Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

Indian Standard
IDENTIFICATION CARDS—RECORDING TECHNIQUE
PART 2 MAGNETIC STRIPE—LOW COERCIVITY
(First Revision)

ICS 35.240.15
NATIONAL FOREWORD

This Indian Standard (Part 2) (First Revision) which is identical with ISO/IEC 7811-2:2001 'Identification cards — Recording technique — Part 2 : Magnetic stripe — Low coercivity' issued by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) jointly was adopted by the Bureau of Indian Standards on the recommendations of the Computer Hardware Sectional Committee and approval of the Electronics and Telecommunication Division Council.

IS 14147 (Part 2) was originally published in 1994 and was identical to ISO/IEC 7811-2:1985. It is now being revised to align it with the latest ISO/IEC 7811-2:2001.

In the adopted standard, certain conventions are not identical to those used in Indian Standards. Attention is particularly drawn to the following:

a) Wherever the words 'International Standard' appear referring to this standard, they should be read as 'Indian Standard'.

b) Comma (,) has been used as a decimal marker while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

CROSS REFERENCES

In this adopted standard, reference appears to the following International Standard for which Indian Standard also exists. The corresponding Indian Standard which is to be substitute in its place is listed below along with its degree of equivalence for the edition indicated:

<table>
<thead>
<tr>
<th>International Standard</th>
<th>Corresponding Indian Standard</th>
<th>Degree of Equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO/IEC 7810 Identification cards — Physical characteristics</td>
<td>IS 14172:1994 Identification cards — Physical characteristics</td>
<td>Identical</td>
</tr>
</tbody>
</table>

The concerned Technical Committee responsible for the preparation of this standard has reviewed the provisions of the following International Publications and has decided that they are acceptable for use in conjunction with this standard:

ISO 4287 Geometrical Product Specifications (GPS) — Surface texture: Profile method - Terms, definitions and surface texture parameters

ISO/IEC 10373-1 Identification cards — Test methods — Part 1 : General characteristics tests

ISO/IEC 10373-2 Identification cards — Test methods — Part 2 : Cards with magnetic stripes
Indian Standard
IDENTIFICATION CARDS—RECORDING
TECHNIQUE
PART 2 MAGNETIC STRIPE—LOW COERCIVITY
(First Revision)

1 Scope

This part of ISO/IEC 7811 is one of a series of standards describing the characteristics for identification cards as defined in the definitions clause and the use of such cards for international interchange.

This part of ISO/IEC 7811 specifies requirements for a low coercivity magnetic stripe (including any protective overlay) on an identification card, the encoding technique and coded character sets. It takes into consideration both human and machine aspects and states minimum requirements.

Coercivity influences many of the quantities specified in this part of ISO/IEC 7811 but is not itself specified. Exposure of the card to a magnetic field is likely to destroy the recorded data.

It is the purpose of this series of standards to provide criteria to which cards shall perform. No consideration is given within these standards to the amount of use, if any, experienced by the card prior to test. Failure to conform to specified criteria should be negotiated between the involved parties.

ISO/IEC 10373-2 specifies the test procedures used to check cards against the parameters specified in this part of ISO/IEC 7811.

NOTE Numeric values in the SI and/or Imperial measurement system in this part of ISO/IEC 7811 may have been rounded off and therefore are consistent with, but not exactly equal to, each other. Either system may be used, but the two should not be intermixed or reconverted. The original design was made using the Imperial measurement system.

2 Conformance

A prerequisite for conformance with this part of ISO/IEC 7811 is conformance with ISO/IEC 7810. An identification card is in conformance with this part of ISO/IEC 7811 if it meets all mandatory requirements specified herein. Default values apply if no others are specified.

3 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of ISO/IEC 7811. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of ISO/IEC 7811 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 4287, Geometrical Product Specifications (GPS) — Surface texture: Profile method — Terms, definitions and surface texture parameters.

ISO/IEC 7810, Identification cards — Physical characteristics.

4 Terms and definitions

For the purposes of this part of ISO/IEC 7811, the terms and definitions given in ISO/IEC 7810 and the following apply.

4.1 primary standard
set of reference cards established and maintained by Physikalisch-Technische Bundesanstalt (PTB) that represent the values of U_R and I_R designated RM7811-2

4.2 secondary standard
reference card designated RM7811-2 that is related to the primary standard as stated in the calibration certificate supplied with each card

NOTE Secondary standards can be ordered from Physikalisch-Technische Bundesanstalt (PTB), FLab. 2.24 - Bundesallee 100, D-38116 Braunschweig, Germany. The source of secondary standards will be maintained at least until 2005.

