Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“जानने का अधिकार, जीने का अधिकार”
Mazdoor Kisan Shakti Sangathan
“The Right to Information, The Right to Live”

“पुराने को छोड नये के तरफ”
Jawaharlal Nehru
“Step Out From the Old to the New”

Indian Standard

AUTOMOTIVE VEHICLES — PLASTIC FUEL TANK FOR FOUR WHEELERS

ICS 43.040.01; 43.060.40; 83.140.01
FOREWORD

This Indian Standard was adopted by the Bureau of Indian Standards, after the draft finalized by the Automotive Body, Chassis, Accessories and Garage Equipment Sectional Committee had been approved by the Transport Engineering Division Council.

This standard is one of the series of Indian Standards on fuel tanks. The other standards are:

<table>
<thead>
<tr>
<th>IS No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>12056:1987</td>
<td>Recommendation for safety requirements for fuel tank assembly of automotive vehicles</td>
</tr>
<tr>
<td>14681:1999</td>
<td>Automotive vehicles — Fuel tanks for two or three wheelers</td>
</tr>
</tbody>
</table>

In the preparation of this standard considerable assistance has been derived from AIS 033/2001 'Automotive vehicles — Plastic fuel tank for four wheelers' prepared by the Automotive Industry Standards Committee under Central Motor Vehicle Rules — Technical Standing Committee issued by the Automotive Research Association of India, which is primarily based on ECE R-34 'Fire Risks and Base EEC Directive — 70/221/EEC' on the approximation of the laws of the member states relating to fuel tanks and rear underrun protection of motor vehicles and their trailers and amendments 79/490, 81/333, 97/19, 2000/8.

The fuel tank is an important safety critical item. With the advancement of technology and availability of this standard substitute plastic material more and more vehicle manufacturers have started using plastic fuel tanks. Hence there was a need for a standard specifying the performance requirements of the plastic fuel tanks.

The composition of the Committee responsible for formulation of this standard is given in Annex C.

In reporting the results of a test or analysis made in accordance with this standard, if the final value, observed or calculated is to be rounded off, it shall be done in accordance with IS 2: 1960 'Rules for rounding off numerical values (revised)'.

Indian Standard

AUTOMOTIVE VEHICLES — PLASTIC FUEL TANK
FOR FOUR WHEELERS

1 SCOPE
This standard applies to four wheeled motor vehicles and their trailers whose engine uses liquid fuel and the fuel tank is made of plastic material.

2 TERMINOLOGY
For the purpose of this standard, the following terms and definitions shall apply.

2.1 Vehicle Type with Regard to Fuel Tanks — Vehicles which do not differ essentially in such respect as:
 a) The structure, shape, dimensions and materials of the tank(s).
 b) The position of the tanks in the vehicle (right/left/front/rear/centre).

2.2 Occupant Compartment — It is the space for occupant accommodation bounded by the roof, floor, side walls, doors, outside glazing, front and rear bulkhead.

2.3 Unladen Mass — It is the mass of the vehicles in running order.

2.4 Tank — It is the tank(s) designed to contain the liquid fuel, as defined in 2.6 used primarily for the vehicle excluding its accessories (filler pipe if it is a separate element), gauge, connections to the engine or to compensate interior excess pressure, etc.

2.5 Capacity of the Tank — It is the tank capacity as specified by the manufacturer.

2.6 Liquid Fuel — It is a fuel which is liquid in normal ambient conditions.

3 GENERAL REQUIREMENTS
3.1 Tanks must be made so as to be corrosion-resistant.

3.2 Any excess pressure or any pressure exceeding the working pressure must be compensated automatically by suitable devices (vents, safety valves, etc).

3.3 The vents must be designed in such a way as to prevent any fire risk. In particular, any fuel which may leak when the tank(s) is (are) being filled must not be able to fall on the exhaust system. It shall be channelled to the ground.

3.4 The tank(s) must not be situated in, or form, a surface (floor, wall, bulkhead) of the occupant compartment or other compartment integral with it.

3.5 A partition must be provided to separate the occupant compartment from the tank(s). The partition may contain apertures (for example, to accommodate cables), provided they are so arranged that fuel cannot flow freely from the tank(s) into the occupant compartment or other compartment integral with it during normal conditions of use.

3.6 Every tank must be securely fixed and so placed as to ensure that any fuel leaking from the tank or its accessories will escape to the ground and not into the occupant compartment during normal conditions of use.

