Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“जानने का अधिकार, जीने का अधिकार”
Mazdoor Kisan Shakti Sangathan
“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”
Jawaharlal Nehru
“Step Out From the Old to the New”

Indian Standard

GUIDELINES FOR THE DESIGN OF GROUT CURTAINS

PART 1 EARTH AND ROCKFILL DAMS

UDC 627·824·3 : 624·152·634 : 666·97·033·14 : 005·76

© Copyright 1985

INDIAN STANDARDS INSTITUTION
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

Gr 2

November 1985
Indian Standard

GUIDELINES FOR THE DESIGN OF GROUT CURTAINS

PART 1 EARTH AND ROCKFILL DAMS

Foundation and Substructure Sectional Committee, BDC 52

Chairman
SHRI K. R. DATYE
44 Bhagat Singh Road,
Colaba, Bombay

Members
ADDITIONAL CHIEF ENGINEER
(BUILDINGS)
SHRI R. K. MATHUR (Alternate)

SHRI R. N. BANSAL
SHRI M. P. JAIN (Alternate)

SHRI S. CHAKRABARTI
SHRI D. I. DESAI (Alternate)

SHRI MAHAVIR BIDASARIA
SHRI ASHOK BIDASARIA (Alternate)

CHIEF ENGINEER (MEDIUM & MINOR IRRIGATION)
DIRECTOR (Alternate)

CHIEF ENGINEER (IP) AND SPECIAL SECRETARY TO GOVT OF GUJARAT
SUPERINTENDING ENGINEER (Alternate)

CHIEF ENGINEER (SUPA DAM CONSTRUCTION)
DIRECTOR (ERDD)-II
DEPUTY DIRECTOR (ERDD)-II (Alternate)

SHRI A. H. DIVANJI
SHRI A. N. JANGLE (Alternate)
MISS E. DIVATIA

SHRI BRIJENDESH SHARMA (Alternate)

SHRI A. C. GOYAL

SHRI B. JANARDHAN (Alternate)

SHRI B. K. PANTHAKY

SHRI D. M. SAVUR (Alternate)

Representing
Irrigation Department, Government of Uttar Pradesh, Lucknow

Irrigation Works, Government of Punjab, Chandigarh

Gammon India Limited, Bombay

Ferro Concrete Co (India) Pvt Ltd, Indore

Irrigation Department, Government of Andhra Pradesh, Hyderabad

Irrigation Department, Government of Gujarat, Gandhinagar

Asia Foundation and Construction Limited, Bombay

National Hydro-Electric Power Corporation Limited, New Delhi

Tata Consulting Engineers, Bangalore

Hindustan Construction Co Ltd, Bombay

(Continued on page 2)

© Copyright 1985

INDIAN STANDARDS INSTITUTION

This publication is protected under the Indian Copyright Act (XIV of 1957) and reproduction in whole or in part by any means except with written permission of the publisher shall be deemed to be an infringement of copyright under the said Act.
IS : 11293 (Part 1) - 1985

(Continued from page 1)

Members

SHRI M. R. PUNJA
SHRI D. J. KETKAR (Alternate)
RESEARCH OFFICER

SHRI DAMODAR SAHOO

SHRI C. SUDHINDRA

DEPUTY DIRECTOR (SOIL) (Alternate)
SUPERINTENDING ENGINEER
(BRIDGES AND STANDARDS)

SHRI G. RAMAN,
Director (Civ Engg)

Representing

Cemindia Limited, Bombay

Irrigation Department, Government of Maharashtra, Bombay

Irrigation and Power Department, Government of Orissa, Bhubaneshwar

Central Soil and Materials Research Station, Ministry of Irrigation, New Delhi

Ministry of Shipping and Transport (Roads Wing)

Director General, ISI (Ex-officio Member)

Secretary

SHRI M. SADASIVAM
Assistant Director (Civ Engg), ISI
AMENDMENT NO. 1 DECEMBER 2004
TO
IS 11293 (PART 1) : 1985 GUIDELINES FOR
THE DESIGN OF GROUT CURTAINS
PART 1 EARTH AND ROCKFILL DAMS

(Page 3, clause 0.3, last line) — Substitute 'IS 6066 : 1994' for 'IS : 6066 - 1985'.