4.3 unused un-encoded card
card possessing all the components required for its intended purpose, which has not been subjected to any personalization or testing operation, and which has been stored in a clean environment with no more than 48 hour exposure to daylight at temperatures between 5 °C to 30 °C and humidity between 10% to 90% without experiencing thermal shock

4.4 unused encoded card
card according to 4.3 that has only been encoded with all the data required for its intended purpose (e.g. magnetic encoding, embossing, electronic encoding)

4.5 returned card
card according to 4.4 after it has been issued to the card holder and returned for the purpose of testing

4.6 flux transition
location of the greatest rate of change with distance of the magnetisation

4.7 reference current
I_R
minimum recorded current amplitude under the given test conditions that causes, on the reference card, a readback signal amplitude equal to 80% of the reference signal amplitude U_R, at a density of 8 flux transitions per millimetre (200 flux transitions per inch) as shown in Figure 6

4.8 reference flux level
F_R
flux level in the test head that corresponds to the reference current I_R

4.9 test recording currents
two recording currents defined by:

$I_{\text{min}} = \text{Recording current corresponding to } 3.5 F_R$
$I_{\text{max}} = \text{Recording current corresponding to } 5.0 F_R$
4.10 individual signal amplitude
\(U_i \)
base-to-peak amplitude of a single readback voltage signal

4.11 average signal amplitude
\(U_A \)
sum of the absolute value of the amplitude of each signal peak \(U_j \) divided by the number of signal peaks \(n \) for a given track over the length of the magnetic stripe area

4.12 reference signal amplitude
\(U_R \)
maximum value of the average signal amplitude of a reference card corrected to the primary standard

4.13 physical recording density
number of flux transitions per unit length recorded on a track

4.14 bit density
number of data bits stored per unit of length (bits/mm or bpi)

4.15 bit cell
distance between two clocking flux transitions. See Figure 10

4.16 sub interval
distance that is nominally half of the distance between two clocking flux transitions. See Figure 10

5 Physical characteristics of the identification card

The identification card shall conform to the specification given in ISO/IEC 7810.

WARNING --The attention of card issuers is drawn to the fact that information held on the magnetic stripe may be rendered ineffective through contamination by contact with dirt and certain commonly used chemicals including plasticizers. It should also be noted that any printing or screening placed on top of the magnetic stripe must not impair the function of the magnetic stripe.

5.1 Magnetic stripe area warpage

Application of a 2.2 N (0.5 lbf) load evenly distributed on the front face opposite the magnetic stripe shall bring the entire stripe within 0.08 mm (0.003 in) of the rigid plate.

5.2 Surface distortions

There shall be no surface distortions, irregularities or raised areas on both the front and the back of the card in the area shown in Figure 1 that might interfere with the contact between the magnetic head and magnetic stripe.
If a raised signature panel area is located on the front or back of the card, then it shall be no closer to the top edge of the card than 19,05 mm (0.750 in).

NOTE Raised areas and distortions on other areas of the card may cause card transport problems with magnetic stripe processing equipment resulting in reading or writing errors.

6 Physical characteristics of the magnetic stripe

6.1 Height and surface profile of the magnetic stripe area

The magnetic stripe area is located on the back of the card as shown in Figure 2.
Minimum magnetic stripe width (W)

Top reference edge

Magnetic stripe area

Minimum magnetic stripe width (W)

Top reference edge

Magnetic stripe area

5,54 (0.218) max

82,55 (3.250) min

2,92 (0.115) max

For use of tracks 1 and 2: $a = 11,89$ (0.468) min

For use of tracks 1, 2, and 3: $a = 15,95$ (0.628) min

NOTE In the case of the magnetic stripe area used for track 1 and 2, the dimension a as shown in Figure 2 of the magnetic media could be less than the maximum dimension b as shown in Figure 11 for the location of track 2 data on the card. It is desirable that the magnetic stripe area extend beyond the limits of the encoded track.

Figure 2 — Location of magnetic material for ID-1 type card

6.1.1 Surface profile of the magnetic stripe area

The maximum vertical deviation (a) of the transverse surface profile of the magnetic stripe area is shown below. See Figures 3, 4, and 5. The slope of the surface profile curve shall be limited to: $-4a/W < \text{slope} < 4a/W$

When the bending stiffness value (see ISO/IEC 7810) for the card is 20 mm or more then the surface profile limits are:

<table>
<thead>
<tr>
<th>Minimum stripe width</th>
<th>As shown in Figure 3A</th>
<th>As shown in Figure 3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W = 6,35$ mm (0.25 in)</td>
<td>$a \leq 9,5$ μm (375 μin)</td>
<td>$a \leq 5,8$ μm (225 μin)</td>
</tr>
<tr>
<td>$W = 10,28$ mm (0.405 in)</td>
<td>$a \leq 15,4$ μm (607 μin)</td>
<td>$a \leq 9,3$ μm (365 μin)</td>
</tr>
</tbody>
</table>

When the bending stiffness value (see ISO/IEC 7810) for the card is less than 20 mm then the surface profile limits are:

<table>
<thead>
<tr>
<th>Minimum stripe width</th>
<th>As shown in Figure 3A</th>
<th>As shown in Figure 3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W = 6,35$ mm (0.25 in)</td>
<td>$a \leq 7,3$ μm (288 μin)</td>
<td>$a \leq 4,5$ μm (175 μin)</td>
</tr>
<tr>
<td>$W = 10,28$ mm (0.405 in)</td>
<td>$a \leq 11,7$ μm (466 μin)</td>
<td>$a \leq 7,3$ μm (284 μin)</td>
</tr>
</tbody>
</table>
6.1.2 Height of the magnetic stripe area

The vertical deviation \((h)\) of the magnetic stripe area relative to the adjacent surface of the card shall be:

\[-0.005 \text{ mm (-200 µin)} \leq h \leq 0.038 \text{ mm (1500 µin)}\]

Spiking in the profile caused by the material "squirt out" in hot stamping is not part of the stripe. It shall not extend above the magnetic stripe area height \((h)\) as defined above.
6.2 Surface roughness

The average surface roughness \((R_a)\) of the magnetic stripe area shall not exceed 0.40 \(\mu\text{m} (15.9 \mu\text{in})\) in both the longitudinal and transverse directions. Refer to ISO 4287.

