

BLANK PAGE

Indian Standard

RECOMMENDATION ON UNITS AND SYMBOLS FOR REFRIGERATION

(Third Reprint SEPTEMBER 1984)

UDC 53.031-003.62:621.56

(c) Copyright 1969

INDIAN STANDARDS INSTITUTION
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

Indian Standard

RECOMMENDATION ON UNITS AND SYMBOLS FOR REFRIGERATION

Refrigeration and Air Conditioning Sectional Committee, EDC 66

Chairman

Representing

SHRI I. C. KAPUR

Danfoss (India) Limited, Bombay

Members

SHRI A.H. MALKANI (Alternate to

Shri J. C. Kapur) Shri Mohan T. Advani

Blue Star Engineering Co (Bombay) Private Ltd, Bombay

SHRI RAM D. MALANI (Alternate)

SHRI S. R. BAJAJ

nte)
Ministry of Food, Agriculture, Community Deve-

CDR Y. P. BATRA

SHRI S. K. BHATTACHARYA

SHRI K. R. CHANDRAN
SHRI N. J. RAO (Alternate)

SHRI N. J. KAO (AL SHRI S. K. CHAUDHURY lopment & Co-operation
Indian Engineering Association, Bombay

Central Public Works Department, Calcutta Shri Ram Refrigeration Industries Ltd. Hyderabad

Ministry of Food, Agriculture, Community Development & Co-operation Air Conditioning Corporation Ltd, Calcutta

SHRI H. P. DESSA

SHRI J. G. MANGLANI (Alterrite)

Director of Marine Engineer- Naval Headquarters

ING Shri P. D. Gune

Kirloskar Brothers Ltd. Sangli

SHRI V. G. LELE (Alternate)
SHRI GURPREET SINGH

All India Cold Storages Association, New Delhi

SHRI J. P. AGGARWAL (Alternate)
SHRI ALGERNON HUNTINGDON YO

York India Limited, Faridabad

SHRI B, C. OZA (Alternate)

Kirloskar Pneumatic Co Ltd. Poona

SHRI L. N. JOSHI
SHRI J. S. SEHGAL (Alternate)
SHRI G. K. KABRA

Kirioskai Fheumatic Co Ltd, Foolia

LT-Col. P. N. KAPOOR

The Hyderabad Allwyn Metal Works Limited, Hyderabad

Defence Research & Development Organization (Ministry of Defence)

MAJ C. L. SHARMA (Alternate) SHRI S. KRISHNAN

Technical Development Circle, Indian Posts & Telegraphs, Jabalpur

SHRI H. VASANTH RAO (Alternate) SHRI N. P. DHAMANIA (Alternate)

(Continued on page 16)

INDIAN STANDARDS INSTITUTION MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG

NEW DELHI 110002

Indian Standard

RECOMMENDATION ON UNITS AND SYMBOLS FOR REFRIGERATION

0. FOREWORD

- 0.1 This Indian Standard was adopted by the Indian Standards Institution on 4 October 1968, after the draft finalized by the Refrigeration and Air Conditioning Sectional Committee had been approved by the Mechanical Engineering Division Council.
- **0.2** With a view to unifying the practice followed in the country in regard to the symbols and units used in refrigeration and air-conditioning trade, need has been felt to lay down recommendations on the principal quantities chiefly used in the field of refrigeration and on their symbols and units of measurement. This standard is largely based on the Draft ISO Recommendation No. 1053 'Units and symbols for refrigeration'.
- 0.3 For convenience, certain fundamental quantities and their derivatives have been included which have already been dealt with in IS: 1890 (Part III)-1961* and IS: 1890 (Part IV)-1961*. The column reserved for remarks in Table 1 provides definitions or explanations of quantities for which these are not found in IS: 1890 (Part III)-1961* and IS: 1890 (Part IV)-1961*.
- **0.4** The various quantities have been grouped in a logical order so as to facilitate their location by the users. In certain cases when the same symbol may have more than one meaning, a second symbol has been proposed. The units are separated into two sections, namely, units of the International System (SI) and units of other systems which are at present very widely used. In order to obtain the SI units which are equivalent to other units, conversion factors have been included in this standard.
- **0.5** India has changed to metric system of weights and measures. Although this standard gives both metric and fps units, metric units shall be used (fps units are for information only).
- 0.6 The basic and the derived units of the SI system with their definitions are given in IS: 3616-1966.

^{*}Recommendations on quantities and units of mechanics.

[†]Recommendations on quantities and units of heat.

Recommendation on the international system (SI) units.

1. SCOPE

1.1 This standard recommends units and symbols to be used in refrigeration.

2. QUANTITIES, SYMBOLS, DIMENSIONS AND UNITS

- 2.1 The quantities, symbols, dimensions and units are given in Table 1.
- 2.2 The conversion factors given in Table 1 shall be used as multipliers for 'other units' to obtain SI units.

Example:

1 ft = 0.304 8 m exactly.

TABLE 1 QUANTITIES, SYMBOLS, (Clause

SŁ	QUANTITY	Symbol	DIMENSION	SI Units		
No.				Name	Symbol	
(1)	(2)	· (3)	(4)	(5)	(6)	
1	Length	1	L	metre	m	
· 2	Area, surface	A	L³	square metre	m²	
3	Volume	v	L³	cubic metre	m³	
4 5	Mass Time	m t	M T	kilogram second	kg s	
6 7 8	Frequency Rotational speed Density (mass density) Specific volume	f n P	T-1 T-1 ML-3 L3M-1	hertz hertz kilogram per cubic metre cubic metre per kilogram	Hz Hz kg/m² m³/kg	
10	Mass flow rate	$q_{\mathbf{m}}$	MT-1	kilogram per se- cond	kg/s	
11	Volume flow rate	$q_{_{f abla}}$	LaT-1	cubic metre per	mª/s	
12	Thermodynamic or absolute temperature	T, 0	₩	Kelvin degree	°K	
13	Customary tempera-	t, 0	θ	Celsius degree	°C	
14	ture Temperature difference	Δι, Δθ, ΔΤ, ΔΘ	θ	degree	deg	
				•		
15	Coefficient of linear thermal expansion	$\boldsymbol{\alpha}_1$	Ө-1	per degree	deg-1	
16	Coefficient of volume expansion	$\alpha_{\mathbf{v}}$	⊖-1	per degree	deg-1	
17	Coefficient of thermal pressure increase	β	Θ	per degree	deg-1	