(Page 3, clause 0.4) — Substitute the following for the existing:
'This standard exists in two parts, IS 11293 (Part 2) covers masonry and concrete gravity dams'.

(WRD 8)
AMENDMENT NO. 2 APRIL 2010
TO
IS 11293 (PART 1) : 1985 GUIDELINES FOR THE
DESIGN OF GROUT CURTAINS

PART 1 EARTH AND ROCKFILL DAMS

(Page 4, clause 2.2.1, line 10) — Insert ‘,’ after the word ‘curtains’.

(Page 6, clause 3.3.1, line 4) — Insert ‘,’ after the word ‘rock’.

(Page 7, clause 3.3.3, line 1) — Substitute ‘seams’ for ‘seems’.

(WRD 8)

Reprography Unit, BIS, New Delhi, India
Indian Standard
GUIDELINES FOR THE DESIGN OF GROUT CURTAINS
PART 1 EARTH AND ROCKFILL DAMS

0. FOREWORD

0.1 This Indian Standard (Part 1) was adopted by the Indian Standards Institution on 26 February 1985, after the draft finalized by the Foundation and Substructure Sectional Committee had been approved by the Civil Engineering Division Council.

0.2 There are various measures for seepage control which are given in IS : 8414-1977*; one of which is grout curtain. This standard covers the design of grout curtain for earth and rockfill dams.

0.3 Design requirements for a grout curtain depend on its function, for example, when the grout curtain is designed to function as the principal measure of seepage control and it constitutes the main seepage barrier, it shall be of adequate depth and width and the permeability within the grouted zone shall be reduced to acceptable limits. On the other hand the grout curtain may be considered as a complementary measure of other seepage control measures. In such cases the curtain is essentially an exploratory line of closely spaced holes aimed at sealing the wider and more open cracks and voids so that the efficacy of the system is not impaired by excessive concentrated seepage along the major cracks joints and voids. The method of grouting is covered in IS : 6066-1985†.

0.4 This standard is being prepared in two parts; Part 2 covering masonry and concrete dams is under preparation.

0.5 For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS : 2-1960‡. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

*Guidelines for design of under-seepage control measures for earth and rockfill dams.
†Recommendations for pressure grouting of rock foundation in river valley projects (first revision).
‡Rules for rounding off numerical values (revised).
1. SCOPE

1.1 This standard covers the design of grout curtains in alluvium and rock when used as principal measure of seepage control.

2. GROUT CURTAINS IN ALLUVIUM

2.1 Choice of Number of Rows of Grout Holes

2.1.1 In alluvium and other type of pervious soils, multiple rows of holes are necessary for effective sealing when the curtain constitutes the principal seepage barrier. The choice of numbers of rows of holes is governed by the following considerations:

a) In heterogeneous formations effective sealing may be achieved on the central row or rows, the outer rows being employed primarily to block the open passage and seal the larger voids so that over travel of the more fluid grout injected through the central rows is prevented; and

b) The curtain width should be adequate to ensure adequate resistance to leaching and internal erosion.

2.2 Resistance of Grout to Internal Erosion and Leaching

2.2.1 The ratio of the width of the curtain to the hydraulic head across the curtain depends on the nature of the grout material and the formation treated by the grout. Clay cement and bentonite cement grout injected into coarse sand and gravel are known to have withstood hydraulic gradients as high as 7:1. Prolonged laboratory tests of one year duration have indicated virtual permanence of the clay-cement-bentonite grout for specimens of grouted sand and gravel subjected to gradients as high as 20. On the other hand the softer bentonite silicate grouts used for treatment of medium sand may be eroded at gradients of the order of 10. For permanent curtains hydraulic gradient for bentonite silicate grout have been restricted to 3:1. Bentonite silicate grouts should be used with caution since their behaviour is very much dependent on the nature of bentonite, and its reaction with the fluidifier and salts in the soil.