6.3 Adhesion of stripe to card

The stripe shall not separate from the card under normal use.

6.4 Wear of magnetic stripe from read/write head

Average signal amplitude \((U_A)\) and individual signal amplitude \((U_i)\) are measured before and after 2000 wear cycles and shall result in:

\[
U_A\text{ after} \geq 0.60 \times U_A\text{ before} \quad \text{and} \quad U_i\text{ after} \geq 0.80 \times U_A\text{ after}
\]

6.5 Resistance to chemicals

Average signal amplitude \((U_A)\) and individual signal amplitude \((U_i)\) are measured before and after short-term exposure (as defined in the referenced Test Method document) shall result in:

\[
U_A\text{ after} \geq 0.90 \times U_A\text{ before} \quad \text{and} \quad U_i\text{ after} \geq 0.90 \times U_A\text{ after}
\]

Average signal amplitude \((U_A)\) and individual signal amplitude \((U_i)\) are measured before and after long-term exposure (24 hours) to acid and alkaline artificial perspiration, as defined in the referenced Test Method document.

\[
U_A\text{ after} \geq 0.90 \times U_A\text{ before} \quad \text{and} \quad U_i\text{ after} \geq 0.90 \times U_A\text{ after}
\]

7 Performance characteristics for the magnetic material

The purpose of this section is to enable magnetic interchangeability between card and processing systems. Media coercivity is not specified. The media's performance criteria, regardless of coercivity, is specified in 7.3.

7.1 General

This method uses a reference card whose material is traceable to the primary standard (see clause 4). All signal amplitude results from the use of the secondary reference card must be corrected by the factor supplied with the secondary reference card.

7.2 Testing and operating environment

The testing environment for signal amplitude measurements is 23 °C ± 3 °C (73 °F ± 5 °F) and 40% to 60% relative humidity. When tested under otherwise identical conditions, the average signal amplitude measured at 8 ft/mm (200 fpi) shall not deviate from its value in the above test environment by more than 15% after 5 minute exposure over the following operating environment range:

- temperature: -35 °C to 50 °C (-31 °F to 122 °F)
- relative humidity: 5% to 95%

7.3 Signal amplitude requirements for magnetic media

The requirements for recording characteristics of the card are shown in Table 1, and Figures 6 and 7.
Table 1 — Signal amplitude requirements for unused unencoded cards

<table>
<thead>
<tr>
<th>Description</th>
<th>Density ft/mm (ftpi)</th>
<th>Test recording current</th>
<th>Signal amplitude result</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal amplitude</td>
<td>8 (200)</td>
<td>I_{min}</td>
<td>U_{A1}</td>
<td>$0,8 \ U_R \leq U_{A1} \leq 1,3 \ U_R$</td>
</tr>
<tr>
<td>Signal amplitude</td>
<td>8 (200)</td>
<td>I_{min}</td>
<td>U_1</td>
<td>$U_1 \leq 1,36 \ U_R$</td>
</tr>
<tr>
<td>Signal amplitude</td>
<td>8 (200)</td>
<td>I_{max}</td>
<td>U_{A2}</td>
<td>$U_{A1} \geq U_{A2} \geq 0,8 \ U_R$</td>
</tr>
<tr>
<td>Signal amplitude</td>
<td>20 (500)</td>
<td>I_{max}</td>
<td>U_2</td>
<td>$U_2 \geq 0,65 \ U_R$</td>
</tr>
<tr>
<td>Resolution</td>
<td>20 (500)</td>
<td>I_{max}</td>
<td>U_{A3}</td>
<td>$U_{A3} \geq 0,7 \ U_{A2}$</td>
</tr>
<tr>
<td>Erasure</td>
<td>0</td>
<td>$I_{\text{min}, \ DC}$</td>
<td>U_{A4}</td>
<td>$U_{A4} \leq 0,03 \ U_R$</td>
</tr>
<tr>
<td>Extra pulse</td>
<td>0</td>
<td>$I_{\text{min}, \ DC}$</td>
<td>U_4</td>
<td>$U_4 \leq 0,05 \ U_R$</td>
</tr>
</tbody>
</table>

The slope of the saturation curve shall never be positive between I_{min} and I_{max}.

NOTE It is not permissible to combine the above requirements mathematically.

![Example curve](image)

Figure 6 — Saturation curve example showing tolerance area at 8 ft/mm (200 ftpi)

NOTE The curve defines the primary standard response (on a card). The window parameters define a card that will be functional in the machine readable environment. The corrected reference curve depicted above may not meet the specifications defined in clause 7.
8 Encoding technique

The encoding technique for each track is known as two-frequency recording. This method allows for serial recording of self-clocking data. The encoding comprises data and clocking transitions together. A flux transition occurring between clocks signifies that the bit is a “one” and the absence of a flux transition between clocking transitions signifies that the bit is a “zero” (see Figure 8).
The data shall be recorded as a synchronous sequence of characters without intervening gaps.

