
Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to
information for citizens to secure access to information under the control of public authorities,
in order to promote transparency and accountability in the working of every public authority,
and whereas the attached publication of the Bureau of Indian Standards is of particular interest
to the public, particularly disadvantaged communities and those engaged in the pursuit of
education and knowledge, the attached public safety standard is made available to promote the
timely dissemination of this information in an accurate manner to the public.

इंटरनेट मानक

“!ान $ एक न' भारत का +नम-ण”
Satyanarayan Gangaram Pitroda

“Invent a New India Using Knowledge”

“प0रा1 को छोड न' 5 तरफ”
Jawaharlal Nehru

“Step Out From the Old to the New”

“जान1 का अ+धकार, जी1 का अ+धकार”
Mazdoor Kisan Shakti Sangathan

“The Right to Information, The Right to Live”

“!ान एक ऐसा खजाना > जो कभी च0राया नहB जा सकता है”
Bhartṛhari—Nītiśatakam

“Knowledge is such a treasure which cannot be stolen”

“Invent a New India Using Knowledge”

है”ह”ह

IS/IEC 62056-53 (2006): Electricity Metering - Data
Exchange for Meter Reading, Tariff and Load Control, Part
53: Cosem Application Layer [ETD 13: Equipment for
Electrical Energy Measurement and Load Control]

© BIS 2012

August 2012 Price Rs 1620

B U R E A U O F I N D I A N S T A N D A R D S
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG

NEW DELHI 110002

Hkkjrh; ekud

fo|qr ehVfjax — ehVj jhfMax] çHkkj vkSj
Hkkj fu;a=k.k osQ fy, vk¡dM+ksa dk fofue;

Hkkx 53 lhvks,lb,e vuqç;ksx laLrj

Indian Standard
ELECTRICITY METERING — DATA EXCHANGE FOR

METER READING, TARIFF AND LOAD CONTROL
PART 53 COSEM APPLICATION LAYER

ICS 91.140.50; 35.100.70

IS/IEC 62056-53 : 2006

CONTENTS

NATIONAL FOREWORD...iv

1 Scope...1
2 Normative references ...1
3 Terms, definitions and abbreviations ..2
4 The COSEM communications framework ..4

4.1 Client/server type operation, communication profiles ...4
4.2 Connection (association) oriented operation ..6

5 Overview: the COSEM application layer ...6

5.1 Specification method ...6
5.2 Application layer structure ...6
5.3 Service specification ...7
5.4 Layer management services ..9
5.5 Protocol specification ..9

6 COSEM application layer – Service specification .. 10
6.1 Summary of services ... 10
6.2 Application association establishment and release .. 10
6.3 Special application associations .. 11
6.4 Data communication .. 12
6.5 Client COSEM application layer services ... 13
6.6 Server COSEM application layer services.. 32
6.7 Summary of COSEM application layer services and service parameters49

7 COSEM application layer protocol specification ..53
7.1 State definitions for the client side control function .. 53
7.2 State definitions for the server side control function ..55
7.3 Protocol for application association establishment/release56
7.4 Protocol for data communications..68

8 Specification of COSEM data types .. 83
8.1 The COSEM APDUs .. 83
8.2 The ACSE APDUs ...84
8.3 Useful types ..87
8.4 The xDLMS-Initiate.request/response/ConfirmedServiceError PDUs......................88
8.5 The conformance block ...88
8.6 Definition of APDUs for data communication ... 93

Annex A (normative) The xDLMS application service element .. 99
Annex B (normative) Using the COSEM Application Layer in various communication
profiles ... 101
Annex C (informative) AARQ and AARE encoding examples.. 120
Annex D (informative) Data model and protocol ... 132

Bibliography.. 133

INDEX .. 136

IS/IEC 62056-53 : 2006

i

Figure 1 – Client/server relationship in COSEM ..4
Figure 2 – Exchanging messages via the communication protocol ..5

Figure 3 – The COSEM application layer on the top of various lower layer stacks5

Figure 4 – A complete communication session in the CO environment6

Figure 5 – The structure of the COSEM application layers ..7

Figure 6 – Structure of the COSEM AL when the server is using SN references......................9

Figure 7 – Summary of COSEM application layer services .. 10
Figure 8 – Normal service sequence for the COSEM-OPEN service...................................... 11
Figure 9 – Client side services for application association establishment 13
Figure 10 – Client side services for releasing an application association...............................17
Figure 11 – Client side data communication services ..20
Figure 12 – Client side services for event notification ...29
Figure 13 – Server side services for application association establishment32
Figure 14 – Server side services for releasing an application association34
Figure 15 – Server side data communications services using LN referencing38
Figure 16 – Partial state machine for the client side control function54
Figure 17 – Partial state machine for the server side control function....................................55
Figure 18 – MSC for successful application association establishment preceded by a
successful lower layer connection establishment ..57
Figure 19 – Graceful association release using the A-RELEASE service............................... 63
Figure 20 – Graceful release of an application association by disconnection the
supporting layer ..64
Figure 21 – Aborting an application association following a PH-ABORT.indication65
Figure 22 – MSC for a confirmed GET service in case of success ...69
Figure 23 – MSC for a confirmed SET service in case of success ...69
Figure 24 – MSC for the SET service in case of failure ... 70
Figure 25 – MSC for the ACTION service (simplest case) ... 70
Figure 26 – Long data with the GET service in three data blocks ..75
Figure 27 – Long data transfer in three data blocks with the SET service..............................77
Figure 28 – Long data transfer with the ACTION service ...79
Figure 29 – MSC for the ReadRequest/Response services ... 81
Figure B.1 – Identification/addressing scheme in the 3-layer, connection-oriented,
HDLC based communication profile .. 104
Figure B.2 – Data link layer services provided to and used by the client COSEM
application layer ... 105
Figure B.3 – Data link layer services provided to and used by the server COSEM
application layer ... 106
Figure B.4 – Example: EventNotificaton triggered by the client ... 109
Figure B.5 – Multi-drop configuration and its model .. 110
Figure B.6 – Master/ Slave operation on the multi-drop bus .. 110
Figure B.7 – COSEM as a standard Internet application protocol .. 112
Figure B.8 – Examples for lower-layer protocols in the TCP-UDP/IP based profiles 113
Figure B.9 – Identification/addressing scheme in the TCP-UDP/IP based profile(s) 114
Figure B.10 – Summary of TCP/UDP layer services on the client and server side 115
Figure D.1 – The three-step approach of COSEM ... 132

IS/IEC 62056-53 : 2006

ii

Table 1 – Mapping between client side LN and server side SN referencing services 31
Table 2 – Application layer services – summary..49
Table 3 – Summary of the service parameters in the COSEM-OPEN service primitives......... 50
Table 4 – Summary of the service parameters in the COSEM-RELEASE service primitives .51
Table 5 – Summary of the service parameters in the COSEM-ABORT service primitives 51
Table 6 – Summary of the service parameters in the COSEM GET service primitives 51
Table 7 – Summary of the service parameters in the COSEM SET service primitives............ 52
Table 8 – Summary of the service parameters in the COSEM ACTION service primitives 52
Table 9 – Summary of the service parameters in the COSEM EventNotification service
primitives .. 53
Table 10 – Mapping between the EventNotification and InformationReport services.............. 82
Table B.1 – Application associations and data exchange in the 3-layer, connection-
oriented, HDLC based profile .. 107
Table B.2 –Application associations and data exchange in the TCP-UDP/IP based profile . 117

IS/IEC 62056-53 : 2006

iii

Equipment for Electrical Energy Measurement, Tariff and Load Control Sectional Committee, ETD 13

NATIONAL FOREWORD

This Indian Standard (Part 53) which is identical with IEC 62056-53 : 2006 ‘Electricity metering —
Data exchange for meter reading, tariff and load control — Part 53: COSEM application layer’ issued
by the International Electrotechnical Commission (IEC) was adopted by the Bureau of Indian
Standards on the recommendation of the Equipment for Electrical Energy Measurement, Tariff and
Load Control Sectional Committee and approval of the Electrotechnical Division Council.

The text of IEC Standard has been approved as suitable for publication as an Indian Standard without
deviations. Certain conventions are, however, not identical to those used in Indian Standards. Attention
is particularly drawn to the following:

a) Wherever the words ‘International Standard’ appear referring to this standard, they should be
read as ‘Indian Standard’.

b) Comma (,) has been used as a decimal marker, while in Indian Standards the current practice
is to use a point (.) as the decimal marker.

In this adopted standard, reference appears to certain International Standards for which Indian
Standards also exist. The corresponding Indian Standards which are to be substituted in their respective
places are listed below along with their degree of equivalence for the editions indicated:

 International Standard Corresponding Indian Standard Degree of Equivalence

 IEC/TR 62051-1 : 2004 Electricity
metering — Data exchange for meter
reading, tariff and load control —
Glossary of terms — Part 1: Terms
related to data exchange with
metering equipment using DLMS/
COSEM
IEC 62056-21: 2002 Electricity
metering — Data exchange for meter
reading, tariff and load control —
Part 21: Direct local data exchange
IEC 62056-42 : 2002 Electricity
metering — Data exchange for meter
reading, tariff and load control —
Part 42: Physical layer services and
procedures for connection-oriented
asynchronous data exchange
IEC 62056-46 : 20021) Electricity
metering — Data exchange for meter
reading, tariff and load control —
Part 46: Data link layer using HDLC
protocol
IEC 62056-47, Ed. 2, Electricity
metering — Data exchange for meter
reading, tariff and load control —
Part 47: COSEM transport layer for
IP networks

IS/IEC/TR 62051-1 : 2004
Electr ic i ty metering — Data
exchange for meter reading, tariff and
load control — Glossary of terms:
Part 1 Terms related to data
exchange with metering equipment
using DLMS/COSEM
IS/IEC 62056-21 : 2002 Electricity
metering — Data exchange for meter
reading, tariff and load control:
Part 21 Direct local data exchange
IS/IEC 62056-42 : 2002 Electricity
metering — Data exchange for meter
reading, tariff and load control:
Part 42 Physical layer services and
procedures for connection-oriented
asynchronous data exchange
IS/IEC 62056-46 : 2007 Electricity
metering — Data exchange for meter
reading, tariff and load control:
Part 46 Data link layer using HDLC
protocol
IS/IEC 62056-47 : 2006 Electricity
metering — Data exchange for meter
reading, tariff and load control:
Part 47 COSEM transport layer for
IPv4 networks

Identical

do

do

Technically Equivalent

Identical
to

IEC 62056-47 : 2006

1) Since revised in 2007.

IS/IEC 62056-53 : 2006

iv

 International Standard Corresponding Indian Standard Degree of Equivalence

IEC 62056-61, Ed. 2, Electricity
metering — Data exchange for meter
reading, tariff and load control —
Part 61: Object identification system
(OBIS)
IEC 62056-62, Ed. 2, Electricity
metering — Data exchange for meter
reading, tariff and load control —
Part 62: Interface classes

IS/IEC 62056-61 : 2006 Electricity
metering — Data exchange for meter
reading, tariff and load control:
Part 61 Object identification system
(OBIS)
IS/IEC 62056-62 : 2006 Electricity
metering — Data exchange for meter
reading, tariff and load control:
Part 62 Interface classes

The technical committee has reviewed the provisions of the following International Standards referred
in this adopted standard and has decided that they are acceptable for use in conjunction with this
standard:

International/Other Standard Title

IEC 60050-300 : 2001 International Electrotechnical Vocabulary (IEV) — Electrical and
electronic measurements and measuring instruments — Part 311:
General terms relating to measurements — Part 312: General terms
relating to electrical measurements — Part 313: Types of electrical
measuring instruments — Part 314: Specific terms according to the
type of instrument

IEC 61334-4-41 : 1996 Distribution automation using distribution line carrier systems —
Part 4: Data communication protocols — Section 41: Application
protocols — Distribution line message specification

IEC 61334-6 : 2000 Distribution automation using distribution line carrier systems —
Part 6: A-XDR encoding rule

IEC 62051 : 1999 Electricity metering — Glossary of terms
ISO/IEC 8649 : 1996 Information technology — Open Systems Interconnection — Service

definition for the Association Control Service Element
ISO/IEC 8650-1 : 1996 Information technology — Open systems interconnection —

Connection-oriented protocol for the Association Control Service
Element: Protocol specification

ISO/IEC 8824 Information technology — Abstract Syntax Notation One (ASN.1)

ISO/IEC 8825 Information technology — ASN.1 encoding rules
ISO/IEC 13239 : 2002 Information technology — Telecommunications and information

exchange between systems – High-level data link control (HDLC)
procedures

STD 0005 Internet Protocol (Also: RFC0791, RFC0792, RFC0919, RFC0922,
RFC0950, RFC1112)

STD 0006 User Datagram Protocol (Also: RFC0768)
STD 0007 Transmission Control Protocol (Also: RFC0793)

For the purpose of deciding whether a particular requirement of this standard is complied with, the
final value, observed or calculated expressing the result of a test, shall be rounded off in accordance
with IS 2 : 1960 ‘Rules for rounding off numerical values (revised)’. The number of significant places
retained in the rounded off value should be the same as that of the specified value in this standard.

Identical
to

IEC 62056-61 : 2006

Identical
to

IEC 62056-62 : 2006

IS/IEC 62056-53 : 2006

v

1 Scope

This part of IEC 62056 specifies the COSEM application layer in terms of structure, services
and protocols for COSEM clients and servers, and defines how to use the COSEM application
layer in various communication profiles.

It defines services for establishing and releasing application associations, and data
communication services for accessing the methods and attributes of COSEM interface
objects, defined in IEC 62056-62, using either logical name (LN) or short name (SN)
referencing.

Annex A describes the xDLMS application service element.

Annex B defines how to use the COSEM application layer in various communication profiles.

Annex C includes encoding examples for APDUs.

Annex D gives an explanation of the role of data models and protocols in electricity meter
data exchange.

2 Normative references

The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.

IEC 60050-300:2001, International Electrotechnical Vocabulary (IEV) – Electrical and
electronic measurements and measuring instruments – Part 311: General terms relating to
measurements – Part 312: General terms relating to electrical measurements – Part 313:
Types of electrical measuring instruments – Part 314: Specific terms according to the type of
instrument

IEC 61334-4-41:1996, Distribution automation using distribution line carrier systems – Part 4:
Data communication protocols – Section 41: Application protocols – Distribution line message
specification

IEC 61334-6:2000, Distribution automation using distribution line carrier systems – Part 6:
A-XDR encoding rule

IEC 62051:1999, Electricity metering – Glossary of terms

IEC 62051-1:2004, Electricity metering – Data exchange for meter reading, tariff and load
control – Glossary of Terms – Part 1: Terms related to data exchange with metering
equipment using DLMS/COSEM

IEC 62056-21:2002, Electricity metering – Data exchange for meter reading, tariff and load
control – Part 21: Direct local data exchange

IS/IEC 62056-53 : 2006

1

Indian Standard
ELECTRICITY METERING — DATA EXCHANGE FOR

METER READING, TARIFF AND LOAD CONTROL
PART 53 COSEM APPLICATION LAYER

IEC 62056-42:2002, Electricity metering – Data exchange for meter reading, tariff and load
control – Part 42: Physical layer services and procedures for connection-oriented
asynchronous data exchange

IEC 62056-46:2002, Electricity metering – Data exchange for meter reading, tariff and load
control – Part 46: Data link layer using HDLC protocol
Amendment 12

IEC 62056-47, Electricity metering – Data exchange for meter reading, tariff and load control
– Part 47: COSEM transport layer for IP networks

IEC 62056-61, Ed.2, Electricity metering – Data exchange for meter reading, tariff and load
control – Part 61: Object identification system (OBIS)

IEC 62056-62, Ed.2, Electricity metering – Data exchange for meter reading, tariff and load
control – Part 62: Interface classes

ISO/IEC 8649:1996, Information technology – Open Systems Interconnection – Service definition
for the Association Control Service Element

ISO/IEC 8650-1:1996, Information technology – Open systems interconnection – Connection-
oriented protocol for the Association Control Service Element: Protocol specification

ISO/IEC 8824, Information technology – Abstract Syntax Notation One (ASN.1)

ISO/IEC 8825, Information technology – ASN.1 encoding rules

ISO/IEC 13239:2002, Information technology – Telecommunications and information exchange
between systems – High-level data link control (HDLC) procedures

STD0005 – Internet Protocol
Author: J. Postel
Date: September 1981
Also: RFC0791, RFC0792, RFC0919, RFC0922, RFC0950, RFC1112

STD0006 – User Datagram Protocol
Author: J. Postel
Date: 28 August 1980
Also: RFC0768

STD0007 – Transmission Control Protocol
Author: J. Postel
Date: September 1981
Also: RFC0793

See also Bibliography for other related Internet RFCs.

3 Terms, definitions and abbreviations

3.1 Terms and definitions

For the purposes of this part of IEC 62056, the definitions in IEC 60050-300, IEC 62051 and
IEC 62051-1 apply.

3.2 Abbreviations
.cnf .confirm service primitive
.ind .indication service primitive

———————
2 To be published.

IS/IEC 62056-53 : 2006

2

.req .request service primitive

.res .response service primitive
AA Application Association
AARE Application Association REsponse
AARQ Application Association ReQuest
ACSE Application Control Service Element
AE Application Entity
AP Application Process
APDU Application layer Protocol Data Unit
API Application Programming Interface
ARP Address Resolution Protocol
ASE Application Service Element
ASO Application Service Object
ATM Asynchronous Transfer Mode
A-XDR Adapted eXtended Data Representation
BER Basic Encoding Rules
CF Control function
CO Connection Oriented
COSEM COmpanion Specification for Energy Metering
DLMS Device Language Message Specification
DSAP Data link Service Access Point
FDDI Fibre Distributed Data Interface
FTP File Transfer Protocol
GMT Greenwich Mean Time
GSM Global System for Mobile communications
HDLC High-level Data Link Control
HLS High Level Security
HTTP Hypertext Transfer Protocol
IC Interface Class
IETF Internet Engineering Task Force
IP Internet Protocol
LAN Local Area Network
LLC Logical Link Control (sub-layer)
LLS Low Level Security
LPDU LLC Protocol Data Unit
LSAP LLC sub-layer Service Access Point
LSB Least Significant Bit
MAC Medium Access Control
MD5 Message Digest Algorithm 5
MIB Management Information Base
MSB Most Significant Bit
MSC Message Sequence Chart
OBIS OBject Identification System

IS/IEC 62056-53 : 2006

3

OSI Open System Interconnection
PDU Protocol Data Unit
PPP Point-to-Point Protocol
PSTN Public Switched Telephone Network
RARP Reverse Address Resolution Protocol
RFC Request For Comment
RLRQ Release Request
RLRE Release Response
SAP Service Access Point
SHA-1 Secure Hash Algorithm 1
SNMP Simple Network Management Protocol
VAA Virtual Application Association
xDLMS-ASE extended DLMS Application Service Element

4 The COSEM communications framework

4.1 Client/server type operation, communication profiles

Communication with electricity metering equipment using the COSEM interface object model
is based on the client/server paradigm where metering equipment3 plays the server role. In
this environment, communication takes place always between a client and a server AP: in
other words, the server AP provides remote services to the client AP. These services are
provided via exchanging messages (SERVICE.requests/.responses) between the client and
the server APs, as shown in Figure 1.

Client application
Server application
(COSEM device)

SERVICE.request

SERVICE.response

Figure 1 – Client/server relationship in COSEM

In general, the client and the server APs are located in separate devices; exchanging
messages is done with the help of the communication protocol as shown in Figure 2.

———————
3 The term metering equipment is an abstraction; consequently the equipment playing the role of a server may be

any type of equipment for which this abstraction is suitable.

IS/IEC 62056-53 : 2006

4

Client

Application
layer

Intermediate
protocol layers

Physical layer

Server
.request

.response

.request .response

Protocol

Physical channel

Figure 2 – Exchanging messages via the communication protocol

In general, communication protocols are structured in layers. The client and server COSEM
applications use services of the highest protocol layer, that of the application layer:
consequently, this is the only protocol layer containing COSEM specific element(s). This is
called the xDLMS_ASE. All COSEM interface object related services – the xDLMS application
protocol – are provided by this xDLMS_ASE.

Other protocol layers are independent of the COSEM model. Consequently, the COSEM
application layer can be placed on the top of a wide variety of lower protocol layer stacks, as
shown in Figure 3.

xDLMS_ASE ACSE

Application layer

N layer
N-1 layer

N layer N layer

Physical layer Physical layer Physical layer

Profile 1 Profile 2 Profile M

………

Figure 3 – The COSEM application layer on the top of various lower layer stacks

IS/IEC 62056-53 : 2006

5

A complete protocol stack – including the application layer, a physical layer and all protocol
layers between these extreme layers – is called a communication profile.

A communication profile is characterized by the protocol layers included, their parameters,
and by the type – connection-oriented or connectionless – of the ACSE4 included in the
application layer.

4.2 Connection (association) oriented operation

The xDLMS application protocol is a connection-oriented protocol. It means that the client and
server APs can use the services of the xDLMS_ASE only when these APs are associated5.
Therefore, in this environment a communication session consists of three phases, as shown
in Figure 4.

 Client application Server application

Phase 1.
Connection establishment

Phase 2.
Data communication

Phase 3.
Connection release t

Figure 4 – A complete communication session in the CO environment

In the DLMS/COSEM environment, application association establishment is normally done by
using the association request/response services of the standard association control service
element. On the other hand, for the purposes of very simple devices, one-way communicating
devices and for multicasting and broadcasting, pre-established application associations are
also allowed; see 6.3.3. For such associations, there is no need to use the services of the
ACSE: a full communication session may include only the data communication phase. (It can
be considered that the connection establishment phase has been already done somewhere in
the past.)

5 Overview: the COSEM application layer

5.1 Specification method

The COSEM application layer is specified in terms of structure, services, and protocols.

5.2 Application layer structure

The main component of the client and server COSEM application layers is the COSEM ASO,
which provides services to the COSEM AP, and uses services provided by the supporting
lower layer.

Both the client and server side COSEM ASO contain three mandatory components:

• the ACSE. The task of this element is to establish, maintain, and release application
associations. For the purposes of connection-oriented profiles, the connection-oriented
ACSE, specified in ISO/IEC 8649 and ISO/IEC 8650-1 is used;

———————
4 ACSE = Association Control Service Element
5 Application associations can be considered as application level connections.

IS/IEC 62056-53 : 2006

6

• the Extended DLMS application service element (xDLMS_ASE). The task of this element is
to provide data communication services between COSEM APs. See also Annex A;

• the Control function (CF). This element specifies how the ASO services invoke the
appropriate service primitives of the ACSE and the xDLMS ASE and the services of the
supporting layer.

NOTE Both the client and the server COSEM ASO may contain other, optional application protocol components.

Figure 5 shows ‘minimal’ COSEM ASOs, containing only the three mandatory components.

COSEM client ASO

Client control function

COSEM client ASO services
Referencing by Logical Name

Supporting layer services

Client
xDLMS_ASE

Client
ACSE

COSEM client
application process

COSEM server ASO

 COSEM server ASO services

Supporting layer services

Server
xDLMS _ASE

Server
ACSE

COSEM server
application process

COSEM server application layer
P

ro
to

co
l

A
pp

lic
at

io
ns

(c

om
m

un
ic

at
io

ns
)

(in
te

rfa
ce

 o
bj

ec
ts

)

WAN, LAN

Server control function

Supporting layer
 and

other protocol layers

Supporting layer
and

other protocol layers

Referencing by
Logical Name

COSEM client application layer

Figure 5 – The structure of the COSEM application layers

The COSEM application layer performs also some functions of the OSI presentation layer:

• for encoding the ACSE APDUS- AARQ, AARE, RLRQ, RLRE – BER encoding is used
(ISO/IEC 8825);

• for encoding the APDUs carrying the data communication services, A-XDR encoding is
used (IEC 61334-6).

5.3 Service specification

Service specifications cover the services required of, or by the COSEM client and server APs
at the logical interfaces with the respective COSEM application layer, using connection-
oriented procedures.

Services provided by the COSEM ASO fall into three categories:

• application association establishment and release;

• data communication;

• layer management.

The client and server application layer services are specified in Clause 6.

IS/IEC 62056-53 : 2006

7

5.3.1 Services provided for application association establishment and release

These services are the following:

• COSEM-OPEN;

• COSEM-RELEASE;

• COSEM-ABORT.

The COSEM-OPEN service is used during AA establishment phase and relies on the
association request/response services of the ACSE. In the case of pre-established application
associations (6.3.3) these services are not used.

In certain COSEM communication profiles – for example in the 3-layer, connection-oriented,
HDLC based profile – there is a one-to-one relationship between a confirmed AA and the
supporting protocol layer connection. In this case, the COSEM-RELEASE service used during
the association release phase does not rely on the ACSE A_RELEASE services. Confirmed
AAs in these profiles are released simply by disconnecting the corresponding lower layer
connection.

Optionally, the COSEM-RELEASE service may rely on the ACSE A_RELEASE service. In
some communication profiles, like in the TCP-UDP/IP based profile, using the ACSE
A_RELEASE services for releasing COSEM AAs is mandatory.

5.3.2 Data communication services

IEC 62056-62 specifies two referencing methods for COSEM servers: referencing by Logical
Names (LN) and referencing by Short Names (SN). Therefore, two distinct service sets are
specified for the server side xDLMS_ASE. One set uses exclusively LN references the other
set uses exclusively SN references. Thus, these services are the following:

• COSEM interface object attribute-related services: GET, SET for LN referencing and
Read, Write, Unconfirmed Write for SN referencing;

• COSEM interface object method-related services: ACTION (LN), Read, Write or
UnconfirmedWrite (SN);

• the EventNotification (LN), InformationReport (SN) services.

The services rely on the services of the xDLMS_ASE. Most of these services contain
references to attributes or methods of COSEM interface objects.

The service set to be used on the server side during the data communications phase is
negotiated during the association establishment phase using the conformance block, see 8.5.
It shall not change during the lifetime of the established association. Using LN or SN services
within a given AA is exclusive. Therefore, it can be considered that there are two, different
server xDLMS_ASE-s: one providing services with Logical name references and another
providing services with Short name references. The server application layer shall include one
or both of these xDLMS_ASEs.

NOTE A server could use both LN and SN referencing in different AAs.

On the client side, in order to handle the different referencing schemes transparently for the
COSEM client AP, the COSEM client application layer provides only one service set, using
Logical Name referencing. This has two major consequences:

• using a unique, standardized service set between COSEM client applications and the
communications protocol – hiding the particularities of different COSEM servers – allows
to specify an Application Programming Interface (API). This is an explicitly specified
interface corresponding to this service set for applications running in a given computing
environment (e.g. Windows XP, UNIX, etc.) Using this – public – API specification, client
applications can be developed without knowledge about particularities of a given server;

IS/IEC 62056-53 : 2006

8

• when the COSEM server device does not use LN referencing, the client application layer
shall include an additional component. The purpose of this component is to map the LN
service set, used by the client AP into/from the service set, used by the server AP.
Figure 6 shows the COSEM client application layer when the server is using SN
referencing. The additional component is called SN_MAPPER_ASE. See also 6.5.5.2.

COSEM client ASO
Client control function

COSEM client ASO services
Referencing by Logical Name

Supporting layer services

Client
xDLMS _ASE Client

ACSE

COSEM client
application process

COSEM client application layer
COSEM server ASO

COSEM server ASO services

Supporting layer services

Server
xDLMS _ASE

Server
ACSE

COSEM server
application process

COSEM server application layer

P
ro

to
co

l
A

pp
lic

at
io

ns

(c
om

m
un

ic
at

io
ns

)
(in

te
rfa

ce
 o

bj
ec

ts
)

WAN, LAN

 Client
SN_MAPPER

Referencing by
Short Name

Server control function

Supporting layer
and

 other protocol layers

Supporting layer
and

 other protocol layers

Figure 6 – Structure of the COSEM AL when the server is using SN references

5.4 Layer management services

Layer management services have local importance only. Therefore, specification of these
services is not within the scope of this standard. The specific SetMapperTables service is
defined in 6.5.5.1.

5.5 Protocol specification

The COSEM application layer protocols specify the procedures for the transfer of information
for application association control, authentication (ACSE procedures) and for data exchange
between COSEM clients and servers (xDLMS procedures). These procedures are defined in
terms of:

• the interactions between peer ACSE and xDLMS protocol machines through the use of
services of the supporting protocol layer;

• the interactions between the ACSE and xDLMS protocol machines and their service user;

• the abstract syntax (ASN.1, ISO/IEC 8824) representation of Application Protocol Data
Units (APDUs) is also specified with the application protocols; see Clause 8.

NOTE All COSEM services are operating on an already established physical connection. Establishment of this
physical connection is done outside of the COSEM protocol, therefore, it is not within the scope of this standard.

IS/IEC 62056-53 : 2006

9

6 COSEM application layer – Service specification

6.1 Summary of services

A summary of the services available at the top of the COSEM application layer is shown in
Figure 7.

XX

.re
q

ZZ
.in

d
ZZ

.re
s XX

.c
nf

Ev
en

tN
ot

ifi
ca

tio
n.

re
q

or

In
fo

rm
at

io
nR

ep
or

t.r
eq

COSEM client
application process

COSEM server
application process

Application layer

ZZ.response

ZZ.request

E
ve

nt
N

ot
ifi

ca
tio

n.
in

d

EventNotification

C
O

SE
M

-O
PE

N
.re

q
C

O
SE

M
-O

PE
N

.c
nf

C

O
SE

M
-R

EL
E

AS
E.

re
q

C
O

SE
M

-R
E

LE
AS

E.
cn

f

C
O

SE
M

-A
BO

R
T.

in
d

C
O

SE
M

-O
PE

N
.re

s
C

O
SE

M
-R

EL
E

AS
E.

in
d

C
O

SE
M

-R
EL

E
AS

E.
re

s

C
O

SE
M

-A
BO

R
T.

in
d

Tr
ig

g_
Ev

en
tN

ot
if.

re
q

C
O

SE
M

-O
PE

N
.in

d

NOTE XX and ZZ refer to client/server type data communication services. These services may be different on the
client side and the server side, if the server does not use LN referencing. See 6.4.

Figure 7 – Summary of COSEM application layer services

6.2 Application association establishment and release

The COSEM-OPEN, COSEM-RELEASE and COSEM-ABORT services are used for the
establishment and release of AAs.

The COSEM-OPEN.request service is invoked by the COSEM client AP to establish a
confirmed or non-confirmed AA with a COSEM server AP. Invoking this service implies
generating a COSEM-OPEN.indication service primitive at the server side6. If the association
to be established is a confirmed one, the server shall respond to this request by invoking the
COSEM-OPEN.response service, which is transferred to the client AP as a remote
confirmation (COSEM-OPEN.confirm). This normal opening sequence is shown in Figure 8.

———————
6 Before the invocation of the COSEM-OPEN.request service, the physical layers must be connected. Depending

on the communication profile, the invocation of the COSEM-OPEN.request service may also imply the
connection of the lower layers.

IS/IEC 62056-53 : 2006

10

 Client
application layer

Server
application layer

COSEM-
OPEN.request

COSEM-
OPEN.indication

COSEM-
OPEN.response

COSEM-
OPEN.confirm

Time

Figure 8 – Normal service sequence for the COSEM-OPEN service

NOTE The COSEM-OPEN.request service may also be locally (negatively) confirmed, for example when the
connection of a lower layer is not successful.

The COSEM-RELEASE service is provided for graceful disconnection of an existing
application association. As COSEM server application processes are not allowed to request a
graceful disconnection, the COSEM-RELEASE.request service is available only for the
COSEM client. The nominal service sequence for the COSEM-RELEASE service is the same
as shown in Figure 8 for the COSEM-OPEN service, replacing the word ‘OPEN’ with the word
‘RELEASE’.

The ABORT service is used to indicate the disconnection of the physical connection. This
service is the same at both sides.

6.3 Special application associations

6.3.1 Confirmed application associations

For the purposes of this standard, the term confirmed application association is used to
designate an AA, which is established between a client and a server AP with the help of an
AARQ/AARE message exchange (see 7.3.1). Establishment of a confirmed AA is always
initiated by the client application in invoking the COSEM-OPEN.request service with
Service_Class == Confirmed.

After the establishment of a confirmed AA, any xDLMS data communication services using LN
referencing can be invoked in a confirmed or an unconfirmed manner, until the association is
released.

NOTE xDLMS services using SN referencing are either confirmed (Read, Write) or Unconfirmed (Unconfirmed
Write).

6.3.2 Non-confirmed application associations

For the purposes of this standard, the term non-confirmed application association is used to
designate an AA, which is established without an AARQ/AARE message exchange: only an
AARQ shall be sent from the client to the server. Similarly to the confirmed AA, establishment
of a non-confirmed AA is also always initiated by the Client application, but in invoking the
COSEM-OPEN.request service with Service_Class == Unconfirmed.

After the establishment of a non-confirmed AA, xDLMS data communication services using LN
referencing can only be invoked in unconfirmed manner, until the association is released.

NOTE With SN referencing, in non-confirmed AAs only the UnconfirmedWrite service can be used.

As the establishment of such non-confirmed AAs does not require the Server AP to respond to
the association request coming from the client, in some cases – for example one-way
communications or broadcasting – the establishment of a non-confirmed AA is the only
possibility.

IS/IEC 62056-53 : 2006

11

6.3.3 Pre-established application associations

Pre-established AAs do not need to be established using the COSEM-OPEN service. It can be
considered, that this COSEM-OPEN has already been done (it does not matter how).
Consequently, pre-established associations can be considered existing from the moment the
lower layers are able to deliver APDUs between the client and the server.

A pre-established AA can be either confirmed or non-confirmed (depending on the way it is
pre-established), but in any case it cannot be released. The purpose of this type of
association is to simplify data exchange with simple devices (e.g. supporting one-way
communication only). The pre-established AA eliminates the need of connection
establishment and release (phases 1 and 3 in Figure 4) and only data communication services
are used. These must use connectionless services of the supporting lower protocol layers7.

6.3.4 Mandatory application associations

The mandatory management logical device in the physical metering device must support an
AA with a public client, with the lowest security level.

In any communication profile, the management logical device and the public client must have
a reserved identifier/address.

6.4 Data communication

For data communication purposes, the client application layer provides the following set of
services (referred to as XX in Figure 7).

• GET service (.request,.confirm);

• SET service (.request,.confirm);

• ACTION service (.request,.confirm).

All these services refer to attributes or methods of COSEM interface objects via logical
names.

Received erroneous confirmed service requests are normally simply discarded at the server
side. However, in that case, COSEM servers may optionally respond with an EXCEPTION-
Response APDU (see 8.6.1), indicating that the previously received service request cannot be
correctly processed.

There are also non-client/server type services to support receiving information like alarms
from a COSEM server without first requesting it by the client. These are:

• EventNotification service (.indicate);

• Trigger_EventNotification_Sending (.request).

In confirmed AAs, the client application layer obtains knowledge about the referencing method
used by the server during the AA establishment phase. In case of a pre-established AA, the
client application layer is expected to know the referencing method used by the server before
data communication services can be used. When the client AP invokes data communication
services, the application layer shall invoke the services and send the APDUs corresponding to
the referencing style used by the server (referred to as ZZ in Figure 7).

———————
7 Pre-established application associations are not possible in profiles, where the supporting lower protocol

layer(s) do not provide connectionless data communication services. As for all application associations, the
logical devices must contain an Association LN /SN interface object for the pre-established associations, too.

IS/IEC 62056-53 : 2006

12

When the server is also using LN references, the server side service set is the complementary
of the client side service set (the same service set, but.request services shall be transferred
as.indication services, and the.confirm services are originated as.response services).

When the server is using SN references, the service set is as follows:

• READ service (.indication,.response);

• WRITE service (.indication,.response);

• UNCONFIRMED WRITE service (.indication);

• InformationReport service (.request).

As explained in 5.3.2, in order to able to ‘map’ between the different service sets, the client
application layer shall include an additional protocol component, called ‘Client SN_MAPPER’.

The corresponding server application layer shall signal the reception of this (LN or SN
referencing) APDU to the server AP. In most cases, the server AP responds to the
received.request service by invoking the corresponding.response service. Upon the reception
of the APDU, corresponding to that.response invocation, the client application layer shall
generate the appropriate logical name referencing service primitive to the client AP.

6.5 Client COSEM application layer services

6.5.1 Application association establishment

6.5.1.1 Overview

Figure 9 shows services provided by the client side application layer for AA establishment.
These services are provided by the ACSE.

COSEM client application process

COSEM client application layer

C
O

S
EM

-O
PE

N
.re

q

C
O

S
EM

-O
PE

N
.c

nf

Figure 9 – Client side services for application association establishment

6.5.1.2 COSEM-OPEN.request

Function

This service is invoked by the COSEM client AP to request the establishment of an AA to a
remote COSEM server AP.

IS/IEC 62056-53 : 2006

13

Service parameters

The semantics of the primitive is as follows:

COSEM-OPEN.request
(

Protocol_Connection_Parameters,
Dedicated_Key,
DLMS_Version_Number,
DLMS_Conformance,
Client_Max_Receive_PDU_Size,
ACSE_Protocol_Version,
Application_Context_Name,
Application_Ids_and_Titles,
Security_Mechanism_Name,
Calling_Authentication_Value,
Implementation_Information,
User_Information,
Service_Class

)
The Protocol_Connection_Parameters parameter contains all information necessary to use a
lower layer profile, including the communication profile (protocol) identifier and the required
addresses. Examples for this parameter are given in Annex B.

The Dedicated_Key, DLMS_Version_Number, DLMS_Conformance and Client_Max_
Receive_PDU_Size parameters contain respectively the value of the dedicated-key, the
proposed-dlms-version-number, the proposed-conformance and the client-max-receive-pdu-
size parameters of the xDLMS-Initiate.request PDU. These parameters are specified in
IEC 61334-4-41, and in 8.4 of this standard. Annex C gives some examples of their usage.
The xDLMS-Initiate.request PDU shall be inserted in the user-information field of the AARQ
APDU to be sent.

The ACSE_Protocol_Version, Application_Context_Name, Application_Ids_and_Titles, Security_
Mechanism_Name and the Calling_Authentication_Value parameters shall be inserted into the
corresponding fields of the AARQ APDU to be sent.

The xDLMS-ASE and the ACSE provide only the framework for transporting this information.
To provide and verify that information is the job of the appropriate COSEM AP. Default and
allowed values for these fields are defined in 7.3.3.

The Implementation_Information parameter is optional. If present, it shall be inserted into the
implementation-information field of the AARQ APDU to be sent.

The User_Information parameter is optional. If present, it shall be passed on to the supporting
layer.

The Service_Class parameter indicates whether the service shall be invoked in the confirmed
or unconfirmed manner.

Use

The client AP uses this service to initiate the establishment of an AA to a remote server AP.

If the Client AP invokes a COSEM-OPEN.request service with a parameter referring to an
already established AA, then the application layer shall locally and negatively confirm this
request with the reason that the requested AA already exists. Note, that this is always the
case for pre-established AAs.

IS/IEC 62056-53 : 2006

14

When the Protocol_Connection_Parameters parameter indicates a connection-oriented
communication profile (e.g. TCP/IP) but the Service_class parameter is set to Unconfirmed,
the COSEM application layer shall locally and negatively confirm this request, with the reason
that the requested AA is not allowed.

When the Protocol_Connection_Parameters parameter indicates that one or more supporting
lower layer needs to be connected and the requested AA is allowed, the COSEM client shall
first establish all required lower layer connections (except for the physical layer connection,
which must be already established prior to this service invocation).

When the required supporting lower layer services are available, the COSEM application layer
shall construct and send an AARQ APDU to its peer, containing the service parameters
received from the AP.

