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FOREWORD

This Handbook, which has been processed by the Structural
Engincering Sectional Committee, SMBDC 7, the composition of which
is given in Appendix D, had been approved for publication by the
Structural and Metals Division Council and the Civil Engineering
Division Council of ISI.

Steel, which is a very important basic raw materials for indus-
trfalization, had been receiving attention from the Planning Commis-
sion even from the very early stages of the country’s First Five Year
Plan period. The Planning Commission not only envisaged an increase
in production capacity in the country, but also considered the question
of even grcater importance, namecly, taking of urgent measures for
the conservation of available resources. Its expert committees came
to the conclusion that a good proportion of the steel consumed by the
structural steel industry in India could be saved if higher- efficicncy
procedures were adopted in the production and -use of steel. The
Planning Commission, therefore, recommended to the Government of
India that the Indian Standards Institution should take up ‘a Steel
Economy Project and prepare a series of Indian Standard specifications
and codes of practice in the field of steel production and utilization.

Over fifteen years of continuous study in India and abroad, and
the deliberations at numerous sittings of committees, panels and study
groups resulted in the formulation of a number of Indian Standards
in the field of stecl production, design and use, a list of which is given
in Appendix E.

" This Handbook which relates to the application of plastic theory
in design of steel structures is intended to present the important prin-
ciples and assumptions involved in the plastic method of structural
analysis, and to provide illustrative examples for the guidance of the
designer in the analysis of practical design problems.

The subject is introduced by considering the various limits of
usefulness of a steel structure, the limits that are function (in part)
of the mechanical properties of steel. Knowledge of these properties
is used in Section A to show how the maximum strength of some simple
structures may be computed. The historical development of the
plastic theory of structures is also dealt with in brief.

Section B answers the question * Why plastic design’. It is shown .
that stress is an inadequate design criterion for a large number of

7
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practical engineering structures. The experimental verification of the
plastic theory (which bases the design of structures on ‘the maximum
strength) has also been indicated. The basic theoretical work is dealt
with in Sections C and D. The concepts of plastic bending and redis-
tribution of moments are described and the methods of analysis has
been indicated. Section E contains general comments on design
procedures. Although this section covers a few examples relating to
multistorey frames, it is proposed to deal with the subject in detail in
a supplement in due course. The limitations, modifications and design
d have been described under the heading ‘Secondary Design
Consideration ’. Proper attention should be given to the effect of shear
force, axial force, local and lateral buckling, etc. Further, the beams,
columns and connections should be designed to meet the requirements
of plastic hinge formation.

" The section on design examples treats a number of building frames
of different profiles. The secondary design considerations are checked
throughout. Section 7 describes simplified procedures of solving design
problems with the usc of formulas, charts and graphs. v

In Appendix A is given a list of selected references for further
detailed information on plastic theory of structures.

What will plastic design mean ? To the ‘ sidewalk superintendent ’,
it will mean nothing. The structure will look just the same as a con-
ventionally designed structure, To the engineer, it will mean a more
rapid method of analysis. To the owner, it will mean economy, because
plastic design requires less steel than conventional design. For the
building authority, it would mean more efficient operations because
designs may be checked faster. To steel industry, it would mean more
efficient usc of its products. Finally, to a nation, it will mean better
use of her natural resources.

This Handbook is based on and requires reference to the following
publications issued by ISI:

IS: 226-1969. Specification for structural steel (standard quality)
(fourth revision)

IS: 800-1962 Code of practice for use of structural steel in general
building construction (revised)

IS: 875-1964 Code of practice for structural safety of buﬂdingé:
Loading standards (revised)

IS: 2062-1969 Specification for structural steel (fusion welding
quality) (first revision) '

IS: 4000-1967 Code of practice for assembly of structural joints
using high tensile friction grip fasteners
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In the preparation of this handbook, the technical committece has
derived valuable assistance from Dr Lynn S. Beedle, Professor of
Structural Engineerjng, Lehigh University, Bethlchem, USA. Dr Beedle
prepared the preliminary draft of this handbook. This assistance
was made available to ISI through Messrs Ramsever & Miller, Inc, Iron,
and Steel Industry Consultants, New York, by the Technical Co-operation
Mission to India of the Government of India under their Technical
Assistance Programme.