3.7 The filler hole must not be situated in the occupant compartment, in the luggage compartment or in the engine compartment.

3.8 The fuel must not escape through the tank cap or through the devices provided to compensate excess pressure during the foreseeable course of operation of the vehicle. In the case of overturning of the vehicle, a drip may be tolerated provided that it does not exceed 30 g/min; this requirement must be verified during the test prescribed in 4.1.

3.8.1 The tank cap must be fixed to the fillerpipe; the seal must be retained securely in place, the cap must latch securely in place against the seal and filler pipe when closed.

3.9 Tanks must be installed in such a way as to be protected from the consequence of an impact to the front or the rear of the vehicle; there shall be no protruding parts, sharp edges, etc, near the tank.

3.10 The fuel tank and the filler neck shall be designed and installed in the vehicles in such a way as to avoid any accumulation of static electricity charges on their entire surface. If necessary, they shall be discharged into the metallic structure of the chassis or any major metallic mass by means of a good conductor.

3.11 The tank/vehicle manufacturer should submit the details and drawing specified in Annex A.

4 TESTS

4.1 Overturn Test

4.1.1 The tank and all its accessories must be
mounted on to a test fixture in a manner corresponding to the mode of installation on the vehicle for which the tank is intended; this also applies to a system for the compensation of the interior excess pressure.

4.1.2 The test fixture shall rotate about an axis lying parallel to the longitudinal vehicle axis.

4.1.3 The test shall be carried out with the tank filled to 90 percent of its capacity and also 30 percent of its capacity with a non-flammable liquid having a density and a viscosity close to those of the fuel normally used (water may be accepted).

4.1.4 The tank must be turned from its installed position 90° to the right. The tank must remain in this position, for at least 5 min.

4.1.5 The tank must then be turned 90° further in the same direction. The tank must be held in this position, in which it is completely inverted, for at least another 5 min.

4.1.6 The tank must be rotated back to its normal position. Testing liquid which has not flowed back from the venting system into the tank must be drained and replenished if necessary.

4.1.7 The tank must be rotated 90° in the opposite direction and left for at least 5 min in this position.

4.1.8 The tank must be rotated 90° further in the same direction. This completely inverted position must be maintained for at least 5 min. Afterwards, the tank must be rotated back to its normal position.

4.2 Impact Resistance

4.2.1 The tank must be filled to its capacity with a water-glycol mixture or with another liquid having a low freezing point which does not change the properties of the tank material, and must then be subjected to the following perforation test.

4.2.2 The test must be carried out immediately after the tank attains temperature of 233 K (+53°C). A pendulum impact testing fixture must be used for the test. The impact body must be of steel and have the shape of a pyramid with equilateral-triangle faces and a square base, the summit and the edges being rounded to a radius of 3 mm. The centre of percussion of the pendulum must coincide with the centre of gravity of the pyramid; its distance from the axis of rotation of the pendulum must be 1 m. The total mass of the pendulum must be 15 kg. The energy of the pendulum at the moment of impact must be not less than 30 Nm and as close to that value as possible.

4.2.4 The tests must be made on the points of the tank which are regarded as vulnerable to frontal or rear collisions. The points regarded as vulnerable are those which are most exposed or weakest having regard to the shape of the tank or the way in which it is installed on the vehicle. The points selected by the laboratories must be indicated in the test report.

4.2.5 During the test, the tank must be held in position by the fittings on the side or sides opposite the side of impact. No leak must result from the test.

4.2.6 At the choice of the manufacturer, all the impact tests may be carried out on one tank or each may be carried out on a different tank.

4.3 Mechanical Strength

4.3.1 The tank and all its accessories must be mounted onto a test fixture in a manner corresponding to the mode of installation on the vehicle for which the tank is intended. Water at 326 K (53°C) must be used as the testing fluid and must fill the tank to its capacity. The tank must be subject to a relative internal pressure equal to double the working pressure and in any case to not less than 0.3 bar at a temperature of 326 K ± 2 K (53 ± 2°C) for a period of 5 h. During the test, the tank and its accessories must not crack or leak; however, it may be permanently deformed.

4.4 Fuel Permeability

4.4.1 The fuel used for the permeability test must be either the reference fuel or commercially premium-grade fuel. If the tank is only designed for installation on vehicles with a compression ignition engine, the tank shall be filled with diesel fuel.

