

AMENDMENT NO. 1 FEBRUARY 1986

TO

IS:3121-1981 SPECIFICATION FOR RIGGING SCREWS AND STRETCHING SCREWS

(First Revision)

(Page 2, clause 6.4) - Substitute the following for the existing clause:

'6.4 Galvanizing - Unless otherwise specified, all components of the assembled stretching screw and rigging screw shall be galvanized as per IS: 14759-1979 'Hot-dip zinc coatings on structural steel and other allied products (first revision)'. The tolerances specified in 3.3 shall apply after galvanizing. All screw threads shall be 'brush' or 'spun' galvanized. The purchaser shall state clearly at the time of the enquiry and order whether he requires the zinc coating to be tested, and the number of samples to be tested.

Note - It is recommended that not more than one sample of each size of rigging screws per consignment should normally be subjected to this test.'

(EDC 32)

Indian Standard

SPECIFICATION FOR RIGGING SCREWS AND STRETCHING SCREWS

(First Revision)

- 1. Scope Specifies materials, components, dimensions, finishing and tests for rigging screws and stretching screws (double-ended and single-ended), of the following nominal sizes:
 - a) Rigging screws: M12 to M90, and
 - b) Stretching screws: M6 to M52.
- 2. Terminology For the purpose of this standard, the following definitions shall apply.
- **2.1** Rigging Screw A tubufar body threaded internally at each end in opposite hand and into which end fittings of optional form (for example, elongated eye, stud eye, screwed fork jaw) having screwed shanks are fitted.
- **2.2** Stretching Screw An open body consisting of two reins connecting a box at each end, with a central hole threaded In opposite hand, into which fittings of optional form (for example, stud eye, elongated eye, screwed fork jaw) having screwed shanks are fitted.
- **2.3** Single-Ended Stretching Screw An open body with a swivel fitted at one end and screwed internally at the other.
- **2.4** Double-Ended Stretching Screw An open body, the solid ends of which are Internally screwed, one right-hand and the other left-hand.

3. Shape and Dimensions

- 3.1 Rigging Screws
- **3.1.1** The shapes and dimensions of rigging screws, tubular body screwed eye, screwed fork and screwed stud eye shall be as shown in Tables 1, 2, 3, 4 and 5 respectively.
- **3.1.2** The dimensions oft he bolts and nuts shall comply with the requirements specified in IS: 1363-1967 'Specification for black hexagonal bolts, nuts and lock nuts (dia 6 to 39 mm) and black hexagonal screws (dia 6 to 24 mm) (*first revision*)' in respect of sizes from 6 to 39 mm and with those specified in IS: 3133-1966 'Specification for hexagonal bolts and nuts (M42 to M150)' in respect of sizes beyond 39 mm. The bolt heads and nuts shall be of lock-nut thickness for sizes up to 39 mm. The bolts and nuts shall be fitted with a split cotter pin conforming to IS: 549-1974 'Specification for split pins (second revision)' positioned outside the nut.
- 3.2 Stretching Screws
- **3.2.1** The shapes and dimensions of open body, screw byes and swivel eyes shall be as shown in Table 6.
- **3.2.1.1** The dimensions given in Table 6 for the cross-section of the sides of the body are such that the combined cross-sectional area is about twice the area at the bottom of the thread of the screw eye shank.
- 3.3 Tolerances
- **3.3.1** The permissible variation from any of the dimensions given in Tables 1 to 6 shall not exceed \pm 5 percent, except that steel tube used for tubular body shall have the tolerances as specified in IS: 1161-1979 'Specification for steel tubes for structural purposes (*third revision*)'.
- **3.3.2** The screw threads on the eye and fork ends in the tubular body and on the screw eyes shall (after galvanizing for screw eyes and other parts when so specified) conform to the coarse tolerance class specified in IS: 4218 (Part IV) -1976 'ISO metric screw threads: Part IV Tolerancing system' (Issued in six parts).

Adopted 26 November 1981

© September 1982, ISI

Gr 5

IS: 3121 - 1981

4. Material

4.1 Rigging Screws

- **4.1.1** Tubular body The tubular body shall be made from hot-finished steel tubing having a minimum tensile strength of 345 N/mm².
- **4.1.1.1** Alternatively, the tubes may be either cold-drawn seamless, or electric resistance welded, having a minimum tensile strength of 315 N/mm².
- **4.1.2** For tubular bodies, if machined from the solid, material shall conform to Designation C20 of IS: 1570-1961 'Schedules for wrought steels for general engineering purposes'.
- **4.1.3** Screwed eye, screwed fork and screwed stud eye The screwed eye, screwed fork and screwed stud eye shall be weldless, and their material shall conform to Designation C20 of IS: 1570-1961.

