
Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to
information for citizens to secure access to information under the control of public authorities,
in order to promote transparency and accountability in the working of every public authority,
and whereas the attached publication of the Bureau of Indian Standards is of particular interest
to the public, particularly disadvantaged communities and those engaged in the pursuit of
education and knowledge, the attached public safety standard is made available to promote the
timely dissemination of this information in an accurate manner to the public.

इंटरनेट मानक

“!ान $ एक न' भारत का +नम-ण”
Satyanarayan Gangaram Pitroda

“Invent a New India Using Knowledge”

“प0रा1 को छोड न' 5 तरफ”
Jawaharlal Nehru

“Step Out From the Old to the New”

“जान1 का अ+धकार, जी1 का अ+धकार”
Mazdoor Kisan Shakti Sangathan

“The Right to Information, The Right to Live”

“!ान एक ऐसा खजाना > जो कभी च0राया नहB जा सकता है”
Bhartṛhari—Nītiśatakam

“Knowledge is such a treasure which cannot be stolen”

“Invent a New India Using Knowledge”

है”ह”ह

IS/IEC 61508-7 (2000): Functional safety of
electgrical/electronic/programmable electgronic
safety-related systems, Part 7: Overview of techniques and
measures [ETD 18: Industrial Process Measurement and
Control]

,..___.
~,t(!~!’> “’99’-l,/ \@ —. --7

6

B
lS/lEC 61508-7:2000

qq~.m Iqq)

i

Indian Standard ~
FUNCTIONAL SAFETY OF ELECTRICAL

ELECTRONIC/PROGRAMMABLE ELECTRONIC
SAFETY-RELATED SYSTEMS

PART 7 OVERVIEW OF TECHNIQUES AND MEASURES

ICS 25.040.40; 35.240.50

@ BIS 2009

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADIJR SHAH ZAFAR MARG

NEW DELHI 110002

January 2009 Price Group 19

lS/lEC 61508-7:2000

CONTENTS
Page

clause

1 Scope .. 1

2 Normative references ..’... 3

3 Definitions and abbreviations ... 3

Annex A (informative) Overview of techniques and measures for E/E/PES: control of random
hardware failures (see IEC 61 508-2) 4

A.1

A.2

A.3

A.4

A.5

Electrical .. 4

A.1.1 Failure detection by on-line monitoring 4...

A.1.2 Monitoring of relay contacts ..m......................~ 4

A.1.3 Comparator 4..!{.....

A.1.4 Majority voter .. 5

A.1.5 Idle current principle (de-energised to trip) ...$ 5

Electronic ...+ 5

A.2.1 Tests by redundant hardware ...l 5

A.2.2 Dynamic principles .. 6

A.2.3 Standard test access port and boundary-scan architecture 6

A.2.4 Fail-safe hardware ..."........ 6

A.2.5 Monitored redundancy 7

A.2.6 Electrical/electronic components with automatic check 7

A.2.7 Analogue signal monitoring ... 7

A.2.8 De-rating ... 8

Processing units .. 8

A.3.1 Self-test by software: limited number of patterns (one-channel) 8

A.3.2 Self-test by software: walking bit (one.channel) .. 8

A.3.3 Self-test supported by hardware (one-channel) .. 8

A.3.4 Coded processing (one-channel). 9...

A.3.5 Reciprocal comparison by software .. 9

Invariable memory ranges ..."........""... '......" 9

A.4.1 Word-saving multi-bit redundancy (for example ROM monitoring with
a modified Hamming code)!...’. 9

A.4.2 Modified checksum 10..

A.4.3 Signature of one word (8. bit) .. 10

A.4.4 Signature of a double word (16-bit)’....’..... 10

A.4.5 Block replication (for example double ROM with hardware or
software comparison). 11...

Variable memory ranges 11...!..

A.5.1 RAM test “checkerboard” or '`march'' ... 11

A.!i.2 RAM test “walkpath” 12..

A.5.3 RAM test “galpat” or’’transparent galpat'` .. 12

A.5,4 RAM test *’Abraham”.. 13................................=..

A.5.5 One-bit redundancy (for example RAM monitoring with a parity bit) 13

A.5.6 RAM monitoring with a modified Hamming code, or detection of data failures
with error-detection-correction codes (EDC)~’3

A.5.7 Double RAM with hardware or software comparison and read/write test14

I

lS/lEC 61506-7:2000 —

Clause

A.6

A.?

A.a

A.9

A.1O

All

A.12

A.13

A.14

Page

I/Cl-units and interfaces (external communication) ... 14

/4.6.1 Test pattern .. 14

A.6.2 Code protection ... 14

A.6.3 Mulli-channel parallel output 15

A.6.4 Monitored outputs .. 15

A.6.5 Input comparison/voting 16 ~+

Data paths (internal communication) 16 ‘1................... ...

A.7.1 C)ne-bit hardware redundancy .. 16

A.7.2 Multi-bit hardware redundancy ... 16 @J

A.7.3 Complete hardware redundancy .. 16 t
A.7.4 Inspection using test patterns .. 17

A.7.5 Transmission redundancy ...”.... 17 ●

A.7,6 Information redundancy ... 17

Power supply .."....."""".""."."".".. 17

A.8.1 Overvoltage protection with safety shut-off .. 17

A.8.2 Voltage control (secondary) ... 18

A.8.3 Power-down with safety shut-off 18

Temporal and logical program sequence monitoring ... 18

A.9.1 Watch-dog with separate time base without time-window 18

A.9.2 Watch-dog with separate time base and time.window ...l9

A.9.3 Logical monitoring of program sequence ..l9

A.9.4 Combination of temporal and logical monitoring of program sequences19

A.9.5 Temporal monitoring with on-line check ..: ... 19 ,

Ventilation and heating ..20 4’

A.1O.1

A.1O.2

A.1O.3

A.1O.4

A.1O.5

Temperature sensor .. 20

Fan control .. 20

Actuation of the safety shut-off via thermal fuse
A...+20

Staggered message from thermo-sensors and conditional alarm 20

Connection of forced-air cooling and status indication .. 20 *

Communication and mass-storage .. 21

A.1 1.1 Separation of electrical energy lines frOm infOrmatlOn lines21

A,l 1.2 Spatial separation of multiple lines .. 21

A.1 1.3 Increase of interference immunity.. .. 21

A.1 1.4 Antivalent signal transmission .. 22

Sensors ...

1

... 22

A.1 2.1 Reference sensor ... 22

A.1 2.2 Positive-activated switch .. 22

Final elements (actuators) .. 22

A.13.1 Monitoring .. 22

A.1 3.2 Cross-monitoring of multiple actuators ... 23
I

Measures against the physical environment ... 23

Annex B (informative) Overview of techniques and measures for E/E/PES: avoidance of
systematic failures (see IEC 61508-2 and lEC61508.3) ... 24

B.1 General measures and techniques ... 24

B.1.1 Project management ... 24

B.1.2 Documentation ...!.. .. 25

B.1.3 Separation of safety-related systems from non-safety-related systems26

B.1.4 Diverse hardware ... 26

1!

KMEC 61508-7:2000

Clause Page

5.2 E/E/PES safety requirements specification ... 27

B.2.1 Structured specification ... 27

B.2.2 Formal methods 27

B.2.3 Semi-formal methods .. 28

5.2.3.1 General .. 28

B.2.3.2 Finite state machines/state transition diagrams 28

B.2.3.3 Time Petri nets ...* 29

B.2.4 Computer-aided specification tools ... 29

B.2.4.I Generai .. 29

B.2.4.2 Tools oriented towards no specific method .. 30

B.2.4.3 Model orientated procedure with hierarchical analysis 30

B.2.4.4 Entity models ...i 30

B.2.4.5 Incentive and answer 31

B,2,5 Checklists ... 31

B.2.6 Inspection of the specification ... 32

B.3 E/E/PES design and development ... 32

B.3.1 Observance of guidelines and standards 32

B.3.2 Structured design .. 33

B.3.3 Use of well-tried components .. 34

B.3.4 Modularisation... .. 34

B.3.5 Computer-aided design tools 35

B.3.6 Simulation”.... .. 35

B.3.7 inspection (reviews and analysis) ... 35

B.3.8 Walk-through ... 36

B,4 E/E/PES operation and maintenance procedures .. 36

B.4.1 Operation and maintenance instructions .. 36

B.4.2 User friendliness ... 37

B.4.3 Maintenance friendliness .. 37

B.4.4 Limited operation possibilities ... 37

B.4.5 Operation only by skilled operators!.. 38

B.4.6 Protection against operator mistakes .. 38

B.4.7 (Not used) 38

B.4.8 Modification protection .. 38

B.4.9 Input acknowledgement .. 38

B.5 E/E/PES integration ... 39

B.5.1 Functional testing .. 39

B.5.2 Black.box testing ... 39

B.5.3 Statistical testing 40

B.5.4 Field experience 40

B.6 E/E/PES safety validationi 41

B.6.1 Functional testing under environmental conditions .. 41

B.6.2 Interference surge immunity testing 42

B.6.3 (Not used) ... 42

B.6.4 Static analysis ... 42

B.6.5 Dynamic analysis .. 43

Ill

lS/lEC 61508-7:2000

Clause Page

B.6.6 Failure analysis ... 43

B$3.6.1 Failure modes and effects analysis .. 43

B.6.6.2 Cause consequence diagrams ... 44

B.6.6.3 Event tree analysis ... 44

B.6.6.4 Failure modes, effects and criticality analysis 44

B.6.6.5 Fault tree analysis .. 45

B.6.7 Worst.case analysis .. 45

B.6.8 Expanded functional testing .. 45

B.6.9 Worst.case testing .. 46

B.6.1O Fault inseRion testing .. 46

Annex C (informative) Overview of techniques and measures for achieving software safety
integrity (see IEC 61508-3) .. 47

C,l GeneraI ... 47

C.2 Requirements and detailed design .. 47

C.2.1 Structured methods ... 47

C.2.1.1 General .. 47

C.2.1.2 CORE – Controlled Requirements Expression 48

C.2.1.3 JSD –Jackson System Development ... 48

C.2. 1.4 MASCOT – Modular Approach to Software Construction, Operation
and Test ... 49

C.2.1.5 Real-time Yourdon ... 49

C.2.1.6 SADT – Structured Analysis and Design Technique 50

C.2.2 Data flow diagrams ... 51

C.2.3 Structure diagrams .. 52

C.2.4 Formal methods .. 52

C.2.4.1 General .. 52

C.2.4.2 CCS - Calculus of Communicating Systems .. 53

C.2.4.3 CSP – Communicating Sequential Processes 53

C.2.4.4 HOL – Higher Order Logic ... 54

C.2.4.5 LOTOS ... 54

C.2.4,6 OBJ ... 54

C.2.4.7 Temporal logic .. 55

C.2.4.8 VDM, VDM++ - Vienna Development Method 56

C.2.4.9 Z .. 57

C.2.5 Defensive programming ... 58

C.2.6 Design and coding standards .. 59

C.2.6.1 General .. 59

C.2.6.2 Coding standards .. 59

C.2.6.3 No dynamic variables or dynamic objects ... 60

C.2.6.4 On-line checking during creation of dynamic variables or
dynamic objects ..i 60

C.2.6.5 Limited use of interrupts .. 60

C.2.6.6 Limited use of pointers .. 61

C.2.6.7 Limited use of recursion .. 61

C.2.7 Structured programming .. 61

C.2.8 Information hiding/encapsulation .. 62

C.2.9 Modular approach .. 63

C.2.1O Use of trusted/verified software modules and components 63

WJ
I

n

,

t

iv

..
--3

b
lS/lEC 61506-7:2000

I

Clause Page

C.3 Architecture design .."....e.. FiA

C.3.1

C.3.2

C.3.3

C.3.4

C.3.5

C.3.6

C.3.7

C.3.8

C.3.9

C.3.1O

C.3.11

C.3.12

C.3.13

Fault detection and diagnosis
. .

.. 64
Error detecting and correcting codes

""""""".""""""."."""""".".""""-.....S-""""""""""....•O..... 65
Failure assertion programming..

"""""""""""""S"."."-.."."`."....""".S..".""."".""."..." ."""....... 65
Safety bag {... 66
Software diversity (diverse programming)..

"""""""""""""""""""""""'""""""""""""""""""""""""".""""..` 66
Recovery block

""--"-"'` -""--""""""-"".""".""".-".""."""..""".".."". "...."." """"""..." ".""""S"..""""..""... 67
Backward recovery

"""""""'""""""""""""""""'"""""'"""""'""""""`""""'"''""""""""""""""""""""'""""""""""""""`"""`." 68
Forward recovery .. 68
Re-try fault recovery mechanisms

"""""""""'"""""""""""""""""'""""""""""""""""""""""'"""""""""`""""."68
Memorizing executed cases .. 69

Graceful degradation
"--"""""--""-"""""--"-"""""-."-"".S"""".""S-"."".""""-..".S"".".."' ".".. "."".. "".."".... 69

Artificial intelligence fault correction
""`'' -""""̀ ""..70

Dynamic reconfiguration ""'""""""""""`.""".o."...e..........=...o.. 70
C.4 Development tools and programming languages ... ~~

C.4.1 Strongly typed programming languages .. 71

C.4.2 Language subsets ... 71
C.4.3 Certified tools and certified translators .. 72

C.4.4 Tools and translators: increased confidence from use .. 72

C.4,4.1 Comparison of source program and executable code 73

C.4.5 Library of trusted/verified software modules and components, 73

C.4.6 Suitable programming languages. """"'"""""""""""""""""""."""..""....................................... 74
C.5 Verification and modification .. 77

C.5.1

C.5.2

C.5.3

C.5.4

C.5.5

C.5.6

C.5.7

C.5.8

C.5.9

C.5.1O

C.5.11

C.5.12

C.5.13

C.5.14

C.5.15

C.5.16

C.5.17

C.5.18

C.5.19

C.5.20

C.5.21

C.5.22

C.5.23

C.5.24

Probabilistic testinge... 77
Data recording and analysis.. ..., 78
Interface testing .. 78
Bou,ndary value analysis ... 78
Etror guessing ... 79
Error seeding 79
Equivalence classes and input partition testing ... 80
Structure-based testing .. 80
Control flow analysis ... 81
Data flow analysis 82
Sneak circuit analysis .. 82
Symbolic execution ... 83
Formal proof ... 83
Complexity metrics .. 84
Fagan inspections .. 84

W alk-throughs/design reviews ... 85
Prototyping/animation .. 85
Process simulation ... 86

Performance requirements .. 86

Performance modelling 87

Avalanche/stress testing ... 87
Response timing and memory constraints .. 88

Impact analysis ..$.. 88

Software configuration management ... 89

:

v

IWEC 6150$-7:2000

Clause Page

G.Ei Functional safety assessment 89

C.6.1 Decision iables (truth tables) 89

C.6.2 Hazard and Operability Study (HAZOP) ... 89

G.6.3 Common cause failure analysis ...$.....$.......... 91

C.61.4 Markov models 91

C.6.5 Reliability block diagram.........,.. .. 92

C.6.6 Monte. Carlo simulation 93

Annex El (informative) A probabilistic approach to determining software safety integrity
forpre-developed software 94

C?.1 General .. 94

!3.2 Statistical testing formulae and examp!es of their use .. 95

!3.2.1 Simple statistical test forlow demand mode of operation 95

D,2.1.1 Prerequisites”...... .. 95

D.2. I.2 Results.. .. 95

D.2.1.3 Example ..., 95

D.2.2 Testing of an input space (domain) for a iow demand mode of operation 95
f32~f prerequisites ... 95

D.2.2.2 Flesults .. 95

D.2.2.3 Example .. 96

!2.2,3 Simple statistical test for high demand or continuous mode of operation 96

D.2.3.1 Prerequisites ... 96

13.2.3.2 Results ... 96

D.2.3.3 Example .. 97

D.2.4 Complete lest ... 97

D.2.4. I Prerequisites ... 97

D.2.4,2 Results .. 97

D.2.4.3 Example. 98

D.3 References 98

Bibliography .. 99

Table C.1 – Recommendations for specific programming languages 76

Table D.1 – Necessary history for confidence to safety integrity levels 94

Table D.2 – Probabilities of failure for low demand mode of operation 95

Table D.3 – ?dear~ distances of two test points 96

Table D.4 – Probabilities of failure for high demand or continuous mode of operation 97

Table D.5 – Probability of testing all program properties 98

vi

~

lS/lEC 61506-7:2000

Industrial Process Measurement and Control Sectional Committee, ETD 18 $

NATIONAL FOREWORD

This Indian Standard (Part 7) which is identical with IEC 61508-7 : 2000 ‘Functional safety of
electrical/electronic/programmable electronic safety-related systems — Part 7: Overview of
techniques and measures’ issued by the International Electrotechnical Commission (lEC) was
adopted by the Bureau of Indian Standards on the recommendation of the Industrial Process
Measurement and Control Sectional Committee and approval of the Electrotechnical Division Council.

I

The text of IEC Standard has been approved as suitable for publication as an Indian Standard without
deviations. Certain conventions are, however, not identical to those used in Indian Standards.
Attention is particularly drawn to the following:

a)

b)

Wherever the words ‘International Standard’ appear referring to this standard, they should
be read as ‘Indian Standard’.

Comma (,) has been used as a decimal marker, while in Indian Standards, the current
practice is to use a point (.) as the decimal marker.

In this adopted standard, references appear to certain International Standards for which Indian
Standards also exist. The corresponding Indian Standards, which are to be substituted in their
respective places, are listed below along with their degree of equivalence for the editions indicated:

Memafiond Skmdatd

IEC 61508-1 : 1998 Functional safety
of electrical/electronic/programmable
electronic safety-related systems —
Part 1: General requirements

IEC 61508-2:2000 Functional safety
of electrical/electronic/programmable
electronic safety-related systems —
Part 2: Requirements for electrical/
electronic/programmable electronic
safety-related systems

IEC 61508-3: 1998 Functional safety
of electricaUelectronic/programmable
electronic safety-related systems —
Parl 3: Software requirements

IEC 61508-4: 1998 Functional safety
of electrical/electronic/programmable
electronic safety-related systems —
Parl 4: Definitions and abbreviations

IEC 61508-5: 1998 Functional safety
of electrical/electronic/programmable
electronic safety-related systems —
Part 5: Examples of methods for the
determination of safety integrity levels

Corresponding Indian Standard Degree of
Equivalence

lS/lEC 61508-1 : 1998 Functional safety of Identical
electrical/electronic/programmable electronic
safety-related systems: Part 1 General
requirements

lS/lEC 61508-2:2000 Functional safety of do
electrical/electronic/programmable electronic
safety-related systems: Parl 2 Requirements
for electrical/ electronic/ programmable
electronic safety-related systems

lS/lEC 61508-3: 1998 Functional safety of do
electrical/electronic/programmable electronic
safety-related systems: Part 3 Software
requirements

lS/lEC 61508-4 : 1998 Functional safety of do
electrical/electronic/programmable electronic
safety-related systems: Part 4 Definitions
and abbreviations

lS/lEC 61508-5: 1998 Functional safety of do
electrical/electronic/programmable electronic
safety-related systems: Part 5 Examples of
methods for the determination of safety
in?egrity levels

vii

lS/lEC 61508-7:2000

/rrternationa/ Standard

!EC 61508-6 : 2000 Functional safety
of electrical/electronic/programmable
electronic safety-related systems —
Pari 6: Guidelines on the application of
IEC 61508-2 and IEC 61508-3

lSO/lEC Guide 51 : 19901) Guidelines
for the inclusion of safety aspects in
standards

Corresponding Indian Standard

lS/lEC 61508-6:2000 Functional safety of
electrical/electronic/programm&ble electronic
safety-related systems: Pm 6 Guidelines on
the application of IEC 61508-2 and IEC
61508-3

lS/lSO/lEC Guide 51 :2005 Saf@ aapaeta
— Guidelines for the inclusion m et@U@lk

Degree of
Equivalence

Identical

Uchnioaliy
Equivalent f<

in this adopted standard
standard:

/nternaiiona/ Standard

IEC Guide 104:1997

The technical committee has reviewed the provisions of the following WWrtWNional Standard referred LJ
and has decided that it is acceptable for use in conjunction with this

Title

Guide to the draftina of safetv standards, and the role of Committees with
safety pilot function; and safety group functions

Only the English language text in the International Standard has been retained while adopting it in this
Indian Standard, and as such the page numbers given here are not the same as in the IEC Standard.

For the purpose of deciding whether a particular requirement of this standard is complied with, the
final value, observed or calculated, expressing the result of a test, shall be rounded off in accordance
with IS 2 : 1960 ‘Rules for rounding off numerical values (revised)’. The number of significant places
retained in the rounded off value should be the same as that of the specified value in this standard.

.——. .- ——-—
1)Slrlce ,evi~~d in 2005

Vlll

.. ..

h
lS/lEC 61508-7:2000

t
INTRODUCTION

Systems comprised of electrical and/or electronic components have been used for many years
to perform safety functions in most application sectors. Computer-based systems (generically
referred to as programmable electronic systems (P ESS)) are being used in all application
sectors to perform non-safety functions and, increasingly, to perform safety functions. If
computer system technology is to be effectively and safely exploited, it is essential that those I
responsible for making decisions have sufficient guidance on the safety aspects on which to
make those decisions.

This International Standard sets out a generic approach for all safety Iifecycle activities for
systems comprised of electrical and/or electronic and/or programmable electronic components

i

(electrical/electronic/programmable electronic systems (E/E/PESs)) that are used to perform
safety, functions. This unified approach has been adopted in order that a rational and i

consistent technical policy be developed for all electrically based safety-related systems.
,

A major objective is to facilitate the development of application sector standards.

In most situations, safety is achieved by a number of protective systems which rely on many
technologies (for example mechanical, hydraulic, pneumatic, electrical, electronic, programmable
electronic). Any safety strategy must therefore consider not only all the elements within an
individual system (for example sensors, controlling devices and actuators) but also all the
safety-related systems making up the total combination of safety-related systems. There-
fore, while this International Standard is concerned with electrical/electronic/programmable
electronic (E/E/PE) safety-related systems, it may also provide a framework within which
safety-related systems based on other technologies may be considered.

It is recogniskd that there is a great variety of E/E/PES applications in a variety of application
sectors and covering a wide range of complexity, hazard and risk potentials. In any particular

4

application, the exact prescription of safety measures will be dependent on many factors
specific to the application. This International Standard, by being generic, will enable such a
prescription to be formulated in future application sector International Standards.

This International Standard :

– considers all relevant overall, E/E/PES and software safety Iifecycle phases (for example,
from initial concept, through design, implementation, operation and maintenance to
decommissioning) when E/E/PESs are used to perform safety functions;

– has been conceived with a rapidly developing technology in mind; the framework is
sufficiently robust and comprehensive to cater for future developments;

– enables application sector International Standards, dealing with safety-related E/E/PESs,
to be developed; the development of application sector international standards, within the
framework of this standard, should lead to a high level of consistency (for example, of
underlying principles, terminology, etc.) both within application sectors and across
application sectors; this will have both safety and economic benefits;

– provides a method for the development of the safety requirements specification necessary
to achieve the required functional safety for E/E/PE safety-related systems;

ix

lS/lEC S1508-7 :2000 i

uses safety irltegrity levels for specifying the target level o+safety integrity for the safety
functions to be implemented by the E/E/F’E safety-related systems;

adopts a risk-based approach for the determination of the safety integrity level
requirements; ,

sets numerical target failure measures for E/E/PE safety-related systems which are linked
to the safety integrity levels;

sets a lower Ii fmit on the target failure measures, in a dangerous mode of failure, that can
be claimed for a single E/E/PE safety-related system; for E/E/PE safety-related systems
operating in

– a Inw demand mode of operation, the lower limit is set at an average probability of
failure of 10-5 to perform its design function on demand;

– a high demand or continuous mode of operation, the lower limit is set at a probability

of a dangerous failure of 10–9 per hour;

NOTE A single E/E/PE safety-related system does not necessarily mean a single-channel architecture.

adopts a broad range of principles, techniques and measures to achieve functional safety
for E/E/PE safety-related systems, but does not rely on the concept of fail-safe, which may
be of value when the failure modes are well defined and the level of complexity is
relatively low – the concept of fail-safe was considered inappropriate because of the full
range of complexity of E/E/PE safety-related systems that are within the ‘scope of the
standard.

i

4

x

.

~
lS/lEC 61508-7:2000

Standard

FUNCTIONAL SAFETY OF ELECTRICAL I

ELECTRONIC/PROGRAMMAt3LE ELECTRONIC
SAFETY-RELATED SYSTEMS

PART 7 OVERVIEW OF TECHNIQUES AND MEASURES

1 Scope

1.1 This part of IEC 61508 contains an overview of various safety techniques
relevant to IEC 61508-2 and IEC 61508-3.

f

and measures

NGTE The references should be considered as basic references to methods and tools or as examples, and may
not represent the state of the art.

1.2 IEC 61508-1, IEC 61508-2, IEC 61508-3 and IEC 61508-4 are basic safety publications,
although this status does not apply in the context of low-complexity E/E/PE safety-related
systems (see 3.4.4 of IEC 61508-4). As basic safety publications, they are intended for use by
technical committees in the preparation of standards in accordance with the principles
contained in IEC Guide 104 and lSO/l EC Guide 51. IEC 61508 is also intended for use as a
stand-alone standard.

One of the responsibilities of a technical committee is, wherever applicable, to make use of
basic safety publications in the preparation of its own publications. In this context, the
requirements, test methods or test conditions of this basic safety publication will not apply
unless specifically referred to or included in the publications prepared by those technical
committees.

NOTE 1 The functional safety of an E/E/PE safety-related system can only be achieved when all related
requirements are met. Therefore it is important that all related requirements are carefully considered and
adequately referenced.

NOTE 2 In the USA and Canada, until the proposed process sector implementation of IEC 61508 (i.e. IEC 6151 1)
IS publ!shed as an international standard in the USA and Canada, existing national process safety standards based
on IEC 61508 (i.e. ANS1/l SA S84.01-1996) ca’n be applied to the process sector instead of IEC 61508.

1.3 Figure 1 shows the overall framework for parts 1 to 7 of this standard and indicates the
role that IEC 61508-7 plays in the achievement of functional safety for E/E/PE safety-related
systems.

I

II 1 11...J..1J..#.J/A
——.

lS/lEC 61506-7:2000

~~
Development of the overall safety

definition, hazard end risk anaiyeig
(E/WPEssfety-relsted systems, other

technology sefety-relsted systems snd
&rternsl risk reduction facilities)

7.1 to 7.5
1 m

Risk based approaches
to the development of

the safety integrity I

I I requirements
I

I
Allocation of the safety

requirements to the E/EiPE
safety-related systems

Reslisation Guidelines for the
phaae for application of

WWPE sefety- aafet y-related parts 2 snd 3
related systems software

4

--JPART2f_ * -J PART 3f-

1

Installation and commissioning
and safety validation of E/E/PE

safety-related systems

I 7.13 and 7.14

I
I

+

I -PART I P
1

Operation and maintenance,
modification and retrofit,

decommissioning or disposal of
EiEiPE safety related systems

I 7.15 t07.17 I

GEa
I Definitions and

abbreviations
I

I
Docurnenfation

Clause 5 and
annex A I

%m!mP

w
IFunctional safety

assessment Iw

Figure 1 - Overall framework of IEC 61508

2

IS/lEC 61506-7:2000

2 Normative references (

The following normative documents contain provisions which, through reference in this text,
constitute provisions of this part of IEC 61508. For dated references, subsequent amend-
ments to, or revisions of, any of these publications do not apply. However, parties to
agreements based on this part of IEC 61508 are encouraged to investigate the possibility of
applying the most recent editions of the normative documents indicated below. For undated
references, the latest edition of the normative document referred to applies. Members of ISO \
and IEC maintain registers of currently valid International Standards.

i

1EC 61508-1:1998, Functional safety of electricaUelectronic/programmable electronic safety-
related systems – Part 1: General requirements I

IEC 61508-2, Functional safety of electrical/electronic/programmable electronic safety-related
Part 2: Requirements for electrical/electronic/programmable electronic safety-

i
systems –

.

related systems 1)

IEC 61508-3:1998, Functional safety of electricaVelectronic/programmable electronic safety-
related sys’terns – Part 3.’ Software requirements

1EC 61508-4:1998, Functional safety of electricaVelectronic/programmable electronic safety-
related systems – Part 4: Definitions arrd abbreviations of terms

IEC 61508-5:1998, Functional safety of electricaVekctronic/programmable electronic safety-
related systems – Part 5 Examples of methods for the determination of safety integrity levels

IEC 61508-6, Functional safety of electrical/electronic/programmable electronic safety-related
systems – Part 6: Guidelines on the application of iEC 61508-2 and IEC 61508-31)

IEC Guide 104:1997, The preparation of safety publications and the use of basic safety
publications and group safety publications

lEC/l SO Guide 51:1990, Guidelines for the inclusion of safety aspects in standards

3 Definitions and

For the purposes of
IEC 61508-4 apply.

abbreviations

this part of IEC 61508, the definitions and abbreviations given in

4

1) TO be published,

3

BAEC 61508-7:2000

Annex A
(informative)

(Ywwview of techniques and measures for E/E/PES:
control of random hardware failures

(see !EC 61 508-2)

A.1 EIkxXrical

Gichai objective: To control failures in electromechanical components

A.%.3 F’ai!ure detection by on-line monitoring

NOTE This technique/measure is referenced in tables A.2, A.3, A,7 and .4.14 to A.19 of IEC 61508-2.

Aim: To detect failures by monitoring the behaviour of the E/E/PE safety-related system in
response to the normal (on-line) operation of the equipment under control (EUC).

Description: Under certain conditions, failures can be detected using information about (for
example) the time behaviour of the EUC. For exampie, if a switch, which is part of the E/E/PE
safety-related system, is normally actuated by the EUC, then if the switch does not change
stale at the expected time, a failure will have been detected. It is not usually possible to
localise the failure.

A.1.2 Monitoring of relay contacts

NCH’E This technique/measure is referenced in tab!es A.2 and A.15 Of IEC 61508-2,

Aim: TO detect failures (for example welding) of relay contacts.

Description: Forced contact (or positively guided contact) relays are designed so that their
contacts are rigidly linked together. Assuming there are two sets of changeover contacts, a
and b, if the normally open contact, a, we!ds, the normally closed contact, b, cannot close
when the relay coil is next de-energised. Therefore, the monitoring of the closure of the
normally closed contact b when the relay coil is de-energised may be used to prove that
the normally open contact a has opened. Failure of normally closed contact b to close
indicates a failure of contact a, so the monitoring circuit should ensure a safe shut-down, or
ensure that shut-dawn is continued, for any machinery controlled by contact a.

>

h

References:

Zusammenstellung und Bewertung elektromechanischer Sicherheitsschaltungen fur Ver-
riegetingseinrichtu rlgen. F. Kreutzkampf, W. Hertel, Sicherheitstechnisches Informations- und
Arbeitsbla?t 330212, B\ A-Handbuch. 17. Lfg. W91, Erich Schmidt Verlag, Bielefeld.

Aniagensichewrrg mit !vlitteln der MSR-Technik. G. Strohrman, Oldenburg, 1983.