NOTE Recording with a write current which is less than I_{min} may result in poor quality encoding.

9 Encoding specification, general

9.1 Angle of recording

The angle of recording shall be normal to the nearest edge of the card parallel to the magnetic stripe with a tolerance of \pm 20 minutes. The angle of recording (φ) is determined by measuring the angle of the head gap when the reading amplitude is maximum (see Figure 9).
9.2 Nominal bit density

The nominal bit density for each of the tracks shall be:

- for track 1 8.27 bits/mm (210 bpi),
- for track 2 2.95 bits/mm (75 bpi),
- for track 3 8.27 bits/mm (210 bpi).

9.3 Signal amplitude requirements for tracks 1, 2 and 3

The requirements for signal amplitude on tracks 1, 2 and 3 shall be as follows:

- Unused encoded cards: $0.64 U_R \leq U_I \leq 1.36 U_R$
- Returned cards: $0.52 U_R \leq U_I \leq 1.36 U_R$

NOTE: The requirements above specify the interchange signal amplitude limits for each of the encoded track locations at the specified bit densities. Signal amplitude requirements specified in Table 1 reflect the magnetic media limits at the specified recording frequency and recording test currents.

9.4 Bit configuration

In the bit configuration for each character on the magnetic area, the least significant bit (2^0) shall be encoded first and the parity bit last.

9.5 Direction of recording

The encoding shall begin from the right-hand side viewed from the side with the magnetic stripe and with the stripe at the top.

9.6 Leading and trailing zeroes

The lead-in up to the first data bit shall be recorded with zeroes and the space after the last bit shall also be recorded with zeroes. Zeroes prior to 3.30 mm (0.130 in) or after 82.17 mm (3.235 in) from the right edge of the card when viewed from the back are not required to meet the specifications given herein.
10 Encoding specifications

10.1 Alphanumeric track, track 1

10.1.1 Average bit density

The average bit density \(B_a \) shall be 8.27 bits/mm (210 bpi) ± 8% measured in a longitudinal direction parallel to the top reference edge.

10.1.2 Flux transition spacing variation

Flux transition spacing variations are shown in Table 2 for unused encoded cards and in Table 3 for returned cards. See also Figure 10.

Figure 10 — Flux transition spacing variation
Table 2 — Flux transition spacing variation for unused encoded cards-Track 1 and 3

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
<th>Requirement</th>
<th>Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_a</td>
<td>Average length between clocking flux transitions</td>
<td>$111 \mu m \ (4381 \mu in) \leq B_a \leq 131 \mu m \ (5143 \mu in)$</td>
<td>$\pm 8%$</td>
</tr>
<tr>
<td>B_{ln}</td>
<td>Individual length between clocking flux transitions</td>
<td>$109 \mu m \ (4286 \mu in) \leq B_{ln} \leq 133 \mu m \ (5238 \mu in)$</td>
<td>$\pm 10%$</td>
</tr>
<tr>
<td>B_{ln+1}</td>
<td>Adjacent bit-to-bit variation</td>
<td>$0.90 B_{ln} \leq B_{ln+1} \leq 1.10 B_{ln}$</td>
<td>$\pm 10%$</td>
</tr>
<tr>
<td>S_{ln}</td>
<td>Subinterval length</td>
<td>$53 \mu m \ (2095 \mu in) \leq S_{ln} \leq 68 \mu m \ (2667 \mu in)$</td>
<td>$\pm 12%$</td>
</tr>
<tr>
<td>S_{ln+1}</td>
<td>Adjacent subinterval length</td>
<td>$0.88 B_{ln}/2 \leq S_{ln+1} \leq 1.12 B_{ln}/2$</td>
<td>$\pm 12%$</td>
</tr>
</tbody>
</table>

B_{ln+1} or S_{ln+1} is the length between flux transitions immediately following and adjacent to B_{ln}.

Table 3 — Flux transition spacing variation for returned cards-Track 1 and 3

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
<th>Requirement</th>
<th>Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_a</td>
<td>Average length between clocking flux transitions</td>
<td>$111 \mu m \ (4381 \mu in) \leq B_a \leq 131 \mu m \ (5143 \mu in)$</td>
<td>$\pm 8%$</td>
</tr>
<tr>
<td>B_{ln}</td>
<td>Individual length between clocking flux transitions</td>
<td>$109 \mu m \ (4286 \mu in) \leq B_{ln} \leq 133 \mu m \ (5238 \mu in)$</td>
<td>$\pm 10%$</td>
</tr>
<tr>
<td>B_{ln+1}</td>
<td>Adjacent bit-to-bit variation</td>
<td>$0.85 B_{ln} \leq B_{ln+1} \leq 1.15 B_{ln}$</td>
<td>$\pm 15%$</td>
</tr>
<tr>
<td>S_{ln}</td>
<td>Subinterval length</td>
<td>$48.4 \mu m \ (1905 \mu in) \leq S_{ln} \leq 72.6 \mu m \ (2857 \mu in)$</td>
<td>$\pm 20%$</td>
</tr>
<tr>
<td>S_{ln+1}</td>
<td>Adjacent subinterval length</td>
<td>$0.70 B_{ln}/2 \leq S_{ln+1} \leq 1.30 B_{ln}/2$</td>
<td>$\pm 30%$</td>
</tr>
</tbody>
</table>

B_{ln+1} or S_{ln+1} is the length between flux transitions immediately following and adjacent to B_{ln}.

