Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

IS 10258-3 (2010): STERILE HYPODERMIC SYRINGES FOR SINGLE USE, Part 3: AUTO-DISABLE SYRINGES FOR FIXED-DOSE IMMUNIZATION [MHD 16: Surgical Dressings and Disposable Products]
Indian Standard

STERILE HYPODERMIC SYRINGES FOR SINGLE USE

PART 3 AUTO-DISABLE SYRINGES FOR FIXED-DOSE IMMUNIZATION

ICS 11.040.20

©BIS 2010

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

February 2010

Price Group 7
NATIONAL FOREWORD

This Indian Standard (Part 3) which is identical with ISO 7886-3:2005*Sterile hypodermic syringes for single use — Part 3: Auto-disable syringes for fixed-dose immunization* issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on the recommendation of the Surgical Disposables and Dressings Sectional Committee and approval of the Medical Equipment and Hospital Planning Division Council.

The preparation of this standard was recognized as a high priority requirement to prevent the re-use of fixed dose immunization syringes in the developing and transitional countries. Re-use of injection equipment in the absence of sterilization has increasingly led to transmission of blood-borne pathogens this standard.

This standard is intended to cover ‘fixed dose’ immunization syringes that are rendered inoperable after delivery of the intended dose. These syringes are not covered by Parts 1 and 2 of this standard.

It is recognized that syringes designed to reduce the risk of needlestick injuries, in addition to preventing sharps injuries, may also comply with this part of standard with regard to their auto-disable properties, but it is stressed that anti-needlestick properties of syringes are not in themselves addressed in this standard.

The text of ISO Standard has been approved as suitable for publication as an Indian Standard without deviations. Certain conventions are, however, not identical to those used in Indian Standards. Attention is particularly drawn to the following:

a) Wherever the words 'International Standard' appear referring to this standard, they should be read as 'Indian Standard'.

b) Comma (,) has been used as a decimal marker in the International Standard while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

In this adopted standard, reference appears to certain International Standards for which Indian Standards also exist. The corresponding Indian Standards which are to be substituted in their places are listed below along with their degree of equivalence for the editions indicated:

<table>
<thead>
<tr>
<th>International Standard</th>
<th>Corresponding Indian Standard</th>
<th>Degree of Equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 7864 :1993 Sterile hypodermic needles for single use</td>
<td>IS 10654 : 2002 Sterile hypodermic needles for single use (third revision)</td>
<td>Identical</td>
</tr>
<tr>
<td>ISO 8537 : 1991 Sterile single use syringes, with or without needle, for insulin (first revision)</td>
<td>IS 12227 : 2002 Sterile single use syringes, with or without needle, for insulin (first revision)</td>
<td>do</td>
</tr>
</tbody>
</table>

The technical committee responsible for the preparation of this standard has reviewed the provisions of the following International Standards referred in this adopted standard and has decided that they are acceptable for use in conjunction with this standard:

<table>
<thead>
<tr>
<th>International Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 3696:1987</td>
<td>Water for analytical laboratory use — Specification and test method</td>
</tr>
</tbody>
</table>

(Continued on third cover)
1 Scope

This part of ISO 7886 specifies the properties and performance of sterile single-use hypodermic syringes with or without needle, made of plastic materials and stainless steel and intended for the aspiration of vaccines or for the injection of vaccines immediately after filling. Upon delivering a fixed dose of vaccine, the syringe is automatically rendered unusable.

This part of ISO 7886 does not specify the design of the auto-disable feature, which is left to the discretion of the manufacturer.

This part of ISO 7886 is not applicable to syringes for use with insulin (specified in ISO 8537), syringes made of glass (specified in ISO 595), syringes for use with power-driven syringe pumps (specified in ISO 7886-2), auto-disable syringes for variable dose delivery and syringes designed to be prefilled. It does not address compatibility with injection fluids/vaccines.

NOTE A fourth part of ISO 7886 is being prepared to cover syringes with reuse prevention feature.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 7864:1993. Sterile hypodermic needles for single use

ISO 8537:1991. Sterile single-use syringes, with or without needle, for insulin

ISO 9626, Stainless steel needle tubing for the manufacture of medical devices

ASTM D999-01, Standard methods for vibration testing of shipping containers

ASTM D5276-98, Standard test method for drop test of loaded containers by free fall
3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 7886-1:1993 (except 3.2) and ISO 8537:1991 (except 3.1) and the following apply.

