Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“जानने का अधिकार, जीने का अधिकार”
Mazdoor Kisan Shakti Sangathan
“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”
Jawaharlal Nehru
“Step Out From the Old to the New”

“ज्ञान में एक नये भारत का निर्माण”
Satyanarayan Gangaram Pitroda
“Invent a New India Using Knowledge”

“ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता है”
Bhartrhari—Nitisatakam
“Knowledge is such a treasure which cannot be stolen”
Indian Standard
STERILE, SINGLE-USE INTRAVASCULAR CATHETERS
PART 1 GENERAL REQUIREMENTS

ICS 11.040.20
NATIONAL FOREWORD

This Indian Standard (Part 1) which is identical with ISO 10555-1:1995 'Sterile, single-use intravascular catheters — Part 1: General requirements' issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on the recommendation of the Surgical Disposables and Dressings Sectional Committee and approval of the Medical Equipment and Hospital Planning Division Council.

Intravascular Catheter is tubular device single or multilumen, designed to partially or totally inserted or implanted into the cardiovascular system for diagnostic and/or therapeutic purposes.

Other parts of this standard are as follows:

- Part 2 Angiographic catheters
- Part 3 Central venous catheters
- Part 4 Balloon dilatation catheters
- Part 5 Over-needle peripheral catheters

The text of ISO Standard has been approved as suitable for publication as an Indian Standard without deviations. Certain conventions are, however, not identical to those used in Indian Standards. Attention is particularly drawn to the following:

a) Wherever the words 'International Standard' appear referring to this standard, they should be read as 'Indian Standard'.

b) Comma (,) has been used as a decimal marker in the International Standard while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

In this adopted standard, reference appears to certain International Standards for which Indian Standards also exist. The corresponding Indian Standards which are to be substituted in their places are listed below along with their degree of equivalence for the editions indicated:

<table>
<thead>
<tr>
<th>International Standard</th>
<th>Corresponding Indian Standard</th>
<th>Degree of Equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 594-1:1986 Conical fittings with a 6 percent (Luer) taper for syringes, needles and certain other medical equipment — Part 1: General requirements</td>
<td>IS 3234 (Part 1): 1986 Conical fittings with a 6 percent (Luer) taper for syringes, needles and certain other medical equipment: Part 1 General requirements (second revision)</td>
<td>Identical</td>
</tr>
<tr>
<td>ISO 594-2:1991 Conical fittings with a 6 percent (Luer) taper for syringes, needles and certain other medical equipment — Part 2: Lock fittings</td>
<td>IS 3234 (Part 2): 1995 Conical fittings with a 6 percent (Luer) taper for syringes, needles and certain other medical equipment: Part 2 Lock fittings</td>
<td>do</td>
</tr>
</tbody>
</table>

The standard also makes a reference of which is given in National Annex A.

(Continued on third cover)
1 Scope

This part of ISO 10555 specifies general requirements for intravascular catheters, supplied in the sterile condition and intended for single use, for any application.

It does not apply to intravascular catheter accessories, which will be covered by a separate standard.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 10555. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 10555 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 594-1:1986, Conical fittings with a 6 % (Luer) taper for syringes, needles and certain other medical equipment — Part 1: General requirements.

3 Definitions

For the purposes of this part of ISO 10555, the following definitions apply.

3.1 intravascular catheter: Tubular device, single or multilumen, designed to be partially or totally inserted or implanted into the cardiovascular system for diagnostic and/or therapeutic purposes.

3.2 distal end: End of the catheter inserted furthest into the patient.

3.3 proximal end; access end: End of the catheter to which connection can be made.

3.4 hub: Connector(s) at the proximal end of the catheter which may either be integral with the catheter or be capable of being securely fitted to the proximal end of the catheter.

3.5 effective length, #: Length of the catheter that can be inserted into the body. (See figure 1.)

3.6 outside diameter: Maximum diameter of that part of the catheter that can be inserted into the vessel.

3.7 junction: That portion of the catheter that joins one tube to multiple tubes.
Key

/ = effective length
1. catheter hub
2. catheter strain reinforcement
3. length mark
4. junction

Figure 1 — Examples of effective length of catheters
4 Requirements

4.1 General

The catheter shall have been sterilized by a validated method, and shall comply with 4.2 to 4.7 in the sterile condition.

