Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“ज्ञान का अधिकार, जीने का अधिकार”
Mazdoor Kisan Shakti Sangathan
“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”
Jawaharlal Nehru
“Step Out From the Old to the New”

“ज्ञान से एक नये भारत का निर्माण”
Satyanarayan Gangaram Pitroda
“Invent a New India Using Knowledge”

“ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता है”
Bhartrhari—Nitisatakam
“Knowledge is such a treasure which cannot be stolen”
Indian Standard

RECIPROCATING INTERNAL COMBUSTION ENGINE DRIVEN ALTERNATING CURRENT GENERATING SETS

PART 6 TEST METHODS
NATIONAL FOREWORD

This Indian Standard (Part 6) which is identical with ISO 8528-6 : 2005 ‘Reciprocating internal combustion engine driven alternating current generating sets — Part 6: Test methods’ issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on the recommendation of the Automotive Primemovers Transmission and Steering Systems and Internal Combustion Engines Sectional Committee and approval of the Transport Engineering Division Council.

The text of ISO Standard, has been approved as suitable for publication as an Indian Standard without deviations. Certain conventions are, however, not identical to those used in Indian Standards. Attention is particularly drawn to the following:

a) Wherever the words ‘International Standard’ appear referring to this standard, they should be read as ‘Indian Standard’.

b) Comma (,) has been used as a decimal marker while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

In this adopted standard, reference appears to certain International Standards for which Indian Standards also exist. The corresponding Indian Standards which are to be substituted in their respective places are listed below along with their degree of equivalence for the editions indicated:

<table>
<thead>
<tr>
<th>International Standard</th>
<th>Corresponding Indian Standard</th>
<th>Degree of Equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 3046-1 Reciprocating internal combustion engines — Performance — Part 1: Declarations of power, fuel and lubricating oil consumptions and test methods — Additional requirements for engines for general use</td>
<td>IS 10000 (Part 4) : 1980 Methods of tests for internal combustion engines: Part 4 Declarations of power, efficiency, fuel consumption and lubricating oil consumption</td>
<td>Technically Equivalent</td>
</tr>
<tr>
<td>IEC 60034-5 : 2000 Rotating electrical machines — Part 5: Classification of degree of protection provided by enclosures for rotating machines</td>
<td>IS/IEC 60034-5 : 2000 Rotating electrical machines: Part 5 Classification of degree of protection provided by enclosures for rotating machines</td>
<td>do</td>
</tr>
</tbody>
</table>

(Continued on third cover)
Indian Standard

RECI PROCATING INTERNAL COMBUSTION
ENGINE DRIVEN ALTERNATING CURRENT
GENERATING SETS

PART 6 TEST METHODS

1 Scope

This part of ISO 8528 specifies the test methods to be used for characterizing an entire generating set. It applies to alternating current (a.c.) generating sets driven by reciprocating internal combustion (RIC) engines for land and marine use, excluding generating sets used on aircraft or to propel land vehicles and locomotives.

For some specific applications (e.g. essential hospital supplies, high-rise buildings) supplementary requirements may be necessary. The provisions of this part of ISO 8528 are intended as a basis for establishing any supplementary requirements.

For a.c. generating sets driven by other reciprocating type prime movers (e.g. steam engines), this part of ISO 8528 is intended as a basis for establishing these requirements.

NOTE Existing test methods for the engine (ISO 3046-1 and ISO 3046-3) and generator (IEC 60034-2) are applicable for those components. The generating set manufacturer is responsible for specifying these characteristics and the tests to be performed to verify them.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3046-1, Reciprocal internal combustion engines — Performance — Part 1: Declarations of power, fuel and lubricating oil consumptions, and test methods — Additional requirements for engines for general use

ISO 3046-3, Reciprocating internal combustion engines — Performance — Part 3: Test measurements

ISO 8528-1\(^2\), Reciprocating internal combustion engine driven alternating current generating sets — Part 1: Application, ratings and performance

ISO 8528-5\(^2\), Reciprocating internal combustion engine driven alternating current generating sets — Part 5: Generating sets

IEC 60034-2, Rotating electrical machines — Part 2: Methods for determining losses and efficiency of rotating electrical machinery from tests (excluding machines for traction vehicles)

IEC 60034-5, Rotating electrical machines — Part 5: Classification of degrees of protection provided by enclosures for rotating machines

IEC 60947-1, Low-voltage switchgear and control gear — Part 1: General rules

\(^2\) ISO 8528-1 and ISO 8528-5 are under revision.
3 Other regulations and additional requirements

For a.c. generating sets used on board ships and offshore installations which have to comply with rules of a classification society, the additional requirements of the classification society shall be observed. The classification society name shall be stated by the customer prior to placing the order.

