Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

"जानने का अधिकार, जीने का अधिकार"
Mazdoor Kisan Shakti Sangathan
"The Right to Information, The Right to Live"

"पुराने को छोड़ नये के तरफ"
Jawaharlal Nehru
"Step Out From the Old to the New"

IS 1062 (2005): Road vehicles - Spark Plugs - Test methods and requirements [TED 11: Automotive Electrical Equipment]
Indian Standard

ROAD VEHICLES — SPARK PLUGS — TEST METHODS AND REQUIREMENTS

(Second Revision)

ICS 43.060.50

© BIS 2005

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

September 2005
NATIONAL FOREWORD

This Indian Standard (Second Revision) which is identical with ISO 11565:1998 'Road vehicles — Spark plugs — Test methods and requirements' issued by the International Organization for Standardization (ISO) was adopted by Bureau of Indian Standards on the recommendations of the Automotive Electrical Equipment and Instruments Sectional Committee (TED 11) and approval of the Transport Engineering Division Council.

The Indian Standard was first issued in 1957. The present revision is taken to align it with revised version of ISO 11565.

The text of the International Standard has been proposed to be approved as suitable for publication as an Indian Standard without deviations. Certain conventions are, however, not identical to those used in Indian Standards. Attention is particularly drawn to the following:

a) Wherever the words 'International Standard' appear referring to this standard, they should be read as 'Indian Standard'.

b) Comma (,) has been used as a decimal marker while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

In this adopted standard, reference appears to the following International Standard for which Indian Standard also exists. The corresponding Indian Standard, which is to be substituted in its place, is given below along with its degree of equivalence for the edition indicated:

<table>
<thead>
<tr>
<th>International Standard</th>
<th>Corresponding Indian Standard</th>
<th>Degree of Equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 2704 : 1993 Road vehicles — M 10 x 1 spark-plugs with flat seating and their cylinder head housings</td>
<td>IS 15364 : 2003 Automotive vehicles — M 10 x 1 spark-plugs with flat seating</td>
<td>Technically equivalent</td>
</tr>
</tbody>
</table>

The Technical Committee responsible for the preparation of this standard has reviewed the provisions of the following International Standards referred in the adopted standard and has decided that these are acceptable for use in conjunction with this standard:

<table>
<thead>
<tr>
<th>International Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 1919 : 1998</td>
<td>Road vehicles — M 14 x 1,25 spark-plugs with flat seating and their cylinder head housings</td>
</tr>
<tr>
<td>ISO 23441)</td>
<td>Road vehicles — M14 x 1,25 spark-plugs with conical seating and their cylinder head housings</td>
</tr>
<tr>
<td>ISO 2345 : 1994</td>
<td>Road vehicles — M18 x 1,25 spark-plugs with conical seating and their cylinder head housing</td>
</tr>
<tr>
<td>ISO 2346 : 1991</td>
<td>Road vehicles — M14 x 1,25 compact spark-plugs with flat seating and their cylinder head housing</td>
</tr>
<tr>
<td>ISO 2347 : 1994</td>
<td>Road vehicles — M14 x 1,25 compact spark-plugs with conical seating and their cylinder head housing</td>
</tr>
</tbody>
</table>

1) To be published (Revision of ISO 2344:1992).

(Continued on third cover)
Indian Standard
ROAD VEHICLES — SPARK PLUGS — TEST METHODS AND REQUIREMENTS
(Second Revision)

1 Scope
This International Standard specifies the test methods and requirements for the mechanical and electrical performance of spark-plugs for use with spark ignition engines.

2 Normative references
The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 2344:—1), Road vehicles — M14 × 1,25 spark-plugs with conical seating and their cylinder head housings.
ISO 2704:1993, Road vehicles — M10 × 1 spark-plugs with flat seating and their cylinder head housings.
ISO 2705:—2), Road vehicles — M12 × 1,25 spark-plugs with flat seating and their cylinder head housings.
ISO 8470:—3), Road vehicles — M14 × 1,25 spark-plugs with flat seating and 16 mm hexagon and their cylinder head housings.
IEC 60051-1:1997, Direct acting indicating analogue electrical measuring instruments and their accessories — Part 1: Definitions and general requirements common to all parts.

1) To be published. (Revision of ISO 2344:1992)
2) To be published. (Revision of ISO 2705:1991)
3) To be published. (Revision of ISO 8470:1990)
3 Test methods and requirements

3.1 General

The tests shall be carried out at an ambient temperature of \((23 \pm 5) \, ^\circ\text{C}\) and a relative humidity of \((65 \pm 20)\,\%\) unless otherwise specified.

For each test sample in table 1, the test sequence is indicated by x's from top to bottom.

Each test sequence shall be started with unused samples.