3.1 auto-disable syringe feature
feature that automatically activates upon administration of the intended fixed dose to prevent subsequent re-use of the syringe and the needle

4 Nomenclature

The nomenclature for components of auto-disable syringes for fixed dose is shown in Figure 1.

NOTE The drawing is intended to be illustrative of components of an auto-disable syringe only.

Figure 1 — Schematic representation of auto-disable syringe for fixed dose
5 **Cleanliness**

Clause 5 of ISO 7886-1:1993 shall apply.

6 **Limits for acidity or alkalinity**

When determined with a laboratory pH meter and using a general purpose electrode, the pH value of an extract prepared in accordance with Annex A shall be within one unit of pH of that of the control fluid.

7 **Limits for extractable metals**

When tested by a recognized microanalytical method, for example by an atomic absorption method, an extract prepared in accordance with Annex A shall, when corrected for the metals content of the control fluid, contain no greater than a combined total of 5 mg/l of lead, tin, zinc and iron. The cadmium content of the extract shall, when corrected for the cadmium content of the control fluid, be lower than 0,1 mg/l.

8 **Lubricant**

9 **Tolerance on nominal capacity**

The volume of water at \((20 \pm 5) \, ^\circ C\) [or. for tropical countries \((27 \pm 5) \, ^\circ C\)] expelled from the syringe when the fiducial line of the piston traverses the full scale (i.e. the intended fixed dose) shall be within the tolerances on the nominal capacity as specified in Table 1.

<table>
<thead>
<tr>
<th>Nominal capacity ml</th>
<th>Tolerance on nominal capacity %</th>
<th>Maximum dead space for integrated and non-integrated needle ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,05 ≤ V ≤ 0,2</td>
<td>±20 %</td>
<td>0,025</td>
</tr>
<tr>
<td>0,2 < V ≤ 2</td>
<td>±5%</td>
<td>0,07</td>
</tr>
</tbody>
</table>

10 **Graduated scale**

10.1 **Scale**

The scale shall have only two markings, the zero line and the nominal capacity line (i.e. the total graduated capacity line). These lines shall be of uniform thickness. They shall lie in planes at right angles to the axis of the barrel.

10.2 **Position of scale**

10.4 of ISO 7886-1:1993 shall apply.
11 Barrel

11.1 Dimensions

The length of the barrel and the design of the auto-disable feature shall be such that the syringe has a maximum usable capacity of at least 10% more than the nominal capacity and a recommended maximum capacity of 20% more than the nominal capacity.

11.2 Finger grips

11.2 of ISO 7886-1:1993 shall apply.

12 Piston/plunger assembly

12.1 Design

The design of the plunger and push-button of the syringe shall be such that, when the barrel is held in one hand, the plunger can be depressed by the thumb of that hand. The piston shall not become detached from the plunger when tested in accordance with Annex B of ISO 8537:1991 for a syringe with integrated needle or in accordance with Annex B of ISO 7886-1:1993 for a syringe without needle.

The plunger should be of a length adequate to allow the piston properly to deliver the designated fixed dose. It should not be possible to defeat the auto-disable feature by removing and re-inserting the plunger.

The projection of the plunger and the configuration of the push-button should be such as to allow the plunger to be operated without difficulty. When the fiducial line of the piston coincides with the zero graduation line, the preferred minimum length of the plunger from the surface of the finger grips nearer to the push-button shall be 8 mm.

12.2 Fit of the piston in the barrel

12.2 of ISO 7886-1:1993 shall apply.

NOTE Annex B gives a suggested test method and performance criteria for the forces required to move the plunger.

12.3 Fiducial line

12.3 of ISO 7886-1:1993 shall apply.

13 Needle

13.1 Integrated needle

Syringes with integrated needle shall have a minimum needle union force applied as push or pull in the direction of the needle axis in accordance with ISO 7864:1993.

Needle tubing shall be in accordance with ISO 9626.

13.2 Non-integrated needle

If a non-integrated needle is used, it shall become an integral part of the syringe and cannot be detached. Both the needle and the syringe shall be rendered incapable of re-use after delivery of the intended fixed dose, under normal conditions of use.
14 Performance

14.1 Dead space

When a syringe with needle is tested in accordance with Annex E of ISO 8537:1991, the dead space shall not exceed the limits given in Table 1.

14.2 Freedom from air and liquid leakage

When a syringe with integrated needle is tested in accordance with Annex F of ISO 8537:1991 and a syringe without needle is tested in accordance with Annex D of ISO 7886-1:1993, there shall be no leakage of water past the piston or seal(s).

