

 А इंटरनेट

Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.
"जानने का अधिकार, जीने का अधिकार"
Mazdoor Kisan Shakti Sangathan
"The Right to Information, The Right to Live"
"पुराने को छोड नये के तरफ" Jawaharlal Nehru "Step Out From the Old to the New"

IS/IEC 60534-2-1 (1998): Industrial-Process Control Valves, Part 2: Flow Capacity, Section 1: Sizing Equations for Fluid Flow Under Installed Conditions [ETD 18: Industrial Process Measurement and Control]

"ज्ञान से एक नये भारत का निर्माण" Satyanarayan Gangaram Pitroda "Invent a New India Using Knowledge"
"ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता है" Bharṭhari-Nitisáakam
"Knowledge is such a treasure which cannot be stolen"

BLANK PAGE

भारतीय मानक
 औद्योगिक-प्रक्रम नियंत्रण वाल्व

भाग 2 प्रवाह क्षमता
अनुभाग 1 संस्थापित स्थिति में तरल प्रवाह के साइजिंग के समीकरण

Indian Standard
 INDUSTRIAL-PROCESS CONTROL VALVES

PART 2 FLOW CAPACITY
Section 1 Sizing Equations for Fluid Flow Under Installed Conditions

ICS 23.060.40; 25.040.40

NATIONAL FOREWORD

This Indian Standard (Part 2/Sec 1) which is identical with IEC 60534-2-1: 1998 'Industrial-process control valves - Part 2-1: Flow capacity - Sizing equations for fluid flow under installed conditions' issued by the International Electrotechnical Commission (IEC) was adopted by the Bureau of Indian Standards on the recommendation of the Industrial Process Measurement and Control Sectional Committee and approval of the Electrotechnical Division Council.

This standard supersedes IS 10189 (Part 2/Sec 1) : 1992 'Industrial process control valves: Part 2 Flow capacity, Section 1 Sizing equations for incompressible fluid flow under installed conditions'.

The text of IEC Standard has been approved as suitable for publication as an Indian Standard without deviations. Certain conventions are, however, not identical to those used in Indian Standards. Attention is particularly drawn to the following:
a) Wherever the words 'International Standard' appear referring to this standard, they should be read as 'Indian Standard'.
b) Comma (,) has been used as a decimal marker, while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

In this adopted standard, reference appears to certain International Standards for which Indian Standards also exist. The corresponding Indian Standards, which are to be substituted in their respective places, are listed below along with their degree of equivalence for the editions indicated:

International Standard

IEC 60534-1 : 1987 Industrial-proress control valves - Part 1: Control valve terminology and general considerations

Corresponding Indian Standard

ISIEC 60534-1 : 1987 Industrial-process control valves: Part 1 Control valve terminology and general considerations

IS/IEC 60534-2-3 : 1997 Industrialprocess control valves: Part 2 Flow capacity, Section 3 Test procedures

Degree of Equivalence

Identical
do

IEC 60534-2-3 : 1997 Industrial-process control valves - Part 2: Flow capacity Section 3: Test procedures

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS $2: 1960$ 'Rules for rounding off numerical values (revised)'. The number of significant places retained in the rounded off value should be same as that of the specified value in this standard.

Indian Standard

INDUSTRIAL-PROCESS CONTROL VALVES

PART 2 FLOW CAPACITY

Section 1 Sizing Equations for Fluid Flow Under Installed Conditions

1 Scope

This part of IEC 60534 includes equations for predicting the flow of compressible and incompressible fluids through control valves.

The equations for incompressible flow are based on standard hydrodynamic equations for Newtonian incompressible fluids. They are not intended for use when non-Newtonian fluids. fluid mixtures, slurries, or liquid-solid conveyance systems are encountered.

At very low ratios of pressure differential to absolute inlet pressure ($\Lambda \rho / p$.) compressible fluids behave similarly to incompressible fluids. Under such conditions, the sizing equations for compressible flow can be traced to the standard hydrodynamic equations for Newtonian incompressible fluids. However, increasing values of $\Delta p / p$, result in compressiblity effects which require that the basic equations be modified by appropriate correction factors. The equations for compressible fluids are for use with gas or vapour and are not intended for use with multiphase streams such as gas-liquid, vapour-liquid or gas-solid mixtures.

For compressible fluid applications, this part of IEC 60534 is valid for valves with $x_{T} \leq 0,84$ (see table 2). For vaives with $x_{\top}>0,84$ (e.g. some muitistage vaives), greater inaccuracy of flow prediction can be expected.

Reasonable accuracy can only be maintained for control valves if $K_{\mathrm{v}} / d^{2}<0.04$ ($C_{\mathrm{v}} / Q^{R}<0.047$).

2 Normative references

The following normative documents contain provisions which, through reference in this text. constitute provisions of this part of IEC 60534. At the time of publication, the editions indicated were valid. All normative documents are subject to revision, and parties to agreements based on this part of IEC 60534 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

IEC 60534-1:1987, Industrial-process control valves - Part 1: Control vaive terminology and general considerations

IEC 60534-2-3:1997, Industrial-process control valves - Part 2: Flow capacity - Section 3: Test procedures

3 Definitions

For the purpose of this part of IEC 60534, definitions given in IEC 60534-1 apply with the addition of the following:

3.1

valve style modifier F_{d}

The ratio of the hydraulic diameter of a single flow passage to the diameter of a circular orifice, the area of which is equivalent to the sum of areas of all identical flow passages at a given travel. It should be stated by the manufacturer as a function of travel. See annex A.

4 Installation

In many industrial applications, reducers or other fittings are attached to the control valves. The effect of these types of fittings on the nominal flow coefficient of the control vaive can be significant. A correction factor is introduced to account for this effect. Additional factors are introduced to take account of the fluid property characteristics that influence the flow capacity of a control value.

In sizing control valves, using the relationships presented herein, the flow coefficients calculated are assumed to include all head losses between points A and B, as shown in figure 1 .

[^0]Figure 1 - Reference pipe section for sizing

5 Symbols

Symbol	Description	Unit
C	Fou coefticient $(K, C$)	vacous isee (C 60534. (see mote 4
C	Assumed liow coetic ent tor terat ve pursuses	Various (see EC 60p.9. isee mote A:
a	Nomina valve size	mm
D	interna diameter ot the piping	mm
D.	Internal diameter of upstream piping	mm
D_{2}	Interna diameter of oownsteam piping	m
D.	Orifice diamete:	mer
F	Valve siyle modier (see annex A)	* (see mote 4)
F -	Liquad critical pressure ratio tactor	!
F	Liquid pressure recovery tactor of a contro vave wimsut attached fitirgs	* (see note 4)
$F=$	Combned liquid pressure ecovery factor ano pping geometry facior of a contro vave wim antached'thngs	, ste rote 4
F_{p}	Piping geometry factor	'
F_{H}	Reynolds number factor	,
F.	Specific heat ratuo factor	,
M	Molecular mass of tiowng tlud	kgemos
N	Numerical constants (see table ${ }^{\text {) }}$)	Varcus isec note ${ }^{\text {l }}$
ρ.	:ne: absolute static pressure measured at doint A (see tigure :)	* Pa or bar (see no:e 2)
ρ	Ou!!et asscluie staic pressure measuted al dorl o (see ligure i)	* Pa or bat
P_{c}	Absolvie thermodynamic cilica pressure	Ma of bat
p	Reduced pressure ($0 . / \rho_{C}$)	-
0.	Absolute vapour pressure of the liquid at inlet temperature	- Da or dar
10	Differential pressure ofiween upstream anc downstream pressure taps (μ - μ_{2})	ma or bat
0	Voumetric flow rale isee note 5)	m m
Re,	Valve Aeynolas numbe?	*
T	inct absolute temperature	k
7.	Absolute thermodynamic crinca temperaiure	\times
\because	Peduced temperature (T.it)	*
i_{5}	Absolute reterence temperalure for standara cubic metre	k
w	Mass llow rate	*gh
*	Ratio of pressure differential to intet absolute pressure (topio.	,
x	Pressure differential ratio factor of a contro vaive without attacheo thtings at choked flow	\% isee note 4)
$x-\%$	Pressure differentia! rato facto of a controi vave with attached fitings a: choked flow	- (see note 4)
r	Expansion factor	,
2	Compresstity tacto:	i
,	K:nemaic viscosity	- see mote 3
\therefore	Jensity of tulo at p. and T.	Mgirs
\cdots		*
\because	Speoific neal ratio	:

ζ	Velocity head loss coefficient of a reducer, expander or other fitting atfached to a control valve or valve trim	1
ζ	Upstream velocity head loss coefficient of fitting	
ζ_{2}	Downstream velocity head loss coefficient of fitting	1
ζ_{8}.	nlet Bernoulli coefficient	1
ζ_{82}	Outiet Bernoulli coefficient	1

NOTE 1 - To determine the units for the numerical constants, dimensional analysis may be performed on the appropriate equations using the units given in table 1.
NOTE 2-1 bar $=10^{2} \mathrm{kPa}=10^{5} \mathrm{~Pa}$
NOTE 3-1 centistoke $=10^{-6} \mathrm{~m}^{2} / \mathrm{s}$
NOTE 4 - These values are travel-related and should be stated by the manufacturer.
NOTE 5 - Volumetric flow rates in cubic metres per hour, identified by the symbol Q, refer to standard conditions The standard cubic metre is taken at $1013,25 \mathrm{mbar}$ and either 273 K or 288 K (see table 1).

6 Sizing equations for incompressible fluids

The equations listed below identify the relationships between flow rates, flow coefficients, related installation factors, and pertinent service conditions for control valves handling incompressible fluids. Flow coefficients may be calculated using the appropriate equation selected from the ones given below. A sizing flow chart for incompressible fluids is given in annex B.

6.1 Turbulent flow

The equations for the flow rate of a Newtonian liquid through a control valve when operating under non-choked flow conditions are derived from the basic formula as given in IEC 60534-1.

6.1.1 Non-choked turbulent flow

6.1.1.1 Non-choked turbulent flow without attached fittings

$\left[\right.$ Applicable if $\left.\Delta \rho<F_{2}^{2}\left(\rho_{1}-F_{F} \times p_{v}\right)\right]$

The flow coefficient shall be determined by

$$
\begin{equation*}
C=\frac{Q}{N_{1}} \sqrt{\frac{\rho_{1} / \rho_{0}}{\Delta \rho}} \tag{1}
\end{equation*}
$$

NOTE ${ }^{1}$ - The numerical constant N, depends on the units used in the general sizing equation and the type of flow coetficient K_{v} or C_{v}

NOTE 2 - An example of sizing a valve with non-choked turbulent flow without attached fittings is given in annex D .

