Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

"ज्ञान का अधिकार, जीने का अधिकार"
Mazdoor Kisan Shakti Sangathan
"The Right to Information, The Right to Live"

"पुराने को छोड़ नये के तरफ"
Jawaharlal Nehru
"Step Out From the Old to the New"

Indian Standard

METHODS FOR PETROGRAPHIC ANALYSIS OF COAL

PART 4 METHOD OF DETERMINING MICROLITHOTYPE, CARBOMINERITE AND MINERITE COMPOSITION

ICS 73.040

© BIS 2001

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

February 2001
NATIONAL FOREWORD

This Indian Standard (Part 4) which is identical with ISO 7404-4 : 1988 'Methods for the petrographic analysis of bituminous coal and anthracite — Part 4 : Method of determining microlithotype, carbominerite and minerite composition' issued by the International Organization for Standardization (ISO) was adopted by Bureau of Indian Standards on the recommendation of Solid Mineral Fuels Sectional Committee and approval of the Petroleum, Coal and Related Products Division Council.

The text of ISO Standard has been approved as suitable for publication as Indian Standard without deviations. Certain conventions are, however, not identical to those used in Indian Standards. Attention is particularly drawn to the following:

a) Wherever the words 'International Standard' appear referring to this standard, they should be read as 'Indian Standard'.

b) Comma (,) has been used as a decimal marker while in Indian Standards, the current practice is to use a full point (.) as the decimal marker.

In this adopted standard, reference appears to certain International Standards for which Indian Standards also exist. The corresponding Indian Standards which are to be substituted in their place are listed below along with their degree of equivalence for the editions indicated. However, that International Standard cross-referred in this adopted ISO standard which has subsequently been revised, position in respect of latest ISO standard has been given:

<table>
<thead>
<tr>
<th>International Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 7404-5 : 1994 Methods for the petrographic analysis of bituminous coal and anthracite — Part 5: Method of determining microscopically the reflectance of vitrinite</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corresponding Indian Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 9127 (Part 1) : 1992 Methods of petrographic analysis of coal: Part 1 Definition of terms relating to petrographic analysis of coal (first revision)</td>
</tr>
<tr>
<td>IS 9127 (Part 2) : 1979 Methods of petrographic analysis of coal: Part 2 Preparation of coal sample for petrographic analysis</td>
</tr>
<tr>
<td>IS 9127 (Part 3) : 1992 Methods of petrographic analysis of coal: Part 3 Determination of maceral group composition of bituminous coal and anthracite</td>
</tr>
<tr>
<td>IS 9127 (Part 5) : 1986 Methods of petrographic analysis of coal: Part 5 Microscopical determination of the reflectance of vitrinite</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degree of Equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technically equivalent with minor deviations</td>
</tr>
<tr>
<td>Technically equivalent with minor deviations. However, this Indian Standard is being revised to align with ISO 7404-2 : 1985 under dual numbering system</td>
</tr>
<tr>
<td>Technically equivalent with minor deviations. However, this Indian Standard is being revised to align with ISO 7404-3 : 1994 under dual numbering system</td>
</tr>
<tr>
<td>Technically equivalent with minor deviations. However, this Indian Standard is being revised to align with ISO 7404-5 : 1994 under dual numbering system</td>
</tr>
</tbody>
</table>

In this adopted standard the term 'minerite' indicates that the mineral matter (for example, clay, quartz, etc) exceeds 60 percent or pyrite exceeds 20 percent by volume.

In reporting the results of a test or analysis made in accordance with this standard, if the final value, observed or calculated, is to be rounded off, it shall be done in accordance with IS 2 : 1960 'Rules for rounding off numerical values (revised)'.

In this adopted standard the term minerite indicates that the mineral matter (for example, clay, quartz, etc.) exceeds 60 percent or pyrite exceeds 20 percent by volume.

In reporting the results of a test or analysis made in accordance with this standard, if the final value, observed or calculated, is to be rounded off, it shall be done in accordance with IS 2 : 1960 'Rules for rounding off numerical values (revised)'.
Indian Standard

METHODS FOR PETROGRAPHIC ANALYSIS OF COAL

PART 4 METHOD OF DETERMINING MICROLITHOTYPE, CARBOMINERITE AND MINERITE COMPOSITION

0 Introduction

0.1 Petrographic analyses have been recognized internationally as important in the context of the genesis, vertical and lateral variation, continuity, metamorphism and usage of coal. The International Committee for Coal Petrology (ICCP) has made recommendations concerning nomenclature and analytical methods and has published an extensive handbook describing in detail the characteristics of a wide range of coals. The text of this International Standard agrees substantially with the text of the handbook and incorporates many useful comments made by members of the ICCP and by member bodies of ISO/TC 27, Solid mineral fuels.