DIMENSIONS AND UNITS 2.1)

revolution per minute pound per cubic foot $10/ft^3$ $16\cdot018\cdot5$ cubic foot per pound $10/ft^3$ $16\cdot018\cdot5$ cubic foot per pound $10/ft^3$ $10\cdot018\cdot5$ $10\cdot0$	OTHER UNITS		Conversion	DEFINITIONS AND	
foot in 0.304 8 exactly inch square foot in 0.025 4 exactly square foot square inch in 0.025 4 exactly square foot square inch in 0.025 4 exactly square inch in 0.451 6 × 10 ⁻⁴ exactly cubic foot euclic inch in 16.387 1 × 10 ⁻⁴ exactly cubic inch pound lb 0.453 592 37 minute min 60 hour — — Also called cycles per second square of the foot pound per cubic foot lb/ft* 16.018 5 cubic foot per pound ft*/lb 0.062 4 pound per hour lb/h 126 × 10 ⁻⁴ Fluid mass flowing in unit time cubic foot per hour ft*/lh 7.865 79 × 10 ⁻⁴ Fluid volume flowing in unit time flowing in unit time cubic foot per hour ft*/lh 7.865 79 × 10 ⁻⁴ Fluid volume flowing in unit time flowing in unit time cubic foot per hour ft*/lh 7.865 79 × 10 ⁻⁴ Fluid volume flowing in unit time flowing in unit time cubic flow flowing in unit time flowing in unit time flowing in unit time cubic flowing in unit time flowing in unit time flowing in unit time cubic flowing flowing in unit time flowing in unit time flowing in unit time flowing in unit time cubic flowing flowing in unit time	Name	Symbol	FACTOR	KEMARKS	
inch square foot square foot fit² 0-092 903 0 square inch in² 0-092 903 0 square inch in² 0-451 6 × 10-4 exactly cubic foot foot in³ 16-387 1 × 10-4 pound pound pound pound per cubic foot lb/ft³ 16-018 5 cubic foot per pound ft³/lb 0-062 4 pound per cubic foot lb/ft³ 16-018 5 cubic foot per hour lb/h 126 × 10-4 Fluid mass flowing in unit time cubic foot per hour ft³/h 7-865 79×10^{-4} Fluid mass flowing in unit time cubic foot per hour ft³/h 7-865 79×10^{-4} Fluid mass flowing in unit time fluid volume	(7)	(8)	(9)	(10)	
square foot square inch in 1 6-451 6×10-4 exactly cubic foot 1 16-387 1×10-4 hour 1 16-387 1×10-4 hour 1 16-387 1×10-4 hour 1 16-018 5 cubic foot per pound 1 16-018 5 cubic foot per pound 1 16-018 5 cubic foot per pound 1 16-018 5 cubic foot per hour 1 16-018 cubic foot per hour 1 16-018 cubic foot per hour 1 16-018 cubic foot per h	foot	ft	0-304 8 exactly		
square foot square foot in 2 6.451 6 × 10-4 exactly cubic foot for square inch in 3 6.451 6 × 10-4 exactly cubic inch in 3 16.387 1 × 10-4 lb 0.453 592 37 minute min 60 hour — — Also called cycles per second minute pound per cubic foot bl/ft* 16.018 5 cubic foot per pound ft*/lb 0.062 4 cubic foot per hour ft*/lb 0.062 4 cubic foot per hour ft*/lb 0.062 4 ft*/lb 0.062 4 cubic foot per hour ft*/lh 7.865 79×10^{-4} Fluid mass flowing in unit time cubic foot per hour ft*/lh 7.865 79×10^{-4} Fluid volume flowing in unit time figuresc. t_F , T_R are referring to one and same physical state. The figuresc. t_F , T_R and T_R are evaluated as $t_R = 5/9$ ($t_F = 32$) = $t_R = 7273.15 = 5/9$ Fahrenheit degree degF 5/9 The General Conference of Weights and Measures has recommended that the word degree or its abbreviation degree should be used for temperature intervals of differences. The abbreviations "K and "C are still often used per Fahrenheit degree degF-1 9/5 $\pi_R = \frac{1}{f} \frac{dI}{dI}$ per Fahrenheit degree degF-1 9/5 $\pi_R = \frac{1}{f} \frac{dI}{dI}$ per Fahrenheit degree degF-1 9/5 $\pi_R = \frac{1}{f} \frac{dI}{dI}$ per Fahrenheit degree degF-1 9/5 $\pi_R = \frac{1}{f} \frac{dI}{dI}$ per Fahrenheit degree degF-1 9/5 $\pi_R = \frac{1}{f} \frac{dI}{dI}$ per Fahrenheit degree degF-1 9/5 $\pi_R = \frac{1}{f} \frac{dI}{dI}$ per Fahrenheit degree degF-1 9/5 $\pi_R = \frac{1}{f} \frac{dI}{dI}$ per Fahrenheit degree degF-1 9/5 $\pi_R = \frac{1}{f} \frac{dI}{dI}$ per Fahrenheit degree degF-1 9/5 $\pi_R = \frac{1}{f} \frac{dI}{dI}$ per Fahrenheit degree degF-1 9/5 $\pi_R = \frac{1}{f} \frac{dI}{dI}$ per Fahrenheit degree degF-1 9/5 $\pi_R = \frac{1}{f} \frac{dI}{dI}$ per Fahrenheit degree degF-1 9/5 $\pi_R = \frac{1}{f} \frac{dI}{dI}$ per Fahrenheit degree degF-1 9/5 $\pi_R = \frac{1}{f} \frac{dI}{dI}$ per Fahrenheit degree degF-1 9/5 $\pi_R = \frac{1}{f} \frac{dI}{dI}$ per Fahrenheit degree degF-1 9/5 $\pi_R = \frac{1}{f} \frac{dI}{dI}$ per Fahrenheit degree degF-1 9/5 $\pi_R = \frac{1}{f} \frac{dI}{dI}$ per Fahrenheit degree degF-1 9/5 $\pi_R = \frac{1}{f} \frac{dI}{dI}$ per Fahrenheit degree degF-1 9/5 $\pi_R = \frac{1}{f} \frac{dI}{dI}$ per Fahrenheit degree degF-1 9/5	inch	in	0-025 4 exactly	*	
square inch in² $6.451 6 \times 10^{-4}$ exactly cubic foot cubic inch pound pound pound pound pound pound pound per minute pound per cubic foot cubic foot per pound ft²/lb 0.624 pound per hour cubic foot per hour ft²/lb 0.624 pound per hour cubic foot per hour ft²/lb 0.624 Fluid mass flowing in unit time cubic foot per hour ft²/lb 0.624 Fluid wolume flowing in unit time fluid volume flowing in unit time Rankine degree or or or or or or or or or		ft²	0.092 903 0		
