

X

इंटरनेट

Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

"जानने का अधिकार, जीने का अधिकार" Mazdoor Kisan Shakti Sangathan "The Right to Information, The Right to Live"

 $\star \star \star \star \star \star \star \star$

"पुराने को छोड नये के तरफ" Jawaharlal Nehru "Step Out From the Old to the New"

मानक

IS 7167 (1974): Code for selection and use of bucket elevators [MED 6: Continuous Bulk Conveying, Elevating,

Hoisting Aerial Ropeways and Related Equipment]

61119/20

Made Available By Public, Resource, Org

 $\star \star \star \star \star \star \star$

"ज्ञान से एक नये भारत का निर्माण″ Satyanarayan Gangaram Pitroda "Invent a New India Using Knowledge"

RIGHT TO INFORMATION "ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता Bhartrhari-Nītiśatakam "Knowledge is such a treasure which cannot be stolen"

BLANK PAGE

PROTECTED BY COPYRIGHT

Indian Standard

CODE FOR SELECTION AND USE OF BUCKET ELEVATORS

(Second Reprint APRIL 1997)

UDC 621.867.3

© Copyright 1974

BUREAU OF INDIAN STANDARDS MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002

June 1974

Indian Standard

CODE FOR SELECTION AND USE OF BUCKET ELEVATORS

Conveyors, Vertical Hoists and Bucket Elevators Sectional Committee, EDC 61

Chairman	Representing			
*Shri N. V. Krishnamurthy	Dunlop India Ltd, Calcutta			
Members				
SHRI VASU IYENGAR (Alterna Shri N. V. Krishnamurthy	ite to			
SHRI S. BAGCHI	Mining & Allied Machinery Corporation Ltd, Durgapur			
SHRIC. S. RAY (Alternate)				
SHRI A. B. BANERJEE SHRI S. SINHA (Alternate)	Coal Board, Dhanbad			
SHRI P. K. BANERJEE	Hindustan Steel Ltd, Ranchi			
Shri N. N. Bhargava	McNally-Bird Engineering Co Ltd, Calcutta			
SHRI M. K. V. CHARI (Alter	nate)			
SHRI K. BHATTACHARYA	Directorate General of Mines Safety, Dhanbad			
Shri N. Chakraborty	Ministry of Shipping & Transport			
SHRI S. RAGHAVAN (Alternat	e)			
Shri A. K. Chatterjee	The Indian Mechanization & Allied Products Ltd, Calcutta			
Shri Iqbal Singh	National Mineral Development Corporation Limited, Hyderabad			
SHRI B. S. KAKKAR SHRI K. C. MEHROTRA (Alta	The Fertilizer Corporation of India Ltd, New Delhi ernate)			
SHRI N. N. KAPUR	Balmer Lawrie and Co Ltd, Calcutta			
Shri A. S. Khankhoje	The Associated Cement Companies Ltd, Bombay			
Shri A. V. Manohar Rao ((Alternate)			
SHRI K. K. KHOSLA	Meameco Ltd, Calcutta			
Shri R. K. Subhramaniam	(Alternate)			
Shri V. K. Kirplani	Voltas Limited, Bombay			
SHRIA. N. INDURKAR (Ali	ternate)			
Shri S. V. Mani	Greaves Cotton & Co Ltd, Bombay			
SHRI B. N. DHEER (Alternate	2)			
SHRI P. RAJAGOPAL MENON	Gear India (Madras) Pvt Ltd, Madras			
SHRI P. M. NETYANANDAN	(Alternate)			

(Continued on page 2)

*Shri N. V. Krishnamurthy was the Chairman for the meeting in which this standard was finalized.

Copyright 1974

BUREAU OF INDIAN STANDARDS

This publication is protected under the *Indian Copyright Act* (XIV of 1957) and reproduction in whole or in part by any means except with written permission of the publisher shall be deemed to be an infringement of copyright under the said Act.

(Continued from page 1) Members Representing SHRI A. K. MUKHERJEE Tata-Robins-Fraser Ltd, Jamshedpur SHRI J. B. CHANDRA (Alternate) SHRI M. Č. PATEL Élecon Engineering Company Ltd, Vallabh Vidyanagar SHRI C. B. THAKORE (Alternate) National Rubber Manufacturers' Ltd, Calcutta SHRI S. G. PAUL SHRI AMITABHA SEN (Alternate) SHRI S. G. PRADHAN Tak Machinery Ltd, Bombay SHRT H. A. RAMSDALE Geo Miller & Co Private Ltd. Calcutta SHRI P. CHATTERJEE (Alternate) SHRI B. T. RAY Indian Iron & Steel Co Ltd, Calcutta SHRIB, N. ROY National Coal Development Corporation Ltd. Ranchi SHRT P. K. SESHADRI Nevveli Lignite Corporation Ltd, Nevveli (CSIR), DB B. SINGH Central Mining Research Station Dhanbad SHRI S. M. RAZVI, Director General, ISI (Ex-officio Member) Deputy Director (Mech Engg)

