Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“जानने का अधिकार, जीने का अधिकार”
Mazdoor Kisan Shakti Sangathan
“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”
Jawaharlal Nehru
“Step Out From the Old to the New”

Indian Standard

METHODS OF TEST FOR VULCANIZED RUBBERS

PART 24 RUBBER AND PLASTICS HOSE — DETERMINATION OF ADHESION BETWEEN COMPONENTS

ICS 83.080.01

© BIS 2001

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

May 2001
NATIONAL FOREWORD

This Indian Standard (Part 24) which is identical with ISO 8033:1991 'Rubber and plastics hose — Determination of adhesion between components' issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on the recommendations of the Rubber Products Sectional Committee and approval of the Petroleum, Coal and Related Products Division Council.

This committee decided to completely align it with ISO 8033:1991 and publish as a dual number standard. The text of ISO standard has been proposed to be approved as suitable for publication as Indian Standard without deviations. Certain conventions are, however, not identical to those used in Indian Standards. Attention is particularly drawn to the following:

a) Wherever the words 'International Standard' appear referring to this standard, they should be read as 'Indian Standard'.

b) Comma (,) has been used as a decimal marker while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

In this adopted standard, reference appears to certain International Standards for which Indian Standards also exist. The corresponding Indian Standards which are to be substituted in their place are listed below along with their degree of equivalence for the editions indicated. However, that International Standard cross-referred in this adopted ISO standard which has subsequently been revised, position in respect of latest ISO standard has been given:

<table>
<thead>
<tr>
<th>International Standard</th>
<th>Corresponding Indian Standard</th>
<th>Degree of Equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 471 : 1995 Rubber — Temperatures, humidities and times for conditioning and testing</td>
<td>IS 13867 : 1993 Rubber standard temperatures, humidities and times for the conditioning and time interval between vulcanization and testing of test pieces</td>
<td>Technically equivalent</td>
</tr>
<tr>
<td>ISO 1826 : 1981 Rubber, vulcanized — Time-interval vulcanization and testing — Specification</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>ISO 5893 : 1985 Rubber and plastics — Test equipment — Tensile, flexural and compression types (constant rate of traverse) — Description</td>
<td>Nil</td>
<td>—</td>
</tr>
<tr>
<td>ISO 6133 : 1981 Rubber and plastics — Analysis of multipeak traces obtained in determinations of tear strength and adhesion strength</td>
<td>Nil</td>
<td>—</td>
</tr>
</tbody>
</table>

In the case of ISO 5893 : 1985 and ISO 6133 : 1981 the Technical Committee responsible for the preparation of this standard has reviewed their contents and has decided that they are acceptable for use in conjunction with this standard.

For tropical countries like India, the standard temperature and the relative humidity shall be taken as 27 ± 2°C and 65 ± 5 percent respectively.

In reporting the results of a test or analysis made in accordance with this standard, if the final value, observed or calculated, is to be rounded off, it shall be done in accordance with IS 2 : 1960 'Rules for rounding off numerical values (revised)'.
Indian Standard

METHODS OF TEST FOR VULCANIZED RUBBERS

PART 24 RUBBER AND PLASTICS HOSE — DETERMINATION OF ADHESION BETWEEN COMPONENTS

1 Scope

Adequate adhesion between the various components of a hose is essential if it is to perform satisfactorily in service.

This International Standard specifies methods for the determination of the adhesion between lining and reinforcement, between cover and reinforcement and between reinforcement layers. It covers all bore sizes and the following types of hose construction:

- woven textile fabric
- braided yarns
- spiralled yarns
- knitted yarns
- circular woven yarns
- textile cord fabric
- braided wires
- spiralled wires
- hoses containing a supporting helix

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 471:1983, Rubber — Standard temperatures, humidities and times for the conditioning and testing of test pieces.
ISO 5893:1985, Rubber and plastics test equipment — Tensile, flexural and compression types (constant rate of traverse) — Description.

3 Principle

Using test pieces of standard dimensions, the adhesion strength between lining and reinforcement, between cover and reinforcement and between reinforcement layers is measured under specified conditions.

4 Apparatus

A test machine having the following characteristics is required.

4.1 The machine shall be power driven, equipped with a suitable dynamometer, capable of maintaining a substantially constant rate of traverse of the moving head during the test and fitted with an autographic recorder. It shall comply with the requirement for grade A of ISO 5893.

NOTE 1 An inertialess dynamometer should be used.

4.2 The grips shall be capable of holding the test piece without slippage.

NOTE 2 Self-tightening grips are recommended.
For strip test pieces, provision shall be made to maintain the strip in the appropriate plane of the grips during the test, for example by the attachment of sufficient weights to the free end of the test piece or by fitting a supporting plate, coated with a low friction material such as polytetrafluoroethylene (PTFE), to the non-driven grip.

