

X

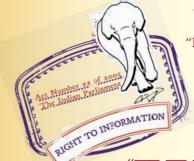
इंटरनेट

Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

"जानने का अधिकार, जीने का अधिकार" Mazdoor Kisan Shakti Sangathan "The Right to Information, The Right to Live"

"पुराने को छोड नये के तरफ" Jawaharlal Nehru "Step Out From the Old to the New"


मानक

IS 9282 (2002): Wire Ropes and Strands for Suspension Bridges [MED 10: Mechanical Engineering]

Made Available By Public.Resource.Org

 $\star \star \star \star \star \star \star$

 $\star \star \star \star \star \star \star \star$

"ज्ञान से एक नये भारत का निर्माण″ Satyanarayan Gangaram Pitroda "Invent a New India Using Knowledge"

"ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता Bhartrhari-Nītiśatakam "Knowledge is such a treasure which cannot be stolen"

IS 9282 : 2002 (Reaffirmed 2008)

भारतीय मानक निलम्बन वाले पुलों के लिए तार के रस्से और लड़ें — विशिष्टि (पहला पुनरीक्षण)

Indian Standard WIRE ROPES AND STRANDS FOR SUSPENSION BRIDGES — SPECIFICATION

(First Revision)

ICS 77 140 65 93 040

© BIS 2002

BUREAU OF INDIAN STANDARDS MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002

August 2002

Price Group 5

Wire Ropes and Wire Products Sectional Committee, ME 10

FOREWORD

This Indian Standard (First Revision) was adopted by the Bureau of Indian Standards, after the draft finalized by the Wire Ropes and Wire Products Sectional Committee had been approved by the Mechanical Engineering Division Council

This standard was first published in 1979 This standard was prepared since the absence of such a standard was long felt by designers and engineers for erection of suspension bridges either for pedestrian, vehicular or other use the wire ropes and strands covered in the standard are suitable for stiffened as well as unstiffened suspension bridges. This standard was prepared in consultation with the leading manufacturers and important users

In this first revision, based on the experience gained in the industry, construction details, modulus of elasticily and certain other requirements have been modified Requirement of lubrication is also added

The composition of the Committee responsible for the formulation of this standard is given in Annex B

For the purpose of deciding whether a particular requirement of this standard is complied with the final value observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2 1960 'Rules for rounding off numerical values (*revised*)' The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard

AMENDMENT NO. 1 AUGUST 2004 TO IS 9282 : 2002 WIRE ROPES AND STRANDS FOR SUSPENSION BRIDGES —SPECIFICATION (First Revision)

($\it Page,\ 2\ clause\ 11$) — Substitute the following for the existing text under the captions of clause 11

'In case of pre-stretched wire ropes, Annex A given for guidance may be referred '

($\it Page$ 9, $\it Table$ 12, $\it last \ column$) — Substitute the wording 'Pre-stretched' $\it for$ 'Pre-stressed'

(ME 10)

Reprography Unit, BIS. New Delhi, India

Indian Standard WIRE ROPES AND STRANDS FOR SUSPENSION BRIDGES — SPECIFICATION (First Revision)

1 SCOPE

3 TERMINOLOGY

This standard covers requirements For wire ropes and strands for use in suspension bridges for pedestrian, vehicular traffic pipe crossing and other applications The following types, constructions, rope/strand grades and size ranges are covered (identified by X mark) For the purpose of this standard, the terms and definitions given in IS 2363 shall apply

4 MATERIAL

4.1 All the wires used in the manufacture of ropes

Туре	Constraction	Rope/Strand Grade		Core	Size Range (mm)	Table No
		1 420	1 570			
Round	a) 7×7(6-1)	Х	Х	Steel	12-32	1
Strand	b) 7×19 M (12/6-1)	Х	Х	Steel	23-48	2
	c) 7×37 M (18/12/6-1)	Х	Х	Steel	38-64	3
Spiral	a) 1×7(6-1)	Х	Х	Steel	6-15	4
Strand	b) $1 \times 19 J(126-1)$	Х	Х	Steel	12-25	5
	c) 1×37 J (18 126-1)	Х	Х	Steel	20-35	6
	d) 1×61 J(24 18 12 6-1)	_	Х	Steel	26-45	7
	e) 1×91 J(30 24 1812 6-1)	—	Х	Steel	33-56	8
	f) 1×9I J (30 24 18.12-6F-6-1)	—	Х	Steel	33-56	8
	g) 1×127 J(36 30 24 18 12 6-1)		Х	Steel	40-65	9
	h) 1×169 J(42 36 30 24 18 12 6-1)	—	Х	Steel	40-65	10
Half and Full Locked Coil Wire Rope			370 470	_	26-80 26-80	11 11

