Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

IS 12200 (2001): Provision of Water-Stops at Transverse Contraction Joints in Masonry and Concrete Dams - Code of Practice [WRD 9: Dams and Spillways]

Made Available By Public.Resource.Org

“जान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता है”
Bhartrhari—Nitisatakam
“Knowledge is such a treasure which cannot be stolen”
Indian Standard

PROVISION OF WATER-STOPS AT TRANSVERSE CONTRACTION JOINTS IN MASONRY AND CONCRETE DAMS — CODE OF PRACTICE
(First Revision)

ICS 23.040.45; 93.160
FOREWORD

This Indian Standard (First Revision) was adopted by the Bureau of Indian Standards, after the draft finalized by the Dams and Reservoirs Sectional Committee had been approved by the Water Resources Division Council.

The opening of the contraction joints provides passages through the dam which unless sealed, would permit the leakage of water from the reservoir to the downstream face. To stop this leakage, water-stops should be installed in the joints adjacent to the upstream face.

Advancement in the specifications and the manufacture of material have resulted in the acceptance of polyvinyl chloride (PVC) as suitable material for joint seal. The material can be manufactured for a number of shapes and sizes suiting to the specific requirement. In view of this, the matter regarding the replacement of copper water-stop and asphalt water-stop by PVC water-stops has been under consideration for quite some time. Experience in India and abroad has suggested that asphalt water-stops become defunct for want of adequate heating arrangement and as a result, it has been felt that the same should be replaced by PVC water-stops. Copper water-stops can accommodate only a small lateral movement. Experience in the Pacific North West of United States has shown that the sheet-type copper water-stop is very vulnerable to failure especially in high navigation lock. In Indian condition, project authorities have reported difficulties in properly brazing the copper sheets and also its missing from the structure during construction. Accordingly, it has been felt that the copper water-stop should be replaced by PVC water-stops. This standard was first published in 1987. In this revision of the standard use of only PVC water-stops have been recommended and provision of other materials have been deleted.

There is no ISO standard on the subject. This standard has been prepared based on the data received from indigenous manufacturers' and also taking into consideration the practices prevalent in the field in India. The composition of the Committee responsible for the formulation of this standard is given in Annex A.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2:1960 ‘Rules for rounding off numerical values (revised)’. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.
Indian Standard

PROVISION OF WATER-STOPS AT TRANSVERSE CONTRACTION JOINTS IN MASONRY AND CONCRETE DAMS — CODE OF PRACTICE (First Revision)

1 SCOPE

This standard deals with the provision of PVC water-stops across ungrouted transverse contraction joints in masonry and concrete dams.

2 REFERENCES

The Indian Standards given below contain provisions which through reference in this text, constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards.

<table>
<thead>
<tr>
<th>IS No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>290:1961</td>
<td>Specification for coal-tar black paint</td>
</tr>
<tr>
<td>15058:2001</td>
<td>PVC water-stops at transverse contraction joints for use in masonry and concrete dams — Specification</td>
</tr>
</tbody>
</table>

3 PVC (POLYVINYL CHLORIDE) WATER-STOPS

3.1 Material

The water-stop should be fabricated from a plastic compound, the basic resin of which shall be polyvinyl chloride. The compound shall contain additional resins, plasticizers, inhibitors or other materials such that when the material is compounded, it shall meet the requirements given in IS 15058:2001.

3.2 Shape and Dimensions

The typical shape and dimensions of PVC water-stops are given in Fig. 1. However, the section of PVC water-stop will vary depending on head and site requirements.

4 INSTALLATION OF WATER-STOPS

4.1 In the case of masonry dams, the surface adjacent to the blockouts (shown by dotted lines in Fig. 2) shall be irregular and the joints in the masonry shall be raked out when mortar is green, with some stones protruding beyond dotted lines regularly in both directions. No such blockouts shall be provided in concrete dams where concreting on either side of the water-stops is done along with the concreting of the rest of the block.

4.2 The blockout may be concreted in lifts not more than 1.5 m. Minimum grade of concrete to be used in the blockout shall be M 20 (see IS 456).

4.3 The blockout of one block may be concreted first and the joint face given a coat of coal-tar black paint conforming to IS 290 and then only the blockout of the second block should be concreted so as to have a clear contraction joint.

4.4 Typical details of water-stop arrangement (at contraction joints between two monoliths of a dam)
near the top of a non-overflow section are shown in Fig. 3, near the crest of a gated overflow section in Fig. 4, near the bottom of the dam in Fig. 5 and ungated overflow section in Fig. 6. 4.5 PVC water-stops shall be provided around galleries/adits at the contraction joint between two monoliths of a dam as shown in Fig. 7. In case of masonry dam, the thickness of concrete cover may be 400 mm.
4.6 Water-stops rolls should be stored in a suitable environment to avoid its damage due to adverse weather conditions.

4.7 During installation, the exposed portion of water-stops should be protected against adverse weather conditions.

5 JOINTING

PVC water-stops shall be jointed in straight reaches only by an experienced trained personnel using a suitable device in consultation with the engineer-in-charge and the manufacturer.
All dimensions in millimetres.

FIG. 5 **TYPICAL WATER-STOP DETAILS NEAR BOTTOM OF DAM**

FIG. 6 **WATER-STOP DETAILS FOR UNGATED OVERFLOW SECTION**
All dimensions in millimetres.