If the COSEM-OPEN.request service is invoked with Service_class == Confirmed, the
response-allowed parameter of the xDLMS-InitiateRequest PDU, inserted in the user-
information field of the constructed AARQ shall be set to TRUE. The client application layer is
waiting for an AARE response from the server, prior to – positively or negatively – confirming
the COSEM-OPEN.request service invocation.

If the COSEM-OPEN.request service is invoked with Service_Class == Unconfirmed, the
response-allowed parameter shall be set to FALSE, the client application layer does not wait
any response from the server. In this case, the service invocation shall be locally confirmed.

The protocol for AA establishment is specified in 7.3.1.

6.5.1.3 COSEM-OPEN.confirm

Function

This service is invoked by the COSEM client application layer to indicate whether the
previously requested AA is accepted or not.

Service parameters

The semantics of the primitive is as follows:

COSEM-OPEN.confirm
(

Protocol_Connection_Parameters,
Local_or_Remote,
Result,
Failure_type,
DLMS_Version_Number,
DLMS_Conformance,
Server_Max_Receive_PDU_Size,
ACSE_Protocol_Version,
Application_Context_Name,
Application_Ids_and_Titles,
Security_Mechanism_Name,
Responding_Authentication_Value,
Implementation_Information

)

The Protocol_Connection_Parameters parameter contains all the information required to
identify the protocol connection having been established. These parameters identify the
participants of the AA requested by the preceding COSEM-OPEN.request service.

IS/IEC 62056-53 : 2006

15

The Local_or_Remote parameter indicates the origin of the COSEM-OPEN.confirm service
primitive invocation. When this parameter is set to Remote, the service invocation has been
originated by the reception of an AARE APDU from the remote server. Otherwise, the service
is locally originated.

In case of a remote confirmation, the Result parameter indicates whether the COSEM server
AP accepted the requested association or not. In case of local confirmation, the Result
parameter indicates whether the client side protocol stack accepted the request or not. In the
case of non-acceptance (remote or local), the Failure_type parameter indicates the reason for
not accepting the proposed association.

The DLMS_Version_Number, DLMS_Conformance and Server_Max_Receive_PDU_Size
parameters contain respectively the value of the negotiated-dlms-version-number, negotiated-
conformance and server-max-receive-PDU-size parameters of the xDLMS-Initiate.response
PDU. These parameters are specified in IEC 61334-4-41, and in 8.4 of this standard. Annex C
gives some examples for their usage. The xDLMS-Initiate.response PDU is transported in the
user-information field of the received AARE APDU.

The ACSE_Protocol_Version, Application_Context_Name, Application-Ids_and_Titles, Security_
Mechanism_Name and the Responding_Authentication_Value parameters carry the value of
the corresponding fields of the received AARE APDU.

The Implementation_Information parameter, if present, carries the value of the implemen–
tation-information field of the received AARE APDU.

Use

The COSEM client application layer uses this service primitive to indicate to the client AP
whether the previously proposed AA is accepted or not. It may be generated as a result of a
received AARE APDU (remote confirmation). It may also be generated locally in the following
cases:

• when the requested AA already exists (this case includes pre-established AAs);

• when the corresponding COSEM-OPEN.request has been invoked with Service_class ==
Unconfirmed;

• when the requested AA is not allowed;

• due to a locally detected error (missing or not correct parameters, failure during the
establishment of the requested lower layer connections, missing physical connection, etc.

6.5.2 Application association release

6.5.2.1 Overview

Figure 10 shows the services provided by the client application layer for releasing an existing
AA.

IS/IEC 62056-53 : 2006

16

COSEM client application process

COSEM client application layer

C
O

S
EM

-R
E

LE
A

SE
.re

q

C
O

S
EM

-R
E

LE
A

SE
.c

nf

C
O

S
EM

-A
BB

O
R

T.
in

d

Figure 10 – Client side services for releasing an application association

In certain COSEM communication profiles – for example in the 3-layer, connection-oriented,
HDLC based profile – there is a one-to-one relationship between a confirmed AA and the
supporting protocol layer connection. In this case, the COSEM-RELEASE services used
during the association release phase do not rely on the ACSE A_RELEASE services.
Confirmed AAs in these profiles are released simply by disconnecting the corresponding lower
layer connection.

This is the mandatory way to release such AAs: in order to request that, the Client application
shall invoke the COSEM-RELEASE.request service with no Use_RLRQ_RE parameter or with
Use_RLRQ_RE == FALSE.

Note, that as this request shall imply the disconnection of the lower layer connection, there is
no mandatory APDU associated to the COSEM-RELEASE service.

The client AP is informed about the result of the requested disconnection via the COSEM-
RELEASE.confirm service primitive.

Optionally, the COSEM client AP may invoke the COSEM-RELEASE.request service with
Use_RLRQ_RE == TRUE. In this case, the client application layer, instead of disconnecting
the lower layer connection (if there is one), shall initiate the release of the referenced AA by
sending an RLRQ APDU to the server which may respond to that with an RLRE APDU. The
client AP is informed about the result of the association release via the COSEM-
RELEASE.confirm service primitive, which, in this case, could be a remotely confirmed
service.

Supporting the RLRQ/RLRE APDUs is optional in HDLC based profile.

Any existing AA – except the pre-established ones on the server side – shall be aborted,
when the physical connection is intentionally disconnected or if any of the supporting layer
connection is disconnected or breaks. A local COSEM-ABORT.indication primitive is provided
to inform the AP about this. As physical connection/ disconnection is done outside of the
protocol, requesting a physical disconnection is not within the scope of this standard.

6.5.2.2 COSEM-RELEASE.request

Function

This service primitive is invoked by the COSEM client AP to request the release of an existing
AA with a remote COSEM server AP.

IS/IEC 62056-53 : 2006

17

Service parameters

The semantics of this service primitive is as follows:

COSEM-RELEASE.request
(

Use_RLRQ_RE,
User_Information

)
The Use_RLRQ_RE parameter is optional. If it is not present, it shall be considered as if its
value would be equal to FALSE.

The User_Information parameter is optional. If present, it shall be passed on to the supporting
layer. Specification of the content of this parameter is not within the scope of this standard.

Use

The Client AP uses this service primitive to gracefully release an existing AA.

When this service is invoked with no Use_RLRQ_RE parameter or with Use_RLRQ_RE ==
FALSE, the invocation of this service shall not imply sending an APDU.

In communication profiles where the RLRQ service is not supported or only optionally
supported, upon the reception of this service invocation the client application layer shall:

• either initiate the disconnection of the corresponding lower layer connection (if the AA to
be released is a confirmed AA) by invoking the corresponding XX-DISCONNECT.request
service of the supporting lower protocol layer;

• or shall simply release the requested non-confirmed AA and locally confirm the request.

Supporting the COSEM-RELEASE.request service with no Use_RLRQ_RE or with
Use_RLRQ_RE == FALSE is mandatory for all COSEM Clients. However, in communication
profiles where the RLRQ service is mandatory, invoking the COSEM-RELEASE.request
service with no Use_RLRQ_RE or with Use_RLRQ_RE == FALSE may lead to an error8: in
that case it shall be locally and negatively confirmed.

When this service primitive is invoked with Use_RLRQ_RE == TRUE, the client application
layer shall construct an A-RELEASE.request (RLRQ) APDU, and shall send it to the peer
server application layer, using the supporting lower layer services. If the RLRQ is sent within
a non-confirmed AA, after sending the RLRQ the client application layer shall locally and
positively confirm the current request. Otherwise, after sending the RLRQ APDU, the client
application layer shall start a time-out, waiting for either the A-RELEASE.response (RLRE)
APDU from the server, or for the time-out to be elapsed. On any of these two events, the
client application layer shall confirm the COSEM-RELEASE.request primitive.

Supporting the COSEM-RELEASE.request service with Use_RLRQ_RE == TRUE is optional
in HDLC based profile.

The protocol for releasing an AA is described in 7.3.6.

6.5.2.3 COSEM-RELEASE.confirm

Function

The COSEM client application layer invokes this service primitive to indicate to the AP
whether the previously received request for releasing the AA is accepted.

———————
8 When the lower layer connections are not managed by the COSEM application layer.

IS/IEC 62056-53 : 2006

18

NOTE The server cannot refuse a release request.

Service parameters

The semantics of the primitive is as follows:

COSEM-RELEASE.confirm
(

Result,
Failure_type,
User_Information

)

The Result parameter is the report of the corresponding COSEM-RELEASE.request service.
As servers cannot refuse requests of neither releasing AAs nor disconnecting lower layer
connections, the value of the Result parameter should normally be SUCCESS.

However, the value of this parameter may also be ERROR: in that case, the Failure_type
parameter indicates the reason for that.

The User_Information field may be present only when the service is remotely confirmed. In
this case, it contains user specific information carried by the supporting lower protocol
layer(s), if this is possible. Specification of its content is not within the scope of this standard.

Use

The COSEM client application layer uses this service primitive to indicate to the client AP the
result of the previously requested release of an AA. This service primitive is originated:

• as a result of the invocation of a XX-DISCONNECT.confirm service (where XX is the
supporting lower protocol layer); or

• by a locally detected error – missing or not correct parameters, or communication failure
at lower protocol layer level; or

• after sending out an RLRQ APDU within a non-confirmed AA (OPTIONAL); or

• by the time-out on waiting for an RLRE APDU from the remote Server (OPTIONAL); or

• as a result of a RLRE APDU received from the remote Server (OPTIONAL).

6.5.2.4 COSEM-ABORT.indication

Function

This service is invoked by the client application layer to indicate to the client AP an
unsolicited disconnection of any supporting lower layer connection, including the
disconnection of the physical layer.

Service parameters

The semantics of the primitive is as follows:

COSEM-ABORT.indication
(

Diagnostics
)

The optional Diagnostics parameter shall indicate the possible reason for the disconnection,
and may carry lower protocol layer dependent information as well. Specification of the
contents of this parameter is not within the scope of this standard.

IS/IEC 62056-53 : 2006

19

Use

The client application layer uses this service primitive to indicate to the COSEM client AP that
a lower layer connection abort occurred in a non-solicited manner (e.g. the physical line is
broken).

NOTE In communication profiles, where the supporting layer connection is not managed by the COSEM
application layer, a disconnection of the supporting layer by the manager process leads also to a COSEM-
ABORT.indication.

6.5.3 Client/server type data communication services

6.5.3.1 Service overview

Figure 11 shows services provided by the client side application layer during the data
communications phase.

COSEM client application process

COSEM client application layer

G
E

T.
re

q G
ET

.c
nf

S
ET

.re
q

S
ET

.c
nf

AC
TI

O
N

.re
q

A
C

TI
O

N
.c

nf

Figure 11 – Client side data communication services

Data communication services rely on the services of the xDLMS_ASE. These services contain
references to attributes or methods of COSEM interface objects.

For COSEM servers, two types of referencing are specified in IEC 62056-62: Logical Name
(LN) and Short Name (SN). The COSEM client application layer provides only one service set,
using logical name referencing. Consequently, when the COSEM server device does not use
logical name referencing, the client application layer shall include an additional application
protocol component; see in Figure 6. The purpose of this is to ‘map’ the LN service set
into/from the service set used by the server AP.

The service set provided at the COSEM client side is:

• COSEM interface object attribute related services: GET, SET (.request,.confirm);

• COSEM interface object method related service: ACTION (.request,.confirm).

The.request primitive of these services is invoked by the COSEM client AP. The role of the
protocol with regard to these services is to transport them as.indication to the COSEM server
AP.

NOTE Consequently, a.request APDU is identical to an.indication APDU and a.response APDU is identical to
a.confirm APDU. For APDU definitions, see 8.6.

All data communication services within a confirmed AA can be invoked in a confirmed or non-
confirmed manner. In case of non-confirmed AAs, data communication services may only be
invoked in a non-confirmed manner.

IS/IEC 62056-53 : 2006

20

In case of confirmed service invocation, the server AP shall return the confirmation by
invoking the corresponding.response service primitive. The receipt of this response is
indicated to the client AP via the.confirm service primitive.

If a confirmed service request cannot be processed by the server (e.g. the request has been
received without establishing an AA first, or the request is otherwise erroneous) normally it is
discarded by the application layer. However, the COSEM server application layer may
optionally send an EXCEPTION-Response APDU to indicate to the client application layer that
the service request received could not be processed and the reasons for this.

The optional EXCEPTION-Response APDU is defined in 8.6.1.

Unconfirmed service invocation will not imply.response/.confirm primitive invocation. The
reason for this is to avoid collisions due to potential multiple responses in the case of
multicasting and/or broadcasting.

The protocol for confirmed service invocations is described in 7.4.1.1 and for unconfirmed
service invocations in 7.4.1.2.

6.5.3.2 GET.request

Function

This service is invoked by client AP to request the value(s) of one or all attributes of one or
more COSEM interface object(s) from the remote server AP.

Service parameters

The semantics of the primitive is as follows:

GET.request
(

Invoke_Id,
Priority,
Service_Class,
Request_Type,
COSEM_Attribute_Descriptor, { COSEM_Attribute_Descriptor,},
Block_Number

)
COSEM_Attribute_Descriptor
(

COSEM_Class_Id,
COSEM_Object_Instance_Id,
COSEM_Object_Attribute_Id,
Access_Selection_Parameters

)
The Invoke_Id parameter identifies the instance of this service invocation.

The value of the Priority parameter indicates the priority level associated to the received
request. There are two priority levels: normal (FALSE) and high (TRUE).

The Service_Class parameter indicates whether the service is invoked in confirmed or
unconfirmed manner.

The Request_type parameter indicates the type of the current GET.request service
invocation: NORMAL, NEXT or WITH-LIST. A GET.request always starts with a GET.request
type NORMAL or WITH-LIST. A GET.request with NEXT type is issued only when the
requested data is too long for being transferred in one.response APDU. The protocol for non-
transparent long data transfer with the GET service is described in 7.4.1.8.2.

IS/IEC 62056-53 : 2006

21

A GET.request service shall contain one or more COSEM_Attribute_Descriptor parameters,
each of them referencing one or all attributes of a COSEM interface object. The
COSEM_Attribute_Descriptor parameter is a composite parameter, consisting of the following
components:

• the { COSEM_Class_Id, COSEM_Object_Instance_Id } doublet non-ambiguously identifies
one and only one COSEM interface object instance;

• the COSEM_Object_Attribute_Id component identifies the attribute(s) of the object
instance. COSEM_Object_Attribute_Id = 0 references all attributes of the designated
object instance;

• the optional Access_Selection_Parameters component, in case of selective access (see
7.4.1.6) carries the additional data required for the selective GET operation. This
parameter can be used only when COSEM_Object_Attribute_Id != 0.

One GET.request invocation may contain as many COSEM_Attribute_Descriptors as the
server-max-receive-pdu-size allows. The COSEM_Attribute_Descriptor(s) shall be present
only with Request_type == NORMAL or WITH-LIST.

The optional Block_Number parameter is present only when Request_type == NEXT. It
carries the number of the last correctly received block of long data.

Use

The client AP uses this service primitive to request the value(s) of one or all attributes of one
or more COSEM interface object(s) from the server AP.

6.5.3.3 GET.confirm

Function

This service is invoked by the client application layer to indicate the reception of a Get-
response-XX APDU from the COSEM server AP.

Service parameters

The semantics of the primitive is as follows:

GET.confirm
(

Invoke_Id,
Priority,
Response_type,
Result, { Result, }
Block_Number

)
The Invoke_Id parameter identifies the instance of this service invocation. Its value shall be
equal to the Invoke_Id of the corresponding GET.request service invocation.

The value of the Priority parameter indicates the priority level associated to the response
received. The value of this parameter shall be equal to the value of the Priority parameter of
the corresponding GET.request service invocation.

The Response_type parameter indicates whether this.confirm service invocation contains the
complete response to the previous GET.request service invocation, or it contains only a block
of the required data. This parameter shall carry one of the following values:

• NORMAL: the service invocation contains the complete response for a NORMAL
GET.request;

IS/IEC 62056-53 : 2006

22

• WITH-LIST: the service invocation contains the complete response for a GET.request
service of type WITH-LIST (including a list of attribute references);

• ONE-BLOCK: the service invocation contains one block of the complete response. The
Block_Number parameter carries the number of the data block carrying a part of the result
as raw data;

• LAST-BLOCK: the service invocation contains the last data block of the response.

The Result parameter shall carry either the requested data, or in case of error, the indication
of the type of error. If the encoded form of the Result parameter does not fit in one APDU,
then it shall be transported in blocks, carried by the result parameter of the Get-Confirm-With-
Datablock APDU, of type DataBlock-G. This parameter shall include the block number and the
encoded form of the result as raw data or data access result.

The number of Result parameters in the GET.confirm service shall be the same as the
number of COSEM_Attribute_Descriptor parameters in the corresponding GET.request
service – one response for each request.

Use

The client application layer uses this service primitive to indicate the reception of a Get-
Response-XX APDU.

6.5.3.4 SET.request

Function

This service primitive is invoked by the client AP to request the remote server AP to set the
value of one or more attributes of a COSEM interface object.

Service parameters

The semantics of the primitive is as follows:

SET.request
(

Invoke_Id,
Priority,
Service_Class,
Request_type,
COSEM_Attribute_Descriptor, { COSEM_Attribute_Descriptor, },
Block_Number,
Data, { Data, }

)

COSEM_Attribute_Descriptor
(

COSEM_Class_Id,
COSEM_Object_Instance_Id,
COSEM_Object_Attribute_Id,
Access_Selection_Parameters

)

The Invoke_Id parameter identifies the instance of this service invocation.

The value of the Priority parameter indicates the priority level associated to the received
request. There are two priority levels: normal (FALSE) and high (TRUE).

The Service_Class parameter indicates whether the service is invoked in confirmed or
unconfirmed manner.

IS/IEC 62056-53 : 2006

23

The Request_type parameter indicates whether the Data parameter of the service primitive
carries all the data necessary to set all the attributes referenced by the COSEM_
Attribute_Descriptor (list) or only a block of it. It shall be set to one of the following values:

• NORMAL: the service invocation contains the reference to one or all (Attribute_0 feature,
see 7.4.1.7.1) attribute(s) of one COSEM interface object and all the required data. The
optional Block_Number parameter shall not be present in the service invocation;

• WITH-LIST: the service invocation contains a list of COSEM interface object attribute
references and all the required data. The optional Block_Number parameter shall not be
present in the service invocation;

• FIRST-BLOCK: the service invocation contains the reference to one or all attribute(s) of
one COSEM interface object and the first part of the required data. The Block_Number
parameter shall be set to 0001;

• FIRST-BLOCK-WITH-LIST: the service invocation contains a list of COSEM interface
object attribute references and the first part of the required data. The Block_Number
parameter shall be set to 0001;

• ONE-BLOCK: the service invocation contains only one block of the data. The
Block_Number parameter carries the number of the datablock carrying a part of the Data
parameter as raw data, and no COSEM_Attribute_Descriptor(s) shall be present;

• LAST-BLOCK: the service invocation contains the last block of the Data. The
Block_Number parameter carries the number of this data block, and no COSEM_
Attribute_Descriptor(s) shall be present.

NOTE In the case of ONE-BLOCK and LAST-BLOCK Set-Request-With-Datablock APDU is generated.

A SET.request service shall contain one or more COSEM_Attribute_Descriptor parameters,
each of them referencing one or more attributes of a COSEM interface object. The
COSEM_Attribute_Descriptor parameter is a composite parameter, consisting of the following
components:

• the { COSEM_Class_Id, COSEM_Object_Instance_Id } doublet non-ambiguously identifies
one and only one COSEM interface object instance;

• the COSEM_Object_Attribute_Id component identifies the attribute(s) of the object
instance. COSEM_Object_Attribute_Id = 0 references all attributes of the designated
object instance.

The optional Access_Selection_Parameters element, in case of selective access (see 7.4.1.6)
carries the additional data required for the selective SET operation. This parameter can be
used only when COSEM_Object_Attribute_Id != 0.

One SET.request invocation may contain as many COSEM_Attribute_Descriptors as the
server-max-receive-pdu-size allows. The COSEM_Attribute_Descriptor(s) shall be present
only when Request_type == NORMAL, Request_type == WITH-LIST or Request_type ==
FIRST-BLOCK-XXX.

The optional Block_Number parameter is present when Request_type != NORMAL or WITH-
LIST. It carries the number of the data block within the current service invocation.

The Data parameter contains the data necessary to set the attributes identified by the
Attribute_descriptor parameter(s). If the encoded form of the data does not fit in one APDU,
then it shall be transported in blocks, carried by the datablock parameter of the appropriate
Set-Request-XX APDU, of type DataBlock-SA. This parameter shall include the block number
and the encoded form of the data as raw data. The protocol for long data transfer with the
SET service is described in 7.4.1.8.3.

The number of Data parameters in the SET.request service shall be the same as the number
of COSEM_Attribute_Descriptors: one Data for each COSEM_Attribute_Descriptor.

IS/IEC 62056-53 : 2006

24

Use

The client AP uses this service primitive in order to request the remote server AP to set the
value of one or more attributes of one or more COSEM interface objects.

6.5.3.5 SET.confirm

Function

This service primitive is invoked by the client application layer to indicate the reception of a
SET.response from the COSEM server AP.

Service parameters

The semantics of the primitive is as follows:

SET.confirm
(

Invoke_Id,
Priority,
Response_type,
Result { Result, },
Block_Number

)
The Invoke_Id parameter identifies the instance of this service invocation. Its value is equal to
the Invoke_Id of the corresponding SET.request service invocation.

The value of the Priority parameter indicates the priority level associated to the received
response. The value of this parameter is equal to the value of the Priority parameter of the
corresponding SET.request service invocation.

The Response_type parameter indicates whether this.confirm service invocation contains the
response for the complete SET.request operation, or it is simply an acknowledge of the
previously received data block. This parameter shall carry one of the following values:

• NORMAL: the.confirm service contains the confirmation of the previous SET.request
operation, which carried a single COSEM interface object attribute reference. The Result
parameter carries the result of the required operation;

• WITH-LIST: the.confirm service contains the confirmation of the previous SET.request
operation, which carried a list of COSEM interface object attribute references. The Result
parameter carries the list of results for each required SET operation;

• ACK-BLOCK: this value indicates that this.confirm service contains the acknowledgement
for the last correctly received data block. The Block_Number parameter carries the
number of the received data block;

• LAST-BLOCK: the SET.confirm service is invoked with this value after the reception of the
last data block of a SET.request service, which carried a reference to a single COSEM
interface object attribute. This value indicates that this.confirm service contains the
response to the original SET.request service, which has been sent in several blocks. The
Result parameter carries the result of the required operation and the Block_Number
parameter carries the number of the last data block;

• LAST-BLOCK-WITH-LIST: the SET.confirm service is invoked with this value after the
reception of the last data block of a SET.request service, which carried a list of COSEM
interface object attribute references. This value indicates that this.confirm contains the
response to the original SET.request service, which has been sent in several blocks. The
Result parameter carries the list of result for each required set operation and the
Block_Number parameter carries the number of the last data block.

IS/IEC 62056-53 : 2006

25

The number of Result parameters in the SET.confirm service with Response_type == WITH-
LIST and LAST-BLOCK-WITH-LIST shall be the same as the number of attribute references in
the corresponding SET.request service – one result for each request. Each Result parameter
shall carry the result of the corresponding SET.request operation.

Use

The client application layer uses this service primitive to indicate the reception of a Set-
Response-XX APDU.

6.5.3.6 ACTION.request

Function

This service is invoked by the client AP to remotely invoke one or more method(s) of one or
more COSEM interface object(s) in the remote server AP.

Service parameters

The semantics of the primitive is as follows:

ACTION.request
(

Invoke_Id,
Priority,
Service_Class,
Request_Type,
COSEM_Method_Descriptor, { COSEM_Method_Descriptor, },
Block_Number,
Method_Invocation_Parameters, { Method_Invocation_Parameters, }

)

COSEM_Method_Descriptor
(

COSEM_Class_Id,
COSEM_Object_Instance_Id,
COSEM_Object_Method_Id

)
Method_Invocation_Parameters::= Data

The Invoke_Id parameter identifies the instance of this service invocation.

The value of the Priority parameter indicates the priority level associated to the received
request. There are two priority levels: normal (FALSE) and high (TRUE).

The Service_Class parameter indicates whether the service is invoked in a confirmed or an
unconfirmed manner.

The Request_type parameter indicates whether the given invocation contains a complete
request or only a part of it. It shall be set to one of the following values:

• NORMAL: the service invocation contains the reference to one COSEM interface object
method and the Method_Invocation_Parameters required for the invocation of this
method. The optional Block_Number parameter shall not be present in the service
invocation;

• WITH-LIST: the service invocation contains a list of COSEM interface object(s) method
references and all the required Method_Invocation_Parameters. The optional
Block_Number parameter shall not be present in the service invocation;

IS/IEC 62056-53 : 2006

26

• FIRST-BLOCK: the service invocation contains the reference to one COSEM interface
object method and the first part of the required Method_Invocation_Parameters. The
Block_Number parameter shall be set to 0001;

• WITH-LIST-AND-FIRST-BLOCK: the service invocation contains a list of COSEM interface
object methods and the first part of the required Method_Invocation_ Parameters. The
Block_Number parameter shall be set to 0001;

• ONE-BLOCK: the service invocation contains only one block of the
Method_Invocation_Parameters. The Block_Number parameter carries the number of the
parameter block carrying a part of the Method_Invocation_Parameters parameter, and no
COSEM_ Method_Descriptor shall be present;

• LAST-BLOCK: this value indicates that the current block is the last parameter block to be
transferred. The Block_Number parameter carries the number of this parameter block, and
no COSEM_Method_Descriptor(s) shall be present;

• NEXT: this value indicates that this.request contains an acknowledgement for a previously
received parameter block, and requests the server to send the next one. The
Block_Number parameter carries the number of the last correctly received parameter
block.

An ACTION.request service shall contain one or more COSEM_Method_Descriptor
parameters, each of them referencing one method of a COSEM interface object. The
COSEM_Method_Descriptor parameter is a composite parameter, consisting of the following
components:

The {COSEM_Class_Id, COSEM_Object_Instance_Id} doublet non-ambiguously identifies one
and only one COSEM interface object instance. The complete COSEM_ Method_Descriptor
references one method of that object instance: this method is identified by the
COSEM_Object_Method_Id component.

The optional Block_Number parameter is present either when the.request contains a
parameter block to be sent or when the.request acknowledges a previously received
parameter block (Request_type == NEXT). The Block_Number parameter carries the number
of the last received parameter block.

Invoking a method may require additional parameters. The Method_Invocation_Parameters
parameter carries the data necessary for the invocation of the method(s) identified by the
COSEM_Method_Descriptor parameter. If the encoded form of the Method_
Invocation_Parameters does not fit in one APDU, then it shall be transported in blocks,
carried by the pblock parameter of the appropriate Action-Request-XX APDU, of type
DataBlock-SA. This parameter shall include the block number and the encoded form of the
Method_Invocation_Parameters as raw data.

The ACTION.request service shall contain as many Method_Invocation_Parameters then
COSEM_Method_Descriptors: one Method_Invocation_Parameters for each COSEM_
Method_Descriptor. Therefore, even if the invocation of a method does not require additional
parameters, the corresponding Method_Invocation_Parameters component shall be present in
the service invocation – but it shall be empty.

The COSEM_Method_Descriptor parameter shall not be present when Request_type == ONE-
BLOCK or LAST BLOCK.

Use

This service primitive is used by the client AP to remotely invoke one or more method(s) of
one or more COSEM interface object(s) in the remote server AP.

IS/IEC 62056-53 : 2006

27

6.5.3.7 ACTION.confirm

Function

This service is invoked by the client application layer to indicate the reception of a
ACTION.response from the COSEM server AP.

Service parameters

The semantics of the primitive is as follows:

ACTION.confirm
(

Invoke_Id,
Priority,
Response_type,
Result, { Result, },
Block_Number,
Response_Parameters, { Response_Parameters, }

)
The Invoke_Id parameter identifies the instance of this service invocation. Its value shall be
equal to the Invoke_Id of the corresponding ACTION.request service invocation.

The value of the Priority parameter indicates the priority level associated to the received
response. The value of this parameter shall be equal to the value of the Priority parameter of
the corresponding ACTION.request service invocation.

The Response_type parameter indicates whether this.confirm service invocation contains the
complete response requested by the previous ACTION.request service invocation, it contains
only a block of the required data, or it is simply an acknowledge of a previously received block
of the ACTION.request service. This parameter shall carry one of the following values:

• NORMAL: the service invocation contains the complete response for a NORMAL
ACTION.request which carried a single COSEM interface object method reference;

• WITH-LIST: the service invocation contains the complete response for a WITH-LIST
ACTION.request service, including a list of COSEM interface object method references;

• ONE-BLOCK: the service invocation contains only one block of the complete response.
The Block_Number parameter carries the number of the parameter block carrying a part of
the response as raw data;

• LAST-BLOCK: this value indicates that the service invocation contains the last block of
the response as raw data;

• NEXT: this value indicates that service invocation contains an acknowledgement for the
previously received parameter block and requests the client to send the next one. The
Block_Number parameter carries the number of the last correctly received parameter
block.

The Result parameter carries the result of the invocation of the COSEM interface object
method(s).

The Response_Parameters carries the optional data to be returned, as a result of the
invocation of the COSEM interface object methods.

The number of Result and Response_Parameters parameters in the ACTION.confirm service
primitive with Response_type == WITH-LIST or a.confirm service which is sent in several
parameter blocks shall be the same as the number of COSEM interface object method
references in the corresponding ACTION.request service – one Result and Response_
Parameter for each request.

IS/IEC 62056-53 : 2006

28

If the encoded form of the Result and Response_Parameters does not fit in one APDU, then it
shall be transported in block, carried by the pblock parameter of the Action-Response-With-
Pblock APDU, of type DataBlock-SA. This parameter shall include the block number and the
encoded form of the Result and Response_parameters as raw data.

Use

The client application layer uses this service primitive to indicate the reception of an Action-
Response-XX APDU.

6.5.4 Client side services for event notification

Figure 12 shows services provided by the client side application layer for event notification.

 COSEM client application process

COSEM client application layer

Ev
en

tN
ot

ifi
ca

tio
n.

in
d

Tr
ig

tg
er

_E
ve

nt
N

ot
ifi

ca
tio

n_
S

en
di

ng

Figure 12 – Client side services for event notification

The EventNotification service is the only non-client/server type service provided in COSEM.
Using the EventNotification.request service, the server AP is able to send an unsolicited
notification of the occurrence of an event to the remote client AP. Reception of the
EventNotification message is indicated to the client AP via the EventNotification.indication
primitive. The protocol is described in 7.4.1.3.

In some cases, the supporting lower layer protocol(s) do (does) not allow sending a protocol
data unit in a real, unsolicited manner. In these cases, the client shall explicitly solicit sending
an EventNotification frame, by invoking the Trigger_EventNotification_sending service
primitive.

6.5.4.1 EventNotification.indication

Function

This service is invoked by the client application layer to indicate the reception of an EVENT-
NOTIFICATION.indication from the COSEM server SAP.

Service parameters

The semantics of the primitive is as follows:

EventNotification.indication
(

Time,
Application-Addresses,
COSEM_Attribute_Descriptor,
Attribute_Value

)

IS/IEC 62056-53 : 2006

29

COSEM_Attribute_Descriptor
(

COSEM_Class_Id,
COSEM_Object_Instance_Id,
COSEM_Object_Attribute_Id

)

The optional Time parameter indicates the time assigned to the event by the server.

The Application_Addresses parameter is optional. It is present only when the
EventNotification A-PDU is received outside of an established AA. In this case, it contains all
protocol specific parameters required to identify the sender and destination APs.

The { COSEM_Class_Id, COSEM_Object_Instance_Id, COSEM_Object_Attribute_Id } triplet
identifies non-ambiguously one and only one attribute of a COSEM interface object instance.

The Attribute_Value parameter carries the value of this attribute. More information about the
notified event may be obtained by interrogating this COSEM interface object.

Use

The client application layer uses this service primitive to indicate the reception of an EVENT-
NOTIFICATION.indication to the AP.

6.5.4.2 Trigger_EventNotification_Sending.request

Function

This service is invoked by the client in order to trigger the server to send the frame carrying
the EVENT-NOTIFICATION-Request APDU.

NOTE This service is necessary in case of communication profiles, when the server is not able to send a real
non-solicited EventNotification message.

Service parameters

The semantics of the primitive is as follows:

Trigger_EventNotification_Sending.req
(

Protocol_Parameters
)

The Protocol_Parameters parameter contains all lower protocol dependent information, which
is required for triggering the server to send out an eventually pending frame containing an
EVENT-NOTIFICATION-Request APDU. This information includes the protocol identifier, and
all the required lower layer parameters.

Use

Upon the reception of a Trigger_EventNotification_Sending.request service invocation from
the client AP, the client application layer shall invoke the corresponding supporting layer
service to send a trigger message to the server.

6.5.5 Client side layer management services

This subclause defines a special layer management service, used to manage the short name
mapper application service element. This client side service is necessary only if the server
uses SN referencing. All other layer management services are not within the scope of this
standard.

IS/IEC 62056-53 : 2006

30

6.5.5.1 SetMapperTable.request

Function

This service is invoked by the client AP to provide mapping information to the Client
SN_MAPPER ASE. This service does not cause any data transmission between the client and
the server. This service is necessary only if on the server side SN referencing is used.

Service parameters

The semantics of the primitive is as follows:

SetMapperTable.request
(

Mapping_table
)

The Mapping_table parameter contains the contents of the attribute “object_list” for the
requested server and AA. The structure of the content is defined in IEC 62056-62.

Use

The client AP uses this service primitive, in order to enhance the efficiency of the mapping
process if SN referencing is used.

6.5.5.2 Mapping client services for servers using Short names

For servers using SN referencing, the services listed above are mapped to the corresponding
xDLMS services (compare IEC 61334-4-41) by the client Control function (see Figure 6) in the
following manner:

Table 1 – Mapping between client side LN and server side SN referencing services

Client side xDLMS Service (LN ref.) Server side xDLMS Service (SN ref.)
GET.request ReadRequest

GET.confirm ReadResponse

SET.request (Service_Class=“confirmed”) WriteRequest

SET.request (Service_Class=“unconfirmed”) UnconfirmedWriteRequest

SET.confirm WriteResponse

ACTION.request (Service_Class=“unconfirmed”) UnconfirmedWriteRequest

ACTION.request (Service_Class=“confirmed”) Action with return parameters:
 ReadRequest
 VariableAccessSpecification:=
 parametrised access
 (IEC 61334-4-41)
 Selector:= 0;
 If no method invocation parameters
 are supplied:
 Parameter:= null-data
Action without return parameters:
 WriteRequest
 If no method invocation parameters
 are supplied:
 Data:= null-data

ACTION.confirm ReadResponse
If no data is returned then:
data:= null-data.

EVENTNOTIFICATION.indication InformationReportRequest

IS/IEC 62056-53 : 2006

31

Details about the mapping of the logical names to short names are given in IEC 62056-62.

6.6 Server COSEM application layer services

6.6.1 Application association establishment

6.6.1.1 Overview

Figure 13 shows the services provided by the server application layer for AA establishment.
These services are provided by the ACSE.

COSEM server application process

COSEM server application layer

C
O

S
EM

-O
PE

N
.in

d

C
O

S
EM

-O
PE

N
.re

s

Figure 13 – Server side services for application association establishment

6.6.1.2 COSEM-OPEN.indication

Function

This service is invoked by the server side of the application layer following the receipt of an
AARQ APDU, to indicate to the COSEM server AP that the peer (client) AP requested the
establishment of an AA.

Service parameters

The semantics of the primitive is as follows:

COSEM-OPEN.indication
(

Protocol_Connection_Parameters,
Dedicated _Key,
DLMS_Version_Number,
DLMS_Conformance,
Client_Max_Receive_PDU_Size,
ACSE_Protocol_Version,
Application_Context_Name,
Application-Ids_and_Titles,
Security_Mechanism_Name,
Calling_Authentication_Value,
Implementation_Information,
User_Information,
Service_Class

)
The Protocol_Connection_Parameters parameter contains all information necessary to use
the supporting layer, including the profile (protocol) identifier and the required addresses.
Examples for this parameter are given in Annex B.

IS/IEC 62056-53 : 2006

32

The Dedicated_Key, DLMS_Version_Number, DLMS_Conformance and Client_Max_Receive
_PDU_Size parameters contain respectively the value of the dedicated-key, the proposed-
dlms-version-number, the proposed-conformance and the client-max-receive-pdu-size
parameters of the xDLMS-Initiate.request PDU. These parameters are specified in
IEC 61334-4-41 and in 8.4 of this standard. Annex C gives some examples for their usage.
The xDLMS-Initiate.request PDU shall be inserted in the user-information field of the AARQ
APDU received.

The ACSE_Protocol_Version, Application_Context_Name, Application_Ids_and_Titles,
Security_Mechanism_Name and the Calling_Authentication_Value parameters are carried by
the corresponding fields of the received AARQ APDU.

The xDLMS-ASE and the ACSE provide only the framework for transporting this information.
To provide and verify that information is the job of the appropriate COSEM AP. Default and
allowed values for these fields are defined in 7.3.7.

The Implementation_Information parameter, if present, carries the value of the
implementation-information field of the received AARQ APDU.

The User_Information parameter is optional. When present, it contains the information sent by
the Client AP using the same parameter in the corresponding.request primitive.

The Service_Class parameter indicates whether the service is invoked in confirmed or
unconfirmed manner.

Use

This service is used by the server side application layer to indicate the reception of a correctly
formatted AARQ APDU to the COSEM server AP. In order to be able to receive this APDU,
lower layer protocol connections – if it is required – have to be already established.

The protocol for AA establishment is described in 7.3.1.

6.6.1.3 COSEM-OPEN.response

Function

This service is invoked by the server AP to indicate whether the previously proposed AA is
accepted or not.

Service parameters

The semantics of the primitive is as follows:

COSEM-OPEN.response
(

Protocol_Connection_Parameters,
Result,
Failure_type,
DLMS_Version_Number,
DLMS_Conformance,
Server_Max_Receive_PDU_Size,
ACSE_Protocol_Version,
Application_Context_Name,
Application_Ids_and_Titles,
Security_Mechanism_Name,
Responding_Authentication_Value,
Implementation_Information

)

IS/IEC 62056-53 : 2006

33

The Protocol_Connection_Parameters parameter contains all information necessary to use
the supporting layer, including the profile (protocol) identifier and the required addresses.
Examples for this parameter are given in Annex B.

The Result parameter indicates whether the COSEM server AP accepted the association
request or not.

In the case of non-acceptance, the Failure_type parameter indicates the reason for not
accepting the proposed AA.

The DLMS_Version_Number, DLMS_Conformance and Server_Max_Receive_PDU_Size
parameters contain respectively the value of the negotiated-dlms-version-number, negotiated-
conformance and server-max-receive-pdu-size parameters of the xDLMS Initiate.response
PDU. These parameters are specified in IEC 61334-4-41, and in 8.4 of this standard. Annex C
gives some examples for their usage. The xDLMS-Initiate.request PDU shall be inserted in
the user-information field of the AARE APDU to be sent.

The ACSE_Protocol_Version, Application_Context_Name, Application-Ids_and_Titles, Security_
Mechanism_Name and the Responding_Authentication_Value parameters shall be inserted
into the corresponding fields of the AARE APDU to be sent.

The Implementation_Information parameter, if present, shall be inserted in the implemen-
tation-information field of the AARE APDU to be sent.

Use

This service primitive is used by the COSEM server AP to indicate to the application layer
whether the previously proposed AA is accepted or not.

