

BLANK PAGE

IS 1136 : 2008

(Superseding IS 1137: 1990)

भारतीय मानक

पिटवाँ धातु उत्पादों के लिए अधिमानित आकार (तीसरा पुनरीक्षण)

Indian Standard

PREFERRED SIZES FOR WROUGHT METAL PRODUCTS

(Third Revision)

ICS 77.140.01, 77.150.01

© BIS 2008

BUREAU OF INDIAN STANDARDS MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002

FOREWORD

This Indian Standard (Third Revision) was adopted by the Bureau of Indian Standards, after the draft finalized by Wrought Steel Products Sectional Committee had been approved by the Metallurgical Engineering Division Council.

This standard was first published in 1959 and revised in 1967 and 1990. While reviewing this standard, in the light of experience gained during these years, the Committee decided to revise it to bring in line with the present manufacturing and trade practices being followed in the country, in this field.

In this revision the following changes have been made:

- a) Wire and sheet metal gauges have been given for information (see Annex A); and
- b) Requirements of IS 1137: 1990 'Thicknesses of sheet and diameters of wire (*first revision*)' have been incorporated.

The revised standard shall supersede IS 1137.

The sizes covered in this standard are preferred sizes only. However, the sizes other than these may be mutually agreed between the manufacturer and the purchaser.

The composition of the Committee responsible for formulation of this standard is given in Annex B.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2:1960 'Rules for rounding off numerical values (*revised*)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

Indian Standard

PREFERRED SIZES FOR WROUGHT METAL PRODUCTS

(Third Revision)

1 SCOPE

This standard specifies the preferred sizes, in millimetres, of wrought metal products.

2 REFERENCES

The following standards contain provisions which through reference in this text, constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below.

IS No.	Title
1076	Preferred numbers:
(Part 1): 1985	Series of preferred numbers
(Part 2): 1985	Guide to the use of preferred
	numbers and series of preferred numbers
(Part 3): 1985	Guide to the choice of series of preferred numbers and of series containing more rounded values of preferred numbers

3 PREFERRED SIZES OF WROUGHT METAL PRODUCTS

- 3.1 Preferred sizes of wrought metal products are generally derived from the R 10, R 20 and R 40 series of preferred numbers [see IS 1076 (Part 1)]. The preferred sizes derived from the R 10 series (first choice) should be given preference over the sizes derived from the R 20 series (second choice). Likewise, the sizes derived from the R 20 series (second choice) should be given preference over the R 40 series (third choice).
- 3.2 The preferred sizes of wrought metal products in the range 0.010 mm to 1 000 mm are given in Table 1. Since, the series of preferred numbers are unlimited in both the directions, the preferred sizes in the other decimal ranges are obtained by multiplying the values in Table 1 by positive or integral powers of 10.

Table 1 Preferred Sizes of Wrought
Metal Products
(Clause 3.2)

First Choice	Second Choice	Third Choice	First Choice	Second Choice	Third Choice
(1)	(2)	(3)	(1)	(2)	(3)
0.010	mm to 0.10	00 mm	1.00	mm to 10.) mm
0.010			1.0		
0.020				1.1	
0.030			1.2		
0.040			1		1.3
0.050				1.4	
0.060			Į		1.5
	0.070		1.6		
0.080	*****				1.7
0.000	0.090			1.8	
0.100	0.070			1.0	1.9
	10 mm to 1	00 mm	2.0		1.5
0.10	to min to t	.00 111111	2.0		2.1
0.10	0.11			2.2	2.1
0.10	0.11			2.2	2.4
0.12					2.4
	0.14		2.5		
0.16					2.6
	0.18			2.8	
0.20			ŀ		3.0
	0.22		3.2		
0.25					3.4
	0.28			3.6	
		0.30			3.8
0.32			4.0		
***		0.34			4.2
	0.36			4.5	
	0.50	0.38		1	4.8
0.40		0.50	5.0		7.0
0.40		0.42	3.0		5.3
	0.45	0.42			3.3
	0.45	0.40		5.6	
0.50		0.48			6.0
0.50			6.3		
		0.53		7.0	
	0.56		1		7.5
		0.60	8.0		
0.63			1		8.5
		0.75		9.0	
0.80					9.5
		0.85	10.0		
	0.90				
		0.95			
1.00					
2.00					

