Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

"जानने का अधिकार, जीने का अधिकार"
Mazdoor Kisan Shakti Sangathan
“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”
Jawaharlal Nehru
“Step Out From the Old to the New”

Sterile, Single-Use Intravascular Catheters

Part 3: Central Venous Catheters
NATIONAL FOREWORD

This Indian Standard (Part 3) which is identical with ISO 10555-3 :1996‘Sterile, single-use intravascular catheters — Part 3: Central venous catheters’ issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on the recommendation of the Surgical Disposables and Dressings Sectional Committee and approval of the Medical Equipment and Hospital Planning Division Council.

Intravascular central venous catheter single or multilumen, designed for introduction into or withdrawn of liquids from the central venous system and/or for pressure or other measurement

Other parts of this standard are as follows:

 Part 1 General requirements
 Part 2 Angiographic catheters
 Part 4 Balloon dilatation catheters
 Part 5 Over-needle peripheral catheters

The text of ISO Standard has been approved as suitable for publication as an Indian Standard without deviations. Certain conventions are, however, not identical to those used in Indian Standards. Attention is particularly drawn to the following:

 a) Wherever the words international Standard’ appear referring to this standard, they should be read as ‘Indian Standard’.

 b) Comma (,) has been used as a decimal marker in the International Standard while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

In this adopted standard, reference appears to certain International Standards for which Indian Standards also exist. The corresponding Indian Standards which are to be substituted in their places are listed below along with their degree of equivalence for the editions indicated:

<table>
<thead>
<tr>
<th>International Standard</th>
<th>Corresponding Indian Standard</th>
<th>Degree of Equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 594-1 :1986 Conical fittings with a 6 percent (Luer) taper for syringes, needles</td>
<td>IS 3234 (Part 1): 1986 Conical fittings with a 6 percent (Luer) taper for syringes, needles and certain other medical equipment: Part 1 General requirements (second revision)</td>
<td>Identical</td>
</tr>
<tr>
<td>and certain other medical equipment — Part 1: General requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>requirements</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The standard also makes a reference to the BIS Certification Marking of the product. Details of which is given in National Annex A.

Technical Corrigendum 1 to the above International Standard has been given at the end of this standard.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated expressing the result of a test or analysis, shall be rounded off in accordance with IS 2 :1960 ‘Rules for rounding off numerical values (revised)’. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.
Indian Standard
STERILE, SINGLE-USE INTRAVASCULAR CATHETERS
PART 3 CENTRAL VENOUS CATHETERS

1 Scope
This part of ISO 10555 specifies requirements for central venous catheters supplied in the sterile condition, and intended for single use.

NOTE 1 Attention is drawn to ISO 11070, which specifies requirements for accessory devices for use with intravascular catheters.

2 Normative references
The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 10555. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 10555 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 594-1:1986, Conical fittings with a 6% (Luer) taper for syringes, needles and certain other medical equipment — Part 1: General requirements.

3 Definitions
For the purposes of this part of ISO 10555, the definitions given in ISO 10555-1 and the following definition apply.

3.1 central venous catheter: Intravascular catheter, single- or multilumen, designed for introduction into or withdrawal of liquids from, the central venous system and/or for pressure or other measurements.

NOTE 2 The catheter may have a fixation system which is part of the device.

4 Requirements
4.1 General
Catheters shall comply with ISO 10555-1, except for the force at break (see ISO 10555-1:1995, subclause 4.5), for which the requirements of subclause 4.7 of this part of ISO 10555 shall apply.

4.2 Radio-detectability
The catheter shall be radio-detectable.

NOTE 3 At the time of publication of this part of ISO 10555, there is no acceptable, validated test method to determine radio-detectability. An approved test method for producing a value of radio-detectability will be established. Until that time, a manufacturer may label his product "radio-opaque" provided he can support this claim by demonstrating that he has an appropriate method for showing radio-opacity.

4.3 Tip configuration
In order to minimize trauma to vessels during use, the tip of the distal end should be smooth, rounded, tapered or similarly finished.

4.4 Distance markings
If the catheter is provided with distance markings, the marking system shall indicate distance from the distal end. From the first mark, the distance between marks shall not exceed 5 cm.

NOTE 4 It is recommended that the distance marks be 1 cm apart on that portion of the catheter likely to be of importance to the user in positioning the catheter and monitoring catheter migration.
For multilumen catheters, identification of each lumen shall be apparent to the user.

4.6 Flowrate

When tested in accordance with annex A, the flowrate for each lumen shall be between 80 % and 125 % of that stated by the manufacturer for catheters of nominal outside diameter less than 1.0 mm or between 90 % and 115 % of that stated by the manufacturer for catheters of nominal outside diameter 1.0 mm or greater.

4.7 Force at break

4.7.1
For catheters having a tip of softer durometer material or of different construction to the shaft and not exceeding 20 mm in length, the minimum force at break of the tip shall be as given in table 1 when tested in accordance with the method given in annex B of ISO 10555-1:1995.

The minimum force at break of all other parts of such catheters shall comply with ISO 10555-1:1995, subclause 4.5.

4.7.2
The minimum force at break of all parts of catheters other than those to which 4.7.1 applies shall comply with ISO 10555-1:1995, sub-clause 4.5.

4.8 Information to be supplied by the manufacturer

Information supplied by the manufacturer shall comply with ISO 10555-1 and shall also contain the following:

a) if the catheter is provided with distance markings, a description of the marking system;

b) flowrate for each lumen;

c) maximum guidewire diameter, where applicable;

d) if applicable, a warning against attempting to withdraw the catheter back through the needle.

