Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“जानने का अधिकार, जीने का अधिकार”
Mazdoor Kisan Shakti Sangathan
“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”
Jawaharlal Nehru
“Step Out From the Old to the New”

IS 15758-2 (2007): Textiles - Protective clothing, Part 2:
Assessment of material assemblies when exposed to source of radiant heat [TXD 32: Textiles Protective Clothing]
Indian Standard

TEXTILES — PROTECTIVE CLOTHING

PART 2 ASSESSMENT OF MATERIAL ASSEMBLIES WHEN EXPOSED TO SOURCE OF RADIANT HEAT

ICS 13.340.10
NATIONAL FOREWORD

This Indian Standard (Part 2) which is identical with ISO 6942 : 2002 ‘Protective clothing — Protection against heat and fire — Method of test: Evaluation of materials and material assemblies when exposed to a source of radiant heat’ issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on the recommendation of the Chemical Methods of Test Sectional Committee and approval of the Textile Division Council.

The conditioning temperature of 20 ± 2°C as specified in International Standard is not suitable for tropical countries like India where the atmospheric temperature is normally much higher than 20°C. It is almost impossible to maintain this temperature specially during summer when the atmospheric temperature rises even up to 50°C. In view of the above, IS 6359 : 1971 ‘Method for conditioning of textiles’ specifies a temperature of 27 ± 2°C for conditioning of the test specimens for the tropical countries like India. This standard is being followed in testing of textiles and other products since decades.

The text of ISO Standard has been approved as suitable for publication as an Indian Standard without deviations. Certain conventions are, however, not identical to those used in Indian Standards. Attention is particularly drawn to the following:

a) Wherever the words 'International Standard' or 'European Standard' appear referring to this standard, they should be read as 'Indian Standard'.

b) Comma (,) has been used as a decimal marker, while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

In reporting the results of a test or analysis made in accordance with this standard, if the final value, observed or calculated, is to be rounded off, it shall be done in accordance with IS 2 : 1960 ‘Rules for rounding off numerical values (revised)’.
Indian Standard

TEXTILES — PROTECTIVE CLOTHING

PART 2 ASSESSMENT OF MATERIAL ASSEMBLIES WHEN EXPOSED TO SOURCE OF RADIANT HEAT

1 **Scope**

This European Standard specifies two complementary methods (method A and method B) for determining the behaviour of materials for heat protective clothing subjected to heat radiation.

These tests are carried out on representative single or multi-layer textiles or other materials intended for clothing for protection against heat. They are also applicable to assemblies, which correspond to the overall build up of a heat protective clothing assembly with or without underclothing.

Method A serves for visual assessment of any changes in the material after the action of heat radiation. With method B the protective effect of the materials is determined. The materials may be tested either by both methods or only by one of them.

The tests according to these two methods serve to classify materials; however, to be able to make a statement or prediction as to the suitability of a material for protective clothing additional criteria must be taken into account.

Since the tests are carried out at room temperature the results do not necessarily correspond to the behaviour of the materials at higher ambient temperatures and therefore are only to a limited extent suitable for predicting the performance of the protective clothing made from the materials under test.

2 **Normative reference**

This European Standard incorporates by dated or undated reference, provisions from other publications. These normative references are cited at appropriate places in the text and the publications are listed below. In the case of dated references, subsequent amendments to, or revisions of, any of these publications, apply to this European Standard only when incorporated into it by amendment or revision. In the case of undated references the latest edition of the publications referred to applies (including amendments).

EN 20139
Textiles - standard atmospheres for conditioning and testing (ISO 139:1973)

IEC 60584-1
Thermocouples. Part 1: Reference table
3 Terms and definitions

For the purposes of this standard, the following terms and definitions apply,

3.1 heat transfer levels

Time t_{12} The time in seconds expressed to one decimal place, to achieve a calorimeter temperature rise of $(12 \pm 0.1) \, ^\circ C$

Time t_{24} The time in seconds expressed to one decimal place, to achieve a calorimeter temperature rise of $(24 \pm 0.2) \, ^\circ C$

3.2 heat transmission factor (TF)

A measure of the fraction of heat transmitted through a specimen exposed to a source of radiant heat. It is numerically equal to the ratio of the transmitted to the incident heat flux density.

3.3 test specimen

All the layers of fabric or other material arranged in the order and orientation as used in practice and including undergarments if appropriate.

