possible time. Suggestions for improvement of the Standard, arising out of practical use, are most welcome and may be sent to the *Secretary*, Indian Roads Congress, Jamnagar House, Shahjahan Road, New Delhi-110011.

1. SCOPE

This standard recommends the practice to be followed in preparing symbols to be used in notation defining any aspect of bridge construction.

2. **DEFINITION**

Notation is defined as a system of symbols formed in a logical manner to represent definitions of engineering concept, for the purpose of this standard.

3. CONSTRUCTION OF SYMBOLS

A symbol shall consist of :

- (i) a leading letter, to be chosen according to 4.
- (ii) a descriptive subscript, added where necessary, to be chosen according to 5.
- (iii) indices and signs, where necessary according to 6. (see Appendix I typical notations for a concrete beam, Appendix II Symbols for unit, Appendix III Common mathematical signs or symbols).

4. LEADING LETTER

4.1. A leading letter shall be selected from :

- (i) Roman upper case letters
- (ii) Roman lower case letters
- (iii) Greek lower case letters

Greek upper case letters are reserved for mathematics and not recommended for use in notations, within the scope of this standard.

4.2. The selection of the leading letter of symbol shall be based on the consideration of the dimensions of the physical quantity involved, as given hereafter. Concepts not included shall comply with the nearest appropriate category listed.

Some exceptions have been adopted in deference to traditional practice. These are indicated at appropriate places and should be carefully noted.

Some letters are generally prohibited from use to avoid confusion. These are indicated as VOID in Tables 1, 2 and 3.

4.2.1. Roman uppear case letters

shall denote quantities with the following dimensions :

- (i) Force
- (ii) Force times length
- (iii) Area to a power
- (iv) Temperature

4.2.1.1. An *exception* shall be made in case of the modulus of elasticity, the modulus of shear, which shall be denoted by Roman upper case letters i.e. E.G. respectively (for 'exception regarding optional use of L in place of l, see Table 2).

4.2.1.2. The following quantities shall be denoted generally by Roman upper case letters (see Table 1 for a more detailed description):

- (i) Concentrated load, total load, normal force, shear,
- (ii) Moment,
- (iii) Area, first or second moment of area, volume,
- (iv) Temperature,
- (v) Modulus of elasticity, modulus of shear. (exception to dimensions 4.2.1.)

4.2.1.3. Table 1 gives a detailed description of the recommended usage of Roman upper case letters :

Letter	Denotes	Remarks
A	area	
В		
С	torsional moment of inertia	
D	—	
E	modulus of elasticity	
F	load, force	shall include all actions including imposed deformations
G	modulus of shear, dead load	
н	-	
I	moment of inertia	
J		
K	any coefficient with proper dimensions	
L		can be used in lieu of lower case l to denote 'span, length of member' (see Table 2), when confu-
		sion with 1 (numeral) is likely in typescript.
М	bending moment	
N	normal force	
0	VOID	
P	prestressing force	

 TABLE 1.
 ROMAN UPPER CASE LETTERS—FOR USE AS LEADING LETTER

Table 1 (contd.)

Letter	Denotes	Re	marks	
Q	live load			
R	_			
S	first moment of area			
Т	torsional moment, temperature			
U				
V	shear force, volume			
W	wind load, section modulus $(W=I y)$			
Х	reactions or forces in general parallel to axis x			
Y	reactions or forces in general parallel to axis y			
Z	reactions or forces in general parallel to axis z.			

Note: 1. A blank space against a letter means that the same is unassigned and not prohibited.

2. The letters indicated as VOID are generally prohibited from use.

4.2.2. Roman lower case letters

shall denote quantities with the following dimensions :

- (i) length
- (ii) length per time to a power
- (iii) force per unit length or area.

4.2.2.1. (i) An exception shall be made in case of symbols to be used for stress. Greek lower case letters shall be used for denoting stress (strength) e.g. normal stress, shear stress etc., to be indicated by σ , τ respectively.

(ii) The diameter of a reinforcing bar or tendon shall be indicated by the Greek lower case letter ϕ , as an exception.

4.2.2.2. The following quantities shall be denoted generally by Roman lower case letters (see Table 2 for more detailed description):

- (i) Linear dimensions (for exception see 4.2.2.1. ii)
- (ii) Velocity, acceleration,
- (iii) Unit moment/shear/normal force/load, force per unit area (exception for stress, see 4.2.2.1. i).

