Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“जानने का अधिकार, जीने का अधिकार”
Mazdoor Kisan Shakti Sangathan
“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”
Jawaharlal Nehru
“Step Out From the Old to the New”

Indian Standard

FREIGHT CONTAINERS — STRADDLE CARRIERS
FOR FREIGHT CONTAINER HANDLING —
CALCULATION OF STABILITY

ICS 55.180.10

© BIS 2012
NATIONAL FOREWORD

This Indian Standard which is identical with ISO 14829 : 2002 ‘Freight containers — Straddle carriers for freight container handling — Calculation of stability’ issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on the recommendation of the Freight Containers and Pallets Sectional Committee and approval of the Transport Engineering Division Council.

The text of ISO Standard has been approved as suitable for publication as an Indian Standard without deviations. Certain conventions are, however, not identical to those used in Indian Standards. Attention is particularly drawn to the following:

a) Wherever the words 'International Standard' appear referring to this standard, they should be read as 'Indian Standard'.

b) Comma (,) has been used as a decimal marker while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

In this adopted standard, reference appears to certain International Standards for which Indian Standards also exist. The corresponding Indian Standards which are to be substituted in their respective places are listed below along with their degree of equivalence for the editions indicated:

<table>
<thead>
<tr>
<th>International Standard</th>
<th>Corresponding Indian Standard</th>
<th>Degree of Equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 668 : 1995 Series 1 freight containers — Classification, dimensions and ratings</td>
<td>IS 6566 : 2001 Series 1 freight containers — Classification, dimensions and ratings (third revision)</td>
<td>Identical</td>
</tr>
<tr>
<td>ISO 3874 : 1997 Series 1 freight containers — Handling and securing</td>
<td>IS 7622 : 2001 Series 1 freight containers — Handling and securing (second revision)</td>
<td>do</td>
</tr>
</tbody>
</table>

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2 : 1960 ‘Rules for rounding off numerical values (revised)’. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.
1 Scope

This International Standard specifies the calculations to be carried out to determine the stability of a straddle carrier.

The stability calculations specified in this International Standard are intended to ensure that users of straddle carriers have adequate information about the behaviour of these carriers under various operating conditions.

Stability warning and control devices are not covered by this International Standard.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this International Standard. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 668:1995, Series 1 freight containers — Classification, dimensions and ratings

ISO 4302:1981, Cranes — Wind load assessment

ISO 3874:1997, Series 1 freight containers — Handling and securing

3 Terms and definitions

For the purposes of this International Standard, the following terms and definitions apply.

3.1 straddle carrier for freight container handling
mobile handling equipment with main directions of movement, travelling and lifting which is not restricted to a fixed path and of which the guided lifting device is suitable for the lifting and horizontal movement of containers

NOTE 1 Lifting is by a lift frame attached to the top of the container by twistlocks.

NOTE 2 During normal operations, the centre of gravity of the lifting spreader is always between the tipping lines determined by the supporting points. See Figure 1.
NOTE 3 Where “straddle carrier” is used in the text hereafter, “straddle carrier for freight container handling” is to be understood.

3.2 tipping lines
transverse and longitudinal centrelines of the outermost tyres

NOTE See Figure 1.

3.3 limit of stability
point at which the sum of moments causing tipping is greater than the sum of moments aiding stability