cubic inch pound 10^{4} $16^{-387} 1 \times 10^{-4}$ 10^{-4} $10^{$		in²	exactly		
pound minute min 60 hour — — — — — — — — — — — — — — — — — — —	cubic foot	ft3	28·316 8 × 10 ⁻³		
pound minute min 60 hour — — — — — Also called cycles per second minute min 60 hour — — — — — — — — — Also called cycles per second minute pound per cubic foot lb/ft^3 16-018 5 cubic foot per pound lb/ft^3 16-018 5 cubic foot per hour lb/h 126 × 10-6 Fluid mass flowing in unit time cubic foot per hour lb/h 7-865 79×10^{-6} Fluid wolume flowing in unit time Rankine degree lf_1 lf_2 lf_3 lf_4		in ^s			
minute hour $\frac{1}{h}$ $\frac{60}{3600}$ $\frac{1}{3600}$ $\frac{1}{3$	_	lb	0.453 592 37		
hour — h 3 600 — Also called cycles per second revolution per minute pound per cubic foot $1b/ft^3$ $16\cdot018\cdot5$ cubic foot per pound $1b/ft^3$ $16\cdot018\cdot5$ cubic foot per hour $1b/h$ 126×10^{-4} Fluid mass flowing in unit time cubic foot per hour $15/h$ $7\cdot865\cdot79\times10^{-4}$ Fluid volume flowing in unit time Rankine degree $15/9$ If $12/9$ R are referring to one and same physical state, the figurestc, $17/16$ R are referring to one and same physical state, the figurestc, $17/16$ R are revaluated as $16/16$	· •	min	60		
revolution per minute pound per cubic foot $10/ft^3$ $16\cdot018\cdot5$ cubic foot per pound $10/ft^3$ $16\cdot018\cdot5$ cubic foot per pound $10/ft^3$ $10\cdot018\cdot5$ $10\cdot0$					
pound per cubic foot $ b/ft ^2$ 16·018 5 cubic foot per pound $ b/ft ^2$ 10·062 4 pound per hour $ b/ft ^2$ 126 × 10-4 Fluid mass flowing in unit time cubic foot per hour $ b/ft ^2$ 7·865 79 × 10-4 Fluid volume flowing in unit time Rankine degree $ ^{\circ}R $ 5/9 If $ f_{a} ^{\circ}C$, $ f_{r} ^{\circ}F$, $ f_{R} ^{\circ}C$, and $ f_{a} ^{\circ}C$, $ f_{r} ^{\circ}F$, $ f_{R} ^{\circ}C$, and $ f_{R} ^{\circ}R$ are referring to one and same physical state, the figurest _c , $ f_{r} $, $ f_{R} $ and $ f_{R} $ are evaluated as $ f_{c} = 3/9$ ($ f_{r} = 32$) $ f_{r} = 723 \cdot 15 = 5/9$ $ f_{r} = 723 \cdot 15 = 5/9$ Fahrenheit degree $ f_{r} ^{\circ}C$ $ f_{r} ^{\circ}C$ The General Conference of Weights and Measures has recommended that the word degree of the degre			·	Also called cycles per second	
pound per cubic foot $ b/ft ^2$ 16·018 5 cubic foot per pound $ t ^2/ b $ 0·062 4 pound per hour $ t ^2/ b $ 126 × 10 ⁻⁴ Fluid mass flowing in unit time cubic foot per hour $ t ^2/ b $ 7·865 79 × 10 ⁻⁴ Fluid volume flowing in unit time Rankine degree $ t ^2/ b $ 8/8 $ t ^2/ b $ 16·018 5 Rankine degree $ t ^2/ b $ 16·018 5 Fahrenheit degree $ t ^2/ b $ 17·865 79 × 10 ⁻⁴ Fluid volume flowing in unit time Rankine degree $ t ^2/ b $ 16·10. Fig. 7. The Rankine flowing in unit time Rankine degree $ t ^2/ b $ 16·10. Fig. 7. The Rankine flowing in unit time Rankine degree $ t ^2/ b $ 16·10. Fig. 7. The Rankine flowing in unit time Rankine degree $ t ^2/ b $ 16·10. Fig. 7. The Rankine flowing in unit time Fluid volume flowing in unit time Rankine flowing in unit time Pluid volume flowing in unit time Rankine flowing in unit time Pluid volume flowing in unit time Rankine flowing in unit time Pluid volume flowing in unit time Rankine flowing in unit time Pluid volume flowing in un	revolution per minute	min-1	1/60		
pound per hour $ b/h $ 126×10^{-4} Fluid mass flowing in unit time cubic foot per hour $ t^2/h $ $7.865.79 \times 10^{-4}$ Fluid volume flowing in unit time Rankine degree $ c $ $ $	pound per cubic foot	lb/ft*	16.018 5		
time Cubic foot per hour ft*/h $7.865.79 \times 10^{-6}$ Fluid volume flowing in unit time Rankine degree or or or or or ft*/h figurestc, t_F or or t_F or t_F are referring to one and same physical state, the figurestc, t_F or t_F are evaluated as t_F = 5/9 $(t_F-32) = T_K-273\cdot 15 = 5/9$ $(t_F-32) = T_K-273\cdot 15 = 5/9$ Fahrenheit degree or or or or or or or or or	cubic foot per pound	ft ⁸ /lb	0.062 4		
cubic foot per hour Rankine degree or or or or ft*/h 7.865 79 × 10 ⁻⁴ Fluid volume flowing in unit time If t_R °C, t_r °F, T_K °K and T_R °R are referring to one and same physical state, the figures t_C , t_r , T_K and T_R are evaluated as $t_C = 5/9$ ($t_r - 32$) = $T_K - 273 \cdot 15 = 5/9$ $(t_r - 32) = T_K - 273 \cdot 15 = 5/9$ Fahrenheit degree or or or or or or or or or	pound per hour	lb/h	126×10-4	Fluid mass flowing in unit	
Rankine degree oR 5/9 If $t_R^{\circ}C$, $t_F^{\circ}F$, $T_K^{\circ}K$ and $T_R^{\circ}R$ are referring to one and same physical state, the figures t_C , t_F , T_K and T_R are evaluated as $t_C = 5/9$ ($t_F - 32$) = $T_K - 273 \cdot 15 = 5/9$ $9T_R - 273 \cdot 15 = 5/9$ $9T_R - 273 \cdot 15 = 5/9$ Fahrenheit degree oF $t_C = 5/9(t_F - 32)$ $t_C = T_K - 273 \cdot 15 = 5/9$ The General Conference of Weights and Measures has recommended that the word degree or its abbreviation degree or its abbreviation of degree or its abbreviation of degree or its abbreviations of the nused of the measures of the state of	cubic foot per hour	ft*/h	7·865 79×10 ⁻⁴	Fluid volume flowing in unit	