No handbook of this kind may be made complete for all times to
come at the very first attempt. As designers and engineers begin to
use it, they will be able to suggest modifications and additions for
improving its utility. They are requested to send such .valuable
suggestions to ISI which will be received with appreciation “and
gratitude.
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SYMBOLS

Symbols used in this handbook shall have the meaning assigned

to them as indicated below:

A

Ar

Au
Aw

L
L.
M

(T

[ I

i

|

L uhn

U

Area of cross-section

Area of both flanges of WF shape

Area of split-tce

Area of web between flanges

Flange width

Distance from neutral axis to the extreme fibre
Depth of section

Young's modulus of elasticity

Strain-hardening modulus = doy
d‘u

Tangent modulus

Eccentricity

Load factor of safety

. M, S

Shape factor = M=z |
Fixity factor for use in evaluating and restraint coefficient
Modulus of elasticity in shear

Modulus of clasticity in shear at onset of strain-hardening
Hinge rotation required at a plastic hinge

Portion of hinge rotation that occurs in critical (buckling) seg-
ment of beam

Moment of inertia

Moment of inertia of elastic part of cress-section

Moment of inertia of plastic part of cross-section

Number of remaining redundancies in a structure that is
redundant at ultimate load ‘

Euler length factor

Distance from flange face to end of fillet
Effective {pin end) length of column
Span length; actual column length
Critical length for lateral buckling
Moment

11
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”

M,
M,

i

Bt

o

Bl

I

g n

mowonon

I

i

Number of plastic hinges developed in a structure that is
redundant at ultimate load

Moment at the haunch potnt

End moment; a uscful maximum moment; hinge moment
Plastic moment

Plastic moment capacity of a beam section

Plastic hinge moment modified to include the effect of axial
compression

Plastic hinge moment modified to include effect of shear force
Maximum moment of a simply-supported beam
Moment at which yield point is reached in flexure

Moment at which initial outer fibre yield occurs when axial
thrust is present

Moment at the working load

Number of possible plastic hinges

Number of possible independent mechanisms
Concentrated load

Useful column load. A load used as the ‘maximum column
load’

Euler buckling load

Reduced modulus load

Stabilizing load

Tangent modulus load

Theoretical ultimate load

Working load

Axial load corresponding to yield stress level; P = Aag,
Rotation capacity

Radius of gyration

Section modulus, Ifc

Scection modulus of elastic part of cross-section
Force

Flange thickness

Stiffner thickness

Web thickness

Shear force

Shear carrying capacity of a section

4, v, w = Displacements in #, y, and 2 directions

w

Total distributed load
12
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Wexr= External work due to virtual displacement
Winr =

w
wd

N QR RRME

I I |

i

[N T T I O

I

r R BB AN

Internal work due to virtual displacement

Distributed load per unit of length

Thickness of the wet doublers

Total uniformity distributed load

Number of redundancies

Longitudinal coordinate

Distance to position of plastic hinge under distributed load
Transverse coordinate

Distance from neutral axis to centroid of half-area

Plastic modulus = I;!?
y
Plostic modulus of elastic portion
Plastic modulus of plastic portion
Lateral co-ordinate
Equivalent length of connection
Deflection
Strain
Strain at strain-hardening
Strain corresponding to first attainment of yield stress level
Measured angle change; rotation. Rotation
Poisson’s ratio
Radius of curvature
Normal stress
Lower yield point
Proportion limit
Residual stress
Ultimate tensilo strength of material
Upper yield point
Working stress
Yield stress level
Shear stress
Rotation per unit length, or average unit rotation; curvature
Curvature corresponding to first yield in flexure

13



SECTION A
INTRODUCTION

1. SCOPE

1.1 It is the purpose of this handbook to present the fundamental
oconcepts involved in plastic design and to justify its application to
structural steel frames. The methods of plastic analysis will be des-
cribed together with the design procedures that have so far been
developed. Secondary design considerations are also included.

1.2 Specific application may be made to statically loaded frames of
structural steel to continuous beams, to single-storeyed industrial frames
and to such other structures whose condition of loading and geometry
are consistent with the assumptions involved in the theory. Numerous
applications will undoubtedly be made to other types of structures
such as rings and arches, but for the time being the scope of application
is limited to the indicated structural types.

3. GENERAL

2.1 Steel possesses ductility, a unique property that no other structural
material exhibits in quite the same way. Through ductility structural
steel is able to absorb large deformations beyond the eclastic limit with-
out the danget’ of fracturc. '

2.2 Although there are a few instances where conscious use has been
made of this property, by and large the engineer has not been able to
fully exploit this feature of ductility in structural steel. As a result of
thes~ limitations it turns out that considerable sacrifice of economy is
invulved in the so-called ‘conventional’ design procedures.

