Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“जानने का अधिकार, जीने का अधिकार”
Mazdoor Kisan Shakti Sangathan
“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”
Jawaharlal Nehru
“Step Out From the Old to the New”

Indian Standard

METALLIC POWDERS, EXCLUDING POWDERS FOR HARDMETALS — DETERMINATION OF COMPRESSIBILITY IN UNIAXIAL COMPRESSION

(Fourth Revision)

ICS 77.160
NATIONAL FOREWORD

This Indian Standard (Fourth Revision) which is identical with ISO 3927:2001 'Metallic powders, excluding powders for hardmetals — Determination of compressibility in uniaxial compression' issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on the recommendations of the Powder Metallurgical Materials and Products Sectional Committee and approval of the Metallurgical Engineering Division Council.

This standard was first published in 1968 and revised in 1982. It was again revised in 1991 harmonizing with ISO 3927:1985. Since ISO 3927 has been revised again in 2001, therefore, need was felt to revise IS 4857 also.

The text of the ISO Standard has been approved as suitable for publication as an Indian Standard without deviations. Certain terminology and conventions are, however, not identical to those used in Indian Standards. Attention is especially drawn to the following:

a) Wherever the words 'International Standards' appear referring to this standard, they should be read as 'Indian Standard'.

b) Commas (,) has been used as a decimal marker while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

In reporting the results of a test or analysis made in accordance with this standard, if the final value, observed or calculated is to be rounded off, it shall be done in accordance with IS 2:1960 'Rules for rounding off numerical values (revised)'.
Indian Standard

METALLIC POWDERS, EXCLUDING POWDERS FOR HARDMETALS — DETERMINATION OF COMPRESSIBILITY IN UNIAXIAL COMPRESSION

(Fourth Revision)

1 Scope

This International Standard specifies methods for measuring the extent to which a metallic powder is compacted when subjected to uniaxial compressive loading in a confining die under specified conditions.

The method is not applicable to powders for hardmetals.

2 Symbols

For the purposes of this International Standard, the symbols given in Table 1 apply.

Table 1 — Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho)</td>
<td>Compressibility(^a)</td>
<td>g/cm(^3)</td>
</tr>
<tr>
<td>(m)</td>
<td>Mass of the compact</td>
<td>g</td>
</tr>
<tr>
<td>(V)</td>
<td>Volume of the compact</td>
<td>cm(^3)</td>
</tr>
</tbody>
</table>

\(^a\) If the compressibility is measured at one pressure only, e.g. 400 N/mm\(^2\), the symbol becomes \(\rho(p_{0}) \).

3 Principle

Uniaxial compaction of a powder in a confining die by double action pressing. Samples of the powder may be pressed either at a single specified pressure or at a series of specified pressures. After ejection from the die, the density of the compacts is determined.

The density obtained in the former case represents the compressibility of the powder at the specified pressure. The densities obtained in the latter case can be utilized for drawing the compressibility curve of the powder, i.e. a plot of the density as a function of the compacting pressure.

4 Apparatus

4.1 Die, preferably of cemented carbide, or alternatively of tool steel, and two punches for producing either cylindrical or rectangular compacts.

The cylindrical die should be capable of making compacts of diameter 20 mm to 26 mm and a height to diameter ratio between 0.8 and 1. An example of a design for tooling is shown in Figure 1.

The rectangular die should be capable of making compacts 30 mm \(\times \) 12 mm and of thickness 5 mm to 7 mm. An example for a design for tooling is shown in Figure 2.

Mating parts shall be fitted and lapped.

4.2 Press, capable of applying forces up to approximately 500 kN with a minimum accuracy of \(\pm 1 \% \) and adjustable to permit an even increase of the force at a rate not higher than 50 kN/s.

4.3 Balance, capable of weighing at least 100 g to an accuracy of \(\pm 0.01 \) g.
Figure 1 — Example of tooling to produce a cylindrical test piece

4.4 Micrometer or other suitable measuring device for measuring the dimensions of the compacts to an accuracy of ± 0.01 mm.

5 Sampling

The quantity of the test sample shall be chosen to give the required number of test pieces (see clause 7) with the dimensions specified in 4.1. If necessary, preliminary tests should be made in order to establish the quantity of powder needed for fulfilling this requirement.

6 Procedure

6.1 Cleaning of the die and punches

Wipe the die cavity and the punches with soft and clean paper towelling soaked with an appropriate solvent such as acetone. Allow the solvent to evaporate.
Figure 2 — Example of tooling to produce a rectangular test piece

Key
1 Cemented carbide
2 Shrink ring
3 Steel, HRC 60 to 62
4 Upper punch, $L = 25$
5 Lower punch, $L = 70$
6.2 Powder testing conditions

6.2.1 Powders which do not contain a lubricant can be tested

a) in a dry die,

 WARNING — Seizure and excessive die wear may occur, particularly at high compacting pressures

b) in a die with lubricated walls (see 6.3.1), and

c) after admixing a lubricant (see 6.3.2) and in a dry die.