Fig. 7 PVC Water-Stop Around Gallery/Adit at Contraction Joint
ANNEX A
(Foreword)

COMMITTEE COMPOSITION
Dams and Reservoirs Sectional Committee, WRD 9

Organization
Central Water Commission, New Delhi
Bhakra Beas Management Board, Chandigarh
Central Board of Irrigation & Power, New Delhi
Central Soil & Material Research Station, New Delhi
Central Water & Power Research Station, Pune
Central Water Commission, New Delhi
Consulting Engineering Services (I) Pvt Ltd, New Delhi
Geological Survey of India, Lucknow
Narmada & Water Resources Department, Government of Gujarat, Gandhinagar
Indian Institute of Technology, New Delhi
Irrigation Department, Government of Andhra Pradesh, Hyderabad
Irrigation & Waterways Directorate, Government of West Bengal, Kolkata
Irrigation Department, Government of Uttar Pradesh, Roorkee
Irrigation Department, Government of Punjab, Chandigarh
Irrigation Department, Government of Maharashtra, Nasik
Irrigation Department, Government of Haryana, Chandigarh
Water Resources Department, Government of Madhya Pradesh, Bhopal
Jaiprakash Industries Ltd, New Delhi
Karnataka Power Corporation Limited, Bangalore
Kerala State Electricity Board, Thiruvananthapuram
Gammon India, Mumbai
National Hydroelectric Power Corporation Ltd, Faridabad
North Eastern Electric Power Corporation Ltd, New Delhi
National Institute of Hydrology, Roorkee
Public Works Department, Government of Tamil Nadu, Chennai
Tehri Hydro Development Corporation, Noida
BIS Directorate General

Representative(s)
DR B. K. MITTAL (Chairman)
CHIEF ENGINEER (BHAKRA DAM)
DIRECTOR (DESIGN) B&B DESIGN DIRECTORATE (Alternate)
SHRI S. P. KAUSHAL
SHRI T. S. MOORTHY (Alternate)
DIRECTOR
SHRI A. K. DHAVAN (Alternate)
SHRI R. M. KHASTURIA
SHRI P. B. DROLAILIKAR (Alternate)
DIRECTOR (CMDD-NW&S)
DIRECTOR RESERVOIR OPERATION DIRECTORATE (Alternate)
SHRI M. K. NARASIMHAYYA
SHRI S. S. NARANG (Alternate)
SHRI G. K. KAITHA
SHRI R. N. SINGH (Alternate)
CHIEF ENGINEER (MEDIUM & MINOR) AND ADDL SECRETARY
SUPERINTENDING ENGINEER (C DO) (Alternate)
HEAD OF THE CIVIL ENGINEERING DEPARTMENT
CHIEF ENGINEER (L&CAD)
SUPERINTENDING ENGINEER (DAMS) (Alternate)
SHRI A. DASGUPTA
SHRI H. P. CHAKRABARTI (Alternate)
CHIEF ENGINEER (DAM DESIGN)
SUPERINTENDING ENGINEER (DAM DESIGN CIRCLE I) (Alternate)
CHIEF ENGINEER (RSDD)
DIRECTOR DAMS (RSDD) (Alternate)
SUPERINTENDING ENGINEER (MD)
EXECUTIVE ENGINEER (MD-4) (Alternate)
CHIEF ENGINEER (PROJECTS)
DIRECTOR (ENGINEERING) (Alternate)
SHRI A. K. RISHI
DIRECTOR (DAMS) (Alternate)
SHRI D. G. KAKADE
SHRI NARENDRA SINGH (Alternate)
SHRI P. R. MALTI KARUNA
SHRI S. M. CHEWI (Alternate)
SHRI GEORGE CHERRYAN
SHRI M. S. BISARMA
SHRI R. D. VARANGAONKAR (Alternate)
SHRI K. S. NAGARAJA
SHRI UTPAL BORA
DR S. M. SETH
DR P. K. MAHAPATRA (Alternate)
ENGINEER-IN-CHIEF
CHIEF ENGINEER (Alternate)
SHRI L. K. BAEPAL
SHRI S. S. SETH, Director & Head (WRD)
[Representing Director General (Ex-officio)]

Member-Secretary
SHRI R. S. JUNEJA
Joint Director (WRD), BIS
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically: a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of ‘BIS Catalogue’ and ‘Standards: Monthly Additions’.

This Indian Standard has been developed from Doc : No. WRD 9 (283).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters :
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110 002
Telephones : 323 01 31, 323 33 75, 323 94 02

Regional Offices :
Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg
NEW DELHI 110 002
Telegrams : Manaksanstha
(Common to all offices)

Eastern : 1/14 C.I.T. Scheme VII M, V. I. P. Road, Kankurgachi
KOLKATA 700 054

Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160 022

Southern : C.I.T. Campus, IV Cross Road, CHENNAI 600 113

Western : Manakalaya, E9 MIDC, Marol, Andheri (East)
MUMBAI 400 093

Branches : AHMEDABAD, BANGALORE, BHOPAL, BHUBANESHWAR, COIMBATORE, FARIDABAD, GHAZIABAD, GUWAHATI, HYDERABAD, JAIPUR, KANPUR, LUCKNOW, NAGPUR, NALAGARH, PATNA, PUNE, RAJKOT, THIRUVANANTHAPURAM.

Printed at Prabhat Offset Press, New Delhi-2