Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

Indian Standard

ANIMAL FEEDING STUFFS — DETERMINATION OF THE CONTENTS OF CALCIUM, COPPER, IRON, MAGNESIUM, MANGANESE, POTASSIUM, SODIUM AND ZINC — METHOD USING ATOMIC ABSORPTION SPECTROMETRY

ICS 65.120
NATIONAL FOREWORD

This Indian Standard which is identical with ISO 6869:2000 'Animal feeding stuffs — Determination of the contents of calcium, copper, iron, magnesium, manganese, potassium, sodium and zinc — Method using atomic absorption spectrometry' issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on the recommendation of the Livestock Feeds Sectional Committee and approval of the Food and Agriculture Division Council.

In the adopted standard, certain terminology and conventions are not identical to those used in Indian Standards. Attention is drawn specially to the following:

a) Wherever the words 'International Standard' appear referring to this standard, they should be read as 'Indian Standard'.

b) Comma (,) has been used as a decimal marker while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

In this standard, the following International Standards are referred to. Read in their respective place, the following:

<table>
<thead>
<tr>
<th>International Standard Corresponding Indian Standard</th>
<th>Degree of Equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 3696:1987 Water for analytical laboratory use and test methods (third revision)</td>
<td></td>
</tr>
</tbody>
</table>

In reporting the results of a test or analysis made in accordance with this standard, if the final value, observed or calculated, is to be rounded off, it shall be done in accordance with IS 2:1960 'Rules for rounding off numerical values (revised)'.

Indian Standard

ANIMAL FEEDING STUFFS — DETERMINATION OF THE CONTENTS OF CALCIUM, COPPER, IRON, MAGNESIUM, MANGANESE, POTASSIUM, SODIUM AND ZINC — METHOD USING ATOMIC ABSORPTION SPECTROMETRY

1 Scope

This International Standard specifies an atomic absorption spectrometric method for the determination of the contents of calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), potassium (K), sodium (Na) and zinc (Zn) in animal feeding stuffs.

The method is applicable to all animal feeding stuffs.

The limit of determination for the elements concerned is as follows:

<table>
<thead>
<tr>
<th>Element</th>
<th>Limit of Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>K and Na</td>
<td>500 mg/kg</td>
</tr>
<tr>
<td>Ca and Mg</td>
<td>50 mg/kg</td>
</tr>
<tr>
<td>Cu, Fe, Mn and Zn</td>
<td>5 mg/kg</td>
</tr>
</tbody>
</table>

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this International Standard. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative documents referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 6498, Animal feeding stuffs — Preparation of test samples.

3 Principle

A test portion is dissolved in hydrochloric acid, if necessary after ashing in a muffle furnace at (550 ± 15) °C. Any silica compounds present are removed by precipitation and filtration. The precipitate is dissolved in hydrochloric acid and diluted to the desired volume, then aspirated into the air-acetylene flame of the atomic absorption spectrometer.

The absorbance of each element is measured by comparison with the absorbance of calibration solutions for the same element.

4 Reagents and materials

Use only reagents of recognized analytical grade.

4.1 Water, complying with at least grade 3 in accordance with ISO 3696.
4.2 Concentrated hydrochloric acid, $c(\text{HCl}) = 12 \text{ mol/l}$ ($\rho = 1.19 \text{ g/ml}$).

4.3 Hydrochloric acid, $c(\text{HCl}) = 6 \text{ mol/l}$.

4.4 Dilute hydrochloric acid, $c(\text{HCl}) = 0.6 \text{ mol/l}$.

4.5 Lanthanum nitrate solution.
Dissolve 133 g of $\text{La(NO}_3\text{)}_3 \cdot 6\text{H}_2\text{O}$ in 1 litre of water (4.1).

Another lanthanum salt may be used if the lanthanum content of the prepared solution is the same.

4.6 Caesium chloride solution.
Dissolve 100 g of CSCI in 1 litre of water (4.1).

Another caesium salt may be used if the caesium content of the obtained solution is the same.

4.7 Stock solution of Cu, Fe, Mn and Zn.
Mix 100 ml of water (4.1) and 125 ml of concentrated hydrochloric acid (4.2) in a 1 litre volumetric flask.

Weigh out the following:

— 392.9 mg of copper(II) sulfate pentahydrate ($\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$);

— 702.2 mg of ammonium iron(II) sulfate hexahydrate ($\text{(NH}_4\text{)}_2\text{SO}_4 \cdot \text{FeSO}_4 \cdot 6\text{H}_2\text{O}$);

— 307.7 mg of manganese sulfate monohydrate ($\text{MnSO}_4 \cdot \text{H}_2\text{O}$);

— 439.8 mg of zinc sulfate heptahydrate ($\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}$).

