$\star t \star t \star t \star * * * * * * * * *$

 А इंटरनेट

Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.
"जानने का अधिकार, जीने का अधिकार"
Mazdoor Kisan Shakti Sangathan
"The Right to Information, The Right to Live"
"पुराने को छोड नये के तरफ" Jawaharlal Nehru
"Step Out From the Old to the New"

IS 813 (1986): Scheme of symbols for welding [MTD 11:
Welding General]

BLANK PAGE

Indian Standard
 SCHEME OF SYMBOLS FOR WELDING
 (First Revision)
 First Reprint APRIL 1992

UDC $621 \cdot 791 \cdot 052: 003 \cdot 62$
(©) Copjright 1988

Indian Standard SCHEME OF SYMBOLS FOR WELDING

 (First Revision)Welding General Sectional Committee, SMDC 14

Chairman

Shri D. S. Honavar
Members
Shri S. R. Jana (Allernate to Shri D. S. Honavar)
Shri R.S. Agqarifal
Shri J. K. Ahluwalia SHRI T. K. Bast $^{(A l t e r n a t e)}$
Shri H. N. Ahoja
Dr S. Balasubramanian
Dr S. Bhattacharyya (Alternate)
Shri K. Balmanohar
Shri R. V. Kale (Alternate)
Shei R. Banerjee
Shai S. K. Das (Alternate)
Shris. C. Bhawal
Shri K. L. Bardi (Alternate)
Shri S. K. Burman
Shri B. B. Ghose (Alternate)
Shei R. S. Choudhury
Deptty Dirfotor (Chemical) RDSO Lucenow

Production Enginmer, Intmaral Coach Factory, Madras (Allernate)
Shri S. C. Dey
Shri C. R. Ghosh
Shri D. B. Moharil (Alternate)
Shri I. P. Kapoor
Siri L. M. Tolani (Alternate)
Dr S. Prasanna Kumar
Shri J. K. Nanda (Alternate)
Shrt S. Majumdar
Shri S. K. Bhatia (Alternate)
Shri R. S. Malifice
Shri N. Mummoorthy
Shri H. S. Doggal (Alternate)
ShbiJ. D. Panda
Shri Rajindra Nath (Alternate I)
Shris. L. V. Rangan (Alternate II)
Shri K. M. Pole
Shiri G. D. Apte (Alternate)
ShriJ. R. Prasher
Shri N. Radhafrishinan
Shri B. Ramaswamy
Shri S. M. Kadam (Alternate)
Dr V. Ramaswamy
Dr S. K. Choudhury (Alternate)
Shrt P. H. Madhava Reddy
Strim. G. Narayana Rao (Alternate)
Representativa
Shri Ramesif Komar (Alternate I)
Shriv V. Sreemannarayana (Alternate II)
Representative
Shmin. K. Roy
Shri P. K. Roy (Alternate)
Shris. K. Roy

Representing
D\&H Secheron Electrodes Pvt Ltd, Indore

Association of Indian Engineering Industry, New Delhi
Stewarts \& Lloyds of India Led, Calcutta
Directorate General of Employment and Training, New Delhi
Peico Electronics and Electricals Ltd, Bombay
Hindustan Shipy ard Ltd, Visakhapatnam
Indian Oxygen Ltd, Calcutta
National Test House, Calcutta
M. N. Dastur \& Co Pvt Letd, Calcutta

Steel Authority of India Ltd (Bokaro Steel Plant), Bokaro Steel City
Ministry of Railways

Central Boilers Board, New Delhi
Mukand Iron \& Steel Works Ltd, Bombay
Department of Atomic Energy, Bombay
Larsen \& Toubro Ltd, Bombay
Directorate General of Technical Development, New Delhi
Gas Authority of India Ltd, New Delhi
Engineer-in-Chief's Branch, Ministry of Defence
Dalmia Institute of Scientific \& Industrial Research, Rajgangpur