Al.3 Comparator

NDTE Ti;Is te~hLr\iq~e/measure IS referenced in tables A.2, A.3, A,4 of IEC 61508-2.

Aim: To detect, as early as possible, {non-simultaneous) failures in an independent
processing unit or in the comparator.

4

.’ 4“..-. -. ,L= ,- .. ,. : —

WIEC 6150S-7 :2000

Description: The signals of independent processing units are compared cyclically or
continuously by a hardware comparator. The comparator may itself be externally tested, or it
may use self-monitoring technology. Detected differences in the behaviour of the processors
lead to a failure message.

A.1 .4 Majority voter

NOTE This technique/measure is referenced in tables A.2, A.3 and A.4 of IEC 61508-2.

Aim: To detect and mask failures in one of at least three hardware channels.

Description: A voting unit using the majority principle (2 out of 3, 3 out of 3, or m out of n) is
used to detect and mask failures. The voter may itself be externally tested, or it may use self-
monitoring technology.

References:

Guidelines for Safe

Anlagensicherung
Dechema, 1988.

Automation of Chemical Processes. CCPS, AIChE, New York, 1993.

mit Mitteln der MSR-Technik. Praxis der Sicherheitstechnik, Vol 1,

Sicherung von Anlagen der Verfahrenstechnik mit Mitteln der Mess-, Steuerungs- und
Regelungstechnik. VD1/VDE Blatt 1 to 5, 1984 to 1988.

A.1.5 Idle current principle (de-energised to trip)

NOTE This technique/measure is referenced in tables A.2, A.9, A.14 and A.15 of IEC 61508-2.

Aim: To execute the safety function if power is cut or lost.

Description: The safety function is executed if the contacts are open and no current flows.
For example, if brakes are used to stop a dangerous movement of a motor, the brakes are
opened by closing contacts in the safety-related system and are closed by opening the
contacts in the safety-related system.

Reference: Guidelines for Safe Automation of Chemical Processes. CCPS, AIChE,
New York, 1993.

A.2 Electronic

Global objective: To control failure in solid-state components.

A,2.1 Tests by redundant hardware

NOTE This technique/measure is referenced in tables A.3, A.16, A.17 and A.19 of IEC 6150S-2.

Aim: To detect failures using hardware redundancy, i.e. using additional hardware not
required to implement the process functions.

Description: Redundant hardware can be used to test at an appropriate frequency the
specified safety functions. This approach is normally necessary for realising A.1.1 or A,2.2.

Reference: DIN V VDE 0801: Grundsatze fur Rechner in Systemen mit Sicherheitsaufgaben
(Principles for Computers in Safety-Related Systems), Beuth-Verlag, Berlin, 1990.

5

EVIEC 61508-7:2000

A.2.2 Dynamic principles

INICHE This techniqueh?leasure is referenced in table A.3 of IEC 61508-2.

Aim: To detect static failures by dynamic signal processing.

Description: A forced change of otherwise static signals (internally or externally generated)
helps to detect static failures in components. This technique is often associated with
electromechanical components.

Reference: Elektronik in der Sicherheitstechnik. H. Jurs, D. Reinert, Sicherheitstechnisches
Informations- und Arbeitsblatt 330220, BIA-Handbuch, Erich-Schmidt Verlag, Bielefeld, 1993.

A.2.3 Standard test access port and boundary-scan architecture

NOTE This technique/measure is referenced in tables A.3, A.16 and A.19 of IEC 61508-2.

Aim: To control and observe what happens at each pin of an IC.

Description: Boundary-scan test is an IC design technique which increases the testability of
the IC by resolving the problem of how to gain access to the circuit test points within it. In a
typical boundary-scan IC, comprised of core logic and input and output buffers, a shift-register
stage is placed between the core logic and the input and output buffers adjacent to each IC
pin. Each shift-register stage is contained in a boundary-scan cell, The boundary-scan cell
can control and observe what happens at each input and output pin of an IC, via the standard
test access port. Internal testing of the IC core logic is accomplished by isolating the on-chip
core logic from stimuli received from surrounding components, and then performing an
internal self-test. These tests can be used to detect failures in the IC.

Reference: IEEE 1149.1:1990, Standard Test Access Port and Boundary-Scan Architecture.

A.2.4 Fail-safe hardware

NOTE This technique/measure is referenced in table A.3 of IEC 61508-2.

Aim: To put a system into a safe state if a failure occurs.

Description: In hard-wired systems, a unit is said to operate in a fail-safe manner if

a defined set of faults will lead to a safe condition, and

they are detected.

EXAMPLE The defined set of faults could include stuck-at faults, stuck-open, short circuits within and between
components and directed short circuits.

References:

Dependability of Critical Computer Systems 1. F. J. Redmill, Elsevier Applied Science, 1988,
ISBN 1-85166-203-0.

Eiektronik in der Sicherheitstechnik. H. Jurs, D. Reinert, Sicherheitstechnisches lnformations-
~~d Arbeitsb~att 330220, BIA-Handbuch, Erich-Schmidt Vedag, Bielefeld, 1993.

@
lS/lEC 61506-7:2000

A.2.5 Monitored redundancy

NOTE This technique/measure is referenced in table A.3 of IEC 61506-2.

Aim: To detect failure, by providing several functional units, by monitoring
each of these to detect failures, and by initiating a transition to a safe
discrepancy in behaviour is detected.

the behaviour of
condition if any

Description: The safety function is executed by at least two hardware channels. The outputs
of these channels are monitored and a safe condition is initiated if a fault is detected (i.e. if
the output signals from all channels are not identical),

References: I

Dependability of Critical Computer Systems 1. F. J. Redmill, Elsevier Applied Science, 1988, i
ISBN 1-85166-203-0.

*

Elektronik in der Sicherheitstechnik. H. Jurs, D. Reinert, Sicherheitstechnisches lnformations-
und Arbeitsblatt 330220, BIA-Handbuch, Erich-Schmidt Verlag, Bielefeld, 1993.

A.2.6 Electrical/electronic components with automatic check

NOTE This technique/measure is referenced in table A.3 of IEC 61508-2,

Aim: To detect faults by periodic checking of the safety functions.

Description: The hardware is tested before starting the process, and is tested repeatedly at
suitable intervals. The EUC continues to operate only if each test is successful.

a

References:

Dependability of Critical Computer Systems 1. F. J. Redmill, Elsevier Applied Science, 1988,
1

ISBN 1-85166-203-0.

Elektronik in der Sicherheitstech nik. H. Jurs, D. Reinert, Sicherheitstechnisches lnformations-
:

und Arbeitsblatt 330220, BIA-Handbuch, Erich-Schmidt Verlag, Bielefeld, 1993.

A.2.7 Analogue signal monitoring

NOTE This technique/measure is referenced in tables A.3 and A.14 of IEC 61506-2.

Aim: To improve confidence in measured signals.

Description: Wherever there is a choice, analogue signals are used in preference to digital ,
on/off states. For example, trip or safe states are represented by analogue signal levels,
usually with signal level tolerance monitoring. The technique provides continuity monitoring
and a higher level of confidence in the transmitter, reducing the necessary proof-test
frequency of the transmitter sensing function. External interfaces, for example impulse lines,

1

will also require testing.

Reference: UKOOA Guidelines for Instrument-Based Systems, UK Offshore Operators
Association Limited, December 1995.

lWIEC 61508-7:2000

A.2.8 De-rating

Aim: To increase the reliability of hardware components.

Description: Hardware components are operated at levels which are guaranteed by the
design of the system to be well below the maximum specification ratings. De-rating is the
practice of ensuring that under all normal operating circumstances, components are operated
well below their maximum stress levels.

A.3 Processing units

Global objective: To recognise failures which lead to incorrect results in processing units.

A.3. I Self-test by software: limited number of patterns (one-channel)

~OT~ This technique/measure is referenced in table A.4 of IEC 61508-2,

Aim: To detect, as early as possible, failures in the processing unit,

Description: The hardware is built using standard techniques which do not take any special
safety requirements into account. The failure detection is realised entirely by additional
software functions which perform self-tests using at least two complementary data patterns
(for example 55hex and AAhex).

Reference: Microcomputers in safety technique – an aid to orientation for developer and
manufacturer. l-f. Holscher, J. Rader, Verlag TUV Rheinland, Koln, 1986, ISBN 3-88585-315-9.

A.3.2 Self-test by software: waiking bit (one-channel)

NOTE This technlquehneasure is referenced in table A.4 of IEC 61508-2.

Aim: To detect, as early as possible, failures in the physical storage (for example registers)
and instruction decoder of the processing unit.

Description: The failure detection is realised entirely by additional software functions which
perform self-tests using a data pattern (for example walking-bit pattern) which tests the
physical storage (data and address registers) and the instruction decoder. However, the
diagnostic coverage is only 90 Y..

Reference: Microcomputers in safety technique – an aid to orientation for developer and
manufacturer. H. Holscher, J. Rader, Verlag TUV Rheinland, Koln, 1986, ISBN 3-88585-315-9.

A.3.3 Self-test supported by hardware (one-channel)

NOTE This technique/measure is referenced in table A,4 of IEC 61508-2.

Aim: To detect, as early as possible, failures in the processing unit, using special hardware
that increases the speed and extends the scope of failure detection.

Description: Additional special hardware facilities support self-test functions to detect
failure. For example, this could be a hardware unit which cyclically monitors the output of a
certain bit pattern according to the watch-dog principle.

Reference: Microcomputers in safety technique – an aid to orientation for developer and
manufacturer. H. Holscher, J. Rader, Verlag TUV Rheinland, Koln, 1986, ISBN 3-88585-315-9.

8

—.—. . ___ . --__,_.-

iS/lEC 61508-7:2000

A.3.4 Coded processing (one-channel)

NOTE This technique/measure is referenced in table A.4 of IEC 61508-2,

Aim: TCI detect, as early as possible, failures in the processing

Description: Processing units can be designed with special

unit.

failure-recognizing or failure-
correcting circuit techniques. So far, these techniques have been applied- only to relatively
simple circuits and are not widespread; however, future developments should not be
excluded.

References:

The Coded Microprocessor Certification. P. Ozello, Proc. SAFECOMP ’92, 185-190,

Vital Coded Microprocessor Principles and Application for Various Transit Systems.
!FAC Control Computers Communications in Transportation, 79-84, 1989.

992.

P. Forin,

Le Processeur Code: un nouveau concept applique a la securite des systemes de transports.
Gabriel, Martin, W’artski, Revue Generale des chemins de fer, No. 6, June 1990.

A.3.5 Reciprocal comparison by software

NOTE This lechnique/measure is referenced in table A.4 of IEC 61508-2.

Aim: To detect, as early as possible, failures in the processing unit, by dynamic software
comparison.

*

Description: Two processing units exchange data (including results, intermediate results and

*

test data) reciprocally. A comparison of the data is carried out using software in each unit and
detected differences lead to a failure message.

Reference: Microcomputers in safety technique – an aid to orientation for developer and
manufacturer. H. Holscher, J, Rader, Verlag T~V Rheinland, Koln, 1986, ISBN 3-88585-315-9. *f

A.4 Invariable memory ranges

Global

A.4,1

objective: The detection of information modifications in the invariable memory.
?

Word-saving multi-bit redundancy (for examp!t? ROM monitoring
with a modified Hamming code)

—

NOTE See also A.5.6 and C,3,2. This technique/measure is referenced in table A.5 of IEC 61508-2

Aim: To detect all single-bit failures, all two-bit failures, some three-bit failures, and some all-
bit failures in a 16-bit word.

Description: Every word of memory is extended by several redundant bits to produce a
modified Hamming code with a Hamming distance of at least 4. Every time a word is read,
checking of the redundant bits can determine whether or not a corruption has taken place. If a
difference is found, a failure message is produced. The procedure can also be used to detect
addressing failures, by calculating the redundant bits for the concatenation of the data word
and its address.

9

lS/lEC 61508-7:2000

References:

Error detecting and error correcting codes. R. W. Hamming, The Bell System Technical
Journal 29 (2), 147-160, 1950.

Prufbare und korrigierbare Codes. W. W. Peterson, Munchen, Oldenburg, 1967,

A.4.2 Modified checksum
r

NOTE This technique/measure is referenced in table A.5 of IEC 61506-2.

Aim: To detect all odd-bit failures, i.e. approximately 50 % of all possible bit failures.

Description: A checksum is created by a suitable algorithm which uses all the words in a
block of memory. The checksum may be stored as an additional word in ROM, or an
additional word may be added to the memory block to ensure that the checksum algorithm
produces a predetermined value. In a later memory test, a checksum is created again using
the same algorithm, and the result is compared with the stored or defined value. If a
difference is found, a failure message is produced.

Reference: Microcomputers in safety technique - an aid to orientation for developer and
manufacturer. H. Holscher, J. Rader, Verlag TUV Rheinland, Koln, 1986, ISBN 3-88585-315-9.

A.4.3 Signature of one word (8-bit)

NOTE This technique/measure is referenced in table A.5 of IEC 61508-2.

Aim: To detect all one-bit failures and all multi-bit failures within a word, as well as
approximately 99,6 Y. of all possible bit failures.

Description: The contents of a memory block is compressed (using either hardware or
software) using a cyclic redundancy check (CRC) algorithm into one memory word. A typical
CRC algorithm treats the whole -ontents of the block as byte-serial or bit-serial data flow, on
which a continued polynomial division is carried out using a polynomial “generator. The
remainder of the division represents the compressed memory contents – it is the “signature”
of the memory – and is stored. The signature is computed once again in later tests and
compared with one already stored. A failure message is produced if there is a difference.

References:

Calculating an error checking character in software. S. Vasa,

E3erechnung von Fehlererkennungswahrscheinlichkeiten bei
Elektronische Rechenanlagen 24, H. 2, S. 55-61, 1982.

A.4.4 Signature of a double word (16-bit)

NOTE Thts technique/measure is referenced in table A.5 of IEC 61506-2.

Computer Design, 5, 1976.

Signaturregistern. D, Leisengang,

Aim: To detect all one-bit failures and all multi-bit failures within a word, as well as
approximately 99,998 ‘A of all possible bit failures.

Description: This procedure calculates a signature using a cyclic redundancy check (CRC)
algorithm, but the resulting value is at least two words in size. The extended signature is
stored, recalculated and compared as in the single-word case. A failure message is produced
if there is a difference between the stored and recalculated signatures.

10

~
lS/lEC 61508-7:2000

References:

Signaturanalyse in
S. 67-72, 1983.

Signaturregister fur

der Datenverarbeitung. D. Leisengang, M. Wagner, Elektronik 32, H. 21,

selbsttestende ICS. B. Konemann, J. Mucha, G. Zwiehoff, Grof3tintegration/
NTG-Fachtagung Baden-Baden, S. 109-112, April 1977.

A.4.5 Block replication (for example double ROM with hardware or
software comparison)

NOTE This technique/measure is referenced in table A.5 of IEC 61508-2.

Aim: To detect all bit failures.

Description: The address space is duplicated in two memories. The first memory is operated
in the normal manner. The second memory contains the same information and is accessed in
parallel to the first. The outputs are compared and a failure message is produced if a
difference is detected. In order to detect certain kinds of bit errors, the data must be stored
inversely in one of the two memories and inverted once again when read.

References:

Microcomputers in safety technique – an aid to orientation for developer and manufacturer.
H. Holscher, J. Rader, Verlag TUV Rheinland, Koln, 1986, ISBN 3-88585-315-9.

Computers can now perform vital safety functions safely. Otto Berg von Linde, Railway
Gazette International, Vol. 135, No. 11, 1979.

A.5 Variable memory ranges

Global objective: Detecting failures during addressing, writing, storing and reading.

A.5.1 RAM test “checkerboard” or “march”

NOTE This technique/measure is referenced in table A.6 of IEC 61508-2.

Aim: To detect predominantly static bit failures.

Description: A checker-board type pattern of 0s and 1s is written into the cells of a bit-
oriented memory. The cells are then inspected in pairs to ensure that the contents are the
same and correct. The address of the first cell of such a pair is variable and the address of

I

I
the second cell of the pair is formed by inverting bitwise the first address. In the first run, the
address range of the memory is run towards higher addresses from the variable address, and
in a second run towards lower addresses. Both runs are then repeated with an inverted pre-
assignment. A failure message is produced if any difference occurs.

In a RAM test “march” the cells of a bit-oriented memory are initialised by a uniform bit
stream. In the first run, the cells are inspected in ascending order: each cell is checked for the
correct contents and its contents are inverted. The background, which is created in the first
run, is treated in a second run in descending order and in the same manner. Both first runs
are repeated with an inverted pre-assignment in a third or fourth run. A failure message is
produced if a difference occurs.

i.

4

11

KMEX 61508-7:200(?

gef~r~~~~~:

Memury ~es~ing. W. G. Fee, LSI Testing (Tutorial at the COMPCON 77 in
!EEE Computer Society, W. G. Fee (cd.), 81-88, 1978.

Mamory testing. P. F?osenfieid, Electronics and Power, H. 1, P. 26-31, 1979.

l{aibleiterspeicher-Testfolgen. Th. John, E. Schaefer, Elektronikpraxis, H. 6,
10-14: 1980.

A.-5.2 RAM test “walkpath”

?.~QT~ This t~chniquelmeasure is referenced in table A.6 of IEC 61508-2.

San Francisco),

18-26 and H. 7,

Aim: TO detect static and dynamic bit failures, and cross-talk between memory cells.

Description: The memory range to be tested is initialised by a uniform bit stream. The first
ce!i is then inverted and the remaining memory area is inspected to ensure that the
background is correct. After this, the first cell” is re-inverted to return it to its original value,
and the whole procedure is repeated for the next cell. A second run of the “wandering bit
model” is carried out with an inverse background pre-assignment. A failure message is
produced if a difference occurs.

References:

Memory testing. W. G. Fee, LSI Testing (Tutorial at the COMPCON. 77 in San Francisco),
~EEE Co,mputer Society, W. G. Fee (cd.), 81-88, 1978.

Techniques for testing the microprocessor family. W. Barraclough, A. Chiang, W. SOhl,
Proceedings of the IEEE 64 (6), 943-950, 1975.

.4.5.3 RAM test “gaipat” or “transparent galpat”

NCJTE This technique/measure is referenced in table A,6 of IEC 61508-2.

Aim: To detect s?atic bit failures and a large proportion of dynamic couplings.

thxwription: Iil the RAM test “galpat”, the chosen range of memory is first initialised
uniformly (i.e. all 0s or all 1s). The first memory cell to be tested is then inverted and all the
reniair-iing cells are inspected to ensure that their contents are correct. .After every read
access :CI one of the remaining cells, the inverted cell is also checked. This procedure is
{epeated for each cell in the chosen memory range. A second run is carried out with the
opposite Inliialisation. Any difference produces a failure message.

‘[he “transparent galpat” test is a variation on the above procedure: instead of initializing all
:J=!~s in tbe chosen memory range, the existing contents are left unchanged and signatures

~~ie used to compare the contents of sets of cells. The first cell to be tested in the chosen
;ange is ~e~e~ted, ~~d the signature S1 of all remaining cells in the range is calculated and
~toferj, The cell to be tested is then inverted. and the signature S2 of all the remaining CellS iS

recalculated. (After every read access to one of the remaining cells, the inverted cell is also
checked:) S2 is compared with S1, and any difference produces a failure message. The cell
under test is re-inverted to re-establish the original contents, and the signature S3 of all the
remaining ceils is recalculated and compared with S1. Any difference produces a failure
message. All rnernory cells in the chosen range are tested in the same manner.

Y

12

b
lS/lEC 61506-7:2000

References:

Entwurf von Selbsttestprogrammen ftir Microcomputer. E. Maehle, Microcomputing. Berichte
der Tagung 111/79 des German Chapter of the ACM, W. Remmele, H. Schecher, (cd.),
Stuttgart, Teubner, 204-216, 1979.

Periodischer Selbsttest einer mikroprocessorgesteuerten Sicherheitsschaltung. U. Stinnesbek,

Dipiomarbeit am lnstitut fur theoretische Elektrotechnik der RWTH Aachen 198o,

A.5.4 RAM test “Abraham”

NOTE This technique/measure is referenced in table A.6 of IEC 61508-2.

Aim: To detect all stuck-at and coupling failures between memory cells.

Description: The proportion of faults detected exceeds that of the RAM test “galpat”. The
number of operations required to perform the entire memory test is about 30 n, where n is the
number of cells in the memory. The test can be made transparent for use during the operating
cycle by partitioning the memory and testing each partition in different time segments.

Reference: Efficient Algorithms for Testing Semiconductor Random-Access Memories.
R. Nair, S. M. Thatte, J. A. Abraham, IEEE Trans. Comput. C-27 (6), 572-576, 1978.

A.5.5 One-bit redundancy (for example RAM monitoring with a parity bit)

NOTE This technique/measure is referenced in table A.6 of IEC 61508-2.

Aim: To detect 50 % of ail possible bit failures in the memory range tested.

Description: Every word of the memory is extended by one bit (the parity bit) which
completes each word to an even or odd number of logical 1s. The parity of the data word is
checked each time it is read. If the wrong number of 1s is found, a failure message is
produced. The choice of even or add parity should be made such that, whichever of. the zero
word (nothing but 0s) and the one word (nothing but 1s) is the more unfavorable in the event
of a failure, then that word is not a valid code. Parity can also be used to detect addressing
failures, when the parity is calculated for the concatenation of the data word and its address.

Reference: Integrierte Digitalbausteine. K. Reif3, H. Liedl, W. Spichall, Berlin, 1970.

A.5.6 RAM monitoring with a modified Hamming code, or detection of data failures
with error-detection-correction codes (EDC)

NOTE See also A.4.1 and C.3.2. This technique/measure is referenced in table A.6 of IEC 61508-2.

Aim: To detect all odd-bit failures, all two-bit failures, some three-bit and some multi-bit
failures.

4

Description: Every word of the memory is extended by several redundant bits to produce a
modified Hamming code with a Hamming distance of at !east 4. Every time a word is read,
one can determine whether a corruption has taken place by checking the redundant bits. If a
difference is found, a failure message is produced. The procedure can also be used to detect
addressing failure, when the redundant bits are calculated for the concatenation of the data
word and its address.

13

lS/iEC 61506-7:2000 m

References:

Error detecting and error correcting codes. R. W. Hamming, The Bell System Technical
Journal 29 (2), 147-160, 1950.

Prtifbare und korrigierbare Codes. W. W. Peterson, Munchen, Oldenburg, 1967.

A.5.7 Double RAM with hardware or software comparison and read/write test

NOTE This technique/measure is referenced in table A.6 of IEC 61508-2.
v

Aim: To de?ect all bit failures.

Description: The address space is duplicated in two memories. The first memory is operated
in the normal manner. The second memory contains the same information and is accessed in .,

parallel to the first. The outputs are compared and a failure message is produced if a
difference is detected. In order to detect certain kinds of bit errors, the data must be stored
inversely in one of the two memories and inverted once again when read.

References:

Microcomputers in safety technique – an aid to orientation for developer and manufacturer.
H. Holscher, J. Rader, Verlag TUV Rheiniand, Koln, 1986, ISBN 3-88585-315-9.

Computers can now perform vital safety functions safely. Otto Berg von Linde, Railway
Gazette International, Vol. 135, No. 11, 1979.

*

A.6 i/O-units and interfaces (externai communication)

Global objective: To detect failures in input and output units (digital, analogue, serial or
parallel) and to prevent the sending of inadmissible outputs to the process.

A.6.1 Test pattern

NOTE This technique/measure is referenced in tables A.7, A.14 and A.15 of IEC 61508-2.

Aim: To detect static failures (stuck-at failures) and cross-talk.

Description: This is a dataflow-independent cyclical test of input and output units. It uses a
defined test pattern to compare observations with the corresponding expected values. The
test pattern information, the test pattern reception, and test pattern evaluation must all be
independent of each other. The EUC should not be inadmissibly influenced by the test
pattern.

Reference: Microcomputers in safety technique – an aid ta orientation for developer and
manufacturer. H. Holscher, J. Rader, Verlag TUV Rheinland, Ktiln, 1986, ISBN 3-88585-315-9.

A.6.2 Code protection

NOTE This technique/measure is referenced in tables A.7, A.16, A,17 and A.19 of IEC 61508-2.

Aim: To detect random hardware and systematic failures in the input/output dataflow.

14

lS/lEC 61508-7:2000

Description: This procedure protects the input and output information from both systematic

and random hardware failures. Code protection provides dataflow-dependent failure detection

of the input and output units, based on information redundancy and/or time redundancy.
Typically, redundant information is superimposed on input and/or output data. This then

provides a means to monitor the correct operation of the input or output circuits. Many

techniques are possible, for example a carrier frequency signal may be superimposed on the

output signal of a sensor. The logic unit may then check for the presence of the carrier
frequency or redundant code bits may be added to an output channel to allow the monitoring
of the validity of a signal passing between the logic unit and final actuator.

Reference: Standard input/output tests and monitoring procedures – Microcomputers in
safety technique – an aid to orientation for developer and manufacturer. H. Holscher,
J. Rader. Veriag TUV Rheinland, Koln, 1986, IS13N 3-88585-315-9.

t

A.6,3 Multi-channel parallel output
i.

NOTE This technique/measure is referenced in table A,7 of IEC 61508-2.

Aim: To detect random hardware failures (stuck-at failures), failures caused by external
influences, timing failures, addressing failures, drift failures and transient failures.

Description: This is a dataflow-dependent multi-channel parallel output with independent
outputs for the detection of random hardware failures. Failure detection is carried out via
external comparators. If a failure occurs, the EUC is switched off directly. This measure is
only effective if the dataflow changes during the diagnostic test interval.

Reference: Microcomputers in safety technique – an aid to orientation for developer and
manufacturer. H. Holscher, J. Rader, Verlag TUV Rheinland, Koln, 1986, ISBN 3-88585-315-9.

A.6.4 Monitored outputs

NOTE This technique/measure is referenced in table A.7 of IEC 61508-2

Aim: To detect individual failures, failures caused by external influences, timing failures,
addressing failures, drift failures (for analogue signals) and transient failures.

Description: This is a dataflow-dependent comparison of outputs with independent inputs to
ensure compliance with a defined tolerance range (time, value). A detected failure Cannot
always be related to the defective output. This measure is only effective if the dataflow
changes during the diagnostic test interval.

References:

Microcomputers in safety technique – an aid to orientation for developer and manufacturer.
H, Holscher, J. Rader, Vedag TUV Rheiniand, Koln, 1986, ISBN 3-88585-315-9.

4

MSR-Schutzeinrichtungen. Anforderungen und Massnahmen zur gesicherten Funktion.
DIN V 19251, February 1995.

15

lsnEc

A.6.5

61508-7:2000

Input comparison/voting

NOTE This techniquehweasure is referenced in tables A.7 and A.14 of IEC 61506-2.

Aim: To detect individual failures, failures caused by external influences, timing failures,
addressing failures, drift failures (for analogue signals) and transient failures.

Description: This is a dataflow-dependent comparison of independent inputs to ensure
compliance with a defined tolerance range (time, value). There will be 1 out of 2, 2 out of 3 or
better redundancy. This measure is only effective if the dataflow changes during the
diagnostic test interval.

References:

Microcomputers in safety technique – an aid to orientation for developer and manufacturer.
H. Holscher, J. Rader, Verlag TUV Rheinland, Koln, 1986, ISBN 3-88585-315-9.

MSR-Schutzeinrichtu ngen. Anforderungen und Massnahmen zur gesicherten Funktion.
DIN V 19251, February 1995.

A.7 Data paths (internal

Global objective: To detect

communication)

failures caused by a defect in the information transfer.

A.7.1 One-bit hardware redundancy

NOTE This technique/measure is referenced in table A.8 of IEC 61506-2.

Aim: To detect all odd-bit failures, i.e. 50 % of all the possible bit failures in the data stream.

Description: The bus is extended by one line (bit) and this additional line (bit) is used to
detect failures by parity checking.

Reference: Microcomputers in safety technique – an aid to orientation for developer and
manufacturer. H. Holscher, J. Rader, Verlag TUV Rheinland, Koln, 1986, ISBN 3-88585-315-9.

A.7.2

NOTE

Aim:

Multi-bit hardware redundancy

This technique/measure is referenced in table A.8 of IEC 61508-2.

To detect failures during the communication on the bus and in serial transmission links,

Description: The bus is extended by two or more lines (bits) and these additional lines (bits)
are used in order to detect failures by Hamming code techniques,

Reference: Microcomputers in safety technique – an aid to orientation for developer and
manufacturer. H. Holscher, J. Rader, Verlag TUV Rheinland, Koln, 1986, ISBN 3-88585-315-9.

A.7.3 Complete hardware redundancy

NOTE This technique/measure is referenced in table A,6 of IEC 61508-2.

Aim: To detect failures during the communication by comparing the signals on two buses.

Description: The bus is doubled and the additional lines (bits) are used in order to detect
failures.

16

@
lS/lEC 61506-7:2000

Reference: Microcomputers in safety technique – an aid to orientation for developer and I

manufacturer. H. Holscher, J. Rader, Verlag TUV Rheinland, Koln, 1986, ISBN 3-88585-315-9.

A.7.4 Inspection using test patterns

NOTE This technique/measure is referenced in table A.8 of IEC 61508-2.

Aim: To detect static failures (stuck-at failure) and cross-talk.

Description:’ This is a dataflow-independent cyclical test of data paths. It uses a defined test
pattern to compare observations with the corresponding expected values.

The test pattern information, the test pattern reception, and test pattern evaluation must all be
1

Independent of each other. The EUC should not be inadmissibly influenced by the test
pattern. **

Reference: Microcomputers in safety technique – an aid to orientation for developer and
manufacturer. H. Holscher, J. Rader, Verlag TUV Rheinland, Koln, 1986, ISBN 3-88585-315-9.

A.7.5 Transmission redundancy

NOTE This technique/measure is referenced in table A.8 of IEC 61508-2

Aim: To detect transient failures in bus communication.

Description: The information is transferred several times in sequence. The repetition is
effective only against transient failures.

4’
Reference: Microcomputers in safety technique – an aid to orientation for developer and
manufacturer. H. Holscher, J. Rader, Verlag TUV Rheinland, Koln, 1986, ISBN 3-88585-315-9.

A.7.6 Information redundancy

NOTE This technique/measure IS referenced in table A.8 of IEC 61508-2. :

Aim: To detect failures in bus communication.

Description: Data is transmitted in blocks, together with a calculated checksum for each
block. The receiver then re-calculates the checksum of the received data and compares the
result with the received checksum.

Reference: Microcomputers in safety technique – an aid to orientation for developer and
manufacturer. H. Holscher, J. Rader, Verlag TUV Rheinland, Koln, 1986, ISBN 3-88585-315-9.

A.8 Power supply

Global objective: To detect or tolerate fai~ures caused by a defect in the power supply.

A.8.1 Overvoltage protection with safety shut-off

NOTE This technique/measure is referenced in table A.9 of IEC 61508-2

Aim: To protect the safety-related system against overvoltage.

17

iWIEC 61508-7:2000

Description: Overvoltage is
condition by the power-down

Reference: Guidelines
New York, 1993.

A.8.2 Voltage contro!

for

detected early enough that all outputs can be switched to a safe
routine or there is a switch-over to a second power unit.