2 REFERENCES

The following Indian Standards contain provisions, which through reference in this text constitute provision of this standard At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below

IS I	Vo	Tula
1608	- 1995	Mechanical testing of metals — Tensile testing (<i>second revision</i>)
1835	1976	Round steel wire for ropes (<i>third</i> revision)
2363	1981	Glossary of terms relating to wire ropes (<i>first revision</i>)
6594	2001	Technical supply conditions for steel wire ropes (<i>second revision</i>)

and strands shall comply with the requirements laid down in IS 1835 In case of locked coil wire ropes, the shaped wires shall conform to the requirements of dimension and tensile test only

4.2 Requirements of Wire

4.2.1 Dimensional Limits and Tolerances

The wire size tolerance shall be in accordance with IS 1835 as applicable for galvanized wire 'Type A' The dimensions of shaped wires in case of locked coil wire ropes shall be provided at the discretion of the manufacturer.

4.2.2 Tensile Test

For stranded rope and spiral strand the tensile designation of individual wires shall be chosen as recommended in IS 6594 In case of locked coil wire ropes use of wires of different tensile designations is permitted but the combined tensile strength shall not

fall below 1 370 or 1 470 as applicable shown in the Table 11 Manufacturer shall provide tensile designation of all wires used in the locked coil wire ropes

 NOTE . — In general the shaped Wires shall be of lower tensile designation whereas the round wires shall be of higher tensile designation

4.2.3 The tensile strength shall be checked in accordance with IS 1608 and shall meet the requirement of IS 1835

4.3 Elongation Test

The wire shall have an elongation not less than 4 percent of a gauge length equivalent to '100 \times diameter of wire'.

4.4 Proof Stress

When subjected to 0.2 percent proof stress test the wire shall show a force equivalent to atleast 70 percent of the breaking force of the wire

4.5 Galvanizing

4.5.1 All wires shall be galvanized The galvanizing shall be carried out either by the hot dip or electrical process to provide a continuous, uniform coating of zinc of purity not less than 98 percent The zinc coating shall be of 'Type A' according to IS 1835 for round wires For shaped wires the mass of zinc coating shall not be less than 45 g/m^2

4.5.2 Wrap Test

The wire shall not show any fracture when wrapped at a rate not exceeding 15 turns per minute in a close helix for at least 2 turns around a cylmdrical mandrel 4 times in diameter of the wire to be tested for wires of tensile strength 1570 N/mm^2 and 3 times the diameter of the wire to be tested in case of lower tensile strength.

5 GENERAL REQUIREMENTS

General requirements shall be according to IS 6594

6 JOINTS

6.1 In case of stranded and locked coil ropes, joint in wires shall be avoided as far as possible except where they are necessitated by the length of the rope. The joints in the wires of the strand shall be distributed as widely as possible and in no case shall more than one wire be joined in any length of 10 m of strand in case of a stranded rope and 10 m of rope length in case of locked coil wire ropes.

6.2 Joints shall be either brazed or electrically welded If joints are brazed they shall be properly scarfed or if welded properly annealed. Tucked joints shall not be used

7 DIRECTION OF LAY

7.1 Unless otherwise stated, the locked coil wire ropes and spiral strands shall be of right hand lay (z), and round strand wire ropes shall be of right hand ordinary lay (sZ)

7.2 Stranded rapes shall be of ordinary lay (sZ or zS)

7.3 Spiral strands and locked coil ropes shall be so constructed that the wires in successive layers are alternatively laid However, in case of locked coil wire ropes, the outer layers may be laid in one direction and all the inner layers in the opposite direction

8 LENGTH OF LAY

8.1 The length of lay for stranded ropes shall not exceed 8 times the nominal diameter of the rope

8.2 The length of lay for spiral strands shall not exceed 15 times the nominal diameter of the strand

8.3 The length of lay for locked coil wire ropes shall not exceed 15 times the nominal diameter of the locked coil wire rope.