Transfer the weighed salts to the volumetric flask and dissolve them in water (4.1). Dilute to the mark with water.

The contents of Cu, Fe, Mn and Zn of this stock solution are each 100 $\mu\text{g/ml}$.

NOTE Ready-prepared commercially available solutions may be used.

4.8 Standard solution of Cu, Fe, Mn and Zn.
Dilute 20.0 ml of the stock solution (4.7) with water (4.1) to 100 ml in a volumetric flask.

The contents of Cu, Fe, Mn and Zn of this solution are each 20 $\mu\text{g/ml}$.

Prepare the solution fresh on the day of use.

4.9 Stock solution of Ca, K, Mg and Na.
Weigh out the following:

— 1.907 g of potassium chloride (KCl);

— 2.028 g of magnesium sulfate heptahydrate ($\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$);

— 2.542 g of sodium chloride (NaCl).

Transfer the weighed salts to a 1 litre volumetric flask.
Add 50 ml of hydrochloric acid (4.3) to a beaker. Weigh into the beaker 2,497 g of calcium carbonate (CaCO₃).

CAUTION: Beware of the development of carbon dioxide.

Boil for 5 min on an electric hot plate (5.4). Cool and transfer the solution to the volumetric flask containing the weighed salts of K, Mg and Na. Dissolve the salts and dilute to the mark with dilute hydrochloric acid (4.4).

The contents of Ca, K and Na of this solution are each 1 mg/ml; the content of Mg of the solution is 200 µg/ml.

NOTE Ready-prepared commercially available solutions may be used.

4.10 Standard solution of Ca, K, Mg and Na.

Dilute 25,0 ml of stock solution (4.9) with dilute hydrochloric acid (4.4) to 250 ml in a volumetric flask.

The contents of Ca, K and Na of this solution are each 100 µg/ml; the content of Mg of the solution is 20 µg/ml.

Prepare the solution fresh in the week of use and store it in a polyethylene bottle.

4.11 Lanthanum/caesium blank solution

Add 5 ml of lanthanum nitrate solution (4.5), 5 ml of caesium chloride solution (4.6) and 5 ml of hydrochloric acid (4.3) to a 100 ml volumetric flask. Dilute to the mark with water (4.1).
6 Sampling

Sampling is not part of the method specified in this International Standard. A recommended sampling method is given in ISO 6497 [5].

It is important that the laboratory receive a sample which is truly representative and has not been damaged or changed during transport or storage.

Store the sample so that deterioration and other changes in composition are prevented.

7 Preparation of test sample

Prepare the test sample in accordance with ISO 6498.

8 Procedure

8.1 Detection of presence of organic matter

Heat a spatula with some test sample in a flame.

If the test sample melts without smoke, little organic matter is present.

If the test sample changes in colour and melting does not occur, the test sample contains organic matter.

8.2 Test portion

Depending on the expected content, weigh 1 g to 5 g of the prepared test sample (clause 7), to the nearest 1 mg, into an incineration dish (5.2).

If the test sample contains organic matter (see 8.1), proceed in accordance with 8.3.

If the test sample contains little or no organic matter (see 8.1), proceed in accordance with 8.4.

8.3 Dry ashing

Heat the incineration dish on a hot plate or over a gas burner (5.4) until the test portion has been completely carbonized. Avoid burning the test portion.

Transfer the dish to the muffle furnace (5.6) which has already been at a temperature of 550 °C for 15 min. Ash the sample for 3 h at this temperature.

Allow the sample to cool down then moisten the contents of the dish with 2 ml of water. If many carbon particles are present, dry the dish over the water bath (5.5).

Ash for another 2 h in the muffle furnace set at 550 °C.

Allow to cool down then add 2 ml of water.

8.4 Decomposition

While swirling, add 10 ml of hydrochloric acid (4.3), first dropwise until effervescence (possible development of carbon dioxide) has ceased, then faster. Swirl and heat the contents of the dish until almost dry. While drying, take care to avoid loss by splattering.
Dissolve the residue by heating with 5 ml of hydrochloric acid (4.3) and transfer the solution quantitatively with some 5 ml portions of water to a 50 ml volumetric flask.

Allow to cool, then dilute to the mark with water and mix. Allow the particles to settle and filter (see 5.9) the solution if it is not clear after 4 h.

8.5 Blank solution

Prepare for each measuring series a blank solution by carrying out the procedure according to 8.2, 8.3 and 8.4 without the test sample.

8.6 Determination of copper, iron, manganese and zinc

8.6.1 Measuring conditions

Adjust the atomic absorption spectrometer (5.7) in accordance with the manufacturer's instructions. Optimize the response of the instrument for measurement with the air-acetylene flame. For the determination of Cu, Fe, Mn and Zn set the following wavelengths:

- Cu: 324.8 nm;
- Fe: 248.3 nm;
- Mn: 279.5 nm;
- Zn: 213.8 nm.