Safe Automation of Chemical Processes, CCPS, AIChE,

(secondary)

NOTE This technique/measure is referenced in table A,9 of IEC 61508-2.

Aim: To monitor the secondary voltages and initiate a safe condition if the voltage is not in
its specified range.

Description: The secondary voltage is monitored and a power-down is initiated, or there is a
switch-over to a second power unit, if it is not in its dpecified range.

A.8.3 Power-down with safety shut-off

NOTE This technique/measure IS referenced in table A.9 of IEC 61508-2.

Aim: To shut off the power with all safety critical informatiotl stored.

Description: Overvoltage or undervoltage is detected early enough so that the intern=’ state
can be saved in non-volatile memory (if necessary), and so that all outputs can be set to a
safe condition by the power-down routine, or that all outputs can be switched to a safe
condition by the power-down routine, or there is a switch-over to a second power unit.

A.9 Temporal and logical program sequence monitoring

NOTE This group of techniques and measures is referenced in tables A.16, A.17 and A,19 of IEC 61508-2.

Global objective: To detect a defective program sequence. A defective program sequence
exists if the individual elements of a program (for example software modules, subprograms or
commands) are processed in the wrong sequence or period of time, or if the clo”ck of the
processor is faulty.

A.9.1 Watch-dog with separate time base without time-window

NOTE This technique/measure is referenced in tables A.1O and A.12 of IEC 61508-2,

Aim: To monitor the behaviour and the plausibility of the program sequence.

Description: External timing elements with a separate time base (for example watch-dog
timers) are periodically triggered. to monitor the computer’s behaviour and the plausibility of
the program sequence. It is important that the triggering points are correctly placed in the
program. The watch-dog is not triggered at a fixed period, but a maximum interval is
specified.

Reference: Microcomputers in safety technique – an aid to orientation for developer and
manufacturer. H. Holscher, J. Rader, Verlag TUV Rheinland, Koln: 1986, ISBN 3-88585-315-9.

18

IS/lEC 61506-7:2000

A.9.2 Watch-dog with separate time base and time-window

NOTE This technique/measure is referenced in tables A. I O and A.12 of IEC 61508-2

Aim: To monitor the behaviour and the plausibility of the program sequence.

Description: External timing elements with a separate time base (for example watch-dog
timers) are periodically triggered to monitor the computer’s behaviour and the plausibility of
the program sequence. It is important that the triggering points are correctly placed in the
program. A, lower and upper limit is given for the watch-dog timer. If the program sequence
takes a longer or shorter time than expected, emergency action is taken.

Reference: Microcomputers in safety technique – an aid to orientation for developer and
manufacturer. H. Holscher, J. Rader, Verlag TUV Rheinland, Koln, 1986, ISBN 3-88585-315-9.

A.9.3 Logical monitoring of program sequence

NOTE This technique/measure is referenced in tables A.1O and A.12 of IEC 61508-2.

Aim: To monitor the correct sequence of the individual program sections.

Description: The correct sequence of the individual program sections is monitored using
softwa~e (counting procedure; key procedure) or usin”g external monitoring facilities. It is
important that the checking points are placed in the program correctly,

Fteference: Microcomputers in safety technique - an aid to orientation for developer and
manufacturer. H. Holscher, J. Rader, Verlag TUV Rheinland, Koln, 1986, ISBN 3-88585-315-9.

A.9.4 Combination of temporal and logical monitoring of program sequences 4

NOTE This technique/measure is referenced in tables A.1O and A.12 of IEC 61506-2.

Aim: To monitor the behaviour and the correct sequence of the individual program sections.

Description: A temporal facility (for example a watch-dog timer) monitoring the program *

sequence is retriggered only if the sequence of the program sections is also executed
correctly.

Reference: Microcomputers in safety technique – an aid to orientation for developer and
manufacturer. H. Holscher, J. Rader, Verlag TUV Rheinland, Koln, 1986, ISBN 3-88585-315-9.

A.9.5 Temporal monitoring with on-line check

NOTE This technique/measure is referenced in tables A.1O and A.12 of IEC 61508-2.

Aim: To detect faults in the temporal monitoring.

Description: The temporal monitoring ischecked at start-up, and a start is only possible if
the temporal monitoring operates correctly. For example, a heat sensor could be checked by
a heated resistor at start-up.

19

ISLIEC 61508-7:2000

A.1 O Ventilation and heating

NOTE This group of techniques and measures is referenced in tables A.17 and A.19 of IEC 61508-2.

Global objective: To control failures in the ventilation or heating, and/or their monitoring, if
this is safety-related.

A.1O.1 Temperature sensor

NOTE This technique/measure is referenced in table Al 1 of IEC 61508-2.

Aim: To detect over- or under-temperature before the system begins to operate outside
specification.

Description: A temperature sensor monitors ~emperature at the most critical points of the
E/E/PES. Before the temperature leaves the specified range, emergency action is taken.

A.1(9.2 Fan control

NOTE This technique/measure is referenced in table A.11 of IEC 61506-2

Aim: To detect incorrect operation of the fans.

Description: The fans are monitored for correct operation. If a fan is not working properly,
maintenance (or ultimately, emergency) action is taken.

A.1 0.3 Actuation of the safety shut-off via thermal fuse

NOTE This techniaue/measure is referenced in table A.11 of IEC 61508-2
*

Aim: To shut off the safety-related system before the system works outside of its thermal
specification.

Description: A thermal fuse is used to shut off the safety-related system. For a PES, the
shut-off is introduced by a power-down routine which stores all information necessary for
emergency action.

A.1 0.4 Staggered message from thermo-sensors and conditional alarm

NOTE This technique/measure IS referenced in table A.1 1 of IEC 61508-2.

Aim: To indicate that the safety-related system is working outside its thermal specification.

Description: The temperature is monitored and an alarm is raised if the temperature is
ou?side of a specified range.

A.1O.5 Connection of forced-air cooling and status indication

NOTE This technique/measure IS referenced in table A 11 of IEC 61508-2.

Aim: To prevent overheating by forced-air cooling.

Description: The temperature is monitored and forced-air cooling is introduced if the
temperature is higher than a specified limit. The user is informed of the status.

20

B
lS/lEC 61508-7:2000

A.11 Communication and mass-storage

Global objective: To control failures during communication with external sources and mass-
storage.

A.1 1.1 Separation of electrical energy lines from information lines

NOTE This technique/measure is referenced in table A.13 of IEC 61508-2. I

Aim: To minimise cross-talk induced by high currents in the information lines.

Description: Electrical energy supply lines are separated from the lines carrying the
information. The electrical field which could induce voltage spikes on the information lines
decreases with distance.

A.1 1.2 Spatial separation of multiple lines

NOTE This technique/measure is referenced in tables A.13 and A.17 of IEC 61508-2,

Aim: To minimise cross-talk induced by high currents in multiple lines.

Description: Lines carrying duplicated signals are separated from each other. The electrical
field which could induce voltage spikes on the multiple lines decreases with the distance. This
measure also reduces common cause failures.

A.1 1.3 Increase of interference immunity

NOTE This technique/measure is referenced in tables A,13, A,17 and A.19 of IEC 61508-2.

Aim: To minimise electromagnetic interference on the safety-related system.

Description: Design techniques such as shielding and filtering are used to increase the
interference immunity of the safety-related system to electromagnetic disturbances which may
be radiated or conducted on power or signal lines, or result from electrostatic discharges.

References:

IEC 61000-5-2/TR3:l 997, E/ectromagnet;c compatibility (EMC) – Part 5: installation and
mitigation guidelines – Section 2: Earthing and cabling.

Noise Reduction Techniques in Electronic Systems. H. W. Ott, John Wiley Interscience,
2nd Edition, 1988.

EMC for Product Designers. Tim Williams, Newnes, 1992, ISBN 0-7506-1264-9.

Grounding and Shielding Techniques in Instrumentation. John Wiley & Sons, New York, 1986.

Principles and Techniques of Electromagnetic Compatibility. C. Christopoulos, CRC Press, 1995.

●
✎

:

Gestaltung von Maschinensteuerungen unter Berucksichtigung der elektromagnetischen
Vertraglichkeit. F. Borner, Sicherheitstechnisches Informations- und Arbeitsblatt 330260,
BIA-Handbuch. 20. Lfg. V/93, Erich Schmidt Verlag, Bielefeld.

21

. .

IWEC 61508-7:2000

&.1 1.4 Antivalent signal transmission

l-ills ~echnlque/measure IS referenced In tables A.13 and Af7 of IEC 61508-2\{)TE

Aim: To detec! the same induced voltages in multiple signal transmission lines.

Kmscription: Al! duplicated information is transmitted with antivalent signals (for example
:ogic 1 and 0). Common cause failures (for example by electromagnetic emission) can be
detected b’y an antivaient comparator.

Fieference: Elektronik iri der Sicherheitstechnik. H. Jtirs, D. Reinert, Sicherheitstechnisches
~nformatlons- und Arbeitsblatt 330220, BIA-Handbuch. 20. Lfg. V/93, Erich Schmidt Verlag,
31elefeld.

A.12 Sensors

Giobal objective: To control failures in the sensors of the safety-related system.

A.12. I Reference sensor

NO-E This technique/measure is referenced in table A.14 of IEC 61508-2

Aim: To detect the incorrect operation of a sensor.

Description: An independent reference sensor is used to monitor the operation of a process
sensor. All input signals are checked at suitable time intervals by the reference sensor to
detect failures of the process sensor.

‘Reference: Guidelines for Safe Automation of Chemical Processes. CCPS, AIChE,
New York. 1993.

A.12.2 Positive-activated switch

!:OTE This technique/measure is referenced in table A.14 of IEC 61508-2

Aim: To open a contact by a direct mechanical connection between switch cam and contact.

Description: A positive-activated switch opens its normally closed contacts by a direct
mechanical connection between switch cam and contact. This ensures that whenever the

switch cam is in the operated position, the switch contacts must be open.

Reference: Verriegelung beweglicher Schutzeinrichtu ngen. F. Kreutzkampf, K. Becker,
Sicherheitstechn isches Informations- und Arbeitsblatt 330210, BIA-Handbuch. 1. Lfg. lX/85,
Erich Schmidt Verlag, Bielefeld.

A=13 Final elements (actuators)

Global objective: To control failures in the final elements In the safety-related system.

44.13.1 Monitoring

!’:’3TE ?“5,s technique/measure is referenced In table A.15 of IEC 61508-2.

Aim: To detect the incorrect opt?ration of an actuator.

22

~
lS/lEC 61508-7:2000

Description: The operation of the actuator is monitored (for example by the positively
activated contacts of a reiay, see monitoring of relay contacts in A.1 .2). The redundancy
introduced by this monitoring can be used to trigger emergency action.

References:

Zusammenstellung und Bewertung elektromechanischer Sicherheitsschaltu ngen fur Ver-
riegelungseinrichtu ngen. F. Kreutzkampf, W. Hertel, Sicherheitstech nisches Informations- und
Arbeitsblatt 330212, BIA-t-landbuch. 17. Lfg. X/91, Erich Schmidt Verlag, Bielefeld.

Guidelines for Safe Automation of Chemical Processes. CCPS, AICh E, New York, 1993.

A,l 3.2 Cross-monitoring of multiple actuators
t

NOTE This technique/measure is referenced in table A.15 of IEC 61508-2, i*

Aim: To detect faults in actuators by comparing the results.

Description: Each multiple actuator is monitored by a different hardware channel. If a
discrepancy occurs, emergency action is taken.

A.14 Measures against the physical environment

NOTE This technigue/measure is referenced In table A.17 of IEC 61508-2

Aim: To prevent influences of the phystcal environment (water, dust, corrosive substances)

causing failures.

Description: The enclosure of the
environment.

Reference: IEC 60529:1989, Degrees

equipment is designed

of protm?Iorr provided by

4

to withstand the expected

enclosures (IP Code).

u

23

lS/lEC 61508-7:2000

Annex B
(informative)

Overview of techniques and measures for E/E/PES:
avoidance of systematic failures

(see IEC 61508-2 and IEC 61508-3)

NOTE Many techniques in this annex are applicable to software but have not been duplicated in annex C

B.1 General measures and techniques

6.1.1 Project management

NOTE This technique/measure is referenced in tables B.1 to B.6 of IEC 61508-2.

Aim: To avoid failures by adoption of an organisational model and rules and measures for
development and testing of safety-related systems.

Description: The most important and best measures are

— the creation of an organisational model, especially for quality assurance (see standards
such as the series ISO 9000-1 to ISO 9004-1 or similar) which is set down in a quality
assurance handbook; and

the establishment of regulations and measures for the creation and validation of safety-
related systems in cross-project and project-specific guidelines.

A number of important basic principles are set down in the following:

definition of a design organisation:

– tasks and responsibilities of the organisational units,

— authority of the quality assurance departments,

— independence of quality assurance (internal inspection) from development;

— definition of a sequence plan (activity models):

– determination of all activities which are relevant during execution of the project
including internal inspections and their scheduling,

- project update;

— definition of a standardised sequence for an internal inspection:

— planning, execution and checking of the

— releasing mechanisms for subproducts,

— the safekeeping of repeat inspections;

. configuration management:

administration and checking of versions,

— detection of the effects of modifications,

inspection (inspection theory),

— consistency inspections after modifications;

— introduction of a quantitative assessment of quality assurance measures:

—— requirement acquisition,

— failure statistics;

Introduction of computer-aided universal methods, tools and training of personnel.

24

lS/lEC 61508-7:2000

References:

IEEE: Software Engineering Standards. lEEE/Wiley-lnterscience, New York, 1987.

Dependability of Critical Computer Systems 1. F. J. Redmill, Elsevier Applied Science, 1988,
ISBN 1-85166-203-0.

Guidelines for Safe Automation of Chemical Processes. CCPS, AIChE, New York, 1993.

B.1.2 Documentation

NOTE 1 This technique/measure is referenced in tables B,l to B.6 of IEC 61508-2,

NOTE 2 See also clause 5 and annex A of IEC 61508-1

Aim: To avoid failures and facilitate assessment of system safety, by documenting each step
during development.

Description: The operational capacity and safety, as well as the care taken in development
by all parties involved, has to be demonstrated during assessment. In order to be able to
show the development care, and in order to guarantee the verification of the evidence of
safety at any time, special importance is given to the documentation.

Important common measures are the introduction of guidelines and computer aid, i.e.

- guidelines, which

— specify a grouping plan;

— ask for checklists for the contents; and

- determine the form of the document;

— administration of the documentation with the help of a computer-aided and organised
project library.

Individual measures are:

— separation in the documentation

— of the requirements,

— of the system (user-documentation) and

— of the development (including internal inspection);

— grouping of the development documentation according to the safety Iifecyc!e;

- definition of standardised documentation modules, from which the documents can be
compiled;

clear identification of the constituent parts of the documentation;

- formalised revision update;

— selection of clear and intelligible means of description:

- formal notation for determinations;

— natural language for introductions, justifications and representations of intentions;

- graphical representations for examples;

— semantic definition of graphical elements; and

- directories of specialised words

25

lS/iEC 61508-7:2000

References:

i EC 61.506:1997, lndustria/-pmcess measurement and confm/ – Docurnention of application
software.

EWICS European Workshop on Industrial Computer Systems, TC 7: Safety Related
Computers – Software Development and Systems Documentation. Verlag TUV Rheinland,
Koln, 1985.

Guidelines for Safe Automation of Chemical Processes. CCPS,

Entwicklungstechnik sicherheitsverantwortlicher Software in
U. Feucht, informatik-Fachberichte 86, Springer Verlag, Berlin,

AICh E, New York, 1993.

der Eisenbahn-Signaltechnik.
184-195, 1984. I

Richtlinie zur Erstellung und Prufung sicherheit.srelevanter Software. K. Grimm, G. Heiner,
s

Informatik Fachberichte 86, Springer Verlag, Berlin, 277-288, 1984.

f3.1.3 Separation of safety-related systems from non-safety-related systems

NC)TE This technique/measure IS referenced in tables B.1 and B.6 of IEC 61508-2,

Aim: To prevent the non-safety-related part of the system from influencing the safety-related

part in undesired ways.

Description: In the specification it should be decided whether a separation of the safety-
related systems and non-safety-related systems is possible. Clear specifications should be

written for the interfacing of the two parts. A clear separation reduces the effort for testing the
safety-related systems.

Reference: Guidelines for Safe AutomatIon of Chemical Processes. CCPS, AIChE,
New York, 19!33.

f3.1.4 Diverse hardware

NOTE This technique/measure IS referenced in tables A 16: A 17 and A.19 of IEC 61508-2.

Aim: To detect systematic failures during operation of the ELIC, using diverse components

‘with different rates and types of failures.

Description: Different types of components are used for the diverse channels of a safety-
related system. This reduces the probability of common cause failures (for example

overvoltage, electromagnetic interference), and increases the probability of detecting such
failures.

Existence of different means of performing a required function, for example different physical
principles, offer other ways of solving the same problem. There are several types of diversity.

Functional diversity employs the use of different approaches to achieve the same result.

Reference: Guidelines for Safe Automation of Chemical Processes. CCPS, AIChE
New York, 1993..

4

$(

26

———

lS/lEC 61508-7:2000

B.2 E/EIPES safety requirements specification

Global objective: To produce a specification which is, as far as possible, complete, free
from mistakes, free from contradiction, and simple to verify.

13.2.1 Structured specification

NOTE This technique/measure is referenced in tables B.l”and B.6 of IEC 6150$-2

Aim: To reduce complexity by creating a hierarchical structure of partial requirements. To
avoid interface failures between the requirements.

Description: This technique structures the functional specification into partial requirements
such that the simplest possible, visible relations exist between the latter. This analysis is
successively refined until small clear partial requirements can be distinguished. The result of
the final refinement is a hierarchical structure of partial requirements which provide a
framework for the specification of the complete requirements. This method emphasises the
interfaces of the partial requirements and is particularly effective for avoiding interface
failures.

References:

Structured Analysis and System Specification. T. De Marco, Yourdon Press, Englewood Cliffs, 1979,

ESA PSS 05-02, Guide to the user requirements definition phase, European Space Agency, 1989.

6.2.2 Formal methods
A

NOTE 1 See C.2 4 for details of specific formal methods.

NOTE 2 This technique/measure IS referenced in tables B.1 and B.6 of IEC 61508-2.

Aim: To express a specification unambiguously and consistently, so that mistakes and
omissions can be detected.

Description: Formal methods provide a means of developing a description of a system at
some stage in its specification or design. The resulting description takes a mathematical form
and can be subjected to mathematical analysis to detect various classes of inconsistency or
incorrectness. Moreover, the description can in some cases be analysed by a machine with a
rigour similar to the syntax checking of a source program by a compiler, or animated to
display various aspects of the behaviour of the system described. Animation can give extra
confidence that the system meets the real requirement as well as the formally specified
requirement, because it improves human recognition of the specified behaviour.

A formal method will generally offer a notation (generally some form of discrete mathematics
being used), a technique for deriving a description in that notation. and various forms of
analysis for checking a description for different correctness properties,

Starting from a mathematically formal specification, the design can be transformed by a series
of step-wise refinements to a logic circuit design.

References:

Dependability of Critical Computer Systems 3. P. G. Bishop et al, Elsevier Applied Science,
1990, ISBN 1-85166-544-7.

HOL: A Machine Orientated Formulation of Higher C)rder Logic. M. Gordon, University of
Cambridge Technical Report Number 68, 198.5.

27

KMEC 61508-7:2000

E3.2.3 Semi-forma! methods

Aim: To express parts of a specification
rnislakes and omissions can be detected.

unambiguously and consistently, so that some

NOTE This leCtlnique/measure IS referenced in tables B.1, B.2 and B.6 of IEC 61508-2 and in tables A.1, A.2 and
A 4 of IEC 61508-3.

(3.2.3.1 General

Aim: TCI prove that the design meets its specification.

~eseription: Semi-formal methods provide a means of developing a description of a system
at some stage in its development, i.e. specification, design or coding. The description can in
some cases be analysed by machine or animated to display various aspects of the system
ae’haviour. Animation can give extra confidence that the system meets the real requirement as
};ell as the specified requirement.

Two semi-formal methods are described in the following subclauses.

H.2.3.2 Finite state machines/state transition diagrams

NOTE This technique/measure is referenced in tables F3.5and B.7 of IEC 61508-3.

Aim: To model, specify or implement the control structure of a system.

De~~iiption: Many systems can be described in terms of their states, their inputs, and their
actions. Thus when in state S1, on receiving input I a system might carry out action A and
move to state S2. By describing a system’s actions for every input in every state we can
describe a system completely. The resulting model of the system is called a finite state
rwachine. It is often drawn as a so-called state transition diagram showing how the system
moves from one state to another, or as a matrix in which the dimensions are state and input,
anti the matrix cells contain the action and new state resulting from receiving the input when
in the given state.

Where a system is complicated or has a natural structure this can be reflected in a layered
finite state machine.

A specification or design expressed as a finite state machine can be checked for

completeness (the system must have an action and new state for every input in every
state);

— consistency (only one state change is described for each state/input pair); and

reachability (whether or not it is possible to get from one state to another by any sequence
of inputs).

Tfiese are important properties for critical systems. Tools to support these checks are easily
developed. Algorithms also exist that allow the automatic generation of test cases for verifying
a finite state machine implementation or for animating a finite state machine model,

Reference: Introduction to the theory of Finite State Machines. A. Gill, McGraw-Hill, 1962.

.
i*

28

lS/lEC 61506-7:2000

8.2.3.3 Time Petri nets

NOTE This technique/measure is referenced in tables 6.5 and 6.7 of IEC 61506-3.

Aim: To model relevant aspects of the system behaviour and to assess and possibly improve
safety and operational requirements through analysis and re-design.

Description: Petri nets belong to a class of graph theoretic models which are suitable for
representing information and control flow in systems that exhibit concurrency and have
asynchronous behaviour.

A Petri net is a network of places and transitions. The places may be “marked” or “unmarked”.
A transition is “enabled” when all the input places to it are marked. When enabled, it is
permitted (but not obliged) to “fire”. if it fires, the input places to the transition become
unmarked, and each output place from the transition is marked instead.

The potential hazards can be represented as particular states (markings) in the model. The
Petri net model can be extended to allow for timing features of the system. Although
“classical” Petri nets concentrate on control flow aspects, several extensions have been
proposed to incorporate data flow into the model.

References:

Petri nets: Properties, analysis and applications. T. Murata, Proc. IEEE 77 (4), 541-580, April 1989.

Safety analysis using Petri nets. N. G. Leveson, J. L. Stolzy, Proc. 15th Ann. Int. Symp on
Fault-Tolerant Computing, 358-363, IEEE, 1985.

Using Petri nets for safety analysis of unmanned Metro system. M. El Koursi, P. Ozello,
Proc. SAFECOMP ’92, 135-139, Pergamon Press, 1992.

Net theory and applications. W. Brauer (cd.), Lecture Notes in Computer Science, Vol. 84,
Springer Veriag, 1980.

Petri net theory and modelling of systems. J. L. Peterson, Prentice Hall, 1981.

4

A tool for requirements specification and analysis of real time software based on timed Petri
nets. S. Bologna, F. Pisacane, C. Ghezzi, D. Mandrioli, Proc. SAFECOMP 88, 9-11 November
1988. Fulda, Fed. Rep. of Germany, 1988.

B.2.4 Computer-aided specification tools

NOTE This technique/measure is referenced in tables 6.1 and 6.6 of IEC 61508-2 and in tables A.1 and A.2 of
IEC 61508-3.

B.2.4.1 General

Aim: To use formal specification techniques to facilitate automatic detection of ambiguity and
completeness.

Description: The technique produces a specification in thae form of a database that can be
automatically inspected to assess consistency and completeness. The specification tool can
animate various aspects of the specified system to the user. In general, the technique
supports not only the creation of the specification but also of the design and other phases of
the project Iifecycle. Specification tools can be classified according to the following
subclauses.

29

iS/lEC 61506-7:2000

S.2.4.2 Took oriented towards no specific method

Aim: “To help the user write a good specification by providing prompts and links between
i-elated parts.

Description: The specification tool takes over some routine work from the user and supports
the project management. it does not enforce any particular specification methodology. The
reiative independence with regard to method allows users a great deal of freedom but also
gives them Iittie of the specialised support necessary when creating specifications. This
makes familiarisation with the system more difficult.

Reference: lntegrierte Rechneruntersttitzung fur Entwicklung, Projektmanagement und
Prcxtuldverwaltung mit EPOS. R. Lauber, P. Lempp, Elektron. Rechenanlagen 27, Heft 2,
68-74, 1985.

●
✎

8.2.4.3 Model orientated procedure with hierarchical analysis

Aim: To help the :Jser write a good specification by ensuring consistency between
descriptions of actions and data at various levels of abstraction.

Description: This method gives a functional representation of the desired system (structured
analysis) at various levels of abstraction (degree of precision). The analysis at various levels
acts on both actions and data. Assessment of ambiguity and completeness is possible
between hierarchical !evels as well as between’ two functional units (modules) on the same
!evel.

Reference: Structured Analysis for Requirement Definition. D. T. Ross, K. E. Schomann jr,
iEEE Trans. on SE., Januay 1977.

E$.2.4.4 Entity models

Aim: To help the user write a good specification by focusing on entities within the system
and re[atlonships between them.

Description: The desired system is described as a collection of objects and their
relationships. The tool enables one to dqterrnine which relationships can be interpreted by the
system. In general, the relationships permit a description of the hierarchical structure of the
objects, the data flow, the relationships between the data, and which data are subject to.
certain manufacturing processes. The classical procedure has been extended for process
control applications. Inspection capabilities and support for the user depend on the variety of
r~l~~ior:sh~ps illustrate @.’on the other hand, a large number of representation possibilities

makes the application of this technique complex.

References:

PSL/PSA Computer-aided Technique for Structured Documentation and Analysis of
Information Processing. D. Teichroew, E. A. Hershey, IEEE Trans on SE, Jan 1977.

C{~mputer Aided Software Development. D. Teichroew, E. A. Hershey, Y. Lamamoto, Beitrag
~n: Verfahren und Hilfsmittel fur Spezifikation und Entwurf von Prozet3automatisieru rigs-
systemen. Hommel (cd.), 13ericht KfK-PDV 154, Kernforschu ngszentrum Karlsruhe, 1978.

PCSL und ESPRESO – zwei Ansatze zur Forma! isierung der Prozessrechner Software-
spezifika?ion. J. Ludewig, G1-Fachtagung Prozessrechner 1981, lnformatik-Fachbe richte Bd.
%3, Springer Ve?!ag, Berlin, 1981.

30

..._..___,___ —~

~

lS/lEC 61508-7:2000

B.2.4.5 Incentive and answer

Aim: To help the user write a good specification by identifying stimulus-response
relationships.

Description: The relationships between the objects of the system are specified in a notation
of “incentives” and “answers”. A simple and easily expanded language is used which contains
language elements which represent objects, relationships, characteristics and structures. \

References:

A Requirements Engineering Methodology for Real-time Processing Requirements.
M. W. Alford, IEEE Trans on SE, January 1977.

I

The Specification System X-SPEX – Introduction and Experiences. G. Dahll, J. Lahti, Proc.
s

SAFECOMP ’83, 111-118.

6.2.5 Checklists

NOTE This technique/measure is referenced in tables B.1, B.2 and B.6 of IEC 61508-2 and in tables A.1O and B.8
of IEC 61508-3.

Aim: To draw attention to, and manage critical appraisal of, all important aspects of the
system by safety Iifecycle phase, ensuring comprehensive coverage without laying down
exact requirements.

Description: A set of questions to be answered by the person performing the checklist. Many
of the questions are of a general nature and the assessor must interpret them as seems most
appropriate to the particular system being assessed. Checklists can be used for all phases of

4

the overall, E/E/PES and software safety Iifecycles and are particularly useful as a tool to aid
the functional safety assessment.

To accommodate wide variations in systems being validated, most checklists contain
questions which are applicable to many types of system. As a result, there may well be
questions in the checklist being used which are not relevant to the system being dealt with

:

and which should be ignored. Equally there may be a need, for a particular system, to
supplement the standard checklist with questions specifically directed at the system being
dealt with.

In any case it should be clear that the use of checklists depends critically on the expertise and
judgement of the engineer selecting and applying the checklist. As a result, the decisions
taken by the engineer, with regard to the checklist(s) selected, and any additional or
superfluous questions, should be fully documented and justified. The objective is to ensure
that the application of the checklists can be reviewed and that the same results will be
achieved unless different criteria are used.

The object in completing a checklist is to be as concise as possible. When extensive .
justification is necessary this should be done by reference to additional documentation. Pass,
fail and inconclusive, or some similar restricted set of responses should be used to document
the results for each question. This conciseness greatly simplifies the procedure of reaching an
overall conclusion as to the results of the checklist assessment.

31

iS/lEC 61508-7:2000

References:

IEC 61346 (a!l parts), Industrial systems, ir?stallatiofis and equipment and industrial products –
Structuring principles and reference designation.

IEC 60880:1986, Software for computers in the safety systems of nuclear power stations.

Guidelines for Safe Automation of Chemical Processes. CCPS, AIChE, New York, 1993.

Programmable Electronic Systems (P ES) in Safety Related Application. Health and Safety
Executive, UK, 1987.

Dependability of Critical Computer Systems 2, F. J. Redmill, Elsevier Applied Science, 1989,
ISBN 1-85166-381-9.

The Art of Software Testing. G. Myers, Wiley & Sons, New York, 1979.

13.2.6 Inspection of the specification

NOTE This technique/measure is referenced in tables B,l and B.6 of IEC 61508-2,

Aim: To avoid incompleteness and contradiction in the specification.

Description: Inspection is a general technique in which various qualities of a specification
document are assessed by an independent team. The inspection team puts questions to the
creator, who must answer them satisfactorily. The examination should (if possible) be carried
out by a team that was not involved in the creation of the specification. The required degree
of independence is determined by the safety integrity levels demanded of the system. The
independent inspectors should be able to reconstruct the operational function of the system in
an indisputable manner without referring to any further specifications. They must also check
tnat all relevant safety and technical aspects in the operational and organisational measures
are covered. This procedure has proved itself to be very effective in practice.

References:

The Art of Software Testing. G. Myers, Wiley & Sons, New York, 1979

IEC 61160:1992, formal design review.

B.3 E/E/PES design and development

Global objective: To produce a stable design of the safety-related system in conformance
with the specification.

B.3.1 Observance of guidelines and standards

NOTE This technique/measure is referenced in table 6.2 of IEC 61508-2.

Aim: To observe application sector standards (not specified in this standard).

Description: Guidelines should be complied with during the design of the
system. These guidelines should firstly lead rO safety-related systems which
free from failures, and secondly facilitate the subsequent safety validation,
universally valid, specific to a pr.~ect, or specific only to a single phase.

safety-related
are practically
They can be

4

:’

32

lS/lEC 61508-7:2000

References:

EWICS European Workshop on Industrial Computer Systems,
Computers – Software Development and Systems Documentation.
Koln, 1985.

TC 7:
Verlag

Safety Related
TUV Flheiniand,

Guidelines for Safe Automation of Chemical Processes. CCPS, AICh E, New York, 1993.

Deutsche Bundesbahn: Richtlinien-Entwu rfe 42500 to 42550 fur das Handbuch “Grundsatze
zur technischen Zulassung in der Signal- und Nachrichtentechnik”. Bundesbahn-Zentralamt
Munchen, August 1987.