Petrographic analyses of a single coal provide information about the rank, the maceral and microlithotype compositions and the distribution of mineral matter in the coal. The reflectance of vitrinite is a useful measure of coal rank and the distribution of the reflectance of vitrinite in a coal blend, together with a maceral group analysis, can provide information about some important chemical and technological properties of the blend.

This International Standard is concerned with the methods of petrographic analysis currently employed in characterizing bituminous coal and anthracite in the context of their technological use. It establishes a system for petrographic analysis and comprises five parts, as follows:

Part 1: Glossary of terms.
Part 2: Method of preparing coal samples.
Part 3: Method of determining maceral group composition.
Part 4: Method of determining microlithotype, carbominerite and minerite composition.
Part 5: Method of determining microscopically the reflectance of vitrinite.

For information on the nomenclature and analysis of brown coals and lignites, reference should be made to the International Handbook of Coal Petrography published by the ICCP.

0.2 Microlithotypes are the naturally occurring associations of macerals which characterize the visibly different types of coal. By convention, the identity of a microlithotype is determined by the maceral group or groups occurring within an area of at least 50 μm × 50 μm and which are present in amounts equal to or exceeding 5 % by volume. Hence they can comprise a single maceral or maceral group if it exceeds these dimensions. Microlithotypes may include up to 20 % by volume of minerals such as clay, quartz and carbonates or up to 5 % by volume of sulfide minerals. If the content of mineral matter exceeds these amounts, the material is designated as minerite or carbominerite depending on the proportions of coal and mineral matter.

Carbominerites can be subdivided according to the type of mineral matter.

Microlithotypes contribute information on the genesis of coal seams and can assist in solving problems of seam correlation. Because they determine, together with rank and mineral matter, the hardness and density of the bulk coal substance, microlithotypes affect the behaviour of coal in mining and coal preparation processes. The different microlithotypes determine, under given geological conditions, the distribution of micro-cracks and to some extent the cleat in the coal. The results of maceral analyses can be interpreted more meaningfully from a knowledge of microlithotype composition. Such information can assist in explaining the behaviour of coal in commercial and experimental utilization processes where the association of macerals is known to be important.

1) The second edition (1963), together with the supplement issued in 1971, may be obtained from Professor D.G. Murchison, Organic Geochemistry Unit, Department of Geology, University of Newcastle, Newcastle-upon-Tyne, NE1 7RU, United Kingdom. The supplement issued in 1973 may be obtained from Centre National de la Recherche Scientifique, 15 quai Anatole-France, F-75007 Paris, France.
NOTE – The percentage volume of carbonate, clay and quartz minerals on one hand and sulfide minerals on the other, which define the carbominerites and minerites, correspond to the densities which separate coal from middlings and middlings from discard in coal preparation.

1 Scope and field of application

This part of ISO 7404 specifies a method, using a graticule with 20 crossline intersections, for determining the proportions of microlithotypes, carbominerite and minerite in coals. It applies only to determinations made on polished particulate blocks using reflected white light.

2 References

ISO 7404,
– Part 2: Method of preparing coal samples.
– Part 3: Method of determining maceral group composition.
– Part 5: Method of determining microscopically the reflectance of vitrinite.

3 Definitions

For the purposes of this part of ISO 7404, the definitions of ISO 7404-1, together with the following, apply.

point: An observation of a portion of the particulate block through the eyepiece graticule made during the analysis.

NOTE – The allocation of a point to a particular microlithotype, or to carbominerite or minerite, is determined by the macerals and/or mineral matter present at the 20 intersections of the graticule. A point is only counted if at least 10 intersections fall on a particle.

4 Principle

Examination by using a reflected light microscope and point count procedure of a representative sample of coal prepared as a particulate block as described in ISO 7404-2. Identification under an immersion medium of the microlithotypes from their maceral composition. The proportions of the macerals are determined using a graticule having a grid with 20 points of intersection spaced to define a distance of 50 μm on the specimen between extreme intersections in the x (abscissa) and y (ordinate) directions respectively. The use of such a graticule allows the analyst to comply with the 5% minimum content and 50 μm minimum size stipulation.

