Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“जानने का अधिकार, जीने का अधिकार”
Mazdoor Kisan Shakti Sangathan
“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”
Jawaharlal Nehru
“Step Out From the Old to the New”

Indian Standard

ROAD CONSTRUCTION AND MAINTENANCE EQUIPMENT — ASPHALT MIXING PLANTS — RMINOLOGY AND COMMERCIAL SPECIFICATIONS

ICS 01.040.93:93.080.10: 93.080.20

©BIS 2009

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI110002

March 2009

Price Group 12
NATIONAL FOREWORD

This Indian Standard which is identical with ISO 15642:2003 'Road construction and maintenance equipment — Asphalt mixing plants — Terminology and commercial specifications' issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on the recommendation of the Construction Plant and Machinery Sectional Committee and approval of the Mechanical Engineering Division Council.

The text of ISO Standard has been approved as suitable for publication as an Indian Standard without deviations. Certain terminology and conventions are, however, not identical to those used in Indian Standards. Attention is particularly drawn to the following:

a) Wherever the words 'International Standard' appear referring to this standard, they should be read as 'Indian Standard'.

b) Comma (,) has been used as a decimal marker while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

The technical committee responsible for the preparation of this standard has reviewed the provisions of the following International Standard referred in this adopted standard and has decided that it is acceptable for use in conjunction with this standard:

<table>
<thead>
<tr>
<th>International Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 536</td>
<td>Road construction machines — Asphalt mixing plants — Safety requirements</td>
</tr>
</tbody>
</table>

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis shall be rounded off in accordance with IS 2:1960 'Rules for rounding off numerical values (revised)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.
1 Scope

This International Standard establishes the terminology, gives requirements for specifications, and lists characteristics useful for determining theoretical performances and drafting technical documents for asphalt mixing plants used in the construction and maintenance of

— motorway, road and airport pavements, and
— road system and networks.

It does not specify safety conditions, which are covered by specific standards. Equipment relating to quality control of manufactured products is defined by the standards specific to these products.

This International Standard is applicable to fixed plants during production time, whether they are transferable or not, which excludes mobile equipment for soil stabilization or retreading.

This International Standard is applicable to mixing and/or coating plants for materials treated with hydrocarbon binders

— for continuous production (see Figure A.1), and
— for batch production (see Figure A.2).

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

^N 536, Road construction machines — Asphalt mixing plants — Safety requirements

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 asphalt mix
<mixed material> homogeneous paving product consisting of sized mineral aggregates, possibly including additives and filler, collectively and uniformly coated with binder

3.2 asphalt mixing plant
set of equipment for asphalt mix production
3.3 batch
unit volume of material consisting of aggregates, binder, fines, possibly additives, contained and processed simultaneously in a batch-type mixer

3.4 batch plant
asphalt mixing plant in which the operations to prepare the material and mixing are undertaken by successive batches in a mixer which interrupts the material flow

See Figure A.5.

3.5 continuous plant
asphalt mixing plant in which the operations to prepare the material and the mixing are undertaken by continuous equipment and handling systems and in a mixer which does not interrupt the material flow

See Figure A.3.

3.6 output of a plant
quantity of material produced based on 1 h of stabilized operation, expressed in metric tons

NOTE The conventional output is expressed by referring to parameters recommended in Clause 5.

3.7 batch cycle
minimum duration, expressed in seconds, between corresponding operations of successive batches

3.8 reclaimed fines
small particles of aggregate, transported by the gases in the drums where the aggregates are dried and which are captured by the dust collectors

See Figure A.14.

3.9 imported filler
small particles of material other than sand or reclaimed fines and used as an ingredient of asphalt mix

3.10 residual water
water contained in the aggregate after drying

NOTE The residual water content is expressed as a percentage of the dry aggregate mass.

3.11 container
any type of bin, hopper box or tank capable of holding of constituent materials

3.12 continuous-volume dosing unit
device for proportioning the constituents in which the flow is determined by the opening height of a gate and/or the belt speed

NOTE A special device may be used to permanently check the presence of ingredients on the belt.
3.13 continuous-mass dosing unit
device for proportioning the constituents in which the mass flow is obtained by the belt speed multiplied by the mass of constituent materials spread over 1 m of the belt or measuring system of the screw feeder

See Figure A.7 c).

3.14 batch-mass dosing unit
device for proportioning in cycles the constituent materials in which the quantity delivered is determined by a weighing apparatus

See Figure A.7 a) and b).