23 Engincers have known of this ductility for years, and since the
1920's have been attempting to scc if some conscious use could be
made of this property in dpe51gn Plastic design is the realization of that
goal. This goal has been achicved because two important conditions
have been satisfied. First, the theory concerning the plastic behaviour
of continuous steel frames has been systematized and reduced to simple
design procedures, Secondly, every conceivable factor that might tend
to limit the load-carrying capacity to something less than that predicted

15
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by the simple plastic theory has been investigated and rules have been'
formulated to safeguard against such factors.

3. STRUCTURAL STRENGTH

3.1 The design of any engineering structure, be it a bridge or building,
is satisfactory if it is possible to built it with the needed economy and
if throughout its useful life it carries its intended loads and otherwise
performs its intended function. As already mentioned, in the process
of selecting suitable members for such a structure, it is necessary to
make a general analysis of structural strength and secondly to examine
certain details to assure that local failure does not occur.

3.2 The ability to carry the load may be termed ‘structural strength’.
Broadly speaking, the structural strength or design load of a steel frame
may be determincd or controlled by a number of factors, factors that
have been called ‘limits of structural usefulness’. These are: first
attainment of yield point stress (conventional design), brittle fracture,
fatigue, instability, deflections, and finally the attainment of maximum
plastic strength,

3.3 Strictly speaking, a design based on any one of the above-mentioned
six factors could be referred to as a ‘limit design’, although the term
usually has becn applied to the determination of ultimate load as limited
by buckling or maximum strength!®. ‘ Plastic design' as an aspect of
limit design and as applied to continuous beams and frames embraces,
then, the last of the limits — the attainment of maximum plastic strength.

3.4 Thus, plastic design is first a design on the basis of the maximum
load the structure will carry as determined from an analysis of strength
in the plastic range (that is; a plastic analysis). Secondly it consists of
a, consideration by rules or formulas of certain factors that might other-
wise tend to prevent the structure from attaining the computed maxi-
mum load. Some of these factors may be present in conventional
(clastic) design. Others are associated only with the plastic behaviour
of the structure. But the unique feature of plastic design is that the

tltimate load rather than the yield siress is regarded as the design
criterion. ‘

3.5 It has long been known that whenever members are rigidly con-
nected, the structure has a much greater load-carrying capacity than
indicated by the elastic stress concept. Continuous or ‘rigid’ frames
are able to carry increased loads above ’first yield ' becayse structural
steel has the capacity to yield in a ductile manner with no loss in strength;

*This number refers to the serial number of the selected references given in
Appendix A.

- 16
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indeed, with frequent increase in resistance. Although the phenomenon
will be described in complete detail later, in general terms what happens
is this:

As load i§ applied to the structure, the cross-scotion with the
greatest bending moment will eventually reach the yield moment.
Elsewhere the structure is elastic and the ‘peak’ moment values
are less than yield. As load is added, a zone of vielding develops
at the first critical section; but due to the ductility of steel, the
moment at that section remains about constant. The structure,
therefore, calls upon its less-heavily stressed portions to carry the
iucrease in load. Eventually, zones of vyielding are formed
at other sections until the moment capacity has been exhausted
at all necessary critical sections. After reaching the maximum load
value, the structure would simply deform at constant load.

3.6 At the outset it is essential to make a clear distinction between
elastic design and plastic design. In conventional elastic design prac-
tice, & member is sclected such that the maximum allowable bending
stress is equal to 1650 kgfjem® at the working load. As shown in
Fig. 1 such a beam has a reserve of strength of 1-65 if the yield point
stress is 2400 kgf/cm® Due to the ductility of steel there is an

‘ DESIGN BASIS
'u h Py
%% Py
Py INHERENT Py o
R f NARGIN '
: g0°, P | OF SAFETY
L Iy
. 4
OESIGN BASIS FIED us FaPy
G MAX «10% 'd‘ﬂxum’
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additional reserve which amounts to 12 to 14 percent for a wide flange
Ah?e. Thus the total inherent overload factor of safety is equal to
1-65x1-12=1-85 us an average value.

3.7 In plastic design, on the other hand, the design commences with

the wltimalz load. (As will be evident later, it is much easier to analyze

an indeterminate structure for its ultimate load than to compute the

{ield load.) Thus the working load, P,, is multiplied by the same load

l:’.tzit:,or (1-85) and a member is selected that will reach this factored
ad.