5 Material

Immersion medium, having a suitable refractive index and compatible with the microscope objective.

NOTE – If reflectance measurements are required on the same particulate block an immersion oil as specified in ISO 7404-5 should be used.

6 Apparatus

6.1 Reflected light microscope, having an immersion objective of magnification between X 25 and X 60 and eyepiece of magnification between X 8 and X 12. The eyepiece shall have the facility for inserting a graticule.

6.2 Graticule, inscribed with a grid having 20 crossline intersections according to the pattern shown in figure 1. The effective distance between extreme intersections in the x and y directions respectively is 50 μm.

Figure 1 – Design of grid for microlithotype analysis

NOTES

1 With a total number of 20 crossline intersections a maceral appearing beneath a single intersection can be assumed to occupy 5% by volume of the area covered by the grid.

2 The graticule is designed for use with a particular combination of objective and eyepiece. Change in either objective or eyepiece will necessitate the use of a grid of different dimensions.

6.3 Mechanical stage, capable of advancing the specimen in the x-direction by equal steps of such length that only a negligibly small proportion of the particles examined receives more than one count on the same particle. The step-length is equal to half the maximum particle diameter, i.e. 0.5 to 0.6 mm for samples with a standard top particle size of 1 mm. The stage also permits a similar stepped advance in the y-direction. The stage movement may be actuated manually or by the counter mechanism.
6.4 Counter, capable of registering the points in each category and preferably the grand total of points counted.

6.5 Sample mounting equipment, comprising slides, modelling clay and levelling press.

7 Procedure

Insert the graticule (6.2) into the eyepiece of the microscope (6.1).

Adjust the microscope for Köhler illumination. Place the levelled particulate block, prepared in accordance with ISO 7404-2, on the stage. Add the immersion medium to the surface of the block, focus and observe the image in the microscope.

Assess the number of crossline intersections lying on the particle in order to decide whether the point should be recorded in the counting procedure and, if so, whether it should be assigned to the category of a microlithotype, carbominerite or minerite. If the number of intersections on one particle is 10 or more the point shall be accepted for analysis. If there are no intersections on coal or mineral matter, the point is ignored (i.e. it is not recorded). If the number is less than 10 it shall be recorded as a rejected category and the stage shall be advanced by one step. The number of such rejected points shall not exceed 10% of the total accepted and rejected points. If the proportion exceeds 10%, excessive fines may have been produced during preparation and a fresh sample should be prepared if material is available. If this is not possible the fact shall be recorded in the test report. For identifying the material under the individual crosslines, apply the procedure described in ISO 7404-3. The criteria for determining accepted and rejected points are shown in figure 2.

If the particle is accepted for analysis, assess the number of intersections lying on mineral matter. If the number of crossline intersections on mineral matter exceeds the number shown in table 1 for a given number of intersections lying within the particle, the material is either carbominerite or minerite.

Table 1 — Maximum permissible number of intersections falling on mineral matter for the point to be classified as a microlithotype

<table>
<thead>
<tr>
<th>No. of intersections lying within the particle</th>
<th>Number of intersections on carbonate, clay, quartz</th>
<th>Sulfide</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 to 20</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>11 to 15</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

If the particle is a microlithotype, it is identified according to the criteria shown in table 2 ignoring any intersections on carbonate, clay or quartz.

Table 2 — Delimitation of microlithotypes

<table>
<thead>
<tr>
<th>Location of the crossline intersections lying in the coal</th>
<th>Microlithotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>All intersections in the vitrinite</td>
<td>Vitrite</td>
</tr>
<tr>
<td>All intersections in the exinite (liptinite)</td>
<td>Liptite</td>
</tr>
<tr>
<td>All intersections in the inertinite</td>
<td>Inertite</td>
</tr>
<tr>
<td>All intersections in the vitrinite and exinite, at least one intersection in each of the two maceral groups</td>
<td>Clarite</td>
</tr>
<tr>
<td>All intersections in the inertinite and exinite, at least one intersection in each of the two maceral groups</td>
<td>Durite</td>
</tr>
<tr>
<td>All intersections in the vitrinite and inertinite, at least one intersection in each of the three maceral groups</td>
<td>Vitrinite</td>
</tr>
<tr>
<td>At least one intersection in each of the three maceral groups</td>
<td>Trimacerite</td>
</tr>
</tbody>
</table>

These criteria are applicable to microlithotypes containing mineral matter not exceeding the limits given in table 1.