For a.c. generating sets operating in non-classified equipment, any additional requirements are subject to agreement between the manufacturer and customer.

If special requirements from regulations of any other authority (e.g. inspecting and/or legislative authorities) have to be met, the authority name shall be stated by the customer prior to placing the order.

Any additional requirements shall be subject to agreement between the manufacturer and customer.

4 General test requirements

Generating sets shall be tested in accordance with either the ISO standard functional test (see Clause 5) or the ISO standard acceptance test (see Clause 6).

Subject to agreement between the generating set manufacturer and customer, any or all of the functional tests may be combined with the acceptance test.

The acceptance test shall be carried out at the manufacturer’s works and/or installation site. The type of test to be performed shall be agreed in writing between the manufacturer and customer.

Detailed requirements for the generating set acceptance tests depend on the following principal areas:

a) its application;
b) its power output;
c) the extent of supply;
d) its use;
e) its performance class according to ISO 8528-1 and ISO 8528-5.

As a minimum, the generating set manufacturer test shall perform the ISO standard functional test in accordance with the correct rating and performance class of the generating set. A test report shall be prepared in accordance with the requirements of 5.5.

The ISO standard functional test procedure is intended for use with the generating set installed on the manufacturer’s test bed. Subject to agreement between the manufacturer and customer, the functional and/or acceptance test may be performed at the customer’s site or at a third party location.

5 ISO standard functional test

5.1 General

This functional test shall be performed on the generating set with it at the manufacturer’s works under test-bed conditions. The rated power factor load is normally used for testing, with due regard paid to the rated active power and associated generator efficiency. Optionally, if this is not possible because of the test equipment used, this test may be performed at a power factor of unity. This shall be by agreement between the manufacturer and customer.
5.2 General inspection

A general inspection in order to establish compliance with specifications in accordance with the generator set manufacturer’s instructions shall be carried out which shall cover (as a minimum):

a) completeness of the item supplied and to be tested;

b) alignment;

c) functional operations of the auxiliary equipment supplied (by agreement);

d) tightness of pipework joints and components;

e) degree of protection as described in IEC 60034-5 and IEC 60947-1;

f) operating and monitoring functions.

NOTE When measuring non-precision parts, such as a fan guard, a statistical approach to protection prediction is acceptable.

5.3 Measurements

The test shall be performed on generating sets that have reached their nominal operating temperature. The time required to warm up the generating set will vary. It is the responsibility of the test engineer to ensure that the set has run for an adequate time in order to stabilize temperatures.

The following data shall be recorded (as a minimum):

a) ambient temperature, humidity and barometric pressure;

b) generating set voltage, current and frequency at rated output;

c) generating set voltage, frequency and current while loading and unloading to assess transient behaviour;

d) the proper functioning of any monitoring and control equipment.

5.4 Measurement equipment accuracy

The minimum accuracy of the instrumentation used in the test shall be as shown in Table 1.

Measuring transformers and transducers should be of a corresponding accuracy class.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>A</td>
<td>1,5</td>
</tr>
<tr>
<td>Voltage</td>
<td>V</td>
<td>1,5</td>
</tr>
<tr>
<td>Real power</td>
<td>W</td>
<td>1,5</td>
</tr>
<tr>
<td>Reactive power</td>
<td>kV·A</td>
<td>1,5</td>
</tr>
<tr>
<td>Power factor</td>
<td>—</td>
<td>3,0</td>
</tr>
<tr>
<td>Frequency</td>
<td>Hz</td>
<td>0,5</td>
</tr>
</tbody>
</table>
5.5 ISO standard functional test report

The ISO standard functional test report shall include the following information (as a minimum):

a) the generating set performance class in accordance with the requirements of ISO 8528-1;

b) the customer and order number (if known);

c) the manufacturer;

d) the engine, generator, controlgear and switchgear serial numbers;

e) technical data, both declared (rated) and measured, as follows:

1) power;

2) voltage;

3) frequency;

4) current;

5) power factor;

6) speed;