Walchandnagar Industries, Walchandnagar
Engineers India Ltd, New Delhi
Binny Ltd, Madras
Indian Hume Pipes Co Ltd, Pune
Steel Authority of India Ltd (Research and Development Centre for Iron and Steel), Ranchi

Bharat Heavy Plate and Vessels Ltd, Visakhapatnam
Bharat Heavy Electricals Ltd, Hyderabad
Jessop \& Co Ltd, Calcutta
Projects \& Development India Ltd, Dhanbad
Ministry of Defence (DGI)
(Continued on page 2)
(C) Copyright 1988

BUREAU OF INDIAN STANDARDS
This publication is protected under the Indian Copyright Act (XIV of 1957) and production in whole or in part by any means except with written permission of the publisher shall be deemed to be an infringement of copyright under the said Act.
(Continued frompage 1)

Members

Shri B. K. Sing Shri A. V. Muley (Allernate I) Shri P. S. Joshi (Alternate II)
Shri V. K. Sridhar Shei R. C. Sharma (Allernate)
Shri H. K. Taneja Stri S. Chandra (Alternate)
Shri J. R. Upadhyay Shri B. S. Patel (Alternate)
Shri N. Visianathan
Shri P. S. Vigvanath
Shri K. Raghatendran, Director (Struc \& Met)

Reprasenting

Tata Engineering and Locomotive Co Ltd, Jamshedpur

Directorate General of Supplies and Disposals, New Delhi
Indian Register of Shipping, Calcutta
Apar Pvt Ltd, Bombay
National Hydroelectric Power Corporation Ltd, New Delhi Advani Oerlikon Ltd, Bombay
Director General, BIS (Ex-officio Momber)

Secretary

Shri S. S. Sethi
Joint Director (Struc \& Met), BIS

Representation and Terminology for Welding and Cutting of Metals Subcommittee, SMDC $14: 8$

Condener

Shrij = R, Praseer
Members
Dr P. C. Gupta
Shiri R. M. Jain
Dr S. Prasanna Kumar
Dr R.S. Parmar
Representative
Representatife
Representative

Engineers India Ltd, New Delhi
University of Roorkee, Roorkee
Special Machines, Karnal
Larsen \& Toubro Ltd, Bombay
Indian Institute of Technology, New Delhi
Directorate General of Employment and Training, New Delhi
Kirloskar Electric Co Ltd, Bangalore
Welding Research Institute. Tiruchirapalli

Indian Standard SCHEME OF SYMBOLS FOR WELDING (First Revision)

0. FOREWORD

0.1 This Indian Standard (First Revision) was adopted by the Indian Standards Institution on 24 January 1986, after the draft finalized by the Welding General Sectional Gommittee had been approved by the Structural and Metals Division Council.
0.2 Welding cannot take its proper place as an engineering tool unless suitable means are provided for conveying the information required for welding from the designers to the operators. The svmbols described in this standard provide the means of placing on drawings the information concerning type, size, position, etc, of the welds in welded joints. With a view to avoid confusion and misunderstanding, it is very essential that only standard symbols are used by all designers and fabricators. However, all information required for welding is not conveyed by the symbols alone. It is, therefore, often necessary, even when the standard symbols have been used, to indicate on the drawings, reference to standard specifications for welding procedures and/or

1. SCOPE

1.1 This standard prescribes the rules to be applied for symbolic representation of welds on drawings giving information concerning type, size, position, welding process, etc, for welds in welded joints.
1.1.1 The scheme does not include the use of thickened lines, hatching and such other means for indicating the welds themselves on the drawings, as it is considered that users will be in the best position to judge whether such additions are desirable to meet their particular needs.

2. TERMINOLOGY

2.1 For the purposes of this standard, the definitions given in IS : 812-1957* shall apply.

3. GENERAL

3.1 Welds may be indicated in accordance with the general recommendations for technical drawings. However, for the purpose of simplification, it is advisable to adopt, for usual welds, the symbolic representation described in this standard.