NOTE 1 See ISO 11134, ISO 11135 and ISO 11137 for appropriate methods of sterilization.

4.2 Biocompatibility

The catheter shall be free from biological hazard.

NOTE 2 See ISO 10993-1 for the selection of appropriate test methods.

4.3 Surface

When examined by normal or corrected to normal vision with x 2.5 magnification, the external surface of the effective length of the catheter shall appear free from extraneous matter.

The external surface of the effective length of the catheter, including the distal end, should be free from process and surface defects and should cause minimum trauma to vessels during use.

If the catheter is lubricated, the lubricant should not be visible as drops of fluid on the external surface when the catheter is examined under normal or corrected to normal vision.

4.4 Corrosion resistance

When tested in accordance with the method given in annex A, metallic components of the catheter shall show no signs of corrosion.

4.5 Force at break

When tested in accordance with the method given in annex B, the force at break of each test piece shall be as given in table 1.

4.6 Freedom from leakage

4.6.1 The hub or connection fitting assembly or any other part of the catheter shall not leak liquid when tested in accordance with the method given in annex C.

4.6.2 Air shall not leak into the hub assembly during aspiration when tested in accordance with the method given in annex D.

Table 1 — Force at break of catheter test pieces

<table>
<thead>
<tr>
<th>Smallest outside diameter of tubular portion of test piece (mm)</th>
<th>Minimum force at break (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0.55 < 0.75</td>
<td>3</td>
</tr>
<tr>
<td>> 0.75 < 1.15</td>
<td>5</td>
</tr>
<tr>
<td>> 1.15 < 1.85</td>
<td>10</td>
</tr>
<tr>
<td>> 1.85</td>
<td>15</td>
</tr>
</tbody>
</table>

NOTE — This part of ISO 10555 does not specify requirements for force at break for tubing of less than 0.55 mm outside diameter.

4.7 Hubs

If the catheter is supplied with either an integral or a separate hub, it shall be a female hub and shall comply with ISO 594-1 and ISO 594-2.

5 Designation of nominal size

The nominal size of the catheter shall be designated as specified in 5.1 and 5.2.

5.1 Outside diameter

Unless otherwise specified in the International Standard for a particular type of catheter, the outside diameter shall be expressed in millimetres, rounded upwards to the nearest 0.05 mm for outside diameters of less than 2 mm, or to the nearest 0.1 mm for outside diameters of 2 mm and greater.

5.2 Effective length

The effective length shall be expressed in a whole number of millimetres for effective lengths of less than 99 mm and in either a whole number of millimetres or a whole number of centimetres for effective lengths of 99 mm and greater.

6 Information to be supplied by manufacturer

The manufacturer shall supply at least the following information. All dimensions given shall be expressed in SI units of measurement.
Units of other measurement systems may additionally be used.

a) description of the product;

b) outside diameter;

c) effective length;

d) name or tradename and address of manufacturer;

e) lot designation;

f) expiry date or use by date;

g) any special storage and handling instructions;

h) indication of sterility;

i) method of sterilization;

j) indication for single use;

k) any known chemical and/or physical incompatibilities with substances likely to be used with the catheter;

l) instructions for use and warnings, as appropriate.
Annex A
(normative)

Test method for corrosion resistance

A.1 Principle

The catheter is immersed in sodium chloride solution, then in boiling distilled water, and afterwards examined visually for evidence of corrosion.

A.2 Reagents

A.2.1 Saline solution, comprising a solution of analytical reagent grade sodium chloride in freshly prepared distilled water [c(NaCl) = 0.15 mol/l].

A.2.2 Distilled or deionized water.

A.3 Apparatus

A.3.1 Borosilicate glass beakers

A.4 Procedure

Immerse the catheter in the saline solution (A.2.1) in a glass beaker (A.3) at room temperature for 5 h. Remove the test specimen and immerse it in boiling distilled water (A.2.2) for 30 min. Allow the water and the test specimen to cool to 37 °C, and maintain them at this temperature for 48 h. Remove the test specimen and allow it to dry at room temperature. Disassemble specimens that have two or more components which are intended to be separable in use. Do not strip away or cut open any coatings on metallic components. Inspect the specimen visually for signs of corrosion.

