Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

"जान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता है"
Bhartrhari—Nitisatakam
"Knowledge is such a treasure which cannot be stolen"

Indian Standard

AUTOMOTIVE VEHICLES —
SHOCK ABSORBERS — SPECIFICATION

(Second Revision)

First Reprint DECEMBER 1992

UDC 629.113.012.813-82

© BIS 1990

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

January 1990
AMENDMENT NO. 2 NOVEMBER 1995
TO
IS 5423:1989 AUTOMOTIVE VEHICLES — SHOCK ABSORBERS — SPECIFICATION
(Second Revision)

[Page 3, clause 7.2(d), first sentence] — Substitute the following for the existing:

'Damping force shall be the average of the values recorded between the sixth and the tenth stroke. They will be the peak values of the forces developed during the stroke of the shock absorber normally occurring at the middle of the stroke.'

[Page 4, clause 7.3(e)] — Substitute the following for the existing:

'(e) Shock absorber shall be mounted on the dynamic testing machine with the flexible end mounting. The maximum permissible deflection of the shock absorber axis in vertical plane when mounted on the endurance test fixture should not exceed the values specified in 6.6.2'

[Page 4, clause 7.3(f)] — Add the following text at the end of the clause:

'NOTE — The testing may be carried out either continuously or intermittently.'

(TED 5)

Reproduction Unit, BIS, New Delhi, India
Indian Standard

AUTOMOTIVE VEHICLES — SHOCK ABSORBERS — SPECIFICATION

(Second Revision)

1 SCOPE

1.1 This standard covers the requirements for hydraulic telescopic shock absorbers and gas charged hydraulic shock absorbers used in automotive suspension.

2 REFERENCE

2.1 The Indian Standard IS 12648 : 1989 'Automotive vehicles — Shock Absorbers — End Mountings — Dimensions and tests' is a necessary adjunct to this standard.

3 TERMINOLOGY

3.1 Bore

The inside diameter of main working cylinder of the shock absorber.

3.2 Compressed Length

Length between the mounting eyes (centre to centre distance), or mounting faces (in case of studs), or mounting eye and mounting face (in case of eye and stud) of a shock absorber when it is compressed to the maximum (see Fig. 1).

![Diagram of Shock Absorbers]

Fig. 1 Dimensions for Shock Absorbers
FOREWORD

This Indian Standard (Second Revision) was adopted by the Bureau of Indian Standards on 4 March 1989, after the draft finalized by the Automotive Vehicles Suspension and Steering Systems Sectional Committee had been approved by the Mechanical Engineering Division Council.

This standard was originally published in 1969 and the first revision was published in 1978. This second revision of the standard has been published incorporating the requirements of gas charged hydraulic shock absorbers also.
3.3 Compression Stage
A stage in which the mountings of shock absorbers approach each other.

3.4 Damping Characteristics
For any type of hydraulic unit, it shall mean the damping force at corresponding maximum plunger velocity defined in 3.11

3.5 Dead Length
Length constituted by the built-in components of shock absorber when the stroke is zero (see 3.13).

3.6 Double Acting Shock Absorbers
Shock absorbers which damp the oscillations of a vehicle suspension in both the directions, damping action being different or equal in either direction depending on the individual application requirements.

3.7 Extended Length
Length between the mounting eyes (centre to centre distance), or mounting faces (in case of studs), or mounting eye and mounting face (in case of eye and stud) of a shock absorber when it is pulled out to the maximum (see Fig. 1).

3.8 Extension Stage
A stage in which the mountings of shock absorbers move away from each other.

3.9 Fitment Dimensions
All the dimensions required for mounting the shock absorber on the vehicle (see dimensions A, B, C and D in Fig. 1).

3.10 Gas Charged Hydraulic Shock Absorbers
Telescopic hydraulic shock absorbers in which, in addition to oil, gas is charged at pressure.

3.11 Maximum Plunger Velocity
Subsequently referred to as 'velocity' shall be defined by the expression, \(V_{\text{Max}} \):

\[
V_{\text{Max}} = \pi \times n \times s
\]

where

- \(V_{\text{Max}} \) = maximum plunger velocity, mm/s;
- \(n \) = machine revolution, cycles per second;
- \(s \) = stroke, mm.

3.12 Restitution Force
The resultant force acting on the plunger rod due to the gas pressure and is given by the equation:

Restitution force = gas pressure \(\times \) rod sectional area

3.13 Stroke
The difference between the extended length and the compressed length (effective maximum travel of the shock absorber) (see Fig. 1).