Table 1 (Concluded)

First Choice	Second Choice	Third Choice	First Choice	Second Choice	Third Choice	First Choice	Second Choice	Third Choice	First Choice	Second Choice	Third Choice
(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)
10 mm to 100 mm		10 mm to 100 mm		100 i	100 mm to 1 000 mm		100 mm to 1 000 mm				
10	11			26	34	100					340
12	11			36	38	120	110			360	380
	1.4	13	40					130	400		500
	14	15		45	42		140				420
16		17	50		48	160		150		450	480
	18		30		53		180	170	500		
20		19		56	60		160	190		560	530
	22	21	63	70	•	200		210	630		600
	22	24		70	75		220		030	700	
25		26	80		85	250		240	800		750
	28			90	85		200	260	000		850
32		30	100		95		280	300		900	950
			100			320			1000		/50

ANNEX A

(Foreword)

WIRE AND SHEET METAL GAUGES

A-1 In the metal industries, the word gauge has been used in various systems, or scales, for expressing the thickness of thin plates, sheet and strip, or the diameters of rod and wire. Specific diameters or thicknesses are denoted in gauge systems by certain numerals followed by the word gauge; for example, No. 12 gauge, or simply 12 gauge. Gauge numbers for flat products have been used only in connection with thin materials; that

is, usually when the thickness was not more than $\frac{1}{4}$ inch (6.35 mm), although most gauge tables began at about $\frac{1}{2}$ inch (12.7 mm), and one table began at double this value.

Table 2 shows the approximate thickness or diameter, in mm, for each gauge number adopted by the originators of the gauge.

Table 2 Wire and Sheet Metal Gauges

(Clause A-1)