7) circuit diagram number;

8) type of cooling system.

f) enclosure protection;

g) test site ambient conditions:

1) altitude;

2) barometric pressure;

3) temperature;

4) relative humidity;

5) inlet air temperature;

6) inlet coolant temperature.

h) fuel type (specification number):

1) density;

2) calorific value (lower calorific value).

i) lubricating oil type (specification number).
6 Acceptance test

6.1 General

ISO 8528-1 to ISO 8528-5 specify requirements for various generating set applications. The manufacturer shall certify that the generating set complies with the requirements given in ISO 8528-2 to ISO 8528-5, unless compliance is established by using the acceptance test in accordance with this part of ISO 8528. In particular, this applies to claiming compliance with the contractually agreed performance classes defined in ISO 8528-1 and ISO 8528-5, as well as to agreed requirements or variations in the performance classification for specific operating limits.

6.2 Contractual arrangements

The details of an acceptance test performed in accordance with the requirements of this part of ISO 8528 shall be agreed in writing between the manufacturer and customer at the time of purchase. The test equipment used shall be such that the measurements and checks agreed for the acceptance test can be verified within the agreed accuracy limits.

The validation of further requirements, the performance of additional measurements or the provision of further tests which go beyond the requirements of 6.6 shall be agreed in writing between the manufacturer and customer before any tests are performed. If the requirements of the tests specified in Clause 6 are changed during the acceptance test, an appropriate agreement shall be made.

The cost of a complete or partial repetition or extension of the agreed acceptance test programme shall be borne by the party responsible for the repetition or extension.

The acceptance test shall be performed within the agreed period following notification of readiness for the test to start.

The manufacturer of the generating set shall not be responsible for servicing any equipment provided by the customer.

By agreement between the manufacturer and the customer, the works test of the complete generating set with test certificates may be considered as substitutes for the acceptance test.

Separate acceptance tests performed on installed components (e.g. engine, generator, switchgear) shall not be considered suitable substitutes for the acceptance test carried out on the complete power station or generating set. In special cases and if agreed between the generating set manufacturer and customer, component test records supplied by the component manufacturer may be used for the verification of certain properties.

If computation documents are necessary to verify or as part of measurements and/or tests, it shall be specified which documents have to be made available, by which party and at what time.

Within the scope of the contractual arrangements, an independent inspector acceptable to both parties may be asked to witness the acceptance test performed at the manufacturer's works and/or at the site of installation. The acceptance test may be performed at the manufacturer's works and/or at the site of installation. The place where the test is to be carried out shall be agreed in writing.

6.3 Responsibility

The manufacturer shall be responsible for the acceptance test at his works.

The responsibilities of the customer and the manufacturer's agent shall be agreed before starting the acceptance test.
6.4 Preparation

6.4.1 Provision of auxiliary personnel, test equipment and operating materials

Provision of auxiliary personnel, measuring equipment and operating materials shall be as follows:

a) In the case of an acceptance test performed at the manufacturer’s works, the manufacturer shall provide the normal operating materials (e.g. load banks, fuel), the measuring equipment necessary for the test and any auxiliary personnel;

b) In the case of an acceptance test at the site of installation, the customer shall provide the necessary operating materials (e.g. load banks, fuel). If the customer is to provide auxiliary personnel to assist the manufacturer in performing the tests and any additional measuring equipment that may be necessary, this shall be agreed between the customer and manufacturer.

6.4.2 Acceptance test preparation at the installation site

The manufacturer shall be given the opportunity to inspect the generating set before the acceptance test is performed and carry out any necessary adjustments and checks. This also applies when the manufacturer has not carried out the installation himself.

6.4.3 Acceptance test preparation at the manufacturer’s plant

When the acceptance test is carried out at the manufacturer’s plant, the normal air ducting and exhaust gas ducting used shall be accepted. The use of the auxiliary equipment (e.g. cooling water pumps, lubricating oil filters, coolers, switchgear) installed at the plant, instead of that to be supplied with the generating set, is permissible unless otherwise agreed.

If the specified ambient conditions and properties of the operating materials cannot be realized for the acceptance test, agreement shall be reached before starting the acceptance test regarding the influence of the deviant conditions and any necessary conversion of the test results.

6.5 Further details

If the acceptance test is interrupted by minor faults which can be quickly rectified and are not regarded as fundamental, the acceptance test shall be continued after the interruption has been rectified.