If the intersections on mineral matter exceed the limits given in table 1, determine whether the particle is minerite or a carbominerite according to the criteria given in table 3 and table 4, if necessary. In using table 3 to identify carbominerite or minerite, apply the procedure described in ISO 7404-3. The criteria for determining accepted and rejected points are shown in figure 2.

Table 3 — Delimitation of carbominerite (excluding carbopolyminerite with sulfide) and minerite

<table>
<thead>
<tr>
<th>No. of intersections lying within particle</th>
<th>Intersections falling on specified minerals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbonate, clay, quartz</td>
</tr>
<tr>
<td>19 or 20</td>
<td>4 to 11</td>
</tr>
<tr>
<td>17 or 18</td>
<td>4 to 10</td>
</tr>
<tr>
<td>16</td>
<td>4 to 9</td>
</tr>
<tr>
<td>14 or 15</td>
<td>3 to 8</td>
</tr>
<tr>
<td>12 or 13</td>
<td>3 to 7</td>
</tr>
<tr>
<td>11</td>
<td>3 to 6</td>
</tr>
<tr>
<td>10</td>
<td>2 to 5</td>
</tr>
</tbody>
</table>
minerite, the minerals appearing under the intersections shall be either sulfide or other minerals, but not both. The carbominerite may be named carbankerite, carbargilite, carbosilicite, carbopyrite or carbopolyminerite, according to the mineral matter appearing under the intersections.

If both sulfide and other minerals occur under intersections of the grid, within the limits given in Table 4, the carbominerite is named carbopolyminerite, otherwise the particle is again assigned to minerite.

Table 4 — Delimitation of carbopolyminerite with sulfide

<table>
<thead>
<tr>
<th>Number of intersections lying within the particle</th>
<th>Carbominerite</th>
<th>Sulfide</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 to 20</td>
<td>1 to 3</td>
<td>1 to 3</td>
</tr>
<tr>
<td>11 to 15</td>
<td>1 or 2</td>
<td>1 or 2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The maceral group or groups associated with the mineral matter and appearing under the residual intersections of the grid may be recorded to further characterize the carbominerite.

Having identified the point, advance the particulate block by one step along the x-axis, and continue counting and traversing the specimen. At the end of a traverse, advance the block by a step of at least equal length along the y-axis to start the next parallel traverse. The step length shall be chosen to ensure a uniform counting of points over the surface of the particulate block.

The total number of accepted points shall be at least 500.

NOTE — For the assignment of a microlithotype, only the maceral group or groups appearing under the crossline intersections are considered. If a natural boundary between the two different microlithotypes lies under the grid, the assessment is made as if there were no boundary.

8 Expression of results

Report the number of accepted points per microlithotype, per carbominerite and per minerite as the percentage of total number of accepted points. Express the values obtained as percentages by volume to the nearest integer.

The number of accepted points and the percentage of rejected points shall be indicated in the test report. An example of a suitable method of expressing results is shown in Table 5.

The nature of coal associated with carbominerite and minerite, if determined, expressed as

a) general qualitative observations; or

b) quantitative record of maceral groups under residual intersections

may be recorded as shown in Table 6.

Table 5 — An example of a method of expressing the results

<table>
<thead>
<tr>
<th>Microlithotype</th>
<th>Number of accepted points</th>
<th>Volume %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitrite</td>
<td>101</td>
<td>20</td>
</tr>
<tr>
<td>Liptite</td>
<td>64</td>
<td>13</td>
</tr>
<tr>
<td>Inertite</td>
<td>57</td>
<td>11</td>
</tr>
<tr>
<td>Clarite</td>
<td>115</td>
<td>23</td>
</tr>
<tr>
<td>Durite</td>
<td>141</td>
<td>28</td>
</tr>
</tbody>
</table>

Table 6 — Nature of coal associated with carbominerite and minerite (example)

<table>
<thead>
<tr>
<th>Carbominerite/minerite (specify)</th>
<th>Associated maceral group(s) observed</th>
<th>Number of accepted points</th>
<th>Accepted points as a percentage of carbominerite/minerite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbargilite</td>
<td>V</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Carbankerite</td>
<td>V + E</td>
<td>12</td>
<td>80</td>
</tr>
<tr>
<td>Carbosilicite</td>
<td>V</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Carbopyrite</td>
<td>V + E</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>V + E + I</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Minerite</td>
<td>V + I</td>
<td>5</td>
<td>100</td>
</tr>
</tbody>
</table>