4.2 Stretching Screw

- **4.2.1** The body, the screw eyes and swivel eyes shall be weldless, and shall be made of steel conforming to Designation C20 of IS: 1570-1961.
 - **4.2.2** The screwed collar nut for the swivel eye may be made from hot-finished seamless steel tube.
- **4.3** Bolts and Nuts Bolts and nuts fitted to secure the thimble in the fork shall be made from open-hearth steel complying with the requirements of either IS: 226 1975 'Specification for structural steel (standard quality) (*fifth revision*)' or conforming to Designation C20 of IS: 1570-1961. In either case, the steel shall have a minimum tensile strength of 440 N/mm² and a maximum strength of 520 N/mm².

5. Construction

- 5.1 Rigging screws shall consist of a tubular body, with both ends screwed internally for the screwed shanks of the end fittings, one end being threaded right-hand and the other left-hand.
 - **5.1.1** The assembly of the rigging screw (see Table 1) shall be either of the following:
 - a) A tubular body (see Table 2) fitted at each end with an elongated screw eye (see Table 3); or
 - b) A tubular body, fitted at one end with an elongated screw eye, including a shackle with a bolt, nut and split cotter pin; and at the other end with a fork (see Table 4), including a solid wire rope thimble secured by means of a bolt, nut and split cotter pin or a wire rope socket with a screwed stud eye (see Table 5).
- **5.2** Stretching screws of the double-ended type shall consist of a central open body provided with an indentical short screw eye at each end, one screw eye being threaded right-hand and the other left-hand, as shown in the figure in Table 6. Stretching screws of the single-ended type shall consist of a central open body provided with a swivel eye at one end and a long right-hand screw at the other end, as shown in the figure in Table 6.

6. General Requirements

- **6.1** Thimbles used shall comply with the requirements for solid thimbles specified in IS: 2315-1978 'Specification for thimbles for wire ropes (*first revision*)' and sockets with IS: 2485-1979 'Specification for drop forged sockets for wire ropes for general engineering purposes (*first revision*)'.
- **6.2** Shackles shall be in accordance with IS: 6132-1971 'Specification for shackles' except that the heads and nuts shall be of lock-nut thickness, and the split cotter pin shall be positioned outside the lock-nut.
- **6.3** Heat Treatment Tubular bodies, screw forks, screw stud eyes, screw eyes and swivel eyes shall be normalized after completion of all forging operations and before machining. A suitable normalizing treatment is to uniformly heat them in a furnace until the whole of the metal has attained a temperature between 880°C and 910°C. They are then withdrawn from the furnace and allowed to cool in still air.
- **6.4** Galvanizing Unless specified, otherwise, all components of the assembled stretching screw and rigging screw shall be supplied galvanized. The galvanizing shall be carried out by the 'hot process' and shall consist of a continuous coating of zinc of a purity not less than 985 percent The tolerances specified in **3.3** shall apply after galvanizing. All screw threads shall be 'brush' or 'spun' galvanized. The purchaser shall state clearly at the time of the enquiry and order whether he requires the zinc coating to be tested, and the number of samples to be tested.

Note — It is recommended that not more than one sample of each size of rigging screw per consignment should normally be subjected to this test.

6.5 Workmanship

6.5.1 Rigging screw

- **6.5.1.1** Body The tubular body shall be neatly and cleanly made and finished. The ends of the body shall be swaged hot externally to cylindrical form to permit a screw thread of full depth when tapping. When made from the thinnest tube listed in Table 2, the ends of the body shall be 'up-set' by a forging operation to increase thickness of the tubing to the required value so that the value of dimension F (see Table 2) is maintained after swaging down. Alternatively, the body may be machined from solid bar.
- **6.5.1.2** Screwed eye, screwed fork and screwed stud eye The screwed eye, screwed fork and screwed stud eye shall be cleanly forged and finished; all fins or flashes produced in forging shall be dressed to a level surface. The length of the thread on the fork and eye shanks shall be such that the ends meet at the centre of the body when they are screwed home.
- **6.5.1.3** Fork and thimble The thimble, when in place in the fork, shall be capable of free movement.

