Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“जानने का अधिकार, जीने का अधिकार”
Mazdoor Kisan Shakti Sangathan
“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”
Jawaharlal Nehru
“Step Out From the Old to the New”

IS 10748 (2004): Hot-rolled Steel Strip for Welded Tubes and Pipes [MTD 4: Wrought Steel Products]
Indian Standard

HOT-ROLLED STEEL STRIP FOR WELDED TUBES AND PIPES — SPECIFICATION
(Second Revision)

ICS 77.140.50
FOREWORD

This Indian Standard (Second Revision) was adopted by the Bureau of Indian Standards, after the draft finalized by the Wrought Steel Products Sectional Committee had been approved by the Metallurgical Engineering Division Council.

This standard was first published in 1984 subsequently revised in 1995. While reviewing the standard in the light of experience gained during these years, the Committee decided to revise it to bring it in line with the present practices followed by the Indian industry.

In this revision following changes have been made:

a) All the four amendments issued have been incorporated; and

b) Clause on reference of Indian Standard has been modified.

The composition of the Committee responsible for the formulation of this standard is given in Annex A.

For the purpose of deciding whether a particular requirement of this standard is complied with the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2 : 1960 ‘Rules for rounding off numerical values (revised)’. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.
[Page 2, Table 1] — Insert the following at the end of table:

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.25</td>
<td>1.50</td>
<td>0.040</td>
<td>0.040</td>
<td>0.45</td>
</tr>
</tbody>
</table>

[Page 3, Table 3] — Insert the following at the end of table:

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>490</td>
<td>355</td>
<td>15</td>
<td>3t</td>
</tr>
</tbody>
</table>
Indian Standard
HOT-ROLLED STEEL STRIP FOR WELDED TUBES AND PIPES — SPECIFICATION
(Second Revision)

1 SCOPE
This standard covers requirements for weldable quality hot-rolled carbon steel strip in coils intended for the manufacture of welded steel tubes and pipes.

2 REFERENCES
The standards listed below contain provisions, which through reference in this text constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below:

<table>
<thead>
<tr>
<th>IS No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>228 (Relevant Parts)</td>
<td>Method for chemical analysis of steel</td>
</tr>
<tr>
<td>1079:1994</td>
<td>Hot-rolled carbon steel sheets and strips — Specification (fifth revision)</td>
</tr>
<tr>
<td>1599:1985</td>
<td>Method for bend test (second revision)</td>
</tr>
<tr>
<td>1608:1995</td>
<td>Mechanical testing of metals — Tensile testing (second revision)</td>
</tr>
<tr>
<td>1730:1989</td>
<td>Dimensions for steel plates, sheets, strips and flats for general engineering purposes (second revision)</td>
</tr>
<tr>
<td>1852:1985</td>
<td>Rolling and cutting tolerances for hot-rolled steel products (fourth revision)</td>
</tr>
<tr>
<td>1956 (Part 4):1975</td>
<td>Glossary of terms relating to iron and steel: Part 4 Steel sheet and strip (first revision)</td>
</tr>
<tr>
<td>8910:1978</td>
<td>General technical delivery requirements for steel and steel products</td>
</tr>
</tbody>
</table>

3 TERMINOLOGY
For the purpose of this standard, the following definitions in addition to those given in IS 1956 (Part 4) shall apply.

3.1 Micro-Alloying Elements
Elements, such as niobium, vanadium and titanium added singly or in combination to obtain higher strength levels combined with better formability, weldability and toughness as compared with non-alloyed steel produced to equivalent strength levels.

3.2 Coil
A rolled flat strip product which is wound into regularly superimposed laps so as to form a coil with almost flat side. It shall have at least 50 laps.

3.3 Hot-Rolled Steel Strip in Coils
A product obtained by rolling heated steel through a semi continuous/continuous-type or reversing strip mill to the required sheet thickness. The product has a surface covered with oxide or scale resulting from the hot rolling operation.

4 SUPPLY OF MATERIAL
4.1 General requirements relating to the supply of hot-rolled steel strip shall conform to IS 8910.

4.2 The material may be ordered on any of the following basis as agreed to between the manufacturer and the purchaser:
 a) Chemical composition, or
 b) Chemical composition and physical properties.

5 GRADES
There shall be five grades of hot-rolled carbon steel strip designated as Grade 1, Grade 2, Grade 3, Grade 4 and Grade 5.

6 MANUFACTURE
6.1 The processes used in making steel and in manufacturing hot-rolled steel strip shall be left to the discretion of the manufacturer.
6.2 Steel shall be supplied in the filled, semi-killed or rimming condition subject to agreement between the manufacturer and the purchaser.