9 LUBRICATION

The wire ropes/strands and the locked coil wire ropes shall be lubricated or not lubricated as per the requirement of the purchaser

10 MINIMUM BREAKING FORCE

The minimum breaking force of wire ropes shall be as given in Tables 1 to 11

11 ELONGATION OR STRETCH OF WIRE ROPE

For elongation or stretch of wire ropes, see Annex A

12 MARKING

12.1 The size, construction, rope grade, lay, core. coating and length of wire rope, reel coil number along with the order number of purchaser and any other marking which may be specified by the purchaser shall be legibly mentioned on a suitable tag securely attached, when wire ropes are supplied in coils In case wire ropes are supplied in reels, the information may be stenciled on both sides of the reels or stenciled on one side of the reel and a suitable tag giving the same information may be attached on the other side of the reel

12.2 BIS Certification Marking

12.2.1 The product may be marked with the Standard Mark

12.2.2 The use of the Standard Mark is governed by

the provisions of *Bureau of Indian Standards Act*, 1986 and the Rules and Regulations made thereunder The details of conditions under which a licence for the use of Standard Mark may be granted to the manufacturers or producers may be obtained from the Bureau of Indian Standards

13 PACKING

The rope shall be suitably protected to avoid damage in transit and corrosion Ropes of ordinary lay may be supplied in coils or reels as required by the purchaser

 $\rm NOTE-Lang's$ lay ropes and multi strand rotation-resistant rope should preferably be supplied on reels unless specified otherwise

Table 1 Round Strand 7×7 (6-1) Construction Wire Rope (Clauses 1 and 10)

<u></u>					
Nominal	Approximate	Minimum Bre			
Diameter	M a s s	Corresponding to the Rope Grade of			
(m m)		Grade or			
+4%	kg / 100 m				
-1%	kg / 100 m	1 420	1 570		
(1)		(3)	(4)		
(1)	(2)	KN	(4) KN		
			KIN		
12	566	71	81		
13	664	86	95		
14	770	100	110		
15	884	1 15	127		
16	101	130	144		
17	114	147	163		
18	127	165	183		
19	142	184	203		
20	157	204	225		
21	173	225	248		
12	190	247	273		
23	208	270	298		
24	226	293	324		
25	246	318	352		
26	266	344	381		
27	287	371	411		
2.8	308	399	442		
29	331	428	474		
30	354	459	507		
30		439	541		
31	378 403	490 522	541		
	403	522	2		
NOTES 1 To calculat	e the aggregate b	reaking force w	ultiply the		
			unipiy me		
~	values gimeninin columns 3 and 4 by 1 194 2 The values tor masses are for guidance only				

Table 2 Round Strand 7 × 19 M (12/6-1) Construction Wire Rope

(Clauses 1 and 10)

Nominal	Approximate	Minimum Br	eaking Force
Diameter	Mass	Correspond	-
(mm)			rade of
+ 4 %	kg / 100 m		
- 1 %		1 420	1570
(1)	(2)	(3)	(4)
		KN	KN
23	201	249	276
24	219	271	300
25	238	295	326
26	257	319	352
27	277	344	380
28	298	369	409
29	320	396	498
3 0	343	424	469
31	366	453	501
3 2	390	483	534
33	414	513	567
3 4	440	545	602
3 5	466	577	638
3 6	493	611	675
3 7	521	645	713
3 8	550	681	752
39	579	717	793
4 0	609	754	834
4 1	640	792	876
42	671	831	919
43	704	871	963
44	737	912	1009
45	771	954	1055
46	805	997	1103
47	841	1041	1151
48	877	1086	1201

NOTES

1 To calculate the aggregate breaking force multiply the values given in columns 3 and 4 by 125 2 The values for masses are for guidance only

Table 3 Round Strand 7 × 37 M (18/12/6-1) Construction Wire Rope (*Clauses* 1 and 10)