the figures t_c , t_f , t_g and t_g are evaluated as $t_c = 5/9$ $(t_f - 32) = T_g - 273 \cdot 15 = 5/9)$ $9T_g - 273 \cdot 15 = 5/9$ $1c = T_g - 273 \cdot 15$ $1c = T_g - 459 \cdot 67$ The General Conference of Weights and Measures has recommended that the word 'degree' or its abbreviation 'deg' should be used for temperature intervals or differences. The abbreviations "K and "C are still often used per Fahrenheit degree deg t_g	Rankine degree	°R	5/9	If t_R °C, t_F °F, T_K °K and T_R °R are referring to one	
Fahrenheit degree $^{\circ}F$ $t_{c}=5/9(t_{F}-32)$ $t_{c}=T_{K}-273\cdot15$ $t_{F}=T_{R}-459\cdot67$ The General Conference of Weights and Measures has recommended that the word 'degree 'or its abbreviation 'deg' should be used for temperature intervals or differences. The abbreviations °K and °C are still often used per Fahrenheit degree $degF^{-1}$ 9/5 $\alpha_{1}=\frac{1}{l}\frac{dl}{dt}$ $\alpha_{1}=\frac{1}{l}\frac{dl}{dt}$ per Fahrenheit degree $degF^{-1}$ 9/5 $\alpha_{V}=\frac{1}{l}\left(\frac{dv}{dt}\right)_{V}$ per Fahrenheit degree $degF^{-1}$ 9/5 $\beta=\frac{1}{l}\left(\frac{dv}{dt}\right)_{V}$				the figurest _c , t_F , T_K and T_R are evaluated as $t_C = 5/9$ $(t_F - 32) = T_K - 273 \cdot 15 = 5/9$	
Fahrenheit degree $\frac{degF}{degF} = \frac{5}{9}$ The General Conference of Weights and Measures has recommended that the word 'degree' or its abbreviation 'deg' should be used for temperature intervals or differences. The abbreviations "K and "C are still often used $\alpha_i = \frac{1}{l} \frac{dl}{dt}$ per Fahrenheit degree $\frac{degF^{-1}}{degF^{-1}} = \frac{9}{5}$ $\alpha_i = \frac{1}{v} \left(\frac{dv}{dt}\right)_p$ per Fahrenheit degree $\frac{degF^{-1}}{degF^{-1}} = \frac{9}{5}$ $\beta = \frac{1}{p} \left(\frac{dp}{dt}\right)_v$	Fahrenheit degree	°F	$t_c = 5/9(t_F - 32)$	$t_{\rm c} = T_{\rm K} - 273.15$	
recommended that the word 'degree 'or its abbreviation 'degree 'or its abbreviations 'E and 'C are still offen used $\alpha_{l} = \frac{1}{l} \frac{dl}{dt}$ per Fahrenheit degree $\deg F^{-1} = 9/5$ $\alpha_{v} = \frac{1}{v} \left(\frac{dv}{dt}\right)_{P}$ per Fahrenheit degree $\deg F^{-1} = 9/5$ $\beta = \frac{1}{p} \left(\frac{dp}{dt}\right)_{v}$	Fahrenheit degree	degF	5/9	The General Conference of	
'degree' or its abbreviation 'deg' should be used for temperature intervals or differences. The abbreviations 'K and 'C are still often used $\alpha_l = \frac{1}{l} \frac{dl}{dt}$ per Fahrenheit degree $\deg F^{-1} = 9/5$ $\alpha_v = \frac{1}{v} \left(\frac{dv}{dt}\right)_P$ per Fahrenheit degree $\deg F^{-1} = 9/5$ $\beta = \frac{1}{p} \left(\frac{dp}{dt}\right)_v$					
temperature intervals of differences. The abbreviations °K and °C are still often used $\alpha_{l} = \frac{1}{l} \frac{dl}{dt}$ per Fahrenheit degree $\deg F^{-1} = 9/5$ $\alpha_{v} = \frac{1}{v} \left(\frac{dv}{dt}\right)_{p}$ per Fahrenheit degree $\deg F^{-1} = 9/5$ $\beta = \frac{1}{p} \left(\frac{dp}{dt}\right)_{v}$				' degree 'or its abbreviation	
differences. The abbreviations °K and °C are still often used per Fahrenheit degree $\deg F^{-1}$ 9/5 $\alpha_1 = \frac{1}{l} \frac{\mathrm{d}l}{\mathrm{d}t}$ per Fahrenheit degree $\deg F^{-1}$ 9/5 $\alpha_2 = \frac{1}{v} \left(\frac{\mathrm{d}v}{\mathrm{d}t}\right)_P$ per Fahrenheit degree $\deg F^{-1}$ 9/5 $\beta = \frac{1}{p} \left(\frac{\mathrm{d}p}{\mathrm{d}t}\right)_V$				temperature intervals or	
per Fahrenheit degree $\deg F^{-1}$ 9/5 $\alpha_l = \frac{1}{l} \frac{\mathrm{d}l}{\mathrm{d}t}$ per Fahrenheit degree $\deg F^{-1}$ 9/5 $\alpha_v = \frac{1}{v} \left(\frac{\mathrm{d}v}{\mathrm{d}t}\right)_P$ per Fahrenheit degree $\deg F^{-1}$ 9/5 $\beta = \frac{1}{p} \left(\frac{\mathrm{d}p}{\mathrm{d}t}\right)_V$				differences. The abbrevia- tions °K and °C are still	
per Fahrenheit degree $\deg F^{-1} = 9/5$ $\alpha_{v} = \frac{1}{v} \left(\frac{\mathrm{d}v}{\mathrm{d}t}\right)_{P}$ per Fahrenheit degree $\deg F^{-1} = 9/5$ $\beta = \frac{1}{p} \left(\frac{\mathrm{d}p}{\mathrm{d}t}\right)_{v}$					
per Fahrenheit degree $\deg F^{-1} = 9/5$ $\beta = \frac{1}{p} \left(\frac{\mathrm{d}p}{\mathrm{d}t}\right)_{\mathbf{v}}$	per Fahrenheit degree	Ageb	9/5	$u_1 = \overline{l} d\overline{t}$	
	per Fahrenheit degree	degF-1	9/5	$\alpha_{\rm v} = \frac{1}{v} \left(\frac{\mathrm{d}v}{\mathrm{d}t} \right)_{\rm P}$	
(Continued)	per Fahrenheit degree	degF-1	9/5	$\beta = \frac{1}{p} \left(\frac{\mathrm{d}p}{\mathrm{d}t} \right)_{\mathbf{v}}$	
				(Continued)	