2.2.2 Silicate aluminate gels are known to be stable and are known to withstand hydraulic gradients of 4:1 or even higher. Data presently available indicate that acrylamide grout are permanent. The permanence of other types of grouts need to be investigated, and their application is not advised for important and permanent curtains. For permanent curtains choice of grout materials is generally limited to clay cement, bentonite and silicate aluminate grouts.
2.3 Curtain Width

2.3.1 The curtain width should be chosen on the basis of following criteria:

a) The curtain width at the core contact should match the core base, usually width in the range of 1/3 to 1/5 head is provided (Fig. 1);

![Diagram of Curtain Width]

Recommended Maximum Curtain Width
\[W_1 = \frac{H}{3} \text{ to } \frac{H}{5} \] for stable grouts clay cement, bentonite cement.
\[W_2 = \frac{H}{7} \] Sodium silicate — aluminate, acrylamide.

FIG. 1 GROUT CURTAINS IN PERVERSIVE SOILS

b) The main curtain should extend to rock or impervious stratum and the width should be reduced from the width at core contact to the main curtain width. Usually this is achieved in a zone of about \(\frac{1}{4} \) the depth of the pervious alluvium;

c) The main curtain should have two or more rows depending upon the requirements of strata. For clay cement silicate aluminate grouting the main curtain should have a width of 1/7 head; and

d) The residual head, downstream of the curtain measured as excess head with regard to tail water should be 20 percent or lower of the total head from tail water to head water. This reduction in head is achieved by appropriate choice of curtain width and by bringing about sufficient of permeability in the curtain width. Usually grouting is effective when the post-grouting permeability values are brought down to one hundredth of initial values.
3. GROUT CURTAINS IN ROCK

3.1 Curtain Width

3.1.1 For effective control of seepage in large zones of fractured and jointed rocks it is necessary to treat the contact of the core and rock foundation by blanket grouting. The depth of blanket grouting hole should be at least 6 m.

3.1.2 The normal practice of splitting the spacing starting with an initial spacing of 6 to 12 metres is recommended for each of the rows. The final spacing would be related to the spacing of joints and normally 3 metres spacing may be necessary, but special geological condition may require closer spacing.

3.1.3 The main curtain would consist of one or more rows of holes. In the first row grouting operations are carried out by split spacing method. If the permeability can be brought down to 5 lugeon with a final spacing of 3 m or larger, a single line curtain would be adequate. If further drilling and grouting of holes at closer spacing is required, two line curtain should be preferred.

3.2 Types of Grout in Rock

3.2.1 Normally for grout curtains in rock, neat cement grout should be used and if admixtures are used to reduce cement consumption, only non-colloidal fillers such as fine sand, flyash may be used. For grout curtains in rock colloidal admixtures such as bentonite would not be normally permitted since the addition of bentonite/clay would reduce the resistance of grout to internal erosion and leaching. Use of such admixtures should be combined with sand in small quantities, about 2 percent by weight of cement, to obtain a more pumpable grout mix.

3.3 Depth of Curtain

3.3.1 The depth of the curtain shall be related to the design of the drainage system and the depth to an essentially impervious and inerodable rock formation. In stratified rock and in massive igneous or crystalline metamorphic rock an impervious formation may often be established at shallow depth below rock surface and 3 metres would be sufficient penetration of the grout curtain into such formations.

3.3.2 Grouting cannot be relied upon to prevent internal erosion in clayey or silty gauged zones and solution cavities filled by heterogenous mixture of clay, silt, sand and rock fragments.
3.3.3 In such cases, it is essential to excavate and backfill seams in the entire core contact zone and blanket if necessary special care is needed when material filling seams consists of silt and dispersive clay vulnerable to erosion.

