Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

Indian Standard

AIRCRAFT — CONNECTORS FOR GROUND ELECTRICAL SUPPLIES

PART 1 DESIGN, PERFORMANCE AND TEST REQUIREMENTS

(First Revision)

ICS 49.060; 49.100
NATIONAL FOREWORD

This Indian Standard (Part 1) (First Revision) which is identical with ISO 461-1 : 2003 ‘Aircraft — Connectors for ground electrical supplies — Part 1: Design, performance and test requirements’ issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on the recommendation of the Aircraft, Space Vehicles, Air Cargo Handling and Aircraft Electrical Equipment Sectional Committee and approval of the Transport Engineering Division Council.

This standard was first published as IS 13835 : 1993 ‘Aircraft —Connectors for ground electrical supplies — Design, performance and test requirements’ based on ISO 461-1 : 1985. The first revision of this standard has been undertaken with a view to bring it in line with the latest version of ISO 461 published in two parts. This standard is also published in two parts. Other part is:

Part 2 Dimensions

The text of ISO Standard has been approved as suitable for publication as an Indian Standard without deviations. Certain conventions are, however, not identical to those used in Indian Standards. Attention is particularly drawn to the following:

a) Wherever the words ‘International Standard’ appear referring to this standard, they should be read as ‘Indian Standard’.

b) Comma (,) has been used as a decimal marker while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

In this adopted standard, reference appear to the following International Standard for which Indian Standard also exists. The corresponding Indian Standard which is to be substituted in its place is listed below along with its degree of equivalence for the edition indicated:

<table>
<thead>
<tr>
<th>International Standard</th>
<th>Corresponding Indian Standard</th>
<th>Degree of Equivalence</th>
</tr>
</thead>
</table>

The technical committee has reviewed the provision of the following International Standard referred in this adopted standard and has decided that it is acceptable for use in conjunction with this standard:

<table>
<thead>
<tr>
<th>International Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 7137</td>
<td>Aircraft – Environmental conditions and test procedures for airborne equipment</td>
</tr>
</tbody>
</table>

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated expressing the result of a test or analysis, shall be rounded off in accordance with IS 2 : 1960 ‘Rules for rounding off numerical values (revised)’. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.
1 Scope

This part of ISO 461 specifies the design, performance and test requirements for electrical connectors used to supply electrical power from a ground source to an aircraft.

NOTE ISO 461-2 specifies the dimensions of the connectors.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 461-2, Aircraft — Connectors for ground electrical supplies — Part 2: Dimensions
ISO 7137, Aircraft — Environmental conditions and test procedures for airborne equipment ¹)

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 aircraft fixed connector (receptacle)
connector, installed in an aircraft, which accepts an electrical power supply via the ground supply free connector from an external ground source

3.2 ground supply free connector (plug)
connector, fitted to cables from the external ground source of electrical power, which, when properly fitted to the aircraft fixed connector, permits an electrical supply to be passed to the aircraft

4 Design and performance requirements

4.1 General

4.1.1 Construction

The ground supply free connector shall be robust in construction and capable of withstanding heavy mechanical shocks and hard wear in use, and shall be designed to provide safe handling, for example by the avoidance of sharp edges.

4.1.2 Fungus resistance

Materials used in the construction of fixed and free connectors shall be fungus-inert.

4.1.3 Metallic materials

Metals used shall be corrosion-resistant or treated to resist corrosion.

4.1.4 Dissimilar materials

Dissimilar materials used in intimate contact shall be protected against electrolysis and electrolytic corrosion.

4.1.5 Temperatures

Aircraft fixed connectors and ground supply free connectors shall be capable of engagement, disengagement and operation at ambient temperatures between \(-65^\circ C\) and \(+65^\circ C\). They shall be capable of operating at \(105^\circ C\), allowing for the temperature rise due to current carried by the connectors.

4.1.6 Automatic uncoupling

Style 4 connectors shall be equipped with a positive-coupling device which will release automatically, without damage to the aircraft fixed connector or its mounting, should the aircraft or ground supply move before uncoupling has been carried out.

4.2 Polarity or phase sequence

Indications of polarity or phase shall be permanently marked on the aircraft fixed connectors and the ground supply free connectors at points adjacent to the contacts, as indicated in the relevant figures in ISO 461-2. The markings shall be permanent and legible and shall be marked on the front and rear of the insert of the aircraft fixed connector.