Secretary

SHRI B. L. RAINA Deputy Director (Mech Engg), ISI

Bucket Elevators Subcommittee, EDC 61:3

Convener

SHEI B. S. KARKAR The Fertilizer Corporation of India Ltd, New Delhi

Members

SHBI K. C. MEHROTRA (All	ernate to				
Shri B. S. Kakkar)					
SHRI N. N. BHABGAVA	McNally-Bird Engineering Co Ltd, Calcutta				
DR P. D. RAO (Alternate)		0	c ,		
Shri Nazar Futehally	Dynacraft Machine Co Pyt Ltd. Bombay				
SHRI J. J. MISTRY (Alternat	e)		,	· ·	
SHRI V. IYENGER	Dunlop	India Ltd. Calo	utta		
Shri A. S. Khankhoje	HRI A. S. KHANKHOJE The Associated Cement Companies Ltd. Bombay				
SHRI A. V. MANOHAR RAO (Alternate)		. •		•
SHRI K. K. KHOSLA	Meamed	o Ltd, Calcutta	a		
SHRI R. K. SUBHRAMANIAM	(Alternate)			
SHRI A. K. MUKHERJEE	Tata-Ro	bins-Fraser Lt	d. Jamshedr	our	
SHRI I. B. CHANDRA (Altern	ate)				
SERI BHANUBHAI I. PATEL	Elecon	Engineering	Company	Ltd.	Vallabh
	Vid	vanagar		,	
SHRI M. C. PATEL (Alternate)	/			

2

Indian Standard

CODE FOR SELECTION AND USE OF BUCKET ELEVATORS

0. FOREWORD

0.1 This Indian Standard was adopted by the Indian Standards Institution on 28 January 1974, after the draft finalized by the Conveyors, Vertical Hoists and Bucket Elevators Sectional Committee had been approved by the Mechanical Engineering Division Council.

0.2 Bucket elevators find an extensive application in industry for material handling. To suit the work which is expected of the bucket elevator, it is necessary that the proper type of bucket elevator is selected. This standard covers the recommendations in the selection and use of various types of bucket elevators. Recommendations regarding bucket elevators handling materials which do not behave like solids are not covered in this standard.

1. SCOPE

1.1 This standard lays down recommendations for use of three types of bucket elevators, namely, centrifugal, continuous and positive discharge, for handling bulk material.

1.2 This standard does not apply to elevators handling materials which do not behave as solids.

2. TERMINOLOGY

2.1 For the purpose of this standard, the definitions given in IS:4240-1967* shall apply.

3. SELECTION OF ELEVATOR

3.1 The selection of the type of elevator is governed by the characteristics of the material handled, whether lumpy or fine, abrasive or non-abrasive and whether material will stand centrifugal discharge or it needs to be handled more slowly to avoid breakage.

^{*}Glossary of conveyor terms and definitions.

3.2 Centrifugal Discharge Elevators (I) — This is the most commonly used type with buckets Type A1, A2, A3, and A4 (see IS: $6833-1973^*$) mounted on belt or chain, spaced at intervals to avoid interference in loading and discharge. This is mostly vertical and handles practically and free flowing fine or small lump material such as grain, coal, sand, clay, sugar or dry chemicals. The lumps of moderate size can be handled using bucket sizes listed in IS: $6833-1973^*$.

3.3 Continuous Discharge Elevators (II) — This is the elevator, often used for handling larger lumps and material that may be difficult to handle by centrifugal discharge elevators. Buckets are so shaped and mounted on chain or belt that, as they pass over the head wheel, the flanged end of the preceding bucket acts as a chute to lower material to the elevated discharge spout. The slow speed and gentle method of loading and discharging minimize breakage of fragile materials and also makes this a satisfactory type for pulverised or fluffy materials, such as lime, cement, or certain dry chemicals. Continuous buckets are not recommended to be filled in by digging and must be filled in by a loading leg. This type of elevator can be operated vertically or inclined; when inclined, special guides are furnished for carrying rim and wider casing provided to allow for sag in return run.

3.4 Positive Discharge Elevators (III)—This is similar to centrifugal discharge elevator except that spaced buckets are end-mounted between two strands of chain and are snubbed back under the head sprockets to invert buckets and gain complete discharge. Bucket speed is slower and this type is specially suited to handle light, aerated, dusty, and sticky materials that will not discharge without difficulty in centrifugal discharge elevator. The slight impact of chains skating on snubbed sprockets also helps to free materials, such as wet coal with tendency to stick to buckets.

3.5 In Table 1 are given recommendations for selection of the type of elevator for different materials.

4. SELECTION OF SIZE OF ELEVATOR

4.1 The size of the elevator will depend upon the maximum capacity (in t/h) that will ever be handled at any time which in turn will depend upon:

- a) the bucket size,
- b) the spacing of the buckets,
- c) the speed of the bucket,
- d) the bulk density of the material handled, and
- e) the percentage filling of the bucket.