If the designated AA is confirmed (it was requested by an AARQ with response-allowed ==
TRUE), the invocation of this service shall imply sending an AARE APDU to the requestor
client application layer, otherwise no AARE shall be sent.

6.6.2 Application association release

Figure 14 shows the services provided by the server side application layer for disconnecting
an AA.

COSEM server application process

COSEM server application layer

C
O

S
E

M
-R

E
LE

A
S

E
.in

d

C
O

S
E

M
-R

E
LE

A
S

E
.re

s

C
O

S
E

M
-A

B
B

O
R

T.
in

d

Figure 14 – Server side services for releasing an application association

IS/IEC 62056-53 : 2006

34

In certain COSEM communication profiles – for example in the 3-layer, connection-oriented,
HDLC based profile – there is a one-to-one relationship between a confirmed AA and the
supporting protocol layer connection. In this case, the COSEM-RELEASE and COSEM-
ABORT services used during the association release phase do not rely on the ACSE services.
Confirmed AAs in these profiles are released simply by disconnecting the corresponding lower
layer connection.

This is the mandatory way to release such AAs.

This way of releasing an AA is requested by the client AP by invoking the COSEM-
RELEASE.request service with no Use_RLRQ_RE parameter or with Use_RLRQ_RE ==
FALSE. In receiving this request, the client application layer shall disconnect the supporting
layer connection.

Disconnecting the supporting layer connection shall imply the server application layer to
receive an XX-DISCONNECT.indication with REASON == REMOTE from the supporting
protocol layer. The reception of this service makes the server application layer to indicate the
request for releasing the corresponding AA to the server AP with the help of the COSEM-
RELEASE.indication service primitive. The server application shall respond to this with the
invocation of the COSEM-RELEASE.response primitive. This response will imply the server
application layer to respond to the XX-DISCONNECT.indication and release the designated
AA.

Optionally, the COSEM client AP may invoke the COSEM-RELEASE.request service with
Use_RLRQ_RE == TRUE. In this case, the client application layer, instead of disconnecting
the supporting layer connection (if there is one), shall initiate the release of the referenced AA
by sending an RLRQ APDU to the Server.

The reception of this RLRQ APDU has the same effect as the XX-DISCONNECT.indication:
the server application layer shall indicate the received release request to the server AP with
the help of the COSEM-RELEASE.indication service primitive. The server AP shall respond to
this with the COSEM-RELEASE.response.

If the AA to be released is a confirmed AA, the reception of this COSEM-RELEASE.response
will imply sending an RLRE APDU to the Client, otherwise no RLRE shall be sent.

Supporting the RLRQ/RLRE APDUs is optional.

Any existing AA – except the pre-established ones on the server side – shall be aborted,
when the physical connection is intentionally disconnected or if any of the supporting layer
connection is disconnected or breaks. A local COSEM-ABORT.indication primitive is provided
to inform the AP about this. As physical connection/disconnection is done outside of the
protocol, requesting a physical disconnection is not within the scope of this standard.

6.6.2.1 COSEM-RELEASE.indication

Function

This service primitive is invoked by the COSEM server application layer to indicate to the
server AP a supporting layer disconnection indication.

Service parameters

The semantics of the primitive is as follows:

COSEM-RELEASE.indication
(

Use_RLRQ_RE,
User_Information

)

IS/IEC 62056-53 : 2006

35

The Use_RLRQ_RE parameter is optional. If it is not present, it is considered, as if the value
of this parameter would be equal to FALSE.

The User_Information parameter is optional. When it is present, it shall contain User-specific
information carried by the supporting lower protocol layer(s). Specification of the contents of
this parameter is not within the scope of this standard.

Use

This service is used by the server application layer to indicate to the server AP that a graceful
release of the AA has been requested. The server must accept this request.

When this service is invoked with no Use_RLRQ_RE parameter or with Use_RLRQ_RE ==
FALSE, the invocation of this service is generated upon the reception of a supporting protocol
layer disconnect indication. In this case, the server AP shall respond to this indication with a
COSEM-RELEASE.response primitive with no Use_RLRQ_RE or with Use_RLRQ_RE ==
FALSE, too.

Supporting the COSEM-RELEASE.indication service with no Use_RLRQ_RE or with
Use_RLRQ_RE == FALSE is mandatory for all COSEM Servers.

Optionally, COSEM servers may support releasing AAs with the help of the RLRQ/RLRE
APDUs. COSEM servers supporting this operation shall invoke the COSEM-
RELEASE.indication service with Use_RLRQ_RE == TRUE on the receipt of an RLRQ APDU.
In this case, if the COSEM-RELEASE.indication has been received in a confirmed AA, the
server application shall respond to this indication with a COSEM-RELEASE.response primitive
with Use_RLRQ_RE == TRUE, too.

6.6.2.2 COSEM-RELEASE.response

Function

This service primitive is invoked by the COSEM server AP to indicate to the application layer
whether the previously received request for releasing the AA has been accepted.

NOTE The server cannot refuse a received request for disconnection.

Service parameters

The semantics of the primitive is as follows:

COSEM-RELEASE.response
(

Result,
User_Information,
Use_RLRQ_RE

)

The Result parameter indicates whether the server AP can accept the previous COSEM-
RELEASE.request or not. Its value depends on whether the AA, the release of which has
been requested, was existing or not.

If the User_Information parameter is present, it shall be passed on to the supporting protocol
layer. Specification of its content is not within the scope of this standard.

The Use_RLRQ_RE parameter is optional. If it is not present, it is considered, as if the value
of this parameter would be equal to FALSE. If this parameter is present and its value is
TRUE, then the primitive is a response to a COSEM-RELEASE.indication, which has been
originated by the reception of a RLRQ APDU. Otherwise, the origin of the COSEM-
RELEASE.indication was the reception of a disconnect indication with REASON == REMOTE
from the supporting protocol layer.

IS/IEC 62056-53 : 2006

36

Use

This service primitive is invoked by the server AP to respond to a previously received
COSEM-RELEASE.indication. Upon the reception of this invocation, the server application
layer shall process the release of the corresponding AA, and perform the appropriate actions
as well. These actions can be one of the following:

• invoking the XX-DISCONNECT.response service of the supporting protocol layer, if the
Use_RLRQ_RE parameter is not present or its value is FALSE;

• constructing and sending an RLRE APDU to the peer client application layer, if the
Use_RLRQ_RE parameter is present and its value is TRUE, and the released AA is a
confirmed one. Supporting this operation is optional.

6.6.2.3 COSEM-ABORT.indication

Function

This service primitive is invoked by the COSEM server application layer to indicate to the
server application that the AA is aborted because of the supporting lower protocol connection
is shut down. It can be the result either of an unsolicited disconnection of any supporting
lower layer connection, including the disconnection of the physical layer, or of the action of
another application entity, such as the connection manager application, present in some
profiles.

Service parameters

The semantics of the primitive is as follows:

COSEM-ABORT.indication
(

Diagnostics
)

The optional Diagnostics parameter shall indicate the possible reason for the physical
disconnection, and can carry lower protocol layer dependent information. Specification of the
contents of this parameter is not within the scope of this standard.

Use

The server application layer uses this service primitive to indicate to the COSEM server AP
that a lower layer connection abort occurred in a non-solicited manner. The origin of the abort
can be an external event (e.g. the physical line is broken), or an action of a supporting layer
connection manager AP, present in some profiles.

6.6.3 Client/server type data communication services

6.6.3.1 Service overview

Services provided during the data communications phase rely on services of the
xDLMS_ASE. These services contain references to attributes or methods of COSEM interface
objects. IEC 62056-62 defines two different types of referencing, by logical name (LN) and by
short name (SN). Therefore, two different server xDLMS_ASE-s – thus two different server
application layers – are specified. These server side application layers provide two different
sets of services. One set of services (GET, SET, ACTION and EventNotification) is using
exclusively LN references. The other set of services (Read, Write, Unconfirmed Write,
InformationReport) is using exclusively SN references.

However, during the lifetime of an established AA, there is only one server xDLMS_ASE
present in the COSEM server application layer. The type of this xDLMS_ASE is negotiated
during the connection establishment phase and only the selected xDLMS_ASE is present

IS/IEC 62056-53 : 2006

37

within the server application layer. It explains, why using one or the other set of services is
exclusive. No Read/Write/UnconfirmedWrite services are provided by the COSEM server ASO
when the AA is established within a context using LN referencing, and no
GET/SET/ACTION/EventNotification services are provided in the opposite case.

6.6.3.2 Services provided with LN references

Figure 15 shows services provided by the server side application layer during the data
communications phase, when LN referencing is used:

COSEM server application process

COSEM server application layer

G
E

T.
in

d G
E

T.
re

s

S
E

T.
in

d S
E

T.
re

s

A
C

TI
O

N
.in

d

A
C

TI
O

N
.re

s

E
ve

nt
N

ot
ifi

ca
tio

n.
re

q

Figure 15 – Server side data communications services using LN referencing

Three client/server type services may be supported when LN referencing is used: GET, SET
and ACTION. The.request primitive of these services is invoked by the COSEM client AP. The
role of the protocol with regard to these services is to transport them to the COSEM server
AP. The server application layer shall indicate the reception of a request via the.indication
service primitive to the server AP.

Each of these services can be requested in a confirmed or an unconfirmed manner. However,
in case of a non-confirmed AA, data communication services may only be invoked in a non-
confirmed manner.

In case of confirmed service invocation, the server AP shall return the confirmation by
invoking the corresponding.response service primitive. The receipt of this response is
indicated to the client AP via the.confirm service primitive.

If a confirmed service request cannot be processed by the server (e.g. the request has been
received without establishing an AA first, or the request is otherwise erroneous) normally, it is
discarded by the application layer. However, the COSEM server application layer may
optionally send an EXCEPTION-Response APDU to indicate to the client application layer that
the service request received could not be processed and the reasons for this.

The optional EXCEPTION-Response APDU is defined in 8.6.1.

Unconfirmed service invocation will not imply.response/.confirm primitive invocation. In
COSEM, the only reason to do it is to avoid collisions due to potential multiple responses in
the case of multicasting and/or broadcasting.

The protocol for confirmed service invocations is described in 7.4.1.1 and for unconfirmed
service invocations in 7.4.1.2.

The fourth, EventNotification Service is the only non-client/server service provided in COSEM.
By invoking this service, the server AP is able to send an unsolicited notification of the
occurrence of an event to the remote client.

IS/IEC 62056-53 : 2006

38

6.6.3.2.1 GET.indication

Function

This service is invoked by the server application layer to indicate to the server AP that a
remote client has requested the value(s) of one or all attributes of one or more COSEM
interface object(s).

Service parameters

The semantics of the primitive is as follows:

GET.indication
(

Invoke_Id,
Priority,
Service_Class,
Request_type,
COSEM_Attribute_Descriptor, { COSEM_Attribute_Descriptor, },
Block_Number

)

COSEM_Attribute_Descriptor
(

COSEM_Class_Id,
COSEM_Object_Instance_Id,
COSEM_Object_Attribute_Id,
Access_Selection_Parameters

)
The Invoke_Id parameter identifies the instance of this service invocation.

The value of the Priority parameter indicates the priority level associated to the received
request. There two priority levels: normal (FALSE) and high (TRUE).

The Service_Class parameter indicates whether the service is invoked in a confirmed or an
unconfirmed manner.

The Request_type parameter indicates the origin and the type of the current GET.indication
service invocation. It can be: NORMAL, WITH-LIST or NEXT.

The first GET.indication is always type NORMAL or WITH-LIST. It indicates the reception of a
NORMAL GET.request from the client. A GET.indication with NEXT type indicates that the
remote client is asking for the next data block. Non-transparent long data transfer with the
GET service is defined in 7.4.1.8.2.

A GET.indication service shall contain one or more COSEM_Attribute_Descriptor parameters,
each of them referencing a COSEM interface object attribute. The COSEM_Attribute_
Descriptor parameter is a composite parameter, consisting of the following components:

• the { COSEM_Class_Id, COSEM_Object_Instance_Id } doublet non-ambiguously identifies
one and only one COSEM interface object instance;

• the COSEM_Object_Attribute_Id component identifies the attribute(s) of the object
instance. COSEM_Object_Attribute_Id = 0 references all attributes of the designated
object instance;

• the optional Access_Selection_Parameters element, in case of selective access (see
7.4.1.6.) carries the additional data required for the selective GET operation. This
parameter can be used only when COSEM_Object_Attribute_Id != 0.

IS/IEC 62056-53 : 2006

39

One GET.indication invocation may contain as many COSEM_Attribute_Descriptors as the
server-max-receive-pdu-size allows. The COSEM_Attribute_Descriptor(s) shall be present
only with Request_type == NORMAL or WITH-LIST.

The optional Block_Number parameter is present only when Request_type == NEXT. It
carries the number of the last correctly received block of a long data, and no
COSEM_Attribute_ Descriptor parameter shall be present.

Use

The server application layer generates the GET.indication service primitive upon the reception
of a GET.request from the supporting layer.

6.6.3.2.2 GET.response

Function

This service is invoked by the server AP in order to send a response to a previously received
GET.indication primitive.

Service parameters

The semantics of the primitive is as follows:

GET.response
(

Invoke_Id,
Priority,
Response_type,
Result, { Result, }
Block_Number

)
The Invoke_Id parameter identifies the instance of this service invocation. Its value shall be
equal to the Invoke_Id of the corresponding GET.indication service invocation.

The value of the Priority parameter indicates the priority level associated to the
received.indication. The value of this parameter shall be equal to the value of the Priority
parameter of the corresponding GET.indication service invocation.

The Response_type parameter indicates whether this.response service invocation contains
the complete response requested by the previous GET.request service invocation, or it
contains only a block of the required data. This parameter shall carry one of the following
values:

• NORMAL: the service invocation contains the complete response for a NORMAL
GET.request service;

• WITH-LIST: the service invocation contains the complete response for a WITH-LIST
GET.request service;

• ONE-BLOCK: the service invocation contains only one block of the complete response.
The Block_Number parameter carries the number of the data block carrying a part of the
result as raw data;

• LAST-BLOCK: this value indicates that the current block is the last data block sent.

The Result parameter shall carry either the requested data, or in case of error, the indication
of the type of error. If the encoded form of the Result parameter does not fit in one APDU,
then it shall be transported in blocks, carried by the Result parameter of the appropriate Get-
Response-With-Datablock APDU, of type DataBlock-G. This parameter shall include the block
number and a part of the encoded form of the result as raw data or data access result.

IS/IEC 62056-53 : 2006

40

The number of Result parameters in the GET.response service shall be the same as the
number of COSEM_Attribute_Descriptor parameters in the corresponding GET.indication
service – one response for each request.

Use

This service is used by the server AP. Upon the reception of the GET.response service
invocation, the COSEM server application layer shall build a Get-Response-XX APDU. In case
of success – when the corresponding GET.indication has been accepted – this APDU shall be
built by encoding the received Data parameter otherwise the APDU will contain the value of
the data_access_result parameter. In both cases, the Invoke_Id and the Priority parameter
shall also be inserted into the APDU.

6.6.3.2.3 SET.indication

Function

This service primitive is invoked by the server application layer to indicate to the server AP
that a remote client has requested setting one or more attributes of a COSEM interface
object.

Service parameters

The semantics of the primitive is as follows:

SET.indication
(

Invoke_Id,
Priority,
Service_Class,
Request_type,
COSEM_Attribute_Descriptor, { COSEM_Attribute_Descriptor, },
Block_Number,
Data, { Data, }

)
COSEM_Attribute_Descriptor
(

COSEM_Class_Id,
COSEM_Object_Instance_Id,
COSEM_Object_Attribute_Id,
Access_Selection_Parameters

)
The Invoke_Id parameter identifies the instance of this service invocation.

The value of the Priority parameter indicates the priority level associated to the received
request. There are two priority levels: normal (FALSE) and high (TRUE).

The Service_Class parameter indicates whether the service is invoked in a confirmed or an
unconfirmed manner.

The Request_type parameter indicates whether the Data parameter of the service primitive
carries a complete attribute or only a block of it. It shall be set to one of the following values:

• NORMAL: the service invocation contains the reference to one or all (Attribute_0 feature,
see 7.4.1.7.1) attribute(s) of one COSEM interface object and all the required data. The
optional Block_Number parameter shall not be present in the service invocation;

• WITH-LIST: the service invocation contains a list of COSEM interface object attribute
references and all the required data. The optional Block_Number parameter shall not be
present in the service invocation;

IS/IEC 62056-53 : 2006

41

• FIRST-BLOCK: the service invocation contains the reference to an attribute of one
COSEM interface object and the first part of the required data. The Block_Number
parameter shall be set to 0001;

• FIRST-BLOCK-WITH-LIST: the service invocation contains a list of COSEM interface
object attribute references and the first part of the required data. The Block_Number
parameter shall be set to 0001;

• ONE-BLOCK: the service invocation contains only one block of the data. The
Block_Number parameter carries the number of the data block carried by the Data
parameter, and no COSEM_Attribute_Descriptor(s) shall be present;

• LAST-BLOCK: this value indicates that the current is the last block of the data. The
Block_Number parameter carries the number of this data block, and no
COSEM_Attribute_Descriptor(s) shall be present.

A SET.indication service shall contain one or more COSEM_Attribute_Descriptor parameters,
each of them referencing one or all attributes of a COSEM interface object. The
COSEM_Attribute_Descriptor parameter is a composite parameter, consisting of the following
components:

• the { COSEM_Class_Id, COSEM_Object_Instance_Id } doublet non-ambiguously identifies
one and only one COSEM interface object instance;

• the COSEM_Object_Attribute_Id component identifies the attribute(s) of the object
instance. COSEM_Object_Attribute_Id = 0 references all attributes of the designated
object instance;

• the optional Access_Selection_Parameters element, in case of selective access (see
7.4.1.6.) carries the additional data required for the selective SET operation. This
parameter can be used only when COSEM_Object_Attribute_Id != 0.

One SET.indication invocation may contain as many COSEM_Attribute_Descriptors as the
server-max-receive-pdu-size allows. The COSEM_Attribute_Descriptor(s) shall be present
only with Request_type == NORMAL, Request_type == WITH-LIST or Request_type ==
FIRST-BLOCK-XXX.

The optional Block_Number parameter is present when Request_type != NORMAL or WITH-
LIST. It carries the number of the DataBlock within the current service invocation.

The Data parameter contains the data necessary to set the attributes identified by the
Attribute_descriptor parameter. If the encoded form of the data does not fit in one APDU, then
it shall be transported in blocks, carried by the datablock parameter of the appropriate Set-
Indication-XX APDU, of type DataBlock-SA. This parameter shall include the block number
and a part of the encoded form of the data as raw data.

The number of Data parameters in the SET.request service shall be the same as the number
of COSEM_Attribute_Descriptors: one Data for each COSEM_Attribute_Descriptor.

Use

The server application layer generates the SET.indication service primitive upon the reception
of a SET.request from the supporting layer.

6.6.3.2.4 SET.response

Function

This service primitive is invoked by the server AP to send a response to a previously received
SET.indication primitive.

IS/IEC 62056-53 : 2006

42

Service parameters

The semantics of the primitive is as follows:

SET.response
(

Invoke_Id,
Priority,
Response_type,
Result { Result, },
Block_Number

)
The Invoke_Id parameter identifies the instance of this service invocation. Its value shall be
equal to the Invoke_Id of the corresponding SET.indication service invocation.

The value of the Priority parameter indicates the priority level associated to the received
response. The value of this parameter shall be equal to the value of the Priority parameter of
the corresponding SET.indication service invocation.

The Response_type parameter indicates whether this.response service invocation contains
the response for the complete SET.indication operation, or it is simply an acknowledge of the
previously received data block. This parameter shall carry one of the following values:

• NORMAL: the.response service contains the confirmation of the previous SET.indication
operation, which carried a single COSEM interface object attribute reference. The Result
parameter carries the result of the required operation;

• WITH-LIST: the.response service contains the confirmation of the previous SET.request
operation, which carried a list of COSEM interface object attribute references. The Result
parameter carries the list of results for each required set operation;

• ACK-BLOCK: this value indicates that this.response contains a positive or negative
acknowledgement for a previously received data block. The Block_Number parameter
carries the number of the last correctly received data block;

• LAST-BLOCK: the SET.response service is invoked with this value after the reception of
the last block of the data of a SET.request service, which carried a single COSEM
interface object attribute reference. This value indicates that this.response contains the
response to the original SET.indication service, which has been transferred in several
blocks. The Result parameter carries the result of the required operation and the
Block_Number parameter carries the number of the last data block;

• LAST-BLOCK-WITH-LIST: the SET.response service is invoked with this value after the
reception of the last block of the data of a SET.request service, which carried a list of
COSEM interface object attribute references. This value indicates that this.response
contains the response to the original SET.indication service, which has been transferred
in several blocks. The Result parameter carries the list of results for each required set
operation and the Block_Number parameter carries the number of the last data block.

The number of the Result parameters in the SET.response service primitive with
Response_type == WITH-LIST and LAST-BLOCK-WITH-LIST shall be the same as the
number of COSEM interface object attribute references in the corresponding SET.request
service – one result for each request. Each Result parameter shall carry the result of the
corresponding SET.request operation.

Use

This service is used by the server AP. Upon the reception of the SET.response service
invocation, the COSEM server application layer shall build a Set-Response-XX APDU. This
APDU shall contain the response(s) for the corresponding SET.request – one Data-Access-
Result parameter for each attribute set request. In case of success, this parameter shall
contain a positive acknowledgement for the required set operation otherwise its value shall

IS/IEC 62056-53 : 2006

43

indicate the reason of the failure. In both cases, the Invoke_Id and the Priority parameters
shall also be inserted into the APDU.

6.6.3.2.5 ACTION.indication

Function

This service is invoked by the server application layer to indicate to the server AP that a
remote client has requested the invocation of one or more methods of one or more COSEM
interface objects.

Service parameters

The semantics of the primitive is as follows:

ACTION.indication
(

Invoke_Id,
Priority,
Service_Class,
Request_Type,
COSEM_Method_Descriptor, { COSEM_Method_Descriptor, },
Block_Number,
Method_Invocation_Parameters, { Method_Invocation_Parameters, }

)

COSEM_Method_Descriptor
(

COSEM_Class_Id,
COSEM_Object_Instance_Id,
Method_Id

)

Method_Invocation_Parameters::= Data

The Invoke_Id parameter identifies the instance of this service invocation.

The value of the Priority parameter indicates the priority level associated to the received
request. There are two priority levels: normal (FALSE) and high (TRUE).

The Service_Class parameter indicates whether the service is invoked in a confirmed or an
unconfirmed manner.

The Request_type parameter indicates whether the given invocation contains a complete
request or only a part of it. It shall be set to one of the following values:

• NORMAL: the service invocation contains the reference to a method of one COSEM
interface object and the Method_Invocation_Parameters required for the invocation of this
method. The optional Block_Number parameter shall not be present in the service
invocation;

• WITH-LIST: the service invocation contains a list of COSEM interface object methods and
all the required Method_Invocation_Parameters. The optional Block_Number parameter
shall not be present in the service invocation;

• FIRST-BLOCK: the service invocation contains the reference to a method of one COSEM
interface object and the first part of the required Method_Invocation_Parameters. The
Block_Number parameter shall be set to 0001;

• WITH-LIST-AND-FIRST-BLOCK: the service invocation contains a list of COSEM interface
object method references and the first part of the required Method_Invocation_Para-
meters. The Block_Number parameter shall be set to 0001;

IS/IEC 62056-53 : 2006

44

• ONE-BLOCK: the service invocation contains only one block of the Method_
Invocation_Parameters. The Block_Number parameter carries the number of the para-
meter block carrying a part of the Method_Invocation_Parameters parameter, and no
COSEM_Method_Descriptor(s) shall be present;

• LAST-BLOCK: this value indicates that the current block is the last parameter block to be
transferred. The Block_Number parameter carries the number of the parameter block
carrying the last block of the Method_Invocation_Parameters and no COSEM_
Method_Descriptor(s) shall be present;

• NEXT: this value indicates that this.request contains an acknowledgement for a previously
received parameter block. The Block_Number parameter carries the number of the last
correctly received parameter block.

An ACTION.indication service shall contain one or more COSEM_Method_Descriptor
parameters, each of them referencing one COSEM interface object method. The
COSEM_Method_Descriptor parameter is a composite parameter, consisting of the following
components:

• the { COSEM_Class_Id, COSEM_Object_Instance_Id } doublet non-ambiguously identifies
one and only one COSEM interface object instance. The complete COSEM_
Method_Descriptor references one method of that object instance: this method is
identified by the COSEM_Object_Method_Id component;

• the optional Block_Number parameter is present either when the.indication contains a
parameter block to be sent or when the.request acknowledges a previously received
parameter block (Request_type == NEXT). The Block_Number parameter carries the
number of the last received parameter block.

Invoking a method may require additional parameters. The Method_Invocation_Parameters
parameter carries the data necessary for the invocation of the method(s) identified by the
COSEM_Method_Descriptor parameter(s). If the encoded form of the Method_
Invocation_Parameters does not fit in one APDU, then it shall be transported in blocks,
carried by the pblock parameter of the appropriate Action-Indication-XX APDU, of type
DataBlock-SA. This parameter shall include the block number and a part of the encoded form
of the Method_Invocation_Parameters as raw data.

The ACTION.indication service shall contain as many Method_Invocation_Parameters as
COSEM_Method_Descriptors: one Method_Invocation_Parameter for each COSEM_Method_
Descriptor. Therefore, even if the invocation of a method does not require additional
parameters, the corresponding Method_Invocation_Parameters component shall be present in
the service invocation – but it shall be empty.

The COSEM_Method_Descriptors parameter shall not be present when Request_type ==
ONE-BLOCK or LAST BLOCK.

Use

The server application layer generates the ACTION.indication service primitive upon the
reception of an Action-Request APDU from the supporting layer.

6.6.3.2.6 ACTION.response

Function

This service primitive is invoked by the server AP to send a response to a previously received
ACTION.indication primitive.

Service parameters

The semantics of the primitive is as follows:

ACTION.response

IS/IEC 62056-53 : 2006

45

(
Invoke_Id,
Priority,
Response_type,
Result, { Result, },
Block_Number,
Response_Parameters, { Response_Parameters, }

)

The Invoke_Id parameter identifies the instance of this service invocation. Its value shall be
equal to the Invoke_Id of the corresponding ACTION.indication service invocation.

The value of the Priority parameter indicates the priority level associated to the
received.response. The value of this parameter shall be equal to the value of the Priority
parameter of the corresponding ACTION.indication service invocation.

The Response_type parameter indicates whether this.response service invocation contains
the complete response requested by the previous ACTION.indication service invocation, it
contains only a block of the required data, or it is simply an acknowledge of a previously
received block of the ACTION.indication service. This parameter shall carry one of the
following values:

• NORMAL: the service invocation contains the complete response for a NORMAL
Action.indication which carried a single method reference;

• WITH-LIST: the service invocation contains the complete response for a WITH-LIST
ACTION.indication service, including a list of COSEM interface object method references;

• ONE-BLOCK: the service invocation contains only one block of the complete response.
The Block_Number parameter carries the number of the data block carrying a part of the
response as raw data;

• LAST-BLOCK: this value indicates that this.response primitive contains the last block of
the response as raw data;

• NEXT: this value indicates that this.response contains an acknowledgement for a
previously received parameter block and requests the client to send the next one. The
Block_Number parameter carries the number of the last correctly received parameter
Block.

The Result parameter carries the result of the invocation of the COSEM interface object
method(s).

The Response_Parameters carries the optional data to be returned as a result of the
invocation of the COSEM interface object methods.

The number of Result and Response_Parameters parameters in the ACTION.confirm service
primitive with Response_type == WITH-LIST or a.confirm service which is sent in several
parameter blocks shall be the same as the number of COSEM interface object method
references in the corresponding ACTION.request service – one Result and Response_
Parameter for each request.

If the encoded form of the Result and Response_Parameters does not fit into one APDU, then
they shall be transported in blocks, carried by the pblock parameter of the Action-Response-
With-Pblock APDU, of type DataBlock-SA. This parameter shall include the block number and
the encoded form of the Result and Response_parameters as raw data.

Use

This service is used by the server AP. Upon the reception of the ACTION.response service
invocation, the COSEM server application layer shall build an Action-Response-XX APDU.

IS/IEC 62056-53 : 2006

46

This shall include the result and optionally, when the ACTION service has to return data, the
return parameters.

The result parameter may be success, or eventually include the reason for the failure.

The return parameters may include the data to be returned, or if the data cannot be accessed,
the reason for the access failure.

If the action response does not fit in one APDU, it shall be sent back in blocks of type
DataBlock-SA, with the help of the transparent or non-transparent long data transfer
mechanism. These mechanisms are defined in 7.4.1.8.

In all cases, the Invoke_Id and the Priority parameters shall also be inserted into the APDU.

6.6.3.2.7 EventNotification.request

Function

This service is invoked by the server AP to send an EventNotification message to the remote
client AP.

Service parameters

The semantics of the primitive is as follows:

EventNotification.request
(

Time,
Application_Addresses,
COSEM_Attribute_Descriptor,
Attribute_Value

)
COSEM_Attribute_Descriptor
(

COSEM_Class_Id,
COSEM_Object_Instance_Id,
COSEM_Object_Attribute_Id

)

The optional Time parameter indicates the time assigned to the event by the server.

The Application_Addresses parameter is optional. It is present only when the
EventNotification A-PDU is to be sent outside of an established AA. In this case, it contains all
protocol specific parameters required to identify the source and destination APs.

The { COSEM_Class_Id, COSEM_Object_Instance_Id, COSEM_Object_Attribute_Id } triplet
identifies non-ambiguously one and only one attribute of a COSEM interface object instance.
The Attribute_Value parameter carries the value of this attribute. More information about the
notified event may be obtained by interrogating this COSEM interface object.

When the EventNotification.request service invocation does not contain the optional
Application_Addresses parameter, it shall be sent from the address of the server management
logical device – the default sender application – to the client management AP – the default
destination application. Both APs are always present and in any protocol profile, they are
bound to known, pre-defined addresses.

IS/IEC 62056-53 : 2006

47

Use

This service is used by the server AP. Upon the reception of the EventNotification.request
service invocation, the COSEM server application layer shall build the EVENT-
NOTIFICATION-Request APDU.

6.6.3.3 Services provided with Short name references

6.6.3.3.1 ReadRequest

The service is described in Annex A of IEC 61334-4-41.

The parameterized access (as additional variant of the VariableAccessSpecification) provides
the ReadRequest service with the capability to transport additional parameters.

Parameterized access is introduced by adding the following access method (compare
IEC 61334-4-41, p. 221):

VariableAccessSpecification:= CHOICE
{

 ... [2]…
 ... [3]...
 parameterized access [4] IMPLICIT SEQUENCE

{
variable_name ObjectName,
selector integer,
parameter Data
}

}

The meaning of the selector and of the access parameter depends on the referenced variable.
It is defined in the corresponding COSEM interface class specification, see in IEC 62056-62.

6.6.3.3.2 ReadResponse

The service is described in Annex A of IEC 61334-4-41.

6.6.3.3.3 WriteRequest

The service is described in Annex A of IEC 61334-4-41.

The parameterised access (as additional variant of the VariableAccessSpecification) provides
the WriteRequest service with the capability to transport additional parameters, as described
above (6.6.3.3.1).

6.6.3.3.4 WriteResponse

The service is described in Annex A of IEC 61334-4-41.

IS/IEC 62056-53 : 2006

48

6.6.3.3.5 UnconfirmedWriteRequest

The service is described in Annex A of IEC 61334-4-41.

6.6.3.3.6 InformationReportRequest

The service is described in Annex A of IEC 61334-4-41.

6.7 Summary of COSEM application layer services and service parameters

6.7.1 COSEM application layer services summary

Table 2 summarizes the COSEM application layer services on the client and the server side,
and for data communication services, in case of using LN and SN referencing.

Table 2 – Application layer services – summary

 Client side Server side

ACSE Services

Application
association
establishment /
release / abort

COSEM-OPEN.request

COSEM-OPEN.confirm

COSEM-RELEASE.request

COSEM-RELEASE.confirm

COSEM-ABORT.indication

COSEM-OPEN.indication

COSEM-OPEN.response

COSEM-RELEASE.indication

COSEM-RELEASE.response

COSEM-ABORT.indication

xDLMS Services

(LN referencing)

GET.request

GET.confirm

SET.request

SET.confirm

ACTION.request

ACTION.confirm

EventNotification.indication

Trigger_EventNotification_
sending.request

GET.indication

GET.response

SET.indication

SET.response

ACTION.indication

ACTION.response

EventNotification.request

xDLMS Services

(SN referencing)

GET.request

GET.confirm

SET.request (Service_class = “confirmed”

SET.confirm

SET.request (Service_class =
“unconfirmed”

ACTION.request (Service_Class =
“confirmed”, with return parameters)

ACTION.confirm (with return parameters)

ACTION.request (Service_Class =
“confirmed”, with no return parameters)

ACTION.confirm (with no return
parameters)

ACTION.request (Service_Class =
“unconfirmed”

EventNotification.indication (multiple)

Read.indication

Read.response

Write.indication

Write.response

UnconfirmedWrite.indication

Read.request

Read.response

Write.request

Write.response

UnconfirmedWrite.indication

InformationReport.request

IS/IEC 62056-53 : 2006

49

6.7.2 COSEM-OPEN service parameters

Table 3 summarizes the parameters of the COSEM-OPEN service in case of the various
service primitives.

Table 3 – Summary of the service parameters in the COSEM-OPEN service primitives

 Client side Server side
 .request .confirm .indication .response

Protocol_Connection_Parameters M M(=) M(=) M

Dedicated_Key C - C(=) -

Local_or_Remote - M - -

Result - M(=) - M

Failure_Type - C(=) - C

DLMS_Version_Number M M(=) M(=) M

DLMS_Conformance M M(=) M(=) M

Client_Max_Receive_PDU_Size M - M(=) -

Server_Max_Receive_PDU_Size - M(=) - M

ACSE_Protocol_Version M M(=) M(=) M

Application_Context_Name M M M M

Application_Ids_and_Titles U U(=) U(=) U

Security_Mechanism_Name U U(=) U(=) U

Calling_Authentication_Value C - C(=)

Responding_Authentication_Value - C(=) - C

Implementation_Information U U(=) U(=) U

User_Information U - U -

Service_Class M - M(=) -

The meaning of the codes used in this and the following tables is as follows:

• - Not applicable

• M Mandatory (this parameter must be present)

• U User option (this parameter may optionally be present)

• C Conditional (the presence of this parameter is conditional depends on
 other parameters)

• (=) Indicates that the parameter is the same as the corresponding request (for
 the.indication) or.response (for the.confirm) primitive.

6.7.3 COSEM-RELEASE and COSEM-ABORT service parameters

Table 4 and Table 5 summarize the parameters of the COSEM-RELEASE – and COSEM-
ABORT services in case of the various service primitives.

IS/IEC 62056-53 : 2006

50

Table 4 – Summary of the service parameters
in the COSEM-RELEASE service primitives

 Client side Server side

 .request .confirm .indication .response

Result - M - M

Failure_Type - C - -

User_Information U U(=) U(=) U

Use_RLRQ_RE U - U U

Table 5 – Summary of the service parameters

in the COSEM-ABORT service primitives

 Client side Server side

 .request .confirm .indication .response

Diagnostics - - U -

6.7.4 Parameters of the Client/Server type data communication services with LN

referencing

Table 6, Table 7 and Table 8 summarize the parameters of the Client/Server type data
communication services (GET, SET, ACTION) used with LN referencing, in case of the
various service primitives.

Table 6 – Summary of the service parameters in the COSEM GET service primitives

 Client side Server side

 .request .confirm .indication .response

Invoke_Id M M(=) M(=) M(=)

Priority M M(=) M(=) M(=)

Service_Class M - M(=) -

Request_Type M - M(=) -

Response_Type - M(=) - M

COSEM_Attribute_Descriptor M - M(=) -

 COSEM_Class_Id M - M(=) -

 COSEM_Object_Instance_Id M - M(=) -

 COSEM_Object_Attribute_Id M - M(=) -

 Access_Selection_Parameters U - U(=) -

Result - M(=) - M

Block_Number C C(=) C(=) C

IS/IEC 62056-53 : 2006

51

Table 7 – Summary of the service parameters in the COSEM SET service primitives

 Client side Server side

 .request .confirm .indication .response

Invoke_Id M M(=) M(=) M(=)

Priority M M(=) M(=) M(=)

Service_Class M - M(=) -

Request_Type M - M(=) -

Response_Type - M(=) - M

COSEM_Attribute_Descriptor M - M(=) -

 COSEM_Class_Id M - M(=) -

 COSEM_Object_Instance_Id M - M(=) -

 COSEM_Object_Attribute_Id M - M(=) -

 Access_Selection_Parameters U - U(=) -

Data M - M(=) -

Result - M(=) - M

Block_Number C C(=) C(=) C

Table 8 – Summary of the service parameters in the COSEM ACTION service primitives

 Client side Server side

 .request .confirm .indication .response

Invoke_Id M M(=) M(=) M(=)

Priority M M(=) M(=) M(=)

Service_Class M - M(=) -

Request_Type M - M(=) -

Response_Type - M(=) - M

COSEM_Method_Descriptor M - M(=) -

 COSEM_Class_Id M - M(=) -

 COSEM_Object_Instance_Id M - M(=) -

 COSEM_Object_Method_Id M - M(=) -

Method_Invocation_Parameters M - M(=) -

Result - M(=) - M

Response_Parameters - U(=) - U

Block_Number C C(=) C(=) C

6.7.5 EventNotification service parameters

Table 9 summarizes the parameters of the EventNotification service primitives in case of the
various service primitives.

IS/IEC 62056-53 : 2006

52

Table 9 – Summary of the service parameters in the
COSEM EventNotification service primitives

 Client side Server side

 .indication .request

Time U(=) U

Application_Addresses U(=) U

COSEM_Attribute_Descriptor M(=) M

 COSEM_Class_Id M(=) M

 COSEM_Object_Instance_Id M(=) M

 COSEM_Object_Attribute_Id M(=) M

Attribute_Value M(=) M

7 COSEM application layer protocol specification

The COSEM application layer is based on the extended DLMS – xDLMS, see Annex A – and
on the connection-oriented ACSE service elements. Therefore, the protocol of this layer is
based on the DLMS and ACSE protocols, as they are specified in IEC 61334-4-41 and in
ISO/IEC 8650-1 respectively.

Both the xDLMS and the application contexts can be negotiated during the AA establishment.

The COSEM application protocol specification includes the specification of the protocol
machines for both the client and server side application layers, and the abstract syntax
(ASN.1) for the representation of APDUs. As the same APDU applies at the client side and at
the server side, for example a.request type APDU, sent by the client is the same as its
peer.indication APDU, the abstract syntax specification is common for both application layer
entities and is given in Clause 8.

7.1 State definitions for the client side control function

Figure 16 shows the state machine for the client side control function (CF, see Figure 5).

IS/IEC 62056-53 : 2006

53

IDLE

ASSOCIATION
PENDING

ASSOCIATED

ASSOCIATION
RELEASE
PENDING

OPEN.req

 /OPEN.cnf(NOK),
 /ABORT.ind

 /OPEN.cnf(OK)

/ABORT.ind

RELEASE.req

 /RELEASE.cnf

 GET.req /GET.cnf
 SET.req /SET.cnf
 ACTION.req /ACTION.cnf
 /EventReport.ind

 Trigger_EventReport_sending.req
 /EventReport.ind

 /ABORT.ind

INACTIVE

NOTE On the state diagrams, the following conventions are used:

− service primitives with no “/” character as first character are “stimulants”: the invocation of these services is the
origin of the given state transition;

− service primitives with an “/” character as first character are “outputs”: the invocation of these services is done
on the state transition path.