6.1.1.2 Non-choked turbulent flow with attached fittings

Applicable if $\left.\Delta p<\left[\left(F_{p} / F_{p}\right)^{2}\left(\rho_{1}-F_{F} \times p_{v}\right)\right]\right\}$
The fiow coefficient shall be determined as follows:

$$
\begin{equation*}
C=\frac{Q}{N_{1} F_{p}} \sqrt{\frac{\rho_{1} / \rho_{0}}{\Delta p}} \tag{2}
\end{equation*}
$$

NOTE - Peter to 31 for the piping geometry facior F_{p}.

6.1.2 Choked turbulent flow

The maximum rate at which flow will pass through a control valve at choked flow conditions shall be calculated from the foliowing equations

6.1.2.1 Choked turbulent flow without attached fittings

$\left[\right.$ Applicable if $\left.\Delta p \geq F^{2}\left(p_{1}-F_{F} \times p_{v}\right)\right]$
The flow coefficient shall be determined as 'ollows

$$
\begin{equation*}
c=\frac{0}{N \cdot f_{L}} \sqrt{\frac{\rho_{1} / \rho_{0}}{\rho_{1}-F_{F} \times p_{v}}} \tag{3}
\end{equation*}
$$

$N O^{\top} E$ - An example of sizing a valve with choked flow whout attached fittings is given n annex ∂

6.1.2.2 Choked turbulent flow with attached fittings

Applicable if $\Delta p \geq\left(\sum_{\mathrm{L}} / F_{p}\right)^{2}\left(p,-F_{F} \times p_{\mathrm{v}}\right)$
The following equation shall be used to calculate the flow coefficient.

$$
\begin{equation*}
C=\frac{Q}{N_{1} \digamma_{p} p} \sqrt{\frac{\rho_{1} / \rho_{0}}{\rho_{1} F_{F} \times p_{v}}} \tag{4}
\end{equation*}
$$

6.2 Non-turbulent (laminar and transitional) flow

The equations for the flow rate of a Newtonian liquid through a control valve when operating under non-turbulent flow conditions are derived from the basic formula as given in IEC 60534-1 This equation is applicable if $R e_{\mathrm{v}}<10000$ (see equation (28)).

6.2.1 Non-turbulent flow without attached fittings

The flow coefficient shall be calculated as follows

$$
\begin{equation*}
C=\frac{Q}{N_{1} F_{R}} \sqrt{\frac{\rho_{1} / \rho_{0}}{\Lambda P}} \tag{5}
\end{equation*}
$$

6.2.2 Non-turbulent flow with attached fittings

For non-turbulent flow, the effect of close-coupled reducers or other flow disturbing fiftings is unknown. While there is no information on the laminar or transitional flow behaviour of control valves installed between pipe reducers, the user of such valves is advised to utilize the appropriate equations for line-sized valves in the calculation of the F_{Q} factor. This should result in conservative flow coefficients since additional furbulence created by reducers and expanders will further delay the onset of laminar flow. Therefore, it will tend to increase the respective F_{R} factor for a given valve Reynolds number

7 Sizing equations for compressible fluids

The equations listed below identify the relationships between flow rates, flow coefficients, related installation factors, and pertinent service conditions for control valves handling compressible fluids. Flow rates for compressible fluids may be encountered in either mass or volume units and thus equations are necessary to handle both situations. Flow coefficients may be calculated using the appropriate equations selected from the following. A sizing flow chart for compressible fluids is given in annex B.

7.1 Turbulent flow

7.1.1 Non-choked turbulent flow

7.1.1.1 Non-choked turbulent flow without attached fittings

$\left[\right.$ Applicable if $\left.x<F_{Y} x_{T}\right]$

The flow coefficient shall be calculated using one of the following equations:

$$
\begin{align*}
& C=\frac{W}{N_{6} Y \sqrt{x p_{1} \rho_{1}}} \tag{6}\\
& C=\frac{W}{N_{8} \rho_{1} Y} \sqrt{\frac{T_{1} Z}{x M}} \tag{7}\\
& C=\frac{Q}{N_{8} \rho_{1} Y} \sqrt{\frac{M T_{1} Z}{x}} \tag{8}
\end{align*}
$$

NOTE 1 - Reter to 8.5 for details of the expansion factor Y.
NOTE 2 - See annex C for values of M.

7.1.1.2 Non-choked turbulent flow with attached fittings

[Applicable if $x<F_{\gamma} x_{T P}$]
The flow coefficient shall be determined from one of the following equations:

$$
\begin{align*}
& C=\frac{W}{N_{6} F_{\mathrm{p}} Y \sqrt{x p_{1} \rho_{1}}} \tag{9}\\
& C=\frac{W}{N_{8} F_{\mathrm{p}} p_{1} Y} \sqrt{\frac{T_{1} Z}{x M}} \tag{10}\\
& C=\frac{Q}{N_{\mathrm{g}} F_{\mathrm{p}} p_{1} Y} \sqrt{\frac{M T_{1} Z}{x}} \tag{11}
\end{align*}
$$

NOTE: - Reter to 8 , tor the piping geometry factor F_{p}.
$N O^{\top} \equiv 2$ - Ar examoe of sizng a valve with non-choked turbulent flow with attached fittings is given in annex D .

7.1.2 Choked turbulent flow

The maximum rate at which flow will pass through a control valve at choked flow conditions
shall be calculated as follows:

7.1.2.1 Choked turbulent flow without attached fittings

[Applicable if $\left.x \geq F_{\gamma} x_{\top}\right]$

The flow coefficient shall be calculated from one of the toilowing equations

$$
\begin{align*}
& C=\frac{W}{0,667 N_{6} \sqrt{F_{\gamma} x_{\top} p^{\prime} p_{9}}} \tag{12}\\
& C=\frac{W}{0.667 N_{8} p_{1}} \sqrt{\frac{T \cdot Z}{F_{\gamma} x-M}} \tag{13}\\
& C=\frac{Q}{0.667 N_{9} p_{1}} \sqrt{\frac{M T \cdot Z}{F_{\gamma} x_{Y}}} \tag{14}
\end{align*}
$$

7.1.2.2 Choked turbulent flow with attached fittings

[Applicable if $\left.x \geq F_{\gamma} x_{T P}\right]$

The flow coefficient shall be determined using one of the following equations

$$
\begin{align*}
& C=\frac{W}{0,667 N_{6} F_{\mathrm{p}} \sqrt{F_{\gamma} x_{T P} p_{1} \rho_{1}}} \tag{15}\\
& C=\frac{W}{0,667 N_{8} F_{\mathrm{p}} p_{1}} \sqrt{\frac{1 \cdot \zeta}{F_{\gamma} x_{T P} M}} \tag{16}\\
& C=\frac{Q}{0,667 N_{9} F_{\mathrm{p}} p_{1}} \sqrt{\frac{M T_{1} Z}{F_{\gamma} x_{T P}}} \tag{17}
\end{align*}
$$

7.2 Non-turbulent (laminar and transitional) flow

The equations for the flow rate of a Newtonian fluid through a controt valve when operating under non-turbulent flow conditions are derived from the basic formula as given in IEC 60534.1 These equations are applicable if $R e_{\mathrm{v}}<10000$ (see equation (28)) in this subclause density correction of the gas is given by $\left(p_{1}+p_{2}\right) / 2$ due to non-isentropic expansion

7.2.1 Non-turbulent flow without attached fittings

The flow coefficient shall be calculated from one of the following equations

$$
\begin{gather*}
C=\frac{W}{N_{27} F_{\mathrm{R}}} \sqrt{\frac{T_{1}}{\Delta p\left(p_{1}+\rho_{2}\right) M}} \tag{18}\\
C=\frac{Q}{N_{22} F_{\mathrm{R}}} \sqrt{\frac{M T_{1}}{\Delta p\left(p_{1}+p_{2}\right)}} \tag{19}
\end{gather*}
$$

NOTE - An example of sizing a valve with sma:l fiow trim is given in annex D

7.2.2 Non-turbulent flow with attached fittings

For non-turbulent flow, the effect of close-coupled reducers or other flow-disturbing fittings is unknown. While there is no information on the laminar or transitional flow behaviour of control vaives installed between pipe reducers, the user of such valves is advised to utilize the appropriate equations for line-sized valves in the calculation of the F_{R} factor. This should result in conservative flow coefficients since additional turbulence created by reducers and expanders will further delay the onset of laminar flow. Therefore, it will tend to increase the respective F_{R} factor for a given valve Reynolds number.

8 Determination of correction factors

8.1 Piping geometry factor $\boldsymbol{F}_{\mathbf{P}}$

The piping geometry factor F_{p} is necessary to account for fittings attached upstream and/or downstream to a control valve body. The F_{P} factor is the ratio of the flow rate through a control valve installed with attached fittings to the flow rate that would result if the control valve was installed without attached fittings and tested under identical conditions which will not produce choked flow in either installation (see figure 1). To meet the accuracy of the F_{P} factor of $\pm 5 \%$, the F_{p} factor shall be determined by test in accordance with IEC 60534-2-3.