NOTE This table shows only the limits within which cards will function normally and does not imply any guarantee of flux transition spacing during valid term for issued card.

10.1.3 Coded character set

The coded character set for track 1 shall be 7 bit alphanumeric as shown in Table 4.

The 14 characters ", " & ' * '+, :, < = > @ _ are available for hardware control purposes and may not be used for information (data content).

The 3 characters [\] are reserved for additional national characters when required. They must not be used internationally.

The character # is reserved for optional additional graphic symbols.

The 3 characters % ^ ? shall have the following meaning:
Table 4 — Coded character set for 7 bit alphanumeric

<table>
<thead>
<tr>
<th>Char.</th>
<th>Binary</th>
<th>Char.</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P 2^5 2^4 2^3 2^2 2^1 2^0</td>
<td></td>
<td>P 2^5 2^4 2^3 2^2 2^1 2^0</td>
</tr>
<tr>
<td>space</td>
<td>1 0 0 0 0 0 0</td>
<td>space</td>
<td>0 1 0 0 0 0 0</td>
</tr>
<tr>
<td>!</td>
<td>0 0 0 0 0 0 1</td>
<td>!</td>
<td>1 1 0 0 0 0 1</td>
</tr>
<tr>
<td>"</td>
<td>0 0 0 0 0 1 0</td>
<td>"</td>
<td>1 1 0 0 0 1 0</td>
</tr>
<tr>
<td>#</td>
<td>1 0 0 0 0 1 1</td>
<td>#</td>
<td>0 1 0 0 0 1 1</td>
</tr>
<tr>
<td>$</td>
<td>0 0 0 0 1 0 0</td>
<td>$</td>
<td>1 1 0 0 1 0 0</td>
</tr>
<tr>
<td>%</td>
<td>1 0 0 0 1 0 1</td>
<td>%</td>
<td>0 1 0 0 1 0 1</td>
</tr>
<tr>
<td>&</td>
<td>1 0 0 0 1 1 0</td>
<td>&</td>
<td>0 1 0 0 1 1 0</td>
</tr>
<tr>
<td>'</td>
<td>0 0 0 0 1 1 1</td>
<td>'</td>
<td>1 1 0 0 1 1 1</td>
</tr>
<tr>
<td>(</td>
<td>0 0 0 1 0 0 0</td>
<td>(</td>
<td>1 1 0 1 0 0 0</td>
</tr>
<tr>
<td>)</td>
<td>1 0 0 1 0 0 1</td>
<td>)</td>
<td>0 1 0 1 0 0 1</td>
</tr>
<tr>
<td>*</td>
<td>1 0 0 1 0 1 0</td>
<td>*</td>
<td>0 1 0 1 0 1 0</td>
</tr>
<tr>
<td>+</td>
<td>0 0 0 1 0 1 1</td>
<td>+</td>
<td>1 1 0 1 0 1 1</td>
</tr>
<tr>
<td>,</td>
<td>1 0 0 1 1 0 0</td>
<td>,</td>
<td>0 1 0 1 1 0 0</td>
</tr>
<tr>
<td>-</td>
<td>0 0 0 1 1 0 1</td>
<td>-</td>
<td>1 1 0 1 1 0 1</td>
</tr>
<tr>
<td>:</td>
<td>0 0 0 1 1 1 0</td>
<td>:</td>
<td>1 1 0 1 1 1 0</td>
</tr>
<tr>
<td>/</td>
<td>1 0 0 1 1 1 1</td>
<td>/</td>
<td>0 1 0 1 1 1 1</td>
</tr>
<tr>
<td>0</td>
<td>0 0 1 0 0 0 0</td>
<td>0</td>
<td>1 1 1 0 0 0 0</td>
</tr>
<tr>
<td>1</td>
<td>1 0 1 0 0 0 1</td>
<td>1</td>
<td>0 1 1 0 0 0 1</td>
</tr>
<tr>
<td>2</td>
<td>1 0 1 0 0 1 0</td>
<td>2</td>
<td>0 1 1 0 0 1 0</td>
</tr>
<tr>
<td>3</td>
<td>0 0 1 0 0 1 1</td>
<td>3</td>
<td>0 1 1 0 0 1 1</td>
</tr>
<tr>
<td>4</td>
<td>1 0 1 0 1 0 0</td>
<td>4</td>
<td>1 1 1 0 1 0 0</td>
</tr>
<tr>
<td>5</td>
<td>0 0 1 0 1 0 1</td>
<td>5</td>
<td>1 1 1 0 1 0 1</td>
</tr>
<tr>
<td>6</td>
<td>0 0 1 0 1 1 0</td>
<td>6</td>
<td>1 1 1 0 1 1 0</td>
</tr>
<tr>
<td>7</td>
<td>1 0 1 0 1 1 1</td>
<td>7</td>
<td>0 1 1 0 1 1 1</td>
</tr>
<tr>
<td>8</td>
<td>1 0 1 1 0 0 0</td>
<td>8</td>
<td>0 1 1 1 0 0 0</td>
</tr>
<tr>
<td>9</td>
<td>0 0 1 1 0 0 1</td>
<td>9</td>
<td>1 1 1 1 0 0 1</td>
</tr>
<tr>
<td>;</td>
<td>0 0 1 1 0 1 0</td>
<td>;</td>
<td>1 1 1 1 0 1 0</td>
</tr>
<tr>
<td>=</td>
<td>1 0 1 1 0 1 1</td>
<td>=</td>
<td>0 1 1 1 0 1 1</td>
</tr>
<tr>
<td>></td>
<td>1 0 1 1 1 0 0</td>
<td>></td>
<td>0 1 1 1 1 0 0</td>
</tr>
<tr>
<td>?</td>
<td>0 0 1 1 1 1 1</td>
<td>?</td>
<td>1 1 1 1 1 1 1</td>
</tr>
</tbody>
</table>