3.15 last runnings
that quantity of ingredients delivered by the feeder but not yet measured by the weighing instrument

3.16 screening device
equipment used to classify and separate material particles by sizes passing through the grate openings

See Figure A.9.

3.17 circulation of gases
heated air flow providing transfer of heat to, and moisture from, material in a dryer

NOTE The respective directions of air flow and material flow in a dryer are said to be
— parallel-flow if they progress in the same direction (see Figure A.11), and
— counter-flow if they progress in opposite directions (see Figure A.12).

3.18 drum dryer
equipment used to dry and heat aggregates

See Figure A.8.

3.19 RAP drum dryer
equipment used to dry and heat reclaimed asphalt pavements (RAP)

3.20 drum dryer-mixer
combination drum dryer and mixer used to dry and heat aggregates, possibly including additives and fillers, and subsequently mixing them with binder to produce asphalt mix

3.21 drum dryer-mixer with recycling capability
drum dryer-mixer having the ability to include RAP in the mixing process of asphalt mix production

3.22 mixer
pug mill
equipment used to homogenize and evenly coat constituent materials with additives or binder using a set of tools to agitate and displace the material bed

See Figures A.4 and A.10.
3.23 dry mixing time
duration from introduction of dry constituents until introduction of liquid constituents

3.24 wet mixing time
duration from introduction of liquid constituent until material begins to leave the mixing region

3.25 total mixing time
sum total of dry mixing time and wet mixing time

3.26 dwell time
duration material remains in a mixer

3.27 anti-segregation hopper
container receiving the material when there is a change of movement in the material in order to reduce the dynamic effect which might cause segregation

NOTE The hoppers are generally arranged at the output of the mixers, the dryer-mixer drums and the conveyors.

3.28 batching accuracy
relative deviation of the batched portion from the programmed value, expressed as a percent

NOTE Batching accuracy is expressed by the formula

\[
\frac{m_a - m}{m} \times 100 \%
\]

where

- \(m \) is the specified mass for batching;
- \(m_a \) is the real value of a mass received in a batching process.

4 Descriptions of coating and/or mixing plants

4.1 Functions of the plant

The plant shall be capable of ensuring the following;

- storage and charging of aggregates;
- measuring out of aggregates;
- drying and heating of aggregates at a preset temperature;
- removal of dust from the gases emitted from the dryer;
- processing of gases from drying and heating so as to recover the fines, and secondly, limit the atmospheric pollution (see Figure A.14);
- re-introduction of reclaimed fines (if available);

1) Refers to asphalt mixing plants for batch production.
— storage and measuring out of hot binders;
— measuring out of hot aggregates;
— mixing of constituents to obtain a homogeneous and uniformly coated product;
— handling and storage of mixed materials (see Figure A.15);
— storage of fuels for heater used for heating the binder tanks and installations.

These functions may be ensured by plants operating continuously or using a batch system.

4.2 Components of asphalt mixing plants

Asphalt mixing plants may consist of the following components (see Figures A.1 to A.3):
— cold feed bins;
— dosing units for measuring out aggregates, situated underneath the bin outlets;
— conveyor for moving aggregates to a dryer;
— vibrating screen

2

;
— aggregate dosing unit

2

;
— dryer or dryer-mixer;
— dust collector;
— installation for re-introduction of reclaimed fines to the aggregates leaving dryer (if available);
— filler silo with feeder

2

) or dosing unit

2

;
— elevator for moving aggregates to a feed bin or vibrating screen

1

;
— binder tank;
— fuel (oil) tanks and installation for heating of binder tank and dryer's burner supply;
— vibrating screen;
— hot aggregate storage bins

1

;
— aggregate weighing unit

1

;
— binder weighing unit

1

;
— filler weighing unit

1

;
— batch mixer

1

;
— skip or drag slat conveyor for mixed material handling;
— mixed material holding or storage bin(s);
— feed bin

3

;
— binder dosing unit

2

;
— continuous mixer

3

;
— batcher;
— control station.

2) Refers to asphalt mixing plants for continuous production.
4.3 Additional equipment

The coating and/or mixing plants for materials treated with hot hydrocarbon binders may be completed by equipment to recycle reclaimed asphalt pavements (RAP) (see Figure A.12).

They shall ensure

— handling and batching of RAP, and
— drying and heating of these RAPs.

This equipment may be:

-- installed near the coating plant; in this case, the dried and heated RAP are re-inserted at a specific point in the production cycle;
— installed as a complement to a coating plant in continuous production; in this case, the cold RAP proportioned by mass, shall be introduced in a specific zone of the rotary drum by means of a special device for charging recycled products (see Figure A.11); or
— an RAP drum with hot air circulation, installed near to an aggregate dryer drum.

