Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

Indian Standard
MECHANICAL VIBRATION — EVALUATION OF MACHINE VIBRATION BY MEASUREMENTS ON ROTATING SHAFTS
PART 3 COUPLED INDUSTRIAL MACHINES

ICS 17.160

© BIS 2013
BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

May 2013
NATIONAL FOREWORD

This Indian Standard (Part 3) which is identical with ISO 7919-3 : 2009 ‘Mechanical vibration — Evaluation of machine vibration by measurements on rotating shafts — Part 3: Coupled industrial machines’ issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on the recommendation of the Mechanical Vibration and Shock Sectional Committee and approval of the Mechanical Engineering Division Council.

This standard was originally published as IS 14773 (Part 3) : 2000 ‘Mechanical vibration of non-reciprocating machines — Measurements on rotating shafts and evaluation criteria: Part 3 Coupled industrial machine’ which was identical with ISO 7919- 3 : 1996. As ISO 7919 has been technically revised in 2009 the committee has decided to adopt this standard in a single number as IS/ISO 7919-3 : 2009 by superseding IS 14773 (Part 3) : 2000 and after the publication of this standard IS 14773 (Part 3) : 2000 shall be treated as withdrawn.

The text of ISO Standard has been approved as suitable for publication as an Indian Standard without deviations. Certain terminology and conventions are, however, not identical to those used in Indian Standards. Attention is particularly drawn to the following:

a) Wherever the words ‘International Standard’ appear referring to this standard, they should be read as ‘Indian Standard’.

b) Comma (,) has been used as a decimal marker while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

In this adopted standard, reference appear to the following International Standard for which Indian Standard also exists. The corresponding Indian Standard which is to be substituted in its place is listed below along with its degree of equivalence for the edition indicated:

<table>
<thead>
<tr>
<th>International Standard</th>
<th>Corresponding Indian Standard</th>
<th>Degree of Equivalence</th>
</tr>
</thead>
</table>

For the purpose of deciding whether a particular requirement of this standard is complied with the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2 : 1960 ‘Rules for rounding off numerical values (revised)’. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.
1 Scope

This part of ISO 7919 gives guidelines for applying evaluation criteria of shaft vibration under normal operating conditions, measured at or close to the bearings of coupled industrial machines. These guidelines are presented in terms of both steady running vibration and any amplitude changes which can occur in these steady values. The numerical values specified are not intended to serve as the only basis for vibration evaluation since, in general, the vibratory condition of a machine is assessed by consideration of both the shaft vibration and the associated structural vibration.

This part of ISO 7919 applies to coupled industrial machines with fluid-film bearings, having maximum continuous rated speeds in the range 1 000 r/min to 30 000 r/min and not limited by size and power, comprising

— steam turbines,

— turbocompressors,

— turbogenerators,

— turbofans,

— electric drives and associated gears, where relevant, and

— rotodynamic pumps (turbo pumps).

The information relating to pumps provided in this part of ISO 7919 complements that given in ISO 10816-7. In particular, the conditions for in-situ operation, performing acceptance tests and the influence of bearing clearance given in ISO 10816-7 shall be taken into account when evaluating the shaft vibration of pumps.

This part of ISO 7919 is neither applicable to land-based steam turbine-generator sets for power stations with outputs greater than 50 MW (see ISO 7919-2), nor machine sets in hydraulic power generating and pumping plants with outputs of 1 MW or greater (see ISO 7919-5).

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 7919-1, Mechanical vibration of non-reciprocating machines — Measurements on rotating shafts and evaluation criteria — Part 1: General guidelines
3 Measurement procedures

The measurement procedures to be followed and the instrumentation which shall be used are specified in ISO 7919-1.