TABLE	1 ()UANTITIES,	SYMBOLS.
-------	-----	-------------	----------

SL No.	QUANTITY	Symbol Dimension		SI UNITS		
140.		•		Name	Symbol	
(1)	(2)	(3)	(4)	(5)	(6)	
18	Coefficient of compressibility	X	M-1LT ²	square metre per newton	m^2/N	
19	Force	F	MLT-	newton	N	
20	Pressure	p	ML-1T-2	newton per square metre	N/m ⁸	

21	Surface tension	٥	MT-2	newton per metre	N/m
22	Dynamic viscosity	ų .	ML-1T-1	newton second per square metre	N.s/mª
23	Kinematic viscosity	•	L1T-1	square metre per second	n.²/s
24	Work	W	ML2T-2	joule	J
					•
25	Power	P	MLªT-ª	watt	W
26	Specific work	w	LªT-ª	joule per kilogram	J/kg

(Continued)

OTHER UNIT	5	Conversion Factor	DEFINITIONS AND	
Name	Name Symbol		REMARKS	
(7)	(8):	(9)	(10)	
square inch per pound force	in²/lbf	1·450 37×10 ⁻⁴	$x_t = \frac{1}{v} \left(\frac{\mathrm{d}v}{\mathrm{d}p} \right)_t$	
dyne kilogram force pound force —	dyn kgf lbf	10 ⁻⁴ exactly 9-806 65 exactly 4-448 22	This unit is also cal	
bar	bar	10 ⁻⁵ exactly	1 bar = 1 hectopieze (h	
kilogram force per square centimetre	kgf/cm ²	98 066.5 exactly	1 kgf,cm ² = technical mosphere (at)	
normal atmosphere	atm	101 325 exactly		
pound force per square foot	lbf/ft ⁸	47.880 3		
pound force per square inch	lbf/in ²	6 894.76		
millimetre of water millimetre of mercury inch of water	mmH ₂ O mmHg inH ₂ O	9-806 65 exactly 133-322 249-089	1 mmHg = 1 torr	
inch of mercury	inHg	3 386-39		
dyne per centimetre	dyn/cm	10 ⁻³ exactly		
poise kilogram force second per square metre	P kgf.s/m²	0·1 9·806 65 exactly	1N.s.ma = 1 kg/(m.s)	
pound force second per square foot	lbf.s/ft²	47-880 3		
stokes	St	0.000 1	1 St = 1 cm $^{2}/s$	
square foot per second	ft ² /s	0 092 903 0		
kilowatt hour erg kilogram force metre foot pound force	kWh erg kgf.m ft.lbf	3.6 × 10 ⁶ exactly 10 ⁻⁷ exactly 9.806 65 exactly 1.355 82		
horse power metric horse power	hp	745-700 735- 49 9	1 hp = 550 ft.lbf/s 1 metric horse power	
foot pound force per pound	ft.lbf/lb	2.989 0	75 kgf.m/s The work done per u of mass	

IS:4831 - 1968

<u> </u>	0	Symbol	TABLE 1	•	
St No.	QUANTITY	SYMBOL	Dimension	SI UN	
				Name	Symbol
(1)	(2)	(3)	(4)	(5)	(6)
27	Heat quantity	Q	ML*T-*	joule	J
28	Heat flow rate	Φ .	ML®T-	watt -	w
29	Density of heat flow rate	•	MT-≇	watt per square metre	W/m²
30	Heat transfer capacity (heat load)	Φk	ML*T-	watt	w
31	Refrigerating capacity	Φο	ML*T-*	watt	w
32	Efficiency	7		·	
33	Indicated efficiency	ij		, -	****
34	Mechanical efficiency	7)128	_	-	- -
35	Volumetric efficiency	ग्र⊎	. 	-	

DIMENSIONS AND UNITS-Contd

OTHER UNIT	s	Conversion Factor	Definitions and Remarks
Name	Symbol	PACIOR	LEMAKKS
(7)	(8)	(9)	(10)
international kilocalorie kilocalorie 15°C	kcal ₁₅	4 186·8 exactly 4 185·5	1 kWh = 859·845 kcal ₁₇ In the refrigeration field the unit 'frigorie', (fg) is also used, corresponding to an
			extraction of 1 kcal ₁₈ from the body to be cooled
British thermal unit	Btu	1 055-06	1 kcal ₁₅ = 3.968 Btu
international kilocalorie	kcal _{IT} /h	1.163 exactly	
per hour British thermal unit per hour	Btu/h	0.293 071	
international kilocalorie	kcalıt/	1-163 exactly	
per hour square metre British thermal unit per hour square foot	(h.m²) Btu/(h.ft²)	3-154 59	
international kilocalorie per hour	kcal _{it} /h	1-163 exactly	Heat flow rate rejected to the hot body from a refri-
kilocalorie at 15°C per hour	kcal ₁₅ /h	1-162 6	gerating machine
British thermal unit per hour	Btu/h	0.293 071	
frigorie per hour ton of refrigeration	ig/h ton	1·162 6 3 516·85	1 fg/h=1 kcal ₁₈ /h 1 ton of refrigeration = a heat flow rate of 3 023-95 kcal/h or 12 000 Btu/h re- moved by the refrigerating
			system from the cold body
		_	
	••••••••••••••••••••••••••••••••••••••	- '	Ratio of the indicated power of a compressor to the ideal power with isothermal com- pression
-			Ratio of the indicated power of a compressor to the input power
	_	 .	Ratio of the fluid volume drawn in during the suction time at the suction conditioning to the volume displaced in the cylinder or cylinders of compressor (Continued)

			TABLE	QUANTITIES, 8	YMBOLS.	
SL No.	QUANTITY	SYMBOL.	DIMENSION	SI Units		
NO.				Name	Symbol	
(1)	(2)	(3)	(4)	(5)	(6)	
36	Isentropic efficiency of adiabatic compression	J [®]		· <u> </u>	-	
37	Isothermal compression efficiency	$\eta_{\mathbf{t}}$	_	-		
38	Refrigerating performance	ε, ζ			· ·	
		•			•	
				. •		
		·				
39	Refrigeration capacity per unit volume	9 •	ML-1T-8	joule per cubic metre	J/m³	
40 41 42 43 44 45	Internal energy Enthalpy Free energy Free enthalpy Energy Latent heat of transformation	U H F G E L	ML®T-≅	joule	J	
46 47 48 49 50 51	Specific internal energy Specific enthalpy Specific free energy Specific free enthalpy Specific energy Specific latent heat of transformation	h f g e	LªT~ª	joule per kilogram	J/kg	