4.4.2 Prior to the test, the tank must be filled to 50 percent of its capacity with testing fuel and stored, without being sealed, at an ambient temperature of 313 K ± 2 K (40 ± 2°C), until the weight loss per unit time becomes constant, but for not more than 4 weeks.

4.4.3 The tank must then be emptied and re-filled to 50 percent of its capacity with test fuel, after which it must be hermetically sealed and stored at a temperature of 313 K ± 2 K (40 ± 2°C) under a test pressure of 0.3 bar. The pressure must be adjusted when the contents of the tank have reached the testing temperature. During the ensuing test period of eight weeks, the loss of weight due to diffusion during the test period shall be determined. The maximum permissible average loss of fuel is 20 g per 24 h of testing time.

4.4.4 If the loss due to diffusion exceeds the value indicated in 4.4.3 the test described must be carried
out again, on the same tank, to determine the loss by diffusion at 23 ± 2°C, but under the same conditions otherwise. The loss so measured shall not exceed 10 g per 24 h.

4.5 Resistance to Fuel

4.5.1 After the test referred to in 4.4, the tank must still meet the requirements set out in 4.2 and 4.3.

4.6 Resistance to Fire

The tank must be subjected to the following tests.

4.6.1 For two minutes the tank, fixed as on the vehicle, must be exposed to flame. There must be no leakage of liquid fuel from the tank.

4.6.2 Three tests must be made on different tank filled with fuel as follows.

4.6.3 If the tank is designed for installation on vehicles equipped with either a positive ignition engine or a compression ignition engine, three tests must be carried out with tanks filled with premium-grade gasoline.

4.6.4 If the tank is only designed for installation on vehicles equipped with a compression ignition engine, three tests must be carried out with tanks filled with diesel fuel.

4.6.5 For each test the tank must be installed in a testing fixture simulating actual installation conditions as far as possible. The method whereby the tank is fixed in the fixture must correspond to the relevant specifications for the vehicle. Vehicle parts which protect the tank and its accessories against exposure to flame or which affect the course of the fire in any way, as well as specified components installed on the tank and plugs, must be taken into consideration. All openings must be closed during the test, but venting systems must remain operative. Immediately prior to the test the tank must be filled with specified fuel to 50 percent of its capacity.

4.6.6 The flame to which the tank is exposed must be obtained by burning commercial fuel for positive ignition engines (hereafter called ‘fuel’) in a pan. The quantity of fuel poured into the pan shall be sufficient to permit the flame, under the burning conditions, to burn for the whole test procedure.

4.6.7 The pan dimensions must be chosen so as to ensure that the sides of the fuel tank are exposed to the flame. The pan must therefore exceed the horizontal projection of the tank by at least 20 cm, but not more than 50 cm. The side walls of the pan must not project more than 8 cm above the level of the fuel at start of the test.

4.6.8 The pan filled with fuel must be placed under the tank in such a way that the distance between the level of the fuel in the pan and the tank bottom corresponds to the design height of the tank above the road surface at the unloaded mass (see 2.3). Either the pan, or the testing fixture, or both, must be freely movable.

4.6.9 During phase C of the test, the pan must be covered by a screen placed 2 ± 1 cm above the fuel level. The screen must be made of a refractory material, as shown in Annex B. There must be no gap between the bricks and they must be supported over the fuel pan in such a manner that the holes in the bricks are not obstructed. The length and width of the frame must be 2 to 4 cm smaller than the interior dimensions of the pan so that a gap of 1 to 2 cm exists between the frame and the walls of the pan to allow ventilation.

4.6.10 When the test is carried out on the open air, sufficient wind protection must be provided and the wind velocity at fuel pan level must not exceed 2.5 km/h. Before the test, the screen must be heated to 308 K ± 5 K (35 ± 5°C). The fire bricks may be wetted in order to guarantee the same test conditions for each successive test.

4.6.11 The test must comprise four phases as follows:

4.6.11.1 Phase A: Pre-heating (see Fig. 1). The fuel in the pan must be ignited at a distance of at least 3 m from the tank being tested. After 60 s pre-heating, the pan must be placed under the tank.

4.6.11.2 Phase B: Direct exposure to flame (see Fig. 2). For 60 s the tank must be exposed to flame from the freely burning fuel.