Richtlinie zur Ersteilung und PrUfung sicherheitsrelevanter Software. K. Grimm, G. Heiner,
Informatik Fachberichte 86, Springer Verlag, Berlin, 277-288, 1984.

B.3.2 Structured design

NOTE This technique/measure is referenced in tables B.2 and B.6 of IEC 61506-2.

Aim: To reduce complexity by creating a hierarchical structure of partial requirements. To

avoid interface failures between the requirements. To simplify verification.

Description: When designing the hardware, specific criteria or methods should be used. For

example, the following might be required:

— a hierarchically structured circuit design;

— use of manufactured and tested circuit parts.

Similarly, when designing the software, the use of structure charts enables an unambiguous

structure of the software modules to be created. This structure shows how the modules relate

to each other, the precise data which passes between modules, and the precise controls that

exist between modules.

References:

Structured Development for Real-Time Systems (3 Volumes). P. T. Yourdon, P. T. Yourdon
Press, 1985.

Software Design for Real-time Systems. J. E. Cooling, Chapman and Hall, 1991.

Essential Systems Analysis. St. M. tvlcMenamin, F. Palmer, Yourdon Inc, 1984.

The Use of Structured Methods in the Development of Large Software-Based Avionic
Systems. D. J. Hatley, Proceedings DASC, Baltimore, 1984.

An Overview of JSD, J. R. Cameron, IEEE Trans SE-12

System Development. M. Jackson, Prentice-Hall, 1983.

MASCOT 3 User Guide. MASCOT Users Forum, RSRE,

Structured Development for Real-Time Systems (3
Yourdon Press, 1985.

No. 2, February 1986.

Malvern, England, 1987.

Volumes). P. T. Ward, S. J. Mellor,

Structured Analysis for Requirements Definition, D. T. Ross, K. E. Schoman Jr, IEEE Trans.
Software Eng, Vol. SE-3, 6-15, 1977.

Structured Analysis (SA): A language for communicating ideas. D. T. Ross, IEEE Trans.
Software Eng, Vol. SE-3 (l), 16-34.

33

IS/lEC 61508-7:2000

Applications and Extensions of SADT. D. T. Ross, Computer, 25-34, April 1985.

Structured Analysis and Design Technique – Application on Safety Systems. W. Heins, Risk
Assessment and Control Courseware, Module B1, chapter 11, Delft University of Technology,
Safety Science Group, PO Box 5050, 2600 GB Delft, Netherlands, 1989.

IEC 61346 (all parts), Incfustrial systems, installations and equipment and industrial products -
Structuring principles and reference designations.

B.3.3 Use of well-tried components

NOTE This technique/measure is referenced in tables B.2 and B.6 of IEC 61506-2,

Aim: To reduce the risk of numerous first time and undetected faults by the use of
components with specific characteristics.

Description: The selection of well-tried components is carried out by the manufacturer, with
regard to safety according to the reliability of the components (for example the use of
operationally tested physical units to meet high safety requirements, or the storing of safety-
related programs in safe memories only). The safety of memories can refer to unauthorised
access as well as environmental influences (electromagnetic compatibility, radiation, etc) and
the response of the components in the event of a failure occurring.

References:

Reliability Testing for Industrial use. W. T. Greenwood, Computer 10 (7), 26-30, 1977.

Independent Test Labs: Caveat Emptor. E. Rubinstein, IEEE Spectrum, 14 (6), 44-50, 1977.

Microcomputers in safety technique – an aid to orientation for developer and manufacturer.
H. Holscher, J. Rader, Verlag TUV Rheinland, Koln, 1986, ISBN 3-88585-315-9.

IEC 61163-1:1995, Re/iabi/ity stress screening – Part 7: Repairable items manufactured
in /ots.

Zuverlassigkeit elektronischer Komponenten. T. Bajenescu, VDE-Verlag, Berlin, 1985.

B.3.4 Modularisation

NOTE This technique/measure is referenced in tables 6.2 and B.6 of IEC 61506-2.

Aim: To reduce complexity and avoid failures, related to interfacing between subsystems.

Description: Every subsystem, at all levels of the design, is clearly defined and is of
restricted size (only a few functions). The interfaces between subsystems are kept as simple
as possible and the cross-section (i.e. shared data, exchange of information) is minimised.
The complexity of individual subsystems is also restricted.

References:

EWICS European Workshop on Industrial Computer Systems, TC 7: Safety Related”
Computers - Software Development and Systems Documentation. TUV Rheinland; Koln, 1985.

The Art of Software Testing. G. J. Myers, Wiley & Sons, New York, 1979.

Software Reliability – Principles and Practices. G. J. Myers, Wiley-lnterscience, New York, 1976.

Software Design for Real-time Systems. J. E. Cooling, Chapman and Hall, 1991.

34

~

lS/lEC 61506-7:2000

B.3.5 Computer-aided design tools

NOTE This technique/measure k referencedin tables B.2 and B.6 of IEC 61508-2 and in table A.4 of IEC 61508-3.

Aim: To carry out the design procedure more systematically. To include appropriate
automatic construction elements which are already available and tested.

Description: Computer-aided design tools (CAD) should be used during the design of both
hardware and software when available and justified by the complexity of the system. The
correctness of such tools should be demonstrated by specific testing, by an extensive history
of satisfactory use, or by independent verification of their output for the particular safety-
related system that is being designed.

References:

Verification – The Practical
1987, Altrincham, England,

An Ex~erience in Desian

Problems. J. T. Webb and D. J. Mannering, SARSS 87,
Elsevier Applied Science, 1987, ISBN 1-85166-167:0.

November

and Validation of Software for a Reactor Protection System.
S. Bologna, E. de Agostino et al, IFAC Workshop, SAFECOMP 1979, Stuttgart, 16-18 May
1979, Pergamon Press, 1979.

B.3.6 Simulation

NOTE This technique/measure is referenced in tables B.2, B.5 and B.6 of IEC 61508-2

Aim: To carry out a systematic and complete inspection of an electrical/el,ectronic circuit, of
both the functional performance and the correct dimensioning of the components.

Description: The function of the safety-related system circuit is simulated on a computer via
a software behavioral model. Individual components of the circuit each have their own
simulated behaviour, and the response of the circuit in which they are connected is examined
by looking at the marginal data of each component.

References:

Proc. Working Conference on Prototyping. @Jamur,October 1983, Budde et al, Springer Verlag, 1984.

Using an executable specification language for an information system. S. Urban et al’,
IEEE Trans Software Engineering, Vol. SE-11 No. 7, Juiy 1985.

Verification and validation of Real-time Software. W. J. Quirk (cd.), Springer Verlag, Berlin, 1985.

VD1-GemeinschaftsausschuB Industrielle Systemtechnik: Software-Zuverlassigkeit, VD1-Verlag, 1993,

6.3.7 Inspection (reviews and analysis)

NOTE This technique/measure IS referenced in tables B.2 and B,6 of IEC 61508-2.

Aim: To reveal discrepancies between the specification and implementation.

Description: Specified functions of the safety-related system are examined and evaluated to
ensure that the safety-related system conforms to the requirements given in the specification.
Any points of doubt concerning the implementation and use of the product are documented so
they may be resolved. In contrast to a walk-through, the author is passive and the inspector is
active during the inspection procedure.

35

EYIEC 61508-7:2000

References:

The Art of Software Testing. G. J. Myers, Wiley & Sons, New York, 1979

Dependability of Critical Computer Systems 3. P. G. Bishop et al, Elsevier Applied Science,

1990, ISBN 1-85166-544-7.

WXGemeinschaftsausschufi Industrielle Systemtechnik: Software-Zuverlassigkeit. VD1-Verlag, 1993.

ANSi/l EE Std. 1028:1997, IEEE Standard for software reviews and audits.

B.3.8 Walk-through

NOTE This technique/measure is referenced in table B,6 of IEC 61508-2,

Aim: To reveal discrepancies between the specification and implementation.

Description: Specified functions of the safety-related system draft are examined and
evaluated to ensure that the safety-related system complies with the requirements given in
the specification. Doubts and potential weak points concerning the realisation and use of the
product are documented so that they may be resolved. In contrast to an inspection, the author
is active and the inspector is passive during the walk-through.

References:

Dependability of Critical Computer Systems 3. P. G. Bishop et al, Elsevier Applied Science,
1990, ISBN 1-85166-544-7.

Method~sches Testen von Programmed. G. J. Myers, CNdenbourg Verlag, Munchen, Wien, 1987.

VDi-Gerneinschaftsausschu13 Industrielle Systemtechnik: Software-Zuverlassigkeit. VD1-Verlag, 1993.

ANS1/l EE Std. 1028:1997, IEEE Standard for software reviews and audits.

B.4 E/E/PES operation and maintenance procedures

G!oba! objective: To develop procedures which help to avoid failures during the operation
and maintenance of the safety-related system.

!3.4.1 C@eration and maintenance instructions

NOTE ThIS technique/measure is referenced in table B.4 of IEC 61508-2

Aim: To avoid mistakes during operation and maintenance of the safety-related system.

Description: User instructions contain essential information on how to use and how to
maintain the safety-related system. In special cases, these instructions will also include
examples on how to install the safety-related system in general. Ail instructions must be
easily understood. Figures and schematics should be used to describe complex procedures
and dependencies.

*

Reference: Guidelines for Safe Automation of Chemical Processes. CCPS, AIChE,
New York, 1993.

36

..,—,,.,....._ -

lS/!EC 61506-7:2000

B.4.2 User friendliness

NOTE This technique/measure is referenced in table B.4 of IEC 61508-2.

Aim: To reduce complexity during operation of the safety-related system.

Description: The correct operation of the safety-related system may depend to some degree
on human operation. By considering the relevant system design and the design of the
workplace, the safety-related system developer must ensure that

— the need for human intervention is restricted to an absolute minimum;

— the necessary intervention is as simple as possible;

— the potential for harm from operator error is minimised;

— the intervention facilities and indication facilities are designed according to ergonomic
requirements;

.- the operator facilities are simple, well Iabel[ed and intuitive to use;

— the operator is not overstrained, even in extreme situations;

— training on intervention procedures and facilities is adapted to the level of knowledge and
motivation of the trainee user.

B.4.3 Maintenance friendliness

NOTE This technique/measure is referenced in table B.4 of IEC 61508-2

Aim: To simplify maintenance procedures of the safety-related system and to design the
necessary means for effective diagnosis and repair.

Description: Preventive maintenance and repair is often carried out under difficult
circumstances and under pressure from deadlines. Therefore, the safety-related system
developer should ensure that

— safety-related maintenance measures are necessary as seldom as possible or even,
ideally, not necessary at all;

— sufficient, sensible and easy-to-handle diagnosis tools are included for those repairs that
are unavoidable - tools should include all necessary interfaces;

— if separate diagnosis tools have to be developed or obtained, then these should be
available on time.

i

B.4.4 Limited operation possibilities

NOTE This technique/measure is referenced in tables 9.4 and B.6 of IEC 61508-2.

Aim: To reduce the operation possibilities for the normal user.

Description: This approach reduces the operation possibilities by

— limiting the operation within special operating modes, for example by key switches;

— limiting the number of operating elements;

— limiting the number of generally possible operating modes.

Reference: Guidelines for Safe Automation of Chemical Processes. CCPS, AIChE,
New York, 1993.

37

Is/lEc 6150$-7:2000

E$.4.5 (llperatien only by skilled operators

NJ(2TE This technique/measure is referenced in tables B.4 and B.6 of IEC 61508-2.

Aim: To avoid opeJating failures caused by misuse.

Description: The safety-related system operator is trained to a level which is appropriate to
the complexity and safety integrity level of the safety-related system. Training includes
studying the background of the production process and knowing the relationship between the
safety-related system and the EUC.

Reference: Guidelines for Safe Automation of Chemical Processes. CCPS, AIChE,
New York, ?993.

B.4.6 Protection against operator mistakes

NOTE This technique/measure is referenced in table B.6 of IEC 61508-2.

Aim: To protect the system against all classes of operator mistakes.

Description: Wrong inputs (value, time, etc) are detected via plausibility checks or
monitoring of the EUC. To integrate these facilities into the design it is necessary to state at a
very early stage which inputs are possible and which are permissible.

13.4.7 (Not used)

B.4.8 Modification protection

NOTE This technique/measure is referenced

Aim: To protect the safety-related

means.

in table A

system

18 of IEC 61508-2.

against hardware modifications by technical

Description: Modifications or manipulations are detected automatically, for example by
plausibility checks for the sensor signals, detection by the technical process and by automatic
start-up tests. If a modification is detected, then emergency action is taken.

B.4.9 Input acknowledgement

NOrE This technique/measure is referenced in tables A.18 and A.19 of IEC 61508-2.

Aim: A mistake during operation is detected by the operator himself before activating the
ELIG.

f.description: An input to the EUC via the safety-related system is echoed to the operator
before being sent to the EUC so that the operator has the possibility to detect and correct a
mistake. As well as abnormal, unprovoked personnel action, the system design should
~;cn~ider toP/bottom speed limits and direction of human reaction. This would avoid, for

example, the operator pressing keys faster than expected, causing the system to read a
double keystroke as a single one, or a key to be pressed twice because the system (display)
was too slow to react to the first instance. The same key stroke should not be valid more than
once in succession for critical data entry; pressing the “enter” or “yes” key unlimited times
rmu.st not lead to an unsafe action of the system.

Tllne-oldt procedures should be included with multiple choice questions (yes/no, etc.) to cater

for when the operator may not make up his mind and leave the system waiting.

Ability to reboot a safety-related PES makes the system vulnerable unless both
so ftware/har’dware are designed with such occasions in mind.

Reference: DIN V VDE 0801: Grundsatze fur Rechner in Systemen mit Sicherheitsaufgaben
(Principles for Computers in Safety-Related Systems). Beuth-Verlag, Berlin, 1990.

38

B.5 E/E/PES integration

—~

lS/lEC 61506-7:2000 q

Global objective: To avoid failures during the integration phase and to reveal any failures
that are made during this and previous phases.

B.5.1 Functional testing

NOTE This technique/measure is referenced in tables B.3 and B.5 of IEC 61506-2 and in tables A.5, A.6 and A.7
of IEC 61508-3.

Aim: To reveal failures during the specification and design phases. To avoid failures during
implementation and the integration of software and hardware.

Description: During the functional tests, reviews are carried out to see whether the specified
I

characteristics of the system have been achieved. The system is given input data which
adequately characterises the normally expected operation. The outputs are observed and i

their response is compared with that given by the specification. Deviations from the
specification and indications of an incomplete specification are documented.

Functional testing of electronic components designed for a multi-channel architecture usually
involves the manufactured components being tested with pre-validated partner components.
In addition to this, it is recommended that the manufactured components be tested in
combination with other partner components of the same batch, in order to reveal common
mode faults which would otherwise have remained masked.

Also, the working capacity of the system has to be sufficient, see guidance in C.5.20.

References:

Functional Program Testing and Analysis, W. E, Howden, McGraw-Hill, 1987. 4

The Art of Software Testing, G. J. Myers, Wiley & Sons, New York, 1979.

Dependability of Critical Computer Systems 3, P. G, Bishop et al, Elsevier Applied Science,
1990, ISBN 1-85168-544-7.

6.5,2 Black-box testing

NOTE This technique/meaaura is referenced In tables B3, Ef5 and B.6 of IEC 61508-2 and in tables A*5, A.6
and A7 of IEC 61508-3

Aim: To check the dynamic behaviour under real functional conditions, To reveal failures to
meet functional specification, and to assess utility and robustness,

Description: The functions of a system or program are executed in a specified environment
with specified test data which is derived systematically from the specification according to
established criteria. This exposes the behaviour of the system and permits a comparison with
the specification. No knowledge of the internal structure of the system is used to guide the
testing. The aim is to determine whether the functional unit carries out correctly all the
functions required by the specification, The technique of forming equivalence classes is an
example of the criteria for blackbox test data, The input data space is subdivided into specific
input value ranges (equivalence classes) with the aid of the specification. Test cases are then
formed from the

data from permissible ranges;

data from inadmissible ranges;

data from the range limits;

extreme values;

and combinations of the above classes.

39

wlEc 61508-7:2000

Other criteria can be effective in order to select test cases in the various test activities
(module test, integration test and system test). For example, the criterion “extreme
operational conditions” is relied upon for the system test within the framework of a validation.

References:

Functional Testing and Analysis. W. E. Howden, McGraw-Hill Book Company, New York, 1987.

Software Testing and Validation Techniques. E. Miller, W. E. Howden, IEEE Computer
Society, New York, 19”78.

The Art of Software Testing. G. J. Myers, Wiley & Sons, New York, 1979.

Mettaodik systematischen Testens von Software., K. Gfimm, 30 (4), 1988.

VD1-Gemeinschaftsausschu13 Industrielle Systemtechnik: Software-Zuverlassigkeit. V131-Verlag, 1993,

B.5.3 Statistical testing

NOTE This technique/rneasure is referenced in tables B.3, B.5 and B.6 of IEC 61508-2,

Aim: To check the dynamic behaviour of the safety-related system and
and robustness.

to assess its utility

Description: This approach tests a system or program with input data selected according to
the expected statistical distribution of the real operating inputs – the operational profile.

References:

Software “Testing via Environmental Simulation (CC) NTESSE Report). Available until
December 1998 from: Ray Browne, Cl ID, DTI, 151 Buckingham Palace Road, London,
SWIW 9SS, UK, 1994.

Aspects of Development and Verification of Reliable Process Computer Software.
W. Ehrenberger, IFAC-IFIP Conference Proceedings, 35-48, 1980.

Verdlcatlon and validation of Real-time Software, W. J. Quirk (cd.), Springer Verlag, Berlin, 1985.

VD1-Gemeinschaftsaussch u13Industrielle Systemtechnik: Software-Zuverlassigkeit. VD1-Verlag, 1993.

Dependability of Critical Computer Systems 1. F. J. Redmill, Elsevier Applied Science, 1988,
ISBN 1-85166-203-0.

Dependability of Critical Computer Systems 3, P. G. Bishop et al, Elsevier Applied Science,
1990, ISBN 1-85166-544-7.

B.5.4 Field experience

NOTE 1 See also C,2,1O for a slmllar measure and annex Cl for a statistical approach, both in the context of
software

NOTE 2 This technique/measure IS referenced In tables B 3 and B,5 of IEC 61508-2.

Aim: To use field experience from different applications as one of the measures to avoid
faults either during E/E/PES integration and/or during E/E/PES safety validation.

40

lSllEC 61508-7: 2000

Description: Use of components or subsystems, which have been shown by experience to
have no, or only unimportant, faults when used, essentially unchanged, over a sufficient
period of time in rrumemws different applications. Particularly for complex components with a
multitude of possible functions (for example operating system, integrated circuits), the
developer shall pay attention to which functions have actually been tested by the field
experience. For example, consider self-test routines for fault detection: if no break-down of
the hardware occurs within the operating period, the routines cannot be said to have been
tested, since they have never performed their fault detection function.

For field experience to apply, the following requirements must have been fulfilled:

— unchanged specification;

— 10 systems in different applications;

— 105 operating hours and at least one year of service history.

The field experience is demonstrated through documentation of the vendor and/or operating
company. This documentation must contain at least

—. the exact designation of the system and its component, including version control for
hardware;

the users and time of application;

— the operating hours;

— the procedures for the selection of the systems and applications procured to the proof;

— the procedures for fault detection and fault registration as well as fault removal.

References:

DIN V VDE 0801 Al: Grundsatze fur Rechner in Systemen mit Sicherheitsaufgaben
(Principles for Computers in Safety-Related Systems). Anderung 1 zu DIN V VDE 0801/01 .90.
Beuth-Verlag, Berlin, 1994.

Guidelines for safe automation of chemical processes. CCPS, AICh E, New York, 1993.

B.6 E/E/PES safety validation

Global objective: To prove that the
safety requirements specification.

E/E/PE safety-related system conforms to. the E/E/PES

6.6.1 Functional testing under environmental conditions

NOTE This technique/measure is referenced in table B.5 of IEC 61508-2.

Aim: To assess whether the safety-related system IS protected against typical environmental
influences.

Description: The system is put under various environmental conditions (for example
according to the standards in the IEC 60068 series or the IEC 61000 series), during which the
safety functions are assessed for their reliability (and compatibility with the standards
mentioned).

41

lS/lEC 61508-7:2000

References:

IEC 61000-4-1:1992, Electrornagnet;c compatibility (EMC) – Part 4: Testing and measurement
techniques – Section 1: Overview of immunity tests.

IEC 60068-1:1988, Environmental testing – Part 1: General and guidance.

Dependability of Critical Computer Systems 3. P. G. Bishop et al, Elsevier Applied Science,
1990. ISBN 1-85166-544-7.

6.6.2 Interference surge immunity testing

NOTE Th[s technique/measure is referenced in tables B.5 and B.6 of IEC 61508-2

Aim: To check the capacity of the safety-related system to handle peak surges.

Description: The system is loaded with a typical application program, and all the peripheral
lines (all digital, analogue and serial interfaces as well as the bus connections and power
supply, etc.) are subjected to standard noise signals. In order to obtain a quantitative
statement, it is sensible to approach the surge limit carefully. The chosen class of noise is not
complied with if the function fails.

References:

Guide for surge withstand capability (SWC) test. ANSI C,37,90-1974.

IEC 61000-4-5:1995, Electromagnetic compatibility (EMC) - Part 4: Testing and measurement
techniques - Section 5: Surge immunity testing.

6,6,3 (Not used)

B.6,4 Static analysis

NOTE This technique/measure IS referenced m tables B,5 and B.6 of IEC 61608.2 and in table A,9 of IEC 61508=3,

Aim: To avc)id systematic faults that can lead to breakdowns in the system under test, either
early or after many years of operation,

Deacrlptlon: This systematic and possibly computer-aided approach inspects specific static
characteristics of the prototype system to ensure completeness, consistency, lack of
ambiguity regarding the requirement in question (for example construction guidelines, system
specifications, and an appliance data sheet). A static analysis is reproducible, It is applied to
a prototype which has reached a well-defined stage of completion, Some examples of static
analysis, for hardware and software, are

consistency analysis of the data flow (such as testing if a data object is interpreted
everywhere as the same value);

control flow analysis (such as path determination, determination of non-accessible code);

interface analysis (such as investigation of variable transfer between various software
modules);

dataflow analysis to detect suspicious sequences of creating, referencing and deleting
variables;

testing adherence to specific guidelines (for example creepage distances and clearances,
assembly distance, physical unit arrangement, mechanically sensitive physical units,
excluslve use of the physical units which were introduced).

t

4

42

lS/lEC 61508-7

References:

:2000

Dependability of Critical Computer Systems 3. P, G. Bishop et al, Elsevier Applied Science,
1990, ISBN 1-85166-544-7.

VD1-Gemeinschaftsausschu13 Industrielle Systemtechnik: Software-Zuverlassigkeit. VD1-Verlag, 1993.

B.6.5 Dynamic analysis

NOTE This technique/measure
of IEC 61508-3.

\
is referenced in tables B.5 and 6.6 of IEC 61508-2 and in tables A.5 and A.9

Aim: To detect specification failures by inspecting the dynamic behaviour of a prototype at
an advanced state of completion. /

Description: The dynamic analysis of a safety-related system is carried out by subjecting a ●

near-operational prototype of the safety-related system to input data which is typical of the
.

intended operating environment. The analysis is satisfactory if the observed behaviour of
the safety-related system conforms to the required behaviour. Any failure of the safety-related
system must be corrected and the new operational version must then be reanalyses.

References:

Dependability of Critical Computer Systems 3. P. G. Bishop et al, Elsevier Applied Science,
1990, ISBN 1-85166-544-7.

VD1-Gemeinschaftsausschu13 Industrielle Systemtechnik: Software-Zuverlassigkeit. VD1-Verlag, 1993.

B.6.6 Failure, analysis

NOTE Th\s technique/measure is referenced in tables B.5 and B 6 of IEC 61508-2

B.6.6.1 Failure modes and effects analysis

Aim: To analyse a system design, by examining all possible sources of failure of a system’s
components and determining the effects of these failures on the behaviour and safety of the
system.

4

Description: The analysis usually takes place through a meeting of engineers. Each
component of a system is analysed in turn to give a set of failure modes for the component,
their causes and effects, detection procedures and recommendations. If the recommendations
are acted upon, they are documented as remedial action taken.

References:

IEC 60812:1985, Analysis techniques for system reliability – Procedure for failure mode and
effects analysis (FMEA).

System Reliability Engineering Methodology: A Discussion of the State of the Art.
.,

J. B. Fussel, J. S. Arend, Nuclear Safety 20 (5), 1979.

Reliability Technology. A. E. Green, A. J. Bourne, Wiley -lnterscience, 1972.

Fault Tree Handbook. W. E. Vesely et al, NUREG-0942, Division of System Safety Office of Nuclear
Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington, DC 20555, 1981.

43

!!.WEC 5;$308-7 :2000

!3.6.5.2 Cause consequence diagrams

%~1”[~ 7nlslectlnlque/measure[s referenced ln!ab~s A.113,B.3and B40f IEC 61508-3

Aim: ‘a model, in a diagrammatic form, the sequence of events that can develop in a system

as a coi]sequence of combinations of basic events.

Description: The technique can be regarded as a combination of fault tree and event tree

cina Iys Is. Starting from a critical event, a cause consequence graph is traced backwards and
forwards. In the backward direction it is equivalent to a fault tree with the critical event as the

qlven tOP event. In the forward direction the possible consequences arising from an event are
deterrrrlned. The graph can contain vertex symbols which describe the conditions for
props.gat[on along different branches from the vertex. Time delays can also be included.
Knese conditions can also be described with (ault trees. The lines of propagation can be
nornbined with logical symbols, to make the diagram more compact. A set of standard
svmbols ts defined for use in cause consequence diagrams. The diagrams can be used to
compute the probability of occurrence of certain critical consequences.

~eference: The Cause Consequence Diagram Method as a Basis for Quantitative Accident
AnaiysiS. B. S. Nielsen, R1so-M-1374, 1971.

8,6.6.3 Event tree analysis

~!07”l- Th!s lechnlque/measure IS referenced In table B.4 of IEC 615083

Aim: TO model, In a diagrammatic form, the sequence of events that can develop in a system
after an lnitlaflng event, and thereby indicate how serious consequences can occur.

Description: On the top of the diagram is written the sequence conditions that are relevant
I*1 the ~rogresslon of events that follow the initiating event. Starting under the initiating event,
ri’-l,ch is the target of the analysis, a line is drawn to the first condition in the sequence. There
i’i{’ diagram branches off into “yes” and “no” branches, describing how future events depend
:,n the condition. For each of these branches, one continues to the next condition in a similar
i:J:av, Not ~11c~nditlons are, however, relevant for all branches. One Continues to the end of

:Yle’ sequevce, and each branch of the tree constructed in this way represents a possible
consequence. The event tree can be used to compute the probability of the various
consequences, based on the probability and number of conditions in the sequence.

~eferer’ice: Event Trees and their Treatment on PC Computers. N. Limnious and
: P, Jeannette, Reliability Engineering, Vol. 18, No. 3, 1987.,..

5 6.5.4 Failure modes, effects and criticality analysis

NCl:i ‘b[~ \(+ch!l(q~!e/(neasure IS referenced in tables A.1O and 5.4 of IEC 61508-3

& i i“~ : To rank the criticality of components which could result in injury, damage or system
::egradat~orl !hro(jgh single-point failures, in order to determine which components might need

+oeclai attention and necessary control measures during design or operation.

Z3ezcription: Crltlcality can be ranked in many ways. The most laborious method is
:cscrtbed by the Society for Automotive Engineers (SAEj in ARP 926. In this procedure, the
.r’!!ca.lity number for any component is indicated by the number of failures of a specific type
-xpec:ed during each mill~on operations occurrinq in a critical mode. The criticality number is
,1 fJl!Ctl C)ri Of nine ~larameters, most of which have to be measured. A very simple method for
::~w;al’tv determination is to multiply the probability of component failure by
cuu!d be generated; this method is similar to simple risk factor assessment.

the damage that

44

lS/lEC 61508-7:2000

References:

Design Analysis Procedure for Failure Modes, Effects and Criticality Analysis (FM ECA).
Aerospace Recommended Practice (ARP) 926, Society of Automot~ve Engineers (SAE), USA,
15 September 1967.

IEC 60812:1985, Analysis techniques for system reliability - Procedure for failure mocfe and
effects analysis (FMEA).

B.6.6.5 Fault tree analysis

NC)TE This technique/measure is referenced in table 134 of IEC 61508-3.

Aim: To aid in the analysis of events, or combinations of events, that will lead to a hazard or
serious consequence.

Description: Starting at an event which would be the Immediate cause of a hazard or serious
consequence (the “top event”), analysis is carried out along a tree path. Combinations of
causes are described with logical operators (and, or, etc). Intermediate causes are analysed
in the same way, and so on, back to basic events where analysis stops.

Tile method ,s graphical, and a set of standardised symbols are used to draw the fault tree.

The technique is mainly intended for the analysis of hardware systems, but there have also
been attempts to apply this approach to software failure analysis.

References:

IEC 61025:1990, Fault tree analysis (FTA)

4

System Reliability Engineering Methodology: A Discussion of the State of the Art. J. B. Fussel
and J. S. Arend, Nuclear Safety 20 (5), 1979.

Fault Tree Handbook. W. E. Vesely et al, NUREG-0492, Division of System Safety Office of
Nuclear Reactor Regulation, US Nuclear Regulatory Commission Washington, DC 20555, 1981.

9

Reliability Technology. A. E. Greene and A. J. Bourne, Wiley -lnterscience, 1972.

B.6.7 Worst-case analysis

NOTE This technique/measure is referenced in tables F3.5and B 6 ot IEC 61508-2

Aim: To avoid systematic failures which arise from unfavorable combinations of the
environmental conditions and the component tolerances.

Description: The operational capacity of the system and the component dimensioning is
examined or calculated on a theoretical basis. The environmental conditions are changed to
their highest permissible marginal values. The most essential responses of the system are
inspected and compared with the specification.

B.6.8 Expanded functional testing

NOTE Thw technique/measure is referenced In tables B.5 and B,6 of IEC 61508-2

Aim: To reveal failures during the specification
To check the behaviour of the safety-related system

and design and development phases.
in the event of rare or unspecified inputs.

45

KMEC 61508-7:2000

f2escriptio:}: Expanded functional testing reviews the functional behaviour of the safety-related
>ysterm in response to input conditions which are expected to occur only rarely (for example major
-a lurel or which are outside the specification of the safety-related system (for example incorrect
~)oerat~on). F-or rare c~,ndltions, the observed behaviour of the safety-related system is compared

with the specif!catlon. Where the response of the safety-related system is not specified, one
snould check that the plant safety is preserved by the observed response.

References:

Functional Program Testing and Analysis. W. E, Howden, McGraw-Hill, 1987.

“l”he Art of Software Testing. G. J. Myers, Wiley & Sons, New York, 1979.

Dependability of Critical Computer Systems 3. P. G. Bishop et al, Elsevier Applied Science,
1990, ISBN 1-85166-544-7.