DIMENSIONS AND UNITS - Contd

OTHER UNITS		Conversion Factor	Definitions and Remarks	
Name	Symbol	PACIOR	ILBARKS	
(7)	(8)	(9)	(10)	
- - -		• · · · · · · · · · · · · · · · · · · ·	Ratio of the power of an isentropic compression (reversible adiabatic) to the	
			actual power supplied to the same fluid mass flow rate from the initial to the	
			final state (enthalpies dif- ference) Ratio of the power with re- versible isothermal com-	
			pression to the actual power supplied to the same fluid mass flow rate from the initial to the final state	
international kilocalorie per watt hour	kcah _T /Wh	1.163	Ratio of the refrigerating capacity to the absorbed power (for a cycle, a machine, a compressor, etc)	
British thermal unit per	Btu/hp.h	0.000 393		
horse power hour British thermal unit per	Btu/Wh	0-293		
watt hour Ton of refrigeration per	Ton/hp	4-716		
horse power frigorie per kilocalorie international kilocalorie per cubic metre	fg/kcal kcal ₁₇ /m³	4 186-8 exactly	sapacity to the volume flow	
			rate in a clearly defined condition	
		e de la companya de l	$\begin{cases} E = (H - H_e) - T_e & (S - S_e) \\ \text{Also called "vaporization enthalpy difference"}, \end{cases}$	
{ international kilocalorie British thermal unit	kcalı ı Btu	4 186-8 exactly 1 055-06		
finternational kilocalorie.	kcal _{it} kg	4 186-8 exactly	n i	
per kilogram British thermal unit	Btu/lb	2 326 exactly	$\begin{cases} (c = h - he) - Te \ (s - se) \end{cases}$	
L per pound] (Continued)	

TABLE 1 QUANTITIES, SYM	BOLS.	
-------------------------	-------	--

			IABLE	QUANTITIES, 8	YMBULS,
SL	QUANTITY	SYMBOL	DIMENSION	SI Units	
No.		•		Name	Symbol
(1)	(2)	(3)	(4)	(5)	(6)
52	Specific humidity		- .	_	_
53	Relative humidity	φ		. -	-
54	Saturation ratio	Φ	<u> </u>	-	
	•				
5 5	Entropy	s	ML*T-*0-1	joule per Kelvin degree	J/ *K
	8.7				
56	Specific entropy	•	LªT-80-1	joule per kilogram Kelvin degree	J/(kg.°K)
57	Heat capacity	С	ML ² T- ²⁰⁻¹	joule per Celsius degree	J/deg
58 59	Specific heat capacity Specific heat capacity	c cp			T.(2. 3. 3.
60	at constant pressure Specific heat capacity at constant volume	c _v	L*T-*0-1	joule per kilogram degree	J/(kg.deg)
61	Specific heat capa- cities ratio	γ, ×	_	******	_