Nominal Diameter	Approximate Mass	Correspo	Breaking Force nding to the Grade of
(mm) +4%			
-1%	kg / 100 m		[
		1 4 2 0	1 570
(1)	(2)	(3)	(4)
		KN	KN
38	550	653	722
39	579	688	760
40	609	723	800
41	640	760	840
42	671	798	882
43	704	836	924
44	737	875	968
45	77!	916	1012
46	805	957	1058
47	841	999	1104
48	877	1042	1152
49	914	1086	1200
50	952	1430	1250
51	990	1176	1300
52	1029	1 2 2 3	1352
53	1069	1270	1404
54	1410	1318	1458
55	1151	1368	1512
56	1194	1418	1568
57	1237	1469	1624
58	1280	1521	1682
59	1325	1574	1740
60	1370	1628	1800
61	1416	1682	1860
62	I 4 6 3	1738	1922
63	1511	1794	1984
64	1559	1852	2048
values given	te the aggregat in columns 3 a for masses are	nd 4 by 1302	

Table 4 Spiral Strand 1 × 7 (6-1) Construction Wire Rope (*Clauses* 1 and 10)

Nominal	Approximate	Minimum Bro				
Diameter	M a s s	Corresponding to the				
		Strand G	rade of			
(mm)						
+4%	kg / 100m					
- 1 %		1 4 2 0	1570			
(1)	(2)	(3)	(4)			
		KN	KN			
6	181	28	31			
7	246	3 8	42			
8	321	49	55			
9	407	63	69			
10	502	77	85			
11	607	94	103			
12	723	111	123			
13	8 4 8	131	144			
14	984	151	167			
15	113	174	192			
NOTES	113	1/4	192			

NOTES

1 To calculate the aggregate breaking force multiply the values given in columns 3 and 4 by 1111 2 The values for masses are for guidance only

Table 5 Spiral Strand 1 × 19 J (12:6-1) Construction

(Clauses 1 and 10)

Table 6 Spiral Strand 1 × 37 J(18:12:6-1) Construction

(Clauses 1 and 10)

Nominal	Approximate	Minimum B	reaking Force		
Diameter	MASS	Corresponding to the			
		Strand Grade of			
(mm)					
+4%	kg / 100 m				
- 1 %		I 420	1 570		
(1)	(2)	(3)	(4)		
		KN	KN		
12	71	107	119		
13	84	126	139		
14	97	146	162		
15	111	168	186		
16	127	191	211		
17	143	216	238		
18	161	242	267		
19	179	269	298		
20	198	298	330		
21	218	329	364		
22	240	361	399		
23	262	395	436		
24	285	430	475		
25	310	466	515		
NOTES			•		
			ce multiply the		
	in columns 3 an				
2 The values	s for masses are	for guidance on	ly		

Nominal	Approximate	Minimum Br	eaking Force
Diameter	Mass		ding to the
(mm)		Strand G	rade of
+4%	kg / 100 m		
-1%		1 420	1 570
(1)	(2)	(3)	(4)
		KN	KN
20	196	294	326
21	216	325	359
22	237	356	394
23	259	389	431
24	282	424	469
25	306	460	509
26	330	498	550
27	356	537	593
28	383	577	638
29	411	619	684
30	440	663	732
31	470	707	782
32	501	754	833
33	532	802	886
34	565	851	941
35	599	902	997

NOTES

1 To calculate the aggregate breaking force multiply the values given in columns 3 and 4 by 1 136 2 The values for masses are for guidance only

Table 7 Spiral Strand 1 × 61 J(24:18:12:6-1) Construction

(Clauses 1 and 10)

Table 8 Sprial S	Strand 1	× 91 J	J (30:24:18:12:6-1)
(30:24:	18:12-6F	-6-l)	Construction

(Clauses 1 and 10)

Nominal Diameter (mm)	Approximate Mass	Minimum Breaking Force Corresponding to the Strand Grade of
+4%	kg / 100 m	
- 1 %	-	1 570
(1)	(2)	(3)
		KN
26	327	544
27	352	586
28	379	630
29	406	676
30	435	724
31	464	773
32	495	823
33	526	876
34	558	929
35	592	985
36	626	1042
37	661	1101
38	697	1161
39	735	1223
40	773	1286
41	812	1352
42	852	1418
43	893	1487
44	935	1557
45	978	1628

NOTES

1 To calculate the aggregate breaking force multiply the values given in column 3 by 1 136 2 The values for masses are for guidance only