3.3.4 The grout curtain should normally extend to relatively imper­vious rock of permeability 3 lugeon or less. When this cannot be realized due to deep pervious formations the curtain should extend to a depth ranging from $H/3$ to H with reference to the core and core rock contact. The greater depth may be necessary up to reservoir head when the rock contains seams and defects vulnerable to internal erosion.
INTERNATIONAL SYSTEM OF UNITS (SI UNITS)

Base Units

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>metre</td>
<td>m</td>
</tr>
<tr>
<td>Mass</td>
<td>kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>Time</td>
<td>second</td>
<td>s</td>
</tr>
<tr>
<td>Electric current</td>
<td>ampere</td>
<td>A</td>
</tr>
<tr>
<td>Thermodynamic temperature</td>
<td>kelvin</td>
<td>K</td>
</tr>
<tr>
<td>Luminous intensity</td>
<td>candela</td>
<td>cd</td>
</tr>
<tr>
<td>Amount of substance</td>
<td>mole</td>
<td>mol</td>
</tr>
</tbody>
</table>

Supplementary Units

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane angle</td>
<td>radian</td>
<td>rad</td>
</tr>
<tr>
<td>Solid angle</td>
<td>steradian</td>
<td>sr</td>
</tr>
</tbody>
</table>

Derived Units

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force</td>
<td>newton</td>
<td>N</td>
<td>$1 \text{ N} = 1 \text{ kg.m/s}^2$</td>
</tr>
<tr>
<td>Energy</td>
<td>joule</td>
<td>J</td>
<td>$1 \text{ J} = 1 \text{ N.m}$</td>
</tr>
<tr>
<td>Power</td>
<td>watt</td>
<td>W</td>
<td>$1 \text{ W} = 1 \text{ J/s}$</td>
</tr>
<tr>
<td>Flux</td>
<td>weber</td>
<td>Wb</td>
<td>$1 \text{ Wb} = 1 \text{ V.s}$</td>
</tr>
<tr>
<td>Flux density</td>
<td>tesla</td>
<td>T</td>
<td>$1 \text{ T} = 1 \text{ Wb/m}^2$</td>
</tr>
<tr>
<td>Frequency</td>
<td>hertz</td>
<td>Hz</td>
<td>$1 \text{ Hz} = 1 \text{ c/s (s}^{-1})$</td>
</tr>
<tr>
<td>Electric conductance</td>
<td>siemens</td>
<td>S</td>
<td>$1 \text{ S} = 1 \text{ A/V}$</td>
</tr>
<tr>
<td>Electromotive force</td>
<td>volt</td>
<td>V</td>
<td>$1 \text{ V} = 1 \text{ W/A}$</td>
</tr>
<tr>
<td>Pressure, stress</td>
<td>pascal</td>
<td>Pa</td>
<td>$1 \text{ Pa} = 1 \text{ N/m}^2$</td>
</tr>
</tbody>
</table>
INDIAN STANDARDS INSTITUTION

Headquarters
Manak Bhavan 9 Bahadur Shah Zafar Marg, NEW DELHI 110002
Telephones: 3 31 01 31, 3 31 13 76 Telegrams: Manaksanstha
(Common to all Offices)

Regional Offices
*Western: Manakalaya E9 MIDC, Marol, Andheri (East) BOMBAY 400093
†Eastern: 1/14 C. I. T. Scheme VII M, V. I. P. Road, Maniktola, CALCUTTA 700054
Southern: C. I. T. Campus MADRAS 600113
Northern: B69 Phase VII, Industrial Focal Point, S. A. S. NAGAR 160051 (Punjab)

Branch Offices
‘Pushpak’, Nurmohamed Sarker Marg, Khanpur AHMADABAD 380001
‘F’ Block, Unity Bldg, Narasimharao Square, BANGALORE 560002
Gangotri Complex, Bhadhada Road, T. T. Nagar, Bhopal 462003
22E Kalpana Area, BHUBANESHWAR 751014
5-8-56C L. N Gupta Marg, HYDERABAD 500001
R14 Yudhister Marg, C Scheme, JAIPUR 302005
117/418 B Sarvodaya Nagar, KANPUR 208005
Patliputra Industrial Estate, PATNA 800013
Hantex Bldg, (2nd Floor), Rly Station Road, TRIVANDRUM 695001

Inspection Office (With Sale Point):
Institution of Engineers (India) Building, 1332 Shivaji Nagar, PUNE 410005

*Sales Office in Bombay is at Novelty Chambers, Grant Road, Bombay 400007
†Sales Office in Calcutta is at 5 Chateringbee Approach, P. O. Prinsep Street, Calcutta 700072

Printed at Prinograph, New Delhi, India