Figure 16 – Partial state machine for the client side control function

Definitions of states are as follows:

• INACTIVE – in this state, the client CF (and the application layer) has no activity at all: it
neither provides services to the AP nor uses services of the supporting protocol layer;

• IDLE – this is the state of the CF of the client application layer protocol entity when there
is no AA created, being released or currently established9. Nevertheless, some data
exchange between the client and server, if the physical channel is already established, is
possible in this state.

State transitions between the INACTIVE and IDLE states are controlled outside of the
protocol. For example, it can be considered that the CF, and with it the application layer
including it, makes the state transition from INACTIVE to IDLE state by being instantiated and
bound on the top of the supporting protocol layer. The opposite transition may happen by
deleting the given instance of the CF (application layer).

• ASSOCIATION PENDING – the CF of the application layer entity enters this state when
the COSEM client AP invokes the COSEM-OPEN.request (OPEN.req) service primitive.
The CF may exit from this state either by sending a COSEM-OPEN.confirmation
(/OPEN.cnf) service primitive or, in the case of physical disconnection, by sending a
COSEM-ABORT.indication (/ABORT.indication) service primitive to the AP. Depending on
the result of the association request, the client CF shall return to IDLE state (NOK), or
shall enter the ASSOCIATED state;

———————
9 Note, that it is the state machine for the application layer: lower layer connections, including the physical

connection, are not taken into account. On the other hand, physical connection establishment is done outside
the protocol.

IS/IEC 62056-53 : 2006

54

• ASSOCIATED – the CF shall enter this state when the AA has been successfully
established. Data communication services – GET, SET, ACTION – are provided only in
this state. The client CF shall remain in this state until the AP explicitly requires the
release of the association by invoking the COSEM-RELEASE.request service primitive
(RELEASE.req), or a COSEM-ABORT.indication service is invoked;

• ASSOCIATION RELEASE PENDING – the CF of the application layer entity enters this
state when the COSEM client AP invokes the COSEM-RELEASE.request service primitive
(RELEASE.req), requesting the release of the established AA. The CF shall remain in this
state, waiting for the response to this request. As the server is not allowed to refuse a
release request, after exiting this state, the CF shall always enter the IDLE state. The exit
from this state can be originated either by the reception of a COSEM-RELEASE.response
from the remote server, the local generation of the COSEM-RELEASE.confirm or by the
invocation of a COSEM-ABORT.indication service primitive.

7.2 State definitions for the server side control function

Figure 17 shows the state machine for the server side control function, see Figure 5.

IDLE

ASSOCIATION
/PENDING

ASSOCIATED

ASSOCIATION
RELEASE
PENDING

 /OPEN.ind

 OPEN.res(NOK),
 /ABORT.ind

 OPEN.res(OK)

/ABORT.ind

 /RELEASE.ind

 RELEASE.res

 /GET.ind GET.res
 /SET.ind SET.res
 /ACTION.ind ACTION.res

EventReport.req
or

InformationReport.req

 /ABORT.ind

INACTIVE

 /READ.ind READ .res
 /WRITE.ind WRITE .res
 /UNCONFIRMED WRITE.ind

 or

Figure 17 – Partial state machine for the server side control function

Definitions of the states are as follows:

• INACTIVE – in this state, the server CF (and the application layer) has no activity at all: it
neither provides services to the AP nor uses services of the supporting protocol layer;

• IDLE – this is the state of the CF of the server application layer entity when there is no AA
created, being released or currently established. Nevertheless, some data exchange
between the client and server, if the physical channel is already established, is possible in
this state;

• ASSOCIATION PENDING – upon the reception of a COSEM-OPEN.request message from
a remote client, the CF of the server application layer protocol entity shall exit the IDLE
state. It shall indicate the reception of this message to the server AP via the COSEM-
OPEN.indication service primitive (/OPEN.indication) and shall enter into ASSOCIATION
PENDING state. In this state, the Server CF is waiting for the response from the AP. If the
response is positive – meaning that the AP accepted the proposed association – the CF

IS/IEC 62056-53 : 2006

55

shall enter the ASSOCIATED state. If the response is negative – or if a physical
disconnection is detected – the CF shall return to the IDLE state;

• ASSOCIATED – the server CF shall enter this state when the AA has been successfully
established. Data communication services – GET, SET, ACTION or READ, WRITE and
UNCONFIRMED WRITE, depending on the established application context – are provided
only in this state. The server CF shall remain in this state until the remote client explicitly
requires the release of the AA by invoking the COSEM-RELEASE.request service
(/RELEASE.ind), or a COSEM-ABORT.indication service is invoked;

• ASSOCIATION RELEASE PENDING – upon the reception of a COSEM-RELEASE.request
service primitive from the remote client AP, the CF of the application layer protocol entity
shall indicate it to the AP (/RELEASE.indication) and shall enter into this state. The CF
shall remain in this state, waiting for the response invocation from the AP. As the server is
not allowed to refuse this request, the CF shall always enter the IDLE state after leaving
the ASSOCIATION RELEASE PENDING state. The exit from this state can be originated
also by the invocation of a COSEM-ABORT.indication service primitive.

7.3 Protocol for application association establishment/release

7.3.1 Establishment of a confirmed application association

Application association establishment with the help of the
Association.request/.indication./.response/.confirmation services of the standard ACSE,
ISO/IEC 8650-1, is the key element of COSEM interoperability. The participants of an AA are
the interoperable communications partners:

• a client AP, which is always the originator of an AA request, and

• a server AP10.

The client AP shall first invoke the COSEM-OPEN.request service of the client COSEM ASO.
Upon the reception of this service invocation, the Control function of the client ASO shall first
examine whether the establishment of a lower layer connection is required for the requested
AA or not. In this case, it shall first establish the required lower layer connection(s).

Figure 18 gives the MSC for the case, when:

• the COSEM-OPEN.request service is requesting for a confirmed AA;

• the connection of the supporting lower layers is required for the establishment of the
required AA.

———————
10 In order to be able to provide multicast and broadcast services, in COSEM an AA can also be established

between a client and a group of server application processes.

IS/IEC 62056-53 : 2006

56

Client
Application

Process

Client Application Layer
Control Function is in

IDLE State

Client
Application

Layer -
Control

Function

Server
Application

Layer-
xDLMS

Server
Application

Layer-
ACSE

Server
Application

Layer -
Control

Function

Server
Application

Process

Physical connection is established (outside the protocol)

Server
supporting
Protocol

Layer
(XX)

Client
supporting
Protocol

Layer
(XX)

Client
Application

Layer-
xDLMS

Client
Application

Layer-
ACSE

COSEM-OPEN.req

Client Application Layer Control
Function is in ASSOCIATION

PENDING State XX-CONNECT.req

Server Application
Layer Control Function

is in IDLE State

Establishing
the Supporting

Layer
connection

Establishing
Lower Layer
connections

XX-CONNECT.ind

XX-CONNECT.res

XX-CONNECT.cnf

The Supporting Layer connection is established

xDLMS-Initiate.req

Build an xDLMS-
Initiate.req PDU

xDLMS-Initiate.req PDU
A-ASSOCIATE.req

Build an AARQ APDU
AARQ-pdu XX-DATA.request(AARQ)

XX-DATA.indication(AARQ)
AARQ APDU

Extract A-
ASSOCIATE.ind

parameters
A-ASSOCIATE.ind

xDLMS-Initiate.ind PDU

Extract xDLMS-
Initiate.ind
parameters xDLMS-Initiate.ind COSEM-

OPEN.ind
Server Application Layer Control

Function is in ASSOCIATION
PENDING state

COSEM-OPEN.resxDLMS-Initiate.res

Build xDLMS-
Initiate.res PDU

xDLMS-Initiate.res PDU
A-ASSOCIATE.res

Build AARE APDU
AARE APDU

Client Application Layer Control
Function is in ASSOCIATED state

XX-DATA.ind(AARE)
XX-DATA.req(AARE)

AARE APDU

Set Application Context

Set DLMS Context

xDLMS-Initiate.res PDU

xDLMS-Initiate.cnf

A-ASSOCIATE.cnf

The requested Application Association is successfully established

COSEM-OPEN.cnf(OK)

Server Application Layer Control
Function is in ASSOCIATED

state

Figure 18 – MSC for successful application association establishment
preceded by a successful lower layer connection establishment

IS/IEC 62056-53 : 2006

57

Once the required lower layer connections are established, the client CF shall assemble an
AARQ APDU with the help of the two application service elements (ACSE and xDLMS) of the
client application layer. This AARQ APDU shall be the first message sent to the server
application layer.

The CF of the server application layer shall first give the received AARQ APDU to the ACSE,
which shall extract the ACSE related parameters, then give back the control to the CF. The
CF shall send the contents of the user-information field of the AARQ APDU to the xDLMS-
ASE, as a xDLMS-Initiate.indication DLMS PDU.

The xDLMS-ASE shall retrieve the parameters of the xDLMS-Initiate.indication. It shall then
give back the control to the CF, which shall invoke the COSEM-OPEN.indication service
primitive with the appropriate parameters, extracted from the AARQ APDU11, to the COSEM
server AP. At the same time, the server Control function shall enter the ‘ASSOCIATION
PENDING’ state.

The server AP shall analyze the received COSEM-OPEN.indication primitive, and decide
whether it accepts the proposed AAs or not12.

Following this verification, and if the proposed AA is confirmed, the COSEM server AP shall
invoke the COSEM-OPEN.response service to indicate the acceptance or non-acceptance of
the proposed association. The CF shall assemble and send the appropriate AARE APDU to
the remote peer client application layer via the supporting lower protocols. If the requested AA
is non-confirmed, no AARE is sent. If the proposed AA has been accepted, the server is able
to receive xDLMS data communication service.request(s) and to send.responses to confirmed
service requests within this AA. In other words, the association has been established, and the
server has entered the data communications phase.

At the client side, the parameters of the received AARE APDU shall be extracted by the help
of the ACSE and the xDLMS-ASE, and shall be sent to the client AP via the COSEM-
OPEN.confirm service primitive. At the same time, the client application layer shall enter the
‘ASSOCIATED’ state. From this moment, the AA is established within the negotiated
application and xDLMS contexts.

7.3.2 Establishment of special application associations

7.3.2.1 Pre-established application associations

Pre-established AAs do not need to be established using the COSEM-OPEN service. It can be
considered, that this OPEN has already been done (it does not matter how). Consequently,
pre-established AAs can be considered existing from the moment the lower layers are able to
deliver APDUs between the client and the server.

This standard does not specify the way of establishing these associations.

7.3.2.2 Establishment of non-confirmed application associations

Invoking the COSEM-OPEN.request service with Service_class == Unconfirmed shall result in
the establishment of a non-confirmed AA. In this case, the AARQ APDU shall be sent with
the response-allowed field of the included xDLMS-Initiate.Request PDU set to FALSE –
meaning, that no AARE is expected.

———————
11 Some service parameters of this COSEM-OPEN.indication primitive (address information, User_Information) do

not come from the AARQ APDU, but from the supporting layer frame carrying the AARQ APDU. The
Service_Class parameter of the COSEM-OPEN service is linked to the response-allowed field of the xDLMS-Initiate.request
APDU.

12 The application service elements only extract the parameters, like the application context, authentication
related parameters, etc. The interpretation of these parameters and the decision whether the association can
be accepted or not, is the job of the COSEM server application process.

IS/IEC 62056-53 : 2006

58

Once a non-confirmed AA is established, the client COSEM application layer shall accept only
non-confirmed xDLMS service requests (GET, SET, ACTION) within this AA. The main
purpose of having this type of AA is to allow multi-casting and broadcasting.

A non-confirmed COSEM-OPEN.request is always locally confirmed.

7.3.3 The AARQ and AARE APDUs

The standard connection-oriented ACSE provides several functional units in order to
negotiate ACSE user requirements during association establishment. In COSEM, only two of
them are used: the kernel and the authentication functional units.

The kernel functional unit is always available – it is the default functional unit. The
authentication functional unit is present only when it is explicitly requested13. The selection of
the authentication functional unit supports additional fields on the AARQ and AARE APDUs.

The AARQ and AARE APDUs specifications are as follows:

AARQ-apdu::= [APPLICATION 0] IMPLICIT SEQUENCE
 {

protocol-version [0] IMPLICIT BIT STRING {version1 (0)} DEFAULT {version1},
 application-context-name [1] Application-context-name,
 called-AP-title [2] AP-title OPTIONAL,
 called-AE-qualifier [3] AE-qualifier OPTIONAL,
 called-AP-invocation-id [4] AP-invocation-identifier OPTIONAL,
 called-AE-invocation-id [5] AE-invocation-identifier OPTIONAL,
 calling-AP-title [6] AP-title OPTIONAL,
 calling-AE-qualifier [7] AE-qualifier OPTIONAL,
 calling-AP-invocation-id [8] AP-invocation-identifier OPTIONAL,
 calling-AE-invocation-id [9] AE-invocation-identifier OPTIONAL,

− The following field shall not be present if only the kernel is used.
− sender-acse-requirements [10] IMPLICIT ACSE-requirements OPTIONAL,

 -- The following field shall only be present if the authentication functional unit is selected.
 mechanism-name [11] IMPLICIT mechanism-name OPTIONAL,
 -- The following field shall only be present if the authentication functional unit is selected.
 calling-authentication-value [12] EXPLICIT authentication-value OPTIONAL,
 implementation-information [29] IMPLICIT implementation-data OPTIONAL,
 user-information [30] IMPLICIT association-information OPTIONAL
 }

and

AARE-apdu::= [APPLICATION 1] IMPLICIT SEQUENCE
 {
 protocol-version [0] IMPLICIT BIT STRING {version1 (0) } DEFAULT
 {version1},
 application-context-name [1] Application-context-name,
 result [2] Association-result,
 result-source-diagnostic [3] Associate-source-diagnostic,
 responding-AP-title [4] AP-title OPTIONAL,
 responding-AE-qualifier [5] AE-qualifier OPTIONAL,
 responding-AP-invocation-id [6] AP-invocation-identifier OPTIONAL,
 responding-AE-invocation-id [7] AE-invocation-identifier OPTIONAL,
 -- The following field shall not be present if only the kernel is used.
 responder-acse-requirements [8] IMPLICIT ACSE-requirements OPTIONAL,
 -- The following field shall only be present if the authentication functional unit is selected.
 mechanism-name [9] IMPLICIT mechanism-name OPTIONAL,
 -- The following field shall only be present if the authentication functional unit is selected.
 responding-authentication-value [10] EXPLICIT authentication-value OPTIONAL,
 implementation-information [29] IMPLICIT implementation-data OPTIONAL,
 user-information [30] IMPLICIT association-information OPTIONAL
 }

———————
13 The presence of this functional unit – and the optional fields corresponding to the usage of this functional unit –

depend on the authentication security level.

IS/IEC 62056-53 : 2006

59

The values of the AARQ and AARE fields in COSEM are the following:

• protocol-version: the ACSE protocol-version. The default value is used;

• application-context-name: the appropriate COSEM application-context-name is used.
Application-context-names for the default COSEM application contexts are specified in
7.3.7.1;

• OPTIONAL called, calling and responding titles, qualifiers and identifiers: These optional
fields carry the contents of the optional Application_Ids_and_Titles parameter of the
COSEM_OPEN service. The usage of these fields is as it is specified in the ACSE
standard ISO/IEC 8649;

If these fields are present in the AARQ, but the server is not able to recognize them, then
it may ignore them. In this case, these parameters shall not influence the association
establishment and the AARE shall not contain any of these fields. On the other hand, if the
server recognizes these parameters, it shall take into account the value of these
parameters to establish the AA, and these fields shall be present in the AARE;

• sender and responder acse requirements: when present, it carries the value of BIT
STRING { authentication (0) };

• mechanism-name: when present, it contains the name of the authentication mechanism.
COSEM authentication mechanism names are specified in 7.3.7.2;
NOTE In the AARQ, the mechanism name defines the authentication mechanism required by the client, i.e.
the authentication mechanism, which is expected to be used by the server. In the AARE, the mechanism name
defines the authentication mechanism required by the server, i.e. the mechanism, which should be used by the
client.

• calling and responding authentication value: when present, it is specific to
implementation and is not within the scope for this standard;

• implementation-information: the usage of this field is based on prior agreement
between the communicating stations. This usage is not defined in this standard;

• user-information: this parameter shall always be present and shall contain an –
optionally encrypted – xDLMS-Initiate.request PDU in the case of AARQ APDU and a
xDLMS-Initiate.response PDU or DLMS-ConfirmedServiceError PDU in the case of an
AARE APDU;

• result: this parameter carries the result of the proposed AA establishment;

• result-source-diagnostics: this field carries the result and eventually the reason of the
rejection of the association establishment request, as it is specified in ISO/IEC 8650-1.
When no diagnostics are included, a null value is assigned to the result-source-
diagnostics field.

Both the AARQ and the AARE APDUs encoded in BER (ISO/IEC 8825). On the other hand,
the user-information field of these APDUs, carrying the xDLMS-Initiate.request/.response (or
ConfirmedServiceError) DLMS PDU-s shall be encoded in A-XDR, see IEC 61334-6 Examples
for AARQ/AARE APDU encoding are given in Annex C.

7.3.4 Managing the parameters for application association establishment

According to the protocol described above, an AA establishment is proposed by the client,
and accepted or not accepted by the server. The conditions under which the server accepts or
rejects the establishment of an AA are defined in the following subclauses.

There are two contexts negotiated via the COSEM-OPEN service: the COSEM application
context and the xDLMS context. The elements of the COSEM application context are carried
by the fields of the AARQ APDU. The xDLMS context is defined by the parameters of the
xDLMS-Initiate.request/.response PDUs, carried by the user-information field of the
AARQ/AARE. See also Annex A.

IS/IEC 62056-53 : 2006

60

Upon the receipt of the AARQ APDU, the server shall first check the COSEM application
context. If the proposed application context is not acceptable, the proposed AA shall be refused.
(e.g. application context name is different, the authentication mechanism name and
authentication value are expected but not provided, the authentication value is not correct, etc.).

The parsing order of the AARQ and AARE shall be the following:

a) lower layer parameters;
NOTE These parameters are not carried by the AARQ/AARE, but they are provided by the supporting layer.

b) AARQ syntax;
c) ACSE protocol version;
d) application context name;
e) authentication related fields:

• if sender ACSE requirements is present but bit 0=0 or if the parameter is not present:
any following authentication parameters may be ignored;

• if sender ACSE requirements is present and bit 0=1, and the following authentication
parameters are inconsistent, then an error message shall be returned.

When the parsing of the above AARQ fields is completed, the server shall continue parsing
the parameters of the xDLMS-Initiate.request PDU as follows:

f) response-allowed:
 If the proposed association is confirmed, the value of this parameter is TRUE, the server

shall send back an AARE. Otherwise, the value is FALSE, the server shall not respond.
The default value is TRUE;

g) proposed-dlms-version-number;
h) proposed-conformance;
i) client-max-receive-pdu-size.

If the proposed application context is not acceptable for the server, it shall refuse the
proposed AA with the reason of non-fit at the COSEM application context level, and if the
value of the response-allowed parameter is TRUE, it shall send back an AARE APDU,
containing diagnostics information about reasons for the failure. The application-context-name
field in the AARE shall be the same as in the AARQ. Optionally, the value of the application
context-name-field in the AARE may be different from the value in the AARQ. In this way, the
server is able to indicate (one of) the application context(s) it supports. The user-information
field of the response AARE APDU shall contain the xDLMS context supported by the server:
the supported DLMS version number, the supported conformance block and the server-max-
receive-pdu-size.

If both the proposed application context and the xDLMS context are acceptable, the server
shall establish the proposed AA. If the value of the response-allowed parameter is TRUE, the
server shall send back an AARE APDU, containing the indication of the success and a
correctly constructed xDLMS-Initiate.response PDU in the user-information field. This shall
carry the parameters of the negotiated xDLMS context. The value of the negotiated-
conformance field of this PDU shall always be the negotiated conformance block: a bit per bit
AND of the received conformance block and the server’s own conformance block. See 8.5.

If the xDLMS context proposed by the client cannot be accepted, the server shall refuse the
proposed association. In this case – application context fits, but xDLMS context does not fit
(e.g. the value of the negotiated conformance block is zero) – the server shall send back an
AARE APDU14, with “no-reason-given” as diagnostics information. The user-information field

———————
14 Only if the proposed AA is confirmed.

IS/IEC 62056-53 : 2006

61

of this AARE shall contain a correctly constructed DLMS-ConfirmedServiceError message,
indicating the reason for the failure.

7.3.5 Repeated COSEM-OPEN.request service invocations

The reception of a COSEM-OPEN.request service invocation referencing to an already
existing AA will be locally and negatively confirmed by the Client application layer, and has no
effect on the already established AA.

If, nevertheless, a server application layer receives an AARQ APDU referencing to an already
existing AA, it will simply discard this AARQ, or, if it is implemented, it may also respond with
the optional EXCEPTION-Response APDU.

7.3.6 Releasing an application association

7.3.6.1 Overview

An existing AA can be released gracefully or non-gracefully. Graceful release means that it is
the protocol machine, which notifies its peer that it is releasing the association. Graceful
release can be initiated only by the client AP.

Non-graceful release means that the association is unexpectedly terminated. The reason for
such an event is always outside of the protocol: it can be, for example the detection of a
physical disconnection not initiated by the AP.

7.3.6.2 Graceful release of an application association

Graceful release of an AA is always initiated by the client AP by invoking the COSEM-
RELEASE.request service.

According to the protocol of the application layer ACSE, on the receipt of the COSEM-
RELEASE.request, the COSEM Client ASO invokes the A_RELEASE.request service of the
ACSE, which results then sending out an RLRQ APDU to the server, indicating that a graceful
release of the AA is requested.

The COSEM application layer shall optionally support this operation. When the COSEM-
RELEASE.request service is invoked with Use_RLRQ_RE == TRUE, the AA shall be released
with the help of the Association Release services of the ACSE.

In communication profiles, where the connection and disconnection of the supporting layer is
not managed by the COSEM application layer, or where the supporting layer is
connectionless, releasing AA-s using the ACSE A-RELEASE services is the only possible
way, thus it is mandatory. See also Clause B.3.

Using the A-RELEASE services is also the only possibility to remotely release non-confirmed
AA-s.

NOTE If the ACSE A_RELEASE services are not supported, then non-confirmed AA-s can be locally released on
the client side. On the server side, they can be released by using a time out or by any other suitable mechanisms.

An example for releasing AAs using the ACSE A-RELEASE services is shown in Figure 19.

IS/IEC 62056-53 : 2006

62

 Client
application

process
Client

application
layer

control function
Client

supporting
protocol layer

(XX)

Server
supporting

protocol layer
(XX)

Server
application

layer
control function

Server
application

process

Client and Server application layers are in ASSOCIATED state, lower layer connection(s) – if any – are established.
COSEM - RELEASE. req

Use_RLRQ_RE = TRUE
Client application layer CF

is in ASSOCIATION
RELEASE PENDING state

XX - DATA. req (RLRQ)
XX-DATA. ind (RLRQ)

Server application layer CF
is in ASSOCIATION

RELEASE PENDING state
COSEM - RELEASE. ind

Use_RLRQ_RE = TRUE
COSEM - RELEASE. res
Use_RLRQ_RE = TRUE

Server application layer CF
is in IDLE state

XX-DATA. req (RLRE)
XX - DATA. ind (RLRE) COSEM - RELEASE. cnf

Client application layer CF
is in IDLE state

The Application Association is Released

Figure 19 – Graceful association release using the A-RELEASE service

In certain COSEM communication profiles – for example in the 3-layer, connection-oriented,
HDLC based profile, see Clause B.2 – there is a one-to-one relationship between a confirmed
AA and the supporting data link layer connection. In this case, a simpler mechanism is
available: confirmed AAs can be released simply by disconnecting the corresponding lower
layer connection.

In any COSEM communication profile, disconnecting the supporting layer shall release all
AAs built on that supporting layer connection.

Figure 20 gives an example of a confirmed AA graceful releasing by disconnecting the
corresponding lower layer connection.

Invocation of the COSEM-RELEASE.request service with no Use_RLRQ_RE or with
Use_RLRQ_RE == FALSE shall imply directly the invocation of an XX-DISCONNECT.request
service primitive. This request shall initiate the disconnection of the lower protocol layers. As
a result of the required message exchanges at the lower protocol layer level, the disconnect
request shall be indicated to the server application layer via the XX-DISCONNECT.indication
service primitive.

IS/IEC 62056-53 : 2006

63

Client

application
process

Client
application

layer
control function

Client
supporting

protocol layer
(XX)

Server
application

layer
control function

Server
supporting

protocol layer
(XX)

Client and server application layers are in ASSOCIATED state, lower layer connection(s) are established

Server
application

process

COSEM-
RELEASE.req

XX-DISCONNECT.req
XX-DISCONNECT.ind

Client application layer CF
is in ASSOCIATION

RELEASE PENDING state

Server application layer CF
is in ASSOCIATION

RELEASE PENDING state
COSEM-RELEASE.ind
COSEM-RELEASE.res XX-DISCONNECT.res

Server application layer CF
is in IDLE state

Server supporting
layer connection is
DISCONNECTED

Client supporting
layer connection is
DISCONNECTED

XX-DISCONNECT.cnfCOSEM-
RELEASE.cnf

Client application layer CF
is in IDLE state

The application association is released, lower layer connection(s) are disconnected

Figure 20 – Graceful release of an application association
by disconnection of the supporting layer

The server application layer shall interpret this XX-DISCONNECT.indication as a request for
releasing the AA, and shall indicate this request to the COSEM server AP via the COSEM-
RELEASE.indication service primitive.

The COSEM server AP shall accept the required disconnection and shall invoke the COSEM-
RELEASE.response service with the appropriate parameters.

Upon the receipt of the COSEM-RELEASE.response service invocation, the server application
layer shall invoke the XX-DISCONNECT.response service of the supporting protocol layer
with the appropriate parameters. At the same moment, the Control function of the server
application layer shall enter the ‘IDLE’ state15.

Invocation of the XX-DISCONNECT.response service primitive causes the server supporting
layer(s) to disconnect the related connection(s) and to inform about it the peer supporting
layer(s). The reception of this information shall be indicated to the client application layer by
the XX-DISCONNECT.confirm primitive, which is relayed to the client AP by the client
application layer via the COSEM-RELEASE.confirm service primitive. The invocation of this
primitive means that the association has been successfully released.

———————
15 The release of the existing application association may require internal communication among the application

service elements (ACSE, xDLMS-ASE) and the Control function inside the server application layer. These
interactions are not shown in the figures.

IS/IEC 62056-53 : 2006

64

7.3.6.3 Non-graceful release of an application association

Various events may result in non-graceful release of an AA: detection of the disconnection of
any lower layer connection (including the physical connection), detecting a local error, etc.

Non-graceful release – abort – of an AA is indicated to the COSEM AP with the help of the
COSEM-ABORT.indication service. The Diagnostics parameter of this service indicates the
reason for the non-graceful AA release.

Figure 21 shows the message sequence chart for aborting the AA, due to the detection of a
physical disconnection.

Client

application
process

Client
application

layer
control

function

Client
supporting
protocol

layer
(XX)

Server
application

layer
control

function

COSEM-
ABORT.ind

Client
physical

layer

Server
supporting
protocol

layer
(XX)

Server
physical

layer
Channel

Server
application

process

Client and server application layers are in ASSOCIATED state, lower layer connection(s) are established

Physical
connection

breaks

Lower protocol layer connection(s) are aborted

XX-
DISCONNECT

.indCOSEM-
ABORT.ind

XX-
DISCONNECT

.ind

Server
layer CF is in IDLE

state
Client

layer CF is in IDLE
state

The application association is non-gracefully released

Figure 21 – Aborting an application association following a PH-ABORT.indication

The non-graceful release of AA is not selective: if it happens, all the existing association(s)
shall be aborted.

7.3.7 Registered COSEM names

Within an OSI environment, many different types of network objects must be identified with
globally unambiguous names. These network objects include abstract syntaxes, transfer
syntaxes, application contexts, authentication mechanism names, etc. Names for these
objects in most cases are assigned by the committee developing the particular basic ISO
standard or by implementers’ workshops, and should be registered. For the COSEM
environment, these objects are assigned by the DLMS User Association, and are specified in
this standard.

The decision no. 1999.01846 of OFCOM, Switzerland, attributes the following prefix for object
identifiers specified by the DLMS User Association.

{ joint-iso-ccitt(2) country(16) country-name(756) identified-organisation(5) DLMS-UA(8) }

For COSEM, object identifiers are specified for naming the following items:

• COSEM application context names (for LN and SN references, without or with cyphering);

• COSEM authentication mechanism names.

IS/IEC 62056-53 : 2006

65

7.3.7.1 The COSEM application context

In order to effectively exchange information within an AA, the pair of AE-invocations shall be
mutually aware of, and follow a common set of rules that govern the exchange. This common
set of rules is called the application context of the AA.

The application context that applies to an AA is determined during its establishment16. The
following methods may be used:

• identifying a pre-existing application context definition;

• transferring an actual description of the application context.

In the COSEM environment, it is intended that an application context pre-exists and it is
referenced by its name during the establishment of an AA.

The application context name is specified as OBJECT IDENTIFIER ASN.1 type. COSEM
identifies the application context name by the following object identifier value:

COSEM_Application_Context_Name:: =

joint-iso-ccitt(2) country(16) country-name(756) identified-organisation(5) DLMS-UA(8)
application-context(1) context_id(x)}

where the value of the context_id parameter selects a pre-existing application context.

There are four application context names specified:

COSEM_Application_Context_Name-Logical_Name_Referencing_no_ciphering::=

{joint-iso-ccitt(2) country(16) country-name(756) identified-organisation(5) DLMS-UA(8) application-
context(1) context_id(1)}

COSEM_Application_Context_Name-Short_Name_Referencing_no_ciphering::=

{joint-iso-ccitt(2) country(16) country-name(756) identified-organisation(5) DLMS-UA(8) application-
context(1) context_id(2)}

COSEM_Application_Context_Name-Logical_Name _with_ciphering::=

{joint-iso-ccitt(2) country(16) country-name(756) identified-organisation(5) DLMS-UA(8) application-
context(1) context_id(3)}

COSEM_Application_Context_Name-Short_Name_Referencing_with_ciphering::=

{joint-iso-ccitt(2) country(16) country-name(756) identified-organisation(5) DLMS-UA(8) application-
context(1) context_id(4)}

The meaning of these COSEM application contexts is:

• there are two ASEs present within the application-entity invocation, the ACSE and the
xDLMS-ASE;

• the xDLSM-ASE is as it is specified in 61134-4-4117;
• the transfer syntax is A-XDR;
• context_id(1): logical name referencing, no ciphering used;
• context_id(2): short name referencing, no ciphering used;
• context_id(3): logical name referencing, ciphering used;
• context_id(4): short name referencing, ciphering used.
NOTE Ciphering algorithms are not defined in this standard.

———————
16 An AA has only one application context. However, the set of rules that make up the application context of an

AA may contain rules for alteration of that set of rules during the lifetime of the AA.
17 With the COSEM extensions to DLMS, see Annex A.

IS/IEC 62056-53 : 2006

66

In order to successfully establish an AA, the AARQ and AARE APDUs should carry one of the
“valid” values in their application-context-name fields. However, when the server does not
accept the proposed application context, the application-context-name field in the AARE
response may optionally be different from the application-context-name received in the AARQ.
The server may indicate in this way to the client one of the application-context-names
supported by the server.

7.3.7.2 COSEM authentication mechanism names

Authentication is one of the security aspects addressed by the COSEM specification. In order
to provide different levels of security for authentication support, COSEM specifies three levels
of authentication securities:

• no authentication (lowest level) security;

• low level, password based authentication security (LLS) identifying only the client;

• high level, four-pass authentication security (HLS) identifying both the client and the
server.

COSEM uses the authentication feature of the connection-oriented ACSE and for high level
authentication, also the methods of the Association LN/SN objects. The process of LLS and
HLS authentication is described in IEC 62056-62. To identify the authentication mechanism
used, the following object identifiers for authentication mechanism names are specified:

COSEM_Authentication_Mechanism_Name:: =

{joint-iso-ccitt(2) country(16) country-name(756) identified-organization(5) DLMS-UA(8)
authentication_mechanism_name(2) mechanism_id(x)}

The value of the mechanism_id parameter selects one of the specified security mechanisms.
There are five authentication mechanism names specified:

default-COSEM-lowest-level-security-mechanism-name18::=

{joint-iso-ccitt(2) country(16) country-name(756) identified-organization(5) DLMS-UA(8)
authentication_mechanism_name(2) mechanism_id(0)}

default-COSEM-low-level-security-mechanism-name::=

{joint-iso-ccitt(2) country(16) country-name(756) identified-organization(5) DLMS-UA(8)
authentication_mechanism_name(2) mechanism_id(1)}

default-COSEM-high-level-security-mechanism-name::=

{joint-iso-ccitt(2) country(16) country-name(756) identified-organization(5) DLMS-UA(8)
authentication_mechanism_name(2) mechanism_id(2)}
NOTE The mechanism name for high-level security starts from 2 and it is registered by the DLMS UA.
Mechanism_id(2) is manufacturer specific.

default-COSEM-high-level-security-mechanism-name_using_MD5::=

{joint-iso-ccitt(2) country(16) country-name(756) identified-organization(5) DLMS-UA(8)
authentication_mechanism_name(2) mechanism_id(3)}

default-COSEM-high-level-security-mechanism-name_using_SHA-1::=

{joint-iso-ccitt(2) country(16) country-name(756) identified-organization(5) DLMS-UA(8)
authentication_mechanism_name(2) mechanism_id(4)}

The mechanism name element of the AARQ/AARE APDU is present only, when authentication
is used. See 7.3.3.

———————
18 This mechanism is used for the mandatory AA between a public client and the management logical device in

a physical metering device.

IS/IEC 62056-53 : 2006

67

7.4 Protocol for data communications

All data communication services are client/server services, except the EventNotification
services. Data communication is always initiated by the client by invocation of
GET/SET/ACTION.request services. Upon invocation of any of these services, the client
application layer protocol machine builds the corresponding APDU and sends it to the peer
server application layer.

Data communication service requests can be invoked in a confirmed or an unconfirmed
manner. When a service is invoked in a confirmed manner, the server shall respond to the
request, otherwise no application level confirmation is expected. See 7.4.1.1.

Unconfirmed services might be invoked in two different ways: individually addressed or
broadcast (multicast). See 7.4.1.2.

There is a fourth, non-client/server data communications service supported, the Event
Notification service. By requesting this service, the server AP is able to send an unsolicited
notification of the occurrence of an event to the remote client. See 7.4.1.3.

7.4.1 Protocol for the xDLMS services using LN referencing

7.4.1.1 Protocol for confirmed services

For confirmed data communication services, the following service primitives are available:

• GET (.request/.indication/.response/.confirm);

• SET (.request/.indication/.response/.confirm);

• ACTION (.request/.indication/.response/.confirm).

GET and SET services are referencing attribute(s) of COSEM interface object instances. The
ACTION service is referencing a method of a COSEM interface object instance (e.g. capture a
pre-defined set of data). For definition of attributes and methods of COSEM interface classes,
see IEC 62056-62.

The COSEM client may invoke the.request primitive of these services in a confirmed manner
within a confirmed AA only.

The COSEM server AP, upon the receipt of a data communication service indication, shall
check whether the service can be provided or not (validity, client access rights, availability,
etc.). If everything is OK, it locally applies the required service on the corresponding ‘real’
object. If a response is required, the COSEM server AP shall generate the
appropriate.response message.

Figure 22 shows a complete message sequence chart for a confirmed GET.request service
invocation in case of success.

IS/IEC 62056-53 : 2006

68

Client

application
process

Client
application

layer
control function

Client
supporting

protocol layer
(XX)

Server
application

layer
control function

Server
supporting

protocol layer
(XX)

Client and server application layers are in ASSOCIATED state, lower layer connection(s) are established

Server
application

process

GET.req(NORMAL)
XX-DATA.req(APDU)

XX-DATA.ind(APDU)
GET.ind(NORMAL)
GET.res(NORMAL,

Data) XX-DATA.req(APDU)
XX-DATA.ind(APDU)GET.cnf(NORMAL,

Data)

Figure 22 – MSC for a confirmed GET service in case of success

NOTE The message sequence on the figure above applies only if the transferred data does not exceed the
supported maximum size of the APDU. In order to be able to transfer longer data with the GET service, COSEM
provides an application layer level protocol. In addition, a data link layer level protocol is also available, which is
transparent for the application layer. See 7.4.1.8.1.

Figure 23 shows the complete message sequence chart for a confirmed SET service, in case
of success.

Client

application
process

Client
application

layer
control function

Client
supporting

protocol layer
(XX)

Server
application

layer
control function

Server
supporting

protocol layer
(XX)

Client and server application layers are in ASSOCIATED state, lower layer connection(s) are established

Server
application

process

SET.req(NORMAL,
Data) XX-DATA.req(APDU)

XX-DATA.ind(APDU) SET.ind(NORMAL,
Data)

SET.res(NORMAL,
success) XX-DATA.req(APDU)

XX-DATA.ind(APDU)SET.cnf(NORMAL,
success)

Figure 23 – MSC for a confirmed SET service in case of success

In case of failure, the server – instead of a positive acknowledgement, shown on the above
figure – shall send a negative acknowledgement, indicating the reason for the failure, as it is
shown in Figure 24.

IS/IEC 62056-53 : 2006

69

Client

application
process

Client
application

layer
control function

Client
supporting

protocol layer
(XX)

Server
application

layer
control function

Server
supporting

protocol layer
(XX)

Client and server application layers are in ASSOCIATED state, lower layer connection(s) are established

Server
application

process

SET.req(NORMAL,
Data) XX-DATA.req(APDU)

XX-DATA.ind(APDU) SET.ind(NORMAL,
Data)

SET.res(NORMAL,
ERROR CODE)

XX-DATA.req(APDU)
XX-DATA.ind(APDU)SET.cnf(NORMAL,

ERROR CODE)

Figure 24 – MSC for the SET service in case of failure

NOTE The message sequence in the above figures applies only if the transferred data does not exceed the
supported maximum size of the APDU. In order to be able to transfer longer data with the SET service, COSEM
provides an application layer level protocol. This is described in 7.4.1.8.3.

The most complex behaviour is associated with the ACTION service, used for remote
invocation of a method of a COSEM interface object in the server. The reason for this
complexity is that the invocation of this method may imply data exchange in both client to
server and server to client directions, and these data may be too long to fit into one APDU.

Figure 25 illustrates the message sequence chart in the case, when the required service can
be granted by the server and the method invocation does not return data.

Client

application
process

Client
application

layer
control function

Client
supporting

protocol layer
(XX)

Server
application

layer
control function

Server
supporting

protocol layer
(XX)

Client and server application layers are in ASSOCIATED state, lower layer connection(s) are established

Server
application

process

ACTION.req (NORMAL)
XX-DATA.req(APDU)

XX-DATA.ind(APDU) ACTION.ind (NORMAL)

ACTION.res (NORMAL,
success, no-data)

XX-DATA.req(APDU)
XX-DATA.ind(APDU)

ACTION.cnf (NORMAL,
success, no-data)

Figure 25 – MSC for the ACTION service (simplest case)

NOTE When either the parameters of the ACTION.request or the ACTION.response service do not fit in one
APDU, the protocol defined in 7.4.1.8.4 for transferring long service parameters can be used.