6.2.2 Powders which contain a lubricant can be tested

a) in a dry die, and

b) after admixing additional lubricant (see 6.3.2) and in a dry die.

6.3 Lubrication

6.3.1 General

Use one of the two following methods of lubrication.

6.3.2 Die wall lubrication

Apply to the die walls a mixture or a solution of a lubricant in a volatile organic liquid, e.g., 100 g of zinc stearate in 1 000 cm³ of acetone. After any excess liquid has drained away, allow the solution adhering to the walls to evaporate leaving a thin layer of lubricant.

6.3.3 Lubrication of powder

Lubricate the powder to be tested by thoroughly mixing into it a quantity (e.g. 0.5 % to 1.5 %) of a suitable solid lubricant (e.g. zinc stearate or synthetic wax).

6.4 Compacting and ejection

Insert the lower punch into the die cavity. Position the die to the desired filling height by using supporting spacers between the die and the foot of the lower punch. Pour the sample into the die cavity, taking the usual precautions to ensure that the powder is uniformly distributed in the die cavity. Position the upper punch and place the die with the punches between the platens of the press. Apply and release a preliminary force of approximately 20 kN. Remove the spacers supporting the die. If the die is supported by springs, or in some similar way, it is not necessary to apply the preliminary force.

Apply the final force at a constant rate that shall not exceed 50 kN/s. Release the force as soon as the predetermined pressure is reached.

Eject the compact from the die by means of the lower punch.

The procedure of compacting and ejection is exemplified in Figure 3.

After ejection and, if necessary, deburring, weigh the compact to the nearest 0.01 g. Measure its dimensions to the nearest 0.01 mm.
Figure 3 — Procedure of compacting and ejection

a) Filling

b) Pre-compacting

c) Compacting

d) Ejection
6.5 Compacting pressures

For determining the compressibility curve of a powder at a series of pressures, it is recommended that the applied pressures 200 N/mm², 400 N/mm², 500 N/mm², 600 N/mm² and 800 N/mm² be used. If compressibility is to be determined at a single pressure only, it should preferably be measured at one of these pressures or by agreement between the parties concerned.

7 Expression of results

7.1 The density of the compact is given by the formula:

\[\rho_p = \frac{m}{V} \]

Report the density to the nearest 0.01 g/cm³.

7.2 Report the compressibility as the average of three density determinations, calculated to the nearest 0.01 g/cm³, obtained at the specified compacting pressure.

7.3 The compressibility curve of a powder is drawn through points representing single determinations of \(\rho_p \) at the specified compacting pressures.

8 Precision

8.1 For the density determination method, the repeatability interval, \(r \), for ferrous and nonferrous powders is 0.025 g/cm³. On the basis of test error alone, the difference in absolute value of individual test results obtained in the same laboratory on the same material will be expected to exceed 0.025 g/cm³ only about 5% of the time.

8.2 For the density determination method, the reproducibility interval, \(R \), for ferrous and nonferrous powders is 0.07 g/cm³. On the basis of test error alone, the difference in absolute value between individual test results obtained in two different laboratories on the same material will be expected to exceed \(R \) only about 5% of the time. Thus, if a larger difference is found, there is reason to question one or both test results.

9 Test report

The test report shall include the following information:

a) reference to this International Standard, i.e. ISO 3927;

b) all details necessary for the identification of the test sample;

c) the type of test piece;

d) the type, nature and amount of the lubricant, if it has been added to the powder (in certain cases it may be desirable to report how the lubricant was added);

e) the compacting pressures;

f) the result obtained;

g) all operations not specified in this International Standard or regarded as optional;

h) details of any occurrence which may have affected the result.

1) The origin of this clause is clause 12 in ASTM B 331-95.
Bibliography

Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of ‘BIS Catalogue’ and ‘Standards : Monthly Additions’.

This Indian Standard has been developed from Doc: No. MTD 25 (4405).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110 002
Telephones: 2323 0131, 2323 3375, 2323 9402 Website: www.bis.org.in

Regional Offices:

Central: Manak Bhavan, 9 Bahadur Shah Zafar Marg, NEW DELHI 110 002 2323 7617, 2323 3841

Eastern: 1/14 C. I. T. Scheme VII M, V. I. P. Road, Kankurgachi, KOLKATA 700 054

Northern: SCO 335-336, Sector 34-A, CHANDIGARH 160 022

Southern: C. I. T. Campus, IV Cross Road, CHENNAI 600 113

Western: Manakalaya, E9 MIDC, Marol, Andheri (East), MUMBAI 400 093

Branches: AHMEDABAD, BANGALORE, BHOPAL, BUBANESHWAR, COIMBATORE, FARIDABAD, GHAZIABAD, GUWAHATI, HYDERABAD, JAIPUR, KANPUR, LUCKNOW, NAGPUR, NALAGARH, PATNA, PUNE, RAJKOT, THIRUVANANTHAPURAM, VISAKHAPATNAM.

Printed at New India Printing Press, Khurja, India.