When estimated values are permissible, the following equation shall be used:

$$
\begin{equation*}
F_{\mathrm{p}}=\frac{1}{\sqrt{1+\frac{\Sigma \zeta}{N_{2}}\left(\frac{C_{1}}{d^{2}}\right)^{2}}} \tag{20}
\end{equation*}
$$

In this equation, the factor $\Sigma \zeta$ is the algebraic sum of all of the effective velocity head loss coefficients of all fittings attached to the control valve. The velocity head loss coefficient of the control valve itself is not included.

$$
\begin{equation*}
\Sigma \zeta=\zeta_{1}+\zeta_{2}+\zeta_{\mathrm{B} 1}-\zeta_{\mathrm{B} 2} \tag{21}
\end{equation*}
$$

In cases where the piping diameters approaching and leaving the control valve are different, the ζ_{B} coelficients are calculated as follows:

$$
\begin{equation*}
\zeta_{B}=1-\left(\frac{d}{D}\right)^{4} \tag{22}
\end{equation*}
$$

If the inlet and outlet fittings are short-length, commercially available, concentric reducers, the ζ_{1} and ζ_{2} coefficients may be approximated as follows:

Inlet reducer:

$$
\begin{equation*}
\zeta_{1}=0,5\left[1-\left(\frac{d}{D_{1}}\right)^{2}\right]^{2} \tag{23}
\end{equation*}
$$

Outlet reducer (expander):

$$
\begin{equation*}
\zeta_{2}=1,0\left[1-\left(\frac{d}{D_{2}}\right)^{2}\right]^{2} \tag{24}
\end{equation*}
$$

Inlet and outlet reducers of equal size: $\quad \zeta_{1}+\zeta_{2}=1,5\left[1-\left(\frac{d}{D}\right)^{2}\right]^{2}$

The F_{p} values calculated with the above ζ factors generally lead to the selection of valve capacities slightly larger than required. This calculation requires teration. Proceed by catculating the flow coefficient C for non-choked turbulent flow

NOTE - Cnoked tlow equations and equations nevolving F_{μ} are not applicable
Next, establisn C_{i} as foliows:

$$
\begin{equation*}
C_{1}=1,3 \mathrm{C} \tag{26}
\end{equation*}
$$

Using C_{i} from equation (26), determine F_{p} from equation (20) If both enos of the valve are the same size, F_{P} may instead be determined from figure 2. Then, determine if

$$
\begin{equation*}
\frac{C}{F_{p}} \leq C_{1} \tag{27}
\end{equation*}
$$

If the condition of equation (27) is satisfied. then use the C esiablisted from equation (26). If the condition of equation (27) is not met, then repeat the above procedure by again increasing C_{1} by 30%. This may require several iterations untli the condition required in: equation (27) is met An teration method more sultable for computers can be found in annex B

For graphical approximations of F_{p}, refer to figures $2 a$ and $2 b$.

8.2 Reynolds number factor F_{R}

The Reynolds number factor F_{R} is required when non-turbulent fiow conditions are established through a control valve because of a low pressure differential, a high viscosity, a very small flow coefficient, or a combination thereof.

The F_{R} factor is determined by dividing the flow rate when non-turbulent flow conditions exis: by the flow rate measured in the same installation under turbulent conditions

Tests show that F_{R} can be determined from the curves given in figure 3 using a valve Reynolds number calculated from the following equation.

$$
\begin{equation*}
R e_{v}=\frac{N_{4} F_{\mathrm{d}} Q}{v \sqrt{C_{1} F_{2}}} \frac{F^{2} C^{2}}{N_{2} D^{4}}+1 \tag{28}
\end{equation*}
$$

This calculation will require iteration. Proceed by calculating the tow coetfcient C for turbulen: flow. The valve styie modifier F_{d} converts the geometry of the orifice(s) to an equivalent circular single flow passage. See table 2 for typical values and annex A for details. To meet a deviation of $\pm 5 \%$ for F_{d}, the F_{d} factor shall be determined by test in accordance wit IEC 60534-2-3.

NOTE - Equations involving F_{F}, are not applicabie
Next. establish $C_{\text {, as per equation (26) }}$

Apply C_{1} as per equation (26) and determinc Fp from equations (30) and (31) for full size trims or equations (32) and (33) for reduced trims. In either case. using the lower of the two Fa values, determine if

$$
\begin{equation*}
\frac{C}{F_{R}} \leq C \tag{29}
\end{equation*}
$$

If the condition of equation (29) is satisfied, then use the C_{i} established from equation (26). If the condition of equation (29) is not met, then repeat the above procedure by again increasing C_{1} by 30%. This may require several iterations until the condition required in equation (29) is met.

For full size trim where $C_{i} / d^{2} \geq 0,016 N_{18}$ and $R e_{V} \geq 10$, calculate F_{R} from the following equations:

$$
\begin{equation*}
F_{\mathrm{R}}=1+\left(\frac{0,33 \tilde{K}^{1 / 2}}{n_{\mathrm{f}}^{1 / 4}}\right) \log _{10}\left(\frac{R e_{\mathrm{V}}}{10000}\right) \tag{30}
\end{equation*}
$$

for the transitional flow regime,
where

$$
\begin{equation*}
n_{4}=\frac{N_{2}}{\left(\frac{C_{i}}{d^{2}}\right)^{2}} . \tag{30a}
\end{equation*}
$$

or

$$
\begin{equation*}
F_{R}=\frac{0,026}{斤} \sqrt{n_{1} R Q_{2}} \quad: \quad \text { (not to exceed } F_{R}=1 \text {) } \tag{31}
\end{equation*}
$$

for the laminar flow regime.
NOTE 1 - Use the lower value of F_{R} from equations (30) and (31). If $R e_{\mathrm{v}}$ < 10 , use only equation (31).
NOTE 2 - Equation (31) is applicable to fully developed laminar flow (straignt iines in figure 3). The reiationships expressed in equations (30) and (31) are based on test data with valves at rated travel and may not be fully accurate at lower valve travels
NOTE 3 - In equations (30a) and (31), C./af must not exceed 0,04 when K_{v} is used or 0,047 when C_{v} is used.
For reduced trim valves where $C_{i} / \mathscr{R}^{\mathbb{R}}$ at rated travel is less than $0,016 N_{18}$ and $R e v \geq 10$, calculate F_{R} from the following equations:

$$
\begin{equation*}
F_{A}=1+\left(\frac{0,33 F^{1 / 2}}{r_{2}^{1 / 4}}\right) \log _{10}\left(\frac{R e_{v}}{10000}\right) \tag{32}
\end{equation*}
$$

for the transitional flow regime,
where

$$
\begin{equation*}
n_{2}=1+N_{33}\left(\frac{C_{1}}{d^{2}}\right)^{1 / 2} \tag{32a}
\end{equation*}
$$

or

$$
\begin{equation*}
F_{R}=\frac{0,026}{I_{L}} \sqrt{n_{2} R e_{v}} \quad \text { (not to exceed } F_{R}=1 \text {) } \tag{33}
\end{equation*}
$$

for the laminar flow regime.
NOTE : - Seiect the lowest value from equations (32) and (33). If Rev < 10, use oniy equation (33).
NOTE 2 - Equation (33) is applicable to fully developed laminar flow (straight lines in figure 3).

8.3 Liquid pressure recovery factors F_{L} or $F_{L p}$

8.3.1 Liquid pressure recovery factor without attached fittings F_{L}

F_{L} is the liquid pressure recovery factor of the vaive without attached fittings. This factor accounts for the influence of the valve internal geometry on the valve capacity at choked flow It is defined as the ratio of the actual maximum fiow rate under choked flow conditions to a theoretical, non-choked flow rate which would be calculated it the pressure differential used was the difference between the valve inlet pressure and the apparent vena contracta pressure at choked flow conditions. The factor $F_{\text {- may }}$ be determined from tests in accordance with IEC 60534-2-3. Typical values of F_{L} versus percent of rated fiow coefficient are shown in figure 4

8.3.2 Combined liquid pressure recovery factor and piping geometry factor with attached fittings $F_{\text {LP }}$

$F_{L p}$ is the combined liquid pressure recovery factor and piping geometry factor for a control valve with attached fittings. It is obtained in the same manner as F_{i}.

To meet a deviation of $\pm 5 \%$!or $F_{i p}$. $F_{\text {Lp }}$ shat: be delermoned by testing When estimated values are permissible. the following equation shall be used:

$$
\begin{equation*}
F_{\mathrm{LP}}=\frac{\kappa}{\sqrt{1+\frac{\hbar^{2}}{N_{2}}\left(25, c^{2} d^{2}\right.}} \tag{34}
\end{equation*}
$$

Here $\Sigma \zeta_{1}$ is the velocity head loss coefficient. $\Sigma_{1}+\Sigma_{B}$. of the fitting attached upstream of the valve as measured between the upstream pressure tap and the control vaive body iniet

8.4 Liquid critical pressure ratio factor F_{F}

F_{F} is the liquid critical pressure ratio factor. This factor is the ratio of the apparent vena coniracta pressure at choked flow conditions to the vapour pressure of the liquid at inlet temperature. At vapour pressures near cero, this factor is 0.96 .

Values of F_{F} may be determined from the curve in figure 5 or approximated from the following equation:

$$
\begin{equation*}
f_{\mathrm{F}}=0,96-0,28 \sqrt{\frac{p_{\mathrm{v}}}{\rho_{\mathrm{c}}}} \tag{35}
\end{equation*}
$$

8.5 Expansion facior Y

The expansion factor Y accounts for the change in density as the fluid passes from the valve inlet to the vena contracta (the location just downstream of the orifice where the jet stream area is a minimum). It also accounts for the change in the vena contracta area as the pressure differential is varied.

Theoretically, Y is affected by all of the following
a) ratio of port area tc body inlet area;
b) shape of the flow path;
c) pressure differential ratio x,
d) Reynolds number.
e) specific heat ratic $\%$

The influence of items a), b), c), and e) is accounted for by the pressure differential ratio factor x_{T}, which may be established by air test and which is discussed in 8.6.1.

The Reynolds number is the ratio of inertial to viscous forces at the control valve orifice. In the case of compressible flow, its value is beyond the range of influence since turbulent flow almost always exists.

The pressure differential ratio x_{T} is influenced by the specific heat ratio of the fluid.
Y may be calculated using equation (36).

$$
\begin{equation*}
y=1-\frac{x}{3 F_{\gamma} x_{T}} \tag{36}
\end{equation*}
$$

The value of x for calculation purposes shall not exceed $F_{\gamma} x_{\top}$. If $x>F_{\gamma} x_{\top}$, then the flow becomes choked and $Y=0,667$. See 8.6 and 8.7 for information on \boldsymbol{x}, x_{\top} and F_{γ}.

8.6 Pressure differential ratio factor $\boldsymbol{x}_{\boldsymbol{T}}$ or $\boldsymbol{x}_{\boldsymbol{T} P}$

8.6.1 Pressure differential ratio factor without fittings $\mathbf{X}_{\boldsymbol{T}}$

x_{T} is the pressure differential ratio factor of a control valve installed without reducers or other fittings. If the inlet pressure p_{1} is held constant and the outlet pressure p_{2} is progressively lowered, the mass flow rate through a valve will increase to a maximum limit, a condition referred to as choked flow: Further reductions in p_{2} will produce no further increase in flow rate.