Name of Gauge	Steel Wire Gauge or Washburn and Moen Wire Gauge	Music Wire Gauge	American Wire Gauge or Brown and Sharpe Gauge	New Birmingham Standard Sheet and Hoop Gauge	British Imperial or English Legal Standard Wire Gauge	Birmingham or Stubs' Iron Wire Gauge
	Steel W and M.W.G.	M.W.G.	A.W.G. B&S.G.	B.G.	S.W.G.	B.W.G.
Principal Use	Steel Wire Except Music Wire	Steel Music Wire	Non-ferrous Sheets and Wire	Iron and Steel Sheets and Hoops	Wire	Strips, Bands, Hoops and Wire
Gauge No.	<u></u>		Diameter or T	hickness, mm		
7/0's	12.4	_		16.9	12.7	
6/0's	11.7	0.102	14.7	15.9	11.8	_
5/0's	10.9	0.127	13.1	14.9	11.0	12.7
4/0's	10.0	0.152	11.7	13.8	10.2	11.5
3/0's	9.21	0.178	10.4	12.7	9.45	10.8
2/0's	8.41	0.203	9.27	11.3	8.84	9.65
0 .	7.79	0.229	8.25	10.1	8.23	8.64
1	7.19	0.254	7.35	8.97	7.62	7.62
2	6.67	0.279	6.54	7.99	7.01	7.21
3	6.19	0.305	5.83	7.12	6.40	6.58
4	5.72	0.330	5.19	6.35	5.89	6.05
5	5.26	0.356	4.62	5.65	5.38	5.59
6	4.88	0.406	4.12	5.03	4.88	5.16
7	4.50	0.457	3.66	4.48	4.47	4.57
8	4.11	0.508	3.26	3.99	4.06	4.19
9	3.77	0.559	2.91	3.55	3.66	3.76
10	3.43	0.610	2.59	3.18	3.25	3.40
11	3.06	0.660	2.30	2.83	2.95	3.05
12	2.68	0.737	2.05	2.52	2.64	2.77
13	2.32	0.787	1.83	2.24	2.34	2.41
14	2.03	0.838	1.63	1.99	2.03	2.11
15	1.83	0.889	1.45	1.78	1.83	1.83
16	1.59	0.940	1.49	1.59	1.63	1.65
17	1.37	0.991	1.15	1.41	1.42	1.47
18	1.21	1.04	1.02	1.26	1.42	1.24
19	1.04	1.09	0.912	1.12	1.02	1.07
20	0.884	1.14	0.812	0.996	0.914	0.889
21	0.805	1.19	0.723	0.886		
22	0.726	1.19	0.723	0.880	0.813 0.711	0.813
23	0.655	1.30	0.573			0.711
24	0.584	1.40	0.511	0.707	0.610	0.635
25	0.518	1.50	0.455	0.629 0.560	0.559	0.559
26	0.460	1.60	0.405		0.508	0.508
27	0.439	1.70		0.498	0.457	0.457
28			0.361	0.443	0.417	0.406
28 29	0.411	1.80	0.321	0.397	0.376	0.356
	0.381	1.90	0.286	0.353	0.345	0.330
30 31	0.356	2.03	0.255	0.312	0.315	0.305
	0.335	2.16	0.227	0.279	0.295	0.254
32	0.325	2.29	0.202	0.249	0.274	0.229
33	0.300	2.41	0.180	0.221	0.254	0.203
34	0.264	2.54	0.160	0.196	0.234	0.178
35	0.241	2.69	0.143	0.175	0.213	0.127
36	0.229	2.84	0.127	0.155	0.193	0.102
37	0.216	3.00	0.113	0.137	0.173	-
38	0.203	3.15	0.101	0.122	0.152	
39	0.190	3.30	0.0897	0.109	0.132	
40	0.178	3.51	0.0799	0.0980	0.122	_

ANNEX B

(Foreword)

COMMITTEE COMPOSITION

Wrought Steel Products Sectional Committee, MTD 4

Wrought Steel Products Section	ai Committee, MTD 4
Organization	Represntative(s)
Tata Steel Ltd, Jamshedpur	Dr D. Bhattachriee (<i>Chairman</i>) Shri Indranil Chakraborty (<i>Alternate</i> I) Dr A. N. Bhagat (<i>Alternate</i> II)
All India Induction Furnace Association, New Delhi	SHRI R. P. VARSHNEY SHRI L. N. GOSWAMI (Alternate)
Central Boilers Board, New Delhi	Shri V. K. Goel
Central Public Works Department (CPWD), New Delhi	CHIEF ENGINEER (NDZ) V SUPERINTENDENT ENGINEER (CENTRAL STORE) (Alternate)
DGS&D, Bhilai Nagar/Delhi	Representative Shri B. S. Rana (<i>Alternate</i>)
Escorts Knowledge Management Centre, Faridabad	Shri Alok Nayar
Institute of Steel Development & Growth, Kolkata	Dr R. K. P. Singh Shri Jayanta K. Saha (<i>Alternate</i>)
JSW Steel Ltd, Vasind	Shri M. K. Maheshwari
M. N. Dastur & Co Ltd, Kolkata/Delhi	Shri Subhabrata Sengupta Shri V. K. Tyagi (<i>Alternate</i>)
Ministry of Defence (DGOFB), Kolkata	Shri Tapabrata Basu Shri S. Bhattacharya (<i>Alternate</i>)
Ministry of Defence [DQA (M&E)], Ichapur	Additional Director Deputy Director (Alternate)
Ministry of Railways (RDSO), Lucknow	Director (M&C) ARO (MET-II) (Alternate)
Ministry of Steel (Government of India), New Delhi	Shri S. S. Saha Shri A. C. R. Das (<i>Alternate</i>)
National Physical Laboratory, New Delhi	Dr Anil Kumar Gupta Shri R. C. Anandani (<i>Alternate</i>)
Rashtriya Ispat Nigam Ltd (VSP), Vishakhapatnam	Shri R. Ranjan Shri S. Mandal (<i>Alternate</i> I) Shri P. Srinivas (<i>Alternate</i> II)
SAIL, Bhilai Steel Plant, Bhilai	Representative Shri K. K. Kumar (<i>Alternate</i> I) Shri P. K. Datta (<i>Alternate</i> II)
SAIL, Bokaro Steel Plant, Bokaro	Shri G. B. Pradhan Dr M. M. S. Sodhi (Alternate)
SAIL, Central Marketing Organization, Kolkata/Bangalore	Shri P. C. Jha Shri B. V. S. Pandit (<i>Alternate</i>)
SAIL, Durgapur Steel Plant, Durgapur	Representative
SAIL, Research & Development Center for Iron & Steel, Ranchi	Dr S. K. Chaudhuri Dr B. K. Panigrahi (<i>Alternate</i>)
SAIL, Rourkela Steel Plant, Rourkela	Representative