The RAP and the new heated aggregates are put together on leaving their respective drums and processed in a continuous mixer. Each of the aggregates has previously been continuously fed either by volume or by mass.

4.4 Mastic asphalt production plants

These are of the same design as batch production plants, but they are particularly characterized by the fact that the materials are processed at higher temperatures (up to 250 °C).

4.5 Control of plant operation

4.5.1 Types of the control plant operational control

The following types of operation are possible:

— automatic;
— semi-automatic;
— manual.

4.5.2 Automatic operation

Automatic control shall ensure the following:

a) receiving the production program(s);

b) storing in the memory
 — the type and quantity of each of the constituent materials, and
 — the production volume required;

c) full control of the plant operation and product manufacture without operator intervention, except perhaps for emptying the mixer.
Production shall be monitored by the operator who has one or more screens available displaying, in particular

— the quantities of constituent materials proportioned,
— the system status (e.g. in the form of a flow diagram),
— the procedure for material preparation and mixing operations, and possibly
 — a printer to print out the different sections under automation, and
 — information such as the mass of storage containers or truck, and
any other information required to operate the plant.

4.5.3 Semi-automatic operation

The operator carries out

— display of composition,
— cycle startup, and
— opening and closing of mixer.

The remaining operations are automated.

4.5.4 Manual operation

All basic operations are controlled by the operator. Manual control shall be capable of ensuring the operation of the facility in the event of a failure in the automatic system. It may also be used to adjust equipment settings.

4.6 Automatic function controls

This refers to devices providing the relationship between two or more operating parameters. The automatic controls cover the following:

— proportioning can only take place if the corresponding ingredient is present in the feed device of this proportioner;
— mixing can only be undertaken if all constituent materials have been proportioned and if each batched quantity corresponds to the quantity programmed, within the accuracy;
— transfer of materials from one machine to another can only be undertaken if the machine receiving it is in operation or ready to receive the materials.

These automatic controls have actions which take priority over orders coming from the plant automation system. Only the plant operator can, by voluntary action, override an automatic control instruction after this has been given.

4.7 Control station

A control station specifically contains the following:

— indicators of operational parameters;
— display screens;
— tools to interface with the automation;
— possibly a flow diagram;
— control units to switch to manual operation (safety);
— a means to monitor visually the asphalt mix loading into dump-haul truck.

5 Output of an asphalt mixing plant

Conventionally fixed parameters intended for calculating the output of an asphalt mixing plant are as follows.

a) Size of aggregate: 0 mm to 32 mm.

b) Granular class of aggregates to process in plants, comprising a maximum of
 — reclaimed fines + imported filler 10 % of total mass of aggregates to process without binder(s),
 — sands 0 mm to 2 mm 35 % of total mass of aggregates to process without binder(s),
 — fines content of below 0,09 mm no more than 10 % of sand mass.

c) Apparent density of non-treated cold aggregates (except 90 urn powders) up to 1 600 kg/m³.

d) Apparent density of materials treated with hydrocarbon binders up to 1 800 kg/m³.

 NOTE The apparent density of materials treated with hydrocarbon binders decreases because of their swell on output from mixers and coaters.

e) Temperature to treat aggregates 10 °C to 20 °C.

f) Rise in temperature of aggregates treated in the plant 140 °C to 180 °C.

g) Residual water content of aggregates hot mixed in the plant up to 0,5 %.

h) Temperature of binder (bitumen 60/70) used in the plant 160 °C to 180 °C.

i) Hot binder content no more than 7,5 % of total mass of aggregates.

j) Calorific value of fuel typically 42,7 MJ/kg (for gas oil).

k) Air humidity up to 90 %.

l) Ambient temperature 15 °C to 25 °C.

m) Altitude less than 400 m.

n) Throughput of screens
 — passing fractions at 2 mm mesh 30 % to 50 %,
 — outsized particles 10 %.
6 Commercial specifications

6.1 Technical characteristics of the components of asphalt mixing plant

6.1.1 Cold feed bins

Specify the following:

a) number of hoppers and/or bins

b) maximum volume (heaped material) of each hopper and/or bin \(m^3 \)

c) output of each weigh-belt:
 - minimum \(t/h \)
 - maximum \(t/h \)

d) mass \(kg \).