4.3 Current ratings

4.3.1 Each of the main current-carrying contacts of the fixed and free connectors (as distinct from any cables connected to them) shall be capable of carrying up to 300 A (Styles 1, 2 and 3) or 350 A (Style 4) continuously, i.e. for 1 h or more (direct current or r.m.s. alternating current).

4.3.2 Each of the control male and female contacts shall be capable of carrying 35 A continuously.

4.4 Control current female contact

The control current female contact of the d.c. ground supply free connector may be in two sections, insulated electrically from each other, connected only by the entry of the control male contact of the aircraft fixed connector, or the female contact may be of a one-piece construction.
4.5 Voltage rating

The aircraft fixed connectors and ground supply free connectors shall be capable of working continuously at the voltages specified in ISO 461-2.

4.6 Replaceability of contacts in the ground supply free connectors

All the ground supply free connectors shall be capable of being replaced or repaired such that the existing cables attached to the ground supply free connector may be reused.

5 Inspection and testing

5.1 Inspection

Connectors shall be examined to ensure that they meet the requirements of this part of ISO 461 and the dimensional requirements of ISO 461-2.

5.2 Testing

5.2.1 Type tests

Type tests shall be carried out to prove conformance to the requirements of this part of ISO 461. Unless otherwise indicated, the tests shall be conducted at an ambient temperature between 15 °C and 25 °C. The tests specified in 5.3.1 to 5.3.10 shall be conducted on 11 test samples (A to K) using the sample allocation and the test order given in Table 1. Each sample shall consist of an aircraft fixed connector and an appropriate ground supply free connector.

5.2.2 Quality control tests

Quality control tests shall be made on one fixed and free connector per 100, at least once a year. The sample shall be subjected to the tests specified in 5.3.4.1 and 5.3.6. If the sample fails any test, the batch shall be deemed not to conform to the requirements of this part of ISO 461.

Table 1 — Type testing — Allocation of samples and order of testing

<table>
<thead>
<tr>
<th>Test</th>
<th>Sample and test order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Engagement and disengagement forces (see 5.3.1)</td>
<td>1</td>
</tr>
<tr>
<td>Side-load test (see 5.3.2)</td>
<td>2</td>
</tr>
<tr>
<td>Endurance (see 5.3.3)</td>
<td>3</td>
</tr>
<tr>
<td>Current overload and voltage drop test (see 5.3.4)</td>
<td>4</td>
</tr>
<tr>
<td>Salt spray test (see 5.3.5)</td>
<td></td>
</tr>
<tr>
<td>High-voltage and insulation resistance test (see 5.3.6)</td>
<td></td>
</tr>
<tr>
<td>Vibration test (aircraft fixed connector only) (see 5.3.7)</td>
<td></td>
</tr>
<tr>
<td>Shock test (ground supply free connector only) (see 5.3.8)</td>
<td></td>
</tr>
<tr>
<td>Extremes of temperature — Engagement and disengagement test (see 5.3.10)</td>
<td></td>
</tr>
<tr>
<td>Fluid susceptibility test (initial qualification only) (see 5.3.9)</td>
<td></td>
</tr>
</tbody>
</table>
5.3 Tests

5.3.1 Engagement and disengagement forces

5.3.1.1 Styles 1, 2 and 3

Two test fixed connectors shall be constructed for each configuration of ground supply free connector, each fixed connector having male contacts of hardened and ground steel, with a surface finish of between 0.1 µm and 0.4 µm (4 µin and 16 µin), mounted at the centres shown in the appropriate figure in ISO 461-2, except that the tolerance on contact position shall be ±0.025 mm (±0.001 in). No shrouds shall be fitted.

One test fixed connector shall have male contacts of the maximum tolerance dimension ±0.005 mm (±0.002 in) and the other test fixed connector shall have male contacts of the minimum tolerance dimension ±0.005 mm (±0.002 in).

Fully engage and disengage the ground supply free connector being tested 50 times using the maximum size test fixed connector followed by 5 times using the minimum size test fixed connector. Engagement and complete separation may be accomplished by machine.

Measure the force necessary to engage and disengage the ground supply free connector on the first and last insertion of each test fixed connector. For 3-pin connectors, the engaging force shall not be greater than 223 N (50 lbf) and the disengaging force shall be between 134 N and 223 N (30 lbf to 50 lbf). For 5- and 6-pin connectors, the engaging force shall not be greater than 445 N (100 lbf) and the disengaging force shall be between 267 N and 445 N (60 lbf to 100 lbf). The rate of insertion and withdrawal shall be 177 mm/min to 229 mm/min (7 in/min to 9 in/min).