8.6.2 Preparation of calibration curve

Prepare a series of appropriate calibration solutions by diluting the standard solution (4.8) with dilute hydrochloric acid (4.4).

Measure the absorbance of the hydrochloric acid (4.4). Measure the absorbance of the calibration solutions and subtract the absorbance measured for the hydrochloric acid (4.4).

Draw a calibration curve by plotting the corrected absorbances against the respective contents of Cu, Fe, Mn and Zn.

8.6.3 Measurement of test solution

Measure parallel to the calibration solutions, under identical circumstances, the absorbance of the test solution (8.4) and the blank solution (8.5). Subtract the latter absorbance from the first absorbance.

If necessary, dilute a quantity of the test solution and blank solution with dilute hydrochloric acid (4.4) to obtain an absorbance in the linear part of the calibration curve.

Proceed in accordance with clause 9.
8.7 Determination of calcium, magnesium, potassium and sodium

8.7.1 Measuring conditions

Adjust the atomic absorption spectrometer in accordance with the manufacturer's instructions. Optimize the response of the instrument for measurement with the air-acetylene flame. For the determination of Ca, K, Mg and Na set the following wavelengths:

- Ca: 422.6 nm;
- K: 766.5 nm;
- Mg: 285.2 nm;
- Na: 589.6 nm.

8.7.2 Preparation of calibration curve

Dilute the standard solution (4.10) with water (4.1). Add per 100 ml of diluted standard solution 5 ml of lanthanum nitrate solution (4.5), 5 ml of caesium chloride solution (4.6) and 5 ml of hydrochloric acid (4.3). Choose the dilutions so that appropriate calibration solutions are obtained.

Measure the absorbance of the lanthanum/caesium blank solution (4.11).

Measure the absorbance of the calibration solutions and subtract the absorbance measured for the lanthanum/caesium blank solution (4.11).

Draw a calibration curve by plotting the corrected absorbances against the respective contents of Ca, K, Mg and Na.

8.7.3 Measurement of test solution

Dilute a quantity of the test solution (8.4) and blank solution (8.5) with water (4.1). Add per 100 ml of diluted solution 5 ml of lanthanum nitrate solution (4.5), 5 ml of caesium chloride solution (4.6) and 5 ml of hydrochloric acid (4.3).

Measure parallel to the calibration solutions, under identical circumstances, the absorbance of the diluted test solution and the diluted blank solution. Subtract the latter absorbance from the first absorbance.

If necessary, dilute a quantity of the test solution and blank solution with lanthanum/caesium blank solution (4.11) to obtain an absorbance in the linear part of the calibration curve.

9 Expression of results

Calculate the content of each of the elements calcium, copper, iron, magnesium, manganese, potassium, sodium and zinc starting from the calibration curve and taking into account the mass of the test portion and the dilutions applied.

Round the result in accordance with Table 1 and express the result in milligrams per kilogram or grams per kilogram.
Table 1 — Rounding of the calculated content

<table>
<thead>
<tr>
<th>Content</th>
<th>Round to</th>
</tr>
</thead>
<tbody>
<tr>
<td>from</td>
<td>to</td>
</tr>
<tr>
<td>5 mg/kg</td>
<td>10 mg/kg</td>
</tr>
<tr>
<td>10 mg/kg</td>
<td>100 mg/kg</td>
</tr>
<tr>
<td>100 mg/kg</td>
<td>1 g/kg</td>
</tr>
<tr>
<td>1 g/kg</td>
<td>10 g/kg</td>
</tr>
<tr>
<td>10 g/kg</td>
<td>100 g/kg</td>
</tr>
</tbody>
</table>

10 Precision

10.1 Interlaboratory tests

Details of interlaboratory tests on the precision of the method are given in annex A. The values derived from these tests may not be applicable to concentration ranges and matrices other than those given.

10.2 Repeatability

The absolute difference between two independent single test results, obtained using the same method on identical test material in the same laboratory by the same operator using the same equipment within a short interval of time, will in not more than 5 % of cases exceed the repeatability limit \(r \) mentioned in or derived from Table 2 or Table 3.