4.6.11.3 Phase C: Indirect exposure to flame (see Fig. 3). As soon as Phase B has been completed, the screen must be placed between the burning pan and the tank. The tank must be exposed to this reduced flame for a further 60 s.

4.6.11.4 Phase D: End of test (see Fig. 4). The burning pan covered with the screen must be moved back to its original position (Phase A). If, at the end of the test, the tank is burning, the fire must be extinguished forthwith.

4.6.12 The results of the test shall be considered satisfactory if no liquid fuel is leaking from the tank.
4.7 Resistance to High Temperature

4.7.1 The fixture used for the test must match the manner of installation of the tank on the vehicle, including the way in which the tank vent works.

4.7.2 The tank filled to 50 percent of its capacity with water at 293 K (20°C), must be subjected for 1 h to an ambient temperature of 368 K ± 2 K (95 ± 2°C).

4.7.3 The results of the test shall be considered satisfactory if, after the test, the tank is not leaking or seriously deformed.

5 NUMBER OF SAMPLES

Total eight number of samples are required for carrying out the above tests.

6 MARKING

6.1 The fuel tank, shall be legibly and indelibly marked with the following:
 a) Manufacturer's name or trade-mark,
 b) Batch No./lot No., and
 c) Month and year of manufacture.

6.2 The product may also be marked with Standard Mark.

6.2.1 The use of the Standard Mark is governed by the provisions of the Bureau of Indian Standards Act, 1986 and the Rules and Regulations made thereunder. The detail of conditions under which the licence for the use of the Standard Mark may be granted to manufacturers or producers may be obtained from the Bureau of Indian Standards.
ANNEX A

(Clause 3.11)

TECHNICAL SPECIFICATION TO BE SUBMITTED BY TANK/VEHICLE MANUFACTURER

1. Type of vehicle
2. Type of fuel
3. Name of the vehicle manufacturer
4. Address of the vehicle manufacturer
5. Vehicle model/variants
6. Category of vehicle
7. Manufacturer of fuel tank
8. Sketch showing mounting and location of fuel tank
9. Drawing and technical specification of the fuel tank with all connections and all lines of breathing and vending system and fastening devices
10. Material of the tank, trade name with mark
11. Type of engine
12. Number and capacity of fuel tank
ANNEX B
(Clause 4.6.9)

DESCRIPTION OF THE SCREEN

All dimensions in millimetres.

DIMENSIONS AND TECHNICAL DATA OF FIREBRICKS
ANNEX C
(Foreword)

COMMITTEE COMPOSITION

Automotive Body, Chassis, Accessories and Garage Equipment Sectional Committee, TED 6

Organization
Automotive Research Association of India, Pune
Ashok Leyland Ltd. Chennai
Association State Road Transport Undertakings, New Delhi
Autoliv IFB India Ltd, Bangalore
Automotive Component Manufacturers' Association, New Delhi
Bajaj Auto Ltd, Pune
Bajaj Tempo Ltd, Pune
Central Farm Machinery Training and Testing Institute (CFMTTI), P. O. Budni (M.P.)
Central Institute of Road Transport, Pune
Controllerate of Quality Assurance (Vehicles), Ahmednagar
Eicher Motors Ltd, Pithampur
General Motors India Pvt Ltd, Halol
Institute of Road Traffic Education (IRTE), New Delhi
Jaico Automobile Engineering Pvt Ltd, Bangalore
JCBL, Lahiru (Punjab)
Ku Rajeshree Parmar Memorial Foundation, Pune
Maharashtra State Road Transport Corporation, Mumbai
Mahindra and Mahindra Ltd, Nashik
Maruti Udyog Ltd, Gurgaon
Ministry of Heavy Industries and Public Enterprises, New Delhi
Ministry of Road Transport and Highways, New Delhi
Neptune Equipments (P) Ltd, Mumbai
Office of the Transport Commissioner, Mumbai
Ordnance Factory Board, Vehicle Factory, Kolkata
Rubby Coach Builders Pvt Ltd, Mumbai