NOTE This coded character set is identical to the coded character set in ISO/IEC 7811-6 (derived from ASCII.)

10.1.4 Maximum number of characters for ID-1 type card

The data characters, control characters, start and end sentinels, and longitudinal redundancy check character shall together not exceed 79 characters.
10.2 Numeric track, Track 2

10.2.1 Average bit density

The average bit density (B_a) shall be 2.95 bits/mm (75 bpi) ± 5% measured in a longitudinal direction parallel to the top reference edge.

10.2.2 Flux transition spacing variation

Flux transition spacing variations are shown in Table 5 for unused encoded cards and in Table 6 for returned cards. See also Figure 10.

Table 5 — Flux transition spacing variation for unused encoded cards-Track 2

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
<th>Requirement</th>
<th>Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_a</td>
<td>Average length between clocking flux transitions</td>
<td>$322 \mu m (12667 \mu in) \leq B_a \leq 356 \mu m (14000 \mu in)$</td>
<td>± 5%</td>
</tr>
<tr>
<td>B_{ln}</td>
<td>Individual length between clocking flux transitions</td>
<td>$315 \mu m (12400 \mu in) \leq B_{ln} \leq 363 \mu m (14267 \mu in)$</td>
<td>± 7%</td>
</tr>
<tr>
<td>B_{ln+1}</td>
<td>Adjacent bit-to-bit variation</td>
<td>$0.90 B_{ln} \leq B_{ln+1} \leq 1.10 B_{ln}$</td>
<td>± 10%</td>
</tr>
<tr>
<td>S_{ln}</td>
<td>Subinterval length</td>
<td>$153 \mu m (6000 \mu in) \leq S_{ln} \leq 186 \mu m (7333 \mu in)$</td>
<td>± 10%</td>
</tr>
<tr>
<td>S_{ln+1}</td>
<td>Adjacent subinterval length</td>
<td>$0.88 B_{ln/2} \leq S_{ln+1} \leq 1.12 B_{ln/2}$</td>
<td>± 12%</td>
</tr>
</tbody>
</table>

B_{ln+1} or S_{ln+1} is the length between flux transitions immediately following and adjacent to B_{ln}.

Table 6 — Flux transition spacing variation for returned cards-Track 2

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
<th>Requirement</th>
<th>Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_a</td>
<td>Average length between clocking flux transitions</td>
<td>$322 \mu m (12667 \mu in) \leq B_a \leq 356 \mu m (14000 \mu in)$</td>
<td>± 5%</td>
</tr>
<tr>
<td>B_{ln}</td>
<td>Individual length between clocking flux transitions</td>
<td>$288 \mu m (11333 \mu in) \leq B_{ln} \leq 390 \mu m (15333 \mu in)$</td>
<td>± 15%</td>
</tr>
<tr>
<td>B_{ln+1}</td>
<td>Adjacent bit-to-bit variation</td>
<td>$0.85 B_{ln} \leq B_{ln+1} \leq 1.15 B_{ln}$</td>
<td>± 15%</td>
</tr>
<tr>
<td>S_{ln}</td>
<td>Subinterval length</td>
<td>$136 \mu m (5333 \mu in) \leq S_{ln} \leq 203 \mu m (8000 \mu in)$</td>
<td>± 20%</td>
</tr>
<tr>
<td>S_{ln+1}</td>
<td>Adjacent subinterval length</td>
<td>$0.70 B_{ln/2} \leq S_{ln+1} \leq 1.30 B_{ln/2}$</td>
<td>± 30%</td>
</tr>
</tbody>
</table>

B_{ln+1} or S_{ln+1} is the length between flux transitions immediately following and adjacent to B_{ln}.

NOTE This table shows only the limits within which cards will function normally and does not imply any guarantee of flux transition spacing during valid term for issued card.

10.2.3 Coded character set

The coded character set for track 2 shall be 5 bit numeric as shown in Table 7
The 3 characters :<> are available for hardware control purposes and may not be used for information (data content).