B.6,9 Worst-case testing

N(3TE This technique/measure is referenced In tables B 5 and B 6 of IEC 61508-2

Aim: To test the cases specified during worst-case analysls

Description: The operational capacity of the system and the component dimensioning is
tes<:ed under worst-case conditions. The environmental conditions are changed to their
h~ghest permissible marginal values. The most essential responses of the system are
:r!spected and compared with the specification.

R.6. f10 Fault insertion testing

N(3?E This technique/measure is referenced In tables B.5 and B.6 of IEC 61508-2

Aim: To introduce or simulate faults in the system hardware and document the response.

Description: This is a qualitative method of assessing dependability. Preferably, detailed
functional block, circuit and wiring diagrams are used in order to describe the location and
?ype of fault and how it is introduced; for example: power can be cut from various modules;
[lower, bus or address lines can be open/short-circuited; components or their ports can be
opened or shorted; relays can fail to close or open, or do it at the wrong time, etc. Resulting
system failures are classified, as in tables I and II of IEC 60812, for example. In principle,
single steady-state faults are introduced. However, in case a fault is not revealed by the built-
‘n diagnostic tests or otherwise does not become evident, it can be left in the System and the
effect of a second fault considered. The number of faults can easily Increase to hundreds.

l-he work IS done by a multidisciplinary team and the vendor of the system should be present
and consulted, The mean operating time between failure for faults that have grave
t,:[]nseq~.iences should be calculated or estimated. If the calculated time is low, modifications
.;he~ld be made.

‘megrity “Testing of Process Control Systems. R. J. Lasher, Control Engineering 36 (1 1),
152-164, October 1989.

i EC 61069-5:1994, Industrial-process measurement and control – Evaluation of system
p.wpertles for the purpose of system assessment – Part 5: Assessment of system
,d?pendability.

!EC 60812:1985, Analysis techniques for system reliability – Procedure for failure mode and
effects analysis (FMEA).

46

[S/lEC 61508-7:2000

Annex C
(informative)

Overview of techniques and measures for
achieving software safety integrity

(see IEC 61508-3)

C.1 General

The overview of techniques

complete or exhaustive.

Some general references are:

System – Safety Society of

Society, New Mexico Chapter.

contained in this annex should not be regarded as either

America System Safety Analysis Handbook. System Safety i

PO Box 95424, Albuquerque NM, USA.
d

:

Dependability of Critical Computer Systems 3. P. G. Bishop et al, Elsevier Applied Science,
1990, ISBN 1-85166-544-7.

Encyclopedia of Software Engineering. Ed, J. Marciniak. John Wiley & Sons, 1994,
ISBN 0-471-54004-8.

Software Engineer’s Reference Book. Ed. J. McDermid. Butterworth-Heinemann, 1991,
ISBN 0-7506-1040-9.

C.2 Requirements and detailed design

NOTE Relevant techniques and measures are found In B.2.

C.2.1 Structured methods

NOTE This technique/measure IS referenced In tables A 2 and A.4 of IEC 61508-3.

C.2.1.1 General

Aim: The main aim of structured methods is to promote the quality of software development
by focusing attention on the early parts of the Iifecycle. The methods aim to achieve this
through both precise and intuitive procedures and notations (assisted by computers), to
determine and document requirements and implementation features in a logical order and a
structured manner.

Description: A range of structured methods exist. Some are designed for traditional data-
processing and transaction processing functions, while others (MASCOT, JSD, real-time
Yourdon) are more oriented to process control and real-time applications (which tend to be
more safety critical).

Structured methods are essentially “thought tools” for systematically perceiving and
partitioning a problem or system. Their main features are the following:

— a logical order of thought, breaking a large problem into manageable stages;

— analysis and documentation of the total system, including the environment as well as the
required system;

— decomposition of data and function in the required system;

— checklists, i.e. lists of the sort of things that need analysis;

— low Intellectual overh~,dd – simple, intuitive, pragmatic.

47

IWEC 61508-7:2000

The supporting notations for analysing and ciocument!ng

example processes and data flows) tend to be precise,

problems and system entities

but notations for expressing

(for
the

processing functions performed by these entities tend to be more informal. However, some
rrletnods do make @rtial use of (mathematically) formal notations (for example, JS13 makes

use of regular expressions; Yourdon, SOM and SDL utilise finite state machines). Increased
Preclslon not only reduces the scope for misunderstanding, it provides scope for automatic
processing.

Another benefit of structured notations is their visibility, enabling a specification or design to
be checked intuitively by a user, against his powerful but unstated knowledge.

“This overview describes five structured methods in more detail: Controlled Requirements
Expression, Jackson System Development, MASCOT, real-time Yourdon, and Structured
Analysis and Design Technique (SADT),

References:

Software Design for Real-time Systems. J. E. Cooling, Chapman and Hall, 1991.

Structured Development for Real-Time Systems
Yourdon Press, 1985,

Essential Systems Analysis. St. M, McMenamin, F

(3 Volumes). P. T. Ward and S. J. Mellor,

Palmer, Yourdon Inc, New York, 1984.

The Use of Structured Methods in the Development of Large Software-Based Avionic
Systems. D. J. Hatley. Proc, DASC, Baltimore, 1984.

C.2.1.2 CORE – Controlled Requirements Expression

Aim: To ensure that all the requirements are determined and expressed.

Description: This approach is intended to bridge the gap between the customer/end user
and the analyst. It is not mathematically rigorous but aids communication – CORE is designed
for requirements expression rather than specification. The approach is structured, and the
expression goes through various levels of refinement. The CORE method encourages a wider
view of the problem, bringing in a knowledge of the environment in which the system will be
used and the differing viewpoints of the various types of user. CORE includes guidelines and
tactics for recognizing departures from the “grand design”. Departures can be corrected or
explicitly Identlfled and documented. Thus specifications may not be complete, but unresolved
problems and high-risk areas are detected and have to be considered in the subsequent
design.

Reference: Software Design or Real-time Systems. J. E. Cooling, Chapman and Hall, 1991.

C.2.1.3 JSD – Jackson System Development

Aim: A development method covering the development of software systems from
requirements through to code, with special emphasis on real-time systems.

Description: JSD is a staged development procedure in which the developer models the real
world behaviour upon which the system functions are to be based, determines the required
functions and inserts them into the model, and transforms the resulting specification into one
that is realizable in the target environment. It therefore covers the traditional phases of
specification and design and development but takes a somewhat different view from the
traditional methods in not being top-down.

m

‘i

48

lS/lEC 61508-7:2000

Moreover, it places great emphasis on the early stage of discovering the entities in the real
world that are the concern of the system being built and on modelling them and what can
happen to them. Once this analysis of the “real world” has been done and a model created,
the system’s required functions are analysed to determine how they can fit into this real-world
model. The resulting system model is augmented with structured descriptions of all the
processes in the model and the whole is then transformed into programs that will operate in
the target software and hardware environment.

References: I

ArI Overview of JSD. J. R. Cameron. IEEE Transactions on Software Engineering, SE-12,
No. 2, February 1986.

I

System Development. M. Jackson, Prentice-Hall, 1983.

●

C.2.1.4 MASCOT - Modular Approach to Software Construction, Operation and Test
.

Aim: The design and implementation of real-time systems.

Description: MASCOT is a design method supported by a programming system. It. is a
systematic method of expressing the structure of real-time systems in a way that is
independent of the target hardware or implementation language. It imposes a disciplined
approach to design that yields a highly modular structure, ensuring a close correspondence
between the functional elements in the design and the construction elements appearing in
system integration. A system is designed in terms of a network of concurrent processes that
communicate through channels. Channels can be either pools of fixed data or queues

(pipelines of data) icontrol of access to channels is described independently of the processes
in terms of access mechanisms that also enforce scheduling rules on the processes. Recent
versions of MASCOT have been designed with ADA implementation in mind.

MASCOT supports an acceptance strategy based on the test and verification of single
software modules and larger collections of functionally related software modules. A MASCOT
implementation is intended to be built upon a MASCOT kernel – a set of scheduling primitives
that underlie the implementation and support the access mechanisms.

*,

Reference: MASCOT 3 User Guide. MASCOT Users Forum. RSRE, Malvern, England, 1987,

C.2.1.5 Real-time Yourdon

Aim: The specification and design of real-time systems. .>

Description: The development scheme underlying this technique assumes a three-stage
evolution of a system being developed. The first stage involves the building of an “essential
model”, one that describes the behaviour required by the system. The second involves the
building of an implementation model which describes the structures and mechanisms that,
when implemented, embody the required behaviour. The third stage involves the actual
building of the system in hardware and software. The three stages correspond roughly to the
traditional specification and design and development phases but lay greater emphasis on the
fact that at each stage the developer is engaged in a modelling activity.

The essential model is in two parts:

the environmental model, containing a description of the boundary between the system
and its environment and a description of the ext(~mal events to which the system must
respond; and

49

lS/lEC

. the

61508-7:2000

behavioral model, which contains schemes describing the transformation carried out
by the system in response to events and a description of the data the system must hold in
order to respond.

The implementation model also divides into submodels, covering the allocation of individual
processes to processors and the decomposition of the processes into software modules.

To capture these models, the technique combines a number of other well-known techniques:
data-flow diagrams, transformation graphs, structured English, state transition diagrams and
Petri nets. Additionally, the method contains techniques for simulating a proposed system
design either on paper or mechanically from the models that are drawn up.

References:

Structured Development for Real-Time Systems (3 Volumes). P. T. Ward and S. J. Mellor.
Yourdon Press, 1985.

Strategies for Real-time System Specification. D. Hatley, E. Pirbhai, Dorset Publishing House, 1988.

C.2.1.6 SADT - Structured Analysis and Design Technique

Aim: To model and analyse, in a diagrammatic form using information flows, the decision-
making processes and the management tasks associated with a complex system.

Description: In SADT, the concept of an activity-factor diagram plays a central role. An A/F
diagram consists of activities grouped in so-called “action boxes”. Each action box has a
unique name, and is linked to other action boxes by factor relations (drawn as arrows) which
are also given unique names. Each action box can be hierarchically decomposed into
subsidiary action boxes and relations. There are four types of factors: inputs, controls,
mechanisms and outputs:

input: indicated by an arrow that enters an action box at the left-hand side. Inputs can
represent material or immaterial things and they are suitable for manipulation by one or
more activities in an action box;

control: typically an instruction, procedure, choice criterion or so on. A control guides the
execution of an activity and is shown by an arrow entering the top side of an action box;

— mechanism: a resource such as personnel, organisational unit or equipment, needed for
an activity to perform its task;

output: anything that an activity produces, pictured by an arrow leaving an action box at
the right-hand side.

When activities are strongly related to each other by many factor relations, it is perhaps better
to consider these activities as an indivisible group, contained in one action box, with no
further detailing of its content. The guiding principle for grouping of activities into action boxes
IS that the resulting boxes ale coupled pairwise by only a few factors.

The model hierarchy of A/F diagrams is pursued until a further detailing of the action boxes is
meaningless. This stage is reached when the activities within the boxes are inseparable or
when furlher detailing of the action boxes falls outside the scope of the system analysis.

●

\ ‘?

50

~

lS/lEC 61508-7:2000

References:

Structured Analysis for Requirements Definition. D. T. Ross, K. E. Schoman Jr. IEEE
Transactions on Software Engineering, Vol. SE-3, 1, 6-15, 1977.

Structured Analysis (SA): A Language for Communicating Ideas. D. T. Ross. IEEE
Transactions on Software Engineering, Vol. SE-3, 1, 16-34, 1977.

Applications and Extensions of SADT. D. T. Ross. Computer, 25-34, April 1985.
6

Structured Analysis and Design Technique – Application on Safety Systems. W. Heins. Risk
Assessntent and Control Courseware, Module B1, Chapter 11, Delft University of Technology,
Safety Science Group, PO Box 5050, 2600 GB Delft, Netherlands, 1989.

i.
C.2.2 Data flow diagrams

NOTE This technique/measure is referenced in tables B,5 and B.7 of IEC 61508-3.

Aim: To describe the data flow through a program in a diagrammatic form.

Description: Data flow diagrams document how data input is transformed to output, with
each stage in the diagram representing a distinct transformation.

Data flow diagrams are made up of three components:

annotated arrows - represent data flow in and out of the transformation centres, with the
annotations documenting what the data is;

annotated bubbles - represent transformation centres, with the annotation documenting
the transformation;

operators (and, xor) - these operators are used to link the annotated arrows.

Each bubble in a data flow diagram can be considered as a stand-alone black box which, as
soon as its inputs are available, transforms them to its outputs, One of the principal
advantages is that they show transformations without making any assumptions about how
these transformations are implemented, A pure data flow diagram does not include control
information or sequencing information, but this is catered for by real-time extensions to the
notation, as in real-time Yourdon (see C,2.1 .5),

The preparation of data flow diagrams is best approached by considering system inputs and
working towards system outputs, Each bubble must represent a distinct transformation - its
output should, in some way, be different from its input, There are no rules for determining the
overall structure of the diagram and constructing a data flow diagram is one of the creative
aspects of system design, Like all design, it is an iterative procedure with early attempts
refined in stages to produce the final diagram.

References:

Software Engineering. 1, Somerville, Addison-Wesley, 3rd Edition, 1989,

ISO 5807:1985, Information processing – Documentation symbols and conventions for data,
program and system flowcharts, program network charts and system resources charts.

1S0/! EC 8631:1989, Irrforrnation technology – Program constructs and conventions for their
preparation.

51

1111...1 1,-..11, .lw.~ — —.—

lS/lEC 61508-7:2000

C.2.3 Structure diagrams

NOTE This technique/measure IS referenced in table B.5 of IEC 61508-3

Aim: To show the structure of a program diagrammatically.

Description: Structure diagrams are a notation which complements data flow diagrams. They
describe the programming system and a hierarchy of parts and display this graphically, as a
tree. They document how elements of a data fldw diagram can be implemented as a hierarchy
of pro’gram units.

A structure chart shows relationships between program modules without including any
information about the order of actwation of these units. They are drawn using the following
four symbols:

a rectangle annotated with the name of the module;

a line connecting these rectangles creating structure;

a circled arrow (circle empty), annotated with the name of data passed to and from

elements in the structure chart (normally, the circled arrow is drawn parallel to the line
connecting the rectangles in the chart);

a circled arrow (circle filled), annotated with the name of the control signal passing from
one module to another in the structure chart, again the arrow is drawn parallel to the line
connecting the two modules.

From any non-trivial data flow diagram, it is possible to derive a number of different structure
charts.

Data flow diagrams depict the relationship between information and functions in the system.

Structure charts depict the way elements of the system are implemented. Both techniques
present valid, though different, views of the system.

References:
*3

Software Engineering. 1. Somerville, Addison-Wesley, 3rd Edition, 1989.

Structured Design. L. L. Constantine and E. Yourdon, Englewood Cliffs, New Jersey, Prentice
Hall, 1979.

Reliable Software Through Composite Design. G. J. Myers, New York, Van Nostrand, 1975.

C.2.4 Formal methods

NOTE This technique/measure IS referenced in tables Al, A.2, A 4 and B.5 of IEC 61508-3

C.2.4.1 General

Aim: The development of software in a way that is based on mathematics. This includes
formal design and formal coding techniques.

Description: Formal methods provide a means of developing a description of a system at
some stage In its specification, design or implementation. The resulting description is in a
strict notation that can be subjected to ,mathematical analysis to detect various classes of
inconsistency or incorrectness. Moreover, the description can in some cases be analysed by
machine with a rigour similar to the syntax checking of a source program by a compiler, or
animated to display various aspects of the behaviour of the system described. Animation can
give extra confidence that the system meets the real requirement as well as the formally
specified requirement, because it improves human recognition of the specified behaviour.

52

lS/lEC 61508-7:2000

1’

II
I “

A formal method will generally offer a notation (generally some form of discrete mathematics

being used), a technique for deriving a description in that notation, and various forms of
analysis for checking a description for different correctness properties.

NC)TE The above description may also be found In B.2.2

Several formal methods are described in the following subsections of this overview – CCS,
CSP, HOL, LOTOS, OBJ, temporal logic, VDM and Z. Note that other techniques, such as t

finite state machines (see B.2.3.2) and Petri nets (see B.2.3.3), may be considered as formal
i

methods, depending on how strictly the techniques, as used, conform to a rigorous
mathematical basis.

References:
t

The Practice of Formal Methods in Safety-Critical Systems. S. Liu, V. Stavridou, B. Dutertre,
s.

J. Systems Software 28, 77-87, Elsevier, 1995.

Formal Methods: Use and Relevance for the Development of Safety-Critical Systems.

L. M. Barroca, J. A. McDermid, The Computer Journal 35 (6), 579-599, 1992.

How to Produce Correct Software – An Introduction to Formal Specification and Program
Development by Transformations. E. A, Boiten et al, The Computer Journal 35 (6), 547-554,
1992.

C.2.4.2 CCS - Calculus of Communicating Systems

Aim: CCS is a means of describing and reasoning about the behaviour of systems of
concurrent, communicating processes.

Description: CCS is a mathematical calculus concerned with the behaviour of systems. The
system design IS model led as a network of independent processes operating sequentially or in
parallel. Processes can communicate via ports (similar to CSP’S channels), the
communication only taking place when both processes are ready. Non-determinism can be
modelled. Starting from a high-level abstract description of the entire system (known as a
trace), it is possible to carry out a step-wise refinement of the system into a composition of
communicating processes whose total behaviour is that required of the whole system.
Equally, it is possible to work in a bottom-up fashion, combining processes and deducing the
properties of the resulting system using inference rules related to the composition rules.

References:

Communication and Concurrency. R. Milner, Prentice-Hall, 1989.

The Specification of Complex Systems. B. Cohen, W. T. Harwood and M. 1. Jackson, Addison
Wesley, 1986.

C.2.4.3 CSP - Communicating Sequential Processes

Aim: CSP is a technique for the specification of concurrent software systems, i.e. systems of
communicating processes operating concurrently.

:

Description: CSP provides a language for the specification of systems of processes and
proof for verifying that the implementation of processes satisfies their specifications
(described as a trace - a permissible sequence of events).

53

lS/lEC 6150S-7 :2000

A system is modelled as
~arallel. Each ~rocess is

a network of independent processes, composed sequentially or in
described in terms of ail of its possible behaviors. Processes can

communicate (synchronise or exchange data) via channels, the communication only taking
place when both processes are ready. The relative timing of events can be modelled.

The theory behind CSP was directly incorporated into the architecture of the INMOS
transputer, and the OCCAM language allows a CSP-specified system to be directly
implemented on a network of transputers.

Reference: Communicating Sequential Processes. C. A. R. Hoare, Prentice-Hall, 1985.

C.2.4.4 HOL - Higher Order Logic

Aim: This is a formal language intended as a basis for hardware specification and
verification.

Description: HOL refers to a particular logic notation and its machine support system, both
of which were developed at the University of Cambridge computer laboratory. The logic
notation is mostly taken from Church’s simple theory of types and the machine support
system is based upon the LCF (logic of computable functions) system.

References:

HOL: A Machine Orientated Formulation of Higher Order Logic. M, Gordon, University of
Cambridge Technical Report, No. 68, 1985.

Specification and Verification Using Higher-Order Logic: A Case Study, F, K. Hanna and
N. Daeche, in: Formal Aspects of VLSI Design: Proceedings of the 1985 Edinburgh Workshop
on VLSI, pp.179-213, G, Milne and P. A. Subrahmanyam (Eds.), North Holland, 1986.

Application of formal methods to the VIPER microproo,essor, W. J, Cullyer, C. Hi Pygott,
Proc, IEEE 134, 133-141, 1987.

C.2.4.5 LOTOS

Aim: LOTOS is a means for describing and reasoning about the behaviour of systems of
concurrent, communicating processes,

Description: LOTOS (language for temporal ordering specification) is based on CCS with
additional features from the related algebras CSP and CIRCAL (circuit calculus). It overcomes
the weakness of CCS in the handling of data structures and value expressions by combining it
with a second component based on the abstract data type language ACT ONE, The process
description component of LOTOS could, however, be used with other formalisms for the
description of abstract data types.

Reference: ISO 8807:1989, information processing systems - Open Systems inter-
connection - LOTOS - A formal description technique based on the temporal ordering of
observational be ha viour,

C.2.4.6 OBJ

Aim: To provide a precise system specification with user feed-back and system validation
prior to implementation.

54

. ~”.

m
lS/lEC 61506-7:2000

Description: OBJ is an algebraic specification language. Users specify requirements in
terms of algebraic equations. The behavioral, or constructive, aspects of the system are
specified in terms of operations acting on abstract data types (ADT). An ADT is like an ADA
package where the operator behaviour is visible whilst the implementation details are
“hidden”.

An OBJ specification, and subsequent step-wise implementation, is amenable to the same
formal proof techniques as other formal approaches. Moreover, since the constructive aspects
of the OBJ specification are machine-executable, it is straightforward to achieve system
validation from the specification itself. Execution is essentially the evaluation of a function by
equation substitution (rewriting) which continues until specific output value is obtained. This
executability allows end-users of the envisaged system to gain a “view” of the eventual
system at the system specification stage without the need to be familiar with the underlying
formal specification techniques.

As with all other ADT techniques, OBJ is only applicable to sequential systems, or to
sequential aspects of concurrent systems. OBJ has been used for the specl’fication of both
small- and large-scale industrial applications.

References:

An Introduction to OBJ: A language for Writing and Testing Specifications. J. A. Goguen and
J. Tardo, Specification of Reliable Software, IEEE Press 1979, reprinted in Software
Specification Techniques, N. Gehani, A. McGrettrick (eds), Addison-Wesley, 1985.

Algebraic Specification for Practical Software Production. C. Rattray, Cogan Press, 1987.

An Algebraic Approach to the Standardisation and Certification of Graphics Software.
R. Gnatz, Computer Graphics Forum 2 (2/3), 1983.

C.2.4.7 Temporal logic

Aim: Direct expression of safety and operational requirements and formal demonstration that
these properties are preserved in the subsequent development steps.

Description: Standard first-order predicate logic contains no concept of time. Temporal logic
extends first-order logic by adding modal operators (for example “henceforth” and
“eventually”). These operators can be used to qualify assertions about the system. For
example, safety properties might be required to hold “henceforth”, whilst other desired system
states might be required to be attained “eventually” from some other initiating state. Temporal
formulas are interpreted on sequences of states (behaviors). What constitutes a “state”
depends on the chosen level of description. It can refer to the whole system, a system
component or the computer program.

Quantified time intervals and constraints are not handled explicitly in temporal logic. Absolute
timing has to be handled by creating additional time states as part of the state description.

References:

Temporal Logic of Programs. F. Kroger. EATCS Monographs on Computer Science, Vol. 8,
Springer Verlag, 1987.

Design for Safety using Temporal Logic. J. Gorski. SAFECOMP 86, Sarlat, France, Pergamon
Press, October 1986.

55

ME(2 61506-7:2000

The Temporal Logic of Programs. A. Pnueli, 18th Annual Symposium on Foundations of
Computer Science, IEEE, 1977.

Verifying Concurrent Processes Using Temporal Logic, Hailpern, T. Brent, Springer Verlag, 1981.

C.2.4.8 VDM, VDM++ - Vienna Development Method

Aim: The systematic specification and implementation of sequential (VDM) and concurrent
real-time (VDM++) programs.

Description: VDM is a mathematically based specification technique and a technique for
refining implementations in a way that allows proof of their correctness with respect to the
specification.

\

The specification technique is model-based in that the system state is modelled in terms of
set-theoretic structures on which are described invariants (predicates), and operations on that
state are model led by specifying their pre- and post-conditions in terms of the system state.
Operations can be proved to preserve the system invariants.

The implementation of the specification is done by the reification of the system state in terms
of data structures in the target language and by refinement of the operations in terms of the
program in the target language. Reification and refinement steps give rise to proof obligations
that establish their correctness. Whether or not these obligations are carried out is
determined by the designer.

VDM is principally used in the specification stage but can be used in the design and
implementation stages leading to source code. [t can only be applied to sequentially
structured programs or the sequential processes in concurrent systems.

The object-oriented and concurrent real-time extension of VDM, VDM++, is a formal
specification language based on the ISO language VDM-SL and on the object-oriented
language Smalltalk.

VDM++ provides a wide range of constructs such that a user can formally specify concurrent
real-time systems in an object-oriented fashion. In VDM++ a complete formal specification
consists of a collection of class specifications and optionally a workspace.

Real-time provisions of VDM++ are:

— temporal expressions are provided to denote both the current moment and the method
invocation moment within a method body;

— a timed post expression Gsm be added to a method to specify the upper (or lower) bounds
of the execution time for c.cwrect implementations;

?

f

time continuous variable: have been introduced. With assumption and effect clauses one
can specify relations (for example differential equations) between these functions of time.
This feature has proven to be very useful in the specification of requirements of systems
which operate in a time continuous environment. Refinement steps lead to discrete
software solutions for these kinds of systems.

56

lS/lEC 61508-7:2000

References:

lSO/l EC 13817-1:1997, Information technology – Programming languages, their environments
and system software interfaces – Vienna Development Method – Specification Language -
Part 1: Base language.

Conformity Clause for VDM-SL, G. 1. Parkin and B. A. Wichmann, Lecture Notes in Computer
Science 670, FME’93 Industrial-Strength Formal Methods, First International Symposium of
Formal Methods in Europe. Editors: J. C. P. Woodcock and P. G. Larsen. Springer Verlag,
501-520.

Major VDM+ – Language characteristics: http: //www. ifad.dk/products/vdmlangchar.html

Systematic Software Development using VDM. C. B. Jones. Prentice-Hall. 2nd Edition, 1990.

Software Development - A Rigorous Approach. C. B. Jones. Prentice-Hall, 1980.

Formal Specification and Software Development. D. Bjorner and C. B. Jones, Prentice-Hall, 1982.

The Specification of Complex Systems. B. Cohen, W. T. Harwood and M. 1. Jackson. Addison
Wesley, 1986.

C.2.4.9 Z

Aim: Z is a specification language notation for sequential systems and a design technique
that allows the developer to proceed from a Z specification to executable algorithms in a
way that allows proof of their correctness with respect to the specification.

Z is principally used in the specification stage but a method has been devised to go from
specification into a design and an implementation. It is best suited to the development of
data-oriented, sequential systems.

.4

Description: Like VDM, the specification technique is model-based in that the system state
is modelled in terms of set-theoretic structures on which are described invariants (predicates),
and operations on that state are model led by specifying their pre- and post-conditions in
terms of the system state. Operations can be proved to preserve the system invariants
thereby demonstrating their consistency. The formal part of a specification is divided into
schemas which allow the structuring of specifications through refinement.

Typically, a Z specification is a mixture of formal Z and informal explanatory text in natural
language. (Formal text on its own can be too terse for easy reading and often its purpose
needs to be explained, while the informal natural language can easily become vague and
imprecise.)

Unlike VDM, Z is a notation rather than a complete method. However, an associated method
(called B) has been developed which can be used in conjunction with Z. The B method is
based on the principle of step-wise refinement.

References:

The Z Notation - A Reference Manual. J. M. Spivey. Prentice-Hall, 1992.

Specification Case Studies. Edited by 1. Hayes, Prentice-Hall, 1987.

The B Method. J. R. Abrial et al, VDM ’91 Formal Software Development Methods, (S. Prehen
and W. J. Toetenel, eds), Springer Verlag, 398-405, 1991.

Specification of the UNIX Filestore. C. Morgan and B. Sufrin. IEEE Transactions on Software
Engineering, SE-10, 2, March 1984.

57

ISIIEC 61508-7:2000

C.2.5 Defensive programming

NC)TE This technique/measure is referenced in table A.4 of IEC 61508-3

Aim: l-o produce programs which detect anomalous control flow, data flow or data values

during their execution and react to these in a predetermined and acceptable manner.

Description: Many techniques can be used during programming to check for control or data
ar?omalies. These can be applied systematically throughout the programming of a system to
decrease the likelihood of erroneous data processing.

There are two overlapping areas of defensive techniques. Intrinsic error-safe software is
designed to accommodate its own design shortcomings. These shortcomings may be due to
mistakes in design or coding, or to erroneous requirements. The following lists some of the
defensive techniques:

variables should be range checked;

where possible, values should be checked for plausibility;

parameters to procedures should be type, dimension and range checked at procedure
entry.

These first three recommendations help to ensure that the numbers manipulated by the
program are reasonable, both in terms of the program function and physical significance of
the variables.

Read-only and read-write parameters should be separated and their access checked.
Functions should treat all parameters as read-only. Literal constants should not be write-
accessible. This helps detect accidental overwriting or mistaken use of variables.

Fault tolerant software is designed to “expect” failures in its own environment or use outside
nominal or expected conditions, and behave in a predefine manner. Techniques include the
following.

— Input variables and intermediate variables with physical significance should be checked
for plausibility.

The effect of output variables should be checked, preferably by direct observation of
associated system state changes.

The software should check its configuration, including both the existence and accessibility
of expected hardware and also that the software itself is complete – this is particularly
important for maintaining integrity after maintenance procedures.

Some of the defensive programming techniques, such as control flow sequence checking,
also cope with external failures.

References:

Dependability of Critical Computer Systems 1. F. J. Redmill, Elsevier Applied Science, 1988,
ISBN 1-85166-203-0.

Dependability of Critical Computer Systems 2. F. J. Redmill, Elsevier Applied Science, 1989,
ISBN 1-85166-381-9.

i

:

Software Engineering Aspects of Real-time Programming Concepts. E. Schoitsch, Computer
Physics Communications 41, North Holland, Amsterdam, 1986.

58

-
lS/lEC 61506-7:2000

Il;

C.2.6 Design and coding standards

NOTE This technique/measure is referenced in table A.4 of IEC 61508-3.

C.2.6.1 General

Aim: To facilitate verifiability, to encourage a team-centred, objective approach and to
enforce a standard design method.

~

Description: The rules to be adhered to are agreed at the outset of the project between the
participants’. These rules comprise the design and development methods to be followed (for
example JSP, MASCOT, Petri nets, etc.) and the related coding standards (see C.2.6.2).

These rules are made to allow for ease of development, verification, assessment and
maintenance. Therefore they should take into account available tools, in particular analysers i
and reverse engineering tools.

.

References:

IEC 60880:1986, Software for computers in the safety systems of nuclear power stations.

Dependability of Critical Computer Systems 1. F. J. Redmill, Elsevier Applied Science, 1988.
ISBN 1-85166-203-0.

Verein Deutscher Ingenieure. Software-Zuverlassigkeit – Grundlagen, Konstruktive Mass-
nahmen, Nachweisverfahren. VD1-Verlag, 1993, ISBN 3-18-401185-2.

.
C.2.6.2 Coding standards

NOTE This technique/measure is referenced in table 9.1 of IEC 61508-3

Aim: To facilitate verifiability of the produced code.

Description: The detailed rules to be adhered to are fully agreed before coding. These rules
comprise typically

— details of modularisation, for example interface shapes, software module sizes;

— use of encapsulation, inheritance (restricted in depth) and polymorphism, in the case of
object oriented languages;

— limited use or avoidance of certain language constructs, for example “goto”,

“equivalence”, dynamic objects, dynamic data, dynamic data structures, recursion,

pointers, exits, etc;

restrictions on interrupts enabled during the execution of safety-critical code;

— layout of the code (listing);

— no unconditional jumps (for example “goto”) in programs in higher level languages.