REPRESENTATIVE

SHRI H. D. KHERA (Alternate)

Steel Re-rolling Mills Association of India, Mandi Gobindgarh

Organization

Tata Consulting Engineers, Jamshedpur

Tata Motors Limited, Pune

In personal capacity [403, Udaigiri, Kaushambi, Distt Ghaziabad, U.P.]

BIS Directorate General

Represntative(s)

DR M. D. MAHESHWARI

SHRI J. D. HARIDAS

SHRI B. R. GALGALI (Alternate)

SHRI N. MITRA

DR SHRIMATI SNEH BHATLA, Scientist 'F' & Head (MTD) [Representing Director General (Ex-officio)]

Member Secretary SHRI DEEPAK JAIN Scientist 'E' (MTD), BIS

Bureau of Indian Standards

BIS is a statutory institution established under the *Bureau of Indian Standards Act*, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Catalogue' and 'Standards: Monthly Additions'.

This Indian Standard has been developed from Doc: No. MTD 4 (4673).

Amendments Issued Since Publication

Amend	No.	Date of Issue	Text Affected
	BUREA	U OF INDIAN STANDARDS	S
Headquarters	:		
	n, 9 Bahadur Shah Zafar Marg, 2323 0131, 2323 3375, 2323 94	Telegrams: Manaksanstha (Common to all offices)	
Regional Office	ces:		Telephone
	Manak Bhavan, 9 Bahadur Shal NEW DELHI 110 002	a Zafar Marg	$ \begin{cases} 2323 & 7617 \\ 2323 & 3841 \end{cases} $
	1/14 C.I.T. Scheme VII M, V. I. KOLKATA 700 054	P. Road, Kankurgachi	{ 2337 8499, 2337 8561 2337 8626, 2337 9120
Northern:	SCO 335-336, Sector 34-A, CH	ANDIGARH 160 022	$ \begin{cases} 260 & 3843 \\ 260 & 9285 \end{cases} $
Southern:	C.I.T. Campus, IV Cross Road,	CHENNAI 600 113	\[2254 1216, 2254 1442 \] \[2254 2519, 2254 2315 \]
	Manakalaya, E9 MIDC, Marol, MUMBAI 400 093	Andheri (East)	$\begin{cases} 2832\ 9295,\ 2832\ 7858\\ 2832\ 7891,\ 2832\ 7892 \end{cases}$
Branches :	AHMEDABAD. BANGALORI	E. BHOPAL. BHUBANESHV	WAR. COIMBATORE. FARIDABAD.

GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR. LUCKNOW. NAGPUR. PARWANOO. PATNA. PUNE. RAJKOT. THIRUVANANTHAPURAM. VISAKHAPATNAM.