7 CHEMICAL COMPOSITION

7.1 Ladle Analysis

Ladle analysis of the material when carried out either by the method specified in the relevant parts of IS 228 or any other established instrumental/chemical method shall be as given in Table 1. In case of dispute, the procedure given in IS 228 and its relevant parts shall be referee method. However, where the method is not given in IS 228 or its relevant parts, the referee method shall be as agreed to between the purchaser and the manufacturer.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Carbon, Percent, Max</th>
<th>Manganese, Percent, Max</th>
<th>Sulphur, Percent, Max</th>
<th>Phosphorus, Percent, Max</th>
<th>Carbon Equivalent (CE), Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>0.10</td>
<td>0.50</td>
<td>0.040</td>
<td>0.040</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.12</td>
<td>0.60</td>
<td>0.040</td>
<td>0.040</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.16</td>
<td>1.20</td>
<td>0.040</td>
<td>0.040</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.20</td>
<td>1.30</td>
<td>0.040</td>
<td>0.040</td>
<td>0.45</td>
</tr>
<tr>
<td>5</td>
<td>0.25</td>
<td>1.30</td>
<td>0.040</td>
<td>0.040</td>
<td>0.45</td>
</tr>
</tbody>
</table>

NOTES

1 CE based on ladle analysis = \(C + \frac{\text{Mn}}{6} + \frac{\text{Cr+Mo+V}}{5} + \frac{\text{Ni+Cu}}{15} \)

2 For semi-killed quality, silicon content shall be 0.08 percent, maximum.

3 When the steel is killed by aluminium alone, the total aluminium content shall not be less than 0.02 percent. When the steel is killed by silicon alone, the silicon content shall not be less than 0.10 percent. When the steel is silicon-aluminium killed, the silicon content shall not be less than 0.03 percent and total aluminium content shall not be less than 0.01 percent.

4 Micro-alloying may be allowed subject to mutual agreement between the purchaser and the supplier. Micro-alloying elements like Nb, V or Ti, when used individually or in combination, the total content shall not exceed 0.20 percent.

5 Nitrogen content of steel shall not exceed 0.012 percent, which shall be ensured by the manufacturer by occasional check analysis.

6 Closer limits of composition may be agreed to between the supplier and the purchaser.

7.2 Product Analysis

Permissible variations in the case of product analysis from the limits specified in Table 1 shall be as given in Table 2.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Variation Over Specified Limit, Percent, Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>0.02</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.04</td>
</tr>
<tr>
<td>Sulphur</td>
<td>0.005</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.005</td>
</tr>
<tr>
<td>Silicon</td>
<td>0.005</td>
</tr>
</tbody>
</table>

NOTE — Product analysis shall not be applicable to rimming steel.
8.2 Tensile Test Pieces

Tensile test samples shall be taken transverse to the direction of rolling, but for strips below 600 mm width, longitudinal test pieces may be taken. The sample for tensile test shall be from the end of the coil after coiling.

8.3 The tensile test shall be carried out in accordance with IS 1608 as applicable, generally using a proportion gauge length \(L_0 = 5.65 \sqrt{S_0} \) where \(S_0 \) is the cross-sectional area of the test piece. Test pieces with a non-proportional gauge length may be used; in this case the elongation values shall be converted in accordance with IS 3803 (Part 1). The tensile strength, yield stress, percentage elongation shall be as given in Table 3.

8.3.1 Should a test piece break outside the middle half of its gauge length and the percentage elongation obtained is less than the specified, the test may be discarded at the option of the manufacturer and another test made from the sample selected representing the same cast and batch.

9 BEND TEST

9.1 Number of Bend Tests

One bend test shall be tested per cast per thickness.

9.2 Bend test shall be carried out in accordance with IS 1599.

9.2.1 Bend test sample shall be taken transverse to the direction of rolling.

9.2.2 The test piece shall be 75 mm long and 25 mm wide for thickness less than 3 mm and not less than 40 mm wide for 3 mm and other. For small sizes the maximum width available shall be used.

9.2.3 The edge of the bend test piece shall be free from burrs. Filling or machining to remove burrs is permissible.

9.2.4 The test piece shall be bend cold through 180°. The internal diameter of the bend for the different grades of material shall be as given in Table 3. The test piece shall be deemed to have passed the test, if the outer convex surface is free from cracks.

10 RETESTS

Should any one of the test pieces first selected fail to pass any of the tests specified in this standard two further samples shall be selected from the same lot for testing in respect of each failure. Should the test pieces from both these additional samples pass the material represented by the test, samples shall be deemed to comply with the requirement of that particular test. Should the test pieces from either of these additional test samples fail, the material represented by the test samples shall be deemed as not conforming to the standard.

11 FREEDOM FROM DEFECTS

The steel shall be free from such segregation, lamination, surface flaws and other defects, which are detrimental to subsequent processing and ultimate use.