The 3 characters ; = ? shall have the following meaning:

; start sentinel
= field separator
? end sentinel

Table 7 — Coded character set for 5 bit numeric

<table>
<thead>
<tr>
<th>Char.</th>
<th>Binary</th>
<th>Char.</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P 2^3 2^2 2^1 2^0</td>
<td></td>
<td>P 2^3 2^2 2^1 2^0</td>
</tr>
<tr>
<td>0</td>
<td>1 0 0 0 0</td>
<td>8</td>
<td>0 1 0 0 0</td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 0 1</td>
<td>9</td>
<td>1 1 0 0 1</td>
</tr>
<tr>
<td>2</td>
<td>0 0 0 1 0</td>
<td>;</td>
<td>1 1 0 1 0</td>
</tr>
<tr>
<td>3</td>
<td>1 0 0 1 1</td>
<td>;</td>
<td>0 1 0 1 1</td>
</tr>
<tr>
<td>4</td>
<td>0 0 1 0 0</td>
<td><</td>
<td>1 1 1 0 0</td>
</tr>
<tr>
<td>5</td>
<td>1 0 1 0 0</td>
<td>></td>
<td>0 1 1 0 0</td>
</tr>
<tr>
<td>6</td>
<td>1 0 1 1 0</td>
<td>?</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>7</td>
<td>0 0 1 1 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: This coded character set is identical to the coded character set in ISO/IEC 7811-6 (derived from ASCII.)

10.2.4 Maximum number of characters for ID-1 type card

The data characters, control characters, start and end sentinels, and longitudinal redundancy check character shall together not exceed 40 characters.

10.3 Numeric track, Track 3

10.3.1 Average bit density

The average bit density (B_a) shall be 8.27 bits/mm (210 bpi) ± 8% measured in a longitudinal direction parallel to the top reference edge.

10.3.2 Flux transition spacing variation

Flux transition spacing variations are shown in Table 2 for unused encoded cards and in Table 3 for returned cards. See also Figure 10.

10.3.3 Coded character set

The coded character set for track 3 shall be 5 bit numeric as shown in Table 7

The 3 characters :<> are available for hardware control purposes and may not be used for information (data content).

The 3 characters ; = ? shall have the following meaning:

; start sentinel
= field separator
? end sentinel
10.3.4 Maximum number of characters for ID-1 type card

The data characters, control characters, start and end sentinels, and longitudinal redundancy check character shall together not exceed 107 characters.

11 Error detection

Two techniques of error detection, as described below, shall be encoded. In both techniques, the leading and trailing zeroes shall not be regarded as data characters.

11.1 Parity

A parity bit for each encoded character shall be used. The value of the parity bit is defined such that the total quantity of one bits recorded, for each character, including the parity bit, shall be odd.

11.2 Longitudinal redundancy check (LRC)

The longitudinal redundancy check (LRC) character shall appear for each data track. The LRC character shall be encoded so that it immediately follows the end sentinel when the card is read in a direction giving the start sentinel first, followed by data and the end sentinel. The bit configuration of the LRC character shall be identical to the bit configuration of the data characters.

The LRC character shall be calculated using the following procedure:

The value of each bit in the LRC character, excluding the parity bit, is defined such that the total count of one bits encoded in the corresponding bit location of all characters of the data track, including the start sentinel, data, end sentinel, and LRC characters, shall be even.

The LRC characters parity bit is not a parity bit for the individual parity bits of the data track, but is only the parity bit for the LRC character encoded as described in 11.1.
12 Location of encoded tracks

Each encoded track shall be located between the two lines as shown in Figure 11. The start of encoding is located at the centreline of the first "one" bit in the start sentinel. The end of encoding is located at the centreline of the last bit in the longitudinal redundancy check character (the last bit is the parity bit).

![Encoded track diagram](https://example.com/encoded_track_diagram.png)

dimensions in millimetres (inches)

<table>
<thead>
<tr>
<th>Term</th>
<th>Track 1</th>
<th>Track 2</th>
<th>Track 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>5.79 (0.228) maximum</td>
<td>8.33 (0.328) minimum</td>
<td>11.63 (0.458) minimum</td>
</tr>
<tr>
<td>b</td>
<td>8.33 (0.328) minimum</td>
<td>11.63 (0.458) minimum</td>
<td>15.19 (0.598) minimum</td>
</tr>
<tr>
<td>c</td>
<td>7.44 ± 1.00 (0.293 ± 0.039)</td>
<td>7.44 ± 0.50 (0.293 ± 0.020)</td>
<td>7.44 ± 1.00 (0.293 ± 0.039)</td>
</tr>
<tr>
<td>d</td>
<td>6.93 (0.252) minimum</td>
<td>6.93 (0.252) minimum</td>
<td>---</td>
</tr>
</tbody>
</table>

Note: All tracks have a minimum width of 2.54 (0.100).

Figure 11 — Location of encoded tracks
Annex A
(informative)

Read compatibility of magnetic stripes (ISO/IEC 7811-2 and ISO/IEC 7811-6)

The purpose of this annex is to explain to users the limitations of the term 'read compatibility' as mentioned in the scope of this standard, and applied to ISO/IEC 7811-2 and ISO/IEC 7811-6.

Ideally, high coercivity magnetic stripes would have significantly improved resistance to erasure but would be identical in read-back signal characteristics to 'low coercivity' magnetic stripes (i.e. those magnetic stripes conforming to ISO/IEC 7811-2). In practice, however, the difference in magnetic characteristics between high and low coercivity magnetic stripes causes the read-back signal characteristics to differ sufficiently to make evaluation of relative read-back signal amplitude dependent on the measuring equipment.