^{*}Specification for buckets for bucket elevators.

TABLE 1 RECOMMENDATION FOR SELECTION OF BUCKET ELEVATORS

(Clauses 3.5 and 6.1)

MATERIAL	Bulk Density	Belt/Chain	Type of Elevator
(1)	(2) kg/m ³	(3)	(4)
Alum, lumpy	800-9 60	Chain	I. III
Alum, pulverised	720-800	Chain/belt	I, III
Aluminium chips	240	Chain	III
Aluminium ore	1 200-1 350	Chain	I, III
Aluminium oxide	1 100-1 900	Chain	III
Ashes	560-640	Chain	I
Bakelite, powdered	480-640	Chain/belt	II, I II
Baking power	800-900	Chain/belt	II, III
Barley	600	Chain/belt	II, III
Bauxite, crushed and dry	1 200-1 350	Chain/belt	I, III
Beans, castor	580	Chain/belt	I, III
Bones, crushed	560-650	Chain	I, III
Bones, granulated or ground	800	Chain	I, III
Bone black	320-400	Chain	II, III
Bone meal	880-960	Chain/belt	I
Borax powdered	850	Chain/belt	I
Carbon, black pelletized	320-400	Chain	III
Carbon black powder, channel	65-100	Chain	II
Carbon black powder, furnace	65-100	Chain	II
Cast iron borings	2 100-3 200	Chain	I, III
Cement, Portland	1 200-1 350	Chain	I, III
Cement, clinker	1 200-1 280	Chain	I, III
Chalk, crushed	1 350-1 450	Chain	I, III
Chalk, pulverised	1 120-1 200	Belt/chain	III
Charcoal	290-450	Belt/chain	II, III
Cinders, coal	640	Chain	I, III
Clay (brick or tile) dry, ground	1 600-1 920	Belt	I, III
Coal anthracite	960	Chain/belt	I, III
Coal, anthracite, river coal and culm	960	Chain/belt	I, III
Coal, bituminous, stripping not cleaned	800	Chain/belt	I, III
Coffee	350-510	Chain/belt	I, III
Coke, loose	370-510	Belt	I
			(Continued)

MATERIAL	Bulk Density	Belt/Chain	TYPE OF Elevator
(1)	(2)	(3)	(4)
	kg/m ⁸		
Coke, petroleum	560-720	Belt	I
Coke, breeze	400-560	Belt	I
Cork	190-240	Belt/chain	II, III
Corn cracked	680-720	Belt/chain	I
Corn sugar	500	Belt/chain	I
Corn meal	600-640	Belt/chain	I
Cottonseed, dry, delinted	400	Belt	I
Cottonseed, dry, with lint	290-400	Belt	I
Cottonseed, cake, cracked	640-720	Belt/chain	I
Cottonseed hulls	190	Belt/chain	III
Cottonseed meal	560-64 0	Chain	I
Cottonseed meats	640	Chain	I
Cullet	960-1 900	Belt	I
Dolomite	1 440-1 600	Chain/belt	I, III
Feldspar, ground, powdered	1 040-1 200	Chain/belt	I, III
Flaxseed cake	780-800	Belt/chain	I
Flaxseed meal	400	Belt/chain	I
Flour, wheat	560-640	Belt	Ι
Flourspar	1 300	Belt/chain	I, III
Flue dust, blast furnace	1 760-2 000	Belt	I, III
Fuller's earth	560-640	Belt	I
Foundry sand	1 440-1 600	Belt	I
Glass batch	1 400-1 600	Belt	I
Grain, distillery, spend, dry	480	Belt/chain	I
Granite, broken	1 500-1 600	Chain	III
Grass seed	160-195	Chain/belt	111
Gravel	1 440-1 600	Chain/belt	1, 111
Gypsum calcined	880-960	Chain	1, 111
Gypsum, crushed under 25 mm	1 400-1 600	Chain/belt	I, 111
Gypsam, powdered	960-1 280	Chain/belt	1, 111
Ice, crushed	560-720	Chain	I, III
			(Continued)