3.4 incident heat flux density:

The amount of energy incident per unit time on the exposed face of the calorimeter, expressed in kW/m².

3.5 radiant heat transfer index (RHTI)

A number, to one decimal place calculated from the mean time (measured in seconds, to one decimal place) to achieve a temperature rise of $(24 \pm 0.2) \, ^\circ C$ in the calorimeter when testing by this method with a specified incident heat flux density.

3.6 change in appearance of the specimen

All changes in appearance of the material (shrinkage, formation of char, discoloration, scorching, glowing melting etc.).

3.7 multi-layer clothing assembly

series of layers in garments arranged in the order as worn

NOTE It may contain multi-layer materials, material combinations or separate layers of clothing material in single layers.

4 Principle

4.1 Method A

A specimen is supported in a free-standing frame (specimen holder) and is exposed to a specific level of radiant heat for a specific time. The level of radiant heat is set by adjustment of the distance between the specimen and the thermal radiation source. Following the exposure, the specimen and its individual layers, are examined for visible changes.

4.2 Method B

A specimen is supported in a free-standing frame (specimen holder) and is exposed to a specific level of radiant heat. The times for temperature rises of 12 °C and 24 °C in the calorimeter are recorded and are expressed as radiant heat transfer indexes. The percentage heat transmission factor is calculated from the temperature rise data and is also reported.
5 Apparatus

5.1 General

The test apparatus consists of the following items, which are used for both test methods:

- source of radiation (5.2);
- test frame (5.3);
- specimen holder (5.3).

For method B, the following are also required:

- calorimeter (5.4);
- temperature measuring and recording device (5.5).

5.2 Source of radiation

The radiation source consists of six silicon carbide (SiC) heating rods, with the following characteristics:

- total length: (356 ± 2) mm;
- length of heating part: (178 ± 2) mm;
- diameter: $(7,9 \pm 0,1)$ mm;
- electrical resistance: $3,6 \Omega \pm 10\%$ at $1070\,^\circ\text{C}$.

These rods are placed in a U-shaped support made of insulating, flame resistant material so that they are arranged horizontally and in the same vertical plane. Figure 1 shows the constructional details of the support and the arrangement of the heating rods, which, are loosely mounted in the grooves of the support to avoid mechanical stress.

Dimensions in millimetres
(tolerance for measurements $\pm 0,1$ mm)

![Figure 1: Source of radiation](image-url)
A diagram of a possible power supply for the radiation source is shown in figure 2. The six rods are arranged into two groups of three, placed in series. The two groups are connected in parallel and are wired to the 220 V supply through a pre-resistance of 1 Ω. For other supply voltages, the circuit has to be changed accordingly. If the supply voltage fluctuates by more than ±1 % during a measurement, stabilisation has to be provided.

![Circuit diagram for heating rods](image)

1 Silicon carbide rod
2 Pre-resistance

The correct operation of the radiation source can be checked by using an infrared thermometer to measure the temperature of the silicon carbide rods. After allowing the radiation source to warm up for about five minutes, the rods should have reached a temperature of about 1100 °C.

5.3 Specimen holder

Different specimen holders are used for tests A and B. They are constructed from 2 mm thick steel sheets fixed to a 10 mm thick aluminium plate. The specimen holder for test A has wider side plates than the specimen holder for test B. The specimen holder for test B also holds the calorimeter in position.

The specimen holders are fastened so that they fit concentrically into the opening of the vertical of the test frame. When fixed in position, the specimen holder for tests A hold the back of the specimen 10 mm behind the sheet metal cover at the front of the test frame. The specimen holder for test B holds the vertical centre line of the calorimeter 10 mm behind the sheet metal cover at the front of the test frame.

5.4 Calorimeter

The curved copper plate calorimeter is constructed as follows.

A rectangle (50 mm by 50,3 mm) is cut from a copper sheet of at least 99 % purity and 1,6 mm thick. This copper plate is bent in the longer direction into an arc with a radius of 130 mm. The chord across this arc should be approx. 50 mm. The copper plate should be accurately weighed before assembly and should have a mass of 35,9 to 36 g.

A copper constantan thermocouple, with an output in millivolts complying with IEC 60584-1, is mounted on the back of the copper plate. Both wires should be attached to the centre of the plate using the minimum amount of solder. The diameter of both wires should be 0,26 mm or less and only the length attached to the plate should be bared.