5.3.1.2 Style 4

The engaging force shall not be greater than 534 N (120 lbf) and the disengaging force shall be between 400 N and 534 N (90 lbf to 120 lbf).

5.3.2 Side-load test

5.3.2.1 Styles 1, 2 and 3

After the test described in 5.3.1.1, engage the ground supply free connector with an appropriate aircraft fixed connector mounted with its axis horizontal.

With the main current-carrying male contacts one-third engaged, apply a side load of 890 N (200 lbf) to the extremity of the ground supply free connector body. No damage or permanent deformation of the fixed or free connector shall ensue from this test.

5.3.2.2 Style 4

After the test described in 5.3.1.2, engage and latch the ground supply free connector with an appropriate aircraft fixed connector mounted with its axis horizontal. Apply a side load of 890 N (200 lbf) to the extremity of the ground supply free connector body. No damage or permanent deformation of the fixed or free connector or the latching mechanism shall ensue from this test.

5.3.3 Endurance

After the tests described in 5.3.1 and 5.3.2, fully engage and disengage the ground supply free connector 500 times with an appropriate aircraft fixed connector mounted with its axis horizontal. Engagement and disengagement shall be at a rate not exceeding 15 cycles/min.

Measure the voltage drop at the end of this test. It shall meet the requirements of 5.3.4.2.
5.3.4 Current overload and voltage drop test

5.3.4.1 Current overload

Connect a mated connector pair to a power supply and circuitry to pass a d.c. or a.c. r.m.s. current through the contacts of the connector. The cables between the power supply and the large contacts shall be size 00 gauge or larger and the cables for the small contacts size 12 gauge or larger. The current through the large contacts shall be 700 A (Styles 1, 2 and 3) or 900 A (Style 4) and through the small contacts shall be 35 A. Maintain the current at these levels for 3 min. During application of the current overloads and after the overloads have been removed, there shall be no shorting, loss of continuity, burning, rupture or other damage detrimental to either the free or fixed connector. Smoke shall not be cause for failure if the connector operation is not otherwise impaired. After removal of the overload current, allow the connectors to cool to ambient temperature and test the connectors for voltage drop at rated current levels in accordance with 5.3.4.2.

5.3.4.2 Voltage drop at rated current

Use the same circuit as was used for the current overload test to provide a d.c. or a.c. r.m.s. current through the contacts of the connector. The current through the large contacts shall be 300 A (Styles 1, 2 and 3) or 350 A (Style 4) and through the small contacts shall be 15 A. Maintain the current at these levels for 5 min, then measure the voltage drop of all contacts at these current levels. Measure the voltage drop from the end of the contact on the back of the fixed connector receptacle to a point on the conductor of the cable within 25 mm (1 in) of the point of cable attachment to the free connector plug. The cable conductor may be accessed by use of a needle probe on the voltage-measuring leads. If the small control contacts of the free connector have been wired together internally, measure the voltage drop between the ends of the fixed connector contacts on the rearside of the fixed connector receptacle. The voltage drop of each large current-carrying contact shall be 45 mV or less, and the voltage drop of each small control contact shall be 30 mV or less.

5.3.5 Salt spray test

Subject one aircraft fixed connector and one ground supply free connector, disengaged, to the salt spray test, as defined in ISO 7137 2) (for Category S equipment only).

After completion of the 48 h exposure, leave the fixed and free connectors in normal laboratory atmospheric conditions, at a temperature of between 15 °C and 25 °C. After a period of between 1 h and 1.5 h, engage the items and measure the voltage drop. It shall meet the requirements of 5.3.4.2.

5.3.6 High-voltage and insulation resistance tests

5.3.6.1 Immediately following the salt spray test described in 5.3.5, subject the mated fixed and free connectors to the following high-voltage and insulation resistance tests.

5.3.6.2 Apply 2 000 V r.m.s, 50/60 Hz a.c. for 1 min between adjacent contacts and between all contacts connected together and the shroud. There shall be no electrical breakdown.

5.3.6.3 If a split control current contact is used (see 4.4), carry out an insulation test at 500 V d.c. between all adjacent contacts and between all contacts connected together and the shroud, during which the insulation resistance shall be not less than 100 MΩ.

5.3.6.4 Carry out an insulation test at 500 V d.c. between the two halves of each of the control current female contacts, during which the insulation resistance shall be not less than 20 MΩ.