A.5 Test report

The test report shall include the following information:

a) identity of the catheter;

b) statement as to whether corrosion occurred during the test.
Annex B
(normative)

Method for determining force at break

B.1 Principle

Test pieces of a catheter are chosen so that each tubular portion, each junction between hub or connector and tubing, and each junction between tubular portions is tested. A tensile force is applied to each test piece until the tubing breaks or the junction separates.

B.2 Apparatus

B.2.1 Tensile testing apparatus, capable of exerting a force of greater than 15 N.

B.3 Procedure

B.3.1 Assemble the catheter in accordance with the manufacturer’s instructions. Select a test piece from the catheter to be tested. Include in the test piece the hub or connector, if present, and the junction between segments, e.g. between the tubing and the tip, if present. Exclude distal tips of lengths less than 3 mm from the test piece.

B.3.2 Condition the test pieces in an atmosphere of 100 % relative humidity or water and a temperature of (37 ± 2) °C for 2 h. Test immediately after conditioning.

B.3.3 Fix the test piece in the tensile testing apparatus. If a hub or connector is present, use an appropriate fixture to avoid deforming the hub or connector.

B.3.4 Measure the gauge length of the test piece, i.e. the distance between the jaws of the tensile testing apparatus or the distance between the hub or connector and the jaw holding the other end of the test piece, as appropriate.

B.3.5 Apply a tensile strain at a unit strain rate of 20 mm/min/mm of gauge length (see table B.1) until the test piece separates into two or more pieces.

Note the value of the applied tensile force, in newtons, at which separation occurs, and record this value as the force at break.

B.3.6 If testing a catheter that consists of a single tubular portion having regions of different outside diameter, repeat B.3.2 to B.3.5 on test pieces of each different diameter.

B.3.7 If testing a catheter that has a sidearm or sidearms,

a) repeat B.3.2 to B.3.5 on each sidearm;

b) repeat B.3.2 to B.3.5 on a test piece that includes the joint between a sidearm and the adjacent part of that portion of the catheter intended to be introduced into the body;

c) repeat B.3.7 b) for each joint.

B.3.8 Do not perform more than one test on any test piece.

Table B.1 — Examples of conditions for 20 mm/min/mm strain rate

<table>
<thead>
<tr>
<th>Gauge length (mm)</th>
<th>Test speed (mm/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>20</td>
<td>400</td>
</tr>
<tr>
<td>25</td>
<td>500</td>
</tr>
</tbody>
</table>

B.4 Test report

The test report shall include the following information:

a) identity of the catheter;

b) the force at break, in newtons, and outside diameter of each test piece.
Annex C
(normative)

Test method for liquid leakage under pressure

C.1 Principle
The catheter is connected, via a leakproof connection, to a syringe. A hydraulic pressure is applied to the catheter and to the hub assembly, if present, and the catheter tube inspected for leakage.

C.2 Reagent
C.2.1 Distilled or deionized water.

C.3 Apparatus
C.3.1 Reference steel fitting, having a male 6 % (Luer) taper as specified in ISO 594-1.
C.3.2 Leakproof connector, to connect reference fitting (C.3.1) to syringe (C.3.4), fitted with a gauge capable of measuring up to 350 kPa pressure and having a small internal volume.
C.3.3 Connector, to make leakproof connection between syringe (C.3.4) and catheters which do not have hubs.
C.3.4 10 ml syringe, which has passed the tests for leakage past the piston and nozzle as specified in ISO 7886-1.
C.3.5 Means for occluding test specimen, e.g. a clamp.

C.4 Procedure
C.4.1 When testing catheters which have a hub or hubs, if necessary assemble detachable hubs in accordance with the manufacturer's instructions. Connect the hub to the reference fitting (C.3.1) by applying an axial force of 27.5 N for 5 s while applying a twisting action to a value of torque not exceeding 0.1 N-m to give rotation not exceeding 90°, both components being dry. Connect the reference fitting (C.3.1) via the connector (C.3.2) to the syringe (C.3.4).
C.4.2 When testing catheters which do not have hubs, connect the catheter to the syringe (C.3.4) by means of a connector (C.3.3).
C.4.3 Fill the syringe with water (C.2) at (22 ± 2) °C and expel the air. Adjust the volume of water in the syringe to the nominal graduated capacity. Occlude (C.3.5) the test specimen as near the distal end as possible.
C.4.4 Position the apparatus so that the axis of the connection between syringe and catheter is horizontal. Apply an axial force to the syringe so that a pressure of 300 kPa to 320 kPa is generated by the relative action of the piston and barrel. Maintain the pressure for 30 s. Examine the hub assembly, if present, and catheter tube for liquid leakage, i.e. the formation of one or more falling drops of water, and record whether or not leakage occurs.