This limit is reached when the pressure differential x reaches a value of $F_{\gamma} x_{T}$. The limiting value of x is defined as the critical differential pressure ratio. The value of x used in any of the sizing equations and in the relationship for Y (equation (36) shall be held to this limit even though the actual pressure differential ratio is greater. Thus, the numerical value of Y may range from 0,667 , when $x=F_{\gamma} x_{T}$, to 1,0 for very low differential pressures.

The values of x_{T} may be established by air test. The test procedure for this determination is covered in IEC 60534-2-3.

NOTE - Representative values of x_{y} for several types of control valves with full size trim and at full rated openings are given in tabie 2 Caution should be exercised in the use of this information. When precise values are required, they should be obtained by test.

8.6.2 Pressure differential ratio factor with attached fittings \mathbf{x}_{TP}

If a control valve is installed with attached fittings, the value of x_{\top} will be affected.
To meet a deviation of $\pm 5 \%$ for $x_{T P}$, the valve and attached fittings shall be tested as a unit. When estimated values are permissible, the following equation shall be used:

$$
\begin{equation*}
x_{T P}=\frac{\frac{x_{T}}{F_{p}^{2}}}{1+\frac{x_{T} \zeta_{i}}{N_{5}}\left(\frac{C_{i}}{d^{2}}\right)^{2}} \tag{37}
\end{equation*}
$$

NOTE - Values for N_{5} are given : n table 1
In the above relationship. \boldsymbol{x}_{T} is the pressure differential ratio factor for a control valve installed without reducers or other fittings. ζ_{i} is the sum of the inlet velocity head loss coefficients $\left(\zeta_{1}+\zeta_{3}\right)$ of the reducer or other fitting attached to the inlet face of the valve.

If the inlet fitting is a short-length, commercially avallable reducer, the value of 5 may be estimated using equation (23).

8.7 Specific heat ratio factor $\boldsymbol{F}_{\boldsymbol{\gamma}}$

The factor X_{Y} is based on air near atmospheric pressure as the flowing fluid with a specific heat iatio of 1.40 . It the specific heat ratio for the flowing fluid is not 1.40 the tacto: F_{y} is used to adjust x_{T}. Use the following equation to calculate the specific heat ratio factor

$$
\begin{equation*}
F_{i}=\frac{\gamma}{1,40} \tag{38}
\end{equation*}
$$

NOTE - See annex C tor vatues of : aro F.

8.8 Compressibility factor Z

Several of the sizing equations do not contain a term for the actual densily ot the fluic a: upstream conditions. Instead. the density is inferred from the inlet pressure and temperature based on the laws of ideal gases. Under some conditions :eal gas benaviour can deviate markedily from the ideal. In these cases. the compressibllty fartor 7 shall be introduced to compensate for the discrepancy. Z is a function of both the reduced pressure and reduced temperature (see appropriate reference books to determine Z) Reduced pressure p. is detined as the ratio of the actual inlet absolute pressure to the absolute thermodynamic critical pressure for the fluid in question. The reduced temperature T, is detined similary That is

$$
\begin{gather*}
\rho_{\mathrm{r}}=\frac{\rho_{\mathrm{i}}}{\rho_{\mathrm{c}}} \tag{39}\\
T_{\mathrm{i}}-\frac{T_{\mathrm{i}}}{T_{\mathrm{c}}} \tag{4ज}
\end{gather*}
$$

NOTE - Sce annex C for vatues of P, and T_{c}

Table 1 - Numerical constants N

Constant	Flow coafficient C		Formulae unit						
	K_{v}	c_{v}	W	0	$p \times \Delta p$	ρ	T	d, D	v
N,	$1 \times 10^{-}$ 1	$\begin{aligned} & 8,65 \times 10^{-2} \\ & 8.65 \times 10^{-1} \end{aligned}$		$\begin{aligned} & m^{3 / h} \\ & m^{3 / h} \end{aligned}$	$\begin{aligned} & \mathrm{kPa} \\ & \text { bar } \end{aligned}$	$\begin{aligned} & \mathrm{kg} / \mathrm{m}^{3} \\ & \mathrm{~kg} / \mathrm{m}^{3} \end{aligned}$	-		
N_{2}	1.60×10^{-3}	$2,14 \times 10^{-3}$	-	-	-	-	-	mm	-
N_{4}	7.07×10^{-2}	7.60×10^{-2}	-	$\mathrm{m}^{3 / \mathrm{h}}$	-	-	-	-	$\mathrm{m}^{2} / \mathrm{s}$
N_{5}	1.80×10^{-3}	2.41×10^{-3}	-	-	-	-	-	mm	-
N_{6}	$\begin{gathered} 3,16 \\ 3.16 \times 10^{\circ} \end{gathered}$	$\begin{gathered} 2,73 \\ 2,73 \times 10^{\prime} \end{gathered}$	$\begin{aligned} & \mathrm{kg} / \mathrm{h} \\ & \mathrm{~kg} / \mathrm{h} \end{aligned}$	_	kPa bar	$\begin{aligned} & \mathrm{kg} / \mathrm{m}^{3} \\ & \mathrm{~kg} / \mathrm{m}^{3} \end{aligned}$	-	-	
N_{8}	$\begin{gathered} 1,10 \\ 1,10 \times 10^{2} \end{gathered}$	$\begin{aligned} & 9,48 \times 10^{-1} \\ & 9,48 \times 10^{1} \end{aligned}$	$\begin{aligned} & \mathrm{kg} / \mathrm{h} \\ & \mathrm{~kg} / \mathrm{h} \end{aligned}$		kPa bar	-	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	-	
$\begin{aligned} & N_{9} \\ & \left(t_{s}=0{ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \hline 2,46 \times 10^{1} \\ & 2,46 \times 10^{3} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2,12 \times 10^{1} \\ & 2,12 \times 10^{3} \\ & \hline \end{aligned}$		$\begin{aligned} & m^{3 / h} \\ & m^{3 / h} \end{aligned}$	kPa bar		K K	-	
N_{9} $\left(t_{s}=15^{\circ} \mathrm{C}\right)$	$\begin{aligned} & 2,60 \times 10^{1} \\ & 2,60 \times 10^{3} \end{aligned}$	$\begin{aligned} & 2.25 \times 10^{1} \\ & 2,25 \times 10^{3} \end{aligned}$	-	$\begin{aligned} & \mathrm{m}^{3 / h} \\ & \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$	$\begin{aligned} & \mathrm{kPa} \\ & \mathrm{bar} \end{aligned}$		K	-	
N_{17}	$1,05 \times 10^{-3}$	$1,21 \times 10^{-3}$	-	-	-	-	-	mm	-
N_{18}	$8,65 \times 10^{-1}$	1.00	-	-	-	-	-	mm	-
N_{19}	2.5	2.3	-	-	-	-	-	mm	-
$\begin{aligned} & N_{22} \\ & \left(t_{5}=0{ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 1,73 \times 10^{1} \\ & 1,73 \times 10^{3} \\ & \hline \end{aligned}$	$\begin{aligned} & 1,50 \times 10^{\prime} \\ & 1,50 \times 10^{3} \end{aligned}$		$\begin{aligned} & \mathrm{m}^{3 / h} \\ & \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$	$\overline{\mathrm{kPa}}$ bar		$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	-	
$\begin{aligned} & N_{22} \\ & \left(t_{2}=15^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 1,84 \times 10^{\prime} \\ & 1,84 \times 10^{3} \\ & \hline \end{aligned}$	$\begin{aligned} & 1,59 \times 10^{1} \\ & 1,59 \times 10^{3} \end{aligned}$		$\begin{aligned} & m^{3 / h} \\ & m^{3 / h} \end{aligned}$	$\begin{aligned} & \mathrm{kPa} \\ & \text { bar } \end{aligned}$		K K	-	
N_{21}	$\begin{aligned} & 7.75 \times 10^{-1} \\ & 7.75 \times 10^{-1} \end{aligned}$	$\begin{aligned} & 6,70 \times 10^{-1} \\ & 6,70 \times 10^{-1} \end{aligned}$	$\begin{aligned} & \mathrm{kg} / \mathrm{h} \\ & \mathrm{~kg} / \mathrm{h} \end{aligned}$		$\begin{aligned} & \mathrm{kPa} \\ & \text { bar } \end{aligned}$		$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K} \end{aligned}$	-	
N_{33}	$6.00 \times 10^{+}$	5.58×10^{1}	-	-	-	-	-	mm	-
NOTE - Use of the numerical constants provided in this table together with the practical metric units specified in the table will yield flow coefficients in the units in which they are defined.									

Table 2 - Typical values of valve style modifier F_{d}, liquid pressure recovery factor F_{L}, and pressure differential ratio factor $\boldsymbol{x}_{\mathrm{T}}$ at full rated travel 1)

Valve type	Trim type	Flow direction ${ }^{2 /}$	F_{L}	x_{T}	F_{0}
Giobe. single port	3 V -port plug	Open or close	0.9	070	0.48
	4 V -port plug	Open or close	09	0.70	0.41
	6 V -port plug	Open or close	0.9	0.70	030
	Contoureo plug (inear and equal percentage)	Open Close	$\begin{aligned} & 09 \\ & 08 \end{aligned}$	$\begin{aligned} & 072 \\ & 055 \end{aligned}$	$\begin{aligned} & 046 \\ & 1.00 \end{aligned}$
	60 equal diameter hole drilied cage	Outwara ${ }^{3}$ or inwara ${ }^{3}$	0.9	068	0.13
	120 equa! dameter hole arilled cage	Outward ${ }^{3 /}$ or inwara ${ }^{3}$	09	0.68	009
	Characterized cage 4-port	Outward ${ }^{3}$ inward ${ }^{3}$	$\begin{gathered} 0.9 \\ 0.85 \end{gathered}$	$\begin{aligned} & 0.75 \\ & 0.70 \end{aligned}$	$\begin{aligned} & 0.41 \\ & 0.4 \end{aligned}$
Globe, double port	Ported plug	Inlet between seats	0.9	0.75	028
	Contoured plug	Ether drection	0.85	0.70	0.32
Globe angle	Contoured plug (finear and equal percentage)	Open Close	$\begin{aligned} & 0.9 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 072 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 0.46 \\ & 1.00 \end{aligned}$
	Characterized cage 4-por:	Outward inwara ${ }^{3}$	$\begin{aligned} & 0.9 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.60 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 ; \\ & \hline \end{aligned}$
	Ventur:	Close	0.5	0.20	100
Globe, small flow trim	V-noter,	Open	0.98	0.84	0.70
	Flat seat (short travel)	Cose	0.85	0.70	030
	Taperea needle	Open	0.95	0.84	$\frac{N_{1} \sqrt{C \times F_{1}}}{D_{0}}$
Rotary	Eccentric spherical plug	Open Close	$\begin{aligned} & 0.85 \\ & 0.68 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.42 \\ & 0.42 \end{aligned}$
	Eccentric conical plug	Open Close	$\begin{aligned} & 0.77 \\ & 0.79 \end{aligned}$	$\begin{aligned} & 0.54 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$
Butterfly (centred shaft)	Swing-through (70)	Either	0.62	0.35	0.57
	Swing-through (60°)	Ether	0.70	0.42	050
	Fluted vane (70°)	Eithe:	0.67	0.38	0.30
Butterly (eccentric shaft)	Offset seat ($70{ }^{\prime}$!	Ether	0.67	0.35	057
Bal	Ful: $00 \cdot \mathrm{e}\left(70^{\circ}\right)$	Ether	0.74	0.42	0.99
	Segmented bal:	Einer	0.60	0.30	098