6.1.2 Drum dryers, drum dryer-mixers, RAP drum dryers, and drum dryer-mixers with recycling capability

Specify the following:

a) type of aggregate dryer:
 - drum dryer with counterflow circulation,
 - drum dryer-mixer with counterflow or parallel flow circulation of gases,
 - RAP drum dryer with parallel flow circulation of gases,
 - RAP drum dryer with counterflow circulation of gases, or
 - drum dryer-mixer with recycling capability and with twin drum and counterflow circulation of gases;

b) maximum output of aggregates \(t/h \)

c) minimum output of aggregates \(t/h \)

d) horizontal tilt of drum degrees

e) maximum flow of gases through drum \(Nm^3/h^3 \)

f) minimum flow of aggregates\(^4\) to process for
 - a water content of 3 % \(t/h \)
 - a water content of 5 % \(t/h \)

g) mass \(kg \)

h) drum overall diameter \(m \)

i) drum overall length \(m \)

\(^3\) Nm\(^3\) or standard cubic metre: volume of gas in relation to normal conditions of 0 °C and 1,013 x \(10^5 \) Pa. \(^4\) Including reclaimed fillers recovered by the dust collector.
6.1.3 Dust collectors

Specify the following:

— maximum acceptable temperature of gases to process °C

6.1.3.1 Hydraulic collectors

Specify the following:

— capacity of settling tank m³
— maximum concentration of sludge in wash water leaving the settling tank g/dm³
— mass kg

6.1.3.2 Textile collectors

Specify the following:

— capacity at gas temperature of 125 °C m³/h
— total filtering area m²
— active filtering area after deduction of cleaning area m²
— maximum speed through textile m/min
— maximum acceptable load loss kg
— textile cleaning system
— mass kg

6.1.3.3 Cyclone collectors

Specify the following:

— type of cyclone collector
 — one-stage dust collectors composed of batteries,
 — two-stage dust collector composed of cyclone batteries and multicyclone batteries
— first stage efficiency %
— second stage efficiency %
— mass kg
6.1.3.4 Stack

Specify the following:

— height \(m \)
— diameter \(m \)

6.1.4 Mixture preparation and mixing units

6.1.4.1 Hot elevator

Specify the following:

— maximum capacity of aggregates \(t/h \)
— mass \(kg \)

6.1.4.2 Hot screening units

Specify the following:

— number of screens
— number of levels per screen
— size of mesh on each level \(mm \)
— screening area of each level \(m^2 \)
— maximum capacity\(^5\) at sand level \(t/h \)
— maximum capacity\(^5\) of all levels \(t/h \)
— mass \(kg \)

6.1.4.3 Hot aggregate storage silo

Specify the following:

— number of compartments
— maximum load of each compartment \(t \)
— insulation of hot aggregate storage
— mass \(kg \)

The available capacity of each compartment shall take into account the position of overflow openings and the angle of natural repose of aggregates as they arrive in the silo.

6.1.4.4 Filler silos

Specify the following:

— number of silos
— maximum capacity of each silo \(t \)

5) For predetermined mixtures.
— output from each feeder at each bin base:
 — minimum $t/\text{h or m}^3/\text{h}$
 — maximum $t/\text{h or m}^3/\text{h}$
 — mass kg

6.1.4.5 **Filler elevator**

Specify the following:

— capacity t/h

6.1.4.6 **Liquid binder storage tanks**

Specify the following:

— number of tanks
— working volume of each tank m^3
— maximum internal operating pressure MPa
— output from each distributor of each tank:
 — minimum $t/\text{h or m}^3/\text{h}$
 — maximum $t/\text{h or m}^3/\text{h}$
— insulation of hot binder storage tanks and transfer equipment
 — mass kg

6.1.4.7 ** Constituent material proportioners**

Specify the following for each constituent material (aggregates, powders, binder and additives).

a) Batch system:

— number and destination of containers
— maximum load of each container kg
— maximum range of each weighing instrument kg
— batching accuracy:
 — aggregates $\%$
 — filler $\%$
 — binder $\%$
 — additives $\%$
 — mass kg

b) Continuous system (by volume or mass)

— output of dosing units $t/\text{h if by mass, or m}^3/\text{h by volume}$
— mass kg
6.1.4.8 Mixers

Specify the following:

- working capacity of mixer\(^6\)) \(\text{dm}^3\) or kg
- hourly output in batch system (discontinuous production) \(\text{t/h}\)
- hourly output in continuous production \(\text{t/h}\)
- mass \(\text{kg}\)