These rules are made to allow for ease of software module testing, verification, assessment
and maintenance. Therefore they should take into account available tools,, in particular
analysers.

4

NOTE For more information on this topic, see C.2.6,3 to C.2.6.7

59

lS/lEC 61506-7:2000

C.2.6.3 No dynamic variables or dynamic objects

NCITE This technique/measure is referenced in table B.1 of IEC 61508-3.

Aim: To exclude

.. unwanted or undetected overlay of memory;

bottlenecks of resources during (safety-related) run-time.

Description: In the case of this measure, dynamic variables and dynamic objects @re those
variables and objects that have their memory allocated and absolute addresses determined at
run-time. The value of allocated memory and its addresses depend on the state of the system
at the moment of allocation, which means that it cannot be checked by the compiler or any
other off-line tool.

Because the number of dynamic variables and objects, and the existing free ~emory spac~
for allocating new dynamic variables or objects, depends on the state of the system at the
moment of allocation it is possible for faults to occur when allocating or using the variables or
objects. For example, when the amount of free memory at the location allocated by the
system is insufficient, the memory contents of another variable can be inadvertently
overwritten. If dynamic variables or objects are not used, these faults are avoided.

C.2.6.4 On-line checking during creation of dynamic variables or dynamic objects

NOTE 1 This technlaue/measure is referenced in table B.1 of IEC 61508-3

Aim: To check that the memory to be allocated to dynamic variables and objects is free
before allocation takes place, ensuring that the allocation of dynamic variables and objects
during run-time does not impact existing variables, data or code.

Description: In the case of this measure, dynamic variables are those variables that have
their memory allocated and absolute addresses determined at run-time (variables in this
sense are also the attributes of object instances).

By means of hardware or software, the memory is checked to ensure it is free before a
dynamic vjariable or object is allocated to,it (for example, to avoid stack overflow). If allocation
is not allowed (for example if the memory at the determined address is not sufficient),
appropriate action must be taken. After a dynamic variable or object has been used (for {.

example, after exiting a subroutine) the whole memory which was allocated to it must be
freed.

r
i

NOTE 2 An alternative IS to demonstrate statically that memory will be adequate in all cases.

C.2.6.5 Limited use of interrupts

NOTE This technique/measure is referenced in table B.1 of IEC 61508-3

Aim: To keep software verifiable and testable. 1

60

lS/lEC 61508-7:2000

Description: The use of interrupts should be restricted. Interrupts may be used if they
sirnpiify the system. Software handling of interrupts should be inhibited during critical parts
(for example time critical, critical to data changes) of the executed functions. If interrupts are
used, then parts not interruptible should have a specified maximum computation time, so that
the maximum time for which an interrupt is inhibited can be calculated. Interrupt usage and
masking should be thoroughly documented.

C.2.6.6 Limited use of pointers

NOTE This technique/measure is referenced in table B.1 of IEC 61508-3

Aim: To avoid the problems caused by accessing data without first checking range and type
of the pointer. To support modular testing and verification of software. To limit the
consequence of failures.

I

Description: In the application software, pointer arithmetic may be used at source code level
only if pointer data type and value range (to ensure that the pointer reference is within
the correct address space) are checked before access. Inter-task communication of the
application software should not be done by direct reference between the tasks. Data
exchange should be done via the operating system.

C.2.6.7 Limited use of recursion

NOTE This technicrue/measure is referenced in table B.1 of IEC 61508-3

Aim: To avoid unverifiable and untestable use of subroutine calls.

Description: If recursion is used, there must be a clear criterion which makes predictable the
depth

C.2.7

NOTE

Aim:
being

of recursion.

Structured programming

This technique/measure is referenced in table A.4 of IEC 61508-3.

To design and implement the program in a way that it is practical to analyse without it
executed. The program may contain only an absolute minimum of statistically

untestable behaviour.

Description: The following principles should be applied to minimise structural complexity:

— divide the program into appropriately small software modules, ensuring they are
decoupled as far as possible and all interactions are explicit;

— compose the software module control flow using structured constructs, that is sequences,
iterations and selection;

— keep the number of possible paths through a software module small, and the relation
between the input and output parameters as simple as possible;

— avoid complicated branching and, in particular, avoid unconditional jumps (goto) in higher
level languages;

— where possible, relate loop constraints and branching to input parameters;

— avoid using complex calculations as the basis of branching and loop decisions.

i

4

61

lS/lEC 61508-7:2000

Features of the programming language which encourage the above approach should be used

in preference to other features which are (allegedly) more efficient, except where efficiency
takes absolute priority (for example some safety critical systems).

References:

Notes on structured programming. E. W. Dijkstra, Structured Programming, Academic Press,
London, 1972, ISBN 0-12-200550-3.

A Discipline of Programming. E. W. Dijkstra. Englewood Cliffs NJ, Prentice-Hall, 1976.

A Software Tool for Top-down Programming. D. C. Ince. Software – Practice and Experience,
Vol. 13, No. 8, August 1983.

Verification – The Practical Problems. J. T. Webb and D. J. Mannering, SARSS 87,
Nov. 1987, Altrincham, England, Elsevier Applied Science, 1987, ISBN 1-85166-167-0.

An Experience in Design and Validation of Software for a Reactor Protection System.
S. Bologna, E. de Agostino et al, IFAC Workshop, SAFECOMP, 1979, Stuttgart, 16-18 May
1979, Pergamon Press, 1979.

C.2.8 Information hiding/encapsulation

NOTE This technique/measure is referenced In table B.9 of IEC 61508-3.

Aim: To prevent unintended access to data or procedures and thereby support a good
program structure.

Description: Data that is globally accessible to all software components can be accidentally
or incorrectly modified by any of these components. Any changes to these data structures
may require detailed examination of the code and extensive modifications.

Information hiding is a general approach for minimizing these difficulties. The key data
structures are “hidden” and can only be manipulated through a defined set of access
procedures. This allows the internal structures to be modified or further procedures to be
added without affecting the functional behaviour of the remaining software. For example, a
name directory might have access procedures “insert”, “delete” and “find”. The access
procedures and internal data structures could be re-written (for example to use a different
look-up method or to store the names on a hard disk) without affecting the logical behaviour
of the remaining software using these procedures.

In this connection, the concept of abstract data types should be used. If direct support is not
provided, then it may be necessary to check that the abstraction has not been inadvertently
broken.

References:

Software Engineering: Planning for Change. D. A. Lamb. Prentice-Hall, 1988.

On the Design and Development of Program Families. D. L. Parnas. IEEE Trans SE-2,
March 1976.

62

.—.=..”...,..,-.,. -b.

lS/lEC 61508-7:2000

C.2.9 Modular approach

NOTE This technique/measure is referenced in tables A 4 and B.9 of IEC 61508-3

Aim: Decomposition of a software system into small comprehensible parts in order to limit

the complexity of the system.

Description: A modular approach or modularisation contains several rules for the design,
coding and maintenance phases of a software project. These rules vary according to the
design method employed during design. Most methods contain the following rules:

— a software module should have a single well-defined task or function to fulfil;

connections between software modules should be limited and strictly defined, coherence
in one software module shall be strong;

— collections of subprograms should be built providing several levels of software modules;

—. subprogram sizes should be restricted to some specified value, typically two to four
screen sizes;

subprograms should have a single entry and a single exit only;

—. software modules should communicate with other software modules via their interfaces –
where global or common variables are used they should be well structured, access should
be controlled and their use should be justified in each instance;

all software module interfaces should be fully documented;

— any software module’s interface should contain only those parameters necessary for its
function.

Reference: Structured Design – Fundamentals of a Discipline of Computer Program and
Systems Design. E. Yourdon, L. L. Constantine, Prentice-Hall, 1979, ISBN 0-13-854471-9.

C.2.1O Use of trusted/verified software modules and components

NOTE 1 This technique/measure is referenced in table A.4 of IEC 61508-3

NOTE 2 See annex D for some mathematical aspects supporting the following numerical estimates. See also
B.5.4 for a similar measure and statistical approach.

Aim: To avoid the need for software modules and hardware component designs to be
extensively revalidated or redesigned for each new application. To take advantage of designs
which have not been formally or rigorously verified, but for which considerable operational
history is available.

Description: This measure verifies that the software modules and components are
sufficiently free from systematic design faults and/or operational failures. Only in rare cases
will the employment of trusted software modules and components (i.e. those which are proven
in use) be sufficient as the sole measure to ensure that the necessary safety integrity is
achieved. For complex components with many possible functions (for example an operating
system), it is essential to establish which functions are actually sufficiently proven in use. For
example, where a self-test routine is provided to detect hardware faults, if no hardware failure
occurs within the operating period, one cannot consider the self-test routine for fault detection
as being proven by use.

63

lS/lEC 61508-7:2000

A component or software module can be sufficiently trusted if it is already verified to the
required safety integrity level, or if it fulfils the following criteria:

— unchanged specification;

— systems in different applications;

at least one year of service history;

operating time according to the safety integrity level or suitable number of demands;
demonstration of a non-safety-related failure rate of less than

10-2 per demand (year) with a confidence of 95 7. requires 300 operational runs
(years),

—

— 10-5 per demand (year) with a confidence of 99,9 Y.. requires 690000 operational runs
(years);

all of the operating experience must relate to a known demand profile of the functions of
the software module, to ensure that increased operating experience genuinely leads to an
increased knowledge of the behaviour of the software module relative to that demand
profile;

— no safety-related failures.

NOTE 3 A failure which may not be safety critical in one context can be safety critical in another, and vice versa,

To enable verification that a component or software module fulfils the criteria, the following
must be documented:

—. exact identification of each system and its components, including version numbers (for
both software and hardware);

.— identification of users, and time of application;

operating time;

procedure for the selection of the user-applied systems and application cases;

— procedures for detecting and registering failures, and for removing faults.

References:

DIN V VDE 0801 Al: Grundsatze fur Rechner in Systemen mit Sicherheitsaufgaben
(Principles for Computers in Safety-Related Systems). Anderung 1 zu DIN V VDE 0801/01 .90.
Beuth-Verlag, Berlin, 1994.

{.

Guidelines for safe automation of chemical processes. CCPS, AIChE, New York, 1993

C.3 Architecture design

C.3.1 Fault detection and diagnosis

NOTE This technique/measure is referenced in table A.2 of IEC 61508-3.

Aim: .To detect faults in a system, which might lead to a ~ailure, thus providing the basis for
counter-measures in order to minimise the consequences of failures.

Description: Fault detection is the activity of” checking a system for erroneous states
(caused by a fault within the (subsystem to be checked). The primary goal of fault detection
is to inhibit the effect of wrong results. A system which acts in combination with parallel
components, relinquishing control when it detects its own results are incorrect, is called self-
checking.

64

“

p

lS/lEC 61506-7:2000

Fault detection is based on the principles of redundancy (mainly to detect hardware faults - $

see IEC 61508-2 annex A) and diversity (software faults). Some sort of voting is needed to
decide on the correctness of results. Special methods applicable are: assertion programming,
N-version programming and the safety bag technique; and for hardware: introducing
additional sensors, control loops, error checking codes, etc.

Fault detection may be achieved by checks in the value domain or in, the time domain on
different levels, especially physical (temperature, voltage etc), logical (e”hor detecting codes),
functional (assertions) or external (plausibility checks). The results of these checks may be
stored and associated with the data affected to allow failure tracking.

Complex systems are composed of subsystems. The efficiency of fault detection, diagnosis
and fault compensation depends on the complexity of the interactions among the subsystems, I

which influences the propagation of faults.
i

Fault diagnosis should be applied at the smallest subsystem level, since smaller subsystems

.

allow a more detailed diagnosis of faults (detection of erroneous states).

Integrated enterprise-wide information systems can routinely communicate the status of safety
systems, including diagnostic testing information, to other supervisory systems. If an anomaly

is detected, it can be highlighted and used to trigger corrective action before a hazardous
situation develops. Lastly, if an incident does occur, documentation of such anomalies can aid
the subsequent investigation.

Reference: Dependability of Critical Computer Systems 1.
Science, 1988, ISBN 1-85166-203-0.

C.3.2 Error detecting and correcting codes

NOTE This \echnique/measure is referenced in table A.2 of IEC 61508-3.

Aim: To detect and correct errors in sensitive information.

Description: For an information of n bits, a coded block of k
r errors to be detected and corrected. Two example types are
codes.

F. J. Redmill, Elsevier Applied

bits is generated which enables
Hamming codes and polynomial

It should be noted that in safety-related systems it will normally be necessary to discard faulty
data rather than try to correct it, since only a predetermined fraction of errors may be
corrected properly.

References:

The Technology of

A Short Course on

Error Correcting Codes. E. R. Berlekamp, Proc. IEEE 68 (5), 1980.

Error Correcting Codes. N. J. A. Sloane, Springer Verlag, Wien, 1975.

i

C.3.3 Failure assertion programming

NOTE This technique/measure is referenced in table A.18 of IEC 61508-2, and table A.2 of IEC 61508-3.

Aim: To detect residual software design faults during execution of a program, in order to
prevent safety critical failures of the system and to continue operation for high reliability.

65

lS/lEC 61508-7:2000

Description: The assertion programming method follows the idea of checking a pre-condition
(before a sequence of statements is executed, the initial conditions are checked for validity)
and a post-condition (results are checked after the execution of a sequence of statements).
If either the pre-ccmdition or the post-condition is not fulfilled, the processing reports the error.

For example,

assert c pre-condition>;
action 1;

action x;
assert z post-condition>;

References:

A Discipline of Programming. E. W. Dijkstra, Prentice-Hall, 1976.

The Science of Programming. D. Gries, Springer Verlag, 1981.

Software Development – A Rigorous Approach. C. B. Jones, Prentice-Hall, 1980.

C.3.4 Safety bag

NOTE This technique/measure is referenced in table A.2 of IEC 61508-3.

Aim: To protect against residual specification and implementation faults in software which
adversely affect safety.

Description: A safety bag IS an external monitor, implemented on an independent computer
to a different specification. This safety bag is solely concerned with ensuring that the main
computer performs safe, not necessarily correct, actions. The safety bag continuously
monitors the main ‘computer. The safety bag prevents the system from entering an unsafe
state. In addition, if it detects that the main computer is entering a potentially hazardous state,
the system has to be brought back to a safe state either by the safety bag or the main
computer.

Hardware and software of the safety bag should be classified and qualified according to the
appropriate SIL.

Reference: Using Al Techniques to Improve Software Safety. Proc. IFAC SAFECOMP 88,
Sarlat, France, Pergamon Press, October 1986.

C.3.5 Software diversity (diverse programming)

NOTE Th!s technique/measure is Merenced in table A.2 of IEC 61508-3

Aim: Detect and mask residual software design and implementation faults during execution

of a program, in order to prevent safety critical failures of the system, and to continue

operation for high reliability.

.

Description: In diverse programming a given program specification is designed and
Implemented N times in different ways. The same input values are given to the N versions,
and the results produced by the N versions are compared. If the result is considered to be
valid, the result is transmitted to the computer outputs.

66

lS/lEC 61508-7:2000

The N versions can run in parallel on separate computers, alternatively all versions can be
ruri on the same computer and the results subjected to an internal vote. Different voting

strategies can be used on the N versions, depending on the application requirements, as
follows.

— If the system has a safe state, then it is feasible to demand complete agreement (all N
agree) otherwise an output value is used that will cause the system to reach the safe
state. For simple trip systems the vote can be biased in the safe direction. In this case the
safe action would be to trip if either version demanded a trip. This approach typically uses
only two versions (N=2).

— For systems with no safe state, majority voting strategies can be ‘employed. For cases

where there is no collective agreement, probabilistic approaches can be used in order to
maximise the chance of selecting the correct value, for example, taking the middle value,
temporary freezing of outputs until agreement returns, etc.

This technique does not eliminate residual software design faults, nor does it avoid errors in
the interpretation of the specification, but it provides a measure to detect and mask before
they can affect safety.

References:

Dependable Computing: From Concepts to Design Diversity. A. Avizienis and J. C. Laprie,
Proc. IEEE 74 (5), May 1986.

A Theoretical Basis for the Analysis of Multi-version Software subject to Co-incident Failures.
D. E. Eckhardt and L. D. Lee, IEEE Trans SE-11 (12), 1985.

II

1 Computers can now perform vital safety functions safely. Otto Berg von Linde, Railway
Gazette International, Vol. 135, No. 11, 1979.

I C.3.6 Recovery block
1

I NOTE This technique/measure is referenced in table A.2 of IEC 61508-3

18

Aim: To increase the likelihood of the program eventually performing its intended function.

Description: Several different program sections are written, often independently, each of
which is intended to perform the same desired function. The final program is constructed from
these sections. The first section, called the primary, is executed first. This is followed by an
acceptance test of the result it calculates. If the test is passed then the result is accepted and
passed on to subsequent parts of the system. If it fails, any side-effects of the first are reset
and the second section, called the first alternative, is executed. This too is followed by an
acceptance test and is treated as in the first case. A second, third or even more alternatives
can be provided if desired.

References:

System Structure for Software Fault Tolerance. B. Randall. IEEE Trans Software Engineering,
Vol. SE-1, No. 2, 1975.

*

9

Fault Tolerance – Principles and Practice. T. Anderson, P. A. Lee, Prentice-Hall, 1981.

67

lS/lEC 61508-7:2000

C.3.7 Backward recovery

NOTE Thts technique/measure is referenced in table A.2 of IEC 61508-3

Aim: To provide cdrrect functional operation in the presence of one or more faults.

Description: If a fault has been detected, the system is reset to an earlier internal state, the
consistency of which has been proven before. This method implies saving of the internal state
frequently at so-called well-defined checkpoints. This may be done globally (for the complete
database) or incrementally (changes only between checkpoints). Then the system has to
compensate for the changes which have taken place in the meantime by using journalling
(audit trail of actions), compensation (all effects of these changes are nullified) or external
(manual) interaction.

Reference: Software Fault Tolerance (Trends in Software, No. 3), M. R. Lyu (cd.), John
Wiley & Sons, April 1995, ISBN 0471950688.

●

C.3.8 Forward recovery

NOTE This technique/measure is referenced in table A.2 of IEC 61508-3

Aim: To provide correct functional operation in the presence of one or more faults.

Description: If a fault has been detected, the current state of the system is manipulated to
obtain a state, which will be consistent some time later. This concept is especially suited for
real-time systems with a small database and fast rate of change of internal state. It is
assumed that at least part of the system state may be imposed onto the environment, and
only part of the system states are influenced (forced) by the environment.

a

Reference: Software Fault Tolerance (Trends in Software, No. 3), M. R. Lyu (cd.), John
Wiley & Sons, April 1995, ISBN 0471950688.

C.3.9 Re-try fault recovery mechanisms

NOTE This technique/measure is referenced in table A.2 of IEC 61508-3

Aim: To attempt functional recovery from a detected fault condition by re-try mechanisms.

Description: In the event of a detected fault or error condition, attempts are made to recover
the situation by re-executing the same code. Recovery by re-try can be as complete as a
reboot and a re-start procedure or a small re-scheduling and re-starting task, after a software
time-out or a task monitoring action. Re-try techniques are commonly used in communication
fault or error recovery, and re-try conditions could be flagged from a communication protocol
error (checksum, etc.) or from a communication acknowledgement response time-out.

Reference: Reliable Computer Systems: Design and Evaluation, D. P. Siewiorek and
R. S. Schwartz, A. K. Peters Ltd., 1998, ISBN 156881092X.

68

~
lS/lEC 61506-7:2000

C.3.1 O Memorizing executed cases

NOTE This technique/measure is referenced in table A.2 of IEC 61508-3.

Aim: To force the software to fail safely if it attempts to execute a path which is not allowed.

Description: All relevant details of each program execution is documented. During normal
operation each program execution is compared with the previously documented details. If it
differs, a safety action is taken.

The execution documentation can contain the sequence of the individual decision-to-decision
paths (DD paths) or the sequence of the individual accesses to arrays, records or volumes, or
both.

Different methods of storing execution paths are possible. Hash-coding methods can be used
to map the execution sequence onto a single large number or sequence of numbers. During
normal Qperation the execution path value must be checked against the stored cases before
any output operation occurs.

Since the possible combinations of decision-to-decision paths during one program is very
large, it may not be feasible to treat programs as a whole. In this case, the technique can be
applied at software module level.

Reference: Fail-safe Software – Some Principles and a Case Study. W. Ehrenberger.
Proc. SARSS 1987, Altrincham, Manchester, UK, Elsevier Applied Science, 1987.

C.3.11 Graceful degradation

NOTE This techniQue/measure is referenced in table A.2 of IEC 61508-3

Aim: To maintain the more critical system functions available, despite failures, by dropping

the less critical functions.

Description: This technique gives priorities to the various functions to be carried out by the
system. The design ensures that if there is insufficient resources to carry out all the system
functions, the higher priority functions are carried out in preference to the lower ones. For
example, error and event logging functions may be lower priority than system control
functions, in which case system control would continue if the hardware associated with error
logging were to fail. Further, should the system control hardware fail, but not the error logging
hardware, then the error logging hardware would take over the control function.

This is predominantly applied to hardware but is applicable to the total system. It must be
taken into account from the topmost design phase.

References:

Space Shuttle Software. C. T. Sheridan, Datamation, Vol. 24, July 1978.

The Evolution of Fault-Tolerant Computing. Vol. 1 of Dependable Computing and Fault-
Tolerant Systems, Edited by A. Avizienis, H. Kopetz and J. C. Laprie, Springer Verlag, 1987,
ISBN 3-21 1-81941-X.

.

4’

Fault Tolerance, Principle and Practices. T. Anderson and P. A. Lee, Vol. 3 of Dependable
Computing and Fault-Tolerant Systems, Springer Verlag, 1987, ISBN 3-211-82077-9.

69

WIEC 61506-7:2000

C.3.12 Artificial intelligence fault correction

NOTE 1 This technique/measure is referenced in table A.2 of IEC 61508-3.

Aim: To be able to react to possible hazards in a very flexible way by introducing a
combination of methods and process models and some kind of on-line safety and reliability
analysis.

Description: Fault forecasting (calculating trends), fault correction, maintenance and
supervisory actions may be supported by artificial intelligence (Al) based systems in a very
efficient way in diverse channels of a system, since the rules might be derived directly from
the specifications and checked against these. Certain common faults which are introduced
into specifications, by implicitly already having some design and implementation rules in mind,
may be avoided effectively by this approach, especially when applying a combination of
models and methods in a functional or descriptive manner.

The methods are selected in such a way that faults may be corrected and the effects of
failures be minimised, in order to meet the desrred safety integrity.

NOTE 2 Sde C.3.2 for warning about correcting faulty data, and item 5, table A.2 of IEC 61508-3 for negative
recommendations concerning this technique.

References:

Automatic Programming Techniques Applied to Software Development: An approach based
on exception handling. M. Bidoit et al, Proc. Ist Int. Conf. on Applications of Artificial
Intelligence to Engineering Problems, Southampton, 165-177, 1986.

Artificial Intelligence and the Design of Expert Systems. G. F. Luger and W. A. Stubblefield,
Benjamin/Cummings, 1989.

C.3.13 Dynamic reconfiguration

NOTE This technique/measure is referenced in table A.2 of IEC 61508-3.

Aim: To maintain system functionality despite an internal fault.

Description: The logical architecture of the system has to be such that it can be mapped
onto a subset of the available resources of the system. The architecture needs to be capable
of detecting a failure in a physical resource and then remapping the logical architecture back
onto the restricted resources left functioning. Although the concept is more traditionally
restricted to recovery from failed hardware units, it is also applicable to failed software units if
there is sufficient “run-time redundancy” to allow a software re-try or if there is sufficient
redundant data to make the individual and isolated failure be of little importance.

This technique must be considered at the first system design stage.

References:

Critical Issues in the Design of Reconfigurable Control Computer, H. Schmid, J. Lam, R. Naro
and K. Weir, FTCS 14 June 1984, IEEE, 1984.

A

Assigning Processes to Processors: A Fault-tolerant Approach. G. Kar and C. N. Nikolaou,
Watson ResezVch Centre, Yorktown, June 1984.

70

lS/lEC 61508-7:2000

C.4 Development tools and programming languages

C.4.1 Strongly typed programming languages

NC)TE This technique/measure is referenced in table A.3 of IEC 61508-3

Aim: Reduce the probability of faults by using a language which permits a high level of
checking by the compiler.

i

Description: When a strongly typed programming language is compiled, many checks. are
made on how variable types are used, for example in procedure calls and external data
access. Compilation will fail and an error message be produced for any usage that does not
conform to predefine rules.

Such languages usua!ly allow user-defined data types to be defined from the basic language
data types (such as integer, real). These types can then be used in exactly the same way as
the basic type. Strict checks are imposed to ensure the correct type is used. These checks
are imposed over the whole program, even if this is built from separately compiled units. The
checks also ensure that the number and the type of procedure arguments match even when
referenced from separately compiled software modules.

Strongly typed ianguages usually support other aspects of good software engineering practice
such as easily analyzable control structures (for example if.. then.. else, do.. while, etc.)
which lead to well-structured programs.

Typical examples of strongly typed languages are Pascal, Ada and Modula 2.

References:
4

In Search of Effective Diversity: a Six Language Study of Fault-Tolerant Flight Control Software.
A. Avizienis, M. R. Lyu and W. Schutz. 18th Symposium on Fault-Tolerant Computing, Tokyo,
Japan, 27-30 June 1988, IEEE Computer Society Press, 1988, ISBN 0-8186-0867-6.

lSO/l EC 8652:1995, Information technology – Programming languages – Ada.
$’

lSO/l EC 10514-1:1996, Information technology – Programming languages – Part 7: Modula-2,
Base Language.

ISO 7185:1990, Information technology – Programming languages – Pascal.

C.4.2 Language subsets

NOTE This technique/measure is referenced in table A.3 of IEC 61508-3.

Aim: To reduce the probability of introducing programming faults and increase the probability
of detecting any remaining faults.

Description: The language is examined to determine programming constructs which are
either error-prone or difficult to analyse, for example, using static analysis methods. A
language subset is then defined which excludes these constructs.

71

lS/lEC 61508-7:2000

References:

Requirements for programming languages in safety and security software standard.

B. A. Wichmann. Computer Standards and Interfaces. Vol. 14, pp 433-441, 1992.

Safer C: Developing Software for High-integrity and Safety-critical Systems. L. Hatton, McGraw-Hill,
1994, ISBN 0-07-707640-0.

C.4.3 Certified tools and certified translators

NOTE This technique/measure is referenced in table A.3 of IEC 61508-3.

Aim: Tools are necessary to help developers in the different phases of software
development. Wherever possible, tools should be certified so that some level of confidence
can be assumed regarding the correctness of the outputs.

Description: The certification of a tool will generally be carried out by an independent, often
national, body, against independently set criteria, typically national or international standards.
Ideally, the tools used in all development phases (specification, design, coding, testing and
validation) and those used in configuration management, should be subject to certification.

To date, only compilers (translators) are regularly subject to certification procedures; these
are laid down by national certification bodies and they exercise compilers (translators) against
international standards such as those for Ada and Pascal.

It is important to note that certified tools and certified translators are usually certified only
against their respective language or process standards. They are usually flot certified in any
way with respect to safety.

References:

Pascal Validation Suite, UK Distributor: BSI Quality Assurance, PO Box 375, Milton Keynes,
MK14 6LL.

Ada Validation Suite. UK Distributor: National Computing Centre (NCC), Oxford Road,
Manchester, England.

C.4.4 Tools and translators: increased confidence from use

NOTE This technique/measure is referenced in table A.3 of IEC 81508-3

*
Aim: To avoid any difficulties due to translator failures which can arise during development,
verification and maintenance of a software package.

Description: A translator is used, where there has been no evidence of improper
performance over many prier projects. Translators without operating experience or with any
serious known faults shoul(j be avoided unless there is some other assurance of correct
performance (for example, see C.4.4.1).

If the translator has shown small deficiencies, the related language constructs are noted down
and carefully avoided during a safety related project.

72

-----———..—”—— .

IWIEC 61508-7:2000

Another version to this way of working is to restrict the usage of the language to only its
commonly used features.

This recommendation is based on the experience from many projects. It has been shown that
immature translator~ are a serious handicap to any software development. They make a
safety-related software development generally infeasible.

It is also known, presently, that no method exists to prove the correctness for all tool or
translator parts.

C.4.4.1 Comparison of source program and executable code

Aim: To check that the tools used to produce a PROM image have not introduced any errors I

into the PROM image.
$

Description: The PROM image is reverse-engineered to obtain the constituent “object”

.

modules. These “object” modules are reverse-engineered into assembly language files. Using
suitable techniques the reverse generated assembly language files are compared with the
actual source files originally used to produce the PROM.

The major advantage of the technique is that the tools (compilers, linkers etc.) used to
produce the PROM image do not have to be validated for all programs. The technique verifies
that source file used for the particular safety-related system are correctly transformed.

References:

Demonstrating Equivalence of Source Code and PROM Contents. D. J. Pavey and
L. A. Winsborrow. The Computer Journal Vol. 36, No. 7, 1993. a

Formal demonstration of equivalence of source code and PROM contents: an industrial
example. D. J. Pavey and L. A. Winsborrow. Mathematics of Dependable Systems, Ed.
C. Mitchell and V. Stavridou, Clarendon Press, 1995, ISBN 0-198534-91-4.

Retrospective Formal Verification of Reactor Protection System Software. D. J. Pavey,
L. A. Winsborrow, A. R. Lawrence.

$

Proceedings of the Second Safety Through Quality

Conference, 1995, ISBN 1-897851-06-5.

Assuring Correctness in a Safety Critical Software Application. L. A. Winsborrow and
D. J. Pavey. High Integrity Systems, Vol. 1, No. 5, pp 453-459, 1996.

C.4.5 Library of trusted/verified software modules and components

NOTE This technique/measure is referenced in table A.3 of IEC 61508-3

Aim: To avoid the need for software modules and hardware component designs to be
extensively revalidated or redesigned for each new application. Also to promote designs
which have not been formally or rigorously validated but for which considerable operational
history is available.

Description: Well-designed and structured PESS are made up of a number of hardware and
software components and modules which are clearly distinct and which interact with each
other in clearly specified ways.

73

lS/lEC 61508-7:2000

Different PESS designed for differing applications will contain a number of software modules
or components which are the same or very similar, Building up a library of such generally

applicable software modules allows much of the resource necessary for validating the designs

to be shared by more than one application.

Furthermore, the use of such software modules in multiple applications provides empirical
evidence of successful operational use. This empirical evidence justifiably enhances the trust
which users are likely to have in the software modules.

C.2.1O describes one approach by which a software module may be classified as trusted.

References:

Software Reuse and Reverse Engineering in Practice. P. A. V. Hall (cd.), Chapman & Hall,
1992, ISBN 0-412-39980-6.

DIN V VDE 0801 Al: Grundsatze fur Rechner in Systemen mit Sicherheitsaufgaben
(Principles for Computers in Safety-Related Systems). Anderung 1 zu DIN V VDE 0801/01 .90.
Beuth-Verlag, Berlin, 1994.

C.4.6 Suitable programming languages

NOTE This technique/measure is referenced in table A.3 of IEC 61508-3.