3.8 The load v deflection curve for the restrained beam is shown in
Fig. 1. It has the same ultimate load as the conventional design of the
simple beam and the member is elastic at working load. The important
thing to note is that the factor of safety is the same in the plastic design
~ of the indeterminate structure as it is in the conventional design of the
simple-beam.

3.9 While there are other features here, the important point to get in
mind at this stage is that in conventional procedures one computes the
maximum moment under the working load and selects a member such
that the maximum stress is not greater than 1650 kgf/cm? on the
other hand in plastic design one multiples the working load by
I";‘-; 1-85 and sclects a member which will just support the ultimate

3.10 Terminology — Plastic design naturally involves the use of some
new terms. Actually these are few in number, but for convenience are
listed below:

Limit Design — A design based on any chosen limit of structural
usefulness.

Plastic Design — A desigh based upon the ultimate load-carrying
capacity (maximum strength) of the structure. The term ‘ plastic’
is derived from the fact that the ultimate load is computed from
a knowledge of the strength of steel in the plastic range.

Ultimate Load (P,) or Maxsmum Strength — The highest load a
structure will carry. (It is mof to be confused with the term as
applied to the ultimate load carried by an ordinary tensile test
specimens.) In the design P, is determined by multiplying the
expected working load (P,) by the load factor (ses below).

Plastification — The development of full plastic yield of the cross-
section. -

Plastic Moment (M,)— Maximum moment of resistance of a fully-
. yielded cross-section.

18
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Plastic Modulus (Z)— Combined static moments about the neutral
axis of the cross-sectional areas above and helow the neutral axis.

Plastic Hinge — A yielded section of a beam which acts as if i
were hinged, except with a constant restraining moment.

Shape Factor (f)-— The ratio of the maximum resisting moment
of a cross-section (M,) to the vield moment (M,).

Mechanism — A ‘ hinge system’, a system of members that can
move without an increase in load.

Redistribution of Moment — A process which results in the sue-
cessive formation of plastic hinges until the ultimate load is
reached. By it, the less-highly stressed portions of a structure
also may reach the (M,)-value.

Load Factor (F)— A safety factor., The term is sclected to empha-
size the dependence upon load-carrying capacity. It is the
number by which the working load is multiplied to obtain P,

4. MECHANICAL PROPERTIES OF STEEL

4.1 An outstanding property of steel, which (as already mentioned)
sets it apart from other structural materials, is the amazing ductility
which it possesses. This is characterized by Fig. 2 which shows in
somewhat idealized form the stress-strain properties of steel in the initial
portion of the curve. In Fig. 3 are shown partial tensile stress-strain
curves for a number of different steels. Note that when the elastic
limit is rcached, elongations from 8 to 15 times the elastic limit take
place without any decrease in load. Afterwards some increase in strength
is exhibited as the material strain hardens.

4.2 Although +the first application of plastic design is to structures
fabricated of structural grade steel, it is not less applicable to steels of

~ed 000 o
'g g ;—‘:‘ LT :
2| 3000 /- /
=] 2530 . S,
nl| 20004 f| Era0mbugriem? 1 Cor= 10, 3
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higher strength as long as thiey possess the necessarv ductility.  Figure 3
attests to the ability of o wide rarce of steels to deform plastically
with characteristics similai to steel conforming to 1S:226-1969*.

4.3 It is important to bear in mind that the strains shown in Fig. 3 are

really very small.  As shown in Fig. 4, for ordinary structural steel,
final failure by rupture occurs only after » specimen has stretched some
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*Structural steel (standard quality) {fowrth revision),
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18 to 25 times the maximum strain that is encountered in plastic design.
Even in plastic design, at ultimate load the critical strains will not have
exceeded percentage elongation of about 1-5. Thus, the use of ultimate
load as the- design criterion still leaves available a major portion of the
reserve ductility of steel which may be used as an added margin of
safety. This maximum strain of 1'5 percent is a strain at ultimate
load in the structure not at working load. In most cases under working
load the strains will still be below the elastic limit.

5. MAXIMUM STRENGTH OF SOME ELEMENTS

5.1 On the basis of the ductility of steel (characterized by Fig. 2) it is
now possible to calculate quickly the maximum carrying capacity of
certain elementary structures.

As a first example take a tension member such as an eye bar (Fig. 5).
The stress is ¢ = P/4.