7.4.1.2 Protocol for unconfirmed services

All client/server services may also be invoked in an unconfirmed manner within an established
confirmed or unconfirmed AA. The following service primitives are supported:

• GET (.request/.indication);

IS/IEC 62056-53 : 2006

70

• SET (.request/.indication);

• ACTION (.request/.indication).

The COSEM client may only invoke these.request primitives when an AA has already been
established.

Three different kinds of destination addresses are possible: individual, group or broadcast.
Depending on the destination address type, the receiving station shall handle incoming
messages differently, as follows:

• XX-PDUs with an individual address of a COSEM logical device. If they are received
within an established AA they shall be sent to the addressed COSEM logical device,
otherwise shall be discarded;

• XX-PDUs with a group address of a group of COSEM logical devices. These shall be sent
to the addressed group of COSEM logical devices. However, the received message shall
be discarded if there is no association established between a client and the addressed
group of COSEM logical devices;

• XX-PDUs with the broadcast address shall be sent to all addressed COSEM logical
devices. However, the received message shall be discarded if there is no association
established between a client and the All-station address.
NOTE Unconfirmed AA-s between a client and a group of logical devices are established with a COSEM-
OPEN.service with service_class = unconfirmed and a group of logical device addresses (e.g. broadcast
address).

7.4.1.3 Protocol for the EventNotification service

This subclause specifies the protocol for the EventNotification.request service of the server
application layer, specified in 6.6.3.2.7.

Events in metering equipment, like passing thresholds, fraud detection, or simply a counter
overflow generally occur asynchronously to any operation. Depending on the implemented
behaviour, the server may want to notify the client immediately.

As in the client/server environment the server is allowed to send information only upon a
request from the client, the client may or may not gain knowledge about these events using
COSEM client/server type services.

In order to ensure that the server can inform the client about events, a special, non-
client/server type service, the EventNotification19 service is available. As the EventNotification
service is not a client-server type service, it may be sent out even when an AA is not
established.

Upon invocation of the EventNotification.request service, the COSEM server application layer
shall build an EventNotification.request APDU.

The possibilities to send out this APDU depend on the communication profile and the
connection status of the lower layers. Therefore, the protocol of the EventNotification service
is further discussed in Clause B.2 and Clause B.3.

In any case, in order to notify the client about the detection of an event by the server:

• the server shall use the EventNotification.request service invocation;

• this service invocation shall make the server application layer to build an Event
Notification.request APDU;

———————
19 When short name referencing is used, the service is called InformationReport at the server side.

IS/IEC 62056-53 : 2006

71

• this APDU shall be carried by the supporting layer service at the first opportunity to the
client. The service type and the availability of this first opportunity depends on the
communication profile used;.

• upon the reception of the EventNotification APDU, the client application layer shall
generate an EventNotification.indication20 service to the COSEM client application;

• by default, event notifications are sent from the management logical device (server) to the
management AP (client).

7.4.1.4 Identifying a service invocation: using Invoke_Id

A complete confirmed data communication service sequence consists of the exchange of
a.request and a.response type message (indicated to the peer protocol layer via the.indication
and.confirmation service primitives). In the client/server model, requests are sent by the client
and responses are sent by the server. As the client is allowed to send several.requests before
receiving the.response for the previous one(s), it is necessary to make a reference in
the.response message to the corresponding.request message. Otherwise, it is not possible to
identify, which.request corresponds to a.response.

The Invoke_Id parameter identifies a.request and the corresponding.response. The value of
this parameter is assigned by the client so that each.request primitive issued carries a
different Invoke_Id. The server shall copy the Invoke_Id of the received.request message into
the corresponding.response message.

The Invoke_Id is not present in the COSEM-OPEN services: these services are identified by
their address parameters.

The EventNotification service – as it is not a client/server type service – does not contain
Invoke_Id parameter either. There is no corresponding.response service, thus there is no
need to use Invoke_Id. See also 8.3.

7.4.1.5 Using priority

COSEM defines two priority levels, NORMAL (FALSE) and HIGH (TRUE). This feature allows
receiving a response to a new request before the response to a previous request is
completed.

Normally, the server shall serve incoming service.requests in the order of their reception
(FIFS, First In, First Served21). However, it is possible to request to be served first by setting
the priority parameter of a.request to HIGH: a.request with priority HIGH shall be served
before the previous requests with priority NORMAL. The.response primitive shall carry the
same priority flag as that of the corresponding.request. Managing priority is a negotiable
feature: its support is indicated by BIT 9 of the xDLMS conformance block.

NOTE If the feature is not supported, requests with HIGH priority shall be served with NORMAL priority.

7.4.1.6 Selective access

GET/SET services typically reference the entire attribute of a COSEM interface object.
However for certain attributes, selective access to just a part of the attribute may be provided.
The part of the attribute is identified by specific selective access parameters.22 These

———————
20 At the client side, it is always EventNotification.indication, independently of the referencing scheme (logical

name or short name) used at the server side.
21 As service invocations are identified with an Invoke_Id, services with the same priority can be served in any

order.
22 Although the specification of these selection parameters is independent of the referencing method used (LN

or SN), the use of these parameters is different for services using logical name (LN) referencing (GET/SET),
and services using short name (SN) referencing (read/write). In this subclause selective access for the case
of LN referencing is discussed. Selective access with SN referencing is called ‘parameterized access’, and is
discussed in 7.4.2.7.

IS/IEC 62056-53 : 2006

72

selective access parameters are defined as part of the attribute specification of the given
COSEM interface class specification, see IEC 62056-62.

The selective access specification always starts with an access selector, followed by an
access-specific access parameter list. In order to encode the selective access parameters, a
'selective-access-descriptor' type has been specified:

Selective-Access-Descriptor::= SEQUENCE
{
access-selector Unsigned8,
access-parameters Data
}

Using this type, the required parameters for selective access are included in the
corresponding LN APDUs as an OPTIONAL field:

access-selection Selective-Access-Descriptor OPTIONAL

Selective access is a negotiable feature: its support is indicated by BIT 21 of the xDLMS
conformance block.

7.4.1.7 Multiple references in the same service request

7.4.1.7.1 The Attribute_0 reference

GET/SET services typically reference one attribute of a COSEM interface object. The attribute
referenced is identified by the value of the COSEM_Object_Attribute_Id parameter.

By convention, attributes are numbered from 1 to n, where Attribute_1 is the logical name of
the COSEM interface object. Manufacturers may add proprietary methods and/or attributes to
any object, using negative numbers. See also 4.1. of IEC 62056-62.

The value of 0 (zero) for the COSEM_Object_Attribute_Id (Attribute_0)23 has a special
meaning: it references all attributes with positive index (public attributes).

A GET.request service with COSEM_Object_Attribute_Id = 0 requests the value of all public
attributes of the referenced object. The response to this request shall be a structure
containing the value for all public attributes (data) in the order of their appearance in the
given object specification. For attributes to which no access right is granted within the given
association, or which cannot be accessed for any other reason, a null_data type NULL value
shall be returned.

A SET.request service with COSEM_Object_Attribute_Id = 0 requests to set the value of all
public attributes of the referenced object. The data sent with this request shall be a structure,
containing for each public attribute, in the order of their appearance in the given object
specification, either a value or a null_data type NULL value. The meaning of this NULL value
is that the given attribute need not be set.

The response to this request shall be a structure containing the result for each public attribute
(data-access-result) in the order of their appearance in the given object specification,
indicating the success or failure of the requested SET operation. The response shall be
carried by a SET-Response-With-List – type APDU.

Attribute_0 referencing is a negotiable feature: its support for the GET service is indicated by
BIT 10, and for the SET service by BIT 8 of the xDLMS conformance block.

———————
23 The Attribute_0 feature cannot be applied when short name referencing is used.

IS/IEC 62056-53 : 2006

73

7.4.1.7.2 Attribute reference list

A complete (LN) reference for an attribute includes the following parameters:

 class-id Cosem-Class-Id,
 instance-id Cosem-Object-Instance-Id,
 attribute-id Cosem-Object-Attribute-Id,
 access-selection Selective-Access-Descriptor OPTIONAL

A.request service may contain one such reference or a list of such references. Specification
of the APDUs for the different types of.requests is given in 8.6.

7.4.1.8 Transferring long service parameters

7.4.1.8.1 Non-transparent and transparent transfer mechanisms

The service parameters of data communication services are transported by the APDUs,
exchanged between the peer layers, in an encoded form. In some cases, the APDU can be
longer than what the protocol is able to transmit in one piece. In order to be able to exchange
such ‘long’ data, two transporting mechanisms are available:

a) long data transfer using an application level protocol. This mechanism can be used with
any of the specified services (GET, SET and ACTION) and with any protocol profile and is
specified in the following subclauses;

b) long data transfer in a transparent manner to the client application. This feature can be
used only with lower layer protocols providing segmentation. As transparent long data
transfer is specified only for the direction from the server to the client, the server side
supporting protocol layer provides special services for this purpose to the server
application layer. As these services are specific to the supporting protocol layer, handling
these services is not within the scope of this standard – in other words, no specific
application layer services and protocol are specified for this purpose. When the supporting
protocol layer supports transparent long data transfer, the server side application layer
implementation may be able to manage these services.

7.4.1.8.2 Application protocol for long data transfer with the GET service

Long data transfer with the GET service is specified only for the data in the GET.response
service primitive.

The length of the encoded form of service parameters for selective access and/or multiple
attribute references in the GET.request service shall not exceed the maximum allowed size of
APDUs.

GET.request services shall be of type NORMAL or WITH-LIST. Upon reception of a
GET.request, the server AP shall assemble the requested data. If the data fit into one APDU,
the server AP shall invoke the GET.response service with NORMAL or WITH-LIST type, with
the value(s) of the required attribute(s) as the result parameter.

If the data do not fit into one APDU and block transfer is supported (bit11 of the xDLMS
conformance block), the server AP shall send the data in blocks.

First, the data shall be encoded, as if they would fit into one APDU. The result is a series of
bytes, D1,D2,D3,….DN. The server shall then assemble a DataBlock-G data structure (see 8.3)
with the following contents:

last-block (BOOLEAN) = FALSE
block-number (Unsigned32) = 0001
result (IMPLICIT OCTETSTRING) = the first K bytes of the encoded data (D1,D2,D3,….DK)

IS/IEC 62056-53 : 2006

74

This DataBlock-G shall be the first part of the response. The server AP shall invoke the
GET.response service with Response_type = ONE-BLOCK, with the Invoke_Id and priority
parameters copied from the GET.request invocation received and with the DataBlock-G as
result parameter.

Upon reception of this GET.response (signalled as.confirm), the client AP is informed that the
response for its request does not fit into one APDU and shall proceed for the long data
transfer. It shall store the data contents of the received APDU – (D1,D2,D3,….DK) – and shall
acknowledge the received block by invoking the GET.request service with Request_type =
NEXT and with the following parameters:

invoke-id-and-priority = the same as that for the first GET.request;
block-number = the same as the Block-number of the received data block.

When the server receives the acknowledgement, it shall prepare and send the next data
block, including DK+1,DK+2,DK+3,….DL, with block-number = 0002. This exchange of data
blocks and acknowledgements shall normally continue until the last Data Block, including
DM,DM+1,DM+2,….DN is sent. The last-block (BOOLEAN) parameter of this DataBlock-G
sequence shall be set to TRUE and this data block shall not be acknowledged by the client.
After the reception of the last data block, the long data transfer with the GET service is
completed.

Figure 26 shows an example for the case, when the requested data can be sent in three
parts, and the transfer is not aborted.

Client

application
process

Client
application

layer

Client
supporting

protocol layer
(XX)

Server
application

layer

Server
supporting

protocol layer
(XX)

An association between the client and server application processes is already established

Server
application

process

GET.req
(NORMAL)

XX-DATA.req(Data)
-- Get-Request-
Normal APDU Sending GET.request

GET.res(ONE-
BLOCK, Block_no=1,

Data)

XX-DATA.ind(Data)
-- Get-Request-
Normal APDU

GET.ind
(NORMAL)

XX-DATA.req(Data)
-- Get-Response-With-

Datablock APDUSending GET.response

XX-DATA.ind(Data)
-- Get-Response-With-

Datablock APDU
GET.cnf(ONE-

BLOCK, Block_no=1,
Data)

GET.req(NEXT,
Block_no=1)

XX-DATA.req(Data)
-- Get-Request-Next-

Datablock APDU Sending GET.request
XX-DATA.ind(Data)

-- Get-Request-Next-
Datablock APDU GET.ind(NEXT,

Block_no=1)
GET.res(ONE-

BLOCK, success,
Block_no=2, Data)

XX-DATA.req(Data)
-- Get-Response-With-

Datablock APDUSending GET.response
XX-DATA.ind(Data)

-- Get-Response-With
Datablock APDU

GET.cnf(ONE-
BLOCK, Block_no=2,

Data)
GET.req(NEXT,

Block_no=2)
XX-DATA.req(Data)
-- Get-Request-Next-

Datablock-APDU Sending GET.request
XX-DATA.ind(Data)

-- Get-Request-Next-
Datablock APDU

GET.ind(NEXT,
Block_no=2)

GET.res(LAST-
BLOCK, success,
Block_no=3, Data)

XX-DATA.req(Data)
-- Get-Response-With-

Datablock APDUSending GET.response

XX-DATA.ind(Data)
-- Get-Response-With

Datablock APDU
GET.cnf(LAST-

BLOCK, Block_no=3,
Data)

Figure 26 – Long data with the GET service in three data blocks

IS/IEC 62056-53 : 2006

75

The server may generate the complete response (D1,D2,D3,….DN) upon the receipt of the first
GET.request, or it could generate the series of data blocks of the response dynamically (on
the fly).

If any error occurs during the long data transfer, the transfer shall be aborted. Error cases are
as follows:

• the server is not able to provide the next block of data for any reason. In this case, it shall
send back a Get-Response-With-Datablock APDU. In the DataBlock-G, the last-block shall
be set to TRUE, the block-number shall be equal to the block_number confirmed in the
previous Get-Request-Next APDU sent by the client + 1 and the result shall contain a
data-access-result indicating the reason for the failure;

• the Block_Number parameter in a GET.indication of type NEXT is not equal to the
Block_Number parameter of the last block sent by the server. The server shall interpret
this case, as if the client would like to abort the ongoing transfer. The server, instead of
sending back the next data block, shall send a Get-Response-With-Datablock APDU. In
the DataBlock-G, the last-block shall be set to TRUE, the block-number shall be equal to
the block-number received in the GET.request with type NEXT and the result shall be
data-access-result = long-get-aborted;

• the server may receive a GET.indication of type NEXT when no long data transfer is in
progress. In this case, the response shall be a Get-Response-With-Datablock APDU. In
the DataBlock-G, the last-block shall be set to TRUE, the block-number shall be equal to
the block-number received in the GET.request of type NEXT and the result shall be data-
access-result = no-long-get-in-progress.

During the data exchange, the Invoke-Id-and-Priority parameter shall be the same for all
APDUs. If during a long data transfer another service request is received, it shall be served
according to the priority rules.

If for any reason the server is not able to send back a GET.response of type LAST-BLOCK, it
shall then send a GET.response of type NORMAL, with a data-access-result indicating the
reason for the failure.

Block transfer with the GET service is a negotiable feature: its support is indicated by BIT 11
of the xDLMS conformance block.

7.4.1.8.3 Application protocol for long data transfer with the SET service

Long data transfer with the SET service is specified only for the data in the SET.request
service primitive.

The length of the encoded form of service parameters for selective access and/or multiple
attribute references in the SET.response service shall not exceed the maximum allowed
APDU size.

The main difference between the GET and the SET.request services is that the client, before
issuing the first SET.request service invocation, already knows whether a long data transfer is
required or not. If long data transfer is required – and if block transfer is supported (bit12 of
the xDLMS conformance block) – the first SET.request service shall already contain the first
data block.

IS/IEC 62056-53 : 2006

76

Client

application
process

Client
application

layer

Client
supporting

protocol layer
(XX)

Server
application

layer

Server
supporting

protocol layer
(XX)

An association between the client and server application processes is already established

Server
application

process

SET.req(FIRST-
BLOCK, Block_no=1,

DataBlock)
XX-DATA.req(Data)
-- Set-Request-With-

First-Datablock APDU Sending SET.request

SET.res(ACK-
BLOCK, Result=OK,

Block_no=1,)

XX-DATA.ind(Data)
-- Set-Request-With-

First-Datablock APDU

SET.ind(FIRST_BLOCK
, Block_no=1,

DataBlock)
XX-DATA.req(Data)

-- Set-Response-
Datablock APDUSending SET.response

XX-DATA.ind(Data)
-- Set-Response-
Datablock APDU

SET.cnf(ACK-BLOCK,
Result==OK,
Block_no=1)
SET.req(ONE-

BLOCK, Block_no=2,
DataBlock)

XX-DATA.req(Data)
-- Set-Request-With-

Datablock APDU Sending SET.request

XX-DATA.ind(Data)
-- Set-Request-With-

Datablock APDU

SET.ind(ONE-
BLOCK, Block_no=2,

DataBlock)
SET.res(ACK-

BLOCK, Result=OK,
Block_no=2)

XX-DATA.req(Data)
-- Set-Response-
Datablock APDUSending SET.response

XX-DATA.ind(Data)
-- Set-Response-
Datablock APDU

SET.cnf(ACK-
BLOCK,

Result==OK,
Block_no=2)

SET.req(LAST-
BLOCK, Block_no=3,

DataBlock)

XX-DATA.req(Data)
-- Set-Request-With-

Datablock APDU
-- Last-block = TRUE Sending SET.request

XX-DATA.ind(Data)
-- Set-Request-With-

Datablock APDU
-- Last-block = TRUE

SET.ind(LAST-
BLOCK, Block_no=3,

DataBlock)
SET.res(LAST-BLOCK,

Result=OK,
Block_no=3)

XX-DATA.req(Data)
-- Set-Response

-Last-Datablock APDUSending SET.response

XX-DATA.ind(Data)
-- Set-Response-

Last-Datablock APDU

SET.cnf(LAST-BLOCK,
Result==OK,
Block_no=3)

Figure 27 – Long data transfer in three data blocks with the SET service

In both cases, the first SET.request service invocation may contain a single attribute
reference, or a list of attribute references. Although the data contents of the SET.request may
be transmitted in several data blocks, attribute reference(s) shall be present only in the first
SET.request invocation service.

The client assembles data blocks in the same way as described in the previous clause. Data
blocks are placed into DataBlock-SA structures as raw-data and are sent to the server.

Each data block shall be acknowledged by the server with a SET.response service primitive,
of Response_type = ACK_BLOCK. The Result parameter indicates only the good (or not
good) reception of the data block.

The server shall acknowledge the whole SET.request service invocation after the reception of
the last data block, with a SET.response service primitive of type LAST-BLOCK or LAST-
BLOCK-WITH-LIST. The result parameter in this service indicates the result of the SET
operation.

If any error occurs during the long data transfer, the transfer shall be aborted. Error cases are
as follows:

• the server is not able to handle the received next DataBlock-SA, for any reason. In this
case, it shall send back a Set-Response-Last-Datablock APDU, with a result parameter
indicating the reason for aborting the transfer, and shall consider the transfer terminated;

IS/IEC 62056-53 : 2006

77

• the Block_Number parameter in a received SET.indication of type ONE BLOCK is not
equal to the Block_Number parameter expected by the server (last received + 1). The
server shall interpret this as if the client would like to abort the ongoing transfer. The
server shall send back a Set-Response-Last-Datablock APDU with Data-Access-Result =
long-set-aborted;

• the server may receive a Set-Request-With-Datablock APDU when no long data transfer is
in progress. In this case, the response shall be a Set-Response-Last-Datablock APDU
with Data-Access-Result = no-long-set-in-progress.

During the data exchange, the Invoke-Id-and-Priority parameter shall be the same for all
APDUs. If during a long data transfer another service request is received, it shall be served
according to the priority rules.

If for any reason the server is not able to send back a SET.response of type LAST-BLOCK, it
shall then send a SET.response of type NORMAL, with a data-access-result indicating the
reason for the failure.

Block transfer with the SET service is a negotiable feature: its support is indicated by BIT 12
of the xDLMS conformance block.

7.4.1.8.4 Application protocol for long data transfer with the ACTION service

Remote invocation of a COSEM interface object method using the ACTION service may
require parameters, which in their encoded form are longer than the maximum APDU size
allowed. On the other hand, a method invocation may cause the server to send back data,
which do not fit into one APDU either. Therefore, long data transfer with the ACTION service
is available for both directions.

Long data transfer in the two directions shall take place in two stages:

• first, the client shall transmit the whole ACTION.request to the server (in parameter
blocks, if it is required);

• second, the server shall transmit the whole ACTION.response to the client (in parameter
blocks, if it is required).

Similarly to the SET service, the client, before issuing the first ACTION.request service
invocation, already knows whether a long data transfer is required or not. If long data transfer
is required – and if block transfer is supported (bit13 of the xDLMS conformance block) – the
first ACTION.request service invocation shall already contain the first data block.

In both cases, the first ACTION.request invocation may contain a single method reference, or
a list of method references. Although the data contents of the ACTION.request (the
Method_Invocation_Parameters) may be transmitted in several data blocks, method
reference(s) shall be present only in the first invocation of the ACTION.request service.

The client assembles the data block in the same way as it is described in 7.4.1.8.3. Data
blocks shall be placed into DataBlock-SA data structures as raw-data, and sent to the server.

Once the complete ACTION.request is transmitted and the server has locally activated all
required methods, the server shall invoke the ACTION.response service. The response to one
method invocation shall contain a SEQUENCE of two parameters: the first parameter
indicates the result of the method invocation (result), and the second, optional one carries the
data required by the ACTION invocation. (see 8.3).

IS/IEC 62056-53 : 2006

78

The ACTION.response service primitive may take one of the following forms:

• NORMAL: the corresponding ACTION.request contained only one method reference, and
the response fits into one APDU;

• WITH-LIST: the corresponding ACTION.request contained a list of method references,
and the complete response fits into one APDU;

• BLOCK: the corresponding ACTION.request could contain only one or a list of method
references (it determines only the contents of the parameter block). The response to that
ACTION.request does not fit into one APDU. In this case, the server shall initiate a long
data transfer, which shall take place similarly as it is described for the GET service in
7.4.1.8.2.

Figure 28 illustrates a case, when the client sends an ACTION.request, including multiple
method references in three blocks, and the server sends the response in two blocks. Similarly
to the GET service, the service is completed when the last block of the response is sent by
the server. This block is not acknowledged by the client.

Client
Application

Process

Client
Application

Layer

Client
supporting

Protocol Layer
(XX)

Server
Application

Layer

Server
supporting

Protocol Layer
(XX)

An Association between the Client and Server Application Processes is already established

Server
Application

Process

ACTION.req
(WITH-LIST-AND-

FIRST-BLOCK)

XX-DATA.req(Data)
-- Action-Request-With-

List-And-First-Pblock
APDU

Sending
ACTION.request

ACTION.res(ACK-
BLOCK, success,

Block_no=1)

Transfer of the ACTION.request is completed in three blocks

Transfer of the ACTION.response is completed in two blocks

XX-DATA.ind(Data)
--Action-Request-With-
List-And-First-Pblock

APDU

ACTION.ind
(WITH-LIST-AND-

FIRST-BLOCK)

XX-DATA.req(Data)
-- Action-Response-
Next-Pblock APDU

Sending
ACTION.response

XX-DATA.ind(Data)
-- Action-Response-
Next-Pblock APDU

ACTION.cnf(ACK-
BLOCK, success,

Block_no=1)
ACTION.req(ONE-

BLOCK, Block_no=2)

XX-DATA.req(Data)
-- Action-Request-With-

Pblock APDU
Sending

ACTION.request

XX-DATA.ind(Data)
-- Action-Request-With-

Pblock APDU ACTION.ind(ONE-
BLOCK, Block_no=2)
ACTION.res(ACK-
BLOCK, success,

Block_no=2)

XX-DATA.req(Data)
-- Action-Response-
Next-Pblock APDU

Sending
ACTION.response

XX-DATA.ind(Data)
-- Action-Response-
Next-Pblock APDU

ACTION.cnf(ONE-
BLOCK, success,

Block_no=2)

ACTION.req(LAST-
BLOCK, Block_no=3)

XX-DATA.req(Data)
--Action-Request-With-

Pblock APDU
Sending

ACTION.request

XX-DATA.ind(Data)
-- Action-Request-With-

Pblock APDU
ACTION.ind(LAST-

BLOCK, Block_no=3)

ACTION.res(ONE-
BLOCK, Block_no=1,

DataBlock)

XX-DATA.req(Data)
-- Action-Response-
With-Pblock APDU

Sending
ACTION.response

XX-DATA.ind(Data)
-- Action-Response-
With-Pblock APDU

ACTION.cnf(ONE-
BLOCK, Block_no=1,

DataBlock)
ACTION.req(NEXT,

Block_no=1)

XX-DATA.req(Data)
-- Action-Request-
Next-Pblock APDU

Sending
ACTION.request

XX-DATA.ind(Data)
-- Action-Request-
Next-Pblock APDU ACTION.ind(NEXT,

Block_no=1)
ACTION.res(LAST-

BLOCK, Block_no=2,
DataBlock-SA)

XX-DATA.req(Data)
-- Action-Response-
With-Pblock-APDU

Sending
ACTION.response

XX-DATA.ind(Data)
-- Action-Response-
With-Pblock-APDU

ACTION.cnf(LAST-
BLOCK, Block_no=2,

DataBlock-SA)

Figure 28 – Long data transfer with the ACTION service

IS/IEC 62056-53 : 2006

79

The first part of the long transfer (client->server) is similar to the SET service and the second
part of the transfer (server->client) is similar to the GET service: the ACTION service can be
considered as a combined SET/GET service.

If any error occurs during the long data transfer, the transfer shall be aborted. Error cases are
the same as the cases described in 7.4.1.8.2 and 7.4.1.8.3.

During the data exchange, the Invoke-Id-and-Priority parameter shall be the same for all
APDUs. If during a long data transfer another service request is received, it shall be served
according to the priority rules.

If for any reason the server is not able to send back an ACTION.response of type LAST-
BLOCK, it shall then send an ACTION.response of type NORMAL, with a data-access-result
indicating the reason for the failure.

Block transfer with the ACTION service is a negotiable feature: its support is indicated by
BIT 13 of the xDLMS conformance block. If block transfer is supported, it should be supported
in both directions.

7.4.2 Protocol for the xDLMS services using SN referencing

7.4.2.1 Protocol for confirmed services

The following services are supported when invoked in a confirmed manner:

• Read;

• Write.

As it is defined in 5.3.2, the COSEM client AP always invokes data communication services
with logical name references. When the server uses short name referencing, the client
application layer shall transform service invocations using LN referencing to service
invocations using SN referencing. This is done by the short name mapper service element of
the ASO. The mapping is defined in 6.5.5.2. These SN referencing services shall then be
transmitted to the server.

Upon the receipt of a service request, the server AP checks whether the service can be
provided or not (validity, client access right, availability, etc.). If everything is OK, it locally
applies the required service to the corresponding ‘real’ object. The COSEM server AP
generates then the appropriate response message using SN referencing. This message shall
be re-translated to the appropriate service using LN referencing by the client application layer.

A complete message sequence for the ReadRequest/Response service invocation is shown in
Figure 29.

IS/IEC 62056-53 : 2006

80

Client

application
process

Client
application

layer

Client
supporting

protocol layer
(XX)

Server
application

layer

Server
supporting

protocoll layer
 (XX)

An association between the client and server application processes is already established

Server
application

process

GET.request(LN)
(NORMAL) XX-DATA.req(Data)

-- Read.request
(SN) APDU

Sending XX-DATA.ind(Data)
-- Read.request

(SN) APDU

Read.indication(SN)

Read.response(Data) XX-DATA.req(Data)
-- Read.response

APDU
Sending

XX-DATA.ind(Data)
-- Read.response

GET.confirm()
(NORMAL,Data,

Data-Access-
Result)

Figure 29 – MSC for the ReadRequest/Response services

NOTE The message sequence applies only if the size of data to be transferred does not exceed the maximum
APDU size supported. Non-transparent long-data transfer (see 7.4.1.8) is not available with short name
referencing.

7.4.2.2 Protocol for unconfirmed services

For unconfirmed requests, the following service is available:

• UnconfirmedWriteRequest.

The COSEM client may only invoke this.request primitive when an AA has already been
established.

Depending on the communication profile, the APDU corresponding to this.request may be
transported using the connection-oriented or connectionless data services of the supporting
protocol layer.

Three different kinds of destination addresses are possible: individual, group or broadcast.
Depending on the destination address type, the receiving station shall handle incoming
messages differently, as follows:

• XX-PDUs with an individual address of a COSEM logical device. If they are received
within an established AA they shall be sent to the addressed COSEM logical device,
otherwise they shall be discarded;

• XX-PDUs with a group address of a group of COSEM logical devices. These shall be sent
to the addressed group of COSEM logical devices. However, the received message shall
be discarded if there is no association established between a client and the addressed
group of COSEM logical devices;

• XX-PDUs with the broadcast address shall be sent to all addressed COSEM logical
devices. However, the received message shall be discarded if there is no association
established between a client and the All-station address;

IS/IEC 62056-53 : 2006

81

• XX-PDUs with the broadcast address shall be sent to all addressed COSEM logical
devices. However, the received message shall be discarded if there is no association
established between a client and the All-station address.
NOTE Unconfirmed AA-s between a client and a group of logical devices are established with a COSEM-
OPEN.service with service_class = unconfirmed and a group of logical device addresses (e.g. broadcast
address).

7.4.2.3 Protocol for the InformationReport service

This subclause specifies the protocol for the EventNotification.request service of the server
application layer, specified in 6.6.3.3.6.

As, unlike the EventNotification.request service, the InformationReportRequest service does
not contain the optional Application_Addresses parameter, the information report is always
sent by the Server Management Logical Device to the Client Management AP.

Upon invocation of the InformationReport.request service, the COSEM server application shall
build an InformationReportRequest APDU. This APDU shall be sent from the SAP of the
management logical device to the SAP of the client management device, using data services
of the lower layers, in a non-solicited manner, at the first available opportunity.

The possibilities to send out this APDU depend on the communication profile and the
connection status of the lower layers. Therefore, the protocol of the Information
ReportRequest service is further discussed in Clause B.2 and Clause B.3.

Upon the receipt of an InformationReport APDU, the client application layer shall generate an
EventNotification.indication primitive to the client AP.

7.4.2.4 Mapping of an InformationReport service to an EventNotification.indication
service

The InformationReport service description and the description of the corresponding APDU can
be found in IEC 61334-4-41 as:

InformationReportRequest::= SEQUENCE{
 current-time GeneralizedTime OPTIONAL,
 variable-access-specification SEQUENCE OF VariableAccessSpecification,
 list-of-data
};
where the current-time parameter defines the time instance when the event occurred. The
variable-access-specification parameter contains a list of short names describing the
attributes, which contain information relevant to the event. The list-of-data parameter carries
the values of the attributes defined in the variable-access-specification.

While the InformationReportRequest APDU may carry several attribute names and their
contents, the EventNotification.ind (see 6.5.4.1.) contains only one attribute reference.
Therefore, in the case when the InformationReportRequest APDU contains more than one
attribute, it must be mapped to several EventNotification.ind services. The service parameters
are mapped as follows:

Table 10 – Mapping between the EventNotification and InformationReport services

EventNotification.ind InformationReport

Time (optional) current-time (optional)

COSEM_Class_Id,

COSEM_Object_Instance_Id,

COSEM_Object_Attribute_Id

variable–name (as part of the
variable-access-specification)

attribute value Data (as part of list-of-data)

IS/IEC 62056-53 : 2006

82

7.4.2.5 Identifying a service invocation

This feature is not provided in conjunction with SN referencing.

7.4.2.6 Using priority

A priority feature is not provided in conjunction with SN referencing. The server treats the
services on a “first come first served” basis.

7.4.2.7 Selective access

READ/WRITE services typically reference the entire attribute of a COSEM interface object.
However, for certain attributes selective access to just part of the attribute may be provided.
The part of the attribute is identified by specific selective access parameters. These selective
access parameters are defined as part of the attribute specification of the COSEM interface
object specification. See in IEC 62056-62.

The selective access specification starts with an optional access selector, followed by an
access-specific access parameter list. In order to encode the selective access parameters
into the Read/WriteRequest service, the “VariableAccessSpecification” part of the DLMS
specification has been extended as specified in 6.6.3.3.1.

Parameterized access is a negotiable feature. Its support is indicated by BIT 18 of the xDLMS
conformance block.

7.4.2.8 Multiple references in the same service invocation

Reference to multiple short names is possible with the Read, Write and UnconfirmedWrite
Services (see in IEC 61334-4-41).

Support of multiple references is a negotiable feature. It is indicated by the BIT 14 of the
xDLMS conformance block.

7.4.2.9 Transferring long service parameters

The availability of transparent transfer of long data depends on the communication profile.
See B.2.6.5 and B.3.6.5.

8 Specification of COSEM data types

8.1 The COSEM APDUs

In addition to the APDUs defined in IEC 61334-4-41, some new APDUs have been specified
for COSEM in a manner that they are not in conflict with the DLMS PDUs. Thus, the APDUs
used in COSEM are the following:

COSEMpdu ::= CHOICE {

 -- standardized DLMS PDUs used in COSEM
 -- DLMS PDUs (no encryption selected24)
 initiateRequest [1] IMPLICIT InitiateRequest,
 readRequest [5] IMPLICIT ReadRequest,
 writeRequest [6] IMPLICIT WriteRequest,

 initiateResponse [8] IMPLICIT InitiateResponse,

———————
24 Ciphered application contexts will use the corresponding ciphered DLMS PDUs.

IS/IEC 62056-53 : 2006

83

 readResponse [12] IMPLICIT ReadResponse,
 writeResponse [13] IMPLICIT WriteResponse,

 confirmedServiceError [14] ConfirmedServiceError,

 unconfirmedWriteRequest [22] IMPLICIT UnconfirmedWriteRequest,
 informationReportRequest [24] IMPLICIT InformationReportRequest,

-- the four ACSE APDUs
 aarq AARQ-apdu
 aare AARE-apdu
 rlrq RLRQ-apdu -- OPTIONAL
 rlre RLRE-apdu -- OPTIONAL

-- APDUs used for data communication services using LN referencing
 get-request [192] IMPLICIT GET-Request,
 set-request [193] IMPLICIT SET-Request,
 event-notification-request [194] IMPLICIT EVENT-NOTIFICATION-Request,
 action-request [195] IMPLICIT ACTION-Request,

 get-response [196] IMPLICIT GET-Response,
 set-response [197] IMPLICIT SET-Response,
 action-response [199] IMPLICIT ACTION-Response,

-- global ciphered pdus
 glo-get-request [200] IMPLICIT OCTET STRING,
 glo-set-request [201] IMPLICIT OCTET STRING,
 glo-event-notification-request [202] IMPLICIT OCTET STRING,
 glo-action-request [203] IMPLICIT OCTET STRING,

 glo-get-response [204] IMPLICIT OCTET STRING,
 glo-set-response [205] IMPLICIT OCTET STRING,
 glo-action-response [207] IMPLICIT OCTET STRING,

-- dedicated ciphered pdus
 ded-get-request [208] IMPLICIT OCTET STRING,
 ded-set-request [209] IMPLICIT OCTET STRING,
 ded-event-notification-request [210] IMPLICIT OCTET STRING,
 ded-actionRequest [211] IMPLICIT OCTET STRING,

 ded-get-response [212] IMPLICIT OCTET STRING,
 ded-set-response [213] IMPLICIT OCTET STRING,
 ded-action-response [215] IMPLICIT OCTET STRING

-- the exception respsonse pdu
 exception-response [216] IMPLICIT OCTET STRING

8.2 The ACSE APDUs

AARQ-apdu ::= [APPLICATION 0] IMPLICIT SEQUENCE

-- [APPLICATION 0] == [60H] = [96]
 {

protocol-version [0] IMPLICIT BIT STRING {version1 (0)} DEFAULT
{version1},
application-context-name [1] Application-context-name,
called-AP-title [2] AP-title OPTIONAL,
called-AE-qualifier [3] AE-qualifier OPTIONAL,
called-AP-invocation-id [4] AP-invocation-identifier OPTIONAL,
called-AE-invocation-id [5] AE-invocation-identifier OPTIONAL,
calling-AP-title [6] AP-title OPTIONAL,
calling-AE-qualifier [7] AE-qualifier OPTIONAL,

IS/IEC 62056-53 : 2006

84

calling-AP-invocation-id [8] AP-invocation-identifier OPTIONAL,
calling-AE-invocation-id [9] AE-invocation-identifier OPTIONAL,
-- The following field shall not be present if only the kernel is used.
sender-acse-requirements [10] IMPLICIT ACSE-requirements OPTIONAL,
-- The following field shall only be present if the authentication functional unit is selected.
mechanism-name [11] IMPLICIT Mechanism-name OPTIONAL,
-- The following field shall only be present if the authentication functional unit is selected.
calling-authentication-value [12] EXPLICIT Authentication-value OPTIONAL,
implementation-information [29] IMPLICIT Implementation-data OPTIONAL,
user-information [30] IMPLICIT Association-information OPTIONAL

 }

AARE-apdu ::= [APPLICATION 1] IMPLICIT SEQUENCE

-- [APPLICATION 1] == [61H] = [97]
 {

protocol-version [0] IMPLICIT BIT STRING {version1 (0)} DEFAULT
{version1},
application-context-name [1] Application-context-name,
result [2] Association-result,
result-source-diagnostic [3] Associate-source-diagnostic,
responding-AP-title [4] AP-title OPTIONAL,
responding-AE-qualifier [5] AE-qualifier OPTIONAL,
responding-AP-invocation-id [6] AP-invocation-identifier OPTIONAL,
responding-AE-invocation-id [7] AE-invocation-identifier OPTIONAL,
-- The following field shall not be present if only the kernel is used.
responder-acse-requirements [8] IMPLICIT ACSE-requirements OPTIONAL,
-- The following field shall only be present if the authentication functional unit is selected.
mechanism-name [9] IMPLICIT Mechanism-name OPTIONAL,
-- The following field shall only be present if the authentication functional unit is selected.
responding-authentication-value [10] EXPLICIT Authentication-value OPTIONAL,
implementation-information [29] IMPLICIT Implementation-data OPTIONAL,
user-information [30] IMPLICIT Association-information OPTIONAL

 }

RLRQ-apdu ::= [APPLICATION 2] IMPLICIT SEQUENCE
 -- [APPLICATION 2] == [62H] = [98]

{
reason [0] IMPLICIT Release-request-reason OPTIONAL,
user-information [30] IMPLICIT Association-information OPTIONAL

}

RLRE-apdu ::= [APPLICATION 3] IMPLICIT SEQUENCE
 -- [APPLICATION 3] == [63H] = [99]

{
reason [0] IMPLICIT Release-response-reason OPTIONAL,
user-information [30] IMPLICIT Association-information OPTIONAL

}
ACSE-requirements ::= BIT STRING { authentication (0) }

Application-context-name ::= OBJECT IDENTIFIER

Mechanism-name ::= OBJECT IDENTIFIER

Authentication-value ::= CHOICE
 {
 charstring [0] IMPLICIT GraphicString,
 bitstring [1] IMPLICIT BIT STRING,
 external [2] IMPLICIT EXTERNAL,
 other [3] IMPLICIT SEQUENCE
 {
 other-mechanism-name Mechanism-name,
 other-mechanism-value ANY DEFINED BY other-mechanism-name

IS/IEC 62056-53 : 2006

85

}
 }

Implementation-data ::= GraphicString

Association-information ::= OCTETSTRING25

Association-result ::= INTEGER
 {
 accepted (0),
 rejected-permanent (1),
 rejected-transient (2)
 }

Associate-source-diagnostic ::= CHOICE
 {
 acse-service-user [1] INTEGER

{
 null (0),
 no-reason-given (1),
 application-context-name-not-supported (2),
 authentication-mechanism-name-not-recognised (11),
 authentication-mechanism-name-required (12),
 authentication-failure (13),
 authentication-required (14)
 }

 acse-service-provider [2] INTEGER
 {
 null (0),
 no-reason-given (1),
 no-common-acse-version (2)
 }
 }

Release-request-reason ::= INTEGER

{
 normal (0),
 urgent (1),

 user-defined (30)
}

Release-response-reason ::= INTEGER

{
 normal (0),

 not-finished (1),
 user-defined (30)
}

———————
25 In ISO/IEC 8650-1 the association-information field is specified as::= SEQUENCE OF EXTERNAL. For COSEM,

this field shall always contain the A-XDR encoded DLMS-Initiate.request /.response pdus, (or a
ConfirmedServiceError-pdu when the requested xDLMS context is not supported by the server) as a BER
encoded OCTETSTRING.