Nominal Diameter	Approximate Mass	Minimum Breaking Force Corresponding to the Strand Grade of
(mm)		
+4%	kg / 100 m	
- 1 %		1 570
(1)	(2)	(3)
		KN
33	525	873
34	557	927
35	590	982
36	624	1034
37	659	1098
38	696	1158
39	733	1220
40	771	1283
41	810	1348
42	850	1415
43	891	1483
44	933	1553
45	975	1624
46	1019	1697
47	1064	1772
48	1110	1848
49	1157	1925
50	1204	2005
51	1253	2086
52	1303	2168
53	1353	2253
54	1405	2339
55	1457	2426
56	1511	2515

NOTES

 $1\ To$ calculate the aggregate breaking force multiply the values given in column 3 by $1\ 136$ 2 The values for masses are for guidance only

Table 9 Sprial Strand 1 × 127 J (36:30:24:18:12:6-1) Construction

(Clauses 1 and 10)

-

Table	10	Sprial	Strand	1	×	169 J	

(42:36:30:24:18:12:6-1) Construction (Clauses 1 and 10)

Nominal Diameter	Approximate Mass	Minimum Breaking Force Corresponding to the Rope Grade of
(mm)		the hope of all of
+4%	kg / 100m	
-1%		1 57 0
(1)	(2)	(3)
		KN
40	771	1283
41	810	1348
42	850	1415
43	891	1483
44	933	1553
45	975	1624
46	1019	1697
47	1064	1772
48	1110	1848
49	1157	1925
50	1204	2005
51	1253	2086
52	1303	2168
53	1353	2253
54	1405	2339
55	1457	2426
56	1511	2515
57	1565	2606
58	1620	2698
59	1677	2792
60	1734	2887
61	1792	2984
62	1852	3083
63	1912	3183
64	1973	3285

NOTES

65

1 To calculate the aggregate breaking force multiply the values given in column 3 by 1 136 2 The values for masses are for guidance only

3388

2035

Nominal Diameter (mm)	Approximate Mass	Minimum Breaking Force Corresponding to the Rope Grade of
+4%	kg / 100 m	
-1%		1 570
(1)	(2)	(3)
		KN
40	771	1283
41	810	1348
42	850	1415
43	891	1483
44	933	1553
45	975	1624
46	1019	1697
47	1064	1772
48	1110	1848
49	1157	1925
50	1204	2005
51	1253	2086
52	1303	2168
53	1353	2253
54	1405	2339
55	1457	2426
56	1511	2515
57	1565	2606
58	1620	2698
59	1677	2792
60	1734	2887
61	1792	2384
62	1852	3083
63	1912	3183
64	1973	3285
65	2035	3388

NOTES 1 To calculate the aggregate breaking force multiply the values given in column 3 by 1 136 2 The values for masses are for guidance only

IS 9282 : 2002

Table 11 Halfand Full Locked Coil Wire Rope

(Clauses 1 and 10)

Nominal rope dia = d Mass factor (K) = 0 562 5 Rope mass (kg/100 m) = Kd^2 Breaking force factor (K) = 0 559 4 Rope grade (Tensile) = R_n (i.e. 1 370 or 1 470) Minimum breaking force of rope = $(K^{\prime} R_0 d^{\prime}) / 1000 \text{ kN}$

Nominal Diameter	Approximate (d) Mass	Minimum Breaking Force of the Locked Coil Wi Corresponding to the Rope Grade of	
(mm)	(u) Mass	Corresponding to the	e Kope Grade of
+4%			
- 1 %	(kg / 100 m)	1 370	1 470
(1)	(2)	(3)	(4)
(-)		KN	KN
26	380	518	556
28	441	601	645
30	506	690	740
32	576	785	842
34	650	886	951
36	729	993	1066
38	812	1107	1187
40	990	1226	1316
42	992	1352	1451
43	1 O40	1417	1520
44	1 089	1484	1592
46	1 190	1622	1740
48	1 296	1766	1895
50	1 406	1916	2056
51] 463	1993	2139
52	1 521	2072	2224
53	1 580	2153	2310
54	1 640	2235	2198
56	1 764	2403	2579
58	1 892	2578	2766
60	2 025	2759	2960
62	2 162	2946	3161
64	2 304	3139	3368
66	2 450	3338	3582
68	2 601	3544	3802
70	2 756	3755	4029
72	2916	3973	4263
74	3 080	4197	4503
76	3 249	4427	4750
78	3 422	4663	5003
80	3 600	4905	5263