9 Precision

9.1 Repeatability

The repeatability of the determination of the volume percentage of a component is the difference between two single determinations each based on the same number of point counts carried out by the same operator on the same sample, using the same apparatus, below which 95 % of such differences would be expected to lie. The repeatability may be calculated from the formula

\((2\sqrt{2}) \sigma \)

where \(\sigma \) is the theoretical standard deviation.
Provided that the operator makes negligible errors in classifying the microlithotypes, the results of an analysis will be subject to standard deviations calculable on the basis of the binomial distribution. Where \(p \% \) of the total number of counts, \(N \), is registered for a given microlithotype, the standard deviation, \(\sigma_u \), of \(p \) is given by the equation:

\[
\sigma_u = \sqrt{\frac{p (100 - p)}{N}}
\]

Values for the theoretical standard deviation and repeatability calculated for a range of volume percentages of a component are given in Table 7 based on 500 point counts.

Table 7 — Theoretical standard deviation and repeatability of the percentage of a component based on 500 point counts

<table>
<thead>
<tr>
<th>Volume percentage, (p)</th>
<th>Standard deviation, (\sigma_u) of the volume percentage</th>
<th>Repeatability, ((2 \sqrt{2}) \sigma_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.0</td>
<td>2.8</td>
</tr>
<tr>
<td>20</td>
<td>1.8</td>
<td>5.1</td>
</tr>
<tr>
<td>50</td>
<td>2.2</td>
<td>6.3</td>
</tr>
<tr>
<td>80</td>
<td>1.8</td>
<td>5.1</td>
</tr>
<tr>
<td>95</td>
<td>1.0</td>
<td>2.8</td>
</tr>
</tbody>
</table>

9.2 Reproducibility

The reproducibility of the determination of the volume percentage of a component is the difference between two single determinations each based on the same number of point counts, carried out by two different operators on two separate sub-samples taken from the same sample, using different equipment, below which 95% of such differences would be expected to lie. The reproducibility is given by the formula:

\[
(2 \sqrt{2}) \sigma_o
\]

where \(\sigma_o \) is the observed standard deviation.

Values of the observed standard deviation normally exceed those of the theoretical values given in Table 7 due to mis-identification of the microlithotypes or minerals by different operators and to variation between sub-samples. There is, at present, insufficient evidence from collaborative analyses to estimate the effect of misidentification.

10 Test report

The test report shall include the following information:

- a) reference to this part of ISO 7404;
- b) all details necessary for identification of the sample;
- c) number of accepted points analysed and the percentage of rejected points;
- d) the results obtained;
- e) the nature of coal associated with the carbonminerite and minerite if determined.
a) Point accepted
All intersections on coal
Microlithotype vitrite
All intersections on vitrinite

b) Point accepted
> 10 intersections on coal
Microlithotype clarite
9 intersections on vitrinite, 2 on exinite

c) Point rejected but recorded separately
< 10 intersections on coal

d) No point recorded
No intersections on coal

NOTE — The count of intersections is made on a single particle.

Figure 2 — Criteria used to determine the categories of accepted and rejected points
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of ‘BIS Catalogue’ and ‘Standards: Monthly Additions’.

This Indian Standard has been developed from Doc : No. PCD 7 (1169).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110 002
Telephones : 323 01 31, 323 33 75, 323 94 02
Telegrams : Manaksanstha
(Common to all offices)

Regional Offices:
Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg
NEW DELHI 110 002
323 76 17, 323 38 41
Eastern : 1/14 C. I. T. Scheme VII M, V. I. P. Road, Kankurgachi
CALCUTTA 700 054
337 84 99, 337 85 61, 337 86 26, 337 91 20
Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160 022
60 38 43, 60 20 25
Southern : C. I. T. Campus, IV Cross Road, CHENNAI 600 113
235 02 16, 235 04 42, 235 15 19, 235 23 15
Western : Manakalaya, E9 MIDC, Marol, Andheri (East)
MUMBAI 400 093
832 92 95, 832 78 58, 832 78 91, 832 78 92
Branches : AHMADABAD. BANGALORE. BHOPAL. BHUBANESHWAR. COIMBATORE.
FARIDABAD. GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR.
LUCKNOW. NAGPUR. PATNA. PUNE. RAJKOT. THIRUVANANTHAPURAM.

Printed at Printograph, New Delhi, Ph.: 5726847