TABLE 1 RECOMMENDATION FOR SELECTION OF BUCKET ELEVATORS — Contd Contd

6

TABLE 1 RECOMMENDATION FOR SELECTION OF BUCKET ELEVATORS — Contd

MATERIAL	BULK DENSITY	Belt/Chain	TYPE OF Elevator
(1)	(2)	(3)	(4)
	kg/m ³		
Ilmenite ore	2 240	Chain	I, 111
Lead oxide	480-2 400	Chain	I, III
Lignite, air dried	720-880	Chain	I, III
Lime, ground	960	Chain	I, III
Lime, hydrated	560-7 20	Chain/belt	111
Lime pebble	900	Chain/belt	111
Lime, over 12 mm	850	Chain/belt	I, III
Limestone	1 360-1 440	Chain/belt	I, III
Limestone, crushed	1 360-1 440	Chain/belt	III
Linseed meal	680	Belt/cl a in	I
Malt, dry ground	320-335	Belt/chain	I, II
Malt, dry whole	430-480	Belt/chain	I, II
Malt, meal	570-640	Belt/ch a in	I, II
Malt, wet or green	640-720	Belt/chain	I, II
Marble, crushed	1 440-1 520	Belt/chain	III
Milk, dried, flake	575	Belt/chain	I, III
Milk, malted	430	Belt/chain	I, II
Nitrate, sodium	9 60	Chain	I
Nitrate, ammonium	850	Chain	I, III
Nitrate, calcium ammonium	1 000-1 100	Belt/chain	I
Oxalic acid crystals	960	Belt	I
Paper pulp stock up to 15%	960-1 000	Chain	I, II
Paraffin cake, broken	720	Chain	I, III
Pebbles, over 25 mm	1 440-1 600	Belt/chain	I
Phosphate, acid, pulverized	1 040-1 120	Chain	I, III
Phosphate, granular	1 440	Chain	I, III
Phosphate fertilizers e.g. nitro- phosphate, super phosphate tri super phosphate, etc	800-1 100	Chain	1, 111
Phosphate sand	1 440-1 600	Chain/belt	I, III
Phosphate, dimmonium	880	Belt/chain	· I .
Quartz, pulverised or granular	1 760	Belt/chain	I, III
			(Continued)

MATERIAL	Bulk Density	BELT/CHAIN	Type of Elevator
(1)	(2)	(3)	(4)
	kg/m^8		
Rice, bran	320	Belt/chain	I
Rice grifts	670-720	Belt/chain	I
Rubber, ground	370	Belt/chain	I. III
Salt, dry fine	1 120-1 280	Felt/chain	I, III
Salt, dry coarse	720-800	Belt/chain	I, III
Sand, damp	1 760-2 080	Belt/chain	I
Sand dry	1 440-1 760	Belt	I
Sand, silica, dry	1 440-1 600	Belt	I
Shale crushed	1 360-1 440	Belt	I
Slag, furnace, granulated	960-1 040	Belt/chain	111
Slate, crushed, ground	1 280-1 440	Belt	I
Soda ash, light	320- 580	Chain	III
Soda ash, heavy	880-1 040	Chain	I, III
Soybeans, cracked	510-580	Chain	I
Soybean, flour	430	Belt	I
Starch	720	Lelt	I, I II
Steel chips, crushed	1 600-2 400	Chain	111
Stone, crushed	1 360-1 440	Chain	I, III
Sugar beet, pulp, dry	170-240	Chain	II, III
Sugar beet, pulp, wet	400-720	Chain	111
Sugar raw	880-1 040	Chain/belt	I
Sugar, refined	800-880	Lelt/chain	I
Sulphur, lumpy	1 280-1 360	Chain	I, III
Sulphur, powderel	800-9 30	Belt	1, 111
Talc	800-960	Belt	1, 111
Urea	650	Belt/chain	I, III
Wheat, cracked	640-720	Belt/chain	I
Wood, chips	190-320	Belt	I
Zinc ore, crushed	1 960	Chain	I
Zinc oxide	160-580	Chain	1, III

TABLE 1 RECOMMENDATION FOR SELECTION OF BUCKET ELEVATORS — Contd

Note:

I = Centrifugal discharge bucket elevator.
 II = Positive discharge bucket elevator.
 III = Continuous bucket elevator.

4.2 Capacity Calculation — General formula for calculation of the capacity of all types of elevator shall be follows:

$$T = \frac{F \times C \times W \times 3600 \times V \times 10^{-4}}{100 \times S}$$

where

T =capacity of bucket elevator in t/h;

F = constant, representing percentage filling of the buckets;

C = capacity of individual bucket in l;

W = material bulk density in kg/m³;

V = belt or chain speed in m/sec; and

S = bucket spacing in m.

4.2.1 The values for F, V, and S shall be taken from Tables 2, 5, 6, 7 and 8.

4.2.2 Depending on the value of C determined from the above formula the bucket size for different type of buckets shall be according to $15:6833-1973^*$.

4.3 Selection of Bucket — The selection of the type of bucket shall be done on the basis of type of elevator that is centrifugal or continuous type according to recommendations given below:

Type of Elevator	Type of Bucket According to IS:6833-1973*	Recommended Application
Centrifugal and positive discharge	A1	For powdered and free flowing material
	A2	For cement, coal, sand, gravel, stone, pulp, ores chemicals, fertilizers and similar other materials
	A3	For wet, stringly materials likely to stick in buckets. Also used for handling stones and ores and other coarsely broken material on inclined elevators
	A4	Used for sugar, clay, salt, pulverised wet ores which tend to pack in the buckets

^{*}Specification for buckets for bucket elevators.