[^0]welding procedure sheets giving details of the tools, materials, processes and other requirements for welding.
0.3 This standard was first published in 1956. Amended version of the standard was issued in 1961. It is now being revised to bring it in line with other international standards published on the subject.
0.4 This standard keeps in view the practices being followed in the country in this field. Assistance has also been derived from the following standards issued by the International Organization for Staxdardization (ISO):

ISO 2553-1984 Welds - Symbolic representation on drawings
ISO 4063-1978 Welding, brazing, braze welding and soldering of metals - List of processes, for symbolic representation on drawings
3.2 The symbolic representation shall give clearly all necessary indications regarding the specific weld to be obtained, without overburdening the drawing with notes or showing an additional view.
3.3 This symbolic representation includes an elementary symbol which may be completed by:
a) a supplementary symbol,
b) a means of showing dimensions, or
c) some complementary indication (particularly for workshop drawings).
3.4 In order to simplify the drawings as much as possible, it is recommended that references be made to specific instructions or particular specifications giving all details of the preparation of edges to be welded and/or the welding procedures, rather than showing these indications on the drawings of the welded parts.

If there are no such instructions, the dimensions relating to the preparation of the edges to be welded and/or the welding procedures can be close to the symbol.

4. SYMBOLS

4.1 Elementary Symbols

4.1.1 The various categories of welds are characterized by a symbol which, in general, is similar to the shape of the weld to be made.
4.1.2 The symbol shall not be taken to prejudge the process to be employed. The elementary symbols are shown in Table 1.
4.2 Combination of Elementary Symbols When required, a combination of elementary symbols may be used.

4.3 Supplementary Symbols

4.3.1 Elementary symbols may be completed by another symbol (supplementary) characterizing the shape of the external surface of the weld.

The recommended supplementary symbols are given in Table 2.

Note - The absence of a supplementary svmbol means that the type of the weld surface does not need to be indicated precisely.
4.3.2 Examples of combination of elementary and supplementary symbols are given in Table 3.

> Note - Although it is not forbidden to associate other symbols, it is better to represent the weld on a separate sketch when symbolization becomes too difficult.
4.4 Typical examples of the use of elementary symbols, combination of elementary symbols and combination of elementary and supplementary symbols are given in Tables 5, 6 and 7 respectively of Appendix A. Typical examples for symbols for certain exceptional cases are given in Table 8 of Appendix A.

5. POSITION OF SYMBOLS ON DRAWINGS

5.1 General

5.1:1 Symbols covered in this standard form only a part of the complete method of, representation (Fig. 1) which comprises in addition, the following:
a) an arrow line(1) for each joint (see Fig. 2 and 3);
b) a dual reference line, consisting of two parallel lines, one continuous and one dashed (2) (exception, see Note 1); and
c) a certain number of dimensions and conventional signs.
Note 1 - Dashed line can be drawn either above or beneath the continuous line (sea 5.5 and Appendix A).

Note 2-Type of lines and line thicknesses should be in a ccordance with IS: 10714-1983*.
5.1.2 The location of welds, therefore, is defined on the drawings by specifying:
a) position of the arrow line,
b) position of the reference line, and
c) the position of the symbol.
5.2 Relation Between Arrow Line and the Joint - The examples given in Figures 2 and 3 explain the meaning of the terms:
a) 'arrow side' of the joint, and
b) 'other side' of the joint.
5.3 Position of Arrow Line - The position of the arrow line with respect to the weld is generally of no special significance [see Fig. 4(a) and 4(b)]. However, in the case of welds of types 4, 6 and 8 (see Table 1), the arrow line shall point towards the plate which is prepared [see Fig. 4(c) and 4(d)].

The arrow line joins one end of the continuous refcrence line such that it forms an angle with it and shall be completed by an arrow head. In certain cases, the arrow head may be omitted or replaced by a dot.
5.4 Position of Reference Line - The reference line shall be a straight line preferably drawn parallel to the bottom edge of the drawing.