The calorimeter is located in a mounting block which shall consist of a 90 mm by 90 mm square piece of asbestos-free non-combustible, heat insulation board of nominal thickness 25 mm. The thermal characteristics of the board should comply with the following specification:
- Density $\ (750 \pm 50) \ \text{kg/m}^3$

- Thermal conductivity $\ 0,18 \ \text{W/(m.k)} \pm 10 \%$

A triangular wedge is removed from two opposite sides of the top of this block, so that the two sides are reduced to a height of 21 mm. Two further triangular wedges are removed from 20 mm in from each of the lowered sides, to further reduce them to a height of 17 mm. This gives a top surface with four flat faces, which corresponds very closely to the curved surface which would be obtained by grinding the top surface into an arc of 130 mm radius (see figure 3).

A rectangular hole is cut in the centre of the top of the board. The hole shall be 50 mm across parallel to the lowered sides and 46 mm across parallel to the shaped sides. The hole shall have a flat bottom and shall be 10 mm deep along the lower edges and approx. 12 mm deep in the centre. An edge, 1 mm deep by 2 mm wide, is cut along the two lower edges of the rectangular hole for mounting the curved copper plate. A 3 mm diameter circular hole is cut in the centre of the rectangular hole for passing the thermocouple wires.

The curved copper plate is bonded to the mounting block around its edges using an adhesive capable of withstanding temperatures of about 200 °C. The top of the copper plate should be 0.6 mm higher than the mounting block along the two straight edges and higher than the mounting block along the two curved edges. The mounting block should be higher than the bottom of the copper plate along its curved edges.

The calorimeter is mounted into the combined specimen/calorimeter holder B.

The face of the calorimeter shall be coated with a thin film of an optically black paint having a coefficient of absorption, α, greater than 0.9.
5.5 Temperature recorder

To enable the absolute temperature of the copper plate to be determined, the thermocouple should be connected to either an ice junction or a commercial reference junction. The voltage signals from the thermocouple should be connected to either a suitable potentiometric chart recorder or programmable data recorder. The recorder should enable voltages to be read to 10 μV and times to 0.1 s. A computer can also be used.

5.6 Apparatus location

Locate the apparatus where it will be shielded from air currents or place baffles or shields to limit the effect of air movement at the apparatus location."
6 Sampling

The tests according to method A should be performed using one specimen and the tests according to method B using at least three specimens per heat flux level. If the tested material is very inhomogeneous, at least three specimens by method A and five specimens by method B should be tested.

The specimens shall have dimensions (230 x 80) mm and shall be taken from points more than 20 mm from the edge of the piece of material, in an area free from defects. Composite specimens shall reproduce the arrangement in which the layers are used in practice.

Should the supplier of the material fail to indicate which is the external surface, the tests shall be performed on each side.

7 Test conditions

7.1 Conditioning atmosphere

Before testing, the specimens shall be conditioned for at least 24 h at a temperature of (20 ± 2) °C and a relative humidity of (65 ± 2) %. The test shall begin no more than 3 min. after the specimen has been taken from the conditioning atmosphere.

NOTE: As the test results depend very strongly on the humidity of the specimens, the conditioning atmosphere should be very carefully controlled.

7.2 Testing atmosphere

The tests shall be carried out in a room free of air currents and protected from any system that is capable of producing stray heat radiation that could be recorded by the calorimeter.

The temperature in the test room shall be between 15 °C and 35 °C and the calorimeter has to be cooled to the room temperature ± 2 °C before each test.

7.3 Heat flux density

The levels of incident heat flux density should be chosen from the following levels:

- Low levels: 5 and 10 kW/m²
- Medium levels: 20 and 40 kW/m²
- High level: 80 kW/m²

taking into account the intended use of the material under test. Other levels of incident heat flux density may optionally be chosen.

Methods A and B are carried out independently of each other.

NOTE: If both methods are used, it is recommended that method A is carried out first, in order to select the appropriate levels of incident heat flux density.

8 Test method

8.1 Preliminary measures

The front surface of the calorimeter is blackened with a paint of a known, high (greater than 0.90) absorption factor α. This blackening should be renewed before each calibration and after at least every 20 tests, or as soon as a deposit of char is visible. The blackening should be done after removing the previous layer of paint with a suitable solvent.
Before the start of the calibration and of every measurement the temperature of the copper calorimeter should be in a relatively steady state and within ± 2 °C of ambient temperature.