2) Section 14 of EUROCAE ED-14/RTCA DO-160.
5.3.7 Vibration test (aircraft fixed connector only)

One aircraft fixed connector shall be subjected to the vibration test defined in ISO 7137\(^3\), except that there is no requirement to operate the equipment under test.

Wire the fixed connector with a size 00 cable to each main current-carrying male contact, and with a size 16 cable to each control male contact. Secure the cables to the vibration table at a distance of not less than 400 mm from the fixed connector.

Use the following severe vibration environment test curves\(^3\):

- vibration response survey: Figure 8-6, curve \(W'\);
- robustness test, sinusoidal: Figure 8-6, curve \(W'\);
- robustness test, random: Figure 8-5, curve \(D'\).

At the conclusion of the test, there shall be no signs of loosening of fixings or cable terminations.

5.3.8 Shock test (ground supply free connector only)

Drop the ground supply free connector, with 6 m of attached cable, ten times from a height of 3.6 m (12 ft) on to a concrete surface. For the test, the free end of the cable shall be fixed at a point allowing the cable to assume an angle of approximately 45° before the ground supply connector is released. The ground supply free connector shall then meet the requirements of 5.3.10 using an appropriate aircraft fixed connector.

5.3.9 Fluid susceptibility test (initial qualification only)

Aircraft fixed connectors and ground supply free connectors shall be subjected, unmated, to the spray test defined in ISO 7137\(^4\) (applies to categories XC, XD, XF, XG, XJ, XL and XM). No fluid test marking requirements exist. Operation and conformance to ISO 7137 shall be demonstrated as follows:

a) clean the connectors using iso-propyl alcohol and wipe dry with a clean dry cloth;

b) they shall then meet the requirements of the high-voltage and insulation resistance tests (see 5.3.6);

c) it shall be shown, to the satisfaction of the approval authority, that the complete connectors can be engaged and disengaged by hand.

5.3.10 Extremes of temperature — Engagement and disengagement test

It shall be shown, to the satisfaction of the approval authority, that the complete connectors can be engaged and disengaged by hand at a temperature of \(-65 \, ^\circ C\) and \(+65 \, ^\circ C\).

6 Marking and ordering procedures

6.1 Marking

The connector housing shall be clearly marked, prominently and legibly, with the number of this part of ISO 461 and the style number, as specified in ISO 461-2.

EXAMPLE ISO 461-1-1A

---

\(^3\) Section 8 of EUROCAE ED-14/RTCA DO-160.

\(^4\) Section 11 of EUROCAE ED-14/RTCA DO-160.
6.2 Packing

Each connector unit shall be packed in a container in such a manner as to ensure safe delivery and acceptance at its destination. Containers shall conform to carrier regulations applicable to the mode of transportation.

6.3 Ordering

The following information shall be given when ordering to this part of ISO 461:

a) the reference number of this part of ISO 461;
b) the style number and description, as specified in ISO 461-2;
c) details of any marking required in addition to the requirements of 6.1;
d) the requirements for the provision of assembly instructions;
e) the packaging requirements.
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of ‘BIS Catalogue’ and ‘Standards: Monthly Additions’.

This Indian Standard has been developed from Doc No. : TED 14 (668).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amendment No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 2323 0131, 2323 3375, 2323 9402 Website: www.bis.org.in

Regional Offices:

Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg
NEW DELHI 110002 (2323 7617, 2323 3841)

Eastern : 1/14, C.I.T. Scheme VII M, V.I.P. Road, Kankurgachi
KOLKATA 700054 (2337 8499, 2337 8561, 2337 8626, 2337 9120)

Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160022
(260 3843, 260 9285)

Southern : C.I.T. Campus, IV Cross Road, CHENNAI 600113
(2254 1216, 2254 1442, 2254 2519, 2254 2315)

Western : Manakalaya, E9 MIDC, Marol, Andheri (East)
MUMBAI 400093 (2832 9295, 2832 7858, 2832 7891, 2832 7892)

Branches: AHMEDABAD, BANGALORE, BHOPAL, BHUBANESHWAR, COIMBATORE, DEHRADUN, FARIDABAD, GHAZIABAD, GUWAHATI, HYDERABAD, JAIPUR, KANPUR, LUCKNOW, NAGPUR, PARWANOO, PATNA, PUNE, RAJKOT, THIRUVANATHAPURAM, VISAKHAPATNAM.

Published by BIS, New Delhi