IS/IEC 62056-53 : 2006

86

8.3 Useful types

-- Useful Types

Integer8 ::= INTEGER(-128...127)
Integer16 ::= INTEGER(-32 768...32 767)
Integer32 ::= INTEGER(-2 147 483 648...2 147 483 647)
Integer64 ::= INTEGER(-263... 263-1)
Unsigned8 ::= INTEGER(0...255)
Unsigned16 ::= INTEGER(0...65 535)
Unsigned32 ::= INTEGER(0...4 294 967 295)
Unsigned64 ::= INTEGER(0...264-1)

Invoke-Id-And-Priority ::= BIT STRING (SIZE(8))

{
invoke_id (0…3),
reserved (4…5),
service_class (6), -- 0 = Unconfirmed, 1 = Confirmed
priority (7) -- 0 = normal; 1 = high

}

NOTE In the 3-layer, connection-oriented, HDLC based profile bit 6 is not relevant, as the service_class
information is conveyed by the HDLC fame type carrying the APDU.

ObjectName ::= Integer16

Cosem-Class-Id ::= Unsigned16

Cosem-Object-Instance-Id ::= OCTET STRING

Cosem-Object-Attribute-Id ::= Integer8

Cosem-Object-Method-Id ::= Integer8

Cosem-Date-Time ::=OCTET STRING (SIZE(12))26

Cosem-Attribute-Descriptor ::= SEQUENCE
 {
 class-id Cosem-Class-Id,
 instance-id Cosem-Object-Instance-Id,
 attribute-id Cosem-Object-Attribute-Id
 }

Cosem-Method-Descriptor ::= SEQUENCE
 {
 class-id Cosem-Class-Id,
 instance-id Cosem-Object-Instance-Id,
 method-id Cosem-Object-Method-Id
 }

Selective-Access-Descriptor ::= SEQUENCE
 {
 access-selector Unsigned8,
 access-parameters Data
 }
———————
26 The content of this OCTET STRING is an encoded as date_time, as specified in IEC 62056-62.

IS/IEC 62056-53 : 2006

87

Cosem-Attribute-Descriptor-With-Selection ::= SEQUENCE
 {
 cosem-attribute-descriptor Cosem-Attribute-Descriptor
 access-selection Selective-Access-Descriptor OPTIONAL
 }

Get-Data-Result ::= CHOICE
 {
 data [0] Data,
 data-access-result [1] IMPLICIT Data-Access-Result
 }

Action-Response-With-Optional-Data :: = SEQUENCE
 {
 result Action-Result,
 return-parameters Get-Data-Result OPTIONAL
 }

ConfirmedServiceError ::= CHOICE
 {
 -- tag 0 is reserved

initiateError [1] ServiceError,
getStatus [2] ServiceError,27
getNameList [3] ServiceError,
getVariableAttribute [4] ServiceError,
read [5] ServiceError,
write [6] ServiceError,
getDataSetAttribute [7] ServiceError,
getTIAttribute [8] ServiceError,
changeScope [9] ServiceError,
start [10] ServiceError,
stop [11] ServiceError,
resume [12] ServiceError,
makeUsable [13] ServiceError,
initiateLoad [14] ServiceError,
loadSegment [15] ServiceError,
terminateLoad [16] ServiceError
initiateUpLoad [17] ServiceError,
upLoadSegment [18] ServiceError,
terminateUpLoad [19] ServiceError

 }

ServiceError ::= CHOICE
 {
 application-reference [0] IMPLICIT ENUMERATED {
 -- DLMS provider only

other (0),
 time-elapsed (1), -- time out since request sent

 application-unreachable (2), -- peer AEi not reachable
 application-reference-invalid (3), -- addressing trouble
 application-context-unsupported (4), -- application-context incompatibility
 provider-communication-error (5), -- error at the local or distant equipment
 deciphering-error (6) -- error detected by the deciphering function

 },
 hardware-resource [1] IMPLICIT ENUMERATED {
 -- VDE hardware troubles
 other (0),
 memory-unavailable (1),

———————
27 Greyed lines are not applicable within the DLMS context.

IS/IEC 62056-53 : 2006

88

 processor-resource-unavailable (2),
 mass-storage-unavailable (3),
 other-resource-unavailable (4)
 },
 vde-state-error [2] IMPLICIT ENUMERATED {
 -- Error source description
 other (0),
 no-dlms-context (1),
 loading-data-set (2),
 status-nochange (3),
 status-inoperable (4)
 },
 service [3] IMPLICIT ENUMERATED {
 -- service handling troubles
 other (0),
 pdu-size (1), -- pdu too long
 -- (refer to companion specification)
 service-unsupported (2) -- as described in the conformance block
 },
 definition [4] IMPLICIT ENUMERATED {
 -- object bound troubles in a service
 other (0),
 object-undefined (1), -- object not defined at the VDE
 object-class-inconsistent (2), -- class of object incompatible with asked service
 object-attribute-inconsistent (3) -- object attributes are inconsistent
 },
 access [5] IMPLICIT ENUMERATED {
 -- object access error
 other (0),
 scope-of-access-violated (1), -- access denied through authorization reason
 object-access-invalid (2), -- access incompatible with object attribute
 hardware-fault (3), -- access fail for hardware reason
 object-unavailable (4) -- VDE hands object for unavailable
 },

initiate [6] IMPLICIT ENUMERATED {
 -- initiate service error
 other (0),
 dlms-version-too-low (1), -- proposed DLMS version too low
 incompatible-conformance (2), -- proposed services not sufficient
 pdu-size-too-short (3), -- proposed pdu size too short
 refused-by-the-VDE-Handler (4) -- VAA creation impossible or not allowed
 },
 load-data-set [7] IMPLICIT ENUMERATED {
 -- data set load services error
 other (0),
 primitive-out-of-sequence (1), -- according to the DataSet
 -- loading state transitions
 not-loadable (2), -- loadable attribute set to FALSE
 dataset-size-too-large (3), -- evaluated Data Set size too large
 not-awaited-segment (4), -- proposed segment not awaited
 interpretation-failure (5), -- segment interpretation error
 storage-failure (6), -- segment storage error
 data-set-not-ready (7) -- Data Set not in correct state for uploading
 },
 -- change-scope [8] IMPLICIT reserved.
 task [9] IMPLICIT ENUMERATED {
 -- TI services error
 other (0),
 no-remote-control (1), -- Remote Control parameter set to FALSE
 ti-stopped (2), -- TI in stopped state
 ti-running (3), -- TI in running state
 ti-unusable (4) -- TI in unusable state

IS/IEC 62056-53 : 2006

89

 }
 -- other [10] IMPLICIT ENUMERATED
 }

Data ::= CHOICE
 {
 null-data [0] IMPLICIT NULL,
 array [1] IMPLICIT SEQUENCE OF Data,
 structure [2] IMPLICIT SEQUENCE OF Data,
 boolean [3] IMPLICIT BOOLEAN,
 bit-string [4] IMPLICIT BIT STRING,
 double-long [5] IMPLICIT Integer32,
 double-long-unsigned [6] IMPLICIT Unsigned32,
 octet-string [9] IMPLICIT OCTET STRING,
 visible-string [10] IMPLICIT VisibleString,
 bcd [13] IMPLICIT Integer8,
 integer [15] IMPLICIT Integer8,
 long [16] IMPLICIT Integer16,
 unsigned [17] IMPLICIT Unsigned8,
 long-unsigned [18] IMPLICIT Unsigned16,
 compact-array [19] IMPLICIT SEQUENCE
 {
 contents-description [0] TypeDescription,
 array-contents [1] IMPLICIT OCTET STRING
 }
 long64 [20] IMPLICIT Integer64,
 long64-unsigned [21] IMPLICIT Unsigned64,
 enum [22] IMPLICIT ENUMERATED,
 float32 [23] IMPLICIT OCTET STRING (SIZE(4)),

float64 [24] IMPLICIT OCTET STRING (SIZE(8)),
date_time [25] IMPLICIT OCTET STRING (SIZE(12)),
date [26] IMPLICIT OCTET STRING (SIZE(5))
time [27] IMPLICIT OCTET STRING (SIZE(4))

 don’t-care [255] IMPLICIT NULL
 }

TypeDescription ::= CHOICE
 {
 null-data [0] IMPLICIT NULL,
 array [1] IMPLICIT SEQUENCE {
 number-of-elements Unsigned16,
 type-description TypeDescription
 }
 structure [2] IMPLICIT SEQUENCE OF TypeDescription,
 boolean [3] IMPLICIT NULL,
 bit-string [4] IMPLICIT NULL,
 double-long [5] IMPLICIT NULL,
 double-long-unsigned [6] IMPLICIT NULL,
 octet-string [9] IMPLICIT NULL,
 visible-string [10] IMPLICIT NULL,
 bcd [13] IMPLICIT NULL,
 integer [15] IMPLICIT NULL,
 long [16] IMPLICIT NULL,
 unsigned [17] IMPLICIT NULL,
 long-unsigned [18] IMPLICIT NULL,

long64 [20] IMPLICIT NULL,
 long64-unsigned [21] IMPLICIT NULL,
 enum [22] IMPLICIT NULL,
 float32 [23] IMPLICIT NULL,
 float64 [24] IMPLICIT NULL,
 date_time [25] IMPLICIT NULL

date [26] IMPLICIT NULL
time [27] IMPLICIT NULLL

 don’t-care [255] IMPLICIT NULL
 }

IS/IEC 62056-53 : 2006

90

DataBlock-G ::= SEQUENCE -- G == DataBlock for the GET.response service
 {
 last-block BOOLEAN,
 block-number Unsigned32,
 result CHOICE {
 raw-data [0] IMPLICIT OCTETSTRING,
 data-access-result [1] IMPLICIT Data-Access-Result
 }
 }

DataBlock-SA ::= SEQUENCE -- SA == DataBlock for the SET.request and

-- ACTION.request/.response services
 {
 last-block BOOLEAN,
 block-number Unsigned32,
 raw-data OCTETSTRING
 }

Data-Access-Result ::= ENUMERATED
 {
 success (0),
 hardware-fault (1),
 temporary-failure (2),
 read-write-denied (3),
 object-undefined (4),
 object-class-inconsistent (9),
 object-unavailable (11),
 type-unmatched (12),
 scope-of-access-violated (13),
 data-block-unavailable (14),
 long-get-aborted (15),
 no-long-get-in-progress (16),
 long-set-aborted (17),
 no-long-set-in-progress (18),
 other-reason (250)
 }

Action-Result ::= ENUMERATED
 {
 success (0),
 hardware-fault (1),
 temporary-failure (2),
 read-write-denied (3),
 object-undefined (4),
 object-class-inconsistent (9),
 object-unavailable (11),
 type-unmatched (12),
 scope-of-access-violated (13),
 data-block-unavailable (14),
 long-action-aborted (15),
 no-long-action-in-progress (16),
 other-reason (250)
 }

IS/IEC 62056-53 : 2006

91

8.4 The xDLMS-Initiate.request/response/ConfirmedServiceError PDUs

xDLMS-Initiate.request ::= SEQUENCE
 {

dedicated-key OCTET STRING OPTIONAL,
 -- shall not be encoded in DLMS without encryption

response-allowed BOOLEAN DEFAULT TRUE,
proposed-quality-of-service [0] IMPLICIT Integer8 OPTIONAL,
proposed-dlms-version-number Unsigned8,
proposed-conformance Conformance,
client-max-receive-pdu-size Unsigned16

 }

xDLMS-Initiate.response ::= SEQUENCE
 {

negotiated-quality-of-service [0] IMPLICIT Integer8 OPTIONAL,
 negotiated-dlms-version-number Unsigned8,
 negotiated-conformance Conformance,
 server-max-receive-pdu-size Unsigned16,
 vaa-name ObjectName
 }
The value of the vaa-name in case of LN referencing is a dummy value 0x0007. In case of SN
referencing, its value is the base_name of the Association SN object, 0xFA00.

In COSEM, the quality-of-service parameter is not used. The server shall accept any value
and process the xDLMS-Initiate.request without considering the value of this parameter.

ConfirmedServiceError::= CHOICE
{
 -- tag 0 is reserved
 initiateError [1] ServiceError,
 getStatus [2] ServiceError,
 getNameList [3] ServiceError,
 . . .
 terminateUpLoad [19] ServiceError
}

where ServiceError is as follows:

ServiceError ::= CHOICE
{
 . . .
 initiate [6] IMPLICIT ENUMERATED
 -- initiate service error
 {
 other (0),
 DLMS-version-too-low (1), -- proposed DLMS version too low
 incompatible-conformance (2), -- proposed services not sufficient
 PDU-size-too-short (3), -- proposed PDU size too short
 refused-by-the-VDE-Handler (4) -- vaa creation impossible or not allowed
 }
 . . .
}
NOTE See also Annex A.

8.5 The conformance block

In order to enable optimized COSEM server implementations, a conformance block with
extended functionality is added. The COSEM conformance block can be distinguished from
the standard conformance block by its tag “APPLICATION 31”.

IS/IEC 62056-53 : 2006

92

Conformance ::= [APPLICATION 31] IMPLICIT BIT STRING (SIZE(24))
 {
-- the bit is set when the corresponding service or functionality is available

 reserved (0) (0),
 reserved (0) (1),
 reserved (0) (2),
 read (3),
 write (4),
 unconfirmed-write (5),
 reserved (0) (6),
 reserved (0) (7),
 attribute0-supported-with-SET (8),
 priority-mgmt-supported (9),
 attribute0-supported-with-GET (10),
 block-transfer-with-get (11),
 block-transfer-with-set (12),
 block-transfer-with-action (13),
 multiple-references (14),
 information-report (15),
 reserved (0) (16),
 reserved (0) (17),
 parameterized-access (18),
 get (19),
 set (20),
 selective-access (21),
 event-notification (22),
 action (23)
 }
The parameterized access (as additional variant of the VariableAccessSpecification) provides
the ReadRequest or the WriteRequest service with the capability to transport additional
parameters.

Parameterized access is introduced by adding the following access method (compare Annex A
of IEC 61334-4-41, p. 221):

Variable-Access-Specification:= CHOICE {
 ... [2]...
 ... [3]...
 parameterized-access [4] IMPLICIT SEQUENCE{
 variable-name ObjectName,
 selector Integer,
 parameter Data
 }
 }

The meaning of the selector and of the access parameter depends on the referenced variable.
It is defined in the corresponding COSEM IC specification.

8.6 Definition of APDUs for data communication

8.6.1 COSEM APDUs using logical name referencing
-- COSEM APDUs using logical name referencing

GET-Request ::= CHOICE
 {
 get-request-normal [1] IMPLICIT Get-Request-Normal,
 get-request-next [2] IMPLICIT Get-Request-Next,
 get-request-with-list [3] IMPLICIT Get-Request-With-List
 }

IS/IEC 62056-53 : 2006

93

Get-Request-Normal ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 cosem-attribute-descriptor Cosem-Attribute-Descriptor,
 access-selection Selective-Access-Descriptor OPTIONAL
 }

Get-Request-Next ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 block-number Unsigned32
 }

Get-Request-With-List ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 attribute-descriptor-list SEQUENCE OF Cosem-Attribute-Descriptor-With-Selection
 }

GET-Response ::= CHOICE
 {
 get-response-normal [1] IMPLICIT Get-Response-Normal,
 get-response-with-datablock [2] IMPLICIT Get-Response-With-Datablock,
 get-response-with-list [3] IMPLICIT Get-Response-With-List
 }

Get-Response-Normal ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 result Get-Data-Result
 }

Get-Response-With-Datablock ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 result DataBlock-G
 }

Get-Response-With-List ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 result SEQUENCE OF Get-Data-Result
 }

SET-Request ::= CHOICE
 {
 set-request-normal [1] IMPLICIT Set-Request-Normal,
 set-request-with-first-datablock [2] IMPLICIT Set-Request-With-First-Datablock,
 set-request-with-datablock [3] IMPLICIT Set-Request-With-Datablock,
 set-request-with-list [4] IMPLICIT Set-Request-With-List,
 set-request-with-list-and-first-datablock [5] IMPLICIT Set-Request-With-List-And-First-Datablock
 }

Set-Request-Normal ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 cosem-attribute-descriptor Cosem-Attribute-Descriptor,
 access-selection Selective-Access-Descriptor OPTIONAL,
 value Data
 }

Set-Request-With-First-Datablock ::= SEQUENCE

IS/IEC 62056-53 : 2006

94

 {
 invoke-id-and-priority Invoke-Id-And-Priority,

cosem-attribute-descriptor Cosem-Attribute-Descriptor,
 access-selection Selective-Access-Descriptor OPTIONAL,
 datablock DataBlock-SA
 }

Set-Request-With-Datablock ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 datablock DataBlock-SA
 }

Set-Request-With-List ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,

attribute-descriptor-list SEQUENCE OF Cosem-Attribute-Descriptor-With-Selection,
value-list SEQUENCE OF Data

 }

Set-Request-With-List-And-With-First-Datablock ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 attribute-descriptor-list SEQUENCE OF Cosem-Attribute-Descriptor-With-Selection,
 datablock DataBlock-SA
 }

SET-Response ::= CHOICE
{
 set-response-normal [1] IMPLICIT Set-Response-Normal,
 set-response-datablock [2] IMPLICIT Set-Response-Datablock,
 set-response-last-datablock [3] IMPLICIT Set-Response-Last-Datablock,
 set-response-last-datablock-with-list [4] IMPLICIT Set-Response-Last-Datablock-With-List,
 set-response-with-list [5] IMPLICIT Set-Response-With-List
}

Set-Response-Normal ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 result Data-Access-Result
 }

Set-Response-Datablock ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 block-number Unsigned32
 }

Set-Response-Last-Datablock ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 result Data-Access-Result,
 block-number Unsigned32
 }

IS/IEC 62056-53 : 2006

95

Set-Response-Last-Datablock-With-List ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 result SEQUENCE OF Data-Access-Result,
 block-number Unsigned32
 }

Set-Response-With-List ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 result SEQUENCE OF Data-Access-Result
 }

ACTION-Request ::= CHOICE
{
 action-request-normal [1] IMPLICIT Action-Request-Normal,
 action-request-next-pblock [2] IMPLICIT Action-Request-Next-Pblock,
 action-request-with-list [3] IMPLICIT Action-Request-With-List,
 action-request-with-first-pblock [4] IMPLICIT Action-Request-With-First-Pblock,
 action-request-with-list-and-first-pblock [5] IMPLICIT Action-Request-With-List-And-First-Pblock,
 action-request-with-pblock [6] IMPLICIT Action-Request-With-Pblock
}

Action-Request-Normal ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,

cosem-method-descriptor Cosem-Method-Descriptor,
 method-invocation-parameters Data OPTIONAL
 }

Action-Request-Next-Pblock ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 block-number Unsigned32
 }

Action-Request-With-List ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 cosem-method-descriptor-list SEQUENCE OF Cosem-Method-Descriptor,
 method-invocation-parameters SEQUENCE OF Data28
 }

Action-Request-With-First-Pblock ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,

cosem-method-descriptor Cosem-Method-Descriptor,
 pblock DataBlock-SA
 }

Action-Request-With-List-And-With-First-Pblock ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 cosem-method-descriptor-list SEQUENCE OF Cosem-Method-Descriptor,
 pblock DataBlock-SA
 }

Action-Request-With-Pblock ::= SEQUENCE
———————
28 There should be one method-invocation-parameters parameter corresponding to each method-Identifier.

When the invoked method – identified by the method-identifier – does not require additional parameters, the
corresponding data in the method-invocation-parameters SEQUENCE OF should be present as null_data.

IS/IEC 62056-53 : 2006

96

 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 pBlock DataBlock-SA
 }

ACTION-Response ::= CHOICE
 {
 action-response-normal [1] IMPLICIT Action-Response-Normal,
 action-response-with-pblock [2] IMPLICIT Action-Response-With-Pblock,
 action-response-with-list [3] IMPLICIT Action-Response-With-List,
 action-response-next-pblock [4] IMPLICIT Action-Response-Next-Pblock
 }

Action-Response-Normal ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 single-response Action-Response-With-Optional-Data
 }

Action-Response-With-Pblock ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 pblock DataBlock-SA
 }

Action-Response-With-List ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 list-of-responses SEQUENCE OF Action-Response-With-Optional-Data
 }

Action-Response-Next-Pblock ::= SEQUENCE
 {
 invoke-id-and-priority Invoke-Id-And-Priority,
 block-number Unsigned32
 }

EVENT-NOTIFICATION-Request :: = SEQUENCE
 {
 time Cosem-Date-Time OPTIONAL,
 cosem-attribute-descriptor Cosem-Attribute-Descriptor,
 attribute-value Data
 }

EXCEPTION-Response ::=SEQUENCE

{
state_error [0],
service_error [1]

}
state_error IMPLICIT ENUMERATED

{
service_not_allowed [1],
service_unknown [2]

}

IS/IEC 62056-53 : 2006

97

service_error IMPLICIT ENUMERATED
{

operation_not_possible [1]
service_not_supported [2]
other_reason [3]

 }

8.6.2 DLMS APDUs using short name referencing

-- APDUs using short name refencing

ReadRequest ::= SEQUENCE OF Variable-Access-Specification

ReadResponse ::= SEQUENCE OF CHOICE
 {
 data [0] Data,
 data-access-error [1] IMPLICIT Data-Access-Result
 }

WriteRequest ::= SEQUENCE
 {
 variable-access-specification SEQUENCE OF Variable-Access-Specification,
 list-of-data SEQUENCE OF Data
 }

WriteResponse ::= SEQUENCE OF CHOICE
 {
 success [0] IMPLICIT NULL,
 data-access-error [1] IMPLICIT Data-Access-Result
 }

UnconfirmedWriteRequest ::= SEQUENCE
 {
 variable-access-specification SEQUENCE OF Variable-Access-Specification,
 list-of-data SEQUENCE OF Data
 }

InformationReportRequest ::= SEQUENCE
 {
 current-time GeneralizedTime OPTIONAL,
 variable-access-specification SEQUENCE OF Variable-Access-Specification,
 list-of-data SEQUENCE OF Data
 }

IS/IEC 62056-53 : 2006

98

Annex A
(normative)

The xDLMS application service element

A.1 General

The main objective of the COSEM approach is to provide a business domain oriented
interface object model for metering devices and systems while keeping backward compatibility
to the existing DLMS standard. To meet these objectives, COSEM includes an evolution of
DLMS. Remaining fully compliant to the DLMS standard, COSEM provides a more metering
specific view of the meter through the COSEM interface objects.

The xDLMS service element of the COSEM application layer is based on DLMS as specified
in IEC 61334-4-41.

A.2 DLMS compliance

A COSEM data exchange session always starts with the AA establishment. This is always
initiated by the client. The DLMS services used for accessing attributes and methods of
COSEM interface objects are negotiated between the client and the server with the help of the
xDLMS-Initiate service during the association establishment. If the response is positive, the
AA is established within the given COSEM application context and xDLMS context.

In addition, COSEM specifies a new conformance block extending the number of available
DLMS services, see 8.5.

A.3 Extensions to DLMS for COSEM

For the purposes of COSEM, some extensions of the DLMS standard are necessary. They
define added functionality i.e. existing functionality is not modified. The extensions are made
in such a way, that there is no conflict with the existing DLMS standard.

A.3.1 Additional services

In order to be able to reference attributes and methods of COSEM interface objects using
Logical names, the following new services are defined:

• GET – used to retrieve the value of attributes of COSEM interface objects;

• SET – used to set the value of attributes of COSEM interface objects;

• ACTION – used to invoke methods of COSEM interface objects;

• EventNotification – used to send an unsolicited message from the server to the client.

These services are defined in 6.5.3 and in 6.6.3.2 respectively. The corresponding APDUs are
defined in 8.6.1.

A.3.2 Additional data types

These are defined in 8.3.

IS/IEC 62056-53 : 2006

99

A.3.3 The conformance block

In order to enable optimised COSEM server implementations a conformance block with
extended functionality has been added. See 8.5. The COSEM conformance block can be
distinguished from the DLMS standard conformance block by its tag "Application 31".

The DLMS application context, using this conformance block is negotiated using the modified
xDLMS-Initiate/DLMS-Response services.

A.3.4 DLMS version number

The DLMS version number, corresponding to the first version of the xDLMS protocol is 6.

A.3.5 Other necessary modifications

The following modifications are necessary to clarify the meaning of the maximum PDU size
usable by the client and the server.

IEC 61334-4-41, page 61, Table 3:

was: new:

Proposed Max PDU Size Client Max Receive PDU Size

was: new:

Negotiated Max PDU Size Server Max Receive PDU Size

IEC 61334-4-41, page 63, 5th paragraph:

was: new:

The Proposed Max PDU Size parameter, of type
Unsigned16, proposes a maximum length expressed
in bytes for the exchanged DLMS PDUs. The value
proposed in an Initiate request must be large enough
to always permit the Initiate Error PDU transmission.

The Client Max Receive PDU Size parameter, of type
Unsigned16, contains the maximum length expressed in
bytes for a DLMS PDU that the server may send. The client
will discard any received PDUs that are longer than this
maximum length. The value must be large enough to always
permit the Application Association Response APDU
transmission.

Values below 12 are reserved. The value 0 indicates that
the there is no limit on the PDU size.

IEC 61334-4-41, page 63, last paragraph:

was: new:

The Negotiated Max PDU Size parameter, of type
Unsigned16, contains a maximum length expressed in
bytes for the exchanged DLMS PDUs. A PDU that is
longer than this maximum length will be discarded.
This maximum length is computed as the minimum of
the Proposed Max PDU Size and the maximum PDU
size than the VDE-handler may support.

The Server Max Receive PDU Size parameter, of type
Unsigned16, contains the maximum length expressed in
bytes for a DLMS PDU that the client may send. The server
will discard any received PDUs that are longer than this
maximum length.

Values below 12 are reserved. The value 0 indicates that
the there is no limit on the PDU size.

IS/IEC 62056-53 : 2006

100

Annex B
(normative)

Using the COSEM Application Layer
in various communication profiles

B.1 Communication profile specific elements

B.1.1 General

As explained in Clause 4, the COSEM interface model for energy metering equipment,
specified in IEC 62056-62 has been designed for use with a variety of communication profiles
for exchanging data via various communication media.

As shown on Figure 3, in each such profile, the application layer is the COSEM Application
Layer, providing the client-server type xDLMS services to access the attributes and methods
of COSEM objects.

For each communication profile, the following elements shall be specified:

• the targeted communication environments;

• the structure of the profile (the set of protocol layers);

• the identification/addressing scheme;

• mapping of the COSEM application layer services to the service set provided and used by
the supporting layer;

• communication profile specific parameters of the COSEM application layer services;

• specific considerations/constraints for using certain services within a given profile.

B.1.2 Targeted communication environments

This part identifies the communication environments, for which the given communication
profile is specified.

B.1.3 The structure of the profile

This part specifies the protocol layers included in the given profile.

B.1.4 Identification and addressing scheme

As described in 4.5 of IEC 62056-62, metering equipment are modeled in COSEM as physical
devices, containing one or more logical devices. In the COSEM Client/Server type
communications model data exchange takes place between a COSEM client AP and a
COSEM Logical Device, playing the role of the server AP.

In order to be able to establish the required AA and then exchanging data with the help of the
supporting lower layer protocols, the Client- and Server APs must be able to be identified and
addressed, according to the addressing rules of a communication profile. At least the
following elements need to be identified/addressed:

• Physical devices hosting clients and servers;

• Client and Server APs;

The Client and Server applications need also to identify the AAs.

IS/IEC 62056-53 : 2006

101

Physical and logical addressing schemes, and AA identification is specific to the profile used.
This part specifies these schemes for the given profile.

B.1.5 Supporting layer services and service mapping

In each communication profile, the COSEM application layer provides the same set of
services to the client and server APs. However, the supporting protocol layer in the various
profiles provides a different set of services to the application layer, which is using these
services:

• to establish, release and abort AAs; and

• to exchange data: APDUs, representing xDLMS Services.

This part describes the “service mapping”: it specifies how the application layer is using the
specific set of a lower layer profile to provide the COSEM services within the given profile.
This part is generally defined using Message Sequence Charts, showing the sequence of the
events following the invocation of services by the AP.

B.1.6 Communication profile specific parameters of the COSEM application layer
services

In COSEM, only the COSEM-OPEN services have communication profile specific parameters.
Their values and use are defined as part of the communication profile specification.

B.1.7 Specific considerations/constraints using certain services within a given
profile

The availability and the protocol of some of the services may depend on the communication
profile. These elements are specified as part of the communication profile specification.

B.2 The 3-layer, connection-oriented, HDLC based communication profile

B.2.1 Targeted communication environments

The 3-layer, connection-oriented, HDLC based profile is suitable for local data exchange with
metering equipment via direct connection, or remote data exchange via the PSTN or GSM
networks.

B.2.2 The structure of the profile

B.2.2.1 The protocol layers

This profile is based on the simplest, three-layer (collapsed) OSI protocol architecture. It
contains three protocol layers, as follows:

• the COSEM application layer;

• the data link layer based on the HDLC standard;

• the physical layer.

B.2.2.2 The data link layer

The data link layer is based on the ISO/IEC 13239 standard. The second edition of the
standard includes a number of enhancements compared to the original HDLC standard, for
example in the areas of addressing, error protection, and segmentation. The third edition
incorporates a new frame format, which meets the requirements of the environment found in
telemetry applications for electricity metering and similar industries.

IS/IEC 62056-53 : 2006

102

For the purpose of this profile, the following selections have been made:

• unbalanced connection-mode data link operation29;

• two-way alternate data transfer;

• the selected HDLC class of procedure is UNC, extended with UI frames;

• frame format type 3;

• non-basic frame format transparency.

The HDLC based data link layer is defined in IEC 62056-46.

B.2.2.3 The physical layer

The physical layer for this profile is defined in IEC 62056-42. It provides the specification of
services and procedures for connection-oriented asynchronous data exchange.

To allow using a wide variety of media, this standard does not specify the physical layer
signals and their characteristics. However, the following assumptions are made:

• the communication is point to point or point to multipoint;

• both half-duplex and duplex connections are possible;

• asynchronous transmission with 1 start bit, 8 data bits, no parity and 1 stop bit (8N1).

IEC 62056-42 provides a protocol identification service and gives an example for using the
physical layer for data exchange through the Public Switched Telephone Network (PSTN)
with intelligent Hayes modems. The use of the physical layer for the purposes of direct local
data exchange using an optical port or a current loop physical interface is specified in
IEC 62056-21.

B.2.3 Identification and addressing scheme

The HDLC based data link layer provides services to the COSEM Application Layer at Data
Link SAPs – also called the Data Link or HDLC Address.

On the client side, only the client AP needs to be identified. The addressing of the physical
device hosting the client APs is done by the physical layer (e.g. by using phone numbers).

On the server side, several physical devices may share a common physical line (multi drop
configuration). In the case of direct connection this may be a current loop as specified in
IEC 62056-21, or in the case of remote connection, several physical devices may share a
single telephone line. Therefore, both the physical devices and the logical devices hosted by
the physical devices need to be identified. This is done using the HDLC addressing
mechanism as described in 6.4.2 of IEC 62056-46:

• the physical devices are identified by the lower HDLC address;

• the logical devices within a physical device are identified by the upper HDLC address;

• a COSEM AA is identified by a doublet, containing the identifiers of the two APs
participating in the AA.

———————
29 In DLMS/COSEM, the primary station corresponds to the client application, and the secondary station

corresponds to the server application.

IS/IEC 62056-53 : 2006

103

Figure B.1 – Identification/addressing scheme in the 3-layer, connection-oriented,
HDLC based communication profile

For example, an AA between Client_01 (HDLC address = 01) and Server 2 in Host Device 02
(HDLC address = 1392) is identified by the doublet {01, 1392}. Here, “13” is the upper HDLC
address and “92” is the lower HDLC address. All values are hexadecimal.

This scheme ensures that a particular COSEM AP (client or server) may have more than one
simultaneous AA without ambiguity.

B.2.4 Supporting layer services and service mapping

The HDLC based data link layer provides services for

• data link layer connection management;

• connection-oriented data communication;

• connectionless data communication.

B.2.4.1 Data link layer services provided at the client side

Figure B.2 summarizes the data link layer services provided to and used by the COSEM client
application layer.

01 07 1c 01 01 2e 13 6f

48 92
Physical Layer Physical Layer Physical Layer
Data Link Layer (HDLC) DL DL

HOST Device for Clients

Client_02

Client_03

HOST Device 01 for Servers HOST Device 02 for Servers

Server 1

(COSEM_
Logical_

Device_01)

Server 2

(COSEM
Logical_

Device_02)

Server 1
Server 2

Server 3

Client_01
COSEM

Application
Processes

and the
COSEM

Application
Layer

Protocol Layers
of the HDLC
based profile

Physical Device
Addresses

COSEM
Logical_
Device_

Device_03)

IS/IEC 62056-53 : 2006

104

D

L-
C

O
N

N
E

C
T.

re
q

Client side application layer
D

L-
C

O
N

N
E

C
T.

cn
f

D
L-

D
IS

C
O

N
N

E
C

T.
re

q

D
L-

D
IS

C
O

N
N

E
C

T.
cn

f

D
L-

D
IS

C
O

N
N

E
C

T.
in

d

D
L-

D
A

TA
.re

q

D
L-

D
A

TA
.in

d

Client side data link layer

Figure B.2 – Data link layer services provided to and used
by the client COSEM application layer

For some services, the correspondence between an application layer (ASO) service
invocation and the supporting data link layer service invocation is straightforward. For
example, invoking a COSEM GET.request service directly implies the invocation of a DL-
DATA.request service.

On the other hand, for some other services direct service mapping cannot be established. For
example, the invocation of a COSEM-OPEN.request service with Service_class == Confirmed
launches a series of actions, starting with the establishment of the lower layer connection with
the help of the DL-CONNECT service, and then sending out the AARQ APDU via this newly
established connection using a DL-DATA.request service. Examples for service mapping are
given in this standard.

B.2.4.2 Data link layer services provided at the server side

Figure B.3 summarizes the data link layer services provided to and used by the COSEM
server application layer.

IS/IEC 62056-53 : 2006

105

Server side application layer

D
L-

C
O

N
N

E
C

T.
in

d

D
L-

C
O

N
N

E
C

T.
re

s

D
L-

D
IS

C
O

N
N

E
C

T.
in

d

D
L-

D
IS

C
O

N
N

E
C

T.
re

s

D
L-

D
A

TA
.re

q

D
L-

D
A

TA
.in

d

D
L-

D
A

TA
.c

nf

Server side data link layer

Figure B.3 – Data link layer services provided to and used
by the server COSEM application layer

The situation is similar to the one at the client side. For some services, the correspondence
between an application layer (ASO) service invocation and the supporting data link layer
service invocation is straightforward. For other services, this direct service mapping cannot be
established.

In this profile, the data link layer supports transfer of long data from the server to the client, in
a transparent manner to the application layer, using the segmentation feature of the HDLC
based data link layer. To support this feature, a local DL-DATA.confirm service is available on
the server side.

B.2.5 Communications profile specific service parameters of the COSEM application
layer services

The only application layer service, which has communication specific parameters, is the
COSEM-OPEN service.

The address information, required to establish a data link layer connection and then an AA, is
carried by the Protocol_Connection_Parameters parameter of the COSEM-OPEN service.
This information includes the following data:

• Protocol (Profile) Identifier 3-Layer, connection-oriented, HDLC based;
• Server_Lower_MAC_Address (COSEM Physical Device Address);
• Server_Upper_MAC_Address (COSEM Logical Device Address);
• Client_MAC_Address;
• Server_LLC_Address;
• Client_LLC_Address

Any server (destination) address parameter may contain special addresses (All-station, No-
station, etc.).

For more information, see IEC 62056-46.

IS/IEC 62056-53 : 2006

106

B.2.6 Specific considerations/constraints

B.2.6.1 Application association types, confirmed and unconfirmed service
invocations and frame types used

The following table summarizes the rules for establishing confirmed and unconfirmed AAs, the
type of data communication services, which can be used in these associations and the HDLC
frame types used for carrying APDUs.

Table B.1 – Application associations and data exchange in the 3-layer,
connection-oriented, HDLC based profile

Application association establishment Data exchange

Protocol
connection
parameters

COSEM-OPEN
service class Use

Type of
established
application
association

Service class Use

Confirmed

“I” frame

Confirmed

1/ Connect data
link layer
2/ Exchange
AARQ/AARE
APDUs
transported in “I”
frames

Confirmed

Unconfirmed “UI” frame

Confirmed (not
allowed) -

Id: HDLC
LLC and MAC

addresses

Unconfirmed Send AARQ in a
“UI” frame Unconfirmed

Unconfirmed “UI” frame

This table clearly shows one of the specific features of this profile:

• in confirmed AAs, APDUs corresponding to confirmed service invocations (e.g. a
SET.request service invocation with Service_class == confirmed) are sent using
connection-oriented data services of the supporting data link layer: the APDU is carried in
“I” frames;

• if, within the same AA a data communication service is invoked in a non-confirmed
manner (Service_Class == Unconfirmed) then the corresponding APDU is sent using
connectionless data services of the supporting data link layer: the APDU is sent in a “UI”
type frame;

• consequently, bit 6 of the Invoke_id_And_Priority field is not relevant in this profile. See
also 8.3.

B.2.6.2 Correspondence between application associations and data link layer
connections, association release

In this profile, a confirmed AA is bound to a supporting data link layer connection, in a one-to-
one basis. Consequently:

• establishing a confirmed AA shall imply the establishment of a connection between the
client and server data link layers;

• a confirmed AA in this profile can be non-ambiguously released by disconnecting the
corresponding data link layer connection.

On the other hand, in this profile establishing a non-confirmed AA does not need any lower
layer connection: consequently, once established, non-confirmed AAs with servers not
supporting releasing AAs using the RLRQ APDU (see 6.5) cannot be released.

B.2.6.3 Service parameters of the COSEM-OPEN/RELEASE/ABORT services

Thanks to the possibility to transparently transport higher layer related information within the
SNRM and DISC HDLC frames, this profile allows the use of the optional “User_Information”

IS/IEC 62056-53 : 2006

107

parameter of the COSEM-OPEN.request/.indication and COSEM-RELEASE.request
/.indication services.