4 DIMENSIONS AND TOLERANCES
4.1 Dimensions shall be according to the application of the shock absorber. The dimensions given in Fig. 1 shall be specified in the enquiry or order. The tolerances for compressed and extended lengths shall be \(\pm 3 \text{ mm} \).

4.2 Shock absorbers shall be designated by the cylinder bore.

5 METHOD OF SPECIFYING THE SHOCK ABSORBER
5.1 For the purposes of enquiry or order relating to shock absorbers, the following information shall be supplied:

a) Dimensions as indicated in Fig. 1.
b) Make and model of the vehicle;
c) Whether used at the front wheels or rear wheels, and the type and rating of the spring; maximum bump load, weight of the vehicle in laden and unladen conditions, and the inclination of mounting the shock absorber;
d) A graph showing the load characteristics in Newton for compression and extension at specified plunger velocity (as defined at 3.11) and optionally load values at various plunger velocities may be given for reference, and
e) Any other information relevant to the design of the shock absorber.

6 GENERAL REQUIREMENTS
6.1 Strength of the end mounting weld shall be as specified in IS 12648:1989. A pull out test shall be conducted for weld soundness. The method of test and acceptance values shall be mutually agreed to between the purchaser and the manufacturer. As a guideline, the shock absorbers shall be gripped in a suitable fixture to produce a straight tensile pull between the end eye or the stem and its fixing shall withstand the following loads:

<table>
<thead>
<tr>
<th>Category (in terms of internal diameter of cylinder)</th>
<th>Loads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 24 mm</td>
<td>6 860 N</td>
</tr>
<tr>
<td>24 mm but less than 29 mm</td>
<td>14 700 N</td>
</tr>
<tr>
<td>29 mm but less than 34 mm</td>
<td>17 640 N</td>
</tr>
<tr>
<td>34 mm but less than 39 mm</td>
<td>29 400 N</td>
</tr>
<tr>
<td>39 mm but less than 49 mm</td>
<td>34 300 N</td>
</tr>
</tbody>
</table>
6.2 The shock absorbers shall be assembled in such a manner that the movement shall be uniform throughout the stroke. For this purpose, the shock absorbers shall be manually primed three or four times in a vertical position. This is only indicative of the uniformity of the operation.

6.3 The upper part of the shock absorber, that is, plunger rod and dust cover sub-assembly shall be capable of free rotation relative to the lower part, namely, cylinder and outer tube sub-assembly.

6.4 Effective clearance between dust cover and outer tube shall be maintained throughout the full stroke of the shock absorber to preclude the possibility of rubbing.

6.5 If the shock absorber assembly is provided with rebound and/or compression stop, the buffers shall not produce objectionable ride or noise effects.

6.6 End Mountings

6.6.1 Shall be as shown in Fig. 2

6.6.2 The end mountings may be either eye ring type or stud type as agreed between the manufacturer and the user. If the angular motions in different surfaces are almost equal, a stud type mounting is recommended. The maximum permissible deflections as shown in Fig. 2 shall be as follows:

\[\begin{align*}
\alpha &= \pm 20^\circ \\
\beta &= \pm 3^\circ \\
\gamma &= \pm 10^\circ
\end{align*} \]

6.6.3 For better performance of the shock absorbers, these shall be installed as close to vertical as possible (not to exceed by 45° even during operations).

7 TESTS

7.1 Tests outlined in this standard shall be carried out on the shock absorber (without the suspension spring), that is, on the damper unit only.

7.2 Damping Force Test

It is required for ascertaining the force-piston velocity characteristics of shock absorber and shall be carried out as follows:

a) Each shock absorber shall, where necessary, be actuated prior to testing to ensure that the working chamber is free from any air pocket;

b) Shock absorber shall be tested along its own axis, that is, the damper axis parallel to the stroke of the dynamic testing machine;

c) Shock absorbers shall be mounted on the dynamic testing machine with or without flexible end mountings as agreed to between the manufacturer and the purchaser. The dynamic testing machine shall be rigid and the vertical slide properly guided;

d) Damping force shall be recorded between the sixth and the tenth stroke. They will be the peak values of the forces developed during the stroke of the shock absorber normally occurring at the middle of the stroke;

e) Test specification shall be only at one maximum plunger velocity.