NOTE 5 Units of measurement systems other than those specified in this part of ISO 10555 may additionally be used.

<table>
<thead>
<tr>
<th>Smallest outside diameter of catheter body (mm)</th>
<th>Minimum force at break (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0.550 and < 0.75</td>
<td>3</td>
</tr>
<tr>
<td>> 0.75 and < 1.85</td>
<td>4</td>
</tr>
<tr>
<td>> 1.85</td>
<td>5</td>
</tr>
</tbody>
</table>
Annex A
(normative)

Determination of flowrate through the catheter

A.1 Principle
Water is allowed to flow through the catheter and the amount of flow is measured either volumetrically or gravimetrically.

A.2 Reagent
Distilled or deionized water.

A.3 Apparatus
A.3.1 Constant-level tank, fitted with a delivery tube and a male 6 % (Luer) taper fitting complying with ISO 594-1, capable, when no test catheter is attached, of providing a flowrate of \((525 \pm 25)\) ml/min, and having a hydrostatic head height of \((1000 \pm 5)\) mm.

An example of a suitable apparatus is shown in figure A.1.

A.3.2 Equipment for collecting and determining the mass or volume of the catheter efflux to an accuracy of \(\pm 1\) %.

A.3.3 Timer, for measuring collection time.

A.4 Test procedure
A.4.1 Supply the constant-level tank (A.3.1) with water at \((22 \pm 2)\) °C. Fit the catheter to be tested to the male 6 % (Luer) taper fitting.

A.4.2 Start the water flowing through the catheter. Collect the efflux for a measured period of time (not less than 30 s) in a suitable vessel and determine its volume by means of a measuring cylinder or by weighing, assuming that the density of water equals 1 000 kg/m³.

A.4.3 Perform three determinations on each catheter lumen.

A.5 Expression of results
Calculate the arithmetic average of the three determinations and express it as water flowrate through the catheter, in millilitres per minute. Round the calculated average water flowrate to the nearest whole number of millilitres.

A.6 Test report
The test report shall include the following information:

a) identity of the catheter;

b) average flowrate, expressed in millilitres per minute, for each lumen.
Key
1 Constant-level tank
2 Distilled or deionized water
3 Inlet
4 Overflow
5 Delivery tube
6 Male 6 % (Luer) taper fitting
7 Catheter under test
8 Collecting/measuring vessel

Figure A.1 — Example of apparatus for determination of flowrate of water through catheter
Annex B
(informative)

Bibliography

1) To be published.
4.2 Radio-detectability
Delete the entire Note 3 given in this subclause.

4.4 Distance markings
Renumber Note 4 given in this subclause to become Note 3.

4.8 Information to be supplied by the manufacturer
Renumber Note 5 given in this subclause to become Note 4.
NATIONAL ANNEX A
(National Foreword)

A-1 BIS CERTIFICATION MARKING

A-1.1 The product may also be marked with the Standard Mark.

A-1.1.1 The use of the Standard Mark is governed by the provisions of the Bureau of Indian Standards Act, 1986 and the Rules and Regulations made thereunder. The details of conditions under which the licence for the use of the Standard Mark may be granted to manufacturers or producers may be obtained from the Bureau of Indian Standards.
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of the these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard alongwith amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of ‘BIS Catalogue’ and ‘Standards: Monthly Additions’.

This Indian Standard has been developed from Doc No.: MHR 16 (0053).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 2323 0131, 2323 3375, 2323 9402
Website: www.bis.org.in

Regional Offices:

<table>
<thead>
<tr>
<th>Region</th>
<th>Address</th>
<th>Telephones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>Manak Bhavan, 9 Bahadur Shah Zafar Marg NEW DELHI 110002</td>
<td>2323 7617, 2323 3841</td>
</tr>
<tr>
<td>Eastern</td>
<td>1/4 C.I.T Scheme VII M, V.I.P. Road, Kankurgachi KOLKATA 700054</td>
<td>2337 8499, 2337 8561</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2337 8626, 2337 9120</td>
</tr>
<tr>
<td>Northern</td>
<td>SCO 335-336, Sector 34-A, CHANDIGARH 160022</td>
<td>260 3843, 260 9285</td>
</tr>
<tr>
<td>Southern</td>
<td>C.I.T. Campus, IV Cross Road, CHENNAI 600113</td>
<td>2254 1216, 2254 1442</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2254 2519, 2254 2315</td>
</tr>
<tr>
<td>Western</td>
<td>Manakalaya, E9 MIDC, Marol, Andheri (East) MUMBAI 400093</td>
<td>2832 9295, 2832 7858</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2832 7891, 2832 7892</td>
</tr>
<tr>
<td>Branches</td>
<td>AHMEDABAD, BANGALORE, BHOPAL, BHUBNESHWAR, COIMBATORE, DEHRADUN, FARIDABAD, GHAZIABAD, GUWAHATI, HYDERABAD, JAIPUR, KANPUR, LUCKNOW, NAGPUR, PARWANOO, PATNA, PUNE, RAJKOT, THIRUVANANTHAPURAM, VISAKHAPATNAM.</td>
<td></td>
</tr>
</tbody>
</table>

PRINTED BY THE GENERAL MANAGER, GOVT. OF INDIA PRESS, NASHIK-422 006