DIMENSIONS AND UNITS - Conid

Name Symbol (7) (8) (9) (10) Ratio of the mass of moisture in humid air to the mass of dry air present in the mixture Ratio of the water vapour partial pressure to the saturation pressure of pure water vapour at the same temperature	Omena Harma		C	DEFINITIONS AND	
(7) (8) (9) (10) Ratio of the mass of moisture in humid air to the mass of dry air present in the mixture Ratio of the water vapour partial pressure to the saturation pressure of pure water vapour at the same temperature Ratio of the actual specific humidity of saturated air at the same temperature Norr — For temperatures less than 0°C the values in general apply to pure water ice. If it is concerning sub-cooled water the symbols are to be qualified by a particular index. Sinternational kilocaloric per Kelvin degree British thermal unit per Rankine degree British thermal unit per gound Rankine degree British thermal unit per gound Rankine degree British thermal unit per degree degree Fahrenheit A 186-8 exactly This quantity is not completely defined if the type of transformation is not specified		Symbol			
ture in humid air to the mass of dry air present in the mixture Ratio of the water vapour partial pressure to the saturation pressure of pure water vapour at the same temperature Ratio of the actual specific humidity to the specific humidity of saturated air at the same temperature Note—For temperatures less than 0°C the values in general apply to pure water ice. If it is concerning sub-cooled water the symbols are to be qualified by a particular index. Sinternational kilocaloric per Kelvin degree British thermal unit per Rankine degree Sinternational kilocaloric per kilogram Kelvin degree British thermal unit per pound Rankine degree Sinternational kilocaloric per degree British thermal unit per degree Fahrenheit Sinternational kilocaloric per degree Sinternational kilocaloric per degree British thermal unit per degree Fahrenheit Sinternational kilocaloric per kilogram degree British thermal unit per degree Fahrenheit Sinternational kilocaloric per kilogram degree British thermal unit per degree Fahrenheit Sinternational kilocaloric per kilogram degree British thermal unit per degree Fahrenheit Sinternational kilocaloric por kilogram degree British thermal unit per degree Fahrenheit Sinternational kilocaloric kcalır/ deg 4 186-8 exactly Sinternational kilocaloric kcalır/ deg	(7)		(9)	(10)	
mass of dry air present in the mixture Ratio of the water vapour partial pressure to the saturation pressure to the saturation pressure of pure water vapour at the same temperature Ratio of the water vapour partial pressure to the saturation pressure of pure water vapour at the same temperature Ratio of the water vapour partial pressure to the saturation pressure of pure water vapour at the same temperature Nore—For temperatures less than 0°C the values in general apply to pure water the symbols are to be qualified by a particular index. Sinternational kilocaloric per Kelvin degree British thermal unit per degree British thermal unit per pound Rankine degree Sinternational kilocaloric per degree British thermal unit per degree British ther	. -	_		Ratio of the mass of mois-	
Ratio of the water vapour partial pressure to the saturation pressure to the saturation pressure of pure water vapour at the same temperature Ratio of the actual specific humidity to the specific humidity to the specific humidity to the specific humidity of saturated air at the same temperature Note—For temperatures less than °C the values in general apply to pure water ice. If it is concerning sub-cooled water the symbols are to be qualified by a particular index. Sinternational kilocaloric per Kelvin degree British thermal unit per pound Rankine degree British thermal unit per degree Fahrenheit Sinternational kilocaloric per degree British thermal unit per degree British thermal unit per degree Fahrenheit Sinternational kilocaloric por kilogram degree British thermal unit per degree British thermal unit per degree Fahrenheit Sinternational kilocaloric por kilogram degree British thermal unit per degree British thermal unit per degree Fahrenheit Sinternational kilocaloric por kilogram degree British thermal unit per pound degree Fahrenheit Sinternational kilocaloric kcal ₁₁ / deg 4 186.8 exactly (kg.deg) Btu/ F 1 899 exactly This quantity is not completely defined if the type of transformation is not specified				mass of dry air present in	
saturation pressure of pure water vapour at the same temperature Ratio of the actual specific humidity to the specific humidity of saturated air at the same temperature Note—For temperatures less than 0°C the values in general apply to pure water ice. If it is concerning sub-cooled water the symbols are to be qualified by a particular index. Stall the same temperature Note—For temperatures less than 0°C the values in general apply to pure water ice. If it is concerning sub-cooled water the symbols are to be qualified by a particular index. Stall the same temperature Note—For temperature supply less than 0°C the values in general apply to pure water jobs. The same temperature water less than 0°C the values in general apply to pure water jobs. The same temperature supply less than 0°C the values in general apply to pure water jobs. The same temperature water less than 0°C the values in general apply to pure water jobs. The same temperature water less than 0°C the values in general apply to pure water less than 0°C the values in general apply to pure water jobs. The same temperature Note—For temperature Note—For temperature Note—For temperature water less than 0°C the values in general apply to pure water jobs. The same temperature water less than 0°C the values in general apply to pure water jobs. The same temperature water less than 0°C the values in general apply to pure water jobs. The same temperature water less than 0°C the values in general apply to the values in general apply to pure water jobs. The same temperature water less than 0°C the values in general apply to the v	-	· -		Ratio of the water vapour	
humidity to the specific humidity of saturated air at the same temperature Note — For temperatures less than 0°C the values in general apply to pure water ice. If it is concerning sub-cooled water the symbols are to be qualified by a particular index. International kilocaloric per Kelvin degree British thermal unit per Rankine degree				saturation pressure of pure water vapour at the same	
humidity of saturated air at the same temperature Note — For temperatures less than 0°C the values in general apply to pure water ice. If it is concerning sub-cooled water the symbols are to be qualified by a particular index. Sinternational kilocalorie per Kelvin degree British thermal unit per per kilogram Kelvin degree British thermal unit per pound Rankine degree British thermal unit per degree Fahrenheit International kilocalorie per kilogram degree (kg.deg) British thermal unit per pound degree Fahrenheit International kilocalorie per kilogram degree (kg.deg) British thermal unit per pound degree Fahrenheit Bru/ 4 186-8 exactly A 186-8 exactly This quantity is not completely defined if the type of transformation is not specified		_	<u> </u>	Ratio of the actual specific humidity to the specific	
than 0°C the values in general apply to pure water ice. If it is concerning sub-cooled water the symbols are to be qualified by a particular index. [International kilocaloric per Kelvin degree British thermal unit per Rankine degree British thermal unit per pound Rankine degree [International kilocaloric per kilogram Kelvin degree British thermal unit per pound Rankine degree [International kilocaloric per degree British thermal unit per degree Fahrenheit [International kilocaloric per degree British thermal unit per degree Fahrenheit [International kilocaloric per kilogram degree (kg.deg) British thermal unit per pound degree Fahrenheit [International kilocaloric per kilogram degree (kg.deg) British thermal unit per pound degree Fahrenheit [International kilocaloric per kilogram degree (kg.deg) British thermal unit per pound degree Fahrenheit [International kilocaloric per kilogram degree (kg.deg) British thermal unit per pound degree Fahrenheit [International kilocaloric per kilogram degree (kg.deg) British thermal unit per pound degree Fahrenheit [International kilocaloric per kcal _{1T} / deg 4 186·8 exactly (kg.deg) [International kilocaloric per kcal _{1T} / deg 4 186·8 exactly defined if the type of transformation is not specified			(humidity of saturated air	
International kilocaloric per Kelvin degree British thermal unit per Rankine degree Sinternational kilocaloric per kilogram Kelvin degree British thermal unit per pound Rankine degree Sinternational kilocaloric per degree British thermal unit per degree Fahrenheit Sinternational kilocaloric per degree British thermal unit per degree Fahrenheit Sinternational kilocaloric per kilogram degree Sintish thermal unit per pound degree Fahrenheit Sinternational kilocaloric per kilogram degree Sintish thermal unit per pound degree Fahrenheit Sinternational kilocaloric per kilogram degree Sintish thermal unit per pound degree Fahrenheit Sinternational kilocaloric per kilogram degree Sintish thermal unit per pound degree Fahrenheit Sinternational kilocaloric per kilogram degree Sintish thermal unit per pound degree Fahrenheit Sinternational kilocaloric per kilogram degree Sintish thermal unit per pound degree Fahrenheit Sinternational kilocaloric per kilogram degree Sinternational kilocaloric per kilogram degree Sinternational kilocaloric per kilogram degree Sinternational kilocaloric per degree Sin				than 0°C the values in general	
Per Kelvin degree British thermal unit per Rankine degree British thermal with per kilogram Kelvin degree British thermal unit per pound Rankine degree British thermal with per degree British thermal unit per degree British thermal with per degree British thermal with per degree Fahrenheit Sinternational kilocalorie per kilogram degree Kcal _{tr} / 4 186-8 exactly This quantity is not completely defined if the type of transformation is not specified Specifie				the symbols are to be quantied	
Per Kelvin degree British thermal unit per Rankine degree British thermal with per kilogram Kelvin degree British thermal unit per pound Rankine degree British thermal with per degree British thermal unit per degree British thermal with per degree British thermal with per degree Fahrenheit Sinternational kilocalorie per kilogram degree Kcal _{tr} / 4 186-8 exactly This quantity is not completely defined if the type of transformation is not specified Specifie					
British thermal unit per Rankine degree Stu/°R 1899 exactly 1899 exactly		kcal _{lT} /°K	4 186-8 exactly		
per kilogram Kelvin degree British thermal unit per pound Rankine degree British thermal unit per per degree British thermal unit per degree Fahrenheit Stu/(B. R)	British thermal unit per	Btu/°R	1 899 exactly		
British thermal unit per pound Rankine degree Stu/(lb.°R) 4 186-8 exactly	per kilogram Kelvin		4 186·8 exactly		
per degree British thermal unit per degree Fahrenheit Btu/°F 1 899 exactly This quantity is not completely defined if the type of transformation is not specified British thermal unit per pound degree Fahrenheit Btu/ 4 186.8 exactly His quantity is not completely defined if the type of transformation is not specified	British thermal unit per	Btu/(lb.°R)	4 186-8 exactly		
British thermal unit per degree Fahrenheit Stu/F 1899 exactly degree Fahrenheit 1899 exactly This quantity is not completely defined if the type of transformation is not specified	•	kcal _{IT} / deg	4 186-8 exactly		
degree finite f	British thermal unit per	Btu/°F	1 899 exactly		
British thermal unit per Btu/ 4 186.8 exactly pound degree Fahren- (lb.degF)			4 186-8 exactly	of transformation is not	
$- \qquad \qquad \gamma, \ \varkappa = \frac{\epsilon_p}{\epsilon_v}$	British thermal unit per pound degree Fahren-	Btu/	4 186.8 exactly		
	· <u> </u>	-		γ , $x = \frac{c_p}{c_v}$	