NOTE — As internal surface of coils is not amenable to inspection, some surface defects may be expected to be found during slitting. The purchaser in his assessment of the material shall take this into account. The amount of defects liable for rejection shall be mutually agreed between the purchaser and the supplier.

12 DIMENSIONS

Nominal dimensions and thickness of hot-rolled steel strip may be as specified in IS 1730. Sizes other than those specified in IS 1730 may also be supplied by mutual agreement between the purchaser and the manufacturer.

13 TOLERANCES

13.1 Tolerances on thickness and width shall conform to IS 1852.

13.2 Tolerance on edge camber shall be as specified in IS 1079.

13.3 Tolerances closer than those specified in 13.1 and 13.2 on the dimensions of hot-rolled steel strip may also be agreed between the purchaser and the supplier.
14 COIL MASS AND DIAMETERS

The limits of mass outside diameter and internal diameter of the coils shall be agreed to between the manufacturer and the purchaser.

15 CONDITION OF COILS

15.1 The edges may be mill edges or slit edges as agreed between the supplier and the purchaser. When mill edges are specified the depth of defects shall be within 5 mm from the edges on either side of the coil.

15.2 The material shall be in as-rolled condition without any skin passing, pickling, oiling, blast cleaning, annealing and normalizing unless otherwise specified by the purchaser.

15.3 Outer end of the coil may be cropped, if agreed by the manufacturer and the purchaser. There should be no folding of ends in the packed coils. In case the material is supplied without cropping, fish tail length should not be more than 0.5 m.

15.4 The coils shall be suitably packed, so that they do not get damaged during transit.

15.5 Telescopicity in the coils should not be more than 100 mm.

16 MARKING

16.1 Every coil shall be legibly marked outside or inside with the following:

a) Name or trade-mark of the manufacturer,
b) Grade of steel,
c) Cast or identification mark,
d) Size, and
e) Mass of coils.

NOTE — For strip below 600 mm width, marking of mass may not be necessary.

16.2 BIS Certification Marking

The material may also be marked with the Standard Mark.

16.2.1 The use of Standard Mark is governed by the provisions of the Bureau of Indian Standards Act, 1986 and the Rules and Regulations made thereunder. The details of conditions under which the licence for the use of Standard Mark may be granted to manufacturers or producers may be obtained from the Bureau of Indian Standards.
ANNEX A
(Foreword)

COMMITTEE COMPOSITION

Wrought Steel Products Sectional Committee, MTD 4

Organization

The Tata Iron and Steel Co Ltd, Jamshedpur

All India Induction Furnace Association of India, New Delhi

Bharat Heavy Electricals Ltd, Bhopal/Haridwar

Central Boilers Board (DIPP), New Delhi

Consumer Protection Council, Rourkela

Convexty Coil-O-Matic (Haryana) Ltd, Riwari

Directorate General of Supplies and Disposals, New Delhi

Escorts R & D Centre, Faridabad

EBG India (P) Ltd, Nashik

Institute of Steel Development and Growth, Kolkata

Ispat Industries Ltd, Dolvi

Jindal Iron Steel Co Ltd, Vasind, Thane

Jindal Vijaynagar Steel Co Ltd, Vijaynagar

M. N. Dastur and Co Ltd, Kolkata

Ministry of Defence (DGQA), Ishapore

Ministry of Defence (OFB), Kolkata

Ministry of Railways, RDSO, Lucknow

Ministry of Steel, New Delhi

Mukand Ltd, Thane

National Metallurgical Laboratory, Jamshedpur

Rashtriya Ispat Nigam Ltd (VSP), Visakhapatnam

SAIL, Bhilai Steel Plant, Bhilai

SAIL, Bokaro Steel Plant, Bokaro

SAIL, Central Marketing Organization, Kolkata

Representative(s)

Dr T. Mukherjee (Chairman)

Shri R. P. Varshney

Shri R. K. Seth
Shri K. K. Gupta (Alternate)

Shri V. K. Goel
Shri M. L. Ahuja (Alternate)

Shri B. Vaidynathan

Shri R. D. B. Singh
Shri Devinder Kumar (Alternate)

Shri S. K. Ganguly
Shri B. S. Rana (Alternate)

Shri Alok Nayar

Shri S. K. Prakashan
Shri Kapil Kavoor (Alternate)

Dr S. R. Mediratta
Shri Jayanta Kumar Saha (Alternate)

Shri Arvind J. Bhise
Shri P. U. C. Ayer (Alternate)

Shri M. K. Maheshwari
Shri A. K. Mishra (Alternate)

Dr S. K. Gupta
Shri S. K. Hegde (Alternate)

Shri Bhaskar Roy
Shri Sudhabrata Sengupta (Alternate)

Joint Controller (CQA MTeT)
SQAE (Metals) (Alternate)

Representative

Joint Director (Chemical)
Joint Director (I & L) (Alternate I)
Deputy Director (MET-3) (Alternate II)