NOTES

1 To calculate the aggregate breaking force multiply the values given in columns 3 and 4 by 1 09 2 The values for masses are for guidance only

ANNEX A

(Clause 11)

ELONGATION OR STRETCH OF WIRE ROPE/STRAND

A-1 STRECHES IN WIRE ROPE STRANDS

There are two kinds of stretches in a wire rope/strand

A-1.1 Permanent Constructional Stretch

This is caused by the lengthening of the rope/strand lay and the reduction in rope/strand diameter The extent of this stretch depends upon the rope /strand construction, the length of lay, the type of core and some other factors. For stranded operating ropes, this stretch varies from 0 25 percent to 1 0 percent depending upon the operating loads. For locked coil wire ropes and spiral strands the comparable figure of permanent constructional stretch would be from 0 15 percent to 0 5 percent

A-1.2 Elastic Stretch

This is caused by the action of tensile stress on the metallic area of the rope/strand conforming to their elastic property The amount of elastic stretch may be determined by the formula given below

$$I_{\rm e} = \frac{P \times L}{A \times E_{\rm e}}$$

where

- l_e = elastic stretch of rope/strand in cm,
- P = load or tension on rope/strand in N,
- L = initial length of rope/strand under stress in cm.
- A = metallic area of rope/strand in cm²; and
- E, = modulus of elasticity of rope/strand in N/cm^2 based on its metallic area.

A-2 MODULUS OF ELASTICITY

Commonly used approximate value of modulus of elasticity for various constructions of wire ropes/ strands covered under this specification are given in

Table 12 New or unused ropes/strands invariably have a total elongation under load greater than used rope/ strands of the same specification, since the larger pan of the stretch occurs during the initial period of its useful life. Subsequently, the modulus of elasticity would also be smallest for a wire rope/strand during this period Modulus of elasticity for old and used rope/ strand is approximately 20 percent in excess of values shown in Table 12

It is for this reason that pre-stressed ropes/strands are preferred for construction of bridges. Pre-stressing is the process of cyclic loading of the rope/strand to 5 to 50 percent of the minimum breaking strength till the stretch in the rope/strand at any given load between 5 percent and 50 percent stabilizes. Table 12 indicates the comparative values prior to pre-stressing and after pre-stressing.

Table 12	2 Modulus	of Elasticity	of Rope/Strand
----------	-----------	---------------	----------------

SI No.	Type of Wire Rope/Strand	Construction	Modulus of Elasticity in N/c m ²	
			As Manufactured	Pre-s tressed
1	Stranded rope	7 X 7 7 X 19 7 X 37	$\begin{array}{c} 6 \ 9 \ X \ 10^6 \\ 6 \ 5 \ X \ 10^6 \\ 6 \ 1 \ X \ 10^6 \end{array}$	86 X 10 ⁶ 8 1 X 10 ⁶ 76 X 10 ⁶
2	Spiral strand	1 X 7 I X 19 1 X 37 I X 61 I X 91 1 X 127	$\begin{array}{c} 11 \ 0 \ X \ 10^6 \\ 1 \ 00 \ X \ 10^6 \\ 9 \ 5 \ X \ 10^6 \\ 9 \ 3 \ X \ 10^6 \\ 9 \ 0 \ X \ 10^6 \\ 8 \ 7 \ X \ 10^6 \end{array}$	$\begin{array}{c} 13 & 1X & 10^6 \\ 12 & 8 & X & 10^6 \\ 12 & 8 & X & 10^6 \\ 120 & X & 10^6 \\ 1117 & X & 10^6 \\ 1113 & X & 10^6 \end{array}$
3	Full locked and half locked toil wire rope		103 X 10 ⁶	13 1 X 10 ⁶

18 9282 : 2002

ANNEX B

(Foreword)