4 Symbols and abbreviated terms

The symbols and abbreviated terms are given in Table 1.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit of measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_x</td>
<td>Maximum deceleration due to maximum braking</td>
<td>m/sec2</td>
</tr>
<tr>
<td>b</td>
<td>Ground slope</td>
<td>%</td>
</tr>
<tr>
<td>C_l</td>
<td>Stability ratio-longitudinal</td>
<td></td>
</tr>
<tr>
<td>COG</td>
<td>Centre of gravity</td>
<td></td>
</tr>
<tr>
<td>C_t</td>
<td>Stability ratio-transverse</td>
<td></td>
</tr>
<tr>
<td>F_w</td>
<td>Wind force</td>
<td>N</td>
</tr>
<tr>
<td>g</td>
<td>Gravity</td>
<td>m/sec2</td>
</tr>
<tr>
<td>l</td>
<td>Distance from centre of front tyre to centre of rear tyre</td>
<td>m</td>
</tr>
<tr>
<td>m</td>
<td>Sum of all masses of straddle carrier</td>
<td>kg</td>
</tr>
<tr>
<td>M_c</td>
<td>Tipping moment due to centrifugal force</td>
<td>N·m</td>
</tr>
<tr>
<td>M_d</td>
<td>Tipping moment due to deceleration</td>
<td>N·m</td>
</tr>
<tr>
<td>M_r</td>
<td>Righting moment</td>
<td>N·m</td>
</tr>
<tr>
<td>M_t</td>
<td>Tipping moment</td>
<td>N·m</td>
</tr>
<tr>
<td>M_w</td>
<td>Tipping moment due to wind</td>
<td>N·m</td>
</tr>
<tr>
<td>R</td>
<td>Turning radius at centre of straddle carrier at ground plane</td>
<td>m</td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit of measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{min}</td>
<td>Minimum turning radius at centre of straddle carrier at ground plane</td>
<td>m</td>
</tr>
<tr>
<td>R_{COG}</td>
<td>Turning radius of centre of gravity</td>
<td>m</td>
</tr>
<tr>
<td>S</td>
<td>Stability ratio</td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>Speed of centre of straddle carrier at ground plane</td>
<td>m/sec</td>
</tr>
<tr>
<td>v_{max}</td>
<td>Maximum possible speed of centre of straddle carrier at ground plane</td>
<td>m/sec</td>
</tr>
<tr>
<td>v_{COG}</td>
<td>Speed of centre of gravity</td>
<td>m/sec</td>
</tr>
<tr>
<td>w</td>
<td>Distance between centreline of tyres</td>
<td>m</td>
</tr>
<tr>
<td>x_{ecc}</td>
<td>Longitudinal eccentricity of total mass</td>
<td>m</td>
</tr>
<tr>
<td>y_{ecc}</td>
<td>Transverse eccentricity of total mass</td>
<td>m</td>
</tr>
<tr>
<td>z_{COG}</td>
<td>Vertical height of centre of gravity</td>
<td>m</td>
</tr>
<tr>
<td>z_w</td>
<td>Vertical height of wind force</td>
<td>m</td>
</tr>
<tr>
<td>Δx</td>
<td>Longitudinal shift of COG</td>
<td>m</td>
</tr>
<tr>
<td>Δx_{fr}</td>
<td>Longitudinal shift of COG due to frame deflection</td>
<td>m</td>
</tr>
<tr>
<td>Δx_{sl}</td>
<td>Longitudinal shift of COG due to slope</td>
<td>m</td>
</tr>
<tr>
<td>Δx_{su}</td>
<td>Longitudinal shift of COG due to suspension deflection</td>
<td>m</td>
</tr>
<tr>
<td>Δx_{ty}</td>
<td>Longitudinal shift of COG due to tyre deflection</td>
<td>m</td>
</tr>
<tr>
<td>Δy</td>
<td>Transverse shift of COG</td>
<td>m</td>
</tr>
<tr>
<td>Δy_{fr}</td>
<td>Transverse shift of COG due to frame deflection</td>
<td>m</td>
</tr>
<tr>
<td>Δy_{sl}</td>
<td>Transverse shift of COG due to slope</td>
<td>m</td>
</tr>
<tr>
<td>Δy_{su}</td>
<td>Transverse shift of COG due to suspension deflection</td>
<td>m</td>
</tr>
<tr>
<td>Δy_{ty}</td>
<td>Transverse shift of COG due to tyre deflection</td>
<td>m</td>
</tr>
</tbody>
</table>

5 Design considerations

5.1 Limit of stability

It shall be determined at which travelling speed at a range of turning radii, including the minimum turning radius, the straddle carrier is stable. The longitudinal stability shall be determined and the maximum wind speed at which the straddle carrier is stable when not in service shall be determined (static mode).
5.2 Load conditions of straddle carrier

The load conditions of the straddle carrier are given in Table 2.