In industrial machines, shaft vibration relative to the bearing is normally measured. Therefore, unless stated otherwise, this part of ISO 7919 always refers to relative vibration displacement. In view of the relatively high rotational speeds involved with industrial machines, measuring methods using non-contacting transducers are most common and are generally preferred on rotor elements with operating speeds of 3 000 r/min and above. For monitoring purposes the measuring system shall be capable of covering overall vibration up to a frequency equivalent to 2,5 times the maximum service speed. However, it should be noted that for diagnostic purposes it might be desirable to cover a wider frequency range.

4 Evaluation criteria

The criteria for vibration magnitude, changes in vibration magnitude and operational limits are given in Annex A.

The vibration magnitude is the higher value of the peak-to-peak displacement measured in two selected orthogonal measurement directions. The values presented are the result of experience with machinery of this type and, if due regard is paid to them, acceptable operation can be expected. If only one measuring direction is used, care should be taken to ensure that it provides adequate information (see ISO 7919-1).

The criteria are presented for the specified steady-state operating conditions at the rated speed and load ranges. They apply for normal slow changes in load but do not apply when different conditions exist or during transient changes, for example during start-up and shut-down and when passing through resonance ranges. In these cases alternative criteria are necessary.

It should be noted that overall judgement of the vibratory state of a machine is often made on the basis of both shaft relative vibration as defined above and of measurements made on non-rotating parts (see ISO 10816-3)\[2\].
Annex A
(normative)

Evaluation criteria for relative shaft vibration of coupled industrial machines under specified operating conditions

A.1 General

Two evaluation criteria are used to assess the relative shaft vibration of coupled industrial machines, measured at or close to the bearings. One criterion considers the magnitude of the observed broad-band relative shaft vibration; the second considers changes in magnitude, irrespective of whether they are increases or decreases.

Caution should be exercised when using the criteria presented in Annex A to ensure that no contact occurs between the rotating shaft and stationary parts. Therefore, in certain cases the shaft displacement limits given in this part of ISO 7919 may exceed the available clearance. In such cases the evaluation zone limits should be adjusted accordingly.

A.2 Criterion I: Vibration magnitude at rated speed under steady operating conditions

This criterion is concerned with defining limits for shaft vibration magnitude consistent with acceptable dynamic loads on the bearings, adequate margins on the radial clearance envelope of the machine, and acceptable vibration transmission into the support structure and foundation. The maximum shaft vibration magnitude observed at each bearing is assessed against four evaluation zones established from international experience.

A.2.1 Evaluation zones

The following typical evaluation zones are defined to permit a qualitative assessment of the shaft vibration of a given machine and to provide guidelines on possible actions.

Zone A: The vibration of newly commissioned machines normally falls within this zone.

Zone B: Machines with vibration within this zone are normally considered acceptable for unrestricted long-term operation.

Zone C: Machines with vibration within this zone are normally considered unsatisfactory for long-term continuous operation. Generally, the machine may be operated for a limited period in this condition until a suitable opportunity arises for remedial action.

Zone D: Vibration values within this zone are normally considered to be of sufficient severity to cause damage to the machine.
A.2.2 Evaluation zone limits

In accordance with present accumulated experience of shaft vibration measurements in this field, the recommended values for the zone boundaries are inversely proportional to the square root of the maximum operating speed of the shaft, \(n \) (in revolutions per minute). The recommended values illustrated in Figure A.1 are derived from Equation (A.1), Equation (A.2) and Equation (A.3):

- Zone A/B boundary limit, in micrometres
 \[S_{(p-p)} = 4800 \sqrt{n} \, \mu m \]
 (A.1)

- Zone B/C boundary limit, in micrometres
 \[S_{(p-p)} = 9000 \sqrt{n} \, \mu m \]
 (A.2)

- Zone C/D boundary limit, in micrometres
 \[S_{(p-p)} = 13200 \sqrt{n} \, \mu m \]
 (A.3)

NOTE For a definition of \(S_{(p-p)} \), see ISO 7919-1.

These values are not intended to serve as acceptance specifications, which shall be subject to agreement between the machine manufacturer and the customer. However, they provide guidelines for ensuring that gross deficiencies or unrealistic requirements are avoided.