4.3 For testing a ring test piece, a mandrel shall be provided that is a close sliding fit in the test piece. This mandrel shall be capable of being fitted into the driven head of the machine so that it will rotate freely during the test (type 6).

5 Test pieces

5.1 Types of test piece

Seven types of test piece are specified to cover the range of hose construction for methods and bore size normally encountered.

5.1.1 Type 1

Ring, cut from the hose 25 mm ± 0,5 mm wide and cut transversely to form a strip.

5.1.2 Type 2

Strip, 160 mm × half the hose circumference.

5.1.3 Type 3

Ring, cut from the hose 35 mm ± 2 mm wide and cut transversely to form a strip.

5.1.4 Type 4

Strip, 160 mm × half the hose circumference or 10 mm whichever is smaller.

5.1.5 Type 5

Strip, 160 mm long × half the hose circumference.

5.1.6 Type 6

Ring, 35 mm ± 2 mm wide.

5.1.7 Type 7

Strip, cut along a reinforcing helix, 25 mm ± 0,5 mm wide or the maximum obtainable.

5.2 Test piece selection

Unless specified in the particular product standard or otherwise agreed between the interested parties, the type of test piece shall be selected from table 1. Results obtained with different test pieces and/or hoses of the same construction but of different diameters are not comparable.

5.3 Test piece preparation

5.3.1 Type 1

Cut a ring 25 mm ± 0,5 mm wide from the hose at right angles to its longitudinal axis. Cut the ring transversely and open it out to form a strip (see figure 1).

NOTE 3 The test pieces should be prepared by a method that does not cause high temperatures due to the cutting blade. Where heat build-up might cause a deterioration of properties, type 2, 3, 5 or 6 test pieces should be used.

5.3.2 Type 2

Cut the test piece in half longitudinally. From one of the halves make two cuts parallel to the axis of the test piece 25 mm ± 0,5 mm, 10 mm ± 0,5 mm or 5 mm ± 0,2 mm apart, depending on the width available, taking care not to cut through the yarns.

Separate a layer for a distance sufficient to enable the separated ends to be held in the grips of the test machine (see figure 2).

5.3.3 Type 3

Cut a ring 35 mm ± 2 mm wide from the hose at right angles to its longitudinal axis. Cut the ring transversely and open it to form a strip.

Make two parallel cuts on the strip 25 mm ± 0,5 mm apart, taking care not to cut through the yarns.

Separate a layer for a distance sufficient to enable the separated ends to be held in the grips of the test machine (see figure 3).

5.3.4 Type 4

Cut the test piece in half longitudinally. Cut from one of the halves a strip 10 mm ± 0,5 mm wide, or of the maximum width obtainable if less than 10 mm.

Separate a layer for a distance sufficient to enable the separated ends to be held in the grips of the test machine (see figure 4).

5.3.5 Type 5

Cut the test piece in half longitudinally. Using a twin bladed tool, cut a centrally located longitudinal strip 5 mm ± 0,2 mm wide through the lining and open up one end of the test piece to form a lip (see figure 5).
Table 1 — Test piece selection

<table>
<thead>
<tr>
<th>Hose construction</th>
<th>Adhesion between</th>
<th>Hose nominal bore size, (d) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(d < 20)</td>
</tr>
<tr>
<td>Textile woven fabric</td>
<td>Lining and reinforcement</td>
<td>Type 4</td>
</tr>
<tr>
<td>Textile braided</td>
<td>Reinforcement layers</td>
<td>Type 4</td>
</tr>
<tr>
<td>Textile knitted</td>
<td>Cover and reinforcement</td>
<td>Type 4</td>
</tr>
<tr>
<td>Textile circular woven</td>
<td></td>
<td>Type 2</td>
</tr>
<tr>
<td>Textile spiral</td>
<td>Lining and reinforcement</td>
<td>Type 2</td>
</tr>
<tr>
<td>Textile cord fabric</td>
<td>Reinforcement layers</td>
<td>Type 2</td>
</tr>
<tr>
<td>Wire braid</td>
<td>Cover and reinforcement</td>
<td>Type 5(^1)</td>
</tr>
<tr>
<td>Wire spiral</td>
<td>Lining and reinforcement</td>
<td>Type 2 or 6</td>
</tr>
<tr>
<td>Hoses containing a supporting helix</td>
<td>Lining and reinforcement</td>
<td>Type 7</td>
</tr>
<tr>
<td></td>
<td>Reinforcement layers</td>
<td>Type 7</td>
</tr>
<tr>
<td></td>
<td>Cover and reinforcement</td>
<td>Type 7</td>
</tr>
</tbody>
</table>

1) If the determination of adhesion is affected by the difficulty of obtaining a cleanly separating interface because of fraying of the yarns, indicate this in the test report.