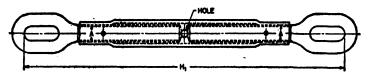
6.5.2 Stretching screw

- **6.5.2.1** Body The body shall be a solid forging without weld, neatly and cleanly made and finished. Flashes or fins produced in manufacture shall be dressed to a level surface. The faces of each boss of the body shall be machined.
- **6.5.2.2** Screw eye The screw eye shall be a solid forging without weld, neatly made and finished. Flashes or fins produced in manufacture shall be dressed to a level surface. The length of the thread on the screwed shanks shall be such that the shank ends of the screw eyes, or screw eye and swivel, shall meet when screwed home.
- **6.5.2.3** Swivel eye The swivel eye (see Table 6) shall be solid forging without weld neatly and cleanly made and finished Flashes or fins produced in manufacture shall be dressed to a level surface. The shanks shall be machined and screwed (fine thread) and be provided with a tubular nut. The shoulder (dimension F) shall be machine-faced. The end of the screw shanks shall be riveted over the collar nut to form an effective head. The swivel eye shall swivel freely after assembly.
- **6.6** Each component of the completed rigging screw or stretching screw shall be free from any visible flaw or defect.
- **6.7** Certificate of Test The manufacturer shall supply a certificate of test with every delivery of rigging screw or stretching screw in the form given in Appendix A.

7. Tests

- **7.1** Proof Testing— Each completed rigging screw or stretching screw shall be subjected to the appropriate proof load given in Table 1 or Table 6 which it shall withstand without any sign of defect.
- **7.2** Tests for Galvanizing When specified otherwise by the purchaser, samples of each component of the completed rigging screw, including screw threads, shall be tested in accordance with IS: 2633-1972 'Methods of testing uniformity of coating on fine coated articles (first revision)' and IS: 6745-1972 'Methods for determination of weight of zinc coating on zinc coated iron and steel articles'.

8. Enquiry and Order


- **8.1** This standard provides for alternative designs and the enquiry and order should state the type of screw required by reference to the figures. When an assembly different from that shown in the figures is called for, or when lock-nuts are required, it is incumbent upon the purchaser to give full details of such special requirements.
- **8.2** The rigging screws shall be supplied in galvanized condition in case nothing is stated in the enquiry and order about the surface coating of the rigging screws.
- **8.3** When lock-nuts are required, or if the stretching screws are required ungalvanized, this should be clearly stated in the enquiry and order.

9. Marking

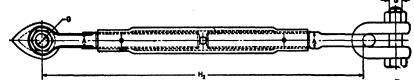
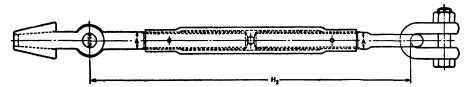
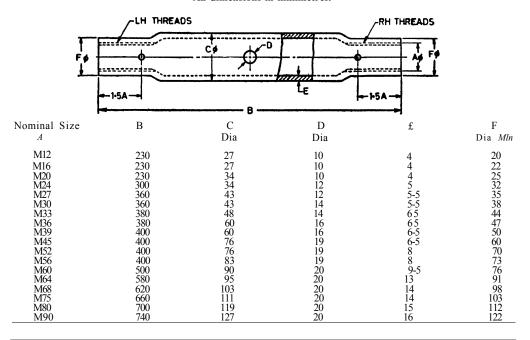

- **9.1** Each rigging screw and stretching screw shall be permanently and legibly stamped with the safe working load given in Tables 1 and 6, and also with such marks and symbols as will allow identification with the manufacturer's Certificate of Test (see Appendix A). Care shall be taken that the stamps used have a concave surface where applicable and that the indentation is neither too sharp nor excessive in depth.
 - **9.1.1** ISI Certification Marking Details available with the Indian Standard Institution.