6.1.4.9 Handling and storage of mixed materials

Specify the following.

a) Handling equipment:

- capacity of skip \(\text{m}^3\) and \(\text{dt}\)
- capacity of batcher \(\text{m}^3\) and \(\text{t}\)
- output of drag slat conveyor \(\text{t/h} \text{m}^3\)
- capacity of direct unloading hopper and \(\text{t}\)
- mass \(\text{kg}\)

b) Storage of mixed materials:

- numbers of storage bins
- net tonnage capacity of each bin \(\text{t}\)
- clearance height under bins
- insulation of bins \(\text{m}\)
- mass \(\text{kg}\)

NOTE: Tonnages valid for an angle of repose equal to 27° and an apparent density of material equal to 1.8 \(\text{t/m}^3\).

6.1.4.10 Heating system

Specify whether oil or electric heating system, and the following:

- fuel type
- maximum capacity \(\text{kW}\)
- volume of fuel storage tank \(\text{m}^3\)
- mass \(\text{kg}\)

\(^6\) Defined as a volume or mass of constituting materials for one batch.
6.1.4.11 Control station

Specify the following overall dimensions:
— length
— width
— height
— mass

6.1.4.12 Electric heated binder tanks

Specify the following:
— heating capacity per tank
— heating capacity for pipes

6.1.4.13 Cold RAP system

Specify the following:

a) cold feed bins:
 — number
 — capacity

b) weighing system:
 — weigh-belt
 — weighing hopper

c) conveying system capacity

d) batch scale

e) maximum allowable moisture content

f) water vapour extraction:
 — diameter
 — insulation (material, thickness)

6.1.4.14 Hot RAP system

Specify the following:

a) cold feed bins:
 — number
 — capacity

b) weighing system:
 — weighing hopper
 — differential weighing
c) RAP drum:
 — type
 — diameter m
 — length m
 — maximum allowable RAP temperature °C

d) hot RAP storage silo(s):
 — capacity m³
 — heating
 — insulation (material, thickness)

6.1.5 Belt conveyors
Specify the following:
 — number of belt conveyors
 — length m
 — width m
 — speed m/s
 — capacity t/h

6.2 Global characteristics for plants to be specified by the manufacturer
Specify the following:
 a) operating mode of a plant
 — continuous production
 — batch production
 b) maximum grading of aggregates to be processed mm
 c) plant output at aggregate humidity of 5 % and mixed material temperature of 180 °C t/h
 d) power
 — power installed kW
 — simultaneous power use %
 — control system:
 — hardware
 — software
 — data transfer
 e) fuel consumption per ton of product l
IS/ISO 15642 : 2003

f) control system
 — automatic
 — manual

gh) fitting with control station

i) overall dimensions
 — length m
 — width m
 — height m

j) total mass Kg
Annex A
(informative)

Examples of plants and sub-assemblies
Key

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cold feed bins, pre-batching and collecting belts</td>
</tr>
<tr>
<td>2.1</td>
<td>drum dryer with charging conveyor</td>
</tr>
<tr>
<td>2.2</td>
<td>burners for generation of hot gases</td>
</tr>
<tr>
<td>3.1</td>
<td>primary dust collector</td>
</tr>
<tr>
<td>3.2</td>
<td>dust filtering</td>
</tr>
<tr>
<td>3.3</td>
<td>exhaust fan</td>
</tr>
<tr>
<td>3.4</td>
<td>stack</td>
</tr>
<tr>
<td>4</td>
<td>continuous mixer</td>
</tr>
<tr>
<td>5.1</td>
<td>charging conveyor</td>
</tr>
<tr>
<td>5.2</td>
<td>mixed material storage bins</td>
</tr>
<tr>
<td>6.1</td>
<td>own filler silo</td>
</tr>
<tr>
<td>6.2</td>
<td>imported filler silo</td>
</tr>
<tr>
<td>6.3</td>
<td>filler elevator</td>
</tr>
<tr>
<td>6.4</td>
<td>belt-weighting unit</td>
</tr>
<tr>
<td>7.1</td>
<td>heated binder tank</td>
</tr>
<tr>
<td>7.2</td>
<td>binder pump</td>
</tr>
<tr>
<td>7.3</td>
<td>fluid meter</td>
</tr>
<tr>
<td>8.1</td>
<td>special components silo</td>
</tr>
<tr>
<td>8.2</td>
<td>special components weighing unit</td>
</tr>
<tr>
<td>9</td>
<td>operation centre, electrical equipment and control</td>
</tr>
<tr>
<td>10</td>
<td>air blower</td>
</tr>
<tr>
<td>11</td>
<td>fuel tank</td>
</tr>
</tbody>
</table>