Table 1 — Test sequences

<table>
<thead>
<tr>
<th>Characteristic to be checked</th>
<th>In accordance with subclause</th>
<th>Test sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>General characteristics by visual examination</td>
<td>3.2</td>
<td>X X X X X X X</td>
</tr>
<tr>
<td>Dimensions</td>
<td>3.3</td>
<td>X X X X X X X</td>
</tr>
<tr>
<td>Resistance of incorporated element for RF suppression</td>
<td>3.7.1</td>
<td>X</td>
</tr>
<tr>
<td>Loading life of incorporated resistor</td>
<td>3.8</td>
<td>X</td>
</tr>
<tr>
<td>Mechanical shell performance</td>
<td>3.4.1</td>
<td>X</td>
</tr>
<tr>
<td>HT terminal tear off resistance</td>
<td>3.4.2</td>
<td>X</td>
</tr>
<tr>
<td>Bending resistance</td>
<td>3.4.3</td>
<td>X</td>
</tr>
<tr>
<td>Gas tightness</td>
<td>3.5</td>
<td>X</td>
</tr>
<tr>
<td>Dielectric strength of the insulator</td>
<td>3.7.2</td>
<td>X</td>
</tr>
<tr>
<td>Vibration resistance</td>
<td>3.4.4</td>
<td>X</td>
</tr>
<tr>
<td>Gas tightness</td>
<td>3.5</td>
<td>X</td>
</tr>
<tr>
<td>Dielectric strength of the insulator</td>
<td>3.7.2</td>
<td>X</td>
</tr>
<tr>
<td>Thermal shock, thermal resistance</td>
<td>3.6</td>
<td>X</td>
</tr>
<tr>
<td>Insulation resistance at ambient temperature</td>
<td>3.7.3</td>
<td>X</td>
</tr>
<tr>
<td>Insulation resistance at high temperature</td>
<td>3.7.4</td>
<td>X</td>
</tr>
<tr>
<td>Thermal stability of incorporated resistor</td>
<td>3.9</td>
<td>X</td>
</tr>
<tr>
<td>General characteristics by visual examination</td>
<td>3.2</td>
<td>X X X</td>
</tr>
</tbody>
</table>

3.2 General characteristics

3.2.1 Test

Check the following characteristics specified in 3.2.2 by visual examination. This visual examination shall be carried out with naked eye (normal strength of vision and normal colour perception) at the most favourable viewing distance and with suitable illumination.

3.2.2 Requirements

3.2.2.1 The external gasket, if any, shall be in accordance with the relevant International Standard.

3.2.2.2 The scavenging area shall be clean and without any foreign body.
3.2.2.3 The electrodes shall be fixed in position.

3.2.2.4 The shell shall be properly fixed to the insulator. No visible sign of corrosion is allowed. The thread shall be free from burrs or damage.

3.2.2.5 The insulator shall be smooth and uniform without abnormal appearance. The insulator shall not show chips, cracks or signs of shock damage.

3.2.2.6 The marking shall be in accordance with the manufacturer's specification.

3.3 Dimensional characteristics

3.3.1 Test

The dimensions are checked in accordance with the relevant International Standard, using random samples.

3.3.2 Requirement

All dimensions shall conform to the relevant International spark-plug Standard.

3.4 Mechanical performance

3.4.1 Mechanical performance of the shell

3.4.1.1 Test fixture

The test fixture shall have the thread and the seat according to the relevant International spark-plug Standard and have a surface finish of 1,6 μm ($R_a = 1,6$).

3.4.1.2 Test

Install the fully assembled spark-plug on the test fixture specified in 3.4.1.1 using a torque wrench, or a corresponding measuring device, until the shell breaks.

3.4.1.3 Requirement

The measured maximum value of torque shall not be less than

- 60 N·m for M14 gasket seat spark-plugs and for M18 conical seat spark-plugs;
- 40 N·m for M14 conical seat spark-plugs;
- 35 N·m for M12 spark-plugs;
- 25 N·m for M10 spark-plugs.

3.4.2 Tear-off resistance of the high tension terminal

3.4.2.1 Test

The test shall be non-destructive.

Mount the spark-plug on a tensile test bench using a suitable device. Apply a force linearly increasing from zero to (400 ± 10) N with a rate of less than 500 N/s to the high tension terminal in the axial direction.

3.4.2.2 Requirement

After the test, the spark-plug shall be intact.
3.4.3 Bending resistance

3.4.3.1 Test

Mount the spark-plug on a suitable test block at the maximum installation torque specified in the relevant International Standard. Apply a force perpendicular to the insulator axis and within 5 mm of the insulator's end. The touch down velocity of the force applied shall be less than 10 mm/min to avoid impact damage.

3.4.3.2 Requirement

The minimum bending moment shall be 15 N·m.