Table 2

<table>
<thead>
<tr>
<th>Case</th>
<th>Container designation</th>
<th>Mass kg</th>
<th>Position of spreader</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 AAA</td>
<td>30 480</td>
<td>Top</td>
</tr>
<tr>
<td>2</td>
<td>1 AAA</td>
<td>5 000</td>
<td>Bottom of container 1 metre above ground</td>
</tr>
<tr>
<td>3</td>
<td>No container</td>
<td>—</td>
<td>Top</td>
</tr>
<tr>
<td>4</td>
<td>No container</td>
<td>—</td>
<td>Underside of spreader 3 metres above ground</td>
</tr>
<tr>
<td>5</td>
<td>No container</td>
<td>—</td>
<td>Lowest position</td>
</tr>
</tbody>
</table>

5.3 Items which affect stability

5.3.1 Wind load and direction of wind

The wind effect on the straddle carrier shall be as specified in ISO 4302.

The wind speed shall be 20 m/s as specified in ISO 4302:1981, Table 1, item b.

When, for a particular terminal, the actual wind speed is greater than 20 m/s, then additional calculations shall be made accordingly.

The direction of the wind is to be taken as perpendicular to the tipping line.

The wind effect on the carried load shall be based on container dimensions as specified in ISO 668.

5.3.2 Reaction of suspension

Suspension deflection shall be taken into consideration.

5.3.3 Tyre deflection

Tyre deflection shall be taken into consideration. The tyres should be at their recommended “in service” pressures.

5.3.4 Grade of surface

Stability calculations shall incorporate a ground slope of 2 %. When designing for a particular terminal whose actual slope differs from the 2 % level, additional calculations shall be performed.
The slope is the tangent of the angle of inclination of the surface to the horizontal, multiplied by 100 as shown in Figure 2.

![Figure 2 — Ground slope](image)

Key
1 Horizontal component
2 Vertical component

5.3.5 Load distribution of content of container

The contents of the container shall be loaded as specified in ISO 3874. Specifically, the eccentric weight distribution of the contents of the container shall be as follows:

- the longitudinal eccentricity shall be an even load distribution with a maximum of 5% deviation at either end;
- the transverse eccentricity shall be an even load distribution with a maximum of 5% deviation at either side.

The vertical centre of gravity of a loaded container shall be at 50% of the total height of the container.

The condition that results in the poorest stability shall be used.

5.3.6 Position of spreader

The spreader shall be centred. The height of the spreader shall be in accordance with the load cases given in 5.2.

5.3.7 Condition of all fluid tanks

The condition of the fuel oil tanks shall be 50% full, unless stability is decreased with a full fuel tank, in which case a full fuel tank shall be used. The condition of all other tanks containing fluids shall be at the nominal level.

5.3.8 Speed and turning radius

The speed shall be the speed at the ground plane of the centre of the straddle carrier.

The turning radius is the radius at the ground plane of the centre of the straddle carrier.

NOTE The turning radius of the vehicle, as defined by the vehicle engineers, is not the same as the path followed by the centre of gravity of the mass.
5.3.9 Mass of driver

The weight of the operator (driver) shall be included at a value of 90 kg when occupying a normal operating position.

5.3.10 Deflection of straddle carrier structure during operations

The deflection of the straddle carrier structure shall be taken into account in the stability calculations. Figure 6 shows a graphical representation of the deflection phenomenon on slopes.