Drying and heating system:

- 2.1, 2.2

Dust removal system:

- 3.1

Mixed material storage assembly:

- 5.1, 5.2

Filler distribution assembly:

- 6.1, 6.2

Binder storage assembly:

- 7.1, 7.2

System for adding of special components:

- 8.1, 8.2

Figure A.1 — Asphalt mixing plant for continuous production
Key

1. cold feed bins, pre-batching and collecting belts
2.1 drum dryer with charging conveyor
2.2 burners for generation of hot gases

3.1 primary dust collector
3.2 dust filtering
3.3 exhaust fan
3.4 stack

4.1 hot aggregate elevator
4.2 screen
4.3 hot aggregate silo/bin
4.4 oversize rejects
4.5 aggregate-weighting unit
4.6 filler-weighting unit
4.7 binder-weighting unit
4.8 batch mixer
4.9 mixing tower dust extraction system

5.1 charging conveyor
5.2 mixed material storage bins

6.1 own filler silo
6.2 imported filler silo
6.3 filler elevator
6.4 weight-metering unit

7.1 heated binder tank
7.2 binder pump

8.1 special components silo
8.2 special components weighing unit

9. operation centre, electrical equipment and control
10. air blower
11. fuel tank

Figure A.2 — Asphalt mixing plant for batch production
Key
1 cold feed bins, pre-batching and collecting belts
2 recycling bin
3 belt conveyor
4 drum dryer-mixer (parallel flow)
5 dust collector
6 drag slat conveyer
7 mixed material storage bin
8 receiving hopper
9 imported filler dosing unit
10 imported filler silo
11 binder dosing unit
12 binder tank

Figure A3 — Asphalt mixing plant for continuous production with drum dryer-mixer
b) Drum dryer in one housing with trough mixer

Key
1 belt conveyors
2 dryer counterflow
3 dryer parallel flow
4 trough mixer
5 coating drum mixer or could be replaced by a dryer and a twin shaft mixer
6 drag slat conveyor
7 binder dosing unit

a Aggregates from the cold-feed bins.
b Dust to the collector.
c Mixed materials to the storage bins.

Figure A.4 — Different design of asphalt mixing plants for continuous production
<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cold feed bins, pre-batching and collecting belts</td>
</tr>
<tr>
<td>2.1</td>
<td>drum dryer with charging conveyor</td>
</tr>
<tr>
<td>2.2</td>
<td>burners for generation of hot gases</td>
</tr>
<tr>
<td>3.1</td>
<td>primary dust collector</td>
</tr>
<tr>
<td>3.2</td>
<td>dust filtering</td>
</tr>
<tr>
<td>3.3</td>
<td>exhaust fan</td>
</tr>
<tr>
<td>3.4</td>
<td>stack</td>
</tr>
<tr>
<td>4.1</td>
<td>hot aggregate elevator</td>
</tr>
<tr>
<td>4.2</td>
<td>screen</td>
</tr>
<tr>
<td>4.3</td>
<td>hot aggregate silo/bin</td>
</tr>
<tr>
<td>4.4</td>
<td>oversize rejects</td>
</tr>
<tr>
<td>4.5</td>
<td>aggregate-weighing unit</td>
</tr>
<tr>
<td>4.6</td>
<td>filler-weighing unit</td>
</tr>
<tr>
<td>4.7</td>
<td>binder-weighing unit</td>
</tr>
<tr>
<td>4.8</td>
<td>batch mixer</td>
</tr>
<tr>
<td>4.9</td>
<td>mixing tower dust extraction system</td>
</tr>
<tr>
<td>5.1</td>
<td>charging weighing unit</td>
</tr>
<tr>
<td>5.2</td>
<td>mixed material storage bins</td>
</tr>
<tr>
<td>6.1</td>
<td>own filler silo</td>
</tr>
<tr>
<td>6.2</td>
<td>imported filler silo</td>
</tr>
<tr>
<td>6.3</td>
<td>filler elevator</td>
</tr>
<tr>
<td>6.4</td>
<td>filler receiver</td>
</tr>
<tr>
<td>7.1</td>
<td>heated binder tank</td>
</tr>
<tr>
<td>7.2</td>
<td>binder pump</td>
</tr>
<tr>
<td>8.1</td>
<td>granulated asphalt dosing unit</td>
</tr>
<tr>
<td>8.2</td>
<td>granulated asphalt elevator</td>
</tr>
<tr>
<td>8.3</td>
<td>drum with charging chute</td>
</tr>
<tr>
<td>8.4</td>
<td>burners for generation of hot gases</td>
</tr>
<tr>
<td>8.5</td>
<td>intermediate receiver</td>
</tr>
<tr>
<td>8.6</td>
<td>granulated asphalt weighing unit</td>
</tr>
<tr>
<td>8.7</td>
<td>off-take of exhaust gases directly to dust-removing system</td>
</tr>
<tr>
<td>8.8</td>
<td>off-take of exhaust gases</td>
</tr>
<tr>
<td>9.1</td>
<td>special components silo</td>
</tr>
<tr>
<td>9.2</td>
<td>special components weighing unit</td>
</tr>
<tr>
<td>10</td>
<td>operation centre, electrical equipment and control</td>
</tr>
<tr>
<td>11</td>
<td>air blower</td>
</tr>
<tr>
<td>12</td>
<td>fuel tank</td>
</tr>
</tbody>
</table>