If the acceptance test is interrupted by major faults which necessitate the repair or replacement of important components, the acceptance test shall be repeated either wholly or in part once the interruption has been rectified. The amount of testing to be repeated shall be subject to agreement between the manufacturer and customer.

During the acceptance test, the only adjustments or maintenance that shall be carried out on the generating set are those which are

a) necessary for maintaining the test conditions within tolerance,

b) those maintenance operations and/or adjustments specified in the operations manual.

Special provisions may be necessary for generating sets operating at their installation site which use fuel other than that of a distillate type (e.g. gas, residual fuel).
6.6 Extent of acceptance test

6.6.1 General

The extent of the acceptance test depends on the designated application of the generating set and is divided into the groups of checks and measurements shown in 6.6.2 and 6.6.3. Checks and measurements over and above those mentioned necessitate an additional agreement. The prevailing conditions shall be taken into account in the case of an acceptance test at the site of installation.

6.6.2 Checks (C)

6.6.2.1 Group CA

Completeness of items supplied and to be tested.

6.6.2.2 Group CB

a) alignment;
b) operating functions of auxiliary equipment;
c) tightness of pipework joints and components;
d) protection against accidental contact (mechanical and electrical);
e) operating and monitoring functions;
f) vibrations (steadiness);
g) unusual running noises;
h) temperature rise of important components.

6.6.2.3 Group CC

a) switching functions of the associated switchgear;
b) control functions of the associated switchgear;
c) monitoring functions of the associated switchgear.

6.6.2.4 Group CD

Suitability for parallel operation.

6.6.3 Measurements (M)

6.6.3.1 General

Typical measurements are listed in 6.6.3.2 to 6.6.3.14. The requirements of 6.7 apply to the extent of the measurements to be carried out during the acceptance test.

6.6.3.2 Group MA

The following parameters shall be measured under steady-state operating conditions:

a) voltage;
b) frequency.
6.6.3.3 Group MB

The following parameters shall be measured under steady-state operating conditions:

a) current;
b) range of voltage setting;
c) range of frequency setting;
d) active power or power factor;
e) steady-state frequency band;
f) rate of change of voltage setting;
g) rate of change of frequency setting.

6.6.3.4 Group MC

Starting behaviour.

6.6.3.5 Group MD

The following parameters shall be measured under steady-state operating conditions:

a) lubricating oil pressure;
b) coolant temperature at input and output of engine and generator.

6.6.3.6 Group ME

Exhaust gas temperature.

6.6.3.7 Group MF

Noise emission.

6.6.3.8 Group MG

Exhaust gas emission.

6.6.3.9 Group MH

The following parameters shall be measured using an oscillograph or similar device with defined power factor while loading and unloading the generator to assess transient behaviour:

a) voltage;
b) current;
c) frequency.

6.6.3.10 Group MJ

The harmonic content of the voltage waveform.
6.6.3.11 Group MK
The amplitude modulation of the voltage waveform.

6.6.3.12 Group ML
The following parameters shall be measured under steady-state operating conditions:

a) power distribution in parallel operation;
b) load sharing in parallel operation.

6.6.3.13 Group MM
The fuel consumption of the generating set relative to the electric power available at the a.c. generator terminals, taking into account the calorific value of the fuel.

6.6.3.14 Group MN
Effectiveness of the electrical protection device(s).

6.7 Accuracy of measurement equipment and acceptance test procedure

6.7.1 Measurement equipment accuracy
The required accuracy of the electrical instrumentation shall be subject to agreement between the manufacturer and the customer.

If the test is carried out at the manufacturer’s works, the tolerances shown in 5.4 shall be used. If the test is not carried out at the manufacturer’s works, the minimum tolerances shown in Table 2 shall be used.

The waveform dependence of the measuring instruments used should be taken into account.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Tolerance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>A</td>
<td>2.5</td>
</tr>
<tr>
<td>Voltage</td>
<td>V</td>
<td>2.5</td>
</tr>
<tr>
<td>Active power</td>
<td>W</td>
<td>2.5</td>
</tr>
<tr>
<td>Reactive power</td>
<td>kV·A</td>
<td>2.5</td>
</tr>
<tr>
<td>Power factor</td>
<td>—</td>
<td>5.0</td>
</tr>
<tr>
<td>Frequency</td>
<td>Hz</td>
<td>1.0</td>
</tr>
</tbody>
</table>

6.7.2 Warm-up time
The acceptance test shall be performed on generating sets that have reached their normal operating temperatures and pressures. It is the responsibility of the test engineer to ensure that the set has run for an adequate time to stabilize temperatures.