In general, it is to be expected that read-back sub-systems with greater sensitivity to shorter recorded wavelengths will produce an increase in high coercivity read-back signal amplitudes relative to low coercivity read-back signal amplitudes.

Users of ISO/IEC 7811-6 should therefore take careful note of the fact that obtaining comparable read-back signal amplitudes from magnetic stripes conforming to ISO/IEC 7811-2 is dependent upon reproducing the exact conditions of measurement given in ISO/IEC 10373-2.
Annex B
(normative)

Signal amplitude measurements

This test method in this annex will be superseded by the next edition of ISO/IEC 10373-2.

Table B.1 shows revised bandpass filter characteristics that shall be used for signal amplitude measurements performed in ISO/IEC 10373-2: 1998.

<table>
<thead>
<tr>
<th>Position</th>
<th>cycles per mm (cycles per inch)</th>
<th>flux transitions per mm (flux transitions per inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.009 (0.23)</td>
<td>0.018 (0.46)</td>
</tr>
<tr>
<td>2</td>
<td>0.025 (0.63)</td>
<td>0.05 (1.27)</td>
</tr>
<tr>
<td>3</td>
<td>10.5 (267)</td>
<td>21.0 (533)</td>
</tr>
<tr>
<td>4</td>
<td>30.0 (762)</td>
<td>60.0 (1524)</td>
</tr>
</tbody>
</table>

Figure B.1 — Bandpass filter
Annex C
(informative)

Magnetic stripe abrasivity

The purpose of this annex is to explain why the abrasive properties of magnetic stripes as it relates to head life are not among the physical characteristics governed by this standard. The absence of any specification for abrasive properties reflects the difficulty of defining the parameters of abrasive wear and devising an accurate, repeatable test for measuring abrasive properties. Although no repeatable test methods are available, there are known technologies available for extending head life such as improved head materials, magnetic stripe formulation additives, or overcoats on magnetic stripe.

A quantified stripe abrasivity would seem to be an essential prerequisite to any attempt to predict magnetic head lifetimes. However, just as there is considerable variation in the abrasive nature of different magnetic stripes, there are a multitude of magnetic stripe reader/writer environments. The variety of combinations of influences and the complexity of the manner in which these affect abrasivity makes it extremely difficult to predict magnetic head lifetimes even when the environmental, mechanical and magnetic stripe conditions are specified.

Current equipment-specific abrasivity testing is done on a purely comparative basis. It is time consuming and usually expensive in terms of the number of cards used. The results of such tests are simply rankings that show one stripe to be some degree more or less abrasive than others under the specific conditions of test. There are no accurate absolute values and the rankings may change from one set of conditions to another.

Performing a successful read or write operation on a magnetic stripe requires the stripe and magnetic head to be in contact for the whole operation. The relative movement between the magnetic head and magnetic stripe produces wear of both. Initially the abrasivity of the magnetic stripe falls rapidly with the number of head passes, so that the abrasivity of a new unused magnetic stripe may be much greater than that of a magnetic stripe which has only been written once, but as the number of head passes increases the rate of change of abrasivity decreases.

The influences affecting magnetic stripe abrasivity are known to include temperature, humidity, head material (and its state of wear and finish), head pressure, card speed, the specific physical properties of the magnetic stripe surface in contact with the head, surface roughness, and contamination on the magnetic stripe. Under field conditions dust, dirt and grease from the environment are deposited at the head/stripe interface often producing major discrepancies between abrasive wear measured under laboratory conditions and that actually achieved.

It may be seen, therefore, that not only are there difficulties involved in achieving an acceptable level of measurement uncertainty for abrasivity testing but that there are significant doubts regarding the applicability of the results of abrasivity tests on cards under laboratory conditions to predictions of performance in the real world. Unless these problems are resolved, there can be no useful standard specification and test.
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publication), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of ‘BIS Catalogue’ and ‘Standards: Monthly Additions’.

This Indian Standard has been developed from Doc: No. LTD 37 (1946).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 2323 0131, 2323 3375, 2323 9402
Telegrams: Manaksanstha (Common to all offices)

Regional Offices:
Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg
NEW DELHI 110002
Telephones: 2323 7617, 2323 3841

Eastern : 1/14 C.I.T. Scheme VII M, V.I.P. Road, Kankurgachi
KOLKATA 700054
Telephones: 2337 8499, 2337 8561, 2337 8626, 2337 9120

Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160022
Telephones: 60 3843, 60 9285

Southern : C.I.T. Campus, IV Cross Road, CHENNAI 600113
Telephones: 2254 1216, 2254 1442, 2254 2519, 2254 2315

Western : Manakalaya, E9 MIDC, Marol, Andheri (East)
MUMBAI 400093
Telephones: 2832 9295, 2832 7858, 2832 7891, 2832 7892

Branches : AHMEDABAD. BANGALORE. BHOPAL. BHUBANESHWAR. COIMBATORE. FARIDABAD. GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR. LUCKNOW. NAGPUR. NALAGARH. PATNA. PUNE. RAJKOT. THIRUVANANTHAPURAM. VISAKHAPATNAM.

Printed at Simco Printing Press, Delhi