2) Determination is impracticable below 12.5 mm bore size since insufficient test piece width is available.

3) Determination is impracticable since the wire braid or spiral layers tend to disintegrate and the result is in any case significantly affected by the forces required to bend the wires.

5.3.5 Type 6

Cut a ring 35 mm ± 2 mm wide from the hose at right angles to its longitudinal axis. Make two circumferential cuts through the cover 25 mm ± 0.5 mm apart and located centrally on the specimen. Make a transverse cut across the 25 mm width through the cover and open up on one side of the cut to form a lip (see figure 6).

5.3.7 Type 7

Obtain a strip from the hose wall by cutting along the reinforcing helix and trim to 160 mm long, 25 mm ± 0.5 mm wide or the maximum obtainable less than 25 mm (see figure 7).

NOTE 4 This is an optional test where helix reinforced hoses are made in long lengths. It does not apply to hoses made to individual lengths, with special ends, built-in fittings, etc. It is only applicable if the spacing between individual helices is greater than 10 mm.

5.4 Conditioning of test pieces

No tests shall be carried out within 24 h of manufacture. Test pieces shall be conditioned at standard temperature and humidity (see ISO 471) before testing for at least 18 h; this may be part of the 24 h after manufacture.

5.5 Time interval between vulcanization and testing

For evaluations intended to be comparable the tests should, as far as possible, be carried out after the same time interval after manufacture. ISO 1826 shall be followed for time between sample manufacture and testing.

6 Procedure

6.1 A separate test piece shall be used for each interface to be tested.

6.2 Take the test piece from the conditioning atmosphere and measure the actual width of the test piece. Fix the separated ends of the test piece in the grips of the testing machine and adjust so that the tension is distributed uniformly and that no twisting of the test piece occurs during the test. Place the test piece in the grips so that the angle of separation is approximately 180° for strip or 90° for ring test pieces.

It is important to ensure that the pulling force acts in the plane of separation.

6.3 The rate of travel of the power-driven grip shall be such as to provide a rate of ply separation of 50 mm/min ± 5 mm/min.
6.4 Start the machine and record the force, in newtons, over a length of separation of at least 100 mm or the maximum distance possible if the test piece is less than 100 mm long.

If separation occurs at any other point, for example inside either component under test, note this failure and report the force at which it occurs.

7 Expression of results

The tracing obtained from the graphical recorder shows the variations in the force at which the plies or layers have separated.

Determine the median peak force from the trace using the appropriate method specified in ISO 6133. Divide the median peak force by the effective width of the test piece and express the adhesion strength in kilonewtons per metre.

8 Test report

The test report shall contain the following information:

- the hose type and nominal bore;
- the date of manufacture and batch number or reference, as applicable;
- the method of manufacture and details of reinforcement;
- a reference to this International Standard;
- the type(s) of test piece used;
- if appropriate, the adhesion, expressed in kilonewtons per metre of width, between lining and reinforcement;
- if appropriate, the adhesion, expressed in kilonewtons per metre of width, between layers of reinforcement, noting any difficulties [see footnote 1 to table 1];
- if appropriate, the adhesion, expressed in kilonewtons per metre of width, between cover and reinforcement;
- the date of test.

Dimensions in millimetres

Figure 1 — Type 1 test piece
Figure 2 — Type 2 test piece

\[b = 25 \pm 0.5 \text{ or } 10 \pm 0.5 \text{ or } 5 \pm 0.2 \]
Figure 3 — Type 3 test piece
Figure 4 — Type 4 test piece
Figure 5 — Type 5 test piece

Figure 6 — Type 6 test piece
Figure 7 — Type 7 test piece for hoses containing a supporting helix
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Catalogue' and 'Standards: Monthly Additions'.

This Indian Standard has been developed from Doc: No. PCD 13 (1919).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110 002
Telephones: 323 01 31, 323 33 75, 323 94 02

Regional Offices:
Central: Manak Bhavan, 9 Bahadur Shah Zafar Marg
NEW DELHI 110 002

Eastern: 1/14 C. I. T. Scheme VII M, V. I. P. Road, Kolkutga
CALCUTTA 700 054

Northern: SCO 335-336, Sector 34-A, CHANDIGARH 160 022

Southern: C. I. T. Campus, IV Cross Road, CHENNAI 600 113

Western: Manakalaya, E9 MIDC, Marol, Andheri (East)
MUMBAI 400 093

Branches: AHMADABAD, BANGALORE, BHOPAL, BHUBANESHWAR, COIMBATORE, FARIDABAD, GHAZIABAD, GUWAHTI, HYDERABAD, JAIPUR, KANPUR, LUCKNOW, NAGPUR, PATNA, PUNE, RAJKOT, THIRUVANANTHAPURAM.

Printed at New India Printing Press, Khurja, India