5.3.11 Centre of gravity for the equipment and its moving parts

The centre of gravity for the equipment and its moving parts shall be determined by calculations, based on the following:

a) the centre of gravity of that part of the structure which does not move when the load is elevated;

b) the centre of gravity of the spreader which moves in unison with the load;

c) the centre of gravity of any other part of the equipment which moves as the load is elevated, but does not maintain a constant position with respect to the load and is not capable of being combined with 5.3.11 d);

d) the centre of gravity of any other part of the equipment which is capable of movement, and thus of influencing the position of the centre of gravity of the whole, during normal operation.

Items may be included with the main structure, provided that the centres of gravity of such items are taken to be in a position which has the least beneficial effect on the stability of the straddle carrier as a whole.

5.4 Safety of operator

The possibility exists that a straddle carrier may overturn during normal operations owing to a combination of circumstances. The operator of the straddle carrier is responsible for the safe operation of the equipment. The operator of the equipment shall receive in-depth training before being allowed to work with a straddle carrier.

6 Stability calculations

6.1 Stability ratio

The calculations specified in 6.5 define the stability ratio between the righting moment and the tipping moment.

The minimum stability ratios are:

<table>
<thead>
<tr>
<th>Case</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>transverse</td>
<td></td>
</tr>
<tr>
<td>CT for load case 1 through 4</td>
<td>1,25</td>
</tr>
<tr>
<td>CT for load case 5</td>
<td>1,10</td>
</tr>
<tr>
<td>CL for load case 1</td>
<td>1,15</td>
</tr>
</tbody>
</table>

The ratio takes into account a safety factor to cover the manufacturing variances, allowances for wind surges, sudden changes in operating terrain and operator error.
6.2 Determination of co-ordinates

The co-ordinates for all calculations are shown in Figure 3.

Key
- $x =$ Longitudinal
- $y =$ Transverse
- $z =$ Vertical

Figure 3 — Determination of co-ordinates

6.3 Variable dimensions — Transverse stability calculations

The variable dimensions pertinent to the calculation of transverse stability are shown in Figure 4.

Figure 4 — Variable dimensions — Transverse stability
6.4 Variable dimensions — longitudinal stability calculations

The variable dimensions pertinent to the calculation of longitudinal stability are shown in Figure 5.

![Figure 5 — Variable dimensions — Longitudinal stability](image)

6.5 Formulae for stability calculations

6.5.1 Transverse stability

The following formulae shall be used when calculating:

a) the stability during cornering using load cases 1 through 4 from 5.2 and incorporating the stability ratios from 6.1;

b) the maximum wind speed using load case 5 from 5.2 (out of service condition, \(v = 0\)) and incorporating the stability ratios from 6.1.

The deflection on slopes is shown in Figure 6.
Key
1 Undeflected carrier
2 Deflected carrier due to suspension, tyres and frame

Carrier on slope
Deflection of suspension, tyres & frame

Figure 6 — Deflection on slopes

\[C_t = \frac{M_r}{M_t} \]

\[M_t = M_w + M_c \]

\[M_r = m_{\text{COG}} \left(\frac{w}{2} - y_{\text{ecc}} - \Delta y - \Delta y_{\text{sl}} \right) g \]

\[M_w = \sum F_{w,i} \times Z_{w,i} \]

\[M_c = m_{\text{COG}} \times \frac{V_{\text{COG}}^2}{R_{\text{COG}}} \times z_{\text{COG}} \]

\[R_{\text{COG}} = R + y_{\text{ecc}} + \Delta y \]
\[\Delta y = \Delta y_{by} + \Delta y_{su} + \Delta y_{fr} \text{ (see NOTE)} \]

\[v_{COG} = \frac{R_{COG}}{R} \times v \]

\[S = \frac{M_r}{C_t \left(M_w + M_c \right)} \]

NOTE If \(\Delta y \) is not calculated by iteration, the maximum possible value corresponding to the tipping over case applies.

6.5.2 Formulae for calculation of longitudinal stability

Load case 1 from 5.2 shall be used.