Figure A.5 — Asphalt mixing plant for batch production with use of hot granulated asphalt
<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cold feed bins, pre-batching and collecting belts</td>
</tr>
<tr>
<td>2.1</td>
<td>drum dryer with feed conveyor</td>
</tr>
<tr>
<td>2.2</td>
<td>burners for generation of hot gases</td>
</tr>
<tr>
<td>2.3</td>
<td>drying and heating system</td>
</tr>
<tr>
<td>3.1</td>
<td>primary dust collector</td>
</tr>
<tr>
<td>3.2</td>
<td>dust filtering</td>
</tr>
<tr>
<td>3.3</td>
<td>exhaust fan</td>
</tr>
<tr>
<td>3.4</td>
<td>dust-removal system</td>
</tr>
<tr>
<td>4.1</td>
<td>hot aggregate elevator</td>
</tr>
<tr>
<td>4.2</td>
<td>screen</td>
</tr>
<tr>
<td>4.3</td>
<td>hot aggregate silo/bin</td>
</tr>
<tr>
<td>4.4</td>
<td>oversize rejects</td>
</tr>
<tr>
<td>4.5</td>
<td>aggregate-weighing unit</td>
</tr>
<tr>
<td>4.6</td>
<td>filler-weighing unit</td>
</tr>
<tr>
<td>4.7</td>
<td>mixing tower</td>
</tr>
<tr>
<td>4.8</td>
<td>binder-weighing unit</td>
</tr>
<tr>
<td>4.9</td>
<td>mixing tower dust extraction system</td>
</tr>
<tr>
<td>5.1</td>
<td>charging weighing unit</td>
</tr>
<tr>
<td>5.2</td>
<td>mixed material storage bins</td>
</tr>
<tr>
<td>6.1</td>
<td>filler distribution assembly</td>
</tr>
<tr>
<td>6.2</td>
<td>own filler silo</td>
</tr>
<tr>
<td>6.3</td>
<td>imported filler silo</td>
</tr>
<tr>
<td>6.4</td>
<td>filler receiver</td>
</tr>
<tr>
<td>7.1</td>
<td>heated binder tank</td>
</tr>
<tr>
<td>7.2</td>
<td>binder pump</td>
</tr>
<tr>
<td>8.1</td>
<td>system for adding hot granulated asphalt</td>
</tr>
<tr>
<td>8.2</td>
<td>granulated asphalt dosing unit</td>
</tr>
<tr>
<td>8.3</td>
<td>system for adding special components</td>
</tr>
<tr>
<td>8.4</td>
<td>weighed of granulated asphalt</td>
</tr>
<tr>
<td>9.1</td>
<td>steam supply conduit</td>
</tr>
<tr>
<td>9.2</td>
<td>special component silo</td>
</tr>
<tr>
<td>9.3</td>
<td>special component weighing unit</td>
</tr>
<tr>
<td>10</td>
<td>operation centre, electrical equipment and control</td>
</tr>
<tr>
<td>11</td>
<td>air blower</td>
</tr>
<tr>
<td>12</td>
<td>fuel tank</td>
</tr>
</tbody>
</table>

Figure A.6 — Asphalt mixing plant for batch production with use of a cold granulated asphalt
a) For batch production

b) For continuous production with screw feeder
c) For continuous production with weighing belt

key
1. vertical silo
2. filler weighing unit
3. load sensor
4. screw weighing feeder
5. screw feeder hinge
6. fast closing valve
7. rotary vane feeder
8. screw feeder
9. belt weighing unit
10. weighing zone

Figure A.7 — Different types of filler dosing units
Key
1 burner
2 drum dryer
a Output of hot aggregates.
b Output of gases to dust collector.
c Direction of cold flow.
d Direction of hot gas flow.
e Direction of movement of aggregates.