<table>
<thead>
<tr>
<th>Table 1 Tolerances on Initial Damping Resistances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clause 7.2(f)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Damping Force</th>
<th>Tolerance on Compression Force</th>
<th>Tolerance on Tension Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>(N)</td>
<td>(N)</td>
</tr>
<tr>
<td>100</td>
<td>(\pm 40)</td>
<td>(\pm 40)</td>
</tr>
<tr>
<td>200</td>
<td>(\pm 50)</td>
<td>(\pm 45)</td>
</tr>
<tr>
<td>300</td>
<td>(\pm 60)</td>
<td>(\pm 55)</td>
</tr>
<tr>
<td>400</td>
<td>(\pm 70)</td>
<td>(\pm 60)</td>
</tr>
<tr>
<td>500</td>
<td>(\pm 80)</td>
<td>(\pm 65)</td>
</tr>
<tr>
<td>600</td>
<td>(\pm 90)</td>
<td>(\pm 70)</td>
</tr>
<tr>
<td>700</td>
<td>(\pm 95)</td>
<td>(\pm 80)</td>
</tr>
<tr>
<td>800</td>
<td>(\pm 100)</td>
<td>(\pm 95)</td>
</tr>
<tr>
<td>900</td>
<td>(\pm 105)</td>
<td>(\pm 10) percent</td>
</tr>
<tr>
<td>1,000</td>
<td>(\pm 110)</td>
<td>(\pm 10) percent</td>
</tr>
<tr>
<td>1,200</td>
<td>(\pm 120)</td>
<td>(\pm 10) percent</td>
</tr>
</tbody>
</table>

NOTES

1. At lower resistance values, percentage tolerance is higher.
2. For damping resistance (tension) above 1,000 N, tolerance shall be \(\pm 10 \) percent.
3. For damping resistance (compression) above 1,200 N, tolerance shall be \(\pm 10 \) percent.
g) The tolerances on the damping resistance shall be according to Table 1, unless otherwise agreed to between the manufacturer and the user;

h) The load/displacement curve shall show no evidence of erratic control pattern which indicates that this assembly, binding or foreign material is preventing proper functioning of the valves;

i) Effect of temperature as given in 8 shall be applicable, wherever necessary;

j) The damping resistance of gas-charged shock absorbers will be checked in the following manner:

1) The shock absorbers will be stroked in the centre of the stroke and the damping values at the mid-point of the stroke shall be noted.

2) The resistance will be indicated or recorded on the dynamic testing machine.

3) The restitution force at the mid-point of the stroke will be recorded by a suitable measuring device.

4) The observed values will be corrected as follows to get the true damping resistance.

Damping resistance in tension = observed value + restitution force
Damping resistance in compression = observed value - restitution force

7.3 Endurance Test

It is a type test applicable for shock absorbers having a resistance of 200 N or more. When tension or compression force is more than 200 N at the specified maximum plunger velocity, this test shall be carried out for that particular force. It shall be carried out as follows:

a) The test shock absorber selected shall be mounted on the dynamics testing machine and the initial damping resistance in tension and compression shall be recorded.

b) Shock absorber whose initial damping resistances have been measured (see 7.3(a)) shall be mounted on the endurance testing machine. Testing speed shall be 60 to 100 cycles per month. Test shall be conducted at 75 percent of the working stroke of the shock absorber or 100 mm whichever is less.

c) In case endurance test is to be conducted under more rigorous conditions including the side load, appropriate test configurations and test cycles shall be as agreed between the manufacturer and the user.

d) During the test, temperature shall be controlled between 70 and 90°C which should be measured on the outer tube (reservoir) of the shock absorbers. In the case of low resistance shock absorber where the temperature does not rise up to 70°C due to less energy absorption, testing shall be conducted at the temperature attainable without external cooling.

NOTE - The method of cooling during the endurance test is optional but shall be such that any leakage of shock absorber fluid can be easily seen during the endurance test.

e) Shock absorbers shall be mounted on the dynamic testing machine with flexible end mountings.

f) Test shall be conducted for one million cycles. At the end of the test, no leakage or breakage shall be noticeable. After the end of one million cycles operation, the shock absorber shall be subjected to the damping force test as indicated in 7.2. Variation in resistance shall not exceed the values indicated in Table 2 from the initial damping resistance (see 7.3(a)).

Table 2 Permissible Variation in Damping Resistance After One Million Cycle Endurance Tests from Original Values Observed

(see Clause 7.3 (g))

<table>
<thead>
<tr>
<th>Damping Resistance</th>
<th>Tension</th>
<th>Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 to 200</td>
<td>± 40 N</td>
<td>± 40 N</td>
</tr>
<tr>
<td>~ 60 N</td>
<td>~ 60 N</td>
<td></td>
</tr>
<tr>
<td>201 to 500</td>
<td>± 20 %</td>
<td>± 20 %</td>
</tr>
<tr>
<td>~ 30 %</td>
<td>~ 30 %</td>
<td></td>
</tr>
<tr>
<td>501 to 1 500</td>
<td>± 15 %</td>
<td>± 15 %</td>
</tr>
<tr>
<td>~ 20 %</td>
<td>~ 20 %</td>
<td></td>
</tr>
<tr>
<td>1 501 and above</td>
<td>± 10 %</td>
<td>± 10 %</td>
</tr>
<tr>
<td>~ 10 %</td>
<td>~ 10 %</td>
<td></td>
</tr>
</tbody>
</table>

g) All components of shock absorbers including pins, bushes, eye welding, etc., shall withstand one million cycles endurance test.

h) Recheck the unit after standing fully collapsed and inverted for 24 hours. Leakage (continuous dripping) shall not be observed.