Type of Elevator	Type of Bucket According to IS : 6833-1973*	Recommended Application
Continuous discharge	B1	Used for pulverised and sluggish material that stick or pack in buckets and on inclined clevators
	B2	Used for average materials for vertical elevators
	B 3	Used when extra capacity and large lumps are to be handled
	B4	Used on inlined bucket eleva- tors not over 70°C inclination with horizontal

5. SELECTION OF CASING

5.1 The selection of casing shall generally be done on the basis of type of elevator and bucket size as per IS: 7054-1973[†] but the selection of take up at the boot shaft or head shaft shall be done according to the following recommendations.

5.2 Take Up at Head Shaft—The take up at head shaft is recommended to be used in case:

- a) material handled is likely to take up after some time of storage, as in case of chemical fertilizer, cement, etc;
- b) where accumulation of material in boots results in deterioration of quality as in food products;
- c) when elevator is required to handle different products which should not be mixed;
- d) where material handled is coarse, hard and lumpy but approximately round or cubical only. In case of sharp cornered pieces, fixed bearing boot is not recommended;
- e) where confinement of material to bucket path is not necessary, for example, hot clinker elevator in cement mills; and
- f) where from layout point the loading pit is so placed that approach is difficult, take up at head shaft is preferred.

^{*}Specification for buckets for bucket elevators.

[†]Specification for casing for bucket elevators.

5.3 Take Up at Boot Shaft — Except for cases mentioned in 5.2 take up should always be provided at the boot shaft due to following advantages:

- a) Easy approach for adjustment of tension,
- b) Direct drive to head sprocket, and
- c) Possibility of provision of an automatic take up.

TABLE 2 RECOMMENDED PERCENTAGE BUCKET FILLING FACTOR, F (Clause 4.2.1) (Clause 4.2.1) (Clause 4.2.1) (Clause 4.2.1)

MATERIAL CHARACTERISTICS	Type of Bucket Elevator	F
Powdered (ground) e.g. coal dust, cement, chalk, phosphate fertiliser, etc	Positive discharge Centrifugal discharge	0·85 0·75
Granular and small lumped (60 mm) mildly abrasive e.g. saw dust, dry clay in lumps, coal, peat, grain, etc	Centrifugal discharge	0.7 to 0.8
Granular and small lumped (60 mm) highly abrasive e.g. gravel, ore slag, sand, ash, earth, rock, etc	Continuous discharge Centrifugal discharge	0.7 to 0.85 0.7 to 0.8
Medium and large lumped (60 mm) mildly abrasive e.g. coal, peat in lumps, etc	Continuous discharge Centrifugal discharge	0.6 to 0.8 0.5 to 0.7
Medium and large lumped (60 mm) highly abrasive e.g. crushed ore, stone, slag	Continuous discharge	0.6 to 0.8
Lumped, fraglite, down graded by crushing e.g. char coal, coke, etc	Continuous discharge	0.6
Sluggish, powdered and granular, moist e.g. moist chemicals, fluffed peat, earth, wet sand, wet powdered chalk, etc	Positive discharge Centrifugal discharge	$\frac{0.4 \text{ to } 0.6}{0.4 \text{ to } 0.6}$

NOTE — While selecting value of F, effect of inclination of the elevator should be taken into account.

IS:7167-1974

5.4 Amount of take up shall vary up to 500 mm but shall never be less than 200 mm in any case.

6. SELECTION OF CHAIN AND BELT

6.1 General recommendations for using chain or belt for different materials is listed in Table 1. However, guidelines for selection of chains or belts shall be as follows.

6.1.1 Chains are normally used when the required duties are heavier or when the material to be handled is hot, hard and lumpy, abrasive or corrosive, that excessively limit the life of the belt or which pack between the bucket and the belt. For positive discharge elevators and for long bucket elevators requiring extra strength, chain should be used.

6.1.2 Belts are used on elevators handling grains, cereals and many other free flowing or abrasive materials, for example, coke breeze, glass batch, etc. Belts are also used for handling corrosive materials such as caustic soda, salts, chemical fertilizer. With belts it is possible to run elevator at higher speeds thus resulting in higher capacity with smaller buckets, giving smoother and quicker operation. However, belts are not recommended for wet material, hard and splintery lumps and hot materials or those materials which tend to pack between bucket and belt.

6.2 Once use of chain or belt is finalized the selection of either on strength basis is done as follows.

6.2.1 Chains — Four types of chains having a wide range of application in elevator service are bushed chains, bushed pintle chains, bushed roller chains and combination chains. Careful judgement should be used in selection to ensure long life and suitability to service. The rating given by the manufacturer or relevant Indian Standards should be used and a working load based on a factor of at least 6:1 in relation to the ultimate strength of the chain should be adopted. Method of calculating maximum tension should be as follows:

$$T_{\rm m} = T_{\rm a} + T_{\rm b} + T_{\rm w} + T_{\rm f}$$

where

 $T_{\rm m} = {\rm maximum\ chain\ tension\ in\ N},$ $T_{\rm a} = {\rm tension\ due\ to\ mass\ of\ chain\ in\ N},$ $T_{\rm b} = {\rm tension\ due\ to\ mass\ of\ buckets\ in\ N},$ $T_{\rm w} = {\rm tension\ due\ to\ mass\ of\ material\ in\ buckets\ in\ N},$ and $T_{\rm f} = {\rm tension\ due\ to\ mass\ of\ pick\ up\ of\ material\ in\ N}.$ The individual tensions may be estimated from the following formula:

$$T_{a} = \text{Height of elevator } (H) \times \text{mass of chain in kg/m}$$

$$T_{b} = \frac{H \times \text{mass of one bucket in kg}}{\text{Spacing of bucket } (S)}$$

$$T_{\pi} = \frac{H \times \text{mass of material in one bucket in kg}}{\text{Spacing of bucket } (S)}$$

$$T_{f} = \frac{H_{0} \times \text{mass of material in one bucket in kg}}{\text{Spacing of bucket } (S)}$$

where

 H_0 = height factor to allow for pick up force in m, = 10 m for centrifugal and positive discharge elevator, = 3 m for continuous type.

6.2.2 Belt—The selection of belt should be done on the basis of the following:

- a) Belt width—should be 10 to 12 percent wider than the length of the bucket but not less than 40 mm on narrow belts.
- b) Number of plies minimum number of plies should be chosen from Table 3.
- c) Fabric grade and cover thickness The fabric and grade of cover to be chosen according to recommendation given in IS:1891 (Part I)-1968* and the cover thickness shall be as given in Table 4.
- d) Belt tension In most of the cases (a), (b) and (c) above determine the complete design of the belt, however, it is always necessary to check whether the above belt is suitable for maximum tension, which is computed as follows:
 - 1) Tension due to mass of belt $= B \times H$ in N
 - 2) Tension due to mass of

bucket =
$$\frac{H \times b}{\text{Spacing of bucket (s)}}$$
 in N

3) Tension due to mass of load in

bucket =
$$\frac{H \times W}{\text{Spacing of bucket } (S)}$$
 in N

^{*}Specification for rubber conveyor and elevator belting: Part I General purpose belting.

4) Tension due to mass of pick up load and over coarse

pully friction =
$$\frac{H_0 \times W}{\text{Spacing of bucket } (S)}$$
 in N
Max tension = (1) + (2) + (3) + (4)
= $B \times H + \frac{H \times b}{S} + \frac{HW}{S} + \frac{H_0 \times W}{S}$ in N...(A)

where ratio of material load in buckets to the weight of the belt and buckets is high, it may become necessary to apply additional tension at the boot pulley in order that the head pulley will drive the elevator properly. In such case the maximum tension is calculated as:

Max tension =
$$(1 + K) - \frac{W}{S} (H + H_0)$$
 in N ...(B)

The larger of the two values obtained from (A) and (B) is used for selection of the belt in above equation.

where

B = belt mass in kg/m run,

H = vertical height of elevator in m,

S = bucket spacing in m,

W = mass of material in each bucket in kg,

b =bucket mass in kg,

 $H_0 =$ height factor to allow for pick up force and boot pulley friction (see 6.2.1),

K = 0.97 for bare pulley drive with screw take up,

= 0.80 for lagged pulley drive and screw take up,

= 0.64 for bare pulley drive with gravity take up,

= 0.5 for lagged pulley drive with gravity take up.

Therefore

Number of plies = $\frac{\text{Maximum tension in N}}{\binom{\text{Width of}}{\text{belt in cm}} \times \binom{\text{Working tension}}{\text{per ply in N/cm}^*}}$

^{*}The values shall be taken for IS:1891 (Part I)-1968 'Specification for rubber conveyor and elevator belting: Part I General purpose belting (first revision)' after converting the values from kgf/cm to N/cm.

TABLE 3 MINIMUM NUMBER OF PLIES BASED ON PROJECTION OF BUCKET

(Clauses	4.2.1	and	6.2.2)
----------	-------	-----	-------	---

CLASS OF MATERIAL	PROJECTION OF BUCKET IN mm						
	100	125	150	180	200	230	250
Light powdery or free flowing materials free from lumps	4	4	5	5	5	6	6
Cement, dry coal, dry sand, pea- coal, fertilizers heavy but free from lumps	4	5	5	6	6	7	7
Gravel, coarse sand, crushed stone, coal, light ores, etc	5	6	6	7	7	8	, 8
Lumpy or sticky materials heavy ores of other similar materials	_	7	7	8	8	9	10

TABLE 4 FACE AND BACK COVER FOR ELEVATOR BELTS (Closer 4.9.1 ard 6.2.9)

(Clauses 4.2.1 and 6.2.2) $\,$

CLASS OF MATERIAL	Cover Thickness in mm			
	Pulley Side	Bucket Side		
Light powdery or free flowing material free from lumps such as coal dust, cement, chalk, etc	1.0-1.2	1.0		
Ashes, coarse coal, sand and gravel crushed stone wet ores or grain	1.2-3.0	1.0-1.2		
Coarse gravel, coarse stone, heavy buckets or severe abrasion	1.2-2	1.5-3		
Most severe service due to abrasion or large	5-6	3-5		

NOTE - Face cover on continuous bucket elevator need only be 1.0-1.5 mm.