C.5 Test report
The test report shall include the following information:

a) identity of the catheter;
b) statement as to whether leakage occurred from the hub assembly, if present, or catheter tube.
Test method for air leakage into hub assembly during aspiration

D.1 Principle
The hub(s) of the catheter is (are) connected via a reference male conical fitting, to a partially filled syringe. A reduced pressure is applied to the interface of the hub and the reference fitting by withdrawing the syringe plunger, and visual inspection made for the ingress of air bubbles to the syringe.

D.2 Reagent
D.2.1 De-aerated distilled water or de-aerated deionized water.

D.3 Apparatus
D.3.1 Reference steel fitting, as specified in C.3.1.
D.3.2 Leakproof connector, as specified in C.3.2, but without tapping and pressure gauge.
D.3.3 Syringe, as specified in C.3.4.
D.3.4 Means for occluding test specimen, e.g. a clamp.

D.4 Procedure
D.4.1 Assemble detachable hubs in accordance with the manufacturer's instructions. Connect the hub to be tested to the reference fitting (D.3.1) by applying an axial force of 27.5 N for 5 s while applying a twisting action to a value of torque not exceeding 0.1 N-m to give rotation not exceeding 90°, both components being dry.
D.4.2 Connect the reference fitting (D.3.1) via the connector (D.3.2) to the syringe (D.3.3). Seal all valves that are intended to open during aspiration.
D.4.3 Draw into the syringe, through the test specimen and reference fitting, a volume of water (D.2) at (22 ± 2) °C exceeding 25 % of the graduated capacity of the syringe. Avoid wetting the hub/reference fitting union.
D.4.4 Expel the air from the apparatus except for a small air bubble. Adjust the volume of the water in the syringe to 25 % of the graduated capacity. Occlude (D.3.4) the test specimen as close as practicable to the hub.
D.4.5 With the nozzle of the syringe downward, withdraw the plunger to the maximum graduated capacity mark. Hold for 15 s and examine the water in the syringe for the formation of air bubbles, ignoring bubbles formed during the first 5 s.

D.5 Test report
The test report shall include the following information:
a) identity of the catheter;
b) statement as to whether leakage of air occurred from the hub assembly after the first 5 s.
Annex E
(informative)

Bibliography

AMENDMENT 1

Clause 3 Definitions

Delete existing definitions for 3.5 and 3.6, and substitute the following definitions:

3.5 **effective length**: Length of the catheter, or pre- and post-hydration lengths of hydratable catheters, that can be inserted into the body (see figure 1).

3.6 **outside diameter**: Maximum diameter of the catheter, or pre- and post-hydration maximum diameters of hydratable catheters, that can be inserted into the vessel.

Add the following new definitions:

3.8 **hydratable intravascular catheter**: Intravascular catheter consisting of a material that manifests clinically significant hydration when subjected to an aqueous medium.

3.9 **post-hydration**: State of a hydratable intravascular catheter after immersion in water at (37 ± 2) °C for 2h.

3.10 **clinically significant hydration**: Hydrated state in which either the post-hydration effective length is greater than the pre-hydration effective length by more than 4 mm or 1 % of the effective length, whichever is the fesser, or the post-hydration outside diameter is greater than the pre-hydration outside diameter by 10 % or more.

Clause 4 Requirements

In the note in table 1, add the following text at the end of the sentence: (pre-hydration outside diameter for hydratable intravascular catheters).

4.6.1 Add the following paragraph:

For hydratable intravascular catheters, this requirement shall be met in both the pre- and post-hydration states.

4.6.2 Add the following paragraph:

For hydratable intravascular catheters, this requirement shall be met in both the pre- and post-hydration states.
Add the following new subclause.