Aim: To support the requirements of this International Standard as much as possible, in
particular defensive programming, strong typing, structured programming and possibly
assertions. The programming language chosen should lead to an easily verifiable code with a
minimum of effort and facilitate program development, verification and maintenance.

Description: The language should be fully and unambiguously defined. The language should
be user- or. problem-orientated rather than processor/platform machine-orientated. Widely
used languages or their subsets are preferred to special purpose languages.

In addition to the already referenced features the language should provide for

- block structure;

— translation time checking; and

— run-time type and array bound checking.

The language should encourage

— the use of small and manageable software modules;

— restriction of access to ckta in specific software modules;

- definition of variable subranges; and

— any other type of error-limiting constructs.

If safe operation of the system is dependent upon real-time constraints, then the language
should also provide for exception/interrupt handling.

It is desirable that the language is supported by a suitable translator, appropriate libraries
of pre-existing software modules, a debugger and tools for both version control and
development.

Currently, at the time of developing this standard, it is not clear whether objep+ oriented
languages are to be preferred to other conventional ones.

74

———-. —________ _ -- .—...-

1

I 1

lS/lEC 61508-7:2000

Featl~res which make verification difficult and therefore should be avoided are

—

—

—

—

—

—

—

unconditional jumps excluding subroutine calls;

recursion;

pointers, heaps or any type of dynamic variables or objects;

interrupt handling at source code level;

multiple entries or exits of loops, blocks or subprograms;

implicit variable initialisation or declaration;

variant records and equivalence; and

procedural parameters.

Low-level languages, in particular assembly languages, present problems due to their I
processor/platform machine-orientated nature.

A desirable language property is that its design and use should result in programs whose
i

execution is predictable. Given a suitably defined programming language, there is a subset
which ensures that program execution is predictable. This subset cannot (in general) be
statically determined, although many static constraints may assist in ensuring predictable
execution. This would typically require a demonstration that array indices are within bounds,
and that numeric overflow cannot arise, etc.

Table C.1 gives recommendations for specific programming languages

References:

Dependability of Critical Computer Systems 1. F. J. Redmill, Elsevier Applied Science, 1988,
ISBN 1-85166-203-0.

IEC 60880:1986, Software for computers in the safety systems of nuclear power stations.

IEC 61131-3:1993, Programmable controllers – Part 3: Programming languages.

lSO/l EC 1539-1:1997, Information technology – Programming languages – Fortran –
Base language.

lSO/l EC 7185:1990, Information technology – Programming languages – Pascal.

lSO/l EC 8652:1995, Information technology – Programming languages – Ada.

lSO/l EC 9899:1990, Programming languages – C.

Part 1:

:

lSO/l EC/TR 10206:1991, Information technology – Programming languages – Extended
Pascal.

lSO/1 EC 10514-1:1996, Inforrnat;on technology – Programming languages – Part 7: Modula-2,
Base Language.

lSO/l EC 10514-3:1998, Information technology – Programming languages – Part 3: Object
Oriented Modula-2.

lSO/l EC 14882:1998, Programming languages – C++.

1S0/1 EC./TR 15942, Guidance for the use of the Ada programming language in high integrity
systems. 1J

1) To be published.

75

lS/lEC 61508-7:2000

Table C.1 – Recommendations for specific programming languages

I Programming language \ SIL1 I SIL2] SIL3] SIL4 I

II ADA IHRIHRIRIRI

2 ADA with subset HR HR HR HR

3 MODULA-2 HR HR R R

14 MODULA-2 with subset IHRIHRIHRIHRI

5 PASCAL HR ‘HR R R

6 PASCAL with subset HR HR HR HR

17 FORTRAN 77 IRIRIRIRI

8 FORTRAN 77 with subset HR HR HR HR

9C R - NR NR

10 C with subset and coding standard, and use of static analysis HR HR HR HR
tools

Ill PL/M IRI-INRINRI

12 PL/M with subset and coding standard HR R R R

13 Assembler R R - -

114 Assembler with subset and coding standard IRIRIRIRI

15 Ladder diagrams R R R R

16 Ladder diagram w!th defined subset of language HR HR HR HR

17 Functional block diagram R R R R

I 18 Function block diagram with defined subset of language IHR]HR]HR]HRI

19 Structured text R R R R

20 Structured text with defined subset of language HR HR HR HR

121 Sequential function chart IRIRIRIRI

22 Sequential function chart with defined subset of language HR HR HR HR

23 InstructIon list R - NR NR

24 InstructIon list with defined subset of language HR R R
I

R

NOTE 1 The recommendations R, HR and - are explalned In annex A of IEC 61508-3.

NOTE 2 System software includes the operating system, drivers, embedded functions and software
modules provided as part of the system. The software IS typically provided by the safety system vendor.
The language subset should be carefully selected to avoid complex structures which may result in
implementation faults. Checks should be performed to check for proper use of the language subset.

NOTE 3 The application software is the software developed for a specific safety application. In many
cases this software is developed by the end user or by an application oriented contractor. Where a
number of programming languages have the same recommendation, the developer should select one
which is commonly used by personnel in the industry or facility. The language subset should be carefully
selected to avoid complex structures which may result in Implementation faults. Checks should be
performed to check for proper use of the language subset.

NOTE 4 If a specific language is not hsted In the table, it must not be assumed that it is excluded.
It should conform to this International Standard

NOTE 5 For entries 15-24, see IEC 61131-3

76

t
<
u

-j

lS/lEC 61508-7:2000

C.5 Verification and modification

C.5.1 Probabilistic testing

NOTE This technique/measure is referenced in tables A.5, A.7 and A.9 of IEC 61506-3

Aim: To gain a quantitative figure about the reliability properties of the investigated software.

Description: This quantitative figure may take into account the related levels of confidence
and significance and can give

— a failure probability per demand;

— a failure probability during a certain period of time; and

— a probability of error containment.

From these figures other parameters may be derived such as:

- probability of failure free execution;

- probability of survival;

— availability;

- MTBF or failure rate; and

— probability of safe execution.

Probabilistic considerations are either based on a probabilistic test or on operating
experience. Usually, the number of test cases or observed operating cases is very large.
Typically, the testing of the demand mode of operation involves considerably less elapsed
time than the continuous mode of operation.

Automated testing tools are normally employed to provide test data and supervise test
outputs. Large tests are run on large host computers with the appropriate process simulation
periphery. Test data is selected both according to systematic and random hardware
viewpoints. The overall test control, for example, guarantees a test data profile, while random
selection can govern individual test cases in detail.

Individual test harnesses, test executions and test supervisions are determined by the
detailed test aims as described above. Other important conditions are given by the
mathematical prerequisites that must be fulfilled if the test evaluation is to meet its intended
test aim.

Probabilistic figures about the behaviour of any test object may also be derived from
operating experience. Provided the same conditions are met, the same mathematics can be
applied as for the evaluation of test results.

In practice, it is very difficult to demonstrate ultra-high levels of reliability using these
techniques.

References:

Software Testing via Environmental Simulation (CONTESSE Report). Available until
December 1998 from: Ray Browne, Cl ID, DTI, 151 Buckingham Palace Road, London,
SWIW 9SS, UK, 1994.

.4

*

77

lS/lEC 61508-7:2000

Validation of ultra high dependability for software based systems. B. Littlewood and L Strigini.
Comm. ACM 36 (11), 69-80, 1993.

Handbook of Software Reliability Engineering. M. R. Lyu (cd.). IEEE Computer Society Press,
McGraw-Hill, 1995, ISBN 0-07-039400-8.

(3.5.2 Data recording and analysis

NOTE This technique/measure is referenced in tables A.5 and A.8 of IEC 81508-3.

Aim: To document all data, decisions and rationale in the software project to allow for easier
verification, validation, assessment and maintenance.

Description: Detailed documentation is maintained during a project, which could include

testing performed on each software module;

— decisions and their rationale;

— problems and their solutions.

During and at the conclusion of the project this documentation can be analysed to establish a
wide variety of information. In particular, data recording is very important for the maintenance

of computer systems as the rationale for certain decisions made during the development

project is not always known by the maintenance engineers.

Reference: Dependability of Critical Computer Systems 2. F. J. Redmill, Elsevier Applied
Science, 1989, ISBN 1-85166-381-9.

C.5.3 Interface testing

NOTE This technique/measure is referenced in table A.5 of IEC 61508-3

Aim: To detect errors in the interfaces of subprograms.

Description: Several levels of detail or completeness of testing are feasible. The most
important levels are tests for

all interface variables at their extreme values;

all interface variables individually at their extreme values with other interface variables at
normal values;

all values of the domain of each interface variable with other interface variables at normal
values;

all values of all variables in combination (this will only be feasible for small interfaces);

the sDecified test conditions relevant to each call of each subroutine.

These tests are particularly important if the interfaces do not contain assertions that detect
Incorrect parameter values. They are also important after new configurations of pre-existing
subprograms have been generated.

C.5.4 Boundary value analysis

NOTE This technique/measure is referenced in tables B.2, B.3 and B.8 of IEC 61508-3

●
✎

.

*

Aim: To detect software errors occurring at parameter limits or boundaries.

78

lS/lEC 61506-7:2000

Description: The input domain of the program is divided into a number of input classes ,
according to the equivalence relation (see C.5.7). The tests should cover the boundaries and
extremes of the classes. The tests check that the boundaries in the input domain of the
specification coincide with those in the program. The use of the value zero, in a direct as well
as in an indirect translation, is often error-prone and demands special attention:

— zero divisor;

- blank ASCII characters;
\— empty stack or list element;

— full matrix;

— zero table entry.
I

Normally the boundaries for input have a direct correspondence to the boundaries for the
output range. Test cases should be written to fo}ce the output to its limited values. Consider b

also if it is possible to specify a test case which causes the output to exceed the specification
+

boundary values.

If the output is a sequence of data, for example a printed table, special attention should be
paid to the first and the last elements and to lists containing none, one and two elements.

References:

IEC 61704, Guide to the selection of software test methods for reliability assessrnentl).

The Art of Software Testing. G. Myers, Wiley & Sons, New York, 1979.

C.5.5 Error guessing

NOTE This techniqueimeasure is referenced in tables B.2 and B.6 of IEC 61508-3.

Aim: To remove common programming mistakes.

Description: Testing experience and intuition combined with knowledge and curiosity about
the system under test may add some uncategorised test cases to the designed test case set.

Special values or combinations of values may be error-prone. Some interesting test cases
may be derived from inspection checklists. It may also be considered whether the system is
robust enough. For example: can the buttons be pushed on the front-panel too fast or too
often? What happens if two buttons are pushed simultaneously?

Reference: The Art of Software Testing. G. Myers, Wiley & Sons, New York, 1979.

C.5.6 Error seeding

NOTE This technique/measure is referenced in table B.2 of IEC 61508-3.

Aim: To ascertain whether a set of test cases is adequate.

1) TO be publlshed,

79

WIEC 61508-7:2000

description: Some known types of mistake are inserted (seeded) into the program, and the
program is executed with the test cases under test conditions. If only some of the seeded
errors are found, the test case set is not adequate. The ratio of found seeded errors to the
tctal number of seeded errors is an estimate of the ratio of found real errors to total number
~rrors, This gives a possibility of estimating the number of remaining errors and thereby the

remaining test effort.

Found seeded errors Found real errors

Total number of seeded errors = Tofal nutmber of real errors

The detection of all the seeded errors may indicate either that the test case set is adequate,
or that the seeded errors were too easy to find. The limitations of the method are that in order
to obtain any usable results, the types of mistake as well as the seeding positions must reflect
the statistical distribution of real errors.

●
,“

Reference: Software Fault Injection, J. M. Voas and G. McGraw, Wiley 1998.

C.5.7 Equivalence classes and input partition testing

N(3TE This technique/measure is referenced in tables B.2 and B.3 of IEC 61508-3

Aim: To test the software adequately using a minimum of test data. The test data is obtained
by selecting the partitions of the input domain required to exercise the software.

Description: This testing strategy is based on the equivalence relation of the inputs, which
determines a partition of the input domain.

Test cases are selected with the aim of covering all the partitions previously specified. At
least one test case is taken from each equivalence class.

4

There are two basic possibilities for input partitioning which are

.— equivalence classes derived from the specification – the interpretation of the specification
may be either input orientated, for example the values selected are treated in the same S
way, or output orientated, for example the set of values lead to the same functional result;

equivalence classes derived from the internal structure of the program – the equivalence
class results are determined from static analysis of the program, for example the set of
values leading to the same path being executed.

References:

The Art of Software Testing. G Myers, Wiley & Sons, New York, 1979.

C.5.8 Structure-based testing

NOTE This techn!que/measure is referenced in table B.2 of IEC 61508-3

Aim: To apply tests which exercise certain subsets of the program structure.

80

.,—,. ,..-_.

I @
lS/lEC 61508-7:20(10

Description: Based on analysis of the program, a set of input data is chosen so that a large t

(and often prespecified target) percentage of the program code is exercised. Measures of

code coverage will vary as follows, depending upon the Ieve! of rigour required.

- Statements: this is the least rigorous test since it is possible to execute all code

statements without exercising both branches of a conditional statement.

Branches: both sides of every branch should be checked. This may be impractical for
some types of defensive code.

I
— Compound conditions: every condition in a compound conditional branch (i.e. linked by

AND/OR) is exercised. See MCDC (modified condition decision coverage, ref. D01713B).

LCSAJ: a linear code sequence and jump is any linear sequence of code statements,
including conditional statements, terminated by a jump. Many potential subpaths will be I

Infeasible due to constraints on the input data imposed by the execution of earlier code.

Data flow: the execution paths are selected on the basis of data usage; for example, a
s

— ,

path where the same variable is both written and read.

Call graph: a program is composed of subroutines which may be invoked from other
subroutines The call graph is the tree of subroutine invocations in the program. Tests are
designed to cover all invocations in the tree.

Basis path: one of a minimal set of finite paths from start to finish, such that all arcs are
included. (Overlapping combinations of paths in this basis set can form any path through
that part of the program.) Tests of all basis path has been shown to be efficient for
locating errors.

References:

Reliability of the Path Analysis Testing Strategy. W. Howden. IEEE
Engineering, Vol. SE-3, 1976.

Software considerations in airborne systems and equip certification,
December 1992.

Structure testing, McCabe; NBS Special Publication 500-99, 1982.

Trans Software
a

DO178B, RTCA,

$

A software reliability study, Walsh [USA] National Computer Conference, 1979.

C.5.9 Control flow analysis

NOTE This technique/measure is referenced in table B.8 of IEC 61508-3. ‘1

Aim: To detect poor and potentially incorrect program structures.

Description: Control flow analysis is a static testing technique for finding suspect areas of
code that do not follow good programming practice. The program is analysed producing a
directed graph which can be further analysed for

— inaccessible code, for instance unconditional jumps which leaves blocks of code
unreachable;

81

lS/lEC 61508-7:2000

knotted code. Well-structured code has a control graph which is reducible by successive
graph reductions to a single node. In contrast, poorly structured code can only be reduced

~o a knot composed of se~eral nodes.

References:

Information Flow and Data Flow of While

Trans. on Prog. Lang. and Syst., 1985.

C.5.1O Data flow analysis

Programs. J. F. Bergeretti and B. A. Carre, ACM

NOTE This technique/measure is referenced in table B.8 of IEC 61508-3.

Aim: To detect poor and potentially incorrect program structures.

Description: Data flow analysis is a static testing technique that combines the information
obtained from the control flow analysis with information about which variables are read or
written in different portions of code. The analysis can check for

— variables that may be read before they are assigned a value – this can be avoided by
always assigning a value when declaring a new variable;

. variables that are written more than once without being read – this could indicate omitted
code;

variables that are written but never read – this could indicate redundant code.

A data flow anomaly will not always directly correspond to a program fault, but if anomalies
are avoided the code is less likely to contain faults.

References:

Information Flow and Data Flow of While Programs. J. F. Bergeretti and B. A. Carre, ACM
Trans. on Prog. Lang. and Syst., 1985.

C.5.11 Sneak circuit analysis

NOTE This technique/measure is referenced In table B 8 of IEC 61508-3.

Aim: To detect an unexpected path or logic flow within a system which, under certain
conditions, initiates an undesired function or inhibits a desired function.

Description: A sneak circuit path may consist of hardware, software, operator actions, or
combinations of these elements. Sneak circuits are not the result of hardware failure but are
latent conditions inadvertently designed into the system or coded into the software programs,
which can cause it to malfunction under certain conditions.

Categories of sneak circuits :~re

— sneak paths which ca~se current, energy, or logical sequence to flow along an
unexpected path or in an unintended direction;

sneak timing in which events occur in an unexpected or conflicting sequence;

sneak indications which cause an ambiguous or false display of system operating
conditions, and thus may result in an undesired action by the operator;

sneak labels which incorrectly or
inputs, controls, displays, buses,
incorrect stimulus to the system.

imprecisely label system functions, for example, system
etc, and thus may mislead an operator into applying an

lS/lEC 61506-7:2000

Sneak circuit analysis relies on the recognition of basic topological patterns with the hardware ?
or software structure (for example, six basic patterns have been proposed for software).

Analysis takes place with the aid of a checklist of questions about the use and relationships
between the basic topological components.

References:

Sneak Analysis and Software Sneak Analysis. S. G. Godoy and G. J. Engels. J. Aircraft
vol. 15, No. 8, 1978.

Sneak Circ’uit Analysis. J. P. Rankin, Nuclear Safety, Vol. 14, No. 5, 1973.

C.5.12 Symbolic execution

NOTE This technique/measure is referenced in table B.8 of IEC 61508-3.

Aim: To show the agreement between the source code and the specification.

Description: The program variables are evaluated after substituting the left-hand side by the
right- hand side in all assignments. Conditional branches and loops are translated into
Boolean expressions. The final result is a symbolic expression for each program variable.
This can be checked against the expected expression.

References:

Formal Program Verification using Symbolic Execution. R. B. Dannenberg and G. W. Ernst.
IEEE Transactions on Software Engineering, Vol. SE-8, No. 1, 1982.

Symbolic Execution and Software Testing. J. C. King, Communications of the ACM, Vol. 19,
No. 7, 1976.

C.5.13 Formal proof

i

4

NOTE This technique/measure is referenced in table A.9 of IEC 61508-3.

Aim: To prove the correctness of a program or specification without executing it, using
theoretical and mathematical models and rules.

Description: A number of assertions are stated at various locations in the program, and they
are used as pre- and post-conditions to various paths in the program. The proof consists of
showing that the program transfers the pre-conditions into the post-conditions according to a
set of logical rules, and that the program terminates.

Several formal methods are described in this overview, for instance, CCS, CSP, HOL,
LOTOS, OBJ, temporal logic, VDM and Z (see C.2.4 for descriptions of these methods).

An alternative technique to Formal Proof is Rigorous Argument. An outline of the formal proof
is prepared in which the main steps are- presented but not all the mathematical detail is
included. This is a weaker verification technique that establishes that a proof would be
possible if it were to be attempted.

References:

Software Development - A Rigorous Approach. C. B. Jones. Prentice-Hall, 1980.

Systematic Software Development using VDM. C. B. Jones. Prentice-Hall, 2nd Edition, 1990.

83

K3/tEC 61506-7:2000

C.5.14 Complexity metrics

NOTE This technique/rweasure is referenced in tables A.9 and A.1O of IEC 61508-3.

Aim: To predict the attributes of programs from properties of the software itself or from its
development or test history.

Description: These models evaluate some structural properties of the software and relate
this to a desired attribute such as reliability or complexity. Software tools are required to
evaluate most of the measures. Some of the metrics which can be applied are given below:

--

—

graph theoretic complexity - this measure can be applied early in the Iifecycle to assess
trade-offs, and is based on the complexity of the program control graph, represented by its
cyclomatic number;

number of ways to activate a certain software module (accessibility) - the more a software
module can be accessed, the more likely it is to be debugged;

Halstead type metrics science – this measure computes the program length by counting
the number of operators and operands; it provides a measure of complexity and size that
forms a, baseline for comparison when estimating future development resources;

— number of entries and exits per software module – minimizing the number of entry/exit
points is a key feature of structured design and programming techniques.

References:

Software Metrics: A Rigorous and Practical Approach. N. E. Fenton, International Thomson
Computer Press, 1996, ISBN 1-85032-275-9, 2nd Edition.

A Complexity Measure. T. J. McCabe. IEEE Trans on Software Engineering, Vol. SE-2, No. 4,
December 1976.

Models and Measurements for Quality Assessments of Software. S. N. Mohanty. ACM Computing
Surveys, Vol. 11, No. 3, September 1979.

Elements of Software Science. M. H. Halstead. Elsevier, North Holland, New York, 1977.

C.5.15 Fagan inspections

NOTE This technique/measure is referenced in table 6.8 of IEC 61508-3

Aim: To reveal mistakes and faults in all phases of the program development.

Description: A “formal” audit on quality assurance documents aimed at finding mistakes and
faults. The inspection procedure consists of five stages: planning, preparation, inspection,
rework and follow-up. Each of these stages has its own separate objective. The complete
system development (specification, design, coding and testing) must be inspected.

●

Reference: Design and Code Inspections to Reduce Errors in Program Development.
M. E. Fagan, IBM Systems Journal, No. 3, 1976.

84

II

.—.——.—.—.- “,+

lS/lEC 61506-7:2000

C.5.16 Walk-throughsldesign reviews

NOTE This technique/measure is referenced in table B.8 of IEC 61508-3.

Aim: To detect faults in some product of the development as soon and as economically as
possible.

Description: IEC has published a guide on formal design reviews, which includes a general
description of formal design reviews, their objectives, details of the various design review
types, the composition of a design review team and their associated duties and
responsibilities. The IEC document also provides general guidelines for planning and
conducting formal design reviews, as well as specific details concerning the role of
independent specialists within a design review team. Examples of specialist functions include,
amongst others, reliability, maintenance support and availability.

The IEC recommend that a “formal design review should be conducted for all new
products/processes, new applications, and revisions to existing products and manufacturing
processes which affect the function, performance, safety, reliability, ability to inspect
maintainability, availability, ability to cost, and other characteristics affecting the end
product/process, users or bystanders”.

A code walk-through consists of a walk-through team selecting a small set of paper test
cases, representative sets of inputs and corresponding expected outputs for the program. The
test data is then manually traced through the logic of the program.

References:

IEC 61160:1992, Formal design review.
Amendment 1 (1994).

Software Inspection. T. Gilb, D. Graham, Addison-Wesley, 1993, ISBN 0-201-63181-4.

C.5,17 Prototyping/animation

NOTE This technique/measure is referenced in tables B.3 and B.5 of IEC 61508-3.

Aim: To check the feasibility of implementing the system against the given constraints. To
communicate the specifier’s interpretation of the system to the customer, in order to locate
misunderstandings.

Description: A subset of system functions, constraints, and performance requirements are
selected. A prototype is built using high-level tools. At this stage, constraints such as the
target” computer, implementation language, program size, maintainability, reliability and
availability need not be considered. The prototype is evaluated against the customer’s criteria
and the system requirements may be modified in the light of this evaluation.

References:

The emergence of rapid prototyping as
T. S. Hughes, Proc. 2nd Int. Conf.
Cirencester, UK, IEE, 1989.

a real-time software development tool. J. E. Cooling,
on Software Engineering for Real-time Systems,

I

i
,

:!

.85

Ill.1 ,..b--

lS/lEC 61508-7:2000

Software evolution through rapid prototyping. Luqi, IEEE Computer 22 (5), 13-27, May 1989.

Approaches to Prototyping. R. Budde et al, Springer Verlag, 1984, ISBN 3-540-13490-5.

Proc. Working Conference on Prototyping. Namur, October 1983, Budde et al, Springer Verlag,
1984.

Using an. executable specification language for an information system. S. Urban et al.
IEEE Trans Software Engineering, Vol. SE-11 No. 7, July 1985.

$2.5.18 Process simulation

NOTE This technique/measure is referenced in table 6.3 of IEC 61506-3.

Aim: To test the function of a software system, together with its interface to the outside
world, without allowing it to modify the real world in any way.

Description: The creation of a system, for testing purposes only, which mimics the behaviour
of the equipment under control (EUC).

The simulation may be software only or a combination of software and hardware. It must

— provide inputs, equwalent to the inputs which will exist when the EUC is actually installed;

— respond to outputs from the software being tested in a way which fadhfully represents the
controlled plant;

— have provision for operator in,puts to provide any perturbations with which the system
under test is required to cope.

When software is being tested the simulation may be a simulation of the target hardware with
its inputs and outputs.

Reference: Software Testin~ via Environmental Simulation (CONTESSE Report). Available
until December 1998 from: Ray Browne, Cl ID, DTI, 151 Buckingham
SWIW 9SS, UK, 1994.

C.5.19 Performance requirements

NOTE This technique/measure is referenced in table B.6 of IEC 61508-3.

Palace Road, London,

Aim: To establish demonstrable performance requirements of a software system.

Description: An analysis is performed of both the system and the software requirements
specifications to specify all general and specific, explicit and implicit performance
requirements.

Each performance requirement is examined in turn to determine

— the success criteria to be obtained;

— whether a measure against the success criteria can be obtained;

— the potential accuracy of such measurements;

— the project stages at which the measurements can be estimated; and

— the project stages at which the measurements can be made.

.

.

88

lS/lEC 61508-7:2000

The practicability of each performance requirement is then anatysed in order’to obtain a list of
performance requirements, success criteria and potential measurements. The main objectives
are:

. each performance requirement is associated with at least one measurement;

— where possible, accurate and efficient measurements are selected which can be used as
early in the development as possible;

— essential and optional performance requirements and success criteria are specified; and

— where possible, advantage should be taken of the possibility of using a single
I measurement for more than one performance requirement.

C.5.20 Performance modelling

NOTE This technique/measure is referenced in tables B.2 and B.5 of IEC 61508-3.

Aim: To ensure that the working capacity of the system is sufficient to meet the specified
requirements.

Description: The requirements specification includes throughput and response requirements
for specific functions, perhaps combined with constraints on the use of total system
resources. The proposed system design is compared against the stated requirements by

— producing a model of the system processes, and their interactions;

— determining the use of resources by each process, for example, processor time,
communications bandwidth, storage devices, etc;

— determining the distribution of demands placed upon the system under average and worst-
case conditions;

— computing the mean and worst-case throughput and response times for the individual
system functions.

For simple systems an analytic solution may be sufficient, while for more complex systems
some form of simulation may be more appropriate to obtain accurate results.

Before detailed mode.lling, a simpler “resource budget” check can be used which sums the
resources requirements of all the processes. If the requirements exceed designed system
capacity, the design is infeasible. Even if the design passes this check, performance
modelling may show that excessive delays and response times occur due to resource
starvation. To avoid this situation, engineers often design systems to use some fraction (for
example 50 Y.) of the total resources so that the probability of resource starvation is reduced.

Reference: The Design of Real-time Systems: From Specification to Implementation and
Verification. H. Kopetz et al, Software Engineering Journal 72-82, 1991.

C.5.21 Avalanche/stress testing

NOTE This technique/measure is referenced in table B,6 of IEC 61508-3.

Aim: To burden the test object with an exceptionally high workload in order to show that the
test object would stand normal workloads easily.

87

lS/lEC 61508-7:2000

Description: There are a variety of test conditions which can be applied for avalanche/stress
testing. Some of these test conditions are:

— if working in a polling mode then the test object gets much more input changes per time
unit as under normal conditions;

— if working on demands then the number of demands per time unit to the test object is
increased beyond normal conditions;

— if the size of a database plays an important role then it is increased beyond normal
conditions;

— influe~tial devices are tuned to their maximum speed or lowest speed respectively;

— for the extreme cases, all influential factors, as far as is possible, are put to the boundary
conditions at the same time.

Under these test conditions the time behaviour of the test object can be evaluated. The
influence of load changes can be observed. The correct dimension of internal buffers or
dynamic variables, stacks, etc. can be checked.

C.5.22 Response timing and memory constraints

NOTE This technique/measure is referenced in table 6.6 of IEC 61508-3

Aim: To ensure that the system will meet its temporal and memory requirements

Description: The requirements specification for the system and the software includes
memory and response requirements for specific functions, perhaps combined with constraints
on the use of total system resources.

An analysis is performed to determine the distribution demands under average and worst-
case conditions. This analysis requires estimates of the resource usage and elapsed time of
each system function. These estimates can be obtained in several ways, for example
comparison with an existing system or the prototyping and benchmarking of time critical
systems.

C.5.23 Impact analysis

NOTE This technique/measure is referenced in table A.8 of IEC 61508-3.

Aim: To determine the effect that a change or an enhancement to a software system will
have to other software modules in that software system as well as to other systems.

Description: Prior to a modification or enhancement being performed on the software, an
analysis should be undertak~n to determine the impact of the modification or enhancement on
the software, and to also c!etermine which software systems and software modules are
affected.

After the analysis has been completed a decision is required concerning the reverification of
the software system. This depends on the number of software modules affected, the criticality
of the affected software modules and the nature of the change. Possible decisions are:

only the changed software module is reverified;

all affected software modules are reverified; or

the complete system is reverified.

Reference: Dependability of Critical Computer Systems 2. F. J. Redmill, Elsevier Applied
Science, 1989. ISBN 1-85166-381-9.

88

lS/lEC 61506-7:2000 ~

C.5.24 Software configuration management

NOTE This technique/measure is referenced in table A.8 of iEC 61508-3.

Aim: Software configuration management aims to ensure the consistency of groups of
development deliverables as those deliverables change. Configuration management in
general applies to both hardware and software development.

Description: Software configuration management is a technique used throughout
development. In essence, it requires documenting the production of every version of every
significant deliverable and of every relationship between different versions of the different
deliverables. The resulting documentation allows the developer to determine the effect on
other deliverables of a change to one deliverable (especially one of its components). In
particular, systems or subsys~ms can be reliably re-built from consistent sets of component
versions.

References:

Configuration Management Practices for Systems, Equipment, Munitions and Computer
Programs. MI L-STD-483.

Software Configuration Management. J. K. Buckle. Macmillan Press, 1982.

Software Configuration Management. W. A. Babich. Addison-Wesley, 1986.

Configuration Management Requirements for Defence Equipment. UK Ministry of Defence
Standard 05-57 Issue 3, July 1993.

C.6 Functional safety assessment

*

4

NOTE Relevant techniques and measures may also be found in B,6

C.6.1 Decision tables (truth tables)

NOTE This technique/measure is referenced in tables A.1O and B.7 of IEC 61508-3.

Aim: To provide a clear and coherent specification and analysis of complex logical
combinations and relationships.

Description: This method uses two dimensional tables to concisely describe logical
relationships between Qoolean program variables.

The conciseness and tabular nature of the method makes it appropriate as a means of
analysing complex logical combinations expressed in code.

The method is potentially executable if used as a specification.

C.6.2 Hazard and Operability Study (HAZOP)

Aim: To determine safety hazards in a proposed or existing system, their possible causes
and consequences, and recommend action to minimise the chance of their occurrence.