TABLE 1 DIMENSIONS FOR RIGGING SCREWS


(Clauses 3.1.1, 3.3.1, 5.1.1, 7.1 and 9.1)

Assembly with Screwed Eyes at Both Ends

Assembly with Screwed Eye and Shackle at One End; Screwed Fork and Thimble at Other End


Assembly with Screwed Eye and Shackle at One End; Screwed Eye and Wire Rope Socket at Other End

Nominal Dia of		Nominal	11			H_2		Safe
Size A	Rope	Diaof Bolt & Nut	H_1		Closed	Open	Load	Working Load
	mm	G mm	Closed	Open	mm	mm	kN	kN
M12	8	M12	330	525	330	525	10.0	5.0
M16	10	M14	370	550	370	550	18.0	9.0
M20	12	M16	400	570	400	570	28.0	14.0
M24	14	M20	475	700	475	700	36.0	18.0
M27	16	M22	550	825	550	825	44.0	22.0
M30	18	M27	550	825	550	825	63.0	31.5
M33	20	M30	600	875	600	875	75.0	37.5
M36	22	M30	600	875	610	875	86.0	43.0
M39	25	M33	660	960	660	960	100.0	50.0
M45	29	M39	700	960	700	960	112.0	56.0
M52	32	M45	750	1 000	750	1 000	144.0	72.0
M56	35	M52	775	1 025	760	1000	194.0	97.0
M60	38	M52	800	1 050	780	1 025	214.0	107.0
M64	41	M58	1 070	1 450	1 050	1 420	286.0	143.0
M68	44	M64	1 120	1 590	1 100	1 500	342.0	171.0
M75	48	M70	1 270	1 700	1 240	1 660	400.0	200.0
M80	51	M76	1 360	1 760	1 330	1 730	500.0	250.0
M90	54	M85	1 440	1 860	1 400	1 820	624.0	312.0

TABLE 2 DIMENSIONS FOR TUBULAR BODIES

(Clauses 3.1.1, 3.3.1, 5.1.1 and 6.5.1.1)

All dimensions in millimetres.

TABLE 3 DIMENSIONS FOR SCREWED EYES

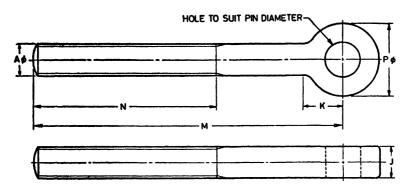
(*Clauses* 3.1.1, 3.3.1 *and* 5.1.1) All dimensions in millimetres.

		NM -		К	
Nominal Size	J	K Dia	L	M	N
M12 M16 M20 M24 M27 M30 M33 M36 M39 M42 M45 M45 M56 M60 M64 M68 M75 M80 M90	12 18 24 24 24 30 36 36 36 36 42 42 42 54 60 61 69 78 88	12 16 16 20 20 25 25 25 25 28 36 36 40 47 51 57 63 69	25 44 50 50 60 60 65 65 75 90 100 115 137 153 170 188 206	177 197 211 246 290 290 325 325 350 378 406 421 440 580 635 690 740 790	115 115 115 150 175 175 190 200 200 200 200 200 200 200 200 310 330 350 370

TABLE 4 DIMENSIONS FOR SCREWED FORKS

(Clauses 3.1.1, 3.3.1 and 5.1.1)

All dimensions in millimetres.


	CLEARANCE HOLE TO SUIT BOLT DIAMETER G (TABLE 1)						
		N				Pø	
Ŧ Ą	ø (-1	K	
Naminal Size			— м —			K	
Nominal Size A Dia	J	K	L	M	N	P	Q*
M12	12	9.5	30	165	115	29	12
M16	19	9.5	50	185	115	32	12
M20	22	12	60	195	115	35	16
M24	25	12	65	240	150	42	19
M27	29	12	70	270	175	48	22
M30	32	14	75 0.5	280	175	54	25
M33	35	14	85	300	190	60	25
M36 M39	39 42	16 19	90 100	315 335	190 200	60	29
M45	52	22	115	350	200	66 80	32
M52	54	25	125	370	200	80 95	38 45
M56	60	29	125	375	200	100	48
M60	70	29	135	380	200	110	48 52
M64	60	26	135	508	290	127	52
M68	67	28	145	553	310	142	56
M75	73	30	160	596	330	157	64
M80	79	32	175	640	350	175	72
M90	84	34	190	684	370	193	76

^{*}Permissible alternative form shown by dash-dot line in the figure.

TABLE 5 DIMENSIONS FOR SCREWED STUD EYES

(Clauses 3.1.1, 3.3.1 and 5.1.1)

All dimensions in millimetres.