4.8 Flowrate

This part of ISO 10555 does not specify requirements for flowrate, but if the flowrate through hydratable catheters is determined, it shall be determined in both the pre- and post-hydration states.

Page 4

Clause 6 Information to be supplied by the manufacturer

Add the following text to items b) and c):

.... including pre- and post-hydration values for hydratable intravascular catheters.

Page 6

Clause B.1 Principle

Add the following new sentence at the end of B.1:

Hydratable catheters are tested in both the pre- and post-hydration states.

Subclause B.3.1 Add the following new paragraph:

For hydratable catheters, prepare identical test pieces from two catheters. Condition one test piece in accordance with B.3.2. Do not condition the other test piece; test it immediately in accordance with B.3.3 to B.3.8.

Subclause B.3.2 Delete the existing text and replace by the following:

Place the test pieces to be conditioned (see B.3.1) in distilled or deionized water at a temperature of (37 ± 2) °C for 2 h. Test in accordance with B.3.3 to B.3.8 immediately after conditioning.

Page 7

Clause C.4 Procedure

Add the following new subclause:

C.4.5 For hydratable intravascular catheters, carry out the steps in C.4.1 to C.4.4 on catheters in both the pre- and post-hydration states.

Clause C.5 Test report

Add the following text to item b):

(in both the pre- and post-hydration states for hydratable intravascular catheters).

Page 8

Clause D.4 Procedure

Add the following new subclause:

D.4.6 For hydratable intravascular catheters, carry out the steps in D.4.1 to D.4.5 on catheters in both the pre- and post-hydration states.
Clause D.5 Test report

Add the following text to item b):

(in both the pre- and post-hydration states for hydratable intravascular catheters).
A-1 BIS CERTIFICATION MARKING

A-1.1 The product may also be marked with the Standard Mark.

A-1.1.1 The use of the Standard Mark is governed by the provisions of the *Bureau of Indian Standards* Act, 1986 and the Rules and Regulations made thereunder. The details of conditions under which the licence for the use of the Standard Mark may be granted to manufacturers or producers may be obtained from the Bureau of Indian Standards.
(Continued from second cover)

Amendment No. 1 to the above International Standard has been given at the end of this standard.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated expressing the result of a test or analysis, shall be rounded off in accordance with IS 2:1960 'Rules for rounding off numerical values (revised)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of theses publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard alongwith amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Catalogue' and 'Standards: Monthly Additions'.

This Indian Standard has been developed from Doc No.: MHR 16 (0051).

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
</table>

This is a sample table showing the amendments issued since publication.

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9. Bahadur Shah Zafar Marg, New Delhi 110002
Telephone: 2323 0131, 2323 3375, 2323 9402 Website: www.bis.org.in

Regional Offices:

<table>
<thead>
<tr>
<th>Region</th>
<th>Address</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>Manak Bhavan, 9 Bahadur Shah Zafar Marg NEW DELHI 110002</td>
<td>2323 7617, 2323 3841</td>
</tr>
<tr>
<td>Eastern</td>
<td>1/4 C.I.T. Scheme VII M, V.I.P. Road, Kankurgachi KOLKATA 700054</td>
<td>2337 8499, 2337 8561, 2337 8626, 2337 9120</td>
</tr>
<tr>
<td>Northern</td>
<td>SCO 335-336, Sector 34-A, CHANDIGARH 160022</td>
<td>260 3843, 260 9285</td>
</tr>
<tr>
<td>Southern</td>
<td>C.I.T. Campus, IV Cross Road, CHENNAI 600113</td>
<td>2254 1216, 2254 1442, 2254 2519, 2254 2315</td>
</tr>
<tr>
<td>Western</td>
<td>Manakalaya, E9 MIDC, Marol, Andheri (East) MUMBAI 400093</td>
<td>2832 9295, 2832 7858, 2832 7891, 2832 7892</td>
</tr>
</tbody>
</table>

Branches:

AHMEDABAD. BANGALORE. BHOPAL BUBANESHWAR. COIMBATORE. DEHRADUN. FARIDABAD. GAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR. LUCKNOW. NAGPUR. PARWANO. PATNA. PUNE. RAJKOT. THIRUVANANTHAPURAM. VISAKHAPATNAM.

Printed by the General Manager, Government of India Press, Nasik