89

mlS/lEC 61506-7:2000

Description: A team of
consideration, participate

engineers, with
in a structured

expertise covering the whole system under
examination of a design, through a series of

scheduled meetings. They consider both the functional aspects of-the desig-n and how the
system would operate iri practice (including human activity and maintenance). A Ieade’r
encourages team members to be creative in exposing potential hazards, and drives the
procedure by presenting each part of the system in connection with several guide words:
“none”, “more of”, “less of”, “part of”, “more than” (or “as well as”) and “other than”. Every
applied condition or failure mode is considered for its feasibility, how it could arise, the
possible consequences (is there a hazard?), how it could be avoided and if the avoidance
technique is worth the expense.

At a later time, it is often necessary to carry out further hazard analysis (often referred to as
probabilistic or quantitative risk assessment), to consider the major hazards in more detail.

Hazard studies may take place at many stages of project development, but are most effective
when performed early enough to influence major design and operability decisions. It is helpful
if a fixed time schedule is allocated within the project for the meetings; each one is scheduled
for at least half a day; and no more than four per week are scheduled, so that the flow of
accompanying documentation is maintained. Documentation from the meetings will form a
substantial part of the system hazard/safety dossier.

The HAZOP technique evolved in the process industry and is difficult to apply without
modification to the software element of PES. Different derivative methods for PES HAZOPS
(or Computer HAZOPS - “CHAZOPS”) have been proposed which in general introduce new
guide words and/or suggest schemes for systematically covering the system and software
architecture.

References:

Draft Interim
Incorporate a

Defence Standard 00-58/1: “A Guide to HAZOP Studies on Systems which
Programmable Electronic System”. Ministry of Defence (UK). March 1995.

Hazard and Operability (HAZOP) studies applied to computer-controlled process plants. P. Chung
and E. Broomfield. In “Computer Control and Human Error” by T. Kletz, Institution of Chemical
Engineers, 165-189 Railway Terrace, Rugby, CV1 3HQ, UK, 1995, ISBN O-85295-362-3.

Reliability and Hazard Criteria for Programmable Electronic Systems in the Chemical Industry.
E. Johnson. Proc. of Safety and Reliability of PES, PES 3 Safety Symposium, B. K. Daniels
(cd.), 28-30 May 1986, Guernsey Channel Islands, Elsevier Applied Science, 1986.

HAZOP and HAZAN. T. A. Kletz. Institution of Chemical Engineers, 165-189 Railway Terrace,
Rugby, CV1 3HQ, UK, 3rd Edition, 1992, ISBN O-85295-285-6.

A Guide to HAZOPS. Chemical Industries Association Ltd, 1977.

Reliability Engineering and Ris,< Assessment. E. J. Henlty and H. Kumamoto, Prentice-Hall, 1981.

Systems Reliability and Risk Analysis (Engineering Application of Systems Reliability and
Risk Analysis), E. G. Frenkel, Kluwer Academic Pub., May 1988, ISBN 90-2473-665X.

.

Control Hazard Studies for Process Plants. K. Walters, in Integrated Risk Assessment –
Current Practice and New Directions, edited by R. E. Melchers and M. G. Stewart, The
University of Newcastle, NSW Australia. A. A. Balkema Publishers, Rotterdam Netherlands
1995, ISBN 90-5410-5550.

90

—— -., ,..

C.6.3

NOTE 1

NOTE 2

~

lS/lEC 61506-7:2000

Common cause failure analysis

This technique/measure is referenced in table A.1O of IEC 61508-3

See also annex D of IEC 61508-6,

Aim: To determine potential failures in multiple systems or multiple subsystems which would

undermine the benefits of redundancy, because of the appearance of the same failures in the

multiple parts at the same time. \

Description: Systems intended to take care of the safety of a plant often use redundancy in
hardware and majority voting. This is to avoid random hardware failures in components or
subsystems which would tend to prevent the correct processing of data. I

However, some failures can be common to more than one component or subsystem. For
example, if a system is installed in one single room, shortcomings in the air-conditioning,

i
d

might reduce the benefits of redundancy. The same is true for other external effects on the
system such as fire, flooding, electromagnetic interference, plane crashes, and earthquakes.
The system may also be affected by incidents related to operation and maintenance. It is
essential, therefore, that adequate and well- documented procedures are provided for
operation and maintenance, and operating and maintenance personnel are extensively
trained.

Internal effects are also major contributors to common cause failures. They can stem from
design faults in common or identical components and their interfaces, as well as ageing of
components. Common cause failure analysis has to search the system for such potential
common failures. Methods of common cause failure analysis are: general quality control;
design reviews; verification and testing by an independent team; and analysis’of real incidents
with feedback of experience from similar systems. The scope of the analysis, however, goes
beyond hardware. Even if software diversity is used in different channels of a redundant

4’

system, there might be some commonality in the software approaches which could give rise to
common cause failure, for example, faults in the common specification.

When common cause failures do not occur exactly at the same time, precautions can be taken
by means of comparison methods between the multiple channels which should lead to w
detection of a failure before this failure is common to all channels. Common cause failure
analysis should take this technique into account.

References:

Review of Common Cause Failures. 1. A. Watson, UKAEA, Centre for Systems Reliability,
Wigshaw Lane, WA3 4NE, England, NCSR R 27, July 1981.

Common-Mode Failures in Redundancy Systems. 1. A. Watson and G. T. Edwards. Nuclear
Technology Vol. 46, December 1979.

Programmable Electronic Systems in Safety Related Applications. Health and Safety
Executive, Her Majesty’s Stationary Office, London, 1987.

C.6.4 Markov models

NOTE See B.1 of IEC 61508-6 for a brief comparison of this technique against reliability block diagrams, in the
context of analyslng hardware safety integrity.

?

Aim: To evaluate the reliability, safety or availability of a system.

91

lS/lEC 61508-7:2000

Description: A graph of the system is constructed. The graph represents the status of the
system with regard to its failure states (the failure states are represented by the nodes of
the graph). The edges between nodes, which represent the failure events or repair events,
are weighted with the corresponding failure rates or repair rates. It is assumed that a change
of state, N, to a subsequent state, N+l, is independent of the previous state, N-1. Note that
the failure events, states and rates can be detailed in such a way that a precise description of
the system is obtained, for example detected or undetected failures, manifestation of a larger
failure, etc.

The Markov technique is suitable for modelling multiple systems in which the level of
redundancy varies with time due to component failure and repair. Other classical methods, for
example, FMEA and FTA, cannot readily be adapted to modelling the effects of failures
throughout the Iifecycle of the system since no simple combinatorial formulae exist for
calculating the corresponding probabilities.

●

in the simplest cases, the formulae which describe the probabilities of the system are readily

available in the literature or can be calculated manually. In more complex cases, some
methods of simplification (i.e. reducing the ~umber of states) exist. For very complex cases,
results can be calculated by computer simulation of the graph.

References:

IEC 61165:1995, Application of Markov techniques.

The Theory of Stochastic Processes. R. E. Cox and H. D. Miller, Methuen and Co. Ltd., London,
UK, 1963.

Finite MARKOV Chains. J. G. Kemeny and J. L. Snell. D. Van Nostrand Company Inc, Princeton,

1959.

Reliability Handbook. B. A. Koslov and L. A. Usnakov, Holt Rinehart and Winston

1970,

The Theory and Practice of Reliable System Design. D. P. Siewiorek and R. S.
Press, 1982.

C.6.5 Reliability block diagrams

NOTE This technique/measure is referenced

Inc, New York,

Swarz, Digital

in table A.1O of IEC 61508-3 and is used in annex B of IEC 61508-6.

Aim: To model, in a diagrammatic form, the set of events that must take place and conditions
which must be fulfilled for a successful operation of a system or a task.

Description: The target of the analysis is represented as a success path consisting of
blocks, lines and logical junctions. A success path starts from one side of the diagram and
continues via the blocks and junctions to the other side of the diagram. A block represents a
condition or an event, and the path can pass it if the condition is true or the event has taken
place. If the path comes to a junction, it continues if the logic of the junction is fulfilled. If it
reaches a vertex, it may continue along all outgoing lines. If there exists at least one success
path through the diagram, the target of the analysis is operating correctly.

92

lS/lEC 61506-7:2000

References:

IEC 61078:1991, Analysis techniques for dependability – Reliability block diagram method.

System Reliability Engineering Methodology: A Division of the State of the Art. J. B. Fussel
and J. S. Arend, Nuclear Safety 20 (5), 1979.

Fault Tree Handbook. W. E. Vesely et al, NUREG-0942, Division of System Safety Office at
Nuclear Reactor Regulation, US Nuclear Regulatory Commission, Washington, DC 20555, 1981.

C.6.6 Monte-Carlo simulation

NOTE This technique/measure is referenced in table B.4 of IEC 61508-3

Aim: To simulate real world phenomena in software using random numbers.

Description: Monte-Carlo simulations are used to solve two classes of problems:

— probabilistic, where random numbers are used to generate stochastic phenomena; and

— deterministic, which are mathematically translated into an equivalent probabilistic
problem.

Monte-Carlo simulation injects random number streams to simulate noise on an analysis
signal or to add random biases or tolerances. The Monte-Carlo simulation is run to produce a
large sample from which statistical results are obtained.

When using Monte-Carlo simulations care must be taken to ensure that the biases, tolerances
or noise have reasonable values.

A general principle of Monte-Carlo simulations is to restate and reformulate the problem so
that the results obtained are as accurate as possible rather than tackling the problem as
initially stated.

Reference: Monte Carlo Methods. J. M. Hammersley, D. C. Handscomb, Chapman & Hall, 1979. :

93

lS/lEC 61506-7:2000

Annex D
(informative)

A probabilistic approach to determining software
safety integrity for pre-developed software

D.1 General

This annex provides initial guidelines on the use of a probabilistic approach to determining
software safety integrity for pre-developed software based on operational experience. This
approach is considered particularly appropriate as part of the qualification, of operating
systems, library components, compilers and other system software. The annex provides an
indication of what is possible, but the techniques should be used only by those who are
competent in statistical analysis.

NOTE This annex uses the term confidence level, which is described in IEEE 352. An equ&alent term,
significance level, is used in IEC 61164.

The techniques could also be used to demonstrate an increase in the safety integrity level of
software over time. For example, software built to the requirements of IEC 61508-3 to SIL1
may, after a suitable period of successful operation in a large number of applications, be
shown to achieve SIL2.

Table D.1 below shows the number of failure-free demands experienced or hours of failure-
free operation needed to qualify for a particular safety integrity level. This table is a summary
of the results given in D.2.1 and D.2.3.

Operating experience can be treated mathematically as outlined in D.2 below to supplement
or replace statistical testing, and operating experience from several sites may be combined

(i.e. by adding the number of treated demands or hours of operation), but only if

the software version to be used in the E/E/PE safety-related system is identical to the
version for which operating experience is being claimed;

the operational profile of the input space is similar;

— there is an effective system for reporting,and documenting failures; and

— the relevant prerequisites (see D.2 below) are satisfied.

Table D.1 - Necessary history for confidence to safety integrity levels

SIL Low demand mode Number of treated High demand or Houra of operation
of operation demands continuous mode in total

of operation

(Probability of failure to l-a”= 0,99 l-a = 0,95 (Probability of l-a = 0,99 l-a = 0,95
perform its design function a dangerous failure

on demand) per hour)

4 210-5 to <lo-4 4,6 xl& 3X105 >lr3-9hJ<ll)-8 4,6 X 109 3X109

3 > 10 “-4 to < 10-3 4,6 X 104 3XI04 >lo-*to <lo-’ 4,6 X 108 3X108

2 >lo-sto <lo-z 4,6 X 103 3X103 210-7 to<lo–6 4,6 X 107 3X107

1 >lo-zto <lo-’ 4,6 X 102 3X102 210-6 to <lo-5 4,6 X 106 3X106

NOTE 1 1-a represents the confidence level.

NOTE 2 See D.2.1 and D.2.3 for prerequisites and details of how this table is derived. I

1$

94

lS/lEC 61506-7:2000

D.2 Statistical testing formulae and examples of their use

D.2. I Simple statistical test for low demand mode of operation

D.2.1.1 Prerequisites

a) Test data distribution equal to distribution for demands during on-line operation.

b) Test runs are statistically independent from each other, with respect to the cause of a
failure.

c) An adequate mechanism exists to detect any failures which may occur.

d) Number of test cases n >100.

e) No failure occurs during the n test cases.

D.2.1.2 Resuits

Failure probability p (per demand), at the confidence level l-a, is given by

In a
psl-ti or fr>. —

P

D.2.1.3 Example

Table D.2 - Probabilities of failure for
low demand mode of operation

=

For a probability of failure on demand of SIL3 at 95 ‘Y. confidence the application of the
formula gives 30000 test cases under the conditions of the prerequisites. Table D.1
summarises the results for each safety integrity level.

D.2.2 Testing of an input space (domain) for a low demand mode of operation

D.2.2.1 Prerequisites

The only prerequisite is that the test data is selected to give a random uniform distribution
over the- input space (domain).

D.2.2.2 Results

The objective is to find the number of tests, n, that are
accuracy, 6, of the inputs for the low demand function
being tested.

necessary based on the threshold
(such as a safety shut-down) that

of
is

*

95

Ismc

5.2.2.3

61508-7:2000

Table D.3 - Mean distances of two test points

Dimension of the domain Mean distance of two teet points in direction of
an arbitrary axis

1 d=lln

2
6=6

I 3 I I
k ($=6

r
I NOTE k can be any positive integer. The values 1, 2 and 3 are iust examples.

Example

Consider a safety shut-down that is dependent on just two variables, A and B. If it has been
verified that the thresholds that partition the input pair of variables A and B are treated
correctly to an accuracy of 1 YO of A or B’s measuring range, the number of uniformly
distributed test cases required in the space of A and B is

r)=l/&=lo4

D.2.3 Simple statistical test for high demand or continuous mode of operation

D.2.3.1 Prerequisites

a) Test data distribution equal to distribution during on-line operation.

b) The relative reduction for the probability of no failure is proportional to the length of the
considered time interval and constant otherwise.

c) An adequate mechanism exists to detect any failures which may occur.

d) The test extends over a test time t.

e) No failure occurs during t.

D.2.3.2 Results

A

8

,,

The relationship between the probability of failure A, the confidence level 1-a and the testing
time t is

4,

a=-+
The probability of failure is indirectly proportional to the mean operating time between
failures:

A=J-
MTBF

NOTE This standard does not distinguish between the probability of failure per hour and the rate of failures in 1 h.
Strictly, the probability of failure, F, is related to the failure rate, f, by the equation F = 1-e- ,ff but the scope Of this

standard is for failure rates of less than 10-5, and for values this small F = ft.

96

IS/lEC 61506-7:2000

D.2.3.3 Example

Table D.4 - Probabilities of failure for high demand
or continuous mode of operation

1-a A

0,95 31t

0,99 4,6/t

To verify that the mean time between failures is at least 108 h with a confidence level of 95 ?’0,

a test ~me of 3 x 10s h is required and the prerequisites must be satisfied. Table D.1
summarises the number of tests required for each safety integrity level.

D.2.4 Complete test

The program is considered as an urn containing a known number N of balls. Each ball
represents a program property of interest. Balls are drawn at random and replaced after
inspection. A complete test is achieved if all the balls are drawn.

D.2.4.1 Prerequisites

a)

b)

c)

d)

e)

f)

Test data distribution is such that each of the N program properties is tested with equal
probability.

Test runs are independent from each other.

Each occurring failure is detected.

Number of test cases n >> N.

No failure occurs during the n test cases.

Each test run tests one program property (a program property is what can be tested during
one run).

D.2.4.2 Results

The probability p to test all program properties is given by

where

~ = N(iV-l)... (j+l)l)
,,N

j!

For evaluation of this formula usually only the first terms matter
characterised by n >> N. The last factor makes all terms for large
visible in table D.5.

since realistic cases are
j very small. This is also

i

4

97

lS/lEC 61508-7:2000

D.2.4.3 Example

Consider a program that has been used at several installations for several years. In total, at

least 7,5 x 106 runs have been executed. {t is estimated that each 100th run fulfils the above
prerequisites. So 7,5 x 104 runs made can be taken for statistical evaluation. it is estimated
that 4 000 test runs would perform an exhaustive test. The estimates are conservative.

According to table D.5, the probability of not having tested everything equals 2,87 x 10-5.

For N = 4000 the values of the first terms depending on n are:

Table D.5 - Probability of testing all program properties

n P

5x 104 1 -1,49X 10-2+ 1,1OX 10-’4 -...

7,5 x 104 1 -2,87x 10-5 +4x 10-’ O-...

1 x 105 1 -5,54x 10-B + 1,52x 10-’5 –...#

2X105 1 –7,67x 10-’9+ 2,9x 10-37 -...

In practice, such estimates should be made so that they are conservative.

D.3 References

Further information on the above techniques can be found in the following documents:

a)

b)

c)

d)

e)

Verification and Validation of Real-Time Software, Chapter 5. W. J. Quirk (cd.). Springer
Verlag, 1985, ISBN 3-540-15102-8.

Combining Probabilistic and Deterministic Verification Efforts. W. D. Ehrenberger,
SAFECOMP 92, Pergamon Press, ISBN 0-08-041893-7.

Ingenieurstatistik. Heinhold/Gaede, Oldenburg, 1972, ISBN 3-486-31743-1.

IEEE 352:1987, IEEE Guide for general principles of reliability analysis of nuclear power
generating station safety systems.

IEC 61164:1995, Ffehability growth – Statistical test and estimation methods.

98

lS/lEC 61506-7:2000

Bibliography

IEC 60068-1:1988, Environmental testing – Part 1: General and guidance

IEC 60529:1989, Degrees of protection provided by enclosures (IP Code)

IEC 60812:1985, Analysis techniques for system reliability - Procedure for failure mode and
effects analysis (FMEA)

IEC 60880:1986, Software for computers in the safety systems of nuclear power stations

IEC 61000-4-1:1992, Electromagnetic compatibility, (EMC) – Part 4: Testing and measurement
techniques - Section 1: Overview of immunity tests. Basic EMC publication

IEC 61000-4-5:1995, Electromagnetic compatibihty (EMC) - Part 4: Testing and measurement
techniques – Section 5: Surge immunity test

IEC 61000-5-2:1997, Electromagnetic compatibility (EMC) – Part 5: Installation and mitigation
guidelines - Section 2: Earthing and cabling

IEC 61025:1990, Fau/t tree analysis (FTA)

IEC 61069-5:1994, Industrial-process measurement and control – Evaluation of system pro-
perties for the purpose of system assessment – Part 5: Assessment of system dependability

IEC 61078:1991, Analysis techniques for dependability – Reliability block diagram method

IEC 61131-3:1993, Programmable controllers – Part 3: Programming languages

IEC 61160:1992, formal design review
Amendment 1 (1 994)

IEC 61163-1:1995, Reliability stress screening – Part 1: Repairable items manufactured in
lots

IEC 61164:1995, Reliability growth – Statistical test and estimation methods

IEC 61165:1995, Application of Markov techniques

IEC 61346-1:1996, Industrial systems, installations and equipment and industrial products –
Structuring, principles and reference designation – Part 1: Basic rules

IEC 61506:1997, Industrial-process measurement and control – Documentation of application
software

IEC 61704: Guide to the selection of software test methods for reliability assessment 1J

1) To be published,

99

EYIEC 61506-7:2000

lSO/l EC 5807:1985, Information processing – Documentation symbols and conventions for
data, program and system flowcharts, program network charts and system resources charts

1S0/1 EC 7185:1990, Information technology – Programming languages – Pascal

iSO/l EC 8631:1989, Information technology – Program constructs and conventions for their
representation

!S0/1 EC 8652:1995, Information technology – Programming languages – Ada

lSO/l EC 8807:1989, Information processing systems – Open Systems Interconnection –
LOTOS – A formal description technique based on the temporal ordering of observational
behaviour

iSO/!EC 9899:1990, Programming languages - C

1S0/1 EC~R 10206: a991, Information technology – Programming languages - Extended
Pascal

lSOil EC 10514-1:1996, Information technology – Programming languages – Part 1: MOUU/a-2,
Base Language

IS0/1 EC 10514-3:1998, Information technology – Programming languages - Part 3: Object
Oriented Modula~2

lSO/l EC 13817-1:1996, Information technology – Programming languages, their environments
and system software interfaces – Vienna Development Method – Specification Language –
Part 1: Base language

lSO/l EC 14882:1998, Programming languages – C++

lSO/l EC 1539-1:1997, Information technology – Programming languages – Fortran – Part 1:
Base language

*

1S0/1 EC~R 15942, Guidance for the use of the Ada programming language in high integrity
systemsl J

11 To be published

100

,,,,.“ l-...m
~. —.... . .

----—–-——~

lS/lEC 61508-7:2000

Index

Ill

i,II

1’

,’

Actuation of the safety shut-off via thermal fuse ...A.l O.3

Analogue signal monitoring ..A.2.7

Antivalent signal transmission.. ..A.ll.4

Artificial intelligence fault correction .. C.3.12

Avalanche/stress testing ... C.5.21

Backward recovery .. C.3.7

Black box testing ..B.5.2

Block replication (for example double ROM with hardware or software comparison)A.4.5

Boundary value analysis ... C.5.4

Calculation of failure rates ..B.6.3

Cause consequence diagrams ..B.6.6.2

CCS– Calculus of Communicating Systems .. C.2.4.2

Certified tools and certified translators .. C.4.3

Checklists ...B.2.5

Code protection ..A.6.2

Coded processing (one channel) ..A.3.4

Coding standards .. C.2.6.2

Combination of temporal and logical monitoring of program sequencesA.9.4

Common cause failure analysis .. C.6.3

Comparator.. ..A.1.3

Complete hardware redundancyA.7.3

Complexity metrics .. C.5.14

Computer-aided design tools ...B.3.5

Computer-aided specification tools ..B.2.4

Connection of forced-air cooling and status indication ...A.l O.5

Control flow analysis .. C.5.9

Controlled Requirements Expression (CORE) ... C.2.1.2

Cross-monitoring of multiple actuators ..A.l3.2

CSP – Communicating Sequential Processes .. C.2.4.3

Data flow analysis C.5.1 O

Data flow diagrams ... C.2.2

Data recording and analysis .. C.5.2

Decision tables (truth tables) ... C.6.1

Defensive programming .. C.2.5

De-rating ..A.2.8

Design and coding standards .. C.2.6

Diverse hardware ...B.1.4

Documentation ...6.1.2

Double RAM with hardware or software comparison and read/write testA.5.7

Dynamic analysis ...B.6.5

Dynamic principles ...A.2.2

Dynamic reconfiguration ... C.3.13

Electrical/electronic components with automatic check ..A.2.6

Entity models ..B.2.4.4

Equivalence classes and input partition testing ... C.5.7

Error detecting and correcting codes .. C.3.2

Error guessing ... C.5.5

I

i

4

:

101

lS/lEC 61508-7:2000

Error seeding C.5.6

Event tree analysis B.6.6.3

Expanded functional testing B.6.8

Fagan inspections C.S.IS

Fail-safe hardwareA.2.4

Failure analysisB.6.6

Failure assertion programming C.3.3

Failure detection by on-line monitoringA.l.l

Failure modes and effects analysis B.6.6.l

Failure modes, effects and criticality analysis B.6.6.4

Fan controlA.lO.z

Fault detection and diagnosis... C.3.1

Fault insertion testing B.6.1 O

Fault tree analysis B.6.6.5

Field experienceB.5.4

Finite state machines/state transition diagrams B.2.3.2

Formal methods C.2.4

Formal proof CS.13

Forward recovery C.3.B

Functional testing under environmental conditions B.6.l

Functional testing B.5.l

Graceful degradation C.3.ll

Hazard and Operability Study (HAZOP) C.6.2

HOL - Higher Order Logic .. C.2.4.4

Idle current principle (de-energised to trip) ...A.l.5

Impact analysis ... C.5.23

Incentive and answer ..B.2.4.5

Increase of interference immunity ..A.ll.3

Information hiding/encapsulation ... C.2.8

Information redundancy ..A.7.6

Input acknowledgementB.4.9

Input comparison/voting ...A.6.5

Inspection (reviews and analysis) ..B.3.7

Inspection of the specification ..B.2.6

Inspection using test patterns ...A.7.4

Interface testing .. C.5.3

Interference surge immunity testing ...B.6.2

JSD –Jackson System Development .. C.2.l.3

Language subsets ... C.4.2

Library of trusted/verified software modules and components ... C.4.5

Limited operation possibilities ..B.4.4

Limited use of interrupts ... C.2.6.5

Limited use of pointers ... C.2.6.6

Limited use of recursion ... C.2.6.7

Logical monitoring of program sequence ...A.9.3

LOTOS ... C.2.4.5

Maintenance friendliness ...B.4.3

Majority voter ...A.l.4

Markovmodels ..C.6.4

102

—..—..

lS/lEC 61506-7:2000
1

MASCOT ..C.2.l.4

Memorizing executed cases C.3.1O

Model orientated procedure with hierarchical analysis ..B.2.4.3

Modification protectionB.4.8

Modified checksumA.4.2

Modular approach ... C.2.9

Modularisation ...B.3.4

Monitored outputs ..A.6.4

Monitored redundancy ..A.2.!5

Monitoring ..A.13.1

Monitoring of relay contacts ...A.1 .2

Monte-Carlo simulation ... C.6.6

Multi-bit hardware redundancy ...A.7.2

Multi-channel parallel output ..A.6.3

No dynamic variables or dynamic objects C.2.6.3

OBJ .. C.2.4.6

Observance of guidelines and standards ...B.3.l

One-bit hardware redundancy ..A.7.l

One-bit redundancy (for example RAM monitoring with a parity bit) ...A.5.5

On-line checking during creation of dynamic variables or dynamic objects C.2.6.4

Operation and maintenance instructions ..B.4.1

Operation only by skilled operators ..B.4.5

Overvoltage protection with safety shut-off ..A.8.l

Pedormance modelling ... C.5.2O

Pedormance requirements .. C.5.l9

Positive-activated switch ..A.l2.2

Power-down with safety shut-off ..A.8.3

Probabilistic testing ... C.5.l

Process simulation .. C.5.l8

Project management ..B.l.l

Protection against operator mistakes ...B.4.6

Prototyping/animation ... C.5.l7

RAM monitoring with a modified Hamming code ..A.5.6

RAM test ''Abraham'' ..A.5.4

RAM test “checkerboard” or ''march'' ..A.5.l

RAM test “galpat” or “transparent galpat’’ ...A.5.3

RAM test “walkpath’’A.5.2

Real.time Yourdon ... C.2.l.5

Reciprocal comparison by software ..A.3.5

Recovery block ...C.3.6

Reference sensor ...A.12.1

Reliability block diagrams .. C.6.5

Response timing and memory constraints ... C.5.22

Re-try fault recovery mechanisms ...""."..."."".....".""".."..""" C“3”9

SADT– Structured Analysis and Design Technique .. C.2.1.6

Safety bag ... C.3.4

Self-test by software: limited number of patterns (one.channel) ...A.3.l

Self-test by software: walking bit (one-channel) ...A.3.2

Self-test supported by hardware (one channel) ..A.3.3

103

I

IllI1., I IL I ,.1”-.
“..—- . . .

lS/lEC 61506-7:2000

Semi-formal methods ...B.2.3

Separation of electrical energy lines from information lines ...A.ll.l

Separation of safety-related systems from non-safety-related systemsB.1.3

Signature of a double word (16 bit) ..A.4.4

Signature of one word (8 bit) ..A.4.3

Simulation ..B.3.6

Sneak circuit analysis .. C.5.11

Software configuration management ... C.5.24

Software diversity (diverse programming) ... C.3.5

Spatial separation of multiple iines ...A.ll.2

Staggered message from thermo-sensors and conditional alarm ...A.l O.4

Standard test access port and boundary-scan architecture ..A.2.3

Static analysis. ...B.6.4

Statistical testing ..B.5.3

Strongly typed programming languages .. C.4.l

Structure-based testing ... C.5.8

Structure diagrams .. C.2.3

Structured design ...B.3.2

Structured methods ... C.2.I

Structured programming C.2.7

Structured specification ..B.2.l

Suitable programming languages .. C.4.6

Symbolic execution ... C.5.12

Temperature sensorA.l O.l

Temporal logic ... C.2.4.7

Temporal monitoring with on-line check ...A.9.5

Test pattern.#...........#...A.6.l

Tests by redundant hardware ...A.2.l

Time Petri nets ..B.2.3.3

Tools oriented towards no specific method ...B.2.4.2

Translator” increased confidence from use ... C.4.4

Transmission redundancy ..A.7.5

Use of trusted/verified software modules and components C.2.1O

Use of well-tried components ...B.3.3

User friendliness ..B.4.2

VDM, VDM++– Vienna Development Method ... C.2.4.8

Voltage control (secondary)A.8.2

Walk.through ..B.3.8

Walk-throughs/design reviews .. C.5.16

Watch-dog with separate time base and time.window ..A.9.2

Watch-dog with separate time base without time-window ..A.9.l

Word saving multi-bit redundancy (for example “ROM monitoring with
a modified Hamming code) ..A.4.l

Worst-case testing ...B.6.9

Worst-case analysis ...B.6.7

4

GMGIPN—162 BIS/ND/2008—300 Copies. 104

11111,1l“.- I ..l..-.=~ “ ‘ .—,—.—.. ——-— ‘.

m
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Incf;an .SYandards Act, 1986 to promote
harmonious development of the activities of standardization, marking and quality certification of goods
and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. Nc part of these publications may be reproduced in any

!orm without the prior permission in wntlng of !31S. This does not preclude the free use, in course of

implementing the standard, of necessary details, such as symbols and sizes, type or grade

designations. Enquiries relating to copyright be addressed to the Director (Publications),- BIS. -
f

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are
also reviewed periodically; a standard along with amendments is reaffirmed when such review
indicates that no changes are needed; it the review indicates that changes are needed, it is taken up
for revision. Users of Indian Standards should ascertain that they are in possession of the latest

P’

amendments or edition by referring to the latest issue of ’51S Catalogue’ and ‘Standards: Monthly IL

Additions’.
,,

This ,naian Standard has been developed from Dot: No. ETD 18 (5685).
i?

Amendments Issued Since Publication

Amendment No. Date of Issue Texi Affected

——-

BUREAU OF INDIAN STANDARDS
Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 23230131,23233375,2323 9402 Website: www.bis.org. in

Regional Offices: Telephones

Central :

Eastern :

Northern :

Southern :

Western :

Manak Bhavan, 9 Bahadur Shah Zafar Marg
{

23237617
NEW DELHI 110002 23233841

1/14, C.I.T. Scheme Vll M, V.I.P. Road, Kankurgachi

{

23378499,23378561
KOLKATA 703054 23378626,23379120

SCO 335-336, Sector 34-A, CHAND!GARH 160022

{

2603843
2609285

C.I.T. Campus, IV Cross Road, CHENNAI 600113
{

22541216, 22541442
22542519,22542315

Manakalaya, E9 MlDC, Marol, Andheri (East) ~ 28329295,28327858
MUMBAI 400093 t 28327891,28327892

Branches: AHMEDABAD. BANGALORE. BHOPAL. BHUBANESHWAR. COIMBATORE. FARIDABAD.
GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR. LUCKNOW. NAGPUR.
PARWANOO. PATNA. PUNE. RAJKOT. THIRUVANANTHAPURAM. VISAKHAPATNAM.

.

4

i

PRINTED BY THE GENERAL MANAGER, GOVT. OF INDIA PRESS, NASHIK-422 006