These values are :yoca: only actual values shal be stated by the nanufacturer

- Fiow tends tc oper o- chose tre daive 1 e dush the closure member away from or towards the seat

3) Outward means flow ir,m cente of cage to ouiside and inwaro means fiow from outside of cage to centre

NOTE 1 - Pipe diameter D is the same size at both ends of the valve (see equation (25)).
NOTE 2 - Refer to annex E for example of the use of these curves.
Figure 2a-Piping geometry factor F_{P} for $K_{\mathbf{W}} / \mathbb{Q}^{\mathbb{R}}$

NOTE 1 - Pipe diameter D is the same size at boin ends of the valve (see equation (26))
NOTE 2 - Reter to annex t tor example of the use o :nese curves
Figure 2 b - Piping geometry factor F_{p} for $\mathrm{C}_{\mathrm{v}} / \mathbb{d}^{2}$

Curve 1 is for $C / \sigma^{R}=0,016 N_{18}$
Curve 2 is for $C / \sigma^{2}=0,023 N_{18}$
Curve 3 is for $C / \sigma^{2}=0,033 N_{1 a}$
Curve 4 is for $C / \sigma^{\circ}=0,047 N_{18}$ NOTE - Curves are based on F, being approximately $1,0$.

Figure 3 - Reynolds number factor F_{R}

Figure 4 a - Double seated globe valves and cage guide globe valves (see legend)

Figure 4 b -'Butterfly valves and contoured small flow valve isee legend)

Figure 4 c - Contoured globe valves, eccentric spherical plug valves, and segmented ball valve (see legend)

Figure 4d - Eccentric conical plug valves (see legend)

Legend

, Souble seated globe valve, V-port piug

2 Ported cage guided globe valve (flow-to-open and llow-lo-close)
3 Double seated globe valve, contoured plug
4 Offsel seat buttertly valve
5 Swing-through butterfly valve
6 Contoured small fow vaive
7 Single port. equal percentage. contoured globe valve, llow-to-00en
NOTE - These values are typical only, actual values shall be stated by the manufacturer.
Figure 4 - Variation of $F_{\mathcal{L}}$ with percent of rated C

Figure 5 - Liquid critical pressure ratio factor F_{F}

Annex A
 (informative)

Derivation of valve style modifier F_{d}

All variables in this annex have been defined in this part except for the following:
$A_{0} \quad$ area of vena contracta of a single flow passage, millimetres squared;
$d_{H} \quad$ hydraulic diameter of a single flow passage, millimetres;
d_{i} inside diameter of annular flow passage (see figure A.1), millimetres;
$d_{0} \quad$ equivalent circular diameter of the total flow area, millimetres;
$D_{0} \quad$ diameter of seat orifice (see figures A. 1 and A.2), millimetres;
Iw wetted perimeter of a single flow passage, millimetres;
N_{0} number of independent and identical flow passages of a trim, dimensionless;
$\boldsymbol{\alpha} \quad$ angular rotation of closure member (see figure A.2), degrees;
β maximum angular rotation of closure member (see figure A.2), degrees;
ζ_{81} velocity of approach factor, dimensionless;
$\mu \quad$ discharge coefficient, dimensionless.
The valve style modifier F_{d}, defined as the ratio α_{H} / d_{0} at rated travel and where $C_{i} / \alpha^{\Omega}>0,016 N_{18}$, may be derived from flow tests using the following equation:

$$
\begin{equation*}
F_{\mathrm{d}}=\frac{N_{26} \vee \kappa^{2} F_{\mathrm{R}}^{2}\left(C / d^{2}\right)^{2} \sqrt{C K}}{Q\left(\frac{\digamma^{2} C^{2}}{N_{2} D^{4}}+1\right)^{1 / 4}} \tag{A.1}
\end{equation*}
$$

For valves having $C_{\mathrm{i}} / \mathbb{R}^{R} \leq 0,016 N_{18}, F_{\mathrm{d}}$ is calculated as follows:

$$
\begin{equation*}
F_{\mathrm{d}}=\frac{N_{31} v F^{2} F_{\mathrm{R}}^{2} \sqrt{C F}}{\left.Q_{1}+N_{32}\left(\frac{C}{d^{2}}\right)^{2 / 3}\right]} \tag{A.2}
\end{equation*}
$$

NOTE - Values for N_{26} and N_{37} are listed in table A
The test for determining F_{d} is covered in IEC 60534-2-3.
Alternatively, F_{d} can be calculated by the following equation:

$$
\begin{equation*}
F_{\mathrm{o}}=\frac{d_{\mathrm{p}}}{d_{0}} \tag{A.3}
\end{equation*}
$$

The hydraulic diameter d_{H} of a single flow passage is determined as follows:

$$
\begin{equation*}
d_{H}=\frac{4 A_{0}}{I_{w}} \tag{A.4}
\end{equation*}
$$

The equivalent circular diameter d_{0} of the total flow area is given by the following equation:

$$
\begin{equation*}
d_{0}=\sqrt{\frac{4 N_{0} A_{0}}{\pi}} \tag{A.5}
\end{equation*}
$$

F_{d} may be estimated with sufficient accuracy from dimensions given in manufacturers' drawings

The valve style modifier for a single-seated, parabolic valve plug (flow tending to open) (see figure A.1) may be calculated from equation (A.3).

From Darcey's equation, the area A_{0} is calculated from the following equation

$$
\begin{equation*}
A_{0}=\frac{N_{23} C F_{L}}{N_{0}} \tag{A.6}
\end{equation*}
$$

NOTE - Values for N_{23} are listed in table A :
Therefore, since $N_{0}=1$,

$$
\begin{gather*}
d_{0}=\sqrt{\frac{4 A_{0}}{\pi}} \\
=\sqrt{\frac{4 N_{23} C F}{\pi}} \tag{A7}\\
d_{4}=\frac{4 A_{0}}{I_{w}} \\
\frac{4 N_{23} C F_{L}}{\pi\left(D_{0}+d_{1}\right)} \tag{AB}
\end{gather*}
$$

From above,

$$
\begin{gather*}
F_{d}=\frac{d_{H}}{d_{0}} \tag{A.3}\\
=\frac{\left[\frac{4 N_{23} C F}{\pi\left(D_{0}+d_{1}\right)}\right]}{\sqrt{\frac{4 N_{23} C F}{\pi}}} \\
=\frac{1,13 \sqrt{N_{23} C F_{i}}}{D_{0}+d_{1}} \tag{A9}
\end{gather*}
$$

where d_{1} varies with the flow coefficient. The diameter $d_{\text {, }}$ is assumed to be equal to zero when $N_{23} C F_{\mathrm{L}}=D_{0}{ }^{2}$. At low C values, $d_{1} \approx D_{0}$; therefore.

$$
\begin{align*}
d & =D_{0}-\frac{N_{23} C F}{D_{0}} \tag{A10}\\
F_{\mathrm{d}} & =\frac{1,13 \sqrt{N_{23} C F_{\mathrm{L}}}}{2 D_{0}-\frac{N_{23} C F}{D_{\mathrm{c}}}} \tag{A1T}
\end{align*}
$$

The maximum F_{d} is 1,0 .

For swing-through butterfly valves (see figure A.2).
The effective orifice diameter is assumed to be the hydraulic diameter of one of the two jets emanating from the flow areas between the disk and valve body bore; hence $N_{0}=2$.

The flow coefficient C at choked or sonic flow conditions is given as:

$$
\begin{equation*}
N_{23} C \text { L }=\frac{0,125 \pi \quad D_{0}^{2}\left(\mu_{1}+\mu_{2}\right)\left(\frac{1-\sin \alpha}{\sin \beta}\right)}{\zeta_{\mathrm{B} 1}} \tag{A.12}
\end{equation*}
$$

Assuming the velocity of approach factor $\zeta_{\mathrm{B} 1}=1$, making $\mu_{1}=0,7$ and $\mu_{2}=0,7$ and substituting equation (A.6) into equation (A.12) yields equation (A.13).

$$
\begin{equation*}
A_{0}=\frac{0,55 D_{0}^{2}\left(\frac{1-\sin \alpha}{\sin \beta}\right)}{N_{0}} \tag{A.13}
\end{equation*}
$$

and since $\beta=90^{\circ}$ for swing-through butterfly valves,

$$
\begin{equation*}
A_{0}=\frac{0,55 D_{0}^{2}(1-\sin \alpha)}{N_{0}} \tag{A.14}
\end{equation*}
$$

However, since there are two equal flow areas in parallel,

$$
\begin{equation*}
A_{0}=0,275 D_{0}^{2}(1-\sin \alpha) \tag{A.15}
\end{equation*}
$$

and

$$
\begin{gather*}
d_{0}=\sqrt{\frac{4 A_{0} N_{0}}{\pi}} \\
=0,837 D_{0} \sqrt{1-\sin \alpha} \tag{A.16}\\
d_{H}=\frac{4 A_{0}}{0,59 \pi D_{0}} \\
=0,59 D_{0}(1-\sin \alpha) \tag{A.17}
\end{gather*}
$$

NOTE - $0,59 \pi D_{0}$ is taken as the wetted perimeter I_{w} of each semi-circle allowing for jet contraction and hub.

$$
\begin{equation*}
F_{d}=\frac{d_{H}}{d_{0}} \tag{A.3}
\end{equation*}
$$

which results in

$$
\begin{equation*}
F_{d}=0,7 \sqrt{1-\sin \alpha} \tag{A.18}
\end{equation*}
$$

Table A. 1 - Numerical constant N

Constant	Flow coefficient C		Formuiae unit		
	$K_{\mathbf{v}}$	Cv	0	d	v
N_{23}	$1,96 \times 10^{1}$	1.70×10^{1}	-	mm	-
N_{26}	$1,28 \times 10^{7}$	$9,00 \times 10^{6}$	$\mathrm{m}^{3 / h}$	mm	$\mathrm{m}^{2 / \mathrm{s}}$
N_{3}	$2,1 \times 10^{4}$	$1,9 \times 10^{4}$	$\mathrm{m}^{3 / \mathrm{h}}$	-	$\mathrm{m}^{2 / \mathrm{s}}$
N_{32}	$1,4 \times 10^{2}$	$1,27 \times 10^{2}$	-	mm	-
NOTE - Use of the numerical constant provided in this table together with the practical metric units specified in the table will yield flow coefficients in the units in which they are defined.					