When a syringe with integrated needle is tested in accordance with Annex 8 of ISO 8537:1991 and a syringe without needle is tested in accordance with Annex B of ISO 7886-1:1993, there shall be no leakage of air past the piston or seal(s), and there shall be no fail in the manometer reading.

For syringes with integrated needle, 14.2 of ISO 8537:1991 shall apply.

14.3 Auto-disable feature

The syringe and needle shall be passively and automatically rendered unusable by the delivery of the intended fixed dose. No secondary or additional action on the part of the user shall be required.

The timing of the activation of the auto-disable feature may vary by design, typically within the ranges described below:

- the auto-disable feature is automatically activated and remains effective from the time that the injection is commenced;
- the auto-disable feature is automatically activated and remains effective from the point when 50% of the intended fixed dose has been delivered;
- the auto-disable feature is automatically activated on completion of the delivery of the intended fixed dose.

In all cases, once the auto-disable feature has been activated:

a) it shall not be possible to re-use the syringe and the needle under the normal conditions of use;

b) it shall not be possible to override the auto-disable feature when tested in accordance with the test method in Annex C, i.e. it shall not be possible to re-use the syringe after applying a force of 100 N at a speed of 100 mm/min on the plunger or a back pressure on the needle of 100 kPa/min up to 300 kPa.

14.4 Performance after shipping

There shall be no effect on the performance of the syringe when tested in accordance with ASTM D999-01 and ASTM D5276-98.

14.5 Guidance on materials

15 Packaging

15.1 Primary and unit containers and self-contained syringe units

15.1 of ISO 8537:1991 shall apply.

15.2 Secondary containers

15.2 of ISO 7886-1:1993 shall apply.

16 Labelling

16.1 Primary and unit containers and self-contained syringe units

10.1.1 Self-contained syringe units

The self-contained syringe unit shall bear at least the following information:

a) the words “for single use” or equivalent (such as symbol for single use, reference ISO 7000-1051); the term “disposable” shall not be used;

b) the symbol indicating that the device possesses an auto-disable function for re-use prevention as given in Figure 2;

c) the name and/or trade mark of the manufacturer or supplier;

d) the words “sterile interior” or equivalent symbol;

e) the lot number prefixed by the word “LOT” (or equivalent harmonized symbol);

f) the expiry date by year and month, prefixed by the word “EXP” (or an equivalent harmonized symbol);

g) external diameter and length of the needle, if included.

16.1.2 Primary and unit containers

The primary and/or unit container shall bear at least the following information:

a) the words “for single use” or equivalent (such as symbol for single use, reference ISO 7000-1051); the term “disposable” shall not be used;

b) the symbol indicating that the device possesses an auto-disable function for re-use prevention as given in Figure 2;

b) the symbol indicating that the device possesses an auto-disable function for re-use prevention as given in Figure 2;

c) name and/or trade mark of the manufacturer or supplier;

d) the word “sterile” or equivalent harmonized symbol;

e) the lot number prefixed by the word “LOT” (or equivalent harmonized symbol);

f) the expiry date by year and month, prefixed by the word “EXP” (or an equivalent harmonized symbol);

g) the description of contents including the nominal capacity and type of the needle, if included.
16.2 Secondary containers

The secondary container shall bear at least the following information:

a) the words "for single use" or equivalent (such as symbol for single use, reference ISO 7000-1051); the term "disposable" shall not be used;

b) the symbol indicating that the device possesses an auto-disable function for re-use prevention as given in Figure 2;

c) name and/or trade mark and address of the manufacturer or supplier;

d) the words "sterile" or equivalent harmonized symbol;

e) the lot number prefixed by the word "LOT" (or equivalent harmonized symbol);

f) the expiry date by year and month, prefixed by the word "EXP" (or an equivalent harmonized symbol);

g) the description of the contents including the nominal capacity and type of the needle, if included;

h) a warning to check the integrity of the primary container before use;

i) a warning not to recap the needle, or equivalent symbol;

j) any information for handling, storage and disposal of syringe;

NOTE An example of an illustration of safe disposal of a syringe is given in Figure 3.

k) the instructions for use, including the instructions appropriate to the auto-disable feature; alternatively, the instructions for use can be indicated on a separate insert;

l) the number of units per secondary container.