Nominal Size A Dia	J	K	M	N	<i>P</i> Dia	Pin Dia
M12	12	17	165	115	26	12-5
M16	16	22	185	115	40	19
M20	20	25	195	115	46	22
M24	24	25	230	150	46	22
M27	25	25	270	175	52	25
M30	30	36	270	175	66	32
M33	33	36	300	190	66	32
M36	36	40	300	190	72	35
M39	39	40	325	200	78	38
M45	40	50	350	200	78	38
M52	47	57	370	200	88	43
M56	52	66	385	200	100	49
M60	56	73	400	200	108	52
M64	60	80	533	289	120	58
M68	66	89	584	310	132	64
M75	71	96	633	330	144	70
M80	77	105	677	350	156	76
N90	89	118	721	370	178	87

Safe Working Load 4.5 6.0 7.6 11.2 16.2 3.0 20.0 45.0 71 63.0 90.0 2.0 3.0 6.0 9.0 12.0 15.2 22.4 32.4 40.0 8 110 113 114 116 22 22 22 22 24 24 33 36 45 52 Assembly of Single Ended Type Stretching Screw Swivel Eye 19 22 26 30 33 40 40 49 58 Screw Eyes and Swivel Eyes 50 90 75 90 135 155 175 210 250 300 340 105 140 180 220 250 275 325 390 435 500 510 535 535 TABLE 6 DIMENSIONS FOR STRETCHING SCREWS (Clauses 3.2.1, 3.2.1.1, 3.3.1, 5.2, 6.5.2.3, 7.1 and 9.1) Long Screw Eye SECTION XX 80 100 130 150 175 200 220 230 270 310 350 350 415 450 All dimensions in millimetres. 10 12 12 12 14 14 18 18 18 24 24 24 27 42 42 RH THREADS 7 Open Body 16 19 22 24 24 30 33 33 44 44 67 80 Assembly of Double Ended Type Stretching Screw 111 113 115 118 222 224 224 330 332 335 50 60 60 10 113 115 118 21 22 24 22 33 33 35 42 50 60 70 LH THREADS S Short Screw Eye 54 60 66 88 88 1100 1120 1135 1165 32 35 45 Assembly and Body 115 119 22 24 24 33 33 33 35 55 55 55 57 115 116 119 122 222 223 229 229 441 441 443 443 60 60 60 8 110 112 114 116 118 118 220 220 222 228 40 8 110 112 115 118 118 22 22 22 22 24 24 24 40 40 125 180 200 225 250 100 315 355 400 450 450 450 M10 M12 M14 M16 M20 M22 M24 M30 M36 M45 M52 9W M8

APPENDIX A

(Clauses 6.7 and 9.1)

PRO FORMA FOR CERTIFICATE OF TEST

We hereby warrant that the	he rigging screw	(8)* supplied co	onform in all	respects	with
IS: 3121 -1981 and that each	rigging screw* ha	s been subjected to	the proof load	(kN)
specified In Table $\frac{(1^*)}{(6^*)}$ of th	at standard, and was	, after such test, du	ly examined by	a comp	etent
person and found free from any					
The identification mark o					
Its safe working load					
		Manufacturer	. 1000 000 000	•••••	
		Signature		•••••	• • • • • •
		Date	• • • • • • • • • • • • • • • • • • • •		• • • • • • •

EXPLANATORY NOTE

This standard, originally published in 1965, has been revised to Introduce definitions of 'rigging screw' and 'stretching screw' and latest development in this field.

It is sometimes desirable to fit the threaded shanks of rigging screws and stretching screws with lock-nuts to prevent possible slacking back, for example, in the case of wire rope guys on derrick cranes. Where lock-nuts are required, this should be clearly specified in the enquiry or order.

The rigging screw assemblies specified are meant for normal conditions of use, but such assemblies may be varied, if desired, by fitting a fork at each end, or by fitting an ordinary thimble In place of solid thimble. It is incumbent upon the purchaser, however, to specify any such variations in the enquiry and order.

It is recommended that for normal conditions of service, the working load of the rigging screw or stretching screw should not exceed one-half the specified proof load. In all cases, however, where an assembly is made of various components, for example, screws, wire rope, shackles, etc, the safe working load of the assembly should be that of the weakest component in the assembly.

^{*}Strike out what is not relevant.