The load v deflection relationship will be elastic until the yield
pomt is reached. As shown in Fig. 5 deflcction at the elastic limit is
given by &, = P,L/AE.

|
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t
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' Oyl Pul
- e« S
-

’u - 6,‘

1 ‘
l . L:fncc TION
—#Cy

F16. 5 MaxiMuM STRENGTH OF AN EYE BAR (DETERMINATE STRUGTURE)
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Since the stress distribution is uniform across the section, unrest-
rloted plastic flow will set in when the load reached the value given by
P,=0a,4
This is, therefore, the ultimate load. It is the maximum load the
structure will carry without the onset of unrestricted plastic flow.

As a second example consider the three-bar structure shown in
Fig. 6. It is not possible to consider the state of stress by statics alone
and thus it is indeterminate. Consider the elastic state. From the
equilibrium c¢ondition there is obtained:

2T1+T,—_B «.(1)
where T, is the force in bars 1 and 3 and T, the force in the bar 2.

ELASTIC PARTIALLY  PLASTIC PLASTIC

§ [
6_,A Oya

EQURLIGRNIM : My 4 TpoP EQURIBRIUM: Py, =) OyA
CONTINUITY; AL,./AL,
L] " _TL 1 ry PLASTIC FLOW
fhelhe 'r 3

VIELD LT} Py 213 = 20yA

° OEFLECTION —o

Fi1c. 6 PLaASTIC AND ELASTIC ANALYSIS OF AN INDETERMINATE SYSTEM

€

The next condition to consider is continuity. For a rigid cross bar,
the total displacement of Bar 1 will be equal to that of Bar 2. Therefore:

T,.L, T,
Db _ﬁ ()
- _s (as L= 2L,) . o (d)

With this relatxonshxp between T, and T, obtained by the continuity
condition, using Eq (1) it is found that

Tymg o ()
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The load at which the structure will first yield may then be determined
by substituting in Eq (4) the maximum load which T, can reach,
namely, 6,A4.

Thus, .
Py= 2T ,= 26,4 «o(5)
The displacement at the vicld load would be determined from:
L
8y= 0’;! ’= %‘ oo “ee -..(6)

Now, when the structure is partially plastic it deforms as if it werea
two-bar structure except that a constant force equal to o,4 is supplied by
Bar 2 (the member is in the plastic range). This situation continues
until the load reaches the yicld value in the two outer bars. Notice
how casily it is possible to compute the ultimate load:

P, = 30y4 .ee oee ...(7)

The basic reason for this simplicity is that the continuity condition
need not be considered when the ultimate load in the plastic range -is
being computed.

The load-deflection relationship for the structure-shown in Fig. 6
is indicated at the bottom. Not until the load reaches that value
computed by a plastic analysis (Eq 7) did the deflections commenoe to:
increase rapidly. The deflection when the ultimate load is first reached
can be computed from: ;

Se=ayL, = ‘1%’: (8

The three essential features of this simple plastic analysis are as follows:

a) Each portion of the structure (each bar) reached a plastic yield
condition,

b) The equilibrium condition was satisfied at ultimate load, and
c) There was unrestricted plastic flow at the ultimate load.

These same features are all that are required to complete the plastie
analysis of an indeterminate beam or frame, and in fact, this simple
example illustrates all of the ossential features of a plastic analysis.

6. HISTORICAL DEVELOPMENT

6.1 The concept of design based on ultimate load as the criterion is
more than 40 years old ! The application of plastic analysis to structural
design appears to have been initiated b¥ Dr Gabor Kazinszy, a Hunga-
rian, who published results of his Tests? of Clamped Girders as early as

z



8P: 6(6) - 1972

1914, He also suggested analytical procedures similar to those
now gun’ent, and designs of -apartment-type buildings were actually
carried out.

6.2 In his Strength of Materials?, Timoshenko refers to early suggestions
to utilize ultimate load capacity in the plastic range and states as follows:

Such a procedure appears logical in the case of stcel structures
submitted to the action of stationary loads, since in such cases a
failure owing to the fatigue of metal is excluded and only failure
due to the yielding of metals has to be considered.

Early tests in Germany were made by Maier-Leibnitz* who showed that
the ultimate capacity was not affected by settlement of supports of
continuous beams. In so doing he corroborated the procedures pre-
viously developed by others for the calculation of maximum load capa-
city. The efforts of Van den Broek! in USA and J. F. Baker®10 and
his associates in Great Britain to - utilize actually the plastic reserve
strength as a design criterion are well known. Progress in the theory
of plastic structural analysis (particularly that at Brown University)
has been summarized . by Symonds and Neal’.