In certain cases, there can be specific features associated with a particular machine, which would require different zone boundary values (lower or higher) to be used. For example, with a tilting pad bearing it might be necessary to specify alternative vibration values, whilst in the case of an elliptical bearing different vibration criteria can apply for the directions of maximum and minimum bearing clearance. In particular, it should be recognized that the allowable vibration can be related to the journal diameter since, generally, running clearances will be greater for larger diameter bearings. Consequently different values can apply for measurements taken at different bearings on the same rotor line. In such cases, it is normally necessary to explain the reasons for this and, in particular, to confirm that the machine will not be endangered by operating with higher vibration values.

Higher values of vibration can be permitted at other measuring positions and under transient conditions, such as start-up and run-down (including passage through critical speed ranges).

A.3 Criterion II: Change in vibration magnitude

This criterion provides an assessment of a change in vibration magnitude from a previously established reference or baseline value for particular steady-state conditions. A significant increase or decrease in shaft vibration magnitude can occur which would require some action even though zone C of Criterion I has not been reached. Such changes can be instantaneous or progressive with time and can indicate that damage has occurred or be a warning of an impending failure or some other irregularity. Criterion II is specified on the basis of the change in shaft vibration magnitude occurring under steady-state operating conditions.

The reference value for this criterion is the typical, reproducible normal vibration, known from previous measurements for the specific operating conditions. If this reference value changes by a significant amount, and certainly if it exceeds 25% of the upper limit value for zone B, regardless of whether this increases or decreases the magnitude of vibration, steps should be taken to ascertain the reasons for the change. A decision on what action can be taken, if any, should then be made after consideration of the maximum value of vibration and whether the machine has stabilized at a new condition.

When Criterion II is applied, the vibration measurements being compared shall be taken at the same transducer location and orientation, and under approximately the same machine operating conditions.
It is necessary to appreciate that a criterion based on change of vibration has limited application, since significant changes of varying magnitude and rates can and do occur in individual frequency components, but the importance of these is not necessarily reflected in the broad-band vibration signal (see ISO 7919-1). For example, the propagation of a crack in a rotor can introduce a progressive change in vibration components at multiples of rotational frequency, but their magnitude might be small relative to the amplitude of the once-per-revolution rotational frequency component. Consequently, it can be difficult to identify the effects of the crack propagation by looking at the change in the broad-band vibration only. Therefore, although monitoring the change in broad-band vibration will give some indication of potential problems, it might be necessary in certain applications to use measuring and analysis equipment which is capable of determining the trends of the vector changes that occur in individual frequency components of the vibration signal. This equipment can be more sophisticated than that used for normal supervisory monitoring and its use and application requires specialist knowledge. Hence, the specification of detailed criteria for measurements of this type is beyond the scope of this part of ISO 7919.

A.4 Operational limits

For many machines, mainly those of small size or power, continuous monitoring of vibration is not necessary. However, for those machines for which continuous monitoring of vibration is employed, it is common practice to establish operational vibration limits. These limits take the form of ALARMS and TRIPS.

ALARMS: To provide a warning that a defined value of vibration has been reached or a significant change has occurred, at which remedial action may be necessary. In general, if an ALARM situation occurs, operation can continue for a period whilst investigations are carried out to identify the reason for the change in vibration and define any remedial action.

TRIPS: To specify the magnitude of vibration beyond which further operation of the machine may cause damage. If the TRIP limit is exceeded, immediate action should be taken to reduce the vibration or the machine should be shut down.

Different operational limits, reflecting differences in dynamic loading and support stiffness, may be specified for different measurement positions and directions.

A.4.1 Setting of ALARMS

The ALARM limits may vary considerably for individual machines. The values chosen will normally be set relative to a baseline value determined from experience for the measurement position or direction for that particular machine.

It is recommended that the ALARM limit be set higher than the baseline by an amount equal to 25 % of the zone boundary B/C. If the baseline is low, the ALARM may be below zone C.