16.3 Storage containers

The storage container shall bear at least the following information:

a) the description of contents including the nominal capacity and the type of needle, if included;

b) the symbol indicating that the device possesses an auto-disable function for re-use prevention is given in Figure 2;

c) the lot number prefixed by the word "LOT" (or equivalent harmonized symbol);

d) the expiry date by year and month, prefixed by the word "EXP" (or an equivalent harmonized symbol);

e) the word "sterile" or equivalent harmonized symbol;

f) name and/or trade mark and address of the manufacturer or supplier;

g) any information for handling, storage and transportation of the contents (or equivalent symbols as given in ISO 7000 or ISO 780);

h) the number of units per storage container.
16.4 Transport wrapping

If a storage container is not used but the secondary containers are wrapped for transportation, the information required by 16.3 shall either be marked on the wrapping or shall be visible through the rapping.

Figure 2 — Graphical symbol for the auto-disable function (ISO 7000-2655)

Figure 3 — Example of a diagram to illustrate safe disposal of syringe
Annex A
(normative)

Method for preparation of extracts

A.1 Principle
The syringe, including the needle (if available), is filled with water in order to extract soluble components.

A.2 Apparatus and reagents
A.2.1 Freshly distilled or deionized water, of grade 3 in accordance with ISO 3696:1987.
A.2.2 Laboratory borosilicate glassware.

A.3 Procedure
A.3.1 Fill at least three syringes to the nominal capacity graduation line with water (A.2.1), expel air bubbles and maintain the syringes, including the needle, at a temperature of \((37^\circ C)\) for 8 h\(\pm\)5 min. Eject the contents and combine them in a vessel made of borosilicate glass (A.2.2).
A.3.2 Prepare the control fluid by reserving a portion of the unused water (A.2.1).
Annex B
(informative)

Test method for forces required to operate plunger

B.1 Principle

A mechanical testing machine (see Figure G.1 in ISO 7886-1:1993) is used to move the syringe plunger and to aspirate and expel water, whilst the force exerted and the plunger travel are recorded.

B.2 Apparatus and reagents

B.2.1 Mechanical testing machine, capable of measuring and continuously recording force and travel with an accuracy of 1 % of full scale reading and having means for attaching the syringe to be tested.

B.2.2 Reservoir for testing non-integrated needle type, open to the atmosphere, and having tubing of inside diameter (2.7 ±0.1) mm for connecting it to the syringe to be tested.

B.2.3 Reservoir for testing integrated needle type, open to the atmosphere, and having tubing of inside diameter (2.7 ±0.1) mm closed with a rubber stopper for connecting it to the needle of the syringe to be tested.

B.2.4 Water.

B.3 Procedure

B.3.1 Remove the syringe from the package and mount it in the testing machine (B.2.1).

B.3.2 Connect the syringe using one of the following procedures.

— Testing non-integrated needle type.

Connect the nozzle of the syringe to the tubing of the reservoir (B.2.2). Add water (B.2.4) at (23 ± 2) °C to the reservoir and displace any air from the tubing. Maintain the water and the syringe at this temperature. Adjust the relative positions of the syringe and reservoir so that the water level in the reservoir is approximately level with the mid-point of the syringe barrel.

— Testing integrated needle type.

Connect the needle of the syringe to the rubber stopper of the tubing of the reservoir (B.2.3). Add water (B.2.4) at (23 ± 2) °C to the reservoir and displace any air from the tubing. Maintain the water and the syringe at this temperature. Adjust the relative positions of the syringe and reservoir so that the water level in the reservoir is approximately level with the mid-point of the syringe barrel.

B.3.3 Zero the recorder and set the testing machine (B.2.1) so that it can apply compressive and tensile forces without re-setting.

B.3.4 Start the testing machine so that it withdraws the syringe plunger, at a rate of (100 ± 5) mm/min, to the graduation line that indicates the nominal capacity, thereby drawing water from the reservoir to the syringe. Stop the plunger travel and readjust the recorder to zero. Wait 30 s.
NOTE The presence of air in the syringe nozzle or needle, irrespective of whether the syringe is of the non-integrated or integrated needle type, will not affect the results of the test.

B.3.5 Reverse the testing machine and return the plunger so that the fiducial line reaches the zero graduation line, thereby expelling the water from the syringe into the reservoir.

B.4 Calculation of results

B.4.1 From the recording of plunger travel and force applied (see Figure G.2 in ISO 7886-1:1993), determine the following:

a) the force required \((F_s) \) to initiate movement of the plunger, i.e. the peak force recorded when the testing machine starts to withdraw the plunger (see B.3.4);

b) the mean force \((F) \) during return of the plunger [i.e. the estimated or integrated mean value while the testing machine is returning the plunger (see B.3.5)];

c) the maximum force \((F_{\text{max}}) \) during return of the plunger (see B.3.5);

d) the minimum force \((F_{\text{min}}) \) during return of the plunger (see B.3.5).