• The User_Information parameter of the COSEM-OPEN.request service (see 6.5.1.2) shall
be inserted into the "User data subfield" of the SNRM HDLC frame, sent during the data
link connection establishment;

• On the server side, if the SNRM frame received contains a "User data subfield", the
contents of this field shall be transmitted to the server AP via the User_Information
parameter of the COSEM-OPEN.indication service (see 6.6.1.2);

• The User_Information parameter of the COSEM-RELEASE.request service, when it is
present, (see 6.5.2.2) shall be inserted into the "User data subfield" of the DISC HDLC
frame, sent during disconnecting the data link connection;

• If the DISC frame received by the server contains "User data subfield", the contents of this
field shall be transmitted to the server AP via the User_Information parameter of the
COSEM-RELEASE.indication service, see 6.6.2.1;

• The User_Information parameter of the COSEM-RELEASE.response service, when it is
present, (see 6.6.2.2) shall be inserted into the "User data subfield" of the UA or DM
HDLC frame, sent in response to the DISC frame;

• If the UA or DM frame received by the client contains "User data subfield", the contents of
this field shall be transmitted to the client AP via the User_Information parameter of the
COSEM-RELEASE.confirm service, see 6.6.2.2;

In addition, for the COSEM-ABORT.indication service, the following rule applies:

• the Diagnostics parameter of the COSEM-ABORT.indication service (see 6.5.2.4 and
6.6.2.3) may contain an unnumbered send status parameter. This parameter indicates
whether, at the moment of the physical abort indication, the data link layer has or does not
have a pending Unnumbered Information message (UI). The type and the value of this
parameter is a local issue, thus it is not within the scope of this standard;

B.2.6.4 EventNotification service and protocol

In this profile, an event is always reported by the server management logical device
(mandatory, reserved upper HDLC address 0x01) to the client management AP (mandatory,
reserved HDLC address 0x01).

The EVENT-NOTIFICATION-Request APDU shall be sent out using the connectionless data
services, i.e. in an UI frame, at the first opportunity when the server side data link layer
receives the right to talk. The APDU shall fit into one HDLC frame.

In order to be able to send out the APDU, a physical connection between the physical device
hosting the server and a client device must exist, and the server side data link layer needs to
receive the token from the client side data link layer.

If there is a data link connection between the client and the server when the event occurs, the
server side data link layer may send out the PDU carrying the EVENT-NOTIFICATION-
Request APDU, following the reception of an I frame, a UI frame or an RR frame from the
client. These possibilities are defined in IEC 62056-46.

If there is no physical connection when the event occurs (but this connection to a client device
can be established) then the first step is to establish this physical connection.

NOTE Physical connection cannot be established when the server has only a local interface (e.g. an optical port
as defined in IEC 62056-21) and the hand-held terminal, running the client application is not connected, or the
server has a PSTN interface, but the telephone line is not available. Handling such cases is implementation
specific.

Following the establishment of the physical connection, the client has to trigger the sending of
the EVENT-NOTIFICATION-Request APDU using the
Trigger_EventNotification_Sending.request service. The MSC shown on Figure B.4 represents
this case.

IS/IEC 62056-53 : 2006

108

 Client
physical

connection-
and protocol
identification

manager

Client
application

layer
control

function

Client
supporting
protocol

layer
(XX)

Client
physical

layer

PDU is pending

Client man-
agement
application

process

Server
physical

layer

Server
supporting
protocol

layer
(XX)

Server
application

layer
control

function

Server man-
agement
application

process

Server
physical

connection-
and protocol
identification

manager

No physical connection is established between the server and client devices

Event (to be notified) is detected
PH-CONNECT.req

Physical connection
establishment PH-CONNECT.cnfPH-CONNECT.ind

PH-
CONNECT_OK

EventNotifi-
cation.req DL-

DATA.req

Protocol-Identification.req
Protocol-Identification.res

Profile-ID/
Parameters

Trigger_Event
Notification_
Sending.req DL-DATA.req Sending an empty UI frame

Sending the pending PDU
DL-DATA.ind EventNotifi-

cation.ind

Figure B.4 – Example: EventNotificaton triggered by the client
The first action of the server is to establish a physical connection to the client.

NOTE This physical connection establishment is done outside the protocol stack.

Successful physical connection establishment is reported at both sides to the physical
connection and protocol identifier manager process. At the server side, this shall indicate to
the COSEM AP, that the EventNotification.request service can be invoked now. When it is
done, the server application layer shall build an EVENT-NOTIFICATION-Request APDU and
shall invoke the connectionless DL-DATA.request service of the data link layer with the data
parameter carrying the APDU.

At this moment, the data link layer may not be able to send this PDU immediately, thus it will
be stored in the data link layer, waiting to be sent (pending).

When the client detects a successful physical connection establishment – and as there is no
other reason to receive an incoming call – it shall suppose that this call is originated by a
remote server intending to send an EventNotification message.

The client, at this moment may not know the protocol stack used by the calling server.
Therefore, it has to identify it first using the optional protocol identification service described
in IEC 62056-42. This is shown as a “Protocol-Identification.request” and a “Protocol-
Identification.response” messages in Figure B.4. After the identification of the protocol stack
used by the server, the client is able to instantiate the right protocol stack.

The client AP shall then invoke the Trigger_EventNotification_Sending.request service of the
client application layer (see 6.5.4.2). Upon invocation of this service, the application layer
shall invoke the connectionless DL-DATA.request service of the data link layer with empty
data, and the data link layer shall send out an empty UI frame with the P/F bit set to TRUE,
giving the permission to the server side data link layer to send the pending PDU.

The received Event-Notification-Request APDU shall be indicated to the client AP as an
EventNotification.indication. At this moment, the client is notified about the event, then the
sequence is completed.

IS/IEC 62056-53 : 2006

109

B.2.6.5 Transporting long messages

In this profile, the data link layer provides a method for transporting long messages in a
transparent manner for the application layer. This is described in 6.4.4.5 of IEC 62056-46.

B.2.6.6 Supporting multi-drop configurations

For data exchange with metering equipment, a multi-drop arrangement is often used allowing
a data collection system to exchange data with multiple metering equipment, using a shared
communication resource like a telephone modem. Various physical arrangements are
available, like a star, daisy chain or a bus topology. These arrangements can be modeled with
a logical bus, to which the metering equipment and the shared resource are connected, see
Figure B.5.

PSTN PSTN Modem

CEM 1

CEM 1
CEM 2

CEM n

CEM 2

CEM n

PSTN PSTN = Lo
gic

al
bu

s

Daisy - chained
CEMs

CEM = COSEM Energy Meter

Figure B.5 – Multi-drop configuration and its model

As collision on the bus must be avoided but a protocol, controlling access to the shared
resource is not available, access to the bus must be controlled by external rules. In most
cases, a Master-Slave arrangement is used, where the metering equipment is the Slaves.
Slave devices have no right to send messages without first receiving an explicit permission
from the Master.

 CEM 1

Slave
 1

CEM 2CEM n
Master
Station… Slave

2
Slave

n

Logical bus

Figure B.6 – Master/ Slave operation on the multi-drop bus

In COSEM, data exchange takes place based on the Client-Server model. Physical devices
are modeled as a set of logical devices, and these logical devices are acting as servers,
providing responses to requests.

Obviously, the Master Station of a multi-drop configuration is located at the other side of the
communication channel and it is acting as the client, sending requests and expecting
responses.

The client may send requests at the same time to multiple servers, if no response is expected
(multicast or broadcast).

If the client expects a response, it must send the request to a single server, giving also the
right to talk. It has to wait then for the response before it may send a request to another
server and with this, giving the right to talk. Arbitration of access to the common bus is thus
controlled in a time-multiplexing fashion.

IS/IEC 62056-53 : 2006

110

Messages from the client to the servers must contain addressing information. In the 3-layer,
connection-oriented, HDLC based profile, this is ensured by using HDLC addresses. If a
multi-drop arrangement is used, the HDLC address has to be split into two parts: the lower
HDLC address is used to address physical devices, and the upper HDLC address is used to
address logical devices within the physical device. Both the lower and the upper address may
contain a broadcast address. For more detail, see IEC 62056-46.

In order to be able to report events, COSEM meters may initiate a connection to the client,
using the non-client-server type EventNotification/InformationReport services. As events in
several or all meters connected to a multidrop may occur simultaneously – for example in the
case of a power failure, they may initiate a call to the client simultaneously.

For such cases, two problems have to be handled:

• collision on the logical bus: For the reasons explained above, several physical devices
may try to access the shared resource (e.g. sending AT commands to the modem)
simultaneously. This would result in a collision on the bus. Such situations must be
handled by the manufacturers;

• identification of the originator of the event report: This is possible by using the CALLING
Physical Device Address, as described in 6.4.4.8 of IEC 62056-46.

B.3 The TCP-UDP/IP based communication profiles (COSEM_on_IP)

B.3.1 Targeted communication environments

The TCP-UDP/IP based profiles are suitable for remote data exchange with metering
equipment via IP enabled Networks (e.g. Internet), using various communication networks,
such as Local Area Networks (Ethernet, Bluetooth, WiFi, etc.) or public or private Wide Area
Networks, such as PSTN, GPRS, etc.

B.3.2 The structure of the profile(s)

B.3.2.1 The protocol layers

In the TCP-UDP/IP based profiles the COSEM Application layer uses the services of one of
the Internet transport layers (TCP or UDP) via a wrapper, which, in their turn, uses the
services of the Internet Protocol (IP) network layer to communicate with other nodes
connected to this abstract network.

The TCP-UDP/IP layers are implemented on a wide variety of real networks, which, just with
the help of this IP Network abstraction, can be seamlessly interconnected to form Intra- and
Internets using any set of lower layers supporting the Internet Protocol.

The COSEM Application layer in this environment can be considered as another Internet
standard application protocol, which may co-exist with other Internet application protocols,
like the well-known FTP, HTTP, etc. services, as shown in Figure B.7.

IS/IEC 62056-53 : 2006

111

...

Files WEB
pages

COSEM
interface model

Application/Data models

e.g. FTP e.g. HTTP COSEM AL
ACSE + xDLMS

Internet Transport Layer (UDP and TCP)

Wrapper

Internet Network layer (IP)

Data Link Layer

Physical Layer

Standard applications

Figure B.7 – COSEM as a standard Internet application protocol

The TCP-UDP/IP based communication profiles for COSEM consist of five protocol layers:

• the COSEM Application Layer;

• the COSEM Transport Layer, as defined in: It is based on the connection-oriented
Transmission Control Protocol (TCP) or the connectionless User Datagram Protocol
(UDP) Internet transport protocols and includes a wrapper;

• network Layer: The Internet Protocol (IP);

• data Link Layer: Any data link protocols supporting IP (PPP, Ethernet, etc.);

• physical Layer: any physical layer supported by the data link layers chosen.

B.3.2.2 The COSEM transport layer

The COSEM transport layer of this profile is based on the connection-oriented (TCP,
STD0007) and connectionless (UDP, STD0006) Internet transport protocols. It is specified in
IEC 62056-47.

B.3.2.3 The IPv4 network layer

In the TCP-UDP/IP based communication profile the network layer is the Internet protocol, as
specified in the Internet standard STD0005. The COSEM communication profile makes use of
this protocol according to this specification: no special rules or restrictions apply.

B.3.2.4 Lower protocol layers

One of the reasons of the success of the Internet protocols is just its federating force.
Practically any data communication networks, Wide Area Networks (such as ISDN, GPRS,
ATM and Frame Relay networks), data communications on the circuit switched PSTN
networks (dial-up IP), as well as Local Area Networks (such as Ethernet, Wireless LAN,
Token Ring, FDDI, Bluetooth, etc.) support TCP-UDP/IP networking.

Figure B.8 shows a set of examples – far-from-being-complete – for such communication
networks and for the lower layer protocols used in these networks.

IS/IEC 62056-53 : 2006

112

PPP
(RFC 1661)

PPP in HDLC-like
framing

(RFC 1662)

I.4
30

/I.
43

1
IS

D
N

R
S

23
2

V
.3

2

X
.2

1

Serial Line

…

Classical IP and
ARP over ATM
(RFC 2225)

ATM

ATM signaling support for
IP over ATM
(RFC 1755)

ATM Physical Layer

Transmission of IP Datagrams
over Ethernet Networks

(RFC 894)

IEEE 802.2

…

IP and ARP on IEEE 802
Networks

(RFC 1042)

…

ATM Ethernet 802.3, Token Ring, etc.

Internet Protocol (IPv4, RFC 791)

Transmission Protocols: TCP (RFC 793) and UDP (RFC 768)
Transport

Network

Data Link

Physical

An Ethernet ARP

(RFC 826)

LLC

Ethernet

IE
E

E
 8

02
.3

To
ke

n
R

in
g

10
0B

as
eT

FD
D

I

MAC

Object modelling

COSEM Interface ClassesCOSEM Interface Classes

Instance Identification

Object Identification System
(OBIS)

Messaging services for
- accessing the COSEM Interface Objects (xDLMS)
- establishing and releasing associations (ACSE)

Association Control Service
Element (ACSE) Association Control Service
Element (ACSE) Extended DLMS Service

Element (xDLMS)
Extended DLMS Service

Element (xDLMS)

COSEM Application Layer COSEM Application Layer

COSEM Interface Objects COSEM Interface Objects

Wrapper

FTP HTTP

WEB
Pages Files

TCP
Connection

Manager

Figure B.8 – Examples for lower-layer protocols in the TCP-UDP/IP based profiles

Using the TCP-UDP/IP profile, COSEM can be used practically on any existing
communication network.

B.3.3 Identification and addressing scheme

Although real-world devices even in the Internet environment are connected to real-world
physical networks, at a higher abstraction (and protocol) level it can be considered as if these
devices would be connected to a virtual – IP – network. On this virtual network, each device
has a unique address, called IP address, which non-ambiguously identifies the device on this
network.

Any device connected to this virtual IP network can send (a) message(s) to any other
connected device(s) using only the IP Address to designate the destination device, without
being concerned about the complexity of the whole physical network. Specific characteristics
– the data transmission medium, the media access strategy, and the specific data-link
addressing/identification scheme – of the particular physical network(s) participating in the
route between the source and the destination device are hidden for the sender device. These
elements are handled by intermediate network devices, called routers.

Therefore, in the TCP-UDP/IP based profiles COSEM physical devices are non-ambiguously
identified by their network – IP – address.

The identification of an AP – a COSEM client AP or a COSEM Server Logical Device – within
a physical device requires an additional address.

Both TCP and UDP provide additional addressing capability at the transport level, called port,
to distinguish applications running on the same physical device.

IS/IEC 62056-53 : 2006

113

The Application Layer is listening only on one TCP or UDP port for exchanging messages
between client and server applications. As in a single physical device, several APs – client AP
or server logical devices – may be present, an additional addressing capability is needed.

This is provided by the wrapper sub-layer (see IEC 62056-47). The wrapper provides an
identifier – wPort – similar to the TCP or UDP port numbers, but on the top of these layers.
A particular COSEM client AP and/or a particular COSEM logical device in the same physical
device (identified by their IP Addresses) can be thus identified by its wPort number.

Therefore, in the TCP-UDP/IP based profile the following identification rules apply:

• COSEM physical devices are identified by their IP address;

• the COSEM Application layer is listening only one one UDP or TCP port;

• COSEM Logical Devices and client APs within their respective host physical devices are
identified by their wPort numbers;

• reserved wPort numbers for the Public Client AP and for the Management Logical Device
are specified in IEC 62056-47;

• lower layer addresses (SAP-s) are not considered (hidden).

Figure B.9 shows the concept of this identification/addressing scheme.

N N

Physical Layer

Host device for Clients

Data Link Layer

TCP UDP

IP
163.187.45.19

COSEM
Client
_AP_0

COSEM
Client

_AP_01

Physical Layer

Host_device_01 for Servers

Data Link Layer

TCP UDP

IP
163.187.45.36

Server_02
(COSEM
Logical_

Device_02)

Server_01
(COSEM
Logical _

Device_01)

Physical Layer

Host_device_02 for Servers

Data Link Layer

TCP UDP

IP
163.187.45.78

Server_
01

(COSEM
Logical _

Device_01)

Server_
_02

(COSEM
Logical _

Device_02)

Server_
_03

(COSEM
Logical _

Device_03)

IP Network

Protocol
Layers of the
TCP - UDP/IP

profile

COSEM
Application
Processes

and the
COSEM

Application
Layer

wrapper
527 3013 3014 527 3013 3014527 3013 527 3013

M M M M
wrapper wrapper 31 31

Figure B.9 – Identification/addressing scheme in the TCP-UDP/IP based profile(s)

COSEM AAs are identified by the identifiers of the two end-points. The end-point identifiers
themselves are triplets, consisting of the IP Address of the host device, the Transport address
(TCP or UDP port number) used for DLMS/COSEM and the wrapper port number (wPort)
identifying the COSEM AP.

For example, associations established between Client_AP_01 and Logical_Device_01 in
Host_device_01 (AA 1) and Logical_Device_02 in Host_Device_02 (AA2) respectively are
identified by

AA 1: { (163.187.45.19, T_N, 31) (163.187.45.36, T_M, 527) }
AA 2: { (163.187.45.19, T_N, 31) (163.187.45.78, T_M, 3013) }

IS/IEC 62056-53 : 2006

114

NOTE 1 T_N and T_M means the TCP port used for DLMS/COSEM in the client host device and the server host
devices respectively.

NOTE 2 In these two AAs, the client side end-point identifer is the same. However, the server side end-point
identifiers are different, so the two associations are identified unambiguously and therefore they can be used
simultaneously.

B.3.4 Supporting layer services and service mapping

As defined in IEC 62056-47, the COSEM TCP transport layer provides the following services
to the service user:

Connection Management (performed by the TCP connection manager AP):

 TCP-CONNECT services -.request,.indication,.response,.confirm
 TCP-DISCONNECT services -.request,.indication,.response,.confirm
Data exchange (performed by the COSEM Application layer; these services can be used only
when the TCP connection is established):

 TCP-DATA service -.request,.indication, (. confirm)
The TCP transport layer also provides a TCP-ABORT.indication service to the service user
COSEM application layer to indicate the disconnection/disruption of the TCP layer connection.

The UDP transport layer provides only one service to the service user COSEM Application
layer: a connectionless, unreliable data delivery service.

 UDP-DATA service -.request,.indication, (.confirm)

NOTE A.confirm service primitive is optional as well for the TCP and for the UDP data services.

Figure B.10 summarizes the COSEM TCP-UDP transport layer services provided to or used
by the service user COSEM application layer and TCP connection manager process.

COSEM Application Layer

TC
P

-D
A

TA
.re

q TC
P

-D
A

TA
.in

d

COSEM TCP/UDP transport layers

TC
P

-D
A

TA
.c

nf

U
D

P
-D

A
TA

.re
q U
D

P
-D

A
TA

.c
nf

U
D

P
-D

A
TA

.in
d

TC
P-

C
O

N
N

E
C

T.
re

q/
.re

s

TC
P

-C
O

N
N

E
C

T.
cn

f/.
in

d

TC
P-

D
IS

C
O

N
N

E
C

T.
re

q/
.re

s

TC
P

-D
IS

C
O

N
N

E
C

T.
cn

f/.
in

d

TCP Connection
Manager

COSEM Application Process

TC
P

-A
B

O
R

T.
in

d

Figure B.10 – Summary of TCP/UDP layer services on the client and server side

IS/IEC 62056-53 : 2006

115

For connection management, the COSEM TCP transport layer provides the full set of TCP-
CONNECT and TCP-DISCONNECT services at both the Client and the Server sides. The user
of these services is not the COSEM Application layer, but the TCP Connection Manager AP.
This process is implementation dependent, therefore it is out of the scope of this standard.
The only requirements with regard to this process are:

• the TCP connection manager process shall be able to establish the supporting TCP
connection without the intervention of the COSEM client or server AP(s);

• the COSEM client and server APs must be able to retrieve the TCP and IP portion of the
Protocol_Connection_Parameters parameter from the TCP connection manager before
sending/receiving a COSEM-OPEN.request/.indication.

The reason for providing the full TCP connection management service set at both the client
and the server sides is, that the establishment and release of the supporting TCP connection
may optionally be requested by the Server, too. As in all COSEM profiles, establishment and
release of AAs is initiated by the client AP in these profiles as well. This is further discussed
in B.3.6.7.

For data exchange, both the Client and the Server application layers use the complete set of
service primitives provided by the COSEM TCP-UDP transport layers.

The correspondence between an application layer (ASO) service invocation and the
supporting COSEM TCP-UDP layer service invocation is given in IEC 62056-47.

B.3.5 Communication profile specific service parameters of the COSEM application
layer services

The only application layer service, which has communication specific parameters, is the
COSEM-OPEN service.

The address information, required to identify an AA, is carried by the Protocol_Connection_
Parameters parameter of the COSEM-OPEN service:

Protocol (Profile) Identifier TCP/IP or UDP/IP;

• Server_IP_Address COSEM Physical Device Address;

• Server_TCP_or_UDP_Port The TCP or UDP port used for DLMS/COSEM;

• Server_wrapper_Port COSEM Logical Device Address;

• Client_IP_Address COSEM Client’s Physical Device Address;

• Client_TCP_or_UDP_Port The TCP or UDP port used for DLMS/COSEM;

• Client_wrapper_Port COSEM Application process (type) identifier.

Any server address parameter may contain special addresses (All-station, No-station, etc.).

For more information, see IEC 62056-47.

B.3.6 Specific considerations/constraints

B.3.6.1 Application association types, confirmed and unconfirmed service
invocations and packet types used

The following table shows the rules for establishing confirmed and unconfirmed AAs, the type
of data communication services, which can be used in these associations and the transport
layer packet types used for carrying APDUs.

IS/IEC 62056-53 : 2006

116

Table B.2 –Application associations and data exchange
in the TCP-UDP/IP based profile

Application association establishment Data exchange

Protocol
connection
parameters

COSEM-OPEN
service class Use

Type of
established
application
association

Service class Use

Confirmed

TCP packet

Confirmed

1/ Connect TCP
layer

2/ Exchange
AARQ/AARE

APDUs
transported in
TCP packets

Confirmed

Unconfirmed TCP packet

- -

Id: TCP/IP
TCP port
numbers,

IP addresses

Unconfirmed Local negative
confirmation None

- -

Confirmed

UDP datagram

Confirmed

Exchange

AARQ/AARE
APDUs

transported in
UDP datagrams

Confirmed

Unconfirmed UDP datagram

Confirmed
(not allowed) -

Id: UDP/IP
UDP port
numbers,

IP addresses

Unconfirmed Send AARQ in a
UDP datagram Unconfirmed

Unconfirmed UDP datagram

In this table, grey areas represent cases which are out of the normal operating conditions:
either not allowed or have no useful purpose. According to these:

• it is not allowed to establish a non-confirmed AA using the TCP/IP protocol. It is prevented
by the Client application Layer, which shall locally and negatively confirm COSEM-
OPEN.requests trying to do that;

• it is not allowed to request an xDLMS service in a confirmed way (Service_class =
confirmed) within a non-confirmed AA, established on the top of the UDP layer. This must
also be prevented by the Client application layer. Servers, receiving such APDUs shall
simply discard them, or, if the feature is implemented, send back the optional
EXCEPTION-Response APDU.

B.3.6.2 Releasing application associations: using RLRQ/RLRE is mandatory

Using the A-RELEASE services of the ACSE – by invoking the COSEM-Release.request
service with Use_RLRQ_RE == TRUE – in the TCP-UDP/IP based profile is mandatory for the
following reasons:

• according to the identification/addressing scheme used in this profile, an AA is identified
by two triplets, including the IP Address, the TCP (or UDP) port number and the wPort
number. In other words, all AAs within this profile are established using only one TCP (or
UDP) port. This means, that disconnecting the TCP connection (this way of releasing AA
must also be supported) would release all AAs established. Using the RLRQ/RLRE
APDUs allows to release confirmed AAs in a selective way;

• in the TCP-UDP/IP based profile, it is allowed to establish both confirmed and
unconfirmed AAs on the connectionless UDP transport layer. The only way to release
such associations is the use of the RLRQ/RLRE services.

NOTE In fact, using the RLRQ/RLRE APDUs is specified as optional only to keep backward compatibility with the
previous version of the Application Layer standard (IEC 620056-53: 2002), which did not include this possibility.

IS/IEC 62056-53 : 2006

117

B.3.6.3 Service parameters of the COSEM-OPEN/RELEASE/ABORT services

The optional User_Information parameters of the COSEM-OPEN/RELEASE services are not
supported in this communication profile.

B.3.6.4 xDLMS data communication service related issues/constraints

B.3.6.4.1 Client/Server type services

No specific features/constraints apply related to the use of Client/Server type services.

B.3.6.4.2 The EventNotification Service and the Trigger_EventNotification_Sending
service

As in this profile both the TCP and UDP profile allows sending data in an unsolicited manner,
the Trigger_EventNotification_Sending service is not used.

The EVENT-NOTIFICATION-Request APDU may be sent either using the connectionless data
services of the COSEM UDP based transport layer or by the connection-oriented data
services of the COSEM TCP based transport layer. In this case, a TCP connection has to be
built first by the TCP Connection Manager process.

The optional Application_Addresses parameter is present only when the Event
Notification.request service is invoked outside an established AA.

B.3.6.5 Transporting long messages

The use of the length bytes in the COSEM TCP-UDP transport layer wrapper element allows
sending long messages in a transparent way to the application layer. However, confirmation
of reception of the individual fragments is not provided.

B.3.6.6 Multi-drop configuration

Among many other possibilities, the TCP-UDP/IP communication can be used over serial
connection links, like the PSTN. In this case, the data link layer protocol to be used is the
PPP (Point-to-Point) protocol.

However, multi-drop configurations in this profile are not supported, because with using PPP,
addressing is not available. Therefore, a mechanism of avoiding a collision on the logical bus
is not available.

B.3.6.7 Allowing the COSEM Server to establish the TCP connection

In COSEM, supporting layer connections are generally established during the application
establishment following the invocation of the COSEM-OPEN.request service by the client AP
(the physical layer connection must be already established before invoking the COSEM-
OPEN.request service). Therefore, linking the process of establishing an AA and connecting
the supporting layer is just natural.

However, in some cases it would be useful if the server could also initiate the connection of
the TCP layer. This is particularly interesting in the TCP-UDP/IP based profile in the case,
when the server does not have a public IP address. In this case, as the Client does not “see”
the physical device hosting the server, it is not able to establish the required TCP layer
connection.

In order to allow the server to establish the TCP layer connection, the server side COSEM
TCP layer provides also TCP-CONNECT.request and.confirm services (and the Client side
COSEM TCP layer provides also the TCP-CONNECT.indication and.response services).

IS/IEC 62056-53 : 2006

118

NOTE These services are not used by the COSEM Application Layer, but directly by the Server (and Client) side
TCP connection manager.

B.3.6.8 The COSEM TCP-UDP/IP profile and real-world IP networks

This standard and IEC 62056-47 specify all COSEM specific elements necessary to use
COSEM over the Internet, using the COSEM TCP-UDP/IP based profile.

On real Internet networks, there are other elements, which need to be considered.

For example, in this standard it is specified, that physical devices hosting COSEM APs are
identified with an IP address, but it is not specified, how to obtain such an IP address.

As these elements are not specific to COSEM, they are not in the scope of this standard.

IS/IEC 62056-53 : 2006

119

Annex C
(informative)

AARQ and AARE encoding examples

C.1 General

This annex contains examples of encoding the AARQ and AARE APDUs, in cases of using
various levels of authentication and in cases of success and failure.

In COSEM, the AARQ and AARE APDUs (see page The ACSE APDUs90) shall be encoded in
BER (ISO/IEC 8825). In the user-information field, they contain the xDLMS
Initiate.Request/.Response or DLMS ConfirmedServiceError PDUs respectively, encoded in
A-XDR as OCTETSTRING.

C.2 Encoding the xDLMS-Initiate.request PDU

Firstly, the xDLMS-Initiate.request PDU. It is specified as follows:

xDLMS-Initiate.request:: = SEQUENCE
{
dedicated-key OCTET STRING OPTIONAL,
response-allowed BOOLEAN DEFAULT TRUE,
proposed-quality-of-service [0] IMPLICIT Integer8 OPTIONAL,
proposed-dlms-version-number Unsigned8,
proposed-conformance Conformance,
client-max-receive-pdu-size Unsigned16
}
where the proposed-conformance parameter holds the COSEM conformance block proposed
by the client, as it is specified in 8.5.

Supposing that the client would like to build the AA with the following xDLMS context:

• no ciphering is used (the OPTIONAL dedicated-key is not present);

• response-allowed = TRUE (it holds the default value);

• no proposed-quality-of-service (the OPTIONAL proposed-quality-of-service parameter is
not present);

• the proposed-dlms-version-number is 6 (xDLMS);

• the proposed-conformance – proposing all possible services and special features for both
LN and SN referencing – is the following:

B
it_

00

B
it_

01

B
it_

02

B
it_

03

B
it_

04

B
it_

05

B
it_

06

B
it_

07

B
it_

08

B
it_

09

B
it_

10

B
it_

11

B
it_

12

B
it_

13

B
it_

14

B
it_

15

B
it_

16

B
it_

17

B
it_

18

B
it_

19

B
it_

20

B
it_

21

B
it_

22

B
it_

23

V
al

ue
 o

f
th

e
B

IT

S
TR

IN
G

LN 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 00 7E 1F
SN 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1C 03 20

The meaning of this conformance block for LN referencing is:

• Attibute_0 referencing with SET is not supported (Bit_08)
• Priority Management is supported (Bit_09)
• Attibute_0 referencing with GET is supported (Bit_10)
• Block Transfer with the GET service is supported (Bit_11)

IS/IEC 62056-53 : 2006

120

• Block Transfer with the SET service is supported (Bit_12)
• Block Transfer with the ACTION service is supported (Bit_13)
• Multiple references are supported (Bit_14)
• All LN services (GET, SET, ACTION,

EVENT NOTIFICATION) are supported (Bit_19, 20, 22, 23)
• Selective Access feature is supported (Bit_21)
The meaning of this conformance block for SN referencing is:

• all SN services (READ, WRITE, UNCONFIRMED WRITE
(information report)) are supported (Bit_03, 04, 05, 15)

• multiple references are supported (Bit_14)
• Parametrized_access is supported (Bit_18)

• The client-max-receive-pdu-size is 1200D = 0x4B0.

With these parameters, the A-XDR encoding for the xDLMS-Initiate.request PDU:

-- A-XDR encoding the xDLMS-Initiate.request PDU
01 // encoding the tag (explicit tag) of the DLMS PDU CHOICE (InitiateRequest)
-- encoding the dedicated-key component (OPTIONAL, not present)
 00 // usage flag for the dedicated-key component (FALSE, not present)
-- encoding the response-allowed component (TRUE, default value)
 00 // usage flag for the response-allowed component (FALSE, default value conveyed)
-- encoding the proposed-quality-of-service component (OPTIONAL, not present)
 00 // usage flag for the proposed-quality-of-service component (FALSE, not present)
-- encoding the proposed-dlms-version-number component (Unsigned8, value=6)
 06 // the A-XDR encoding of an Unsigned8 is its value
-- encoding the Conformance block [APPLICATION 31] IMPLICIT BITSTRING (SIZE(24))
5F 1F // encoding the [APPLICATION 31] tag (ASN.1 explicit tag)
 04 // encoding the length of the 'contents' field in octet (4)
 00 // encoding of the number of unused bits in the final octet of the BITSTRING

IMPORTANT For compliance with existing implementations, encoding of the [Application 31] tag on one byte
(5F) instead of two bytes (5F 1F) is accepted when the 3-layer, connection-oriented, HDLC based profile is used.

LN referencing SN referencing

00 7E 1F // encoding of the fixed length bitstring value 1C 03 20 // encoding of the fixed length bitstring value

-- encoding the client-max-receive-pdu-size component (Unsigned16, value=0x4B0)
04 B0 // the A-XDR encoding of an Unsigned16 is its value

Therefore, the A-XDR encoding of the xDLMS-Initiate.request PDU, with the given
parameters, results in the following octet sequence:

LN referencing SN referencing

01 00 00 00 06 5F 1F 04 00 00 7E 1F 04 B0 01 00 00 00 06 5F 1F 04 00 1C 03 20 04 B0

This octet sequence shall be inserted into the user-information field of the AARQ APDU as an
OCTET STRING.

C.3 Encoding the AARQ APDU not using the ACSE security mechanism

For ACSE use, suppose that the client would like to build the AA with the following application
context:

• protocol-version is the default ACSE version;
• application-context-name:

IS/IEC 62056-53 : 2006

121

LN referencing SN referencing

{joint-iso-ccitt(2) country(16) country-name(756)
identified-organization(5) DLMS-UA(8) application-
context(1) context_id(1)}

{joint-iso-ccitt(2) country(16) country-name(756)
identified-organization(5) DLMS-UA(8) application-
context(1) context_id(2)}

• no authentication is used: neither the mechanism-name, nor the calling-authentication-
value is present;

• no implementation-information is included.
The (BER) encoding of the AARQ APDU, corresponding to these parameters is as follows:

-- BER encoding the AARQ APDU
60 // encoding the tag for the AARQ APDU ([APPLICATION 0], Application)
 1D // encoding of the length of the AARQ’s content’s field (29 octets)
-- no encoding for the protocol version, thus it is considered with its DEFAULT value

-- encoding the application-context-name component (tagged component [1])
 A1 // encoding the tag for the application-context-name component ([1], Context-specific)
 09 // encoding of the length of the tagged component’s value field

-- encoding the application-context-name component (OBJECT IDENTIFIER)
 06 // encoding the choice for application-context-name (OBJECT IDENTIFIER, Universal)
 07 // encoding of the length of the Object Identifier’s value field (7 octets)

// encoding of the value of the Object Identifier30

LN referencing SN referencing

60 85 74 05 08 01 01 60 85 74 05 08 01 02

-- encoding the user-information field component (tagged component, [30])
BE // encoding the tag for the user-information field component ([30], Context-specific)
 10 // encoding of the length of the tagged component’s value field.

-- encoding the user-information field component (OCTET STRING)
 04 // encoding the choice for user-information (OCTET STRING, Universal)
 0E // encoding of the length of the OCTET STRING’s value field (14 octets)

// Here is the octet sequence of the xDLMS-Initiate.request PDU:

LN referencing SN referencing

01 00 00 00 06 5F 1F 04 00 00 7E 1F 04 B0 01 00 00 00 06 5F 1F 04 00 1C 03 20 04 B0

Therefore, the complete encoding for an AARQ APDU, with the given parameters is as follows
(all values are in hexadecimals):

LN referencing SN referencing

AARQ-pdu = [60 1D A1 09 06 07 60 85 74 05 08 01 01
BE 10 04 0E 01 00 00 00 06 5F 1F 04 00 00 7E 1F 04
B0]

AARQ-pdu = [60 1D A1 09 06 07 60 85 74 05 08 01 02
BE 10 04 0E 01 00 00 00 06 5F 1F 04 00 1C 03 20 04
B0]

———————
30 BER Encoding for Object Identifier is a packed sequence of numbers representing the arc labels. Each

number – except the first two, which are combined into one – is represented as a series of octets, with 7 bits
being used from each octet and the most significant bit is set to 1 in all but the last octet. The fewest possible
number of octets must be used.

 For the case of the Object Identifer of this example (2,16,756,5,8,1,1), the first octet of the encoding is the
combination of the first two numbers into a single number, following the rule of 40*First+Second -> 40*2 + 16
= 96 = 0x60. The third number of the Object Identifier (756) requires two octets: its hexadecimal value is
0x2F4, which is 00000010 11110100, but following the above rule, the MSB of the second octet must be set
to 0, thus this MSB should be shifted into the first octet, and to set the MSB of the first octet to 1, which gives
binary 10000101 01110100, which is 0x8574. Each remaining number of the Object Identifier required to be
encoded on one octet results in the above 60 85 74 05 08 01 01 encoding.

IS/IEC 62056-53 : 2006

122

C.4 Encoding the AARQ APDU using low level authentication

The coding is as in the above example of Clause C.33, with the only difference of three
additional fields that have to be encoded. These fields are:

• sender-acse-requirements: indicating that the ACSE functional unit is selected;
• mechanism-name: default-COSEM-low-level-security-mechanism-name

{joint-iso-ccitt(2) country(16) country-name(756) identified-organization(5) DLMS-
UA(8) authentication_mechanism_name(2) mechanism_id(1)};

• calling-authentication-value: a GraphicString containing the password (assumed to be
“12345678”).

NOTE These three fields are coded immediately before the user-information-field.

--encoding the sender-acse-requirements field component (tagged component, [10])

8A // encoding the tag for the acse-requirements field component ([10], IMPLICIT),
 Context-specific
 02 // encoding of the length of the tagged component’s value field.
-- encoding the sender-acse-requirements component (ACSE-requirements::= BIT STRING)
 07 // encoding the number of unused bits in the last byte of the BIT STRING
 80 // encoding of the authentication functional unit (0)

NOTE The number of bits coded may vary from client to client, but within the COSEM environment, only bit 0 set
to 1 (indicating the requirement of the authentication functional unit) is to be respected.

-- encoding the mechanism-name component (tagged component [11])
8B // encoding the tag for the mechanism-name component ([11], IMPLICIT),
 Context-specific
 07 // encoding of the length of the tagged component’s value field
-- encoding of the value of the Object Identifier
 60 85 74 05 08 02 01
-- encoding the calling-authentication-value component (tagged component [12])
AC // encoding the tag for the calling-authentication-value component ([12], Context-
specific)
 0A // encoding of the length of the tagged component’s value field
-- encoding the calling-authentication-value component (Authentication-information::=
CHOICE)
 80 // encoding the choice for Authentication-information (charstring [0] IMPLICIT
GraphicString)
 08 // encoding of the length of the Authentication-information’s value field (8 octets)
-- encoding of the value of the Password (GraphicString “12345678”)
 31 32 33 34 35 36 37 38
Therefore, the complete encoding for an AARQ APDU, with the given parameters is as follows
(all values are in hexadecimals):

LN referencing SN referencing

AARQ-pdu = [60 36 A1 09 06 07 60 85 74 05 08 01 01
8A 02 07 80 8B 07 60 85 74 05 08 02 01 AC 0A 80 08
31 32 33 34 35 36 37 38 BE 10 04 0E 01 00 00 00 06
5F 1F 04 00 00 7E 1F 04 B0]

AARQ-pdu = [60 36 A1 09 06 07 60 85 74 05 08 01 02
8A 02 07 80 8B 07 60 85 74 05 08 02 01 AC 0A 80 08
31 32 33 34 35 36 37 38 BE 10 04 0E 01 00 00 00 06
5F 1F 04 00 1C 03 20 04 B0]

IS/IEC 62056-53 : 2006

123

C.5 Encoding the AARQ APDU using high-level authentication

The coding is as in the above example of Clause C.44, with the only difference in the content
of the two fields:

• mechanism-name: default-COSEM-high-level-security-mechanism-name;
• calling-authentication-value: assumed no client-to-server challenge requested.
-- encoding the mechanism-name component (tagged component [11])
8B // encoding the tag for the mechanism-name component ([11], IMPLICIT, Context-specific)
 07 // encoding of the length of the tagged component’s value field
-- encoding of the value of the Object Identifier (default-COSEM-high-level-security-mechanism-name)
 60 85 74 05 08 02 02
-- encoding the calling-authentication-value component (tagged component [12])
AC // encoding the tag for the calling-authentication-value component ([12], Context-specific)
 02 // encoding of the length of the tagged component’s value field
-- encoding the calling-authentication-value component (Authentication-information::= CHOICE)
 80 // encoding the choice for Authentication-information (charstring [0] IMPLICIT GraphicString)
 00 // encoding of the length of the Authentication-information’s value field (8 octets)
-- encoding of the value of the Password (GraphicString)
 // as the string is empty, no coding needed

Therefore, the complete encoding for an AARQ APDU, with the given parameters is as follows
(all values are in hexadecimals):

LN referencing SN referencing

AARQ-pdu = [60 2E A1 09 06 07 60 85 74 05 08 01 01
8A 02 07 80 8B 07 60 85 74 05 08 02 02 AC 02 80 00
BE 10 04 0E 01 00 00 00 06 5F 1F 04 00 00 7E 1F 04
B0]

AARQ-pdu = [60 2E A1 09 06 07 60 85 74 05 08 01 02
8A 02 07 80 8B 07 60 85 74 05 08 02 02 AC 02 80 00
BE 10 04 0E 01 00 00 00 06 5F 1F 04 00 1C 03 20 04
B0]

C.6 Encoding the AARE APDU, case of success

Recall the ASN.1 specification of the AARE APDU:

AARE-apdu::= [APPLICATION 1] IMPLICIT SEQUENCE
{
protocol-version [0] IMPLICIT BIT STRING {version1 (0) } DEFAULT {version1},
application-context-name [1] Application-context-name,
result [2] Association-result,
result-source-diagnostic [3] Associate-source-diagnostic,
responding-AP-title [4] AP-title OPTIONAL,
responding-AE-qualifier [5] AE-qualifier OPTIONAL,
responding-AP-invocation-id [6] AP-invocation-identifier OPTIONAL,
responding-AE-invocation-id [7] AE-invocation-identifier OPTIONAL,

-- The following field shall not be present if only the Kernel is used.
responder-acse-requirements [8] IMPLICIT ACSE-requirements OPTIONAL,
-- The following field shall only be present if the authentication functional unit is selected.
mechanism-name [9] IMPLICIT Mechanism-name OPTIONAL,
-- The following field shall only be present if the authentication functional unit is selected.
responding-authentication-value [10] EXPLICIT Authentication-value OPTIONAL,
implementation-information [29] IMPLICIT Implementation-data OPTIONAL,
user-information [30] IMPLICIT Association-information OPTIONAL
}
In COSEM, this APDU shall be encoded in BER, and the user-information field contains an A-
XDR encoded xDLMS-Initiate.response PDU as OCTETSTRING.