Shri S. S. Saha
Shri A. C. R. Das (Alternate)

Shri C. H. Sharma
Shri K. R. Srinivasan (Alternate)

Dr S. Tarafdar
Shri R. Gopalkrishan (Alternate)

Shri G. Tiwari

Shri D. B. Srivastava
Shri K. K. Kumar (Alternate)

Shri A. S. Mathur
Shri G. B. Pradhan (Alternate)

Shri A. K. Chaudhuri
Shri B. V. S. Pandit (Alternate)
Organization

SAIL, Durgapur Steel Plant, Durgapur
SAIL, Rourkela Steel Plant, Rourkela
SAIL, R & D Centre for Iron and Steel, Ranchi
Steel Furnace Association of India, New Delhi
Steel Re-rolling Mills Association, Mandi Gobind Garh/Delhi
SAIL, Salem Steel Plant, Salem
Tata Motors Ltd, Jamshedpur/Pune
TOR Steel Research Foundation of India, Kolkata
Usha Beltron Ltd, Kolkata
In Personal Capacity (403, Udaigiri, Kaushambi, Distt. Ghaziabad, U.P.)
BIS Directorate General

Representative(s)

Dr Sanak Mishra
Shri N. K. Soor (Alternate)
Shri Sudhakar Jha
Dr B. K. Panigrahi (Alternate)
Shri M. S. Unnayyar
Shri R. P. Bhatia
Shri H. D. Khera (Alternate)
Shri R. K. Malhotra
Shri R. K. Verma (Alternate)
Shri J. D. Haridas
Shri B. R. Gogiai (Alternate)
Dr M. D. Maheshwari
Shri M. C. Sadhu (Alternate)
Shri S. K. Sen Gupta
Dr P. C. Chowdhury (Alternate)
Dr S. Chakrabarty
Shri S. N. Guha (Alternate)
Shri S. K. Guptaa, Director and Head (MTD)
[Representing Director General (Ex-officio)]

Member-Secretary
Shri Deependra, Joint Director (MTD), BIS

Flat Steel Products Subcommittee, MTD 4:3

SAIL, Rourkela Steel Plant, Rourkela
Essar Steels Ltd, Hazira
Federation of Engineering Industries of India, New Delhi
GKW Limited, Mumbai
Indian Gas Cylinders, Faridabad
Indian Oil Corporation (Pipelines Division), Noida
Jindal Iron and Steel Co Ltd, Vasind, Thane
Maruti Udyog Ltd, Gurgoan
SAIL, R & D Centre for Iron and Steel, Ranchi
SAIL, Salem Steel Plant, Salem
Tin Plate Company of India Ltd, Jamshedpur
Verny Containers Ltd, Hyderabad

Dr Sanak Mishra (Convener)
Shri Ashwani Kumar
Shri S. R. Bhatt (Alternate)
Shri H. L. Bhardwaj
Shri H. L. Bansal (Alternate)
Shri B. R. Bapat
Shri E. M. Patel
Shri K. Santhanam
Shri T. Bandhopadhyay (Alternate)
Shri M. K. Maheshwari
Shri A. K. Mishra (Alternate)
Shri Sunil Malhotra
Shri Tarun Jagga (Alternate)
Shri Sudhakar Jha
Dr B. K. Panigrahi (Alternate)
Shri S. Sooda
Shri H. K. Arora (Alternate)
Shri T. K. Ghosh
Shri A. K. Ghosh (Alternate)
Shri P. K. Mathur
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically: a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of ‘BIS Catalogue’ and ‘Standards : Monthly Additions’.

This Indian Standard has been developed from Doc. No. MTD 4 (4437).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110 002
Telephone: 2323 0131, 2323 3375, 2323 9402 Website: www.bis.org.in

Regional Offices:

Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg NEW DELHI 110 002 2323 37617, 2323 3841

Eastern : 1/14 C. I. T. Scheme VII M, V. I. P. Road, Kankurgachi KOLKATA 700 054 2337 8499, 2337 8561, 2337 8626, 2337 9120

Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160 022 260 3843, 260 9285

Southern : C. I. T. Campus, IV Cross Road, CHENNAI 600 113 2254 1216, 2254 1442

Western : Manakalaya, E9 MIDC, Marol, Andheri (East) MUMBAI 400 093 2832 9295, 2832 7858, 2832 7891, 2832 7892

Branches: AHMEDABAD, BANGALORE, BHOPAL, BHUBANESHWAR, COIMBATORE, FARIDABAD, GHAZIABAD, GUWAHATI, HYDERABAD, JAIPUR, KANPUR, LUCKNOW, NAGPUR, NALAGARH, PATNA, PUNE, RAJKOT, THIRUVANANTHAPURAM, VISAKHAPATNAM.