Figure A. 1 - Single seated, parabolic plug (flow tending to open)

Figure A. 2 - Swing-through butterfly valve

Annex B
(informative)

Control valve sizing flow charts

B. 1 Incompressible fluids

B. 2 Compressible fluids (continued)

Annex C (informative)

Physical constants 1)

Gas or vapour	Symbol	M	7	F_{γ}	$\mathrm{p}_{\mathrm{c}}{ }^{\text {) }}$	$T_{c}{ }^{3}$
Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}$	26,04	1,30	0,929	6140	309
Air	-	28,97	1,40	1,000	3771	133
Ammonia	NH_{3}	17,03	1,32	0,943	11400	406
Argon	A	39,948	1,67	1,191	4870	151
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	78,11	1,12	0,800	4924	562
Isobutane	$\mathrm{C}_{4} \mathrm{H}_{8}$	58,12	1,10	0,784	3638	408
n-Butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	58,12	1,11	0,793	3800	425
Isobutylene	$\mathrm{C}_{4} \mathrm{H}_{8}$	56,11	1,11	0,790	4000	418
Carbon dioxide	CO_{2}	44,01	1,30	0,929	7387	304
Carbon monoxide	CO	28,01	1,40	1,000	3496	133
Chlorine	Cl_{2}	70,906	1,31	0,934	7980	417
Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	30,07	1,22	0,871	4884	305
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}$	28,05	1,22	0,871.	5040	283
Fluorine	F_{2}	18,998	1,36	0,970	5215	144
Freon 11 (trichioromonofluormethane)	$\mathrm{CCl}_{3} \mathrm{~F}$	137,37	1,14	0,811	4409	471
Freon 12 (dichlorodifluoromethane)	$\mathrm{CCl}_{2} \mathrm{~F}_{2}$	120,91	1,13	0,807	4114	385
Freon 13 (chiorotrifluoromethane)	CCIF	104,46	1,14	0,814	3869	302
Freon 22 (chlorodifluoromethane)	CHClF_{2}	80,47	1,18	0,846	4977	369
Helium	He	4,003	1.68	1.186	229	5,25
n-Heptane	$\mathrm{C}_{7} \mathrm{H}_{16}$	100,20	1.05	0,750	2736	540
Hydrogen	H_{2}	2.016	1,41	1,007	1297	33,25
Hyarogen chloride	HCl	36,46	1,41	1,007	8319	325
Hyarogen fluoride	HF	20,01	0,97	0.691	6485	481
Methane	CH_{4}	16,04	1,32	0.943	4600	191
Methyl chloride	$\mathrm{CH}_{3} \mathrm{Cl}$	50.49	1.24	0,889	6677	417
Natural gas ${ }^{4}$	-	17.74	1.27	0.907	4634	203
Neon	Ne	20,179	1,64	1.171	2726	44,45
Nitric oxide	NO	63,01	1.40	1.000	6485	180
Nitrogen	N_{2}	28,013	1.40	1,000	3394	126
Octane	$\mathrm{C}_{8} \mathrm{H}_{18}$	114.23	1.66	1.186	2513	569
Oxygen	O_{2}	32,000	1.40	1.000	5040	155
Pentane	$\mathrm{C}_{5} \mathrm{H}_{2}$	72.15	1,06	0,757	3374	470
Propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	44,10	1,15	0.821	4256	370
Propylene	$\mathrm{C}_{3} \mathrm{H}_{6}$	42,08	1.14	0.814	4600	365
Saturated steam	-	18.016	$\begin{aligned} & 1,25- \\ & 1,32^{(4)} \end{aligned}$	$\begin{aligned} & 0,893- \\ & 0,943<i \end{aligned}$	22119	647
Sulphur dioxide	SO_{2}	64.06	1,26	0,900	7822	430
Superheated steam	-	18,016	1,315	0.939	22119	647
- Constants are for fivids (except for steam) at ambent temperature and atmospheric pressu 2) Pressure units are KPa (absolute) 3) Temperature units are in k 4) Representative values: exact characteristics require knowledge of exact constituents.						

Annex D

(informative)

Examples of sizing calculations

Example 1: Incompressible flow - non-choked turbulent flow without attached fittings Process data:

Fluid:
Inlet temperature:
Density:
Vapour pressure:
Thermodynamic critical pressure:
Kinematic viscosity:
Inlet absolute pressure:
Outlet absolute pressure:
Flow rate:
Pipe size:
water
$T_{1}=363 \mathrm{~K}$
$\rho,=965,4 \mathrm{~kg} / \mathrm{m}^{3}$
$p_{\mathrm{v}}=70,1 \mathrm{kPa}$
$p_{\mathrm{c}}=22120 \mathrm{kPa}$
$v=3.26 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}$
$p_{1}=680 \mathrm{kPa}$
$\rho_{2}=220 \mathrm{kPa}$
$Q=360 \mathrm{~m}^{3} / \mathrm{h}$
$D_{1}=D_{2}=150 \mathrm{~mm}$

Valve data:

Valve style: \quad globe
Trim:
parabolic plug
Flow direction:
flow-to-open
Valve size:
$d=150 \mathrm{~mm}$
Liquid pressure recovery factor:
Valve style modifier:
$F_{L}=0.90$ (from table 2)
$F_{d}=0.46$ (from table 2)

Calculations:

$$
\begin{equation*}
F_{F}=0,96-0.28 \sqrt{\frac{p_{v}}{p_{c}}}=0,944 \tag{35}
\end{equation*}
$$

where
$p_{\mathrm{v}}=70,1 \mathrm{kPa}$;
$p_{\mathrm{c}}=22120 \mathrm{kPa}$.
Next, determine the type of flow:

$$
F^{2}\left(p_{1}-F_{F} \times p_{v}\right)=497.2 \mathrm{kPa}
$$

which is more than the differential pressure ($\Delta p=460 \mathrm{kPa}$); therefore, the flow is non-choked, and the flow coefficient C is calculated using equation (2):

$$
\begin{equation*}
C=\frac{Q}{N_{1}} \sqrt{\frac{\rho_{1} / \rho_{0}}{\Delta p}}=165 \mathrm{~m}^{3} / \mathrm{h} \text { for } K_{v} \tag{1}
\end{equation*}
$$

where
$Q=360 \mathrm{~m}^{3} / \mathrm{h}$;
$N_{1}=1 \times 10^{-1}$ from table 1;
$\rho_{1} / \rho_{0}=0,965 ;$
$\Delta \rho=460 \mathrm{kPa}$.
Next, calculate Rev:

$$
\begin{equation*}
R e_{v}=\frac{N_{4} F_{d} Q}{v \sqrt{G_{G} F}}\left[\frac{F^{2} G^{2}}{N_{2} D^{4}}+1\right]^{1 / 4}=2,967 \times 10^{6} \tag{28}
\end{equation*}
$$

where
$N_{2}=1,60 \times 10^{-3}$ from table 1 ;
$N_{4}=7,07 \times 10^{-2}$ from table 1 ;
$F_{\mathrm{d}}=0,46$;
$Q=360 \mathrm{~m}^{3} / \mathrm{h}$;
$v=3,26 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}$;
$C_{\mathrm{i}}=\mathrm{C}=K_{\mathrm{v}}=165 \mathrm{~m}^{3} / \mathrm{h}$;
$F_{L}=0,90$;
$D=150 \mathrm{~mm}$.
Since the valve Reynolds number is greater than 10000 , the flow is turbulent, and the flow coefficient C as calculated above is correct.

Example 2: Incompressible flow - choked flow without attached fittings

Process data:

Fluid:
Iniet temperature:
Density:
Vapour pressure:
Thermodynamic critical pressure:
Kinematic viscosity:
Inlet absolute pressure:
Outlet absolute pressure:
Flow rate:
Pipe size:
water
$T_{1}=363 \mathrm{~K}$
$\rho_{1}=965,4 \mathrm{~kg} / \mathrm{m}^{3}$
$p_{\mathrm{v}}=70,1 \mathrm{kPa}$
$p_{\mathrm{c}}=22120 \mathrm{kPa}$
$v=3,26 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}$
$p_{1}=680 \mathrm{kPa}$
$p_{2}=220 \mathrm{kPa}$
$Q=360 \mathrm{~m}^{3} / \mathrm{h}$
$D_{1}=D_{2}=100 \mathrm{~mm}$

Valve data:

Valve style:
Trim:
Flow direction:
Valve size:
Liquid pressure recovery factor
Valve style modifier:
ball valve
segmented ball
flow-to-open
$\alpha=100 \mathrm{~mm}$
$F_{L}=0,60$ (from table 2)
$F_{\mathrm{G}}=0.98$ (from table 2)