Table 2 — Repeatability limit \(r \) and reproducibility limit \(R \) for premixes

<table>
<thead>
<tr>
<th>Element</th>
<th>Element content</th>
<th>(r)</th>
<th>(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>from</td>
<td>to</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>3 000</td>
<td>30 000</td>
<td>0,07 (\bar{w})</td>
</tr>
<tr>
<td>Cu</td>
<td>200</td>
<td>20 000</td>
<td>0,07 (\bar{w})</td>
</tr>
<tr>
<td>Fe</td>
<td>500</td>
<td>3 000</td>
<td>0,06 (\bar{w})</td>
</tr>
<tr>
<td>K</td>
<td>2 500</td>
<td>30 000</td>
<td>0,09 (\bar{w})</td>
</tr>
<tr>
<td>Mg</td>
<td>1 000</td>
<td>100 000</td>
<td>0,06 (\bar{w})</td>
</tr>
<tr>
<td>Mn</td>
<td>150</td>
<td>15 000</td>
<td>0,08 (\bar{w})</td>
</tr>
<tr>
<td>Na</td>
<td>2 000</td>
<td>250 000</td>
<td>0,09 (\bar{w})</td>
</tr>
<tr>
<td>Zn</td>
<td>3 500</td>
<td>15 000</td>
<td>0,08 (\bar{w})</td>
</tr>
</tbody>
</table>

\(\bar{w} \) is the mean of the two results, in milligrams per kilogram.
Table 3 — Repeatability limit (r) and reproducibility limit (R) for animal feeds

Values in milligrams per kilogram

<table>
<thead>
<tr>
<th>Element</th>
<th>Element content</th>
<th>r</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>from to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>5 000 50 000</td>
<td>0,07 * w</td>
<td>0,28 * w</td>
</tr>
<tr>
<td>Cu</td>
<td>10 100</td>
<td>0,27 * w</td>
<td>0,57 * w</td>
</tr>
<tr>
<td>Cu</td>
<td>100 200</td>
<td>0,09 * w</td>
<td>0,16 * w</td>
</tr>
<tr>
<td>Fe</td>
<td>50 1 500</td>
<td>0,08 * w</td>
<td>0,32 * w</td>
</tr>
<tr>
<td>K</td>
<td>5 000 30 000</td>
<td>0,09 * w</td>
<td>0,28 * w</td>
</tr>
<tr>
<td>Mg</td>
<td>1 000 10 000</td>
<td>0,06 * w</td>
<td>0,16 * w</td>
</tr>
<tr>
<td>Mn</td>
<td>15 500</td>
<td>0,06 * w</td>
<td>0,40 * w</td>
</tr>
<tr>
<td>Na</td>
<td>1 000 6 000</td>
<td>0,15 * w</td>
<td>0,23 * w</td>
</tr>
<tr>
<td>Zn</td>
<td>25 500</td>
<td>0,11 * w</td>
<td>0,19 * w</td>
</tr>
</tbody>
</table>

* w is the mean of the two results, in milligrams per kilogram.

NOTE In Table 2 and Table 3, the repeatability and reproducibility limits are given in the form of a formula for each element and for the indicated range. The factor in this formula is an average over the investigated samples in the indicated range. In exceptional cases higher values have been obtained for the determination of a specific element in specific samples. These samples have not been taken into account. Most likely cause of these deviations is lack of homogeneity of the samples concerned (see annex A).

10.3 Reproducibility

The absolute difference between two single test results, obtained using the same method on identical test material in different laboratories by different operators using different equipment, will in not more than 5 % of cases exceed the reproducibility limit (R) mentioned in or derived from Table 2 or Table 3.

11 Test report

The test report shall specify:

— all information necessary for the complete identification of the sample;
— the sampling method used, if known;
— the test method used, with reference to this International Standard;
— all operating details not specified in this International Standard, or regarded as optional, together with details of any incidents which may have influenced the test result(s);
— the test result obtained, or the two test results obtained if the repeatability has been checked.
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of “BIS Catalogue” and ‘Standards : Monthly Additions’.

This Indian Standard has been developed from Doc : No FAD 5 (1208).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110 002
Telephones: 323 01 31, 323 33 75, 323 94 02

Regional Offices:
Central: Manak Bhavan, 9 Bahadur Shah Zafar Marg
NEW DELHI 110002

Eastern: 1/14 C. I. T. Scheme VII M, V. I. P. Road, Kankurgachi KOLKATA 700 054

Northern: SCO 335-336, Sector 34-A, CHANDIGARH 160 022

Southern: C. I. T. Campus, IV Cross Road, CHENNAI 600 113

Western: Manakalaya, E9 MIDC, Marol, Andheri (East)
MUMBAI 400 093

Branches: AHMADABAD, BANGALORE, BHOPAL, BHUBANESHWAR, COIMBATORE, FARIDABAD, GHAZIABAD, GUWAHATI, HYDERABAD, JAIPUR, KANPUR, LUCKNOW, NAGPUR, NALAGARH, PATNA, PUNE, RAJKOT, THIRUVANANTHAPURAM.

Printed at New India Printing Press, Khurja, India