Figure A.8 — Drum dryer with counterflow circulation
a) Typical sizing grader with three screening surfaces

b) Vibrating screen with horizontal screening surfaces

c) Levelling sizing grader with optional working screening surfaces

Key
1 three-level screen
2 screen bypass
3 aggregate feed compartment
4 hot aggregate storage hoppers
5 selection flaps for grading levels
6 aggregate feed
7 feeder flap for levelled aggregates
8 levelled aggregate storage hoppers (except sand)

* Hot aggregates.
" Over-sized rejects.
' To aggregate weighing unit.
" To hot aggregate storage hoppers.

Figure A.9 — Vibrating screen with bin
Key
1 materials supply
2 materials discharge
3 paddles with adjustable angular position
4 discharging plug

Figure A.10 — Different type of mixers
Key
1 burner
2 recycling dryer
3 RAP material feed
4 combustion zone

a Gas flow direction.
b RAP movement direction.
c Output of gases to dust collector or dryer.
d Output of heated RAP.

Figure A.11 — Recycling dryer with parallel flow circulation of gases

Key
1 burner
2 recycling drum dryer-mixer

a Output of coated materials.
b Injection of binder
c Recycled aggregates
d Direction of flow of gases.
e Direction of movement of aggregates.
f Output of gases to dust collector.
g Natural aggregates.

Figure A.12 — Recycling drum dryer-mixer with counterflow circulation of gases
Figure A.13 — Recycling drum dryer-mixer with twin drum and counterflow circulation of gases
Figure A.14 — Different types of dust collectors with textile filtering
NOTE Binder tanks have the ability to plug if they run low on binder. An effective remedy is to fit a level indicator as shown in the example above. Other methods may be used.

Figure A.15 — Level indicator in the binder tank

Figure A. 16 — Drag slat conveyor
a) With automatic skip

b) With drag slat conveyor

Key
1 mixed material storage bins
2 automatic skip
3 direct unloading hopper
4 drag slat conveyor
5 swivel drag slat conveyor
6 receiving hopper

Figure A.17 — Handling and storage of mixed materials
Bureaub of Indian Standards

BIS is a statutory institution established under the *Bureau of Indian Standards Act*, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Catalogue' and 'Standards: Monthly Additions'.

This Indian Standard has been developed from Doc: No. MED 18 (0992).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110 002 Telephones: 2323 0131, 2323 3375, 2323 9402 Website: www.bis.org.in

Regional Offices:

<table>
<thead>
<tr>
<th>Regional</th>
<th>Office</th>
<th>Address</th>
<th>Telephones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td></td>
<td>Manak Bhavan, 9 Bahadur Shah Zafar Marg, NEW DELHI 110 002</td>
<td>2323 7617, 2323 3841</td>
</tr>
<tr>
<td>Eastern</td>
<td></td>
<td>1/14 C.I.T. Scheme VII M, V.I.P. Road, Kankurgachi, KOLKATA 700 054</td>
<td>2337 8499, 2337 8561, 2337 9120</td>
</tr>
<tr>
<td>Northern</td>
<td></td>
<td>SCO 335-336, Sector 34-A, CHANDIGARH 160</td>
<td>260 3843, 260 9285</td>
</tr>
<tr>
<td>Southern</td>
<td></td>
<td>022 C.I.T. Campus, IV Cross Road, CHENNAI 600 113</td>
<td>2254 1216, 2254 1442, 2254 2519, 2254 2315</td>
</tr>
<tr>
<td>Western</td>
<td></td>
<td>Manakalaya, E9 MIDC, Marol, Andheri (East), MUMBAI 400 093</td>
<td>2832 9295, 2832 7858, 2832 7891, 2832 7892</td>
</tr>
</tbody>
</table>

Branches: Ahmedabad, Bangalore, Bhopal, Bhubaneswar, Coimbatore, Faridabad, Ghaziabad, Guwahati, Hyderabad, Jaipur, Kanpur, Lucknow, Nagpur, Parwanoo, Patna, Pune, Rajkot, Thiruvananthapuram, Visakhapatnam.

Printed by the Manager, Govt. of India Press, Faridabad