5.5 Position of Symbol with Regard to the

 Reference Line - The symbol shall be placed either above or beneath the reference line, in accordance with the following:a) The symbol is placed on the continuous line side of the reference line if the weld (weld face) is on the arrow side of the joint [(see Fig. 5(a)].
b) The symbol is placed on the dashed line side if the weld (weld face) is on the other side of the joint [see Fig. 5(b)].

6. DIMENSIONING OF WELDS

6.1 General

6.1.1 Each weld symbol may be accompanied by a certain number of dimensions, written as follows, in accordance with Fig. 6:
a) The main dimensions relative to the crosssection are written on the left-hand side (that means before) of the symbol.
b) Longitudinal dimensions are written on the right-hand side (that means after) of the symbol.

[^1]TABLE 1 ELEMENTARY SYMBOLS
(Clause 4.1.2)

* Butt welds between plates with raised edges (symbol 1) not completely penetrated are symbolized as square butt welds (symbol 2) with the weld thickness, s, as shown in Table 4.
(Continued)

TABLE 1 ELEMENTARY SYMBOLS - Contd

Sl | Designation |
| :---: |
| No. | Plug weld; plug or slot weld/USA/

TABLE 2 SUPPLEMENTARY SYMBOLS
(Clause 4.3.1)
Shape of Weld Surface
6.1.2 The method of indicating the main dimensions is defined in Table 4. The rules for setting down these dimensions are also given in this table.

Other dimensions of less importance may be indicated if necessary.
6.2 Dimensions - The dimension that locates the weld in relation to the edge of the sheet shall not appear in the symbolization but on the drawing.
6.2.1 The absence of any indication following the symbol signifies that the weld is to be continuous over the whole length of the workpiece.
6.2.2 In the absence of any indication to the contrary, butt welds shall have complete penetration.

TABLE 3 EXAMPLES OF APPLICATION OF SUPPLEMENT ARY SYMBOLS
(Clause 4.3.2)
Flat (flush) single-V butt weid

Fig. 1 Method of Representation

"Otiner side
of joint $\mathrm{A}^{\prime \prime}$
"Arrow side of joint $A^{\prime \prime}$
"Other side of joint $A^{\prime \prime}$
"Arrow side of joint $\mathrm{B}^{\prime \prime}$ -

a)

$$
\begin{aligned}
& \text { "Arrow side } \\
& \text { of joint } B \text { " }
\end{aligned}
$$

"Other side
of joint B "

b)
"Arrow side
"Other side of joint B"

Note - The position of the arrow in these sketches is chosen for purposes of clarity. Normally, it would be placed immediately adjacent to the joint.

Fig. 3 Gruciform Joint with Two Fillet Welds

Note - In the case of spot welds made by projection welding, the projection surface is to be considered as the external surface of the weld.

Fig. 4 Position of the Arrow Line

For symmetrical welds only

a) To be welded on the arrow side
b) To be welded on the other side

Fig. 5 Position of Symbol According to the Reference Line

Fig. 6 Examples of the Principle
6.2.3 For the fillet welds, there are two methods to indicate dimensions (see Fig. 7). Therefore, the letters a or z shall always be placed in front of the value of the corresponding dimension.

7. COMPLEMENTARY INDICATIONS

7.0 Complimentary indications may be necessary in order to specify some other characteristics of welds as given in $7.1,7.2$ and 7.3.
7.1 Peripheral Welds - When the weld is to be all around a part, the symbol is a circle, as shown in Fig. 8.
7.2 Field or Site Welds - A flag is to be used to indicate the field or site weld, as shown in Fig. 9.
7.3 Indication of Welding Process - If required, the welding process may be symbolized by a number written between the two branches of a fork, at the end of the reference line remote from the reference line, as shown in Fig. 10.