7. PULLEY/SPROCKET DIAMETER vs SPEED

7.1 Pulley Diameters for Elevators Using Belt

7.1.1 Normally the head pulley diameters are governed by the recommended speed and diameter relationship given in Table 5. However, minimum diameter of head and boot pulley governed by number of plies in the belt are given in IS:1891 (Part I)-1968*.

^{*}Specification for rubber conveyor and elevator belting: Part I General purpose belting (first revision).

HEAD PULLEY	MATERIAL CONDITION 'A' COARSE AND LUMPY		MATERIAL CONDITION 'B' FINE FREE FLOWING e.g. GRAINS	
	Pulley	Belt Speed V	Pulley	Belt Speed V
(1)	(2)	(3)	(4)	(5)
	rpm	r/s	rpm	m/s
500	44	1.12	58	1.52
630	40.6	1.34	51	1.68
800	37	1.55	43.7	1.87
1 000	32.8	1.72	40	2.09
1 250	29.5	1.93	36	2.36
1 400	28	2.05	34.4	2.52
1 600	26.4	2•21	32.1	2.69
1 800	24.2	2.38	30.2	2.85

TABLE 5 PULLEY DIAMETERS FOR ELEVATORS FOR VARIOUS MATERIALS

(Clauses 4.2.1 and 7.1.1)

Note 1 — When handling light fluffy materials the speed given above under condition 'A' should be reduced by 15 to 20 percent.

Note 2 - For continuous discharge elevators 50 to 60 percent of the speeds given above are recommended.

7.1.2 Spacing of the buckets for centrifugal and continuous type elevators shall be as given in Tables 6 and 7.

7.2 Sprocket Diameters vs Speed for Elevators Using Chains

7.2.1 Chain speed for centrifugal discharge elevator depends on the size of the bucket, the bucket spacing and the diameter of the head and tail sprocket. To ensure efficient loading and discharge of the material recommendations are given in Table 6.

7.2.2 Chain speed for positive discharge elevators is recommended to be in the range of 0.6 m/s and corresponding bucket spacing and sprocket diameters are given in Table 7.

7.2.3 For continuous type of elevators, recommended speed ranges from 0.5 m/s to 0.9 m/s. The lower speed means better filling, less spillage and scatter into the loading boot and lesser pull on the bucket fixing belts at the loading point and in going round and head and foot sprockets. However, lower limit of speed for a particular material is one which will prevent dribbling of the material into the gap between the buckets. The higher limit of speed is determined by the value of material and boot loading condition of the buckets. The recommendation for sprocket diameters and spacing of the buckets is given in Table 8.

TABLE 6 RECOMMENDED SPEED, SPACING AND SPROCKET DIAMETER FOR CENTRIFUGAL DISCHARGE BUCKET ELEVATORS

(Clauses 4.2.1, 7.1.2 and 7.2.1)

BUCKET LENGTH	CHAIN	BUCKET Spacing S	SPROCKET DIAMETER		
	SPEED V		Head Sprocket	Boot Sprocket	
(1)	(2)	(3)	(4)	(5)	
mm	m/s	mm	щm	mm	
150	1.12	320	500	355	
175	1.12	400	500	355	
200	1.12	400	500	355	
250	1.35	400	635	410	
310	1.35	400	635	110	
360	1.55	480	760	585	
410	1.55	480	760	585	
460	1.55	480	760	585	
510	1.55	480	760	585	
560	1.55	480	760	585	
610	1.55	480	760	585	
610*	1.55	630	760	585	
800	1.55	630	760	585	
1 000	1.55	630	760	585	
For bucket s	ize 610×255:	×270.			

TABLE 7 RECOMMENDED SPEED, SPACING AND SPROCKET DIAMETER FOR POSITIVE DISCHARGE BUCKET ELEVATORS

.

(Clauses 4.2.1, 7.1.2 and 7.2.2)

BUCKET LENGTH	CHAIN Speed	CHAIN BUCKET SPEED SPACING	SPROCKET DIAMETER		
LENGIN OF	V	S	Head Sprocket	Boot Sprocket	Snub Sprocket
(1)	(2)	(3)	(4)	(5)	(6)
mm	m/s	mm	mm	mm	mm
150	0.61	500	625	425	300
175	0.61	500	625	425	300
200	0.61	500	625	425	300
250	0.61	500	625	425	300
310	0.61	500	625	425	300
360	0.61	630	780	635	445
410	0.61	630	780	635	445
460	0•61	630	780	635	445
510	0.61	630	780	635	445
560	0.61	630	780	635	445
610	0.61	630	780	635	445
800	0.61	630	780	635	445
1 000	0.61	630	780	635	445

TABLE 8 RECOMMENDED SPACING AND SPROCKET DIAMETER FOR CONTINUOUS TYPE BUCKET ELEVATORS

BUCKET SIZE		BUCKET	Sprocket Diameter	
Length	Projection	SPACING S	Head Sprocket	Boot Sprocke
(1)	(2)	(3)	(4)	(5)
150	75	150	500	560
200	125	200	500	360
2 50	150	200	500	360
250	180	320	635	445
310	180	320	635	445
310	200	320	635	445
360	180	320	635	445
360	200	320	635	445
410	200	320	635	445
4 60	200	320	635	445
460	300	480	635	445
510	250	320	735	445
5 10 *	300	480	735	445
610	250	480	735	445
	200	490	735	445

(Clauses 4.2.1 and 7.2.3) All dimensions in millimetres.