Where there is no established baseline (for example, with a new machine) the initial ALARM setting should be based either on experience with other similar machines or relative to agreed acceptance values. After a period of time, the steady-state baseline value will be established and the ALARM setting should be adjusted accordingly.

If the steady-state baseline changes (for example, after a machine overhaul), the ALARM setting should be revised accordingly. Different operational ALARM settings may then exist for different bearings on the machine, reflecting differences in dynamic loading and bearing support stiffnesses.

A.4.2 Setting of TRIPS

The TRIP limits will generally relate to the mechanical integrity of the machine and be dependent on any specific design features which have been introduced to enable the machine to withstand abnormal dynamic forces. The values used will, therefore, generally be the same for all machines of similar design and would not normally be related to the steady-state baseline value used for setting ALARMS.
There can, however, be differences for machines of different design and it is not possible to give more precise guidelines for absolute TRIP limits. In general, the TRIP limit will be within zone C or zone D.

Key

- **Y** peak-to-peak shaft vibration displacement, relative to bearing (µm)
- **X** maximum operating speed of the shaft \(\times 1000 \) (r/min)

Figure A.1 — Recommended values for maximum relative displacement of the shaft as a function of the maximum service speed for coupled industrial machines
Bibliography

[2] ISO 10816-3, Mechanical vibration — Evaluation of machine vibration by measurements on non-rotating parts — Part 3: Industrial machines with nominal power above 15 kW and nominal speeds between 120 r/min and 15 000 r/min when measured in situ

[3] ISO 10816-7, Mechanical vibration — Evaluation of machine vibration by measurements on non-rotating parts — Part 7: Rotodynamic pumps for industrial applications, including measurements on rotating shafts
Bureau of Indian Standards

BIS is a statutory institution established under the *Bureau of Indian Standards Act*, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of ‘BIS Catalogue’ and ‘Standards: Monthly Additions’.

This Indian Standard has been developed from Doc No.: MED 28 (1165).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amendment No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 2323 0131, 2323 3375, 2323 9402 *Website*: www.bis.org.in

Regional Offices:

<table>
<thead>
<tr>
<th>Region</th>
<th>Address</th>
<th>Telephones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>Manak Bhavan, 9 Bahadur Shah Zafar Marg</td>
<td>2323 7617</td>
</tr>
<tr>
<td></td>
<td>NEW DELHI 110002</td>
<td>2323 3841</td>
</tr>
<tr>
<td>Eastern</td>
<td>1/14, C.I.T. Scheme VII M, V.I.P. Road, Kankurgachi</td>
<td>2337 8499, 2337 8561</td>
</tr>
<tr>
<td></td>
<td>KOLKATA 700054</td>
<td>2337 8262, 2337 9120</td>
</tr>
<tr>
<td>Northern</td>
<td>SCO 335-336, Sector 34-A, CHANDIGARH 160022</td>
<td>260 3843</td>
</tr>
<tr>
<td></td>
<td></td>
<td>260 9285</td>
</tr>
<tr>
<td>Southern</td>
<td>C.I.T. Campus, IV Cross Road, CHENNAI 600113</td>
<td>2254 1216, 2254 1442</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2254 2519, 2254 2315</td>
</tr>
<tr>
<td>Western</td>
<td>Manakalaya, E9 MIDC, Marol, Andheri (East)</td>
<td>2832 9295, 2832 7858</td>
</tr>
<tr>
<td></td>
<td>MUMBAI 400093</td>
<td>2832 7891, 2832 7892</td>
</tr>
</tbody>
</table>

Branches: AHMEDABAD. BANGALORE. BHOPAL. BHUBANESHWAR. COIMBATORE. DEHRADUN. FARIDABAD. GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR. LUCKNOW. NAGPUR. PARWANOO. PATNA. PUNE. RAJKOT. THIRUVANATHAPURAM. VISAKHAPATNAM.

Published by BIS, New Delhi