Representative(s)
SHRI BALRAJ BHANOT (Chairman)
SHRI S. M. HARGAPURKAR (Alternate)
SHRI C. B. S. MENON
SHRI K. HARIKRISHNAN (Alternate)
DIRECTOR (TECHNICAL)
SHRI V. RAGHU
SHRI S. RANGARAJAN (Alternate)
ASSISTANT DIRECTOR
SHRI T. M. BALARAMAN
SHRI V. M. MANEL (Alternate)
SHRI P. R. SHIVARAMAN
SHRI A. M. KULKARNI (Alternate)
SHRI S. C. JAIN
SHRI N. R. KACHARE
SHRI P. S. MUNGLI (Alternate)
JOINT CONTROLLER [ID-B]
DEPUTY CONTROLLER [ID-B] (Alternate)
SHRI RAJINDER S. SACHDEVA
SHRI VIMAL MULCHANDANI (Alternate)
GENERAL MANAGER (R & D)
SHRI ROHIT BALUJA
SHRI VINAY KULKARNI
SHRI SANDEEP DEWETT
SHRI CHANDMAL M. PARMAR
SHRI P. N. RAJGOPALAYI
SHRI KARATE (Alternate)
SHRI B. BHAUMIK
SHRI R. V. DESHMUKH (Alternate)
SHRI P. AGRAWAL
SHRI R. K. PARMOD (Alternate)
SHRI B. N. DAS
SHRI R. K. JAISWAL (Alternate)
SHRI ALOK RAWAI
SHRI S. P. SHAH
SHRI S. B. SAHASRABUDHE
SHRI K. N. ARYA
SHRI M. L. SUD (Alternate)
SHRI MANOJ D. KAPASHI
SHRIMATI MANJARI M. KAPASHI (Alternate)
<table>
<thead>
<tr>
<th>Organization</th>
<th>Representative(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Scale Industries, New Delhi</td>
<td>SHRI J. K. ARYA</td>
</tr>
</tbody>
</table>
| Society of Indian Automobile Manufacturers (SIAM), New Delhi | SHRI ATANU GANGULI
SHRI SUMIT SHARMA (Alternate) |
| Sutlej Motors Ltd, Jalandhar | SHRI K. S. WILKHU |
| Swaraj Mazda Ltd, Ropar | SHRI S. R. AGRAHARI
SHRI LAKHINDER SINGH (Alternate) |
| Tata Motors Ltd, Pune | SHRI M. P. KAMATH
SHRI P. K. BANERJEE (Alternate) |
| Toyata Kirloskar Motors Ltd, Bangalore | GENERAL MANAGER (R & D)
SHRI T. C. GOPALAN |
| Tractor Manufacturers’ Association, New Delhi | SHRI S. M. IQBAL |
| TRW Rane Steering System Ltd | SHRI D. PANDURANGAN
SHRI S. RAMAKRISHNA (Alternate) |
| Vehicles Research and Development Establishment, Ahmednagar | SHRI V. N. SHARMA
SHRI SAIFUDDIN HUSSAIN (Alternate) |
| Venkos and Company, Patna | SHRI K. K. VASHISTHA, Director and Head (TED)
[Representing Director General (Ex-officio)] |
| Volvo India Pvt Ltd, Bangalore | SHRI N. SHARMA |
| BIS Directorate General | SHRI ARNE KNABEN
SHRI S. V. SUDERSON (Alternate) |

Member Secretary

SHRI P. K. SHARMA
Director (TED), BIS
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of ‘BIS Catalogue’ and ‘Standards : Monthly Additions’.

This Indian Standard has been developed from Doc : No. TED6 (398).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110 002
Telephones: 2323 0131, 2323 3375, 2323 9402 Website: www.bis.org.in

Regional Offices:

Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg
 NEW DELHI 110 002
 { 2323 7617
 { 2323 3841

Eastern : 1/14 C. I. T. Scheme VII M, V. I. P. Road, Kankurgachi
 KOLKATA 700 054
 { 2337 8499, 2337 8561
 { 2337 8626, 2337 9120

Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160 022
 { 260 3843
 { 260 9285

Southern : C. I. T. Campus, IV Cross Road, CHENNAI 600 113
 { 2254 1216, 2254 1442
 { 2254 2519, 2254 2315

Western : Manakalaya, E9 MIDC, Marol, Andheri (East)
 MUMBAI 400 093
 { 2832 9295, 2832 7858
 { 2832 7891, 2832 7892

Branches: AHMEDABAD. BANGALORE. BHOPAL. BHUBANESHWAR. COIMBATORE.
 FARIDABAD. GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR.
 LUCKNOW. NAGPUR. NALAGARH. PATNA. PUNE. RAJKOT. THIRUVANANTHAPURAM.
 VISAKHAPATNAM.

Printed at New India Printing Press, Khurja, India