4.2.2.3. Table 2 gives a detailed description of the recommended usage of Roman lower case letters :

TABLE 2. ROMAN LOWER CASE LETTERS—FOR USE AS Leading Letter

Letter	Denotes	Remarks
a	deflection; distance	
b	width	
с	concrete cover	
d	effective depth, diameter	diameter of reinforcing bar indica- ted by ϕ , see 4.2.2.1. and table 3.
e	eccentricity	also used in mathematics to denote base of Naperian logarithm.
f	strength	100
g	distributed dead load; acceleration due to gravity	
h	total depth or diameter of a cross- section; thickness	
i	radius of gyration	
j	number of days	
k	any coefficient with proper dimensions	
1	span; length of member	can be replaced by L when ambi- guity with 1 (numeral may) arise.
m	bending moment per unit length or width	
n	normal force per unit length or width	also used in mathematics to denote number
0	VOID	
р	VOID	
q	distributed live load	
r	radius	

Table 2 (contd.)

Letter	Denotes	Remarks
s	standard deviation, spacing	
t	time, torsional moment per unit length or width	
u	perimeter	
v	shear force per unit length or width, velocity	shall not be used for shear stress, see 4.2.2.1. and Table 3
w	distributed wind load, crack width	
x	co-ordinate, depth of neutral axis	
у	co-ordinate, depth of rectangular stress block	
z	co-ordinate lever arm	

Note: 1. The meanings given here are not necessarily valid for subscripts for which Table 4 may be referred.

- 2. A blank space against a letter means that the same is unassigned and not prohibited.
- 3. The letters indicated as VOID are generally prohibited from use.

4.2.3. Greek lower case letters

shall denote dimensionless terms

4.2.3.1. (i) As an exception, stress (strength) shall be denoted by Greek lower case letters, see 4.2.2.1.

(ii) The diameter of a reinforcing bar or tendon shall be denoted by ϕ , as an exception.

4.2.3.2. The following quantities shall be denoted generally by Greek lower case letters

- (i) Coefficient and dimensionless ratio
- (ii) Strain
- (iii) Angle
- (iv) Stress (strength) (exception to dimensions 4.2.3.)
- (v) Diameter of a reinforcing bar or tendon (exception to dimensions 4.2.3.)

4.2.3.3. Table 3 gives a detailed description of the recommended usage of Greek lower case letters:

Alpha α Beta β Gamma γ	angle, ratio, coefficient angle, ratio, coefficient specific gravity, safety factor, shear strain (angular	
	specific gravity, safety factor,	
Gamma y		
	shear strain (angular	
	deformation)	
Delta &	'	
Delta 8	coefficient of variation, coefficient	
Epsilon ϵ	strain	
Zeta ζ	coefficient	
Eta ŋ	VOID	
Theta 0	rotation	
Iota ı	VOID	
Карра к	VOID	
Lambda λ	slenderness ratio, coefficient	
Mu μ	coefficient of friction	
Nu v	Poisson's ratio	
Xi ξ	coefficient	
Omicron o	VOID	
Ρί π	(mathematical usage only)	$\pi = 3,14159$
Rho p	geometrical ratio of reinforcement	
Sigma σ	normal stress	exception to dimensions 4.2.
Tau T	shear stress	exception to dimensions 4.2.
Upsilon v	VOID	
Phi ϕ	diameter of reinforcing bar or tendon, coefficient	exception to dimensions 4.2.
Chi ×	VOID	
Psi ψ	coefficient	
Omega ω	VOID	

TABLE 3. LOWER CASE GREEK LETTERS—FOR USE AS LEADING LETTER

Note: 1. A blank space against a letter means that the same is unassigned and not prohibited.

2. The letters indicated as VOID are generally prohibited from use.

5. SUBSCRIPT

5.1. The subscript shall be formed by Roman lower case letters or numerals or a combination of them. Roman upper case letters or Greek letters are not recommended to be used in subscript.

5.2. Multiple subscript should be avoided as long as there is little likelihood of confusion. Multiple subscript, when required to be used, may be formed by a group of Roman lower case letters or numerals or by standard abbreviation of words.

When confusion is possible, a bar may be placed over a multiple subscript or a comma (,) may be used to distinguish between two categories of subscripts used together. Tables 4, 5 and 6 give a detailed description of the recommended usage of subscript of different types.

Subscripts other than those given in Tables 4, 5 and 6 shall be used only with a clear written definition of their meanings indicated.

Letter	Denotes	Remarks	
a	support settlement, additional		18
b	bond, bar, beam		
с	concrete, compression, column		
d	design value		
е	elastic, effective		
f	forces and other actions, flange, flexu, friction	re,	
g	dead load		
h	horizontal		
i	initial		
j	number of days		
k	characteristic		
1	longitudinal		
m	average values, materials		
n	number		
0	VOID	only the meaning of accepted	numeral O is
р	prestress		

TABLE 4. GENERAL SUBSCRIPTS

8

Table 4 (contd.)