Calculations:

$$
\begin{equation*}
\digamma_{F}=0.96-0,28 \sqrt{\frac{p_{v}}{p_{c}}}=0,944 \tag{35}
\end{equation*}
$$

where
$p_{\mathrm{v}}=70,1 \mathrm{kPa}$;
$p_{\mathrm{c}}=22120 \mathrm{kPa}$.
Next, determine the type of flow:

$$
F_{L}^{2}\left(p_{1}-F_{F} \times p_{v}\right)=221 \mathrm{kPa}
$$

which is less than the differential pressure ($\Delta P=460 \mathrm{kPa}$); therefore, the flow is choked and the flow coefficient C is calculated using equation (3):

$$
\begin{equation*}
C=\frac{Q}{N_{1} \Omega} \sqrt{\frac{\rho_{1} / \rho_{0}}{\rho_{1}-f_{\mathrm{F}} p_{v}}} 236 \mathrm{~m}^{3} / \mathrm{h} \text { foi } K_{\mathrm{v}} \tag{3}
\end{equation*}
$$

where
$Q=360 \mathrm{~m}^{3} / \mathrm{h}$;
$N_{1}=1 \times 10^{-1}$ from table 1 ;
$F_{\mathrm{L}}=0,60$;
$\rho_{1} / \rho_{0}=0,965$;
$p_{1}=680 \mathrm{kPa}$,
$F_{F}=0,944$;
$p_{\mathrm{v}}=70,1 \mathrm{kPa}$.
Next, calculate $R e_{\mathrm{v}}$:

$$
\begin{equation*}
\left.R e_{v}=\frac{N_{4} F_{a} Q}{v \sqrt{C_{1} F_{-}}} \frac{F^{2} C_{1}^{2}}{N_{2} D^{4}}+1\right]^{-1 / 4}=6.598 \times 10^{6} \tag{28}
\end{equation*}
$$

where
$N_{2}=1,60 \times 10^{-3}$ from fable $1 ;$
$N_{4}=7,07 \times 10^{-2}$ from table 1;
$F_{\mathrm{d}}=0,98$;
$Q=360 \mathrm{~m}^{3} / \mathrm{h}$;
$v=3,26 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}$;
$C_{i}=C=K_{v}=238 \mathrm{~m}^{3} / \mathrm{h} ;$
$F_{\mathrm{L}}=0,60$;
$D=100 \mathrm{~mm}$.

Since the valve Reynolds number is greater than 10000 , the flow is turbulent and no more correction is necessary.

Example 3: Compressible flow - non-choked flow with attached fittings

Process data:

Fluid:
Inlet temperature:
Molecular mass:
Kinematic viscosity:
Specific heat ratio:
Compressibility factor:
Inlet absolute pressure:
Outiet absolute pressure:
Flow rate:
Inlet pipe size:
Outlet pipe size:
Reducers:
carbon dioxide
$T_{1}=433 \mathrm{~K}$
$M=44,01 \mathrm{~kg} / \mathrm{kmol}$
$v=1,743 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
$\gamma=1,30$
$Z=0,988$
$p_{1}=680 \mathrm{kPa}$
$p_{2}=310 \mathrm{kPa}$
$Q=3800$ standard $\mathrm{m}^{3} / \mathrm{h}$ at $101,325 \mathrm{kPa}$ and $0^{\circ} \mathrm{C}$
$D_{1}=80 \mathrm{~mm}$
$D_{2}=100 \mathrm{~mm}$
short length, concentric

Valve data:

Valve style:
Trim:
Flow direction:
Valve size:
Pressure differential ratio factor:
Liquid pressure recovery factor:
Valve style modifier:
rotary
eccentric rotary plug
flow-to-open
$d=50 \mathrm{~mm}$
$x_{T}=0,60$ (from table 2)
$F_{\mathrm{L}}=0,85$ (from table 2)
$F_{\mathrm{d}}=0,42$ (from table 2)

Calculations:

$$
\begin{equation*}
F_{\gamma}=\frac{\gamma}{1,40}=0,929 \tag{38}
\end{equation*}
$$

where
$\gamma=1.30$.
and with this:

$$
x=\frac{\Delta \rho}{\rho_{1}}=0.544
$$

which is less than $F_{\gamma} x_{T}=0,557$; therefore, the flow is non-choked and the fiow coefficient is calculated from equation (11). Next, Y is calculated from equation (36);

$$
\begin{equation*}
Y=1-\frac{x}{3 F_{Y} x_{T}}=0,674 \tag{36}
\end{equation*}
$$

where
$x=0,544$;
$F_{\gamma}=0.929$;
$x_{\top}=0,60$.

$$
\begin{equation*}
C=\frac{Q}{N_{9} F_{p} p, Y} \sqrt{\frac{M T_{1} Z}{x}}=62.7 \mathrm{~m}^{3} / \mathrm{h} \text { for } K_{v} \tag{11}
\end{equation*}
$$

where
$Q=3800 \mathrm{~m}^{3 / h}$
$N_{9}=2,46 \times 10^{1}$ for $t_{\mathrm{S}}=0^{\circ} \mathrm{C}$ from table 1
assume $F_{P}=i$
$p_{1}=680 \mathrm{kPa}$
$Y=0,674$
$M=44.01 \mathrm{~kg} / \mathrm{kmol}$
$T_{1}=433 \mathrm{~K}$
$Z=0,988$
$x-0.544$
Now, calculate $R e_{v}$ using equation '(28):

$$
\begin{equation*}
R e_{\mathrm{v}}=\frac{N_{4} F_{\mathrm{d}} Q}{v \sqrt{C_{1} F_{L}}}\left[\frac{F^{2} C_{1}^{2}}{N_{2} D^{4}}+1\right]^{-1 / 4}=8,96 \times 10^{5} \tag{28}
\end{equation*}
$$

where
$N_{2}=1.60 \times 10^{-3}$ from table 1
$N_{4}=7.07 \times 10^{-2}$ from table 1
$F_{\mathrm{a}}=0,42$
$Q=3800 \mathrm{~m}^{3} / \mathrm{h}$
$v=1.743 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
$C_{i}=C=K_{v}=62,7 \mathrm{~m}^{3} / \mathrm{h}$
$F_{i}=0.85$
$D=80 \mathrm{~mm}$
Sirce the valve Reynolds number is greater than 10000 the flow is turoulent
Now. calculate the effect of the inlet and outlet reducers on C.

ISNEC 60534-2-1: 1998

Since both reducers are concentric, short length, the velocity head loss coefficients can be calculated as follows:

$$
\begin{equation*}
\zeta_{1}=0,5\left[1-\left(d / D_{1}\right)^{2}\right]^{2}=0,186 \tag{23}
\end{equation*}
$$

where
$d=50 \mathrm{~mm}$
$D_{1}=80 \mathrm{~mm}$

$$
\begin{equation*}
\zeta_{2}=1,0\left[1-\left(d / D_{2}\right)^{2}\right]^{2}=0,563 \tag{24}
\end{equation*}
$$

where
$d=50 \mathrm{~mm}$
$D_{2}=100 \mathrm{~mm}$
and the Bernoulli coefficients are:

$$
\begin{equation*}
\zeta_{B 1}=1-\left(d / D_{1}\right)^{4}=0,847 \tag{22}
\end{equation*}
$$

where
$d=50 \mathrm{~mm}$
$D_{1}=80 \mathrm{~mm}$

$$
\begin{equation*}
\zeta_{\mathrm{B} 2}=1-\left(d / D_{2}\right)^{4}=0,938 \tag{22}
\end{equation*}
$$

where
$d=50 \mathrm{~mm}$
$D_{2}=100 \mathrm{~mm}$
The effective head loss coefficient of the inlet and outlet reducers is:

$$
\begin{equation*}
\Sigma \zeta=\zeta_{1}+\zeta_{2}+\zeta_{81}-\zeta_{\mathrm{B} 2}=0,658 \tag{21}
\end{equation*}
$$

where
$\zeta_{1}=0.186$
$\zeta_{2}=0.563$
$\zeta_{81}=0,847$
$\zeta_{82}=0,938$
Now, the effect of the reducers is calculated by iteration, starting with $C_{i}=C$ and $F_{P(1)}=1$:

$$
\begin{equation*}
F_{\mathrm{P}(2)}=\frac{1}{\sqrt{1+\frac{\Sigma \zeta}{N_{2}}\left(\frac{C_{1} d^{2}}{}\right)^{2}}}=0,891 \tag{20}
\end{equation*}
$$

where
$\Sigma_{5}=0,658$
$\mathrm{N}_{2}=1.60 \times 10^{-3}$ from table 1
$C_{1}=62.7 \mathrm{~m}^{3} / \mathrm{h}$
$d=50 \mathrm{~mm}$

Since $F_{\mathrm{P}_{(2)}} / F_{\mathrm{P}_{(1)}}=0,891 / 1<0,99$, one more teration step shall be done

$$
\begin{align*}
& C_{2}=\frac{C}{F_{p(2)}}=\frac{62,7}{0,891}=70.4 \mathrm{~m}^{3} / \mathrm{h} \\
& F_{p(3)}=\frac{1}{\sqrt{1+\frac{\Sigma 5}{N_{2}} \cdot C_{2} d^{2}}}=0,868 \tag{20}
\end{align*}
$$

where
$\Sigma \Sigma=0,658$
$N_{2}=1,60 \times 10^{-3}$ from table 1
$\mathrm{C}_{2}=70,4 \mathrm{~m}^{3} / \mathrm{h}$
$d=50 \mathrm{~mm}$
Now, $F_{P(3)} / F_{P(2)}=0,868 / 0,891>0.99$ so $F_{P_{(3)}}$ will be used as F_{P} for the final caiculation.

$$
\begin{equation*}
\left.x_{T P}=\frac{\frac{x_{T}}{F_{p}^{2}}}{1+\frac{x_{T} S}{N_{5}}\left(\frac{C_{2}}{d^{2}}\right.}{ }^{2}\right)=0.626 \tag{37}
\end{equation*}
$$

where
$x_{T}=0,60$
$F_{p}=0,868$
$\zeta_{1}=\zeta_{1}+\zeta_{B!}=1,033$
$N_{5}=1,80 \times 10^{-2}$ from table 1
$C_{2}=70,4 \mathrm{~m}^{3} / \mathrm{h}$
$\mathrm{d}-50 \mathrm{~mm}$
and with this $F_{\gamma} x_{T P}=0,582$, which is greater than $x=0,544$.
Finally, C results from equation (11) as follows:

$$
\begin{equation*}
C=\frac{Q}{N_{g} F_{p} p \cdot Y} \sqrt{\frac{M T_{1} Z}{x}}=72,2 \mathrm{~m}^{3} / \mathrm{h} \text { for } K_{\mathrm{v}} \tag{11}
\end{equation*}
$$

where
$Q=3800 \mathrm{~m}^{3} / \mathrm{h}$
$N_{\mathrm{g}}=2,46 \times 10$ for $t_{\mathrm{s}}=0^{\circ} \mathrm{C}$ from table 1
$F_{p}=0,868$
$p_{1}=680 \mathrm{kPa}$
$Y=0.674$
$M=4.4 .01 \mathrm{~kg} / \mathrm{kmol}$
$T_{1}=433 \mathrm{~K}$
$Z=0,988$
$x=0,544$