6.7.3 Load test duration
The duration of the load test depends on the generating set rating and application. It is generally between 0.5 h and 2 h and is usually specified or suggested by the manufacturer.
6.7.4 Performing acceptance tests at the manufacturer's works

6.7.4.1 Acceptance test with electrical load

A unity power factor load is usually used for testing, with due regard to rated active power and associated generator efficiency. Optionally, if suitable test equipment is available, this test may be run at the generating set rated power factor.

Measurements which are affected by the power output shall be taken with the generating set at no-load, 25 % rated power, 50 % rated power, 75 % rated power and 100 % rated power. The load acceptance test is subject to agreement between the generating set manufacturer and customer.

If the ambient conditions during the test differ from the standard reference conditions (see ISO 8528-1), the measured power data shall be converted to be in line with the standard reference conditions.

6.7.4.2 Acceptance test using test-bed switchgear

Unless otherwise agreed, the following checks and measurements shall be carried out:

a) groups CA and CB, checks (see 6.6.2.1 and 6.6.2.2);

b) groups MA and MB, measurements (see 6.6.3.2 and 6.6.3.3).

6.7.4.3 Acceptance test including generating set's own switchgear

Unless otherwise agreed, the following checks and measurements shall be carried out:

a) groups CA, CB and CC, checks (see 6.6.2.1, 6.6.2.2 and 6.6.2.3);

b) groups MA, MB and MN, measurements (see 6.6.3.2, 6.6.3.3 and 6.6.3.14).

6.7.4.4 Additional checks and measurements

Further checks and measurements may be agreed in addition to those specified in 6.7.4.2 and 6.7.4.3 (see e.g. 6.6.2 and 6.6.3).

6.7.4.5 Acceptance test without electric load

Unless otherwise agreed, the checks shown in groups CA and CB shall be carried out (see 6.6.2).

The measurements of group MA shall be carried out (see 6.6.3).

NOTE It is not possible to measure voltage and frequency without electrical excitation equipment being connected.

6.7.5 Installation site acceptance test

The acceptance test shall be carried out with the electrical load available at the site of installation, which shall be as near as possible to the rated power. Unless otherwise agreed, the following checks and measurements shall be carried out:

a) groups CA, CB and CC, checks (see 6.6.2.1, 6.6.2.2 and 6.6.2.3);

b) groups MA and MB, measurements (see 6.6.3.2 and 6.6.3.3).

Further checks and measurements may also be agreed (see e.g. 6.6.2 and 6.6.3).

The groups for the checks and measurements are summarized in Table 3.
Table 3 — Checks and measurements groups

<table>
<thead>
<tr>
<th>Acceptance test type</th>
<th>Groups for Checks (6.6.2)</th>
<th>Measurements (6.6.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using test-bed switchgear</td>
<td>CA and CB</td>
<td>MA and MB</td>
</tr>
<tr>
<td>Using generating set's own switchgear</td>
<td>CA, CB and CC</td>
<td>MA, MB and MN</td>
</tr>
<tr>
<td>Without electrical load</td>
<td>CA and CB</td>
<td>MA</td>
</tr>
<tr>
<td>At site of installation</td>
<td>CA, CB and CC</td>
<td>MA and MB</td>
</tr>
</tbody>
</table>

If no separate acceptance test has been carried out on the engine itself, the measurements of groups ME and MF (see 6.6.3.6 and 6.6.3.7) shall be performed.

NOTE For continuous and prime power application, it may be desirable to carry out test MM.

6.8 Acceptance test report

6.8.1 General

The performance of the acceptance test in accordance with the requirements specified in 6.7, on a generating set in accordance with the requirements of ISO 8528, shall be recorded in the form of an acceptance test report.