NOTE 1: On no account should the calorimeter be allowed to come into contact with water. If this occurs accidentally, the calorimeter should be dried thoroughly before further use.

Immediately before the start of the calibration and of every measurement

a) the calorimeter is fixed in position in the opening, of the vertical plate of the test frame;

b) the radiation source is positioned at a distance, d, from the vertical centre line of the front face of the calorimeter;

c) the temperature measuring device is switched on;

d) the radiation source is switched on and allowed to heat up with the movable screen closed until the radiation is constant. This steady state is reached in about 5 min and can be checked, for example, by measuring the electrical heating current.

NOTE 2: The cooling of the frame's front plate and movable screen is sufficient if the temperature of the blackened calorimeter behind the closed movable screen does not rise by more than 3 °C per min. If this is not the case, the calorimeter can be put in position immediately before the start of the calibration and of every measurement

8.2 Calibration of the radiant source.

The movable screen is withdrawn and returned to position after a temperature rise of about 30 °C has been reached.

The recorded output should show a short non-linear temperature/time relationship just after the start of the exposure, followed by a linear region which continues until exposure ceases. Refer to standard thermocouple electromotive force tables to determine the rate of rise of temperature in this linear region, R, expressed in °C/s. The incident heat flux density, Q, in kW/m², is then determined from the following equation:

\[
Q_0 = \frac{M \cdot C_p \cdot R}{A \cdot \alpha}
\]

\(M\) is the mass of the copper plate in kg;

\(C_p\) is the specific heat of copper 0.385 kJ/kg °C;

\(R\) is the rate of rise of the calorimeter temperature in the linear region in °C/s;

\(A\) is the area of the copper plate in m².

\(\alpha\) is the absorption coefficient of the painted surface of the calorimeter

The incident heat flux density is then adjusted to the required level ± 2 % by varying the distance, d, between the radiant source and the calorimeter.

8.3 Test A

One of the narrow sides of the test specimen (6) is fastened to one side plate of the specimen holder A (5.3), e.g. with a clamp. The other narrow side of the specimen is pulled over the other side plate and is held in tension under a force of 2 N by means of a suitable device (e.g. a weight, cord and pulley system). If the specimen to be tested consists of several layers, the narrow sides of the various layers shall be kept in alignment and the tensioning force of 2 N shall be applied to the assembly of all the layers.
The specimen holder is fastened into the vertical plate of the test frame so that the back of the specimen is at the same position as the vertical front centre line of the calorimeter face during the calibration. The radiation source, is fixed at the distance, d, which give the required incident heat flux density, \(Q_o \). The radiant source is switched on and after it has reached the steady state the, movable screen is withdrawn for 3 min and then returned to its closed position. After the test the specimen is removed and, if it is a multi-layer specimen separated into its layers as far as possible.

8.4 Evaluation A

After irradiation in accordance with 8.3 the specimen, or the individual layers of multi-layer specimens, are inspected. Any changes (e.g. discoloration, deposits, smouldering, charring, rupture, melting, shrinkage, sublimation) are noted, separately for each layer in the case of multi-layer specimens.

NOTE: A change in appearance of the specimen does not necessarily indicate that the thermal resistance of the material is insufficient. There are materials for which a change under the action of intense radiant heat actually increases their protective effect.

8.5 Test B

The test specimen is fastened to one side plate of specimen holder B and held in contact with the face of the calorimeter, applying a force of 2 N. The preliminary, procedures of 8.1 are followed using the, distance d, which give the required incident heat flux density, \(Q_o \). The movable screen is withdrawn and the starting point of the irradiation is recorded. The movable screen is returned to its closed position after a temperature rise of about 30 °C has been reached.

The time \(t_{12} \), expressed to one decimal place, to achieve a temperature rise of \((12 \pm 0,1) °C \) and the time \(t_{24} \), expressed to one decimal point, to achieve a temperature rise of \((24 \pm 0,2) °C \) are determined. As required in the referencing standard, calculate and report the difference between \(t_{24} \) and \(t_{12} \).

The test is repeated on the remaining specimen (see clause 6) after the necessary preliminary measures (see 8.1).