Letter	Denotes	Remarks	
q	live load		
r	cracking		
S	steel, slab		
t	torsion, tension, transversal		
u	ultimate (limit state)		
v	shear, vertical		
w	web, wind		
х	linear co-ordinate		
у	linear co-ordinate, yield		
z	linear co-ordinate		
Numer	als		
0, 1, 2.	particular value of quantities		

TABLE 5. SUBSCRIPTS FOR LOADS AND OTHER ACTIONS

Letter	Denotes
g	dead load
q	live load
w	wind
ep	earth pressure
eq	earthquake
im	impact
a	support settlement
р	prestress
cc	concrete creep
CS	concrete shrinkage
te	temperature

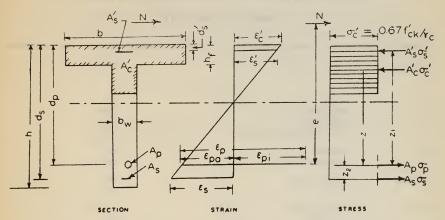
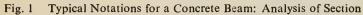

Abbreviation	Denotes	
adm	admissible, permissible	
cal	calculated	
crit	critical	
ехс	exceptional	
ext	external	
inf	inferior, lower	
int	internal	
lat	lateral	
lim	limit	
max	maximum	
min	minimum	
obs	observed	
sup	superior, upper	
tot	total	
var	variable	

 TABLE 6.
 SUBSCRIPTS FORMED FROM ABBREVIATIONS


6. INDICES AND SIGNS

A prime (') may be added to a symbol representing geometrical quantity to indicate compression, if required. Use of any other superscript is not recommended. Sign of computed stress may be given by + (plus) for tension and - (minus) for compression.

Appendix—I

TYPICAL NOTATIONS FOR A CONCRETE BEAM

Notation	Denotes
A'e	Area of concrete in compression
Ap	Area of prestressing steel
As	Area of reinforcing steel in tensile flange
A'8	Area of reinforcing steel in compression flange
Ь	width of flange
bw	width of web
d's	effective depth of compressive steel reinforcement
$d_{\mathcal{P}}$	effective depth of prestressing steel
d_s	effective depth of tensile steel reinforcement
e	eccentricity of load
f'ck	characteristic compressive strength of concrete
h	total depth of section
hs	depth of flange
Z, Z_1, Z_2	lever arm
Ye	material safety factor for concrete
e'c	strain in concrete—compressive
epa	additional load strain in prestressing steel
€pi	strain in prestressing steel due to initial prestressing
€p	strain in prestressing steel
€ _s	strain in steel reinforcement-tensile
€'8	strain in steel reinforcement—compressive
σ'e	stress in concrete—compressive
σp	stress in prestressing steel
σs	stress in steel reinforcement-tensile
σ's	stress in steel reinforcement-compressive

Quantity	Name of Unit	Symbol
length	metre millimetre kilometre (micrometre or micron	m mm km µm)
area	square metre squre millimetre	m² mm²
volume	cubic metre litre	m³ lit
mass	kilogramme gramme tonne	kg gm t
density	kilogramme per cubic metre tonne per cubic metre	kg/m³ t/m³
time	second minute hour day year	s min h j a
temperature	degree Celsius	°C
velocity	metre per second kilometre per hour	m/s km/h
force	newton kilonewton meganewton	N kN MN
moment	newton metre kilonewton metre meganewton metre	N.m kN.m MN.m
pressure/ stress	pascal (newton per square metre) megapascal	Pa (N/m²) MPa (MN/m² or N/mm²)

SYMBOLS FOR UNITS

 9.80665 N=1 kgf For approximate conversion 1 kgf or kg≈10 N and 1 kgf/cm² or kg/cm²≈0.1 MPa.

Note: 1. The symbols are given for SI units. (Technical or other metric units shall not be used. Decimal multiples or submultiples other than those mentioned herein shall also not generally be used).

- 3. The symbols shall remain unaltered in plural (it may be noted that s denotes second and as such should never be added to the symbol to indicate plural).
- 4. The symbols shall be written without a final full stop (period).
- 5. When symbols for units are combined in product, the process of combination shall be indicated as below:

N.m N[.]m N m but not as Nm

When combined in a quotient, the process of combination shall be indicated as below:

kg/m³ kg m³ kg.m⁻³ kg:m⁻³ but not as kgm⁻³

Not more than one solidus (/) shall be included in such combinations; parentheses or preferably negative powers shall be used where necessary.

Appendix—III

Sign or Symbol	Denotes	Remarks
	equal to	
≠	not equal to	
	identically equal to	
~	approximately equal to	
→	approaches	
~	asymptotically equal to	
~	proportional to	∝ also used
œ	infinity	
<	smaller than	
>	larger than	
<<<	smaller than or equal to	
226	larger than or equal to	
€	much smaller than	
>	much larger than	
5	sum	
Δ×	delta x=finite increment (difference) of x	

COMMON MATHEMATICAL SIGNS OR SYMBOLS

•

.

·

•

•