IS/IEC 62056-53 : 2006

124

C.7 Encoding the xDLMS-Initiate.response PDU

The xDLMS-Initiate.response is specified as follows:

xDLMS-Initiate.response:: = SEQUENCE
{

negotiated-quality-of-service [0] IMPLICIT Integer8 OPTIONAL,
negotiated-dlms-version-number Unsigned8,
negotiated-conformance Conformance,
server-max-receive-pdu-size Unsigned16,
vaa-name ObjectName

}

where the ObjectName type is specified as ObjectName::= Unsigned16, and the negotiated-
conformance parameter contains the xDLMS services and features supported by the server.

Supposing that the server accepts the proposed AA within the following xDLMS context:

• no negotiated-quality-of-service (the OPTIONAL proposed-quality-of-service parameter is
not present);

• the negotiated DLMS version number is 6 (xDLMS);

• the accepted xDLMS conformance block – which indicates the accepted services and
special features for both LN and SN referencing – shall be as follows:

B
it_

00

B
it_

01

B
it_

02

B
it_

03

B
it_

04

B
it_

05

B
it_

06

B
it_

07

B
it_

08

B
it_

09

B
it_

10

B
it_

11

B
it_

12

B
it_

13

B
it_

14

B
it_

15

B
it_

16

B
it_

17

B
it_

18

B
it_

19

B
it_

20

B
it_

21

B
it_

22

B
it_

23

V

al
ue

 o
f t

he

B
IT

S
TR

IN
G

LN 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 00 50 1F
SN 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1C 03 20

The meaning of this conformance block for LN referencing is:

Attibute_0 referencing with SET is not supported (Bit_08)
Priority Management is supported (Bit_09)
Attibute_0 referencing with GET is not supported (Bit_10)
Block Transfer with the GET service is supported (Bit_11)
Block Transfer with the SET service is not supported (Bit_12)
Block Transfer with the ACTION service is not supported (Bit_13)
Multiple references are not supported (Bit_14)
All LN services (GET, SET, ACTION,
EVENT NOTIFICATION) are supported (Bit_19, 20, 22, 23)
Selective Access feature is supported (Bit_21)

For SN referencing the meaning is as follows:

All SN services (READ, WRITE, UNCONFIRMED WRITE
(Information Report)) are supported (Bit_03, 04, 05, 15)
Multiple references are supported (Bit_14)
Parametrized_access is supported (Bit_18)

• the server-max-receive-pdu-size is 500D = 0x1F4;
• vaa-name.

LN referencing SN referencing

A dummy VAA name (0x0007) is assigned to this
association.

The fixed Short Name of the standard association SN
(0xFA00) is returned.

IS/IEC 62056-53 : 2006

125

The A-XDR encoding of the xDLMS-Initiate.response PDU with these parameters is as
follows:

-- A-XDR encoding the xDLMS-Initiate.response PDU
08 // encoding the tag (explicit tag) of the DLMS PDU CHOICE (InitiateResponse)
-- encoding the negotiated-quality-of-service component (OPTIONAL, not present)
 00 // usage flag for the negotiated-quality-of-service component (FALSE, not present)
-- encoding of the negotiated-dlms-version-number component (Unsigned8, value=6)
 06 // the A-XDR encoding of an Unsigned8 is its value
-- encoding the conformance block [APPLICATION 31] IMPLICIT BITSTRING (SIZE(24))
 5F 1F // encoding the [APPLICATION 31] tag (ASN.1 explicit tag)
 04 // encoding the length of the 'contents' field in octet (4)
 00 // encoding of the number of unused bits in the final octet of the bitstring

// encoding of the fixed length BITSTRING value

LN referencing SN referencing

00 50 1F 1C 03 20

-- encoding the server-max-receive-pdu-size component (Unsigned16, value=0x01F4)
01 F4 // the A-XDR encoding of an Unsigned16 is its value

-- encoding the VAA-Name component (Unsigned16, value=0x0007 for LN and FA 00 for SN)
 // the A-XDR encoding of an Unsigned16 is its value

LN referencing SN referencing

00 07 FA 00

Thus, the A-XDR encoding of the xDLMS-Initiate.response PDU, with the above parameters,
results in the following octet sequence:

LN referencing SN referencing

08 00 06 5F 1F 04 00 00 50 1F 01 F4 00 07 08 00 06 5F 1F 04 00 1C 03 20 01 F4 FA 00

This octet sequence shall be inserted into the user-information field of the AARE APDU as an
OCTET STRING.

C.8 Encoding the AARE APDU not using security or using low level security

For ACSE use, supposing that the server accepts the proposed AA within the following
application context:

• protocol-version is the default ACSE version;
• application-context-name:

LN referencing SN referencing

{joint-iso-ccitt(2) country(16) country-name(756)
identified-organization(5) DLMS-UA(8) application-
context(1) context_id(1)}

{joint-iso-ccitt(2) country(16) country-name(756)
identified-organization(5) DLMS-UA(8) application-
context(1) context_id(2)}

• no additional authentication is used (low level authentication or without authentication):

neither the mechanism-name, nor the calling-authentication-value are present;
• no implementation-information is included.
The (BER) encoding of the AARE PDU, corresponding to these parameters is as follows:

-- BER encoding the AARE APDU
61 // encoding the tag for the AARE-pdu ([APPLICATION 1], Application)
 29 // encoding of the length of the AARE’s content’s field (41 octets)

// no encoding for the protocol version, thus it is considered with its DEFAULT value

IS/IEC 62056-53 : 2006

126

-- encoding the application-context-name component (tagged component [1])
A1 // encoding the tag for the application-context-name component ([1], Context-specific)
 09 // encoding of the length of the tagged component’s value field
-- encoding the application-context-name component (OBJECT IDENTIFIER)
 06 // encoding the choice for application-context-name (OBJECT IDENTIFIER, Universal)
 07 // encoding of the length of the Object Identifier’s value field (7 octets)

// encoding of the value of the Object Identifier

LN referencing SN referencing

60 85 74 05 08 01 01 60 85 74 05 08 01 02

-- encoding the tag & length for the result component (tagged component [2])
A2 // encoding the tag & length for the result component ([2], Context-specific)
 03 // encoding of the length of the tagged component’s value field

-- encoding the result-component (INTEGER)
 02 // encoding the choice for result (INTEGER, Universal)
 01 // encoding of the length of the result’s value field (1 octets)
 00 // encoding of the value of the Result (0, accepted)

-- encoding the result-source-diagnostic (tagged component [3])
A3 // encoding the tag for the result-source-diagnostic component ([3], Context-specific)
 05 // encoding of the length of the tagged component’s value field
 A1 // encoding the tag for the acse-service-user CHOICE (1)
 03 // encoding of the length of the tagged component’s value field
-- encoding the result-source-diagnostics component (INTEGER)
 02 // encoding the choice for result-source-diagnostics (INTEGER, Universal)
 01 // encoding of the length of the value field (1 octets)
 00 // encoding of the value: 0, no diagnostics provided.

-- encoding the user-information field component (tagged component, [30])
BE // encoding the tag for the user-information field component ([30], Context-specific)
 10 // encoding of the length of the tagged component’s value field

-- encoding the user-information field component (OCTET STRING)
 04 // encoding the choice for user-information (OCTET STRING, Universal)
 0E // encoding of the length of the OCTET STRING’s value field (14 octets)

// Here is the octet sequence of the xDLMS-Initiate.response PDU

LN referencing SN referencing

08 00 06 5F 1F 04 00 00 50 1F 01 F4 00 07 08 00 06 5F 1F 04 00 1C 03 20 01 F4 FA 00

Therefore, the complete encoding for an AARE APDU, with the given parameters is as follows
(all values are in hexadecimals):

LN referencing SN referencing

AARE-pdu = [61 29 A1 09 06 07 60 85 74 05 08 01 01
A2 03 02 01 00 A3 05 A1 03 02 01 00 BE 10 04 0E 08
00 06 5F 1F 04 00 00 50 1F 01 F4 00 07]

AARE-pdu = [61 29 A1 09 06 07 60 85 74 05 08 01 02
A2 03 02 01 00 A3 05 A1 03 02 01 00 BE 10 04 0E 08
00 06 5F 1F 04 00 1C 03 20 01 F4 FA 00]

C.9 Encoding the AARE APDU using high level security

The coding is as in the above example of Clause C.88, with the following differences:

a) three additional fields that have to be coded:

• responder-acse-requirements: indicating that the ACSE functional unit is selected;
• mechanism-name: default-COSEM-high-level-security-mechanism-name

{joint-iso-ccitt(2) country(16) country-name(756) identified-organization(5) DLMS-
UA(8) authentication_mechanism_name(2) mechanism_id(2)};

• responding-authentication-value: A GraphicString containing the server-to-client challenge
(assumed to be “P6wRJ21”);

IS/IEC 62056-53 : 2006

127

b) in result-source-diagnostic the value is set to “authentication-required” to reflect the
additional authentication step needed.

NOTE The three additional fields are coded immediately before the user-information-field.

-- encoding the responder-acse-requirements field component (tagged component, [8])
88 // encoding the tag for the acse-requirements field component ([8], IMPLICIT,
 Context-specific)
 02 // encoding of the length of the tagged component’s value field.
-- encoding the responder-acse-requirements component (ACSE-requirements::= BIT
STRING)
 07 // encoding the number of unused bits in the last byte of the BIT STRING
 80 // encoding of the authentication functional unit (0)
-- encoding the mechanism-name component (tagged component [9])
89 // encoding the tag for the mechanism-name component ([9], IMPLICIT,
 Context-specific)
 07 // encoding of the length of the tagged component’s value field
-- encoding of the value of the Object Identifier (default-COSEM-high-level-security-
mechanism-name)
 60 85 74 05 08 02 02
-- encoding the responding-authentication-value component (tagged component [10])
AA // encoding the tag for the responding-authentication-value component ([10], Context-
specific)
 0A // encoding of the length of the tagged component’s value field
-- encoding the responding-authentication-value component (Authentication-information::=
CHOICE)
 80 // encoding the choice for Authentication-information (charstring [0] IMPLICIT
GraphicString)
 08 // encoding of the length of the Authentication-information’s value field (8 octets)
-- encoding of the value of the Password (GraphicString)
 50 36 77 52 4A 32 31
The result-source-diagnostic is coded as follows:

-- encoding the result-source-diagnostic (tagged component [3])
A3 // encoding the tag for the result-source-diagnostics component ([3], Context-specific)
 05 // encoding of the length of the tagged component’s value field
 A1 // encoding the tag for the acse-service-user CHOICE (1)
 03 // encoding of the length of the tagged component’s value field
-- encoding the result-source-diagnostics component (INTEGER)
 02 // encoding the choice for result-source-diagnostics (INTEGER, Universal)
 01 // encoding of the length of the value field (1 octets)
 0E // encoding of the value: 14, authentication-required
Therefore, the complete encoding for an AARE APDU, with the given parameters is as follows
(all values are in hexadecimals):

LN referencing SN referencing

AARE-pdu = [61 41 A1 09 06 07 60 85 74 05 08 01 01
A2 03 02 01 00 A3 05 A1 03 02 01 0E 88 02 07 80 89
07 60 85 74 05 08 02 02 AA 0A 80 08 50 36 77 52 4A
32 31 BE 10 04 0E 08 00 06 5F 1F 04 00 00 50 1F 01
F4 00 07]

AARE-pdu = [61 41 A1 09 06 07 60 85 74 05 08 01 02
A2 03 02 01 00 A3 05 A1 03 02 01 0E 88 02 07 80 89
07 60 85 74 05 08 02 02 AA 0A 80 08 50 36 77 52 4A
32 31 BE 10 04 0E 08 00 06 5F 1F 04 00 1C 03 20 01
F4 FA 00]

C.10 Encoding the AARE APDU case of failure 1

This example shows the construction of an AARE-pdu, when the server is not able to accept
the proposed association because of the received application-context-name does not fit to the
application context, which can be supported by the server.

IS/IEC 62056-53 : 2006

128

In this case, the ‘result’ field of the AARE PDU shall contain the ‘rejected-permanent’ value,
the ‘result-source-diagnostic’ field the ‘application-context-name-not-supported’ value, and –
supposing that the server is able to support the proposed xDLMS context – the user-
information field shall contain a correctly constructed (encoded en A-XDR, as a BER OCTET
STRING) xDLMS-Initiate.response PDU. (It is the same as that of the previous example).

Thus, the A-XDR encoding of the xDLMS-Initiate.response PDU shall be as follows:

LN referencing SN referencing

08 00 06 5F 1F 04 00 00 50 1F 01 F4 00 07 08 00 06 5F 1F 04 00 1C 03 20 01 F4 FA 00

Parameters for the AARE:

• protocol-version is the default ACSE version;
• application-context-name: COSEM_Application_Context_Name-

Logical_Name_Referencing (the proposed)
{joint-iso-ccitt(2) country(16) country-name(756) identified-organization(5) DLMS-
UA(8) application-context(1) context_id(1)};

• no authentication is used: neither the mechanism-name, nor the calling-authentication-
value are present;

• no implementation-information is included;
• result = rejected-permanent;
• associate-source-diagnostics = application-context-name-not-supported.
The (BER) encoding of the AARE APDU, corresponding to these parameters is as follows:

-- BER encoding the AARE APDU
61 // encoding the tag for the AARE-pdu ([APPLICATION 1], Application)
 29 // encoding of the length of the AARE’s content’s field (41 octets)
 // no encoding for the protocol version, thus it is considered with its DEFAULT value
-- encoding the application-context-name component (tagged component [1])
 A1 // encoding the tag for the application-context-name component ([1], Context-specific)
 09 // encoding of the length of the tagged component’s value field
-- encoding the application-context-name component (OBJECT IDENTIFIER)
 06 // encoding the choice for application-context-name (OBJECT IDENTIFIER, Universal)
 07 // encoding of the length of the Object Identifier’s value field (7 octets)

LN referencing SN referencing

60 85 74 05 08 01 01

// encoding of the value of the Object Identifier
(2,16,756,5,8,1,1)

60 85 74 05 08 01 02

// encoding of the value of the Object Identifier
(2,16,756,5,8,1,2)

-- encoding the tag & length for the result component (tagged component [2])
A2 // encoding the tag for the result component ([2], Context-specific)
 03 // encoding of the length of the tagged component’s value field
-- encoding the Result component (INTEGER)
 02 // encoding the choice for result (INTEGER, Universal)
 01 // encoding of the length of the result’s value field (1 octets)
 01// encoding of the value of the result (1, rejected-permanent)
-- encoding the result-source-diagnostics component (tagged component [3])
A3 // encoding the tag for the result-source-diagnostics component ([3], Context-specific)
 05 // encoding of the length of the tagged component’s value field
 A1 // encoding the tag for the acse-service-user CHOICE (1)
 03 // encoding of the length of the tagged component’s value field
-- encoding the result-source-diagnostics component (INTEGER)
 02 // encoding the choice for result-source-diagnostics (INTEGER, Universal)
 01 // encoding of the length of the value field (1 octets)
 02 // encoding of the value: 2, application-context-name-not-supported
-- encoding the user-information field component (tagged component, [30])
BE // encoding the tag for the user-information field component ([30], Context-specific)
 10 // encoding of the length of the tagged component’s value field
-- encoding the user-information component (OCTET STRING)
 04 // encoding the choice for user-information (OCTET STRING, Universal)
 0E // encoding of the length of the OCTET STRING’s value field (14 octets)

IS/IEC 62056-53 : 2006

129

// Here is the octet sequence of the xDLMS-Initiate.response PDU:

LN referencing SN referencing

08 00 06 5F 1F 04 00 00 50 1F 01 F4 00 07 08 00 06 5F 1F 04 00 1C 03 20 01 F4 FA 00

Therefore, the complete encoding for an AARE APDU with the given parameters is as follows
(all values are in hexadecimals):

LN referencing SN referencing

AARE-pdu = [61 29 A1 09 06 07 60 85 74 05 08 01 01
A2 03 02 01 01 A3 05 A1 03 02 01 02 BE 10 04 0E 08
00 06 5F 1F 04 00 00 50 1F 01 F4 00 07]

AARE-pdu = [61 29 A1 09 06 07 60 85 74 05 08 01 02
A2 03 02 01 01 A3 05 A1 03 02 01 02 BE 10 04 0E 08
00 06 5F 1F 04 00 1C 03 20 01 F4 FA 00]

C.11 Encoding the AARE APDU, case of failure 2

This example shows the construction of an AARE APDU, when the server is not able to
accept the proposed AA because the proposed xDLMS context cannot be supported by the
server (for the reason that “the proposed DLMS version number is too low”). The proposed
COSEM application context could be accepted.

In this case, the ‘result’ field of the AARE APDU shall contain the ‘rejected-permanent’ value,
the ‘result-source-diagnostic’ field the ‘no-reason-given’ value, and the user-information field
shall contain a correctly constructed (encoded en A-XDR, as a BER OCTET STRING) DLMS-
ConfirmedServiceError PDU, indicating the reason for the failure.

The DLMS ConfirmedServiceError message is specified as follows:

ConfirmedServiceError::= CHOICE
{

-- tag 0 is reserved
initiateError [1] ServiceError,
getStatus [2] ServiceError,
getNameList [3] ServiceError,
terminateUpLoad [19] ServiceError

}

where ServiceError is as follows:

ServiceError ::= CHOICE
{

initiate [6] IMPLICIT ENUMERATED
-- initiate service error
{

other (0),
DLMS-version-too-low (1), -- proposed DLMS version too low
incompatible-conformance (2), -- proposed services not sufficient
PDU-size-too-short (3), -- proposed PDU size too short
refused-by-the-VDE-Handler (4) -- vaa creation impossible or not allowed

 }
}

Therefore, A-XDR encoding of the DLMS ConfirmedServiceError PDU with the above
conditions is as follows:

-- A-XDR encoding the DLMS ConfirmedServiceError-pdu
0E // encoding the tag (explicit tag) of the DLMS PDU CHOICE (ConfirmedServiceError)
-- encoding the tag for selecting InitiateError (InitiateError = 1)
 01 // tag (explicit) of ConfirmedServiceError CHOICE (InitiateError =1)
-- encoding the tag for selecting ServiceError (Initiate = 6)
 06 // tag (explicit) of ServiceError CHOICE (Initiate 6)
-- encoding the enumerated reason of failure (proposed DLMS version too low = 1)
 01 // encoding the value of the ENUMERATED type

IS/IEC 62056-53 : 2006

130

Thus, the A-XDR encoding of the DLMS ConfirmedServiceError PDU, with the above
parameters, results in the following octet sequence:

DLMS ConfirmedServiceError PDU: 0E 01 06 01 (for both LN and SN referencing)
This octet sequence shall be inserted into the user-information field of the AARE APDU as an
OCTET STRING.

Supposing, that AARE parameters are as follows:

• protocol-version is the default ACSE version;
• application-context-name:

COSEM_Application_Context_Name_Logical_Name_Referencing (the proposed)
{joint-iso-ccitt(2) country(16) country-name(756) identified-organization(5) DLMS-
UA(8) application-context(1) context_id(1)};

• no authentication is used: neither the mechanism-name, nor the calling-authentication-
value is present;

• no implementation-information is included;
• result = rejected-permanent;
• associate-source-diagnostics = no-reason-given.
The (BER) encoding of the AARE-pdu, corresponding to these parameters is as follows:

-- BER encoding the AARE APDU
61 // encoding the tag for the AARE-pdu ([APPLICATION 1], Application)
 1F // encoding of the length of the AARE’s content’s field (31 octets)
 // no encoding for the protocol version, thus it is considered with its DEFAULT value
-- encoding the application-context-name component (tagged component [1])
A1 // encoding the tag for the application-context-name component ([1], Context-specific)
 09 // encoding of the length of the tagged component’s value field
-- encoding the application-context-name component (OBJECT IDENTIFIER)
 06 // encoding the choice for application-context-name (OBJECT IDENTIFIER, Universal)
 07 // encoding of the length of the Object Identifier’s value field (7 octets)
 60 85 74 05 08 01 01 // encoding of the value of the Object Identifier (2,16,756,5,8,1,1)
-- encoding the tag & length for the result component (tagged component [2])
A2 // encoding the tag for the result component ([2], Context-specific)
 03 // encoding of the length of the tagged component’s value field
-- encoding the Result component (INTEGER)
 02 // encoding the choice for result (INTEGER, Universal)
 01 // encoding of the length of the result’s value field (1 octets)
 01 // encoding of the value of the result (1, rejected-permanent)
-- encoding the result-source-diagnostics component (tagged component [3])
A3 // encoding the tag for the result-source-diagnostics component ([3], Context-specific)
 05 // encoding of the length of the tagged component’s value field
 A1 // encoding the tag for the acse-service-user CHOICE (1)
 03 // encoding of the length of the tagged component’s value field
-- encoding the result-source-diagnostics component (INTEGER)
 02 // encoding the choice for result-source-diagnostics (INTEGER, Universal)
 01 // encoding of the length of the value field (1 octets)
 01// encoding of the value: 1, no-reason-given

-- encoding the user-information field component (tagged component, [30])
BE // encoding the tag for the user-information field component ([30], Context-specific)
 06 // encoding of the length of the tagged component’s value field
-- encoding the user-information component (OCTET STRING)
 04 // encoding the choice for user-information (OCTET STRING, Universal)
 04 // encoding of the length of the OCTET STRING’s value field
 0E 01 06 01 // Here is the octet sequence of the DLMS-ConfirmedServiceError-pdu

Therefore, the complete encoding for an AARE APDU using LN referencing, with the given
parameters is as follows (all values are in hexadecimals):

LN referencing SN referencing

AARE-pdu = [61 1F A1 09 06 07 60 85 74 05 08 01 01
A2 03 02 01 01 A3 05 A1 03 02 01 01 BE 06 04 04 0E
01 06 01]

AARE-pdu = [61 1F A1 09 06 07 60 85 74 05 08 01 02
A2 03 02 01 01 A3 05 A1 03 02 01 01 BE 06 04 04 0E
01 06 01]

IS/IEC 62056-53 : 2006

131

Annex D
(informative)

Data model and protocol

The data model uses generic building blocks to define the complex functionality of the
metering equipment. It provides a view of this functionality of the meter, as it is available at its
interface(s). The model does not cover internal, implementation specific issues.

The communication protocol defines how the data can be accessed and exchanged.

This is illustrated in the figure below:

Figure D.1 – The three-step approach of COSEM

• the COSEM specification specifies metering domain specific interface classes. The
functionality of the meter is defined by the instances of these interface classes, called
COSEM interface objects. This is defined in IEC 62056-62. Logical names, identifying the
COSEM interface objects are defined in IEC 62056-61;

• the attributes and methods of these COSEM interface objects can be accessed and used
via the messaging services of the application layer;

• the lower layers of the protocol transport the information.

3. Transporting

C0 01 00 03 01 01 01 08 00 FF 02

2. Messaging

Protocol Services to access
attributes and methods

ISO, IE
C,...

Communication Protocol

Messages :
Service_Id(Class_Id, Instance_Id, Attribute_Id/Method_Id)

Encoding: (APDU)

1. Modeling COSEM Interface Objects

Register 0..n Class_id=3, Version=0
Attribute(s) Data Type Min Max Def
1. logical_name (static) octet-string
2. value (dyn.) instance specific
3. scaler-unit (static) scal_unit_type
Method(s) m/o
1. reset o

DLMS User A
ssociatio

n

IS/IEC 62056-53 : 2006

132

Bibliography

IEC 62056-41:1998, Electricity metering – Data exchange for meter reading, tariff and load
control – Part 41: Data exchange using wide area networks: Public switched telephone
network (PSTN) with LINK+ protocol

IEC 62056-51:1998, Electricity metering – Data exchange for meter reading, tariff and load
control – Part 51: Application layer protocols

IEC 62056-52:1998, Electricity metering – Data exchange for meter reading, tariff and load
control – Part 52: Communication protocols management distribution line message
specification (DLMS) server

ISO/IEC 7498-1:1994, Information technology – Open Systems Interconnection – Basic
Reference Model: The Basic Model

ISO/IEC 9545:1994, Information technology – Open Systems Interconnection – Application
Layer structure

ISO/IEC 10731:1994, Information technology – Open Systems Interconnection – Basic
Reference Model – Conventions for the definition of OSI services

NEMA C12.21:1999, Protocol Specification for Telephone Modem Communication

RFC 0768 – User Datagram Protocol
Author: J. Postel
Date: Aug-28-1980
Also: STD0006

RFC 0791 – Internet Protocol
Author: J. Postel
Date: Sep-01-1981
Also: STD0005
Updated by: RFC1349
Obsoletes: RFC0760

RFC 0792 – Internet Control Message Protocol
Author: J. Postel
Date: Sep-01-1981
Also: STD0005
Updated by: RFC0950
Obsoletes: RFC0777

RFC 0793 – Transmission Control Protocol
Author: J. Postel
Date: Sep-01-1981
Also: STD0007
Updated by: RFC3168

RFC 0826 – Ethernet Address Resolution Protocol: Or converting network protocol addresses
to 48.bit Ethernet address for transmission on Ethernet hardware
Author: D.C. Plummer
Date: Nov-01-1982
Also: STD0037

IS/IEC 62056-53 : 2006

133

RFC 0894 – Standard for the transmission of IP datagrams over Ethernet networks
Author: C. Hornig
Date: Apr-01-1984
Also: STD0041

RFC 0919 – Broadcasting Internet Datagrams
Author: J.C. Mogul
Date: Oct-01-1984
Also: STD0005

RFC 0922 – Broadcasting Internet datagrams in the presence of subnets
Author: J.C. Mogul
Date: Oct-01-1984
Also: STD0005

RFC 0950 – Internet Standard Subnetting Procedure
Authors: J.C. Mogul, J. Postel
Date: Aug-01-1985
Also: STD0005
Updates: RFC0792

RFC 1042 – Standard for the transmission of IP datagrams over IEEE 802 networks
Authors: J. Postel, J.K. Reynolds
Date: Feb-01-1988
Also: STD0043
Obsoletes: RFC0948

RFC 1112 – Host extensions for IP multicasting
Author: S.E. Deering
Date: Aug-01-1989
Also: STD0005
Updated by: RFC2236
Obsoletes: RFC0988, RFC1054

RFC 1321 – The MD5 Message-Digest Algorithm
Author: R. Rivest
Date: April 1992

RFC 1332 – The PPP Internet Protocol Control Protocol (IPCP)
Author: G. McGregor
Date: May 1992
Updated by: RFC3241
Obsoletes: RFC1172

RFC 1661 – The Point-to-Point Protocol (PPP)
Authors: W. Simpson, Ed.
Date: July 1994
Also: STD0051
Updated by: RFC2153
Obsoletes: RFC1548

RFC 1662 – PPP in HDLC-like Framing
Authors: W. Simpson, Ed.
Date: July 1994
Also: STD0051
Obsoletes: RFC1549

IS/IEC 62056-53 : 2006

134

RFC 1755 – ATM Signaling Support for IP over ATM
Authors: M. Perez, F. Liaw, A. Mankin, E. Hoffman, D. Grossman, A. Malis
Date: February 1995

RFC 1962 – The PPP Compression Control Protocol (CCP)
Author: D. Rand
Date: June 1996
Updated by: RFC2153

RFC 2131 – Dynamic Host Configuration Protocol
Author: R. Droms
Date: March 1997
Updated by: RFC3396
Obsoletes: RFC1541

RFC 2153 – PPP Vendor Extensions
Author: W. Simpson
Date: May 1997
Updates: RFC1661, RFC1962

RFC 2225 – Classical IP and ARP over ATM
Authors: M. Laubach, J. Halpern
Date: April 1998
Obsoletes: RFC1626, RFC1577

FIPS PUB 180-1 SECURE HASH STANDARD
Date: 1993 May 11
Supersedes FIPS PUB 180

IS/IEC 62056-53 : 2006

135

INDEX

3-layer, connection-oriented, HDLC based
communication profile 9, 116

3-layer, connection-oriented, HDLC based
profile... 26, 46

A_RELEASE services 16, 26
AARE .. 72
AARQ .. 23, 72
Abbreviations .. 11
Abstract syntax...................................... 18
ACSE .. 14, 15
ACSE APDUs 98, 134
ACSE procedures 18
ACTION.confirm 38
ACTION.indication................................. 55
ACTION.request 36
ACTION.response 57
Additional data types 113
APDU-s for data communication 107
APDU-s using Logical Name referencing

.. 107
APDU-s using Short Name referencing 112
Application Association.................... 19, 44
Application association establishment .. 15,

21, 43, 73
Application association establishment and

release ... 16, 19
Application association release 26, 45
Application context 79
Application layer services 21
Application layer structure 15
Application process13, 19, 23, 28, 35
Application Programming Interface 17
Application_Addresses parameter ... 41, 59
A-RELEASE .. 75
A-RELEASE.request.............................. 27
Attribute Reference list 87
Attribute_0 reference 86
Attributes... 20
Authentication 18
Authentication Mechanism Names 80
A-XDR encoding 16
BER encoding 16
Class_Id .. 31
Client .. 12, 13
Client /Server type data communication

services ... 29
Client COSEM Application Layer Services

.. 21
Client side layer management services.. 41
Client side services for Event notification

.. 39
Client SN_MAPPER............................... 21
Client/server paradigm 12
Client/Server type data communication

services ... 48
client-max-receive-pdu-size 74
Collision .. 125
Communication environment 115, 116, 125
Communication profile 9, 14

Communication profile specific parameters
...116, 130

Confirmed application association 19
Confirmed services................................ 81
Conformance block.......................106, 114
Connection oriented, CO 14
Connectionless...................................... 14
Connectionless service.......................... 20
Connection-oriented 14
Control function15, 66, 67
COSEM application context 79
COSEM Application Layer – Service

specification 18
COSEM Application Layer protocol

specification 66
COSEM application layer services 60
COSEM ASO... 15
COSEM Authentication Mechanism Names

.. 80
COSEM transport layer........................ 126
COSEM-ABORT service 63
COSEM-ABORT.indication 28, 48
COSEM-OPEN service 62
COSEM-OPEN.confirm.......................... 24
COSEM-OPEN.indication 43
COSEM-OPEN.request.......................... 22
COSEM-OPEN.response 44
COSEM-RELEASE service 63
COSEM-RELEASE.confirm.................... 28
COSEM-RELEASE.indication 46
COSEM-RELEASE.request.................... 27
COSEM-RELEASE.response 47
Data communication 20
Data communication services 16
Data link layer 116
Data link layers services...............118, 119
Data Model and Protocol 147
Definitions ... 11
DLMS compliance 113
DLMS version number 114
Encoding example for the AARE APDU,

case of failure 2 144
Encoding example for the AARE APDU,

case of success 138
Encoding example for the AARE-pdu, case

of failure 1.. 142
Encoding example of the xDLMS-

Initiate.request PDU 134
Encoding examples 134
Encoding of the AARE using high level

security .. 141
Establishment of a confirmed application

association... 69
Establishment of Non-Confirmed

Application Association 71
Establishment of special application

association... 71
Event notification................................... 39
EventNotification service21, 64, 84, 132

IS/IEC 62056-53 : 2006

136

EventNotification service and protocol . 122
EventNotification.indication 40
EventNotification.indication service 95
EventNotification.request....................... 58
EXCEPTION-Response 21
EXCEPTION-Response APDU..30, 49, 132
Extensions to DLMS for COSEM.......... 113
GET.confirm .. 31
GET.indication....................................... 50
GET.request .. 30
GET.response 51
Graceful release of an application

association ... 75
Identification and addressing scheme . 115,

117, 127
Identification of the originator of the event

report ... 125
Identification service............................ 123
Identifying a service invocation.............. 96
InformationReport service...................... 95
InformationReportRequest 60
Interface Object 17, 29
Invoke_Id .. 85
Invoke_id_And_Priority........................ 121
Invoke-Id-And-Priority.......................... 100
IPv4 network layer 126
Layer management services 18, 41
Logical Names..... 16, 20, 42, 49, 107, 113,

147
Long data transfer with ACTION 91
Long data transfer with GET 87
Long data transfer with SET 89
Long service parameters 87
Lower protocol layers 126
Management logical device 20
Mandatory application association 20
Mapping Client Services for Servers using

Short Names 42
Mapping of a InformationReport service to

an EventNotification.indication service 95
Master/ Slave operation on the multi-drop

bus... 124
Methods .. 20
Multi-drop configuration124, 133
Multiple references 86, 96
Non-confirmed application association... 20
Non-graceful release of an Application

Association .. 78
Non-transparent and transparent transfer

mechanisms 87
Object model ... 12
One-way communication 20
Overview ... 15
Parameters for application association

establishment 73
Parsing order... 74
Physical connection............................... 18
Physical layer 117
Pre-established application association 15,

20, 25, 71

Presentation layer 16
Priority .. 85, 96
Profile specific service parameters 120
Profile structure 115, 116, 125
proposed-conformance 74
proposed-dlms-version-number 74
Protocol for Application Association

establishment/release 69
Protocol for confirmed services 81, 93
Protocol for data communications.......... 81
Protocol for the EventNotification service

.. 84
Protocol for the InformationReport Service

.. 95
Protocol for the xDLMS services using LN

referencing... 81
Protocol for the xDLMS services using SN

referencing... 93
Protocol for unconfirmed services.... 83, 94
Protocol layers116, 125
Protocol specification 18
Protocol stack 14
Protocol_Connection_Parameters .. 22, 23,

25, 43, 120
Public client... 20
ReadRequest .. 59
ReadResponse...................................... 60
real-world IP networks 133
Referencing method 16
Registered COSEM names 78
Releasing an application association 75
Repeated COSEM-OPEN.request service

invocations... 75
response-allowed 23, 74
RLRE .. 28, 46
RLRQ ...27, 28, 46
Scope.. 9
Selective access 85, 96
Server ... 12, 13
Server COSEM Application Layer services

.. 43
Service invocation 85, 96
Service mapping.................................. 118
Service specification 16, 18
Service_Class 100
Service_Class == Confirmed23, 121
Service_Class == Unconfirmed.23, 25, 121
Services provided with Logical Name

references .. 49
Services provided with Short Name

references .. 59
Services with LN referencing 63
SET.confirm .. 35
SET.indication 52
SET.request .. 32
SET.response.. 54
SetMapperTables.request...................... 41
Short Names 16, 42, 59, 95, 112
SN references 21
SN_MAPPER_ASE................................ 17

IS/IEC 62056-53 : 2006

137

Special application associations 19
Specific considerations/constraints 116,

120, 131
Specification method 15
State definitions for the Client side Control

Function ... 66
State definitions for the Server side

Control Function................................. 67
Supporting layer services 118
Supporting layer services and service

mapping116, 129
TCP connection establishment by the

server... 133
TCP connection manager process 129, 130
TCP-UDP/IP based communication profiles9
The TCP-UDP/IP based communication

profiles (COSEM_on_IP) 125
Transferring long service parameters ... 87,

96
Transparent transfer mechanisms.......... 87
Transporting long messages.........124, 132
Trigger_EventNotification_Sending........ 21
Trigger_EventNotification_Sending service

.. 132

Trigger_EventNotification_Sending.request
...41, 122

Unconfirmed services 83, 94
UnconfirmedWriteRequest 60, 94
Use_RLRQ_RE 26, 47
Use_RLRQ_RE == FALSE27, 46, 47
Use_RLRQ_RE == TRUE27, 46, 47
Useful types .. 100
wPort number 132
WriteRequest .. 60
WriteResponse 60
xDLMS Application Service Element 113
xDLMS procedures 18
xDLMS Services using LN referencing... 81
xDLMS services using SN referencing ... 93
xDLMS_ASE.................................... 13, 15
xDLMS-Initiate.request......................... 23
xDLMS-Initiate.request PDU.................. 44
xDLMS-Initiate.response 25
XX-DISCONNECT.confirm..................... 28
XX-DISCONNECT.indication 46
XX-DISCONNECT.request..................... 27

IS/IEC 62056-53 : 2006

138

Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote
harmonious development of the activities of standardization, marking and quality certification of goods
and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form
without the prior permission in writing of BIS. This does not preclude the free use, in course of imple-
menting the standard, of necessary details, such as symbols and sizes, type or grade designations.
Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also
reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that
no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users
of Indian Standards should ascertain that they are in possession of the latest amendments or edition by
referring to the latest issue of ‘BIS Catalogue’ and ‘Standards: Monthly Additions’.

This Indian Standard has been developed from Doc No.: ETD 13 (6236).

Amendments Issued Since Publication
__

Amendment No. Date of Issue Text Affected
__

__

__

__

__

BUREAU OF INDIAN STANDARDS
Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 2323 0131, 2323 3375, 2323 9402 Website: www.bis.org.in

Regional Offices: Telephones

Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg 2323 7617
NEW DELHI 110002 2323 3841

Eastern : 1/14, C.I.T. Scheme VII M, V.I.P. Road, Kankurgachi 2337 8499, 2337 8561
KOLKATA 700054 2337 8626, 2337 9120

Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160022 260 3843
260 9285

Southern : C.I.T. Campus, IV Cross Road, CHENNAI 600113 2254 1216, 2254 1442
2254 2519, 2254 2315

Western : Manakalaya, E9 MIDC, Marol, Andheri (East) 2832 9295, 2832 7858
MUMBAI 400093 2832 7891, 2832 7892

Branches: AHMEDABAD. BANGALORE. BHOPAL. BHUBANESHWAR. COIMBATORE. DEHRADUN.
FARIDABAD. GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR. LUCKNOW.
NAGPUR. PARWANOO. PATNA. PUNE. RAJKOT. THIRUVANATHAPURAM. VISAKHAPATNAM.

Published by BIS, New Delhi

{
{

{
{
{