ISNEC 60534-2-1:1998

Example 4: Compressible flow - small flow trim sized for gas flow

Process data:

Fluid:
Inlet temperature:
inlet absolute pressure:
argon gas

Outlet absolute pressure:
$T_{1}=320 \mathrm{~K}$
$p_{1}=2,8$ bar (absolute)

Flow rate:
$p_{2}=1,3$ bar (absolute)

Molecular mass:
$Q=0,46$ staridard $\mathrm{m}^{3} / \mathrm{h}$ at $1013,25 \mathrm{mbar}$ and $15^{\circ} \mathrm{C}$
$M=39,95$
Kinematic viscosity:
$v=1,338 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$ at 1 bar (absolute) and $15^{\circ} \mathrm{C}$
Specific heat ratio:
$\gamma=1,67$
Specific heat ratio factor:

$$
F_{\gamma}=1,19
$$

Valve data:

Trim:
Liquid pressure recovery factor:
tapered needie plug
$F_{L}=0,98$
$x_{T}=0,8$
$D_{0}=5 \mathrm{~mm}$
$d=15 \mathrm{~mm}$
$D=15 \mathrm{~mm}$

Calculation:

The first step is to check the Reynolds number Re e_{v} :

$$
\begin{equation*}
R e_{v}=\frac{N_{4} F_{d} Q}{v \sqrt{C_{1} F}}\left[\frac{F^{2} C_{1}^{2}}{N_{2} D^{4}}+1\right]^{1 / 4} \tag{28}
\end{equation*}
$$

This requires input of C_{1}, which has to be determined. Since $x>F_{\gamma} x_{T}$, the flow coefficient can be estimated by first using the choked flow equation (14) to calculate C, then multiplying C by 1,3 in accordance with the iteration procedure of 8.1 .

$$
\begin{equation*}
C=\frac{Q}{0,667 N_{9} p_{1}} \sqrt{\frac{M T_{1} Z}{F_{\gamma} x_{T}}}=0,0127 \text { for } C_{v} \tag{14}
\end{equation*}
$$

where
$Q=0.46 \mathrm{~m} 3 / \mathrm{h}$
$N_{9}=2.25 \times 10^{3}$ for $t_{s}=15^{\circ} \mathrm{C}$ from table 1
$p_{1}=2.8$ bar
$M=39.95 \mathrm{~kg} / \mathrm{kmol}$
$T_{1}=320 \mathrm{~K}$
$Z=1$
$F_{\gamma}=1.19$
$x_{T}=0,8$

$$
\begin{equation*}
C_{1}=1,3 C=0,0165 \text { for } C_{v} \tag{26}
\end{equation*}
$$

where
$C=0,0127$ for C_{v}
Next, estimate F_{d} from the equation in table 2:

$$
F_{\mathrm{d}}=\frac{N_{19} \sqrt{C F_{2}}}{D_{\mathrm{c}}}=0.058
$$

where
$C=C_{\mathrm{i}}=0,0165$ for C_{v}
$F_{L}=0,98$
$N_{19}=2,3$ from table 1
$D_{0}=5 \mathrm{~mm}$
Calculate $R e_{v}$ as follows:

$$
\begin{equation*}
R e_{v}=\frac{N_{4} F_{\mathrm{d}} Q}{v \sqrt{C_{1}}}\left[\frac{F^{2} C_{1}^{2}}{N_{2} D^{4}}-1\right]^{1 / 4}=1202 \tag{28}
\end{equation*}
$$

where
$N_{2}=2,12 \times 10^{-3}$ from table 1
$N_{4}=7,6 \times 10^{-2}$ from table 1
$F_{\mathrm{d}}=0.058$
$Q=0,46 \mathrm{~m}^{3} / \mathrm{h}$
$v=1,338 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
$F_{L}=0,98$
$C_{\mathrm{i}}=0,0165$ for C_{v}
$D=15 \mathrm{~mm}$
Determine if $C / d^{2}<0,016 N_{18}$:

$$
\begin{gathered}
C / d^{2}=7.333 \times 10^{-5} \\
0.016 N_{18}=0,016 \\
C / d^{2}<0.016 N_{18}
\end{gathered}
$$

where
$N_{18}=1,00$ from table 1
$C=0,0165$
$d=15 \mathrm{~mm}$
Since the Reynoids number is below 10000 . the flow is non-turbulent; hence flow coefficient equation (19) has to be used. Since $C / d^{2}<0,016 N_{18}$ and $R e_{v}>10$. caiculate F_{R} from both equations (32) and (33) and use the lower value.

$$
\begin{equation*}
n_{2}=1+N_{33}\left(\frac{C_{i}}{d^{2}}\right)^{1 / 2}=1,478 \tag{32a}
\end{equation*}
$$

where
$N_{33}=55,8$ from table 1
$C=0,0165$ for C_{v}
$R e_{v}=1202$
$d=15 \mathrm{~mm}$

$$
\begin{gather*}
F_{\mathrm{R}}=1+\left(\frac{0,33 F^{1 / 2}}{r_{2}^{1 / 4}}\right) \log _{10}\left(\frac{R e_{v}}{10000}\right)=0,727 \tag{32}\\
F_{\mathrm{R}}=1+(0,296)(-0,920)=0,727
\end{gather*}
$$

where
$F_{\mathrm{L}}=0,98$
$n_{2}=1,478$
$R e_{v}=1202$

$$
\begin{equation*}
F_{\mathrm{R}}=\frac{0,026}{\sqrt{2}} \sqrt{m_{2} R e_{\mathrm{V}}}=1,12 \tag{33}
\end{equation*}
$$

NOTE - F_{A} is limited to 1 .
where
$F_{L}=0,98$
$n_{2}=1,478$
$R e_{\mathrm{v}}=1202$
Use $F_{R}=0,727$, the lower of the two calculated values.

$$
\begin{equation*}
C=\frac{Q}{N_{22} F_{R}} \sqrt{\frac{M T_{1}}{\Delta P\left(p_{1}+p_{2}\right)}}=0,018 \text { for } C_{\mathrm{v}} \tag{19}
\end{equation*}
$$

where
$Q=0,46 \mathrm{~m}^{3} / \mathrm{h}$
$N_{22}=1,59 \times 10^{3}$ for $t_{5}=15^{\circ} \mathrm{C}$ from table 1
$F_{\text {R }}=0.73$
$M=39,95 \mathrm{~kg} / \mathrm{kmol}$
$T_{1}=320 \mathrm{~K}$
$\Delta \rho=1,5$ bar
$p_{1}=2,8$ bar
$p_{2}=1,3$ bar
Check:

$$
\begin{gather*}
\frac{C}{F_{\mathrm{R}}}<C_{\mathrm{i}} \tag{29}\\
\frac{0,0127}{0,727}=0,018>0,0165
\end{gather*}
$$

Since C / F_{7} is not less than C_{1}, repeat the iteration process by increasing C_{i} by 30%.
New $C=1,3 C=0.0214$
where
$C_{1}=0.0165$

$$
F_{d}=\frac{N_{0} \cdot \overline{C E}}{D_{0}}=0,067
$$

wnere
$C=C_{1}=0,0214$ for C_{v}
$F_{L}=0,98$
$N_{19}=2,3$ from table 1
$D_{\mathrm{c}}=5 \mathrm{~mm}$
Calculate Rev

$$
R e_{v}=\frac{N_{4} F_{\mathrm{c}} Q}{v \sqrt{C_{1} F_{-}}} \frac{F^{2} C^{2}}{N_{2} D^{4}}+1=1202
$$

where
$N_{2}=2,14 \times 10^{-3}$ from tacle 1
$N_{4}=7,6 \times 10^{-2}$ from table 1
$F_{d}=0,067$
$Q=0,46 \mathrm{~m}^{3} / ;$
$v=1,338 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
$F_{i}=0,98$
$C=0.0214$
S $=15 \mathrm{~mm}$
Since the value of $R e e_{v}$ remains the same as previously calculated F_{2} remains a: 0 Therefore, the caiculated C will remain at 0.018 and any trim with a rated C of 0.018 or mor for $\overline{\mathcal{C}}_{v}$ is appropriate

Annex E
 (informative)
 Bibliography

Baumann, H.D., "A unifying Method for Sizing Throttling Valves Under Laminar or Transitional Flow Conditions", Journal of Fluids Engineering, Vol. 115, No. 1, March 1993, pp. 166-168

Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Staidards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Catalogue' and 'Standards: Monthly Additions'.

This Indian Standard has been developed from Doc: No. ETD 18 (5672).
Amendments Issued Since Publication

Amendment No.	Date of Issue	Text Affected

BUREAU OF INDIAN STANDARDS

Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 2323 0131, 2323 3375, 23239402 Website: www.bis.org.in
Regional Otfices:
Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg \{ 23237617 NEW DELHI 110002 \{ 23233841
Eastern: 1/14, C.I.T. Scheme VII M, V.I.P. Road, Kankurgachi \{ 2337 8499, 23378561 KOLKATA 700054
\{ 2337 8626, 23379120
Northern: SCO 335-336, Sector 34-A, CHANDIGARH 160022
$\left\{\begin{array}{l}2603843 \\ 2609285\end{array}\right.$
Southern: C.I.T. Campus, IV Cross Road, CHENNAI 600113
\{ 2254 1216, 22541442
\{ 2254 2519, 22542315
Western : Manakalaya, E9 MIDC, Marol, Andheri (East)
MUMBAI 400 093 $\quad\left\{\begin{array}{l}28329295,28327858 \\ 28327891,28327892\end{array}\right.$
Branches: AHMEDABAD. BANGALORE. BHOPAL. BHUBANESHWAR. COIMBATORE. FARIDABAD. GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR. LUCKNOW. NAGPUR. PARWANOO. PATNA. PUNE. RAJKOT. THIRUVANANTHAPURAM. VISAKHAPATNAM.

[^0]: l, = two nominal pipe diameters
 $l_{2}=$ six nominal pipe diameters