3.4.4 Vibration, sinusoidal

3.4.4.1 Test

Subject the spark-plug, mounted and tightened as specified, to a vibration test F_c in accordance with IEC 60088-2-6:

- frequency range: 50 Hz to 500 Hz;
- sweep rate: 1 octave/min;
- acceleration: $30 \, g$ (294 m/s2);
- vibration directions: spark-plug axis and perpendicular;
- duration: 8 h in each direction.

3.4.4.2 Requirement

After this test the spark-plug shall show no abnormalities and fulfil all of the following tests (see table 1).

3.5 Gas tightness

3.5.1 Test

Mount the spark-plug on a test device which represents the configuration given for mounting the spark-plug to the cylinder head and tighten it with maximum installation torque as specified in the relevant International Standard. The test fixture seat shall have a hardness of HRC 20 or greater, and a surface roughness transverse to the seating surface of 3.2 μm ($R_a = 3.2$) for spark-plugs with conical seating and of 32 μm ($R_a = 32$) for spark-plugs with flat seat. All threads shall be free of lubricants.

Ensure the spark-plug temperature, measured close to the seat as shown in figure 1, has reached (200 ± 10) °C. Apply a pressure of (2 ± 0.2) MPa [(20 ± 2) bar] (air, nitrogen, carbon dioxide or any other detection gas) to the spark-plug face for a duration of 5 min. Then determine the leakage rate between

- shell and cylinder head,
- shell and insulator,
- insulator and high tension terminal.
3.5.2 Requirement

The measured total leakage rate shall not exceed 2 cm³/min. If air or nitrogen are not used, convert the leakage rate to that of air using the specific volume of the detection gas.

3.6 Thermal shock, thermal resistance

3.6.1 Test

Cut off the shell to expose the insulator nose, without damaging the insulator nose. The insulator nose shall be immersed to a soldering bath, the soldering material having a temperature of (500 ±50) °C for a duration of 30 s to a depth not less than 3 mm.

Following immersion, allow the insulator to cool to ambient temperature, without forced cooling.

The use of a flow detecting penetrant is recommended for visual examination. The same method shall be used for examination before and after the test.

3.6.2 Requirement

There shall be no ruptures, cracks or deformations.

3.7 Electrical performance

3.7.1 Resistance of the incorporated element for RF suppression

3.7.1.1 Test

Apply a pulsed voltage of 1 kV to 5 kV between the centre electrode and the terminal of the resistor plug.

For those plugs whose resistors are not voltage sensitive, a d.c. voltage of up to 12 V may be used.
3.7.1.2 Requirement

The resistance of suppression spark-plugs shall be as agreed between the spark-plug manufacturer and the engine manufacturer.

NOTE — Typical resistance values are in the range 1 kΩ to 20 kΩ.

3.7.2 Dielectric strength of the insulator

3.7.2.1 Test

Mount the spark-plug on a suitable pressure chamber and tighten with the torque specified in the relevant International Standard. Apply pressure (air, nitrogen or carbon dioxide) in the pressure chamber to the firing end of the spark-plug to ensure that no spark occurs between the electrodes during this test.

Apply ignition voltage pulses, with the voltage rising at a rate of > 600 V/μs up to a peak value as given in table 2, between shell and high voltage terminal of the spark-plug.

A spark-plug boot may be used to avoid surface flash-over.

<table>
<thead>
<tr>
<th>Test voltage (peak value)</th>
<th>Spark-plug in accordance with</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>ISO 2346</td>
</tr>
<tr>
<td></td>
<td>ISO 2347</td>
</tr>
<tr>
<td>20</td>
<td>ISO 1919</td>
</tr>
<tr>
<td></td>
<td>ISO 2344</td>
</tr>
<tr>
<td></td>
<td>ISO 2345</td>
</tr>
<tr>
<td></td>
<td>ISO 2704</td>
</tr>
<tr>
<td></td>
<td>ISO 2705</td>
</tr>
<tr>
<td></td>
<td>ISO 8470</td>
</tr>
</tbody>
</table>

3.7.2.2 Requirement

No breakdown shall occur.

3.7.3 Insulation resistance at ambient temperature

3.7.3.1 Test

Measure the insulation resistance between the centre electrode of the plug and the grounded part by using an insulation tester.

The insulation resistance tester used for testing shall have an accuracy according to IEC 60051.

3.7.3.2 Requirement

Insulation resistance shall be 100 MΩ or higher.
3.7.4 Insulation resistance at high temperature

3.7.4.1 Test

Install the test spark-plug onto a metallic fixture to which one lead of an insulation tester is attached. Attach the second lead of the insulation tester (mechanical or welded) to the centre electrode of the test spark-plug. Insert the entire assembly into a heatable test chamber. Pass the insulation tester leads through the door of the test chamber using a high temperature insulating material and attach them to the insulation tester. Heat the chamber to 400 °C and record the insulation resistance after 30 min at this temperature.