The following formulae shall be used when calculating whether the actual value for \(C_l \) meets the requirements for \(C_l \) as prescribed in 6.1.

\[C_l = \frac{M_r}{M_t} \]

\[M_t = M_w + M_d \]

\[M_w = \sum (F_{w,i} \times Z_{w,i}) \]

\[M_d = m \times Z_{COG} \times a_x \]

\[M_r = m \left(\frac{I}{2} - x_{ecc} - \Delta x - \Delta x_{sl} \right) g \]

\[\Delta x = \Delta x_{by} + \Delta x_{su} + \Delta x_{fr} \text{ (see NOTE)} \]

NOTE If \(\Delta x \) is not calculated by iteration, the maximum possible value corresponding to the tipping over case applies.
7 Presentation of calculation results

The results of all calculations for 5.1 shall incorporate 6.1 and shall be presented together with the appropriate input data in tabular format. Figure 7 depicts this type of presentation.

Figure 7 — Relation between \(R \) and \(v \) including stability ratio (see 6.1)

Key
1. Load case 1
2. Load case 2
3. Load case 3
4. Load case 4
Annex A
(informative)

Special considerations

The following special considerations should be taken into account.

a) It is highly recommended that, for containers which are larger and/or heavier than those designed in accordance with ISO 668 and which are handled by straddle carrier, additional calculations be performed to include the additional wind and mass effect.

b) Tyre service pressure below recommended service pressure will reduce the stability of straddle carriers.

c) Load distribution as per ISO 3874 for calculations is not possible for non-solid cargo commodities, e.g. bulk and liquid commodities. Special considerations are to be given to containers containing bulk and liquid cargoes.

d) The operator of the straddle carrier should be aware that side shift movements of the spreader and load can result in less stability than calculated.

e) Heavy and sudden braking during high speed cornering may cause instability.

f) Straddle carriers which are equipped with the capability of lifting two containers at a time (twin lift) require special considerations.

NOTE This technology is still under development and is used at very few terminals. There is not enough data to enable appropriate specifications to be included in this document.

g) The relationship between speed and turning radius is critical to the stability of the straddle carrier and requires special operational techniques by the driver and special considerations by the terminal operator.

h) Slippery driving surfaces may cause instability during cornering.
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard alongwith amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of ‘BIS Catalogue’ and ‘Standards: Monthly Additions’.

This Indian Standard has been developed from Doc No.: TED 12 (681).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 2323 0131, 2323 3375, 2323 9402
Website: www.bis.org.in

Regional Offices:

<table>
<thead>
<tr>
<th>Regional</th>
<th>Head Office Address</th>
<th>Telephone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002</td>
<td>2323 7617, 2323 3841</td>
</tr>
<tr>
<td>Eastern</td>
<td>1/14 C.I.T. Scheme VII M, V.I.P. Road, Kankurgachi, KOLKATA 700054</td>
<td>2337 8499, 2337 8561, 2337 8626, 2337 9120</td>
</tr>
<tr>
<td>Northern</td>
<td>SCO 335-336, Sector 34-A, CHANDIGARH 160022</td>
<td>260 3843, 260 9285</td>
</tr>
<tr>
<td>Southern</td>
<td>C.I.T. Campus, IV Cross Road, CHENNAI 600113</td>
<td>2254 1216, 2254 1442, 2254 2315</td>
</tr>
<tr>
<td>Western</td>
<td>Manakalaya, E9 MIDC, Marol, Andheri (East), MUMBAI 400093</td>
<td>2832 9295, 2832 7858, 2832 7891, 2832 7892</td>
</tr>
</tbody>
</table>

Branches: AHMEDABAD, BANGALORE, BHOPAL, BHUBANESHWAR, COIMBATORE, DEHRADUN, FARIDABAD, GHAZIABAD, GUWAHATI, HYDERABAD, JAIPUR, KANPUR, LUCKNOW, NAGPUR, PARWANOO, PATNA, PUNE, RAJKOT, THIRUVANANTHAPURAM, VISAKHAPATNAM.