8 EFFECT OF TEMPERATURE ON DAMPING CHARACTERISTICS

8.1 Temperature correction shall not be applied if the test room temperature is within the range of 16 to 35°C.

8.2 At test room temperature between 10 to 50°C, shock absorber characteristics shall be permitted to exceed the tolerances stipulated in 7.2 (f) by not more than an additional 0.5 percent for each 2°C change in temperature below 16°C or above the basic temperature of 16 to 35°C. Correction of damping characteristics in excess of 50°C or less
AMENDMENT NO. 1 NOVEMBER 1990
TO
IS 5423:1989 AUTOMOTIVE VEHICLES - SHOCK
ABSORBERS - SPECIFICATION
(Second Revision)

[Page 4, clause 7.3 (b), line 4] - Substitute the following for the existing sentence:

'Testing speed shall be 60 to 100 cycles per minute.'

(TED 5)

Reprography Unit, BIS, New Delhi, India
than 10°C shall be subjected to agreement between the purchaser and the manufacturer.

9 INSPECTION

9.1 The finish shall be as agreed to between the purchaser and the manufacturer.

9.2 The damping force shall be tested according to 7.2.

9.3 The visual inspection shall reveal that the shock absorbers are free from cracks, burrs, sharp edges, unpainted areas and other defects which may impair their assembly or performance.

9.4 No visual evidence of any oil leakage shall be present on any external surface of the shock absorbers when tested as follows:
 a) Check unit after stroking for 10 to 15 full strokes.
 b) Recheck unit after standing fully collapsed and inverted for 24 h.

10 MARKING

10.1 The shock absorbers shall be marked with the following:
 a) Manufacturer's name or trade-mark and part number or vehicle manufacturer's reference number,
 b) Date of manufacture in code or month and year of manufacture on the shock absorber, and
 c) Month and year of manufacture on the carton containing the shock absorber.

11 PACKING

11.1 Shock absorbers shall be packed in suitable cartons or as agreed between the manufacturer and the purchaser.

12 SAMPLING

12.1 Lot

All the shock absorbers of the same type manufactured in a factory from the same material under similar conditions of production shall be grouped together to constitute a lot.

12.2 The sampling plan shall be as agreed between the manufacturer and the user.
Standard Mark

The use of the Standard Mark is governed by the provisions of the Bureau of Indian Standards Act, 1986 and the Rules and Regulations made thereunder. The Standard Mark on products covered by an Indian Standard conveys the assurance that they have been produced to comply with the requirements of that standard under a well defined system of inspection, testing and quality control which is devised and supervised by BIS and operated by the producer. Standard marked products are also continuously checked by BIS for conformity to that standard as a further safeguard. Details of conditions under which a licence for the use of Standard Mark may be granted to manufacturers or producers may be obtained from the Bureau of Indian Standards.
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Revision of Indian Standards

Indian Standards are reviewed periodically and revised, when necessary and amendments, if any, are issued from time to time. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition. Comments on this Indian Standard may be sent to BIS giving the following reference:

Doc : No. EDC 105 (4706)

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 331 01 31, 331 13 75
Telegrams: Manaksansth (Common to all Offices)

Regional Offices:

Central: Manak Bhavan, 9 Bahadur Shah Zafar Marg
NEW DELHI 110002

Eastern: 1/14 C. I. T. Scheme VII M, V. I. P. Road, Maniktola
CALCUTTA 700054

Northern: SCO 445-446, Sector 35-C, CHANDIGARH 160036

Southern: C. I. T. Campus, IV Cross Road, MADRAS 600113

Western: Manakalaya, E9 MIDC, Marol, Andheri (East)
BOMBAY 400093

Branches: AHMADABAD, BANGALORE, BHOPAL, BHUBANESHWAR, COIMBATORE, FARIDABAD, GHAZIABAD, GUWAHATI, HYDERABAD, JAIPUR, KANPUR, PATNA, THIRUVANANTHAPURAM.