Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

"जानने का अधिकार, जीने का अधिकार"
Mazdoor Kisan Shakti Sangathan
“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”
Jawaharlal Nehru
“Step Out From the Old to the New”

Indian Standard

PLASTICS — METHODS OF TESTING

PART 8 PERMANENCE/CHEMICAL PROPERTIES
Section 8 Determination of Ash — General Methods

ICS 83.080.01
NATIONAL FOREWORD

This Indian Standard (Part 8/Sec 8) which is identical with ISO 3451-1 :1997 "Plastics — Determination of ash — Part 1 : General methods" issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on the recommendations of the Plastics Sectional Committee and approval of the Petroleum, Coal and Related Products Division Council.

The text of ISO Standard has been proposed to be approved as suitable for publication as an Indian Standard without deviations. Certain conventions are, however, not identical to those used in Indian Standards. Attention is particularly drawn to the following:

a) Wherever the words 'International Standard' appear referring to this standard, they should be read as 'Indian Standard'.

b) Comma (,) has been used as a decimal marker, while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

For tropical countries like India, the Standard temperature and the relative humidity shall be taken as 27 ± 2°C and 65 ± 5 percent respectively.

In reporting the results of a test or analysis made in accordance with this standard, if the final value, observed or calculated, is to be rounded off, it shall be done in accordance with IS 2 : 1960 'Rules for rounding off numerical values (revised)'.

1 Scope

This part of ISO 3451 specifies general methods, with suitable test conditions, for the determination of the ash of a range of plastics (resins and compounds). The particular conditions chosen may be included in the specifications for the plastic material in question.

Particular conditions applicable to plastics containing glass fibre reinforcement, fillers and/or certain additives are specified in further parts of ISO 3451 pertaining to specific types of plastics (see foreword).

2 Principle

It is possible to determine the ash of an organic material by three main methods:

a) Direct calcination, i.e. by burning the organic matter and heating the residue at high temperature until constant mass is reached (method A).

b) Calcination after sulfation, which may be carried out by two different procedures:

 — With sulfuric acid treatment after burning, i.e. by burning the organic matter, transforming the inorganic residue into sulfates with concentrated sulfuric acid and heating the residue at high temperature until constant mass is reached. This is the common method of obtaining “sulfated ash” (method B).

 — With sulfuric acid treatment before burning, i.e. by heating the organic matter together with concentrated sulfuric acid up to temperatures where fuming and subsequent burning of the organic matter occur, and finally heating the residue at high temperature until constant mass is reached (method C). This procedure may be used if volatile metal halides are liable to evaporate during burning of the organic matter. It is not applicable to silicones or fluorine-containing polymers.

In each case, the final step of the procedure is calcination at 600 °C, 750 °C, 850 °C or 950 °C until constant mass is reached (see 5.2).

3 Reagents (for methods B and C only)

During the analysis, use only reagents of analytical grade and only distilled water or water of equivalent purity.

3.1 Ammonium carbonate, anhydrous.

3.2 Ammonium nitrate, approximately 10 % (m/m) solution.
3.3 Sulfuric acid, \(\rho = 1.84 \text{ g/cm}^3 \).
WARNING — Care should be taken in handling.

3.4 Sulfuric acid, 50 \(\% \ (V/V) \) solution.
WARNING — Care should be taken in handling.

4 Apparatus
4.1 Crucible, made of silica, porcelain or platinum, inert to the material tested.

4.2 Gas burner, or other appropriate heat source.

4.3 Muffle furnace or microwave furnace, capable of being maintained at 600 °C ± 25 °C, 750 °C ± 50 °C, 850 °C ± 50 °C or 950 °C ± 50 °C as appropriate.

4.4 Analytical balance, accurate to 0.1 mg.

4.5 Pipettes, of suitable capacity (for methods B and C only).

4.6 Desiccator, containing an efficient desiccant which does not interact with the ash.
NOTE — In certain cases, the ash may have a greater affinity for water than some substances commonly used as desiccants.

4.7 Weighing bottle.

4.8 Fume cupboard.

5 Procedure
5.1 Test portion
Take a quantity of the test sample sufficient to yield 5 mg to 50 mg of ash. If the likely quantity of ash is unknown, carry out a preliminary determination.

Recommended test portion sizes are given in table 1.

<table>
<thead>
<tr>
<th>Approximate ash (if known)</th>
<th>Test portion</th>
<th>Mass of ash obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>g</td>
<td>mg</td>
</tr>
<tr>
<td>≤ 0.01</td>
<td>200 min.</td>
<td>5 to 50</td>
</tr>
<tr>
<td>> 0.01 to 0.05</td>
<td>100</td>
<td>10 to 50</td>
</tr>
<tr>
<td>> 0.05 to 0.1</td>
<td>50</td>
<td>25 to 50</td>
</tr>
<tr>
<td>> 0.1 to 0.2</td>
<td>25</td>
<td>25 to 50</td>
</tr>
<tr>
<td>> 0.2</td>
<td>10 max.</td>
<td>20 to 50</td>
</tr>
</tbody>
</table>
For plastics yielding very low ash, it is necessary to use large test portions. When it is impossible to burn the whole of the test portion at one time, weigh the required quantity in a suitable weighing bottle and introduce it into the crucible (4.1) in convenient amounts for a succession of burnings until the whole of the test portion has been burnt.