8.6 Evaluation B

The transmitted heat flux density, \(Q_c \), in kW/m², is calculated from the equation

\[
Q_c = \frac{M \cdot C_p \cdot 12}{A \cdot (t_{24} - t_{12})}
\]

where

- \(M \) is the mass of the copper plate in kg;
- \(C_p \) is the specific heat of copper 0.385 (kJ/kg°C);
- \(12/(t_{24} - t_{12}) \) is the mean rate of rise of the calorimeter temperature in °C/s, in the region between a 12 °C and a 24 °C rise;
- \(A \) is the area of the copper plate in m².

The heat transmission factor, \(TF(Q_0) \), for the incident heat flux density level \(Q_o \) is given by the equation

\[
TF(Q_0) = \frac{Q_c}{Q_o}
\]
The radiant heat transfer index, RHTI (QO), for the incident heat flux density level QO is determined as the mean of t2a, the time in 0.1 seconds, for a temperature rise in the calorimeter of (24 ± 0.2) °C.

9 Test report

The test report shall contain the following particulars:

a) reference to this European Standard;

b) a description of the material tested (including the color of the outermost material's surface), or of the individual layers and their arrangement, and their tradename(s), if known.

c) the temperature and humidity of the testing atmosphere;

d) levels of incident heat flux density chosen for the tests;

e) the number of specimens tested at each level;

f) the description of any change in appearance of the specimens during the test with method A;

g) the individual values of the transmitted heat flux density Q, or mean value and standard deviation if five or more specimens have been tested per level of incident heat flux density;

h) the individual values of the heat transmission factor TF(QO) or mean value and standard deviation if five or more specimens have been tested per level of incident heat flux density;

i) the individual values of the times t12 and t24 to reach the different heat transfer levels or mean value and standard deviation if five or more specimens have been tested per level of incident heat flux density;

j) as required in the referencing standard, the individual time values of time, t12, the time in seconds for a temperature rise in the calorimeter of (24 ± 0.2) °C, and the difference between t24 and t12.

k) the date of testing;

l) any deviations from this standard.

m) the degree of uncertainty in each test measurement.
Annex A
(informative)
Precision of method B

An interlaboratory test with five different materials conducted in nine laboratories at two levels of heat flux density (20, 40 kW/m²) gave the following mean variation:

<table>
<thead>
<tr>
<th>TF</th>
<th>t₁₂</th>
<th>t₂₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeatability</td>
<td>3.3%</td>
<td>0.9 s</td>
</tr>
<tr>
<td>Reproducibility</td>
<td>10.3%</td>
<td>2.6 s</td>
</tr>
</tbody>
</table>

The repeatability in the laboratories and the reproducibility between the laboratories has been judged satisfactory because the spread of the results is due to the non-uniformity of the material and of its reaction to the test and therefore cannot be improved.
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Catalogue' and 'Standards: Monthly Additions'.

This Indian Standard has been developed from Doc: No. TX 05 (0764).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amendment No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This Indian Standard has been developed from Doc: No. TX 05 (0764).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amendment No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110 002
Telephones: 2323 0131, 2323 3375, 2323 9402
Website: www.bis.org.in

Regional Offices:
Central: Manak Bhavan, 9 Bahadur Shah Zafar Marg
NEW DELHI 110 002
Telephones: 2323 7617, 2323 3841

Eastern: 1/14, C.I.T. Scheme VII M, V.I.P. Road, Kankurgachi
KOLKATA 700 054
Telephones: 2337 8499, 2337 8561, 2337 8626, 2337 9120

Northern: SCO 335-336, Sector 34-A, CHANDIGARH 160 022
Telephones: 260 3843, 260 9285

Southern: C.I.T. Campus, IV Cross Road, CHENNAI 600 113
Telephones: 2254 1216, 2254 1442, 2254 2519, 2254 2315

Western: Manakalaya, E9 MIDC, Marol, Andheri (East)
MUMBAI 400 083
Telephones: 2832 9295, 2832 7858, 2832 7891, 2832 7892

Branches: AHMEDABAD, BANGALORE, BHOPAL, BHUBANESHWAR, COIMBATORE, FARIDABAD, GHAZIABAD, GUWAHATI, HYDERABAD, JAIPUR, KANPUR, LUCKNOW, NAGPUR, PARWANOO, PATNA, PUNE, RAJKOT, THIRUVANANTHAPURAM, VISAKHAPATNAM.

Printed at: Akashdeep Printers, New Delhi-2.