3.7.4.2 Requirement

The insulation resistance at high temperature shall be 10 MΩ or higher.

3.8 Loading life of the incorporated resistor

3.8.1 Test

After measuring the resistance values of the resistor plugs in accordance with 3.7.1, subject the plugs to 1.3×10^7 sparks of the following parameters:

- spark voltage: 20 kV;
- spark energy: 16 mJ;
- spark rate: 50 Hz or 60 Hz;
- coil output voltage: 35 kV.

Afterwards, measure the resistance values again and examine the change in the values before testing.

NOTE — The wiring diagram of a test bench is shown as an example in annex A.

3.8.2 Requirement

The resistance shall be as agreed between the spark-plug manufacturer and the engine manufacturer.

3.9 Thermal stability of the incorporated resistor

3.9.1 Test

Measure the resistance values of the resistor plugs in accordance with 3.7.1. Then maintain the plug in air at 150 °C for 2 h, and after measuring the resistance value at this time, promptly return the plug into air of room temperature, and measure the resistance value again after the restoration at room temperature.

Then, after maintaining the plug in air at 300 °C for 20 min, promptly return it to air of room temperature, measure the resistance value after returning to room temperature, and examine the changes of the respective resistance values from that before testing.

3.9.2 Requirement

The resistance shall be as agreed between the spark-plug manufacturer and the engine manufacturer.

NOTE — Typical resistance values are in the range of 1 kΩ to 20 kΩ.
Annex A
(informative)

Wiring diagram of a test bench for the loading life of incorporated resistor

Figures A.1 and A.2 show, as an example, the wiring diagram of a test bench for the loading life of an incorporated resistor.

Figure A.1 — Connection diagram for a loading life test of an incorporated resistor

Dimensions in millimetres

Figure A.2 — Spark-gap
NATIONAL ANNEX A
(National Foreword)

A-1 BIS CERTIFICATION MARKING

A-1.1 The product may also be marked with the Standard Mark.

A-1.2 The use of the Standard Mark is governed by the provisions of the *Bureau of Indian Standards* Act, 1986 and the Rules and Regulations made thereunder. The details of conditions under which the licence for the use of Standard Mark may be granted to manufacturers or producers may be obtained from the Bureau of Indian Standards.
(Continued from second cover)

<table>
<thead>
<tr>
<th>International Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 2705<sup>1</sup></td>
<td>Road vehicles — M12 x 1,25 spark-plugs with flat seating and their cylinder head housings</td>
</tr>
<tr>
<td>ISO 8470<sup>2</sup></td>
<td>Road vehicles — M14 x 1,25 spark-plugs with flat seating and 16 mm hexagon and their cylinder head housings</td>
</tr>
<tr>
<td>IEC 60051-1 (1997)</td>
<td>Direct acting indicating analogue electrical measuring instruments and their accessories — Part 1: Definitions and general requirements common to all parts</td>
</tr>
</tbody>
</table>

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated expressing the result of a test or analysis, shall be rounded off in accordance with IS 2:1960 'Rules for rounding off numerical values (revised)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

¹ To be published (Revision of ISO 2705:1991).
² To be published (Revision of ISO 8470:1990).
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of ‘BIS Catalogue’ and ‘Standards : Monthly Additions’.

This Indian Standard has been developed from Doc : No. TED 11 (450).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110 002
Telephone: 2323 0131, 2323 3375, 2323 9402 Website: www.bis.org.in

Regional Offices:

Central: Manak Bhavan, 9 Bahadur Shah Zafar Marg
NEW DELHI 110 002
Telephone: 2323 7617, 2323 3841

Eastern: 1/14 C. I. T. Scheme VII M, V. I. P. Road, Kankurgachi
KOLKATA 700 054
Telephone: 2337 8499, 2337 8561, 2337 8626, 2337 9120

Northern: SCO 335-336, Sector 34-A, CHANDIGARH 160 022
Telephone: 260 3843, 260 9285

Southern: C. I. T. Campus, IV Cross Road, CHENNAI 600 113
Telephone: 2254 1216, 2254 1442, 2254 2519, 2254 2315

Western: Manakalaya, E9 MIDC, Marol, Andheri (East)
MUMBAI 400 093
Telephone: 2832 9295, 2832 7858, 2832 7891, 2832 7892

Branches: AHMEDABAD, BANGALORE, BHOPAL, BHUBANESHWAR, COIMBATORE, FARIDABAD, GHAZIABAD, GUWAHATI, HYDERABAD, JAIPUR, KANPUR, LUCKNOW, NAGPUR, NALAGARH, PATNA, PUNE, RAJKOT, THIRUVANANTHAPURAM, VISAKHAPATNAM.

Printed at New India Printing Press, Khurja, India