6.2.4 In the case of plug or slot welds with bevelled edges, it is the dimension at the bottom of the hole which shall be taken into consideration.
7.3.1 Nurnerical index numbers identifying each process of welding, brazing, braze welding and soldering to be used for symbolic representation of welds on drawing are given in Appendix B.
TABLE 4 MAIN DIMENSIONS
(Clause 6.1.2)

$z=a \sqrt{2}$

Fig. 7 Methods of Indicating Dimensions for Fillet Welds

Fig. 8 Indication of Peripheral Wrld

Fig. 9 Indication of Field or Site Weld

Fig. 10 Indication of Welding Process

APPENDIX A
 (Clauses 4.4 and 5.1.1)
 EXAMPLES OF USE OF SYMBOLS

A-1. Typical examples of use of the elementary and supplementary symbols are given in Tables 5 to 8. The representations shown are given simply for explanation and are not obligatory.

Note - For the sake of uniformity among the
figures given in this Appendix, the relative position of views are those provided by the first angle projection method. It should be understood, however, that third angle method could equally have been used without prejudice to the principle established but as a basic requirement, use of first angle projection is to be followed.

TABLE 5 EXAMPLES OF USE OF ELEMENTARY SYMBOLS
(Clause 4.4, and Appendix A)

TABLE 5 EXAMPLES OF USE OF ELEMENTARY SYMBOLS \rightarrow Contd

TABLE 5 EXAMPLES OF CSE OF ELEMENTARY SYMBOLS - Contd

(Continued)

S1	Designation	Illustration	Representation	Sym	ization
	refer to			either	or
19	Fillet weid 10				
20				$\begin{array}{\|c\|} \hline \underline{n} \\ \hline 1 \\ \hline \end{array}$ \pm	
21					

TABLE 5 EXAMPLES OF USE OF ELEMENTARY SYMBOLS - Contd

$\begin{aligned} & \text { SI } \\ & \text { NO } \end{aligned}$	Designation Symbol Numbers refer to table 11	Illustration	Representation	Symbolizationetther or	
22	Plug weld				
23	11				
24	Spot wald				
25	12				

TABLE 5 EXAMPLES OF USE OF ELEMENTARY SYMBOLS - Contd

$\begin{gathered} \text { SI } \\ \text { No. } \end{gathered}$	Designation Symbol	Illustration		Symbolization	
	refer to table 1)		$\square-(+$	either	or
26	Seam weld				
27	13				

(Clause 4.4, and Appendix A)

St	Designation	Nliustration	Representation	etther Symb	Symbolization
	refer to table 11				or
1	Bult weld betweell plates with raised edges $儿_{1}$ and backing iun \qquad 9 $1-9$				
2	Square butt weld 112 welded from both sides 2-2		\square	-11 ----	
3	Single V butt weld $\sqrt{3}$				
4	backing run $\nabla_{3-9} 9$			[云	

TABLE 6 EXAMPLES OF COMBINATIONS OF ELEMENTARY SYMBOLS - Contd

TABLE 6 EXAMPLES OF COMBINATIONS OF ELEMENTARY SYMBOLS - Contd

$\varepsilon \tau$
sis sumbol

TABLE 7 EXAMPLES OF COMBINATIONS OF ELEMENTARY AND SUPPLEMENTARY SYMBOLS - Contd

NOTE - When the arrow cannot point to a joint, symbolization cannot be used.

TABLE 8 EXAMPLES OF EXGEPTIONAL CASES - Conid

$\begin{array}{\|c\|} \hline \text { Sl } \\ \text { No. } \end{array}$	Illustration	Representation	either	Symbolization or	incorrecs
5			not recommended		
6			not recommended		
7			not recommended		
8					

APPENDIX
B
(Clause 7.3.1)

B-1. The various processes and the corresponding index numbers for welding, brazing, braze welding and soldering of metals, for the purpose of symbolic representation of welds on drawings are as given below:

1 ARC WELDING
11 Metal-arc welding without gas protection
111 Metal-arc welding with covered electrode
112 Gravity-arc welding with covered electrode
113 Bare wire metal-arc welding
114 Flux cored metal-arc welding
115 Coated wire metal-arc welding
118 Firecracker welding
12 Submerged-arc welding
121 Submerged-arc welding with wirc electrode
122 Submerged-arc welding with strip electrode
13 Gas-shielded metal-arc welding
131 MIG welding
135 MAG welding: metal-arc welding with non-inert gas shield
136 Flux cored metal-arc welding with noninert gas shield
14 Gas-shielded welding with non-consumable electrode
141 TIG welding
149 Atomic-hydrogen welding
15 Plasma-arc welding
18 Other arc welding processes
181 Carbon-arc welding
185 Rotating-arc welding
2 RESISTANCE WELDING
21 Spot welding
22 Seam welding
221 Lap seam welding
225 Seam welding with strip
23 Projection welding
24 Flash welding
25 Resistance butt welding
29 Other resistance welding processes
291 HF resistance welding
3 GAS WELDING
31 Oxy-fuel gas welding
311 Oxy-acetylene welding

312 Oxy-propane welding
313 Oxy-hydrogen welding
32 Air-fuel gas welding
321 Air-acetylene welding
322 Air-propane welding
4 SOLID PHASE WELDING: PRESSURE WELDING

41 Ultrasonic welding
42 Friction welding
43 Forge welding
44 Welding by high mechanical energy
441 Explosive welding
45 Diffusion welding
47 Gas pressure welding
48 Cold welding

7 OTHER WELDING PROCESSES

71 Thermit welding
72 Electroslag welding
721 Electroslag welding with non-consumable nozzle
722 Electroslag welding with consumable nozzle
73 Electroslag welding
74 Induction welding
75 Light radiation welding
751 Laser welding
752 Arc image welding
753 Infra-red welding
76 Electron beam welding
77 Percussion welding
78 Stud welding
781 Arc stud welding
782 Resistance stud welding
9 BRAZING, SOLDERING AND BRAZE WELDING

91 Brazing
911 Infra-red brazing
912 Flame brazing
913 Furnace brazing
914 Dip brazing
915 Salt bathe brazing
916 Induction brazing
917 Ultrasonic brazing

918 Resistance brazing
919 Diffusion brazing
923 Friction brazing
924 Vacuum brazing
93 Other brazing processes
94 Soldering
941 Infra-red soldering
942 Flame soldering
943 Furnace soldering
944 Dip soldering
945 Salt bathe soldering
946 Induction soldering

947 Ultrasonic soldering
948 Resistance soldering
949 Diffusion soldering
951 Flow soldering
952 Soldering with soldering iron
953 Friction soldering
954 Vacuum soldering
96 Other soldering processes
97 Braze welding
971 Gas braze welding
972 Arc braze welding

Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Revision of Indian Standards

Indian Standards are reviewed periodically and revised, when necessary and amendments, if any, are issued from time to time. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition. Comments on this Indian Standard may be sent to BIS giving the following reference:

Doc : No. SMD 14 (2124)

Amendments Issued Since Publication
Amend No.
Date of Issue
Text Affected

BUREAU OF INDIAN STANDARDS

Headquarters :

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 3310131,3311375
Telegrams : Manaksanstha (Common to all Offices)

Regional Offices:

Telephone
Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg
NEW DELHI 110002
\{3110131
$\{3311375$
Eastern : 1/14 C. I. T. Scheme VII M, V. I. P. Road, Maniktola
378662 CALCUTTA 700054
Northern : SCO 445-446, Sector 35-C, CHANDIGARH 160036
533843
Southern : C. I. T. Campus, IV Cross Road, MADRAS 600113
2350216
Western : Manakalaya, E9 MIDC, Marol, Andheri (East) BOMBAY 400093

Branches : AHMADABAD, BANGALORE, BHOPAL, BHUBANESHWAR, COIMBATORE, PARIDABAD, GIIAZIABAD, GUWAHATI, HYDERABAD, JAIPUR, KANPUR, PATNA, SRINAGAR. THIRUVANANTHAPURAM.

[^0]: *Glossary of terms relating to welding and cutting of metals.

[^1]: *General principles of presentation on technical drawings.