13

(Continued)

			TABLE 1	QUANTITIES, 8	SYMBOLS,	
SL	QUANTITY	Symbol	Dimension	SI Units		
No				Name	Symbol	
(1)	(2)	(3)	(4)	(5)	(6)	
62	Thermal conductivity Equivalent conductivity	λ } λe }	MLT -10 -1	watt per metre degree	W/(m.deg)	
65	Convection coefficient of heat transfer Overall coefficient of heat transfer		MT-30-1	watt per square metre degree	$W/(m^2 deg)$	
66	Thermal diffusivity	a	[_ ⁸ T- ¹	square metre per	m³/s	

DIMENSIONS AND UNITS - Contd

OTHER UNITS		Conversion	DEFINITIONS AND	
Name	Symbol	FACTOR	Remarks	
(7)	(8)	(9)	(10)	
international kilocalorie per hour metre degree	kcal _{it} / (h.m.deg)	1-163 exactly	$\lambda_{e} = \frac{d}{\sum_{i=1}^{d} \binom{d_{i}}{i!}}$	
British thermal unit per hour foot degree Fahrenheit	Btu/(h.ft. degF)	1.730 73	where d is the total thickness of a wall, and d ₁ and λ ₁ the thicknesses and conducti- vities of the wall com- ponents	
international kilocalorie per hour square metre degree	kcal ₁₇ / (h.m²deg)	1.163 exactly	ponents	
British thermal unit per hour square foot degree l'ahrenheit	Btu/(h.ft* degF)	5·678		
C 2 dimension				
square metre per hour square foot per hour	$\frac{m^2/h}{ft^2/h}$	0·000 278 0·000 025 8	$a = \lambda/c\rho$	

(Continued from page 1)

Members

Representing

Shri	H.	J. LENTIN	
		K. MAHAJAN	Į

Godrej & Boyce Mfg Co Pvt Ltd, Bombay Research, Designs & Standards Organization

SHRI D. B. MALIK

(Ministry of Railways) Directorate General of Technical Development New Delhi

SHRI S. N. BANWET (Alternate) SHRI MANMOHAN SINGH

Frick India Ltd. New Delhi

SHRI BACHAN SINGH (Alternate) SHRI NAUNIHAL SINGH MATHUR

National Physical Laboratory, New Delhi; and Indian Society of Refrigerating Engineers, Calcutta

SHRI A. P. SHIVDASANI (Alternate)

Indian Society of Refrigerating Engineers, Calcutta

SHRI S. N. MUKERJI

National Test House, Calcutta

SHRI B. K. MUKHERII (Alternate) DR P. K. PANDEY

Central Mechanical Engineering Research Institute,

SHRI V. P. PUNI

Durgapur All India Air Conditioning & Refrigeration Asso-

SHRI O. P. PURI

ciation. New Delhi Voltas Limited, New Delhi

SHRI G. V. RAO (Alternate) SHRI B. J. RAMRAKHIANI

Central Labour Institute (Ministry of Labour), Bombay Directorate General of Supplies & Disposals

SHRI C. R. SIRCAR

(Ministry of Industry & Supply)

SHRI K. DUTTA (Alternate) SHRI K. SUBRAHMANYAM

Ahmedabad Textile Industry's Research Association, Abmedabad Director General, ISI (Ex-officio Member)

SHRI M. V. PATANKAR. Director (Mech Engg)

Secretary

SHRI S. P. ABBEY Assistant Director (Mech Engg), ISI

INTERNATIONAL SYSTEM OF UNITS (SI UNITS)

	100
B 100 (1)	

5-8-56C L. N. Gupta Marg

117/418 B Sarvodaya Nagar

Pathputra Industrial Estate

R 14 Yudhister Marg, C Scheme

Hantex Bldg (2nd Floor), Rly Station Road

QUANTITY	UNIT	SYMBOL	
Length	metre	m	
Mass	kilogram	kg	
Time	second	1	
Electric current	ampere	A	
Thermodynamic temperature	kelvin	K	
Luminous intensity	candela	cd	
Amount of substance	mole	mol	
Supplementary Units			
QUANTITY	Unit	SYMBOL	
Plane angle	radian	rad	
Solid angle	steradian	sr	
Derived Units			
OUANTITY	Unit	SYMBOL	DEFINITION
Force	newton	N	1 N = 1 kg.m/s ²
Energy	joule	J	1 J = 1 N.m
Power	watt	W	1 W - 1 J/s
Flux	weber	Wb	1 Wb = 1 V4
Flux density	tesla	T	1 T - 1 Wb/m2
Frequency	hertz	Hz	1 Hz 1 c/s (s-1)
Electric conductance	siemens	S	1 S - 1 A/V
Electromotive force	volt	V	1 V = 1 W/A
Pressure, stress	pascal	Pa	1 Pa = 1 N/m ²
INDIAN STANDARDS I	NSTITUTION		
Manak Bhavan, 9 Bahadur S	Shah Zafar Marg	NEW DELH	1 110002
Telephones: 26 60 21, 27 8			Felegrams: Manaksanstha
Regional Offices:			Telephone
Western : Novelty Chamber			AY 400007 6 32 92 95
Eastern : 5 Chowringhee Approach			UTTA 700072 27 50 90
Southern : C. I. T. Campus			AS 600113 41 24 42
Northern : B89, Phase VII			NAGAR 8 78 26
Proper Officer		(MUI	HALI) 160051
Branch Offices:			
'Pushpak', Nurmohamed Sh	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	The state of the s	DABAD 380001 2 03 91
"F" Block, Unity Bldg, Naras			ALORE 560002 22 48 05
Gangotri Complex. Bhadbha	ida Road, T. T. I		
22E Kalpana Area		BHUBA	ANESHWAR 751014 5 36 27

HYDERABAD 500001

TRIVANDRUM 695001

JAIPUR 302005

KANPUR 208005

PATNA 800013

22 10 83

6 98 32

4 72 92

6 28 08

32 27