6.8.2 General data

The acceptance test report shall include the following general data (as a minimum):

a) the generating set performance class in accordance with ISO 8528-1 and ISO 8528-5;
b) the customer and order number;
c) the manufacturer and order number;
d) the generating set serial number;
e) technical data (as a minimum):
 1) rated power;
 2) rated voltage;
 3) rated frequency;
 4) rated current;
 5) rated power factor;
 6) circuit diagram number.
f) details of the RIC engine, as follows (as a minimum):
 1) manufacturer;
 2) engine model;
 3) engine serial number;
4) number of cylinders and configuration;
5) type of cooling;
6) manufacturer’s declared power, in kilowatts, quoting corresponding engine speed;
7) type of starting system.

g) details of the generator, as follows (as a minimum):
1) manufacturer;
2) generator model;
3) generator serial number;
4) rated output, in kilovolt-amperes;
5) type of construction;
6) type of protection.

h) details of the equipment installed, as follows (as a minimum):

1) switchgear:
 i) manufacturer;
 ii) model;
 iii) switchgear number.
2) coupling:
 i) manufacturer;
 ii) model;
 iii) type.
3) speed governor:
 i) manufacturer;
 ii) model;
 iii) governor number.

i) details of any other installed/used equipment, e.g.:
 1) battery;
 2) compressed air starting equipment;
 3) pumps;
 4) compressed air reservoir;
 5) cooling equipment.
6.8.3 Measured data

The acceptance test report shall include the following measured data (as a minimum):

a) test site conditions, as follows:
 1) altitude;
 2) barometric pressure;
 3) ambient temperature;
 4) relative humidity;
 5) inlet air temperature;
 6) inlet coolant temperature.

NOTE Values for 3), 5) and 6) may be different for the RIC engine and the generator.

b) the fuel type (specification number), as follows:
 1) density;
 2) calorific value (lower calorific value).

c) technical data of the generating set, as follows:
 1) power;
 2) voltage;
 3) frequency;
 4) number of phases;
 5) current;
 6) power factor;
 7) speed adjustment range;
 8) frequency setting rate of change;
 9) voltage range.
The technical committee has reviewed the provisions of the following International Standards referred in this adopted standard and has decided that they are acceptable for use in conjunction with this standard:

International Standard	**Title**
ISO 3046-3 | Reciprocating internal combustion engines — Performance — Part 3: Test measurements
IEC 60034-2 | Rotating electrical machines — Part 2: Methods for determining losses and efficiency of rotating electrical machinery from tests (excluding machines for traction vehicles)

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2 : 1960 ‘Rules for rounding off numerical values (revised)’. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of ‘BIS Catalogue’ and ‘Standards: Monthly Additions’.

This Indian Standard has been developed from Doc No.: TED 2 (778).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amendment No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 2323 0131, 2323 3375, 2323 9402
Website: www.bis.org.in

Regional Offices:

<table>
<thead>
<tr>
<th>Region</th>
<th>Address</th>
<th>Telephones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>Manak Bhavan, 9 Bahadur Shah Zafar Marg</td>
<td>2323 7617, 2323 3841</td>
</tr>
<tr>
<td></td>
<td>NEW DELHI 110002</td>
<td></td>
</tr>
<tr>
<td>Eastern</td>
<td>1/14, C.I.T. Scheme VII M, V.I.P. Road, Kankurgachi, KOLKATA 700054</td>
<td>2337 8499, 2337 8561</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2337 8626, 2337 9120</td>
</tr>
<tr>
<td>Northern</td>
<td>SCO 335-336, Sector 34-A, CHANDIGARH 160022</td>
<td>260 3843</td>
</tr>
<tr>
<td></td>
<td></td>
<td>260 9285</td>
</tr>
<tr>
<td>Southern</td>
<td>C.I.T. Campus, IV Cross Road, CHENNAI 600113</td>
<td>2254 1216, 2254 1442</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2254 2519, 2254 2315</td>
</tr>
<tr>
<td>Western</td>
<td>Manakalaya, E9 MIDC, Marol, Andheri (East)</td>
<td>2832 9295, 2832 7858</td>
</tr>
<tr>
<td></td>
<td>MUMBAI 400093</td>
<td>2832 7891, 2832 7892</td>
</tr>
<tr>
<td>Branches</td>
<td>AHMEDABAD. BANGALORE. BHOPAL. BHUBANESHWAR. COIMBATORE. DEHRADUN. FARIDABAD. GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR. LUCKNOW. NAGPUR. PARWANOO. PATNA. PUNE. RAJKOT. THIRUVANATHAPURAM. VISAKHAPATNAM.</td>
<td></td>
</tr>
</tbody>
</table>

Published by BIS, New Delhi