5.2 Test conditions

Calcination shall be continued to constant mass as defined in 5.3.6, but the duration of the calcination in the muffle furnace (4.3) shall not exceed 3 h at the specified temperature.

The choice of the calcination temperature and the use of the sulfation method depend on the nature of the plastic and any additives it may contain. If a choice exists between different satisfactory conditions, choose those which allow the attainment of constant mass in less than 3 h. A higher temperature or the use of sulfation generally shortens the duration of the calcination.

Whichever method — A, B or C — is used, choose one of the following temperature ranges for the final (calcination) step, unless other temperatures are requested for special technical or commercial reasons:

\[600 \, ^\circ C \pm 25 \, ^\circ C, \, 750 \, ^\circ C \pm 50 \, ^\circ C, \, 850 \, ^\circ C \pm 50 \, ^\circ C, \, 950 \, ^\circ C \pm 50 \, ^\circ C \]

Use a fume cupboard for the ashing procedure.

5.3 Method A — Direct calcination

5.3.1 Prepare the crucible (4.1) by heating it in the muffle furnace (4.3) at the test temperature until constant mass is reached. Allow to cool in the desiccator (4.6) to room temperature for 1 h, or until room temperature is reached, and weigh on the analytical balance (4.4) to the nearest 0.1 mg.

5.3.2 Introduce into the tared weighing bottle (4.7) a test portion, predried as described in the corresponding material specification or with a known volatile-matter content, corresponding to 5 mg to 50 mg of ash. Weigh again to the nearest 0.1 mg or to 0.1 % of the mass of the test portion. If the crucible will accommodate the test portion corresponding to 5 mg to 50 mg of ash, this quantity may be placed directly into the crucible and weighed in it. The procedure described below assumes that this will not be the case, however. High-bulk materials may be compressed into tablets which may then be broken up into fragments of appropriate size.

5.3.3 Introduce into the crucible enough of the test portion to half fill the crucible. Heat the crucible directly on the burner or other suitable heating device (4.2) to burn slowly. Burning shall not be too vigorous, to avoid loss of ash particles. Cool and add more of the test portion. Repeat the operations described above until the whole test portion has been burnt.

5.3.4 Introduce the crucible into the muffle furnace preheated to the prescribed temperature and calcine for 30 min.

5.3.5 Place the crucible in the desiccator, allow it to cool for 1 h, or until room temperature is reached, and weigh on the analytical balance (4.4) to the nearest 0.1 mg.

5.3.6 Calcine again under the same conditions until constant mass is reached, i.e. until the results of two consecutive weighings do not differ from each other by more than 0.5 mg.

5.4 Method B — Calcination following sulfuric acid treatment after burning

5.4.1 Proceed as specified in 5.3.1, 5.3.2 and 5.3.3.

5.4.2 After cooling, add sulfuric acid solution (3.4) drop by drop with a pipette of suitable capacity (4.5) to moisten the residue completely and heat until fuming ceases, avoiding too vigorous boiling.
5.4.3 If traces of carbonaceous materials remain after cooling, add 1 to 5 drops of ammonium nitrate solution (3.2) and heat until the evolution of white fumes ceases completely.

5.4.4 In order to reconvert metal oxides formed during the preceding steps into sulfates, add, after cooling, about 5 drops of concentrated sulfuric acid (3.3) and heat until there is no further evolution of white fumes, avoiding vigorous boiling or the loss of ash by excessive fuming.

5.4.5 After cooling, add 1 g to 2 g of solid ammonium carbonate (3.1) and heat, avoiding loss of ash, until the fuming has ceased. Then place the crucible in the muffle furnace preheated to the indicated temperature and proceed as specified in 5.3.4, 5.3.5 and 5.3.6.

5.5 Method C — Calcination following sulfuric acid treatment before burning

5.5.1 This method shall never be used with silicones or fluorine-containing polymers.

5.5.2 Proceed as specified in 5.3.1 and 5.3.2.

5.5.3 Introduce into the crucible enough of the test portion to half fill the crucible. Add with a pipette (4.5) a sufficient amount of concentrated sulfuric acid (3.3) to moisten the material completely. Cover the crucible with a watch-glass. Heat the crucible directly on the burner over a low flame until the organic material begins to decompose.

Continue heating carefully, adjusting the watch-glass so as to allow the acid to be fumed off and making sure that no ash-containing material is lost. With plastics which have a tendency to lose ash-containing material, it is recommended that the crucible with its contents be placed into a holed board made of fireproof material (e.g. ceramic fibre) and heated with a low flame only so that the organic matter smoulders rather than burns. If the initial charge in the crucible was insufficient to yield an acceptable mass of ash, allow the crucible to cool, add more of the test portion and repeat the operations described above until the whole test portion has been burnt. Remove the watch-glass, making sure that no solid particles are adhering to it.