COMMITTEE COMPOSITION

Wire Ropes and Wire Products Sectional Committee, ME 10

Organization Directorate General of Mines Safety, Dhanbad Aerial Ropeway & Mechanical Handling Co Pvt Ltd, Kolkata Amar Promoters Pvt Ltd. Solan Bharat Coking Coal Ltd, Dhanbad Bharat Wire Ropes Ltd, Mumbai C entral Mining Research Institute, Dhanhad Directorate General of Aeronautical Quality Assurance, New Delhi Directorate General of Civil Aviation, New Delhi Eastern Coalfields. Ltd kolkata For William Industries Ltd, Hooghly JC I Ltd (Steel Division), Hoshiarpur Ministry of Defence (Naval). New Delhi Ministry of Surface Transport, New Delhi National Test House, Ghaziabad North basten Coalfields Lid. Kolkata Oil and Natural Gas Commission. Dehra Dun Research Designs & Standards Organization, Lucknow South Eastern Coalfields Ltd, Belaspur Usha Breco Ltd, Kolkata Usha Martin IndusIns Lid, Ranchi Vidarhha Hardware Industnes. Akola

BIS Directorate General

Representative (s) SHRI D S AHA (Chairman) SHRI S P BANSAI (Alternate) SHRI A K KINRA SHRI RANJAN MUKHERJEE (Alternate) SHRI VIRENDER AGARWAL SHRI JATINDER AGARWAL (Alternate) SHRER & PRASAD SHRI D M SHAH SHRI S P CHAUDHARY SHRI R P CHARABORTY(Alternate) SHRIS H PRASAD SHRI SANJAY CHAWLA (Alternate) SHRI R C GUPTA SHRI M M KAUSHAI (Alternate) SHRI k CHARABORTY SHRI J L RAIHI SHRI B A S U D E B BANERJEE (Alternate) SHRI S K SETHI SHRI M 1 SHARMA (Alternate) C DR BRAHAMSWAROOP SHRI B L ??? (Alternate) SHRI G P ROY SHRI T K DEHTA(Alternate) SHRI D S MAJUMDAR SHRI B N SARKAR (Alternate) SHRI A TIRKEY SHRI R K GARG SHRI P K SOOD (Alternate) DEPUTY DIRECTOR (Standards) SHRI S k MISHRA SHRI G RAMASWMAMI (Alternate) SHRI AMIT KUMAR BASU SHRI C K KARMAKAR (Alternate) SHRI RANA PRATAP SHRI K K SENGUPTA (Alternate) SHRLO P DALMIA SHRI SANJAY K DALMIA (Alternate) SHRI M L CHOPRA, Director & Head (MED) [Representing Director General (Ex-offico)]

Member-Secretarv

SHRI P VENKATESWARA RAO Joint Director (MED), BIS

Bureau of Indian Standards

BIS is a statutory institution established under the *Bureau of Indian Standards*, Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country

Copyright

BIS has the copyright of all its publications No part of these publications may be reproduced in any form without the prior permission in writing of BIS This does not preclude the free use in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations Enquries relating to copyright be addressed to the Director (Publication), BIS

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments Standards are also reviewed periodically a standard along with amendments is reaffirmed when such review indicates that no changes are needed, if the review indicates that changes are needed, it is taken up for revision Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of BIS Catalogue and Standards Monthly Additions

This Indian Standard has been developed from Doc No ME 10 (474)

Amendments Issued Since Publication

Amend No	Date of Issue	Text Affected
	BUREAU OF INDIAN STANDARDS	
Headquarter	'S	
	avan 9 Bahadur Shah Zafar Marg New Delhi 1 10002 3 323 01 31, 323 3375, 323 94 02	Telegrams Manaksanstha (Common to all offices)
Re	gionalOffices	Telephone
Central	Manak Bhavan 9 Bahadur Shah Zafar Marg NEW DELHI 110002	323 76 17, 323 38 41
Eastern	1/14 C I T Scheme VII M, V I P Road, Kankurgachi KOLKATA 700054	337 84 99 337 85 61 337 86 2 6, 337 91 20
Northen	SCO 335-336, Sector 34-A, CHANDIGARH 160022	60 20 25 (6) 38 43
Southern	C I T Campus, IV Cross Road, CHENNAI 600113	{ 254 12 16, 254 14 42 254 25 19,254 13 15
Western	Manakalaya, E9 MIDC, Marol, Andheri (East) MUMBAI 400093	{ 832 92 95, 832 78 58 812 78 91,832 78 92
Branches	AHMEDABAD BANGALORE BHOPAL BHUBANESHWAR GHAZIABAD GUWAHATI HYDERABAD JAIPUR KAN NALAGARH PATNA PUNE RAJKOT THIRUVANANTHA	PUR LUCKNOW NAGPUR

Printed at Simco Printing Press, Delhi