B.4.2 Proposed values for the forces required to operate the plunger are given in Table B.1.

<table>
<thead>
<tr>
<th>Nominal capacity of syringe (V) ml</th>
<th>Maximum initial force (F_s) N</th>
<th>Mean force (F) N</th>
<th>Maximum force (F_{\text{max}}) N</th>
<th>Minimum force (F_{\text{min}}) N</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V < 2)</td>
<td>10</td>
<td>9</td>
<td>2 x measured (F + 1.5N) whichever is the higher</td>
<td>0.5 x measured (F - 1.5N) whichever is the lower</td>
</tr>
</tbody>
</table>

B.5 Test report

The test report shall contain at least the following information:

a) the identity and nominal capacity of syringe;

b) the force \((F_s) \) required to initiate movement of the plunger, expressed in newtons;

c) the mean force \((F) \) during return of the plunger, expressed in newtons;

d) the maximum force \((F_{\text{max}}) \) during return of the plunger, expressed in newtons;

e) the minimum force \((F_{\text{min}}) \) during return of the plunger, expressed in newtons;

f) the date of testing
Annex C
(normative)

Test method for testing auto-disable feature

C.1 Principle
After delivery of a full dose of vaccine or distilled water under normal conditions of use, a mechanical testing machine or pressure device is used to move the plunger out of the barrel and the force required to move the plunger and/or to destroy the barrel is measured and recorded.

C.2 Apparatus

C.2.1 Device for applying an axial force, up to a maximum of 100 N while moving the plunger with a speed of 100 mm/min.

C.2.2 Device to apply a back-pressure, at a rate of approximately 100 kPa/min for an applied pressure of up to 300 kPa.

C.3 Procedure

C.3.1 Deliver a full dose of vaccine or distilled water under normal conditions of use. Using the test device (C.2.1) impose an increasing force on the plunger to withdraw it from the barrel using the thumb plate or the plunger as the grip. Move the plunger at a speed of 100 mm/min. Increase the force to a maximum of 100 N or until the plunger is capable of delivering a second dose from the same syringe.

C.3.2 Using the test device (C.2.2), subject the syringe needle to a slowly increasing back pressure at approximately 100 kPa/min up to 300 kPa, and record whether the piston seal can be driven back in the syringe barrel.

C.4 Test report
The test report shall contain at least the following information:

a) the identity and nominal capacity of the syringe;
b) the maximum force applied;
c) the maximum pressure applied;
d) the date of testing.
Bibliography

A-1 BIS CERTIFICATION MARKING

A-1.1 The product may also be marked with the Standard Mark.

A-1.1.1 The use of the Standard Mark is governed by the provisions of the *Bureau of Indian Standards Act*, 1986 and the Rules and Regulations made thereunder. The details of conditions under which the licence for the use of the Standard Mark may be granted to manufacturers or producers may be obtained from the Bureau of Indian Standards.
International Standard

ISO 9626:1991 Stainless steel needle tubing for manufacturers of medical devices

The standard also makes a reference to the BIS Certification Marking of the product. Details of which is given in National Annex A.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated expressing the result of a test or analysis, shall be rounded off in accordance with IS 2:1960 'Rules for rounding off numerical values (revised)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of the these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard alongwith amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Catalogue' and 'Standards; Monthly Additions'.

This Indian Standard has been developed from Doc No.: MHR 16 (0060).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
</table>

| BUREAU OF INDIAN STANDARDS |

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 2323 6131, 2323 3375, 2323 9402 Website: www.bis.org.in

Regional Offices:
Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg NEW DELHI 110002
Eastern : 1/14 C.I.T. Scheme VII M, V.I.P. Road, Kankurgachi KOLKATA 700054
Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160022
Southern : C.I.T. Campus, IV Cross Road, CHENNAI 600113
Western : Manakalaya, E9 MIDC, Marol, Andheri (East) MUMBAI 400093
Branches : AHMEDABAD, BANGALORE, BHOPAL, BHUBANESHWAR, COIMBATORE, DEHRADUN, FALNIDABAD, GHAZIABAD, GUWAHLATI, HYDERABAD, JAIPUR, KANPUR, LUCKNOW, NAGPUR, PARWANOO, PATNA, PUNE, RAJKOT, THIRUVANANTHAPURAM, VISAKHAPATNAM.

PRINTED BY THE GENERAL MANAGER, GOVT. OF INDIA PRESS, NASHIK-422 006