In cases where the sulfuric acid tends to creep over the lip of the crucible or where, despite precautions, some of the test portion tends to be lost by violent reaction (frequently in the case of PVC), the concentrated sulfuric acid may be replaced by a mixture of concentrated acetic and sulfuric acids. The use of these mixed acids shall be agreed between the interested parties and reference made to it in the test report.

5.5.4 Proceed as specified in 5.4.3, 5.4.4 and 5.4.5.

6 Number of tests

The number of tests and the permissible scatter of results should normally be stated in the particular standard for each material. If such information is not available, carry out two determinations, repeating the test as necessary until the results of two successive determinations do not differ from each other by more than 10 % of their mean.

7 Expression of results

The ash or sulfated ash, expressed as a percentage by mass, is given by the formula

\[
b \times 100
\]

where

- \(m_0 \) is the mass, in grams, of the dried test portion;
- \(m_1 \) is the mass, in grams, of the ash obtained.
8 Precision

Precision data have been determined by collaborative testing involving eight laboratories and eight different materials. The results are summarized in table 2.

Table 2 — Summary of precision data

<table>
<thead>
<tr>
<th>Material/filler</th>
<th>Mean ash %</th>
<th>s_r</th>
<th>s_g</th>
<th>r</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDPE/antiblock</td>
<td>0.015</td>
<td>0.003 8</td>
<td>0.005 2</td>
<td>0.010 7</td>
<td>0.014 6</td>
</tr>
<tr>
<td>LDPE/antiblock</td>
<td>0.149</td>
<td>0.004 7</td>
<td>0.005 4</td>
<td>0.013 2</td>
<td>0.015 1</td>
</tr>
<tr>
<td>LDPE/antiblock</td>
<td>0.437</td>
<td>0.009 0</td>
<td>0.009 0</td>
<td>0.013 1</td>
<td>0.016 5</td>
</tr>
<tr>
<td>LDPE/antiblock</td>
<td>1.00</td>
<td>0.009 0</td>
<td>0.009 0</td>
<td>0.025 3</td>
<td>0.025 3</td>
</tr>
<tr>
<td>PET/SiO₂</td>
<td>3.18</td>
<td>0.044 8</td>
<td>0.044 8</td>
<td>0.125 3</td>
<td>0.125 3</td>
</tr>
<tr>
<td>PET/TiO₂</td>
<td>12.46</td>
<td>0.046 1</td>
<td>0.051 5</td>
<td>0.129 2</td>
<td>0.144 1</td>
</tr>
<tr>
<td>PA/glass</td>
<td>33.16</td>
<td>0.271 5</td>
<td>0.282 2</td>
<td>0.760 2</td>
<td>0.790 2</td>
</tr>
<tr>
<td>PET/TiO₂</td>
<td>44.81</td>
<td>0.370 7</td>
<td>0.400 0</td>
<td>1.037 9</td>
<td>1.120 1</td>
</tr>
</tbody>
</table>

NOTE —
- s_r is the repeatability standard deviation.
- s_g is the reproducibility standard deviation.
- r is the repeatability limit, i.e. the value below which the absolute difference between two single test results obtained under repeatability conditions (same operator, same apparatus, same laboratory and within a short interval of time) may be expected to lie with a probability of 95 %.
- R is the reproducibility limit, i.e. the value below which the absolute difference between two single test results obtained under reproducibility conditions (different operators, different apparatus, different laboratories) may be expected to lie with a probability of 95 %.

9 Test report

The test report shall include the following particulars:

a) a reference to this International Standard;
b) all details necessary for complete identification of the material tested;
c) the method used (A, B or C) and, if the acetic and sulfuric acid mixture was used, a statement to this effect (see 5.5.3, last paragraph);
d) the calcining temperature used;
e) the number of test portions used, and the mass of each;
f) the results and their scatter.
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publication), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Catalogue' and 'Standards: Monthly Additions'.

This Indian Standard has been developed from Doc: No. PCD 12 (1766).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 2323 0131, 2323 3375, 2323 9402

Regional Offices:
Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg
 NEW DELHI 110002 2323 7617 2323 3841
Eastern : 1/14 C.I.T. Scheme VII M, V.I.P. Road, Kankurgachi
 KOLKATA 700054 2337 8499, 2337 8561
 2337 8626, 2337 9120
Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160022
 60 3843 60 9285
Southern : C.I.T. Campus, IV Cross Road, CHENNAI 600113
 2254 1216, 2254 1442
 2254 2519, 2254 2315
Western : Manakalaya, E9 MIDC, Marol, Andheri (East)
 MUMBAI 400093 2832 9295, 2832 7858
 2832 7891, 2832 7892
Branches : AHMEDABAD. BANGALORE. BHOPAL. BHUBANESHWAR. COIMBATORE. FARIDABAD.
 GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR. LUCKNOW. NAGPUR.
 NALAGARH. PATNA. PUNE. RAJKOT. THIRUVANANTHAPURAM. VISAKHAPATNAM.

Printed at Simco Printing Press, Delhi