8. POWER REQUIREMENTS OF THE ELEVATOR

8.1 Wherever possible bucket elevator should be driven at head shaft and based on this assumption the power required for elevator can be calculated as follows:

Head shaft power input in $kN = \frac{T_e \times V}{10}$

where

V = belt or chain speed in m/s, and $T_e =$ effective tension in kN,

= $(H+H_0) \times \frac{W}{S}$ (H, H₀, W and S are the same as given in 6.2.2).

Motor output in $kW = \frac{\text{Head shaft power input}}{\text{Efficiency of drive}}$

8.2 Motor output obtained from **8.1** is to be rounded off to the next higher preferred output of the electric motor conforming to IS:325-1970*.

9. SAFETY

9.1 Hold Back—A hold back of enclosed roller or sprocket cam type shall be provided on all elevator, designed for 150 percent torque, sufficient to hold the head shaft of the loaded elevator in case of power cut off to avoid drifting back of loaded buckets.

9.2 Wherever jamming of bucket elevator is anticipated besides electrical overload tripping off, additional safety provision in couplings such as shear pin, etc, shall be kept. In critical services even use of fluid coupling between motor and gear box is recommended.

9.3 Inspection holes at convenient levels and boot cleaning door should be provided in the elevators.

*Specification for three-phase induction motors (third revision).

BUREAU OF INDIAN STANDARDS

Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, NEW DELHI 110002 Telephones: 323 0131, 323 3375, 323 9402 Fax: 91 11 3234062, 91 11 3239399, 91 11 3239382

	Telegrams : Manaksanstha (Common to all Offices)	
Central Laboratory :	Telephone	
Plot No. 20/9, Site IV, Sahibabad Industrial Area, Sahibabad 201	010 8-77 00 32	
Regional Offices:		
Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg, NEW DEL	.HI 110002 323 76 17	
*Eastern : 1/14 CIT Scheme VII M, V.I.P. Road, Maniktola, CALCU	TTA 700054 337 86 62	
Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160022	60 38 43	
Southern : C.I.T. Campus, IV Cross Road, CHENNAI 600113	235 23 15	
†Western : Manakalaya, E9, Behind Marol Telephone Exchange, A MUMBAI 400093	Andheri (East), 832 92 95	
Branch Offices::		
'Pushpak', Nurmohamed Shaikh Marg, Khanpur, AHMEDABAD 3	80001 550 13 48	
Peenya industrial Area, 1st Stage, Bangalore-Tumkur Road, BANGALORE 560058	839 49 55	
Gangotri Complex, 5th Floor, Bhadbhada Road, T.T. Nagar, BHC	PAL 462003 55 40 21	
Plot No. 62-63, Unit VI, Ganga Nagar, BHUBANESHWAR 75100	1 40 36 27	
Kalaikathir Buildings, 670 Avinashi Road, COIMBATORE 641037	21 01 41	
Plot No. 43, Sector 16 A, Mathura Road, FARIDABAD 121001	8-28 88 01	
Savitri Complex, 116 G.T. Road, GHAZIABAD 201001	8-71 19 96	
53/5 Ward No.29, R.G. Barua Road, 5th By-lane, GUWAHATI 78	1003 54 11 37	
5-8-56C, L.N. Gupta Marg, Nampally Station Road, HYDERABAI	D 500001 20 10 83	
E-52, Chitaranjan Marg, C-Scheme, JAIPUR 302001	37 29 25	
117/418 B, Sarvodaya Nagar, KANPUR 208005	21 68 76	
Seth Bhawan, 2nd Floor, Behind Leela Cinema, Naval K LUCKNOW 226001	ishore Road, 23 89 23	
NIT BUilding, Second Floor, Gokulpat Market, NAGPUR 440010	52 51 71	
Patliputra Industrial Estate, PATNA 800013	26 23 05	
Institution of Engineers (India) Building 1332 Shivaji Nagar, PUN	E 411005 32 36 35	
T.C. No. 14/1421, University P. O. Palayam, THIRUVANANTHAPUR	AM 695034 6 21 17	
*Sales Office is at 5 Chowringhee Approach, P.O. Princep Street CALCUTTA 700072	, 27 10 85	
†Sales Office is at Novelty Chambers, Grant Road, MUMBAI 400	007 309 65 28	
\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	e. 222 39 71	

Printed at Printograph, New Delhi (INDIA).

. ...