6.3 For more than ten years the American Institute of Steel Construc-
tion, the Welding Research Council, the Navy Department and the
American Iron and Steel Institute have sponsored studies at Lehigh
University®»®9% These studies have featured not only the verification
of this method of analysis through appropriate tests on large structures,
but have given particular attention to the conditions that should be
met to satisfy important secondary design requirements.

6.4 Plastic design has now ‘come of age’. It is already a part of the
British Standard specifications and numerous structures both in Europe
and North America have been constructed to designs based upon the
plastic method. IS:800-1962* permits the use of Plastic Theory in
the design of steel structures (see 13.5.1 of IS: 800-1962*).

*Code of practice for use of structural steel in general building construction
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SECTION B

JUSTIFICATION FOR PLASTIC DESIGN

7. WHY PLASTIC DESIGN

7.1 What is the justification for plastic design ? One could reverse the
question by asking, ‘why use elastic design?’ If the structure will
support the load and otherwise meet its intended function, are the
magnitudes of the stresses really important ?

7.2 It is true that in simple structures the concept of the hypothetical
yield point as a limit of usefulness is rational. This is because the
ultimate load capacity of a simple beam is but 10 to 15 percent greater
than the hypothetical yield point, and deflections start increasing very
rapidly at such a load. While it would seem logical to extend elastic
stress analysis to indeterminate structures, such procedures have tended
to overemphasize the importance of stress rather than strength as a
guide in engineering design and have introduced a complexity that now
seems unnecessary for a large number of structures.

7.3 Actually the idea of design on the basis of ultimate load rather than
allowable stress is a return to the realistic point of view that had to be
adopted by our forefathers in a very crude way because they did not
possess knowledge of mathematics and statics that would allow them
to compute stresses.

7.4 The introduction of welding, of course, has been a very real stimulus
to studies of the ultimate strength of frames. By welding it is possible
to achieve complete continuity at joints and connections-—and to do
it economically. The full strength of one member may thus be trans-
mitted to another. :

7.8 It has often been demonstrated that elastic stress analysis cannot
redict the real stress-distribution in a building frame with anything
fike the degree of accuracy that is assumed' in the design. The work
done in England by Prof. Baker and his associates as a forerunner to
.their ultimate strength studies clearly indicated this. .

7.6 Examples of ‘imperfections’ that cause severe irregularity in
measured stresses are: differences in beam-column connection fit-up and
flexibility, spreading of' supports, sinking of suppofts, residual stresses,
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flexibility ' assumed where actually ‘there is rigidity (and vice-versa),
and points of stress concentration. Such factors, however, usually do
not influence the maximum plastic strength.

7.7 Assuming that stress is not the most rational design criteria, in order
to justifv our further consideration of maximum strength as the design
criteria there must be other advantages. There are two such advantages:
economy and simplicity. ' ‘

7.8 Since there is considerable reserve of strength beyond the elastic
-limit and since the corresponding ultimate load may be computed quite
accurately, then structural members of smaller size will adequately
support the working loads when design is based on maximum strength.
Numerous demonstrations of this will be made later in this bandbook.

7.9 The second feature was ‘simplicity’. An analysis based upon
" ultimate load possesses an inherent simplicitv because the elastic con-
dition of continuity need no longer be considered. This was evident
from a consideration of the three-bar truss in Section A (Fig. 6) and the
examples of Section D will demonstrate this further. Also the ‘imper-
fections ° mentioned above usually may be disregarded.

7.10 As already mentioned the concept is more rational. By plastic
analysis the engineer can determine with an accuracy that far exceeds
his presently available techniques the real maximum strength of a
structure. Thereby the factor of safety has more real meaning than at
present. It is not unusual for the factor of safety to vary from 1:65 up
to 3 or more for structures designed according to conventional elastic
methods. :

7.11 Thus the application of plastic analysis should be considered
seriously because it provides a less-expensive structure, it is a similar
design office technique, and it constitutes a rational design basis. Fur-
ther, these concepts are verified by tests and (as we shall now see) they
have been used consciously or unconsciously in conventional design
practice. .

8. INADEQUACY OF STRESS AS THE DESIGN CRITERION

8.1 The question immediately arises, will it not be possible simply to

e the allowable stress and retain the present stress concept ? hile
theoretically possible, the practical answer is ‘no’. It would mean a
different working stress for every type of structure and_would vary for
differcnt loading conditions. -

8.2 To a greater extent than we may realize, the maximum strength of
a structure has always bcen the dominant design criteria. When the
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permissible working stress of 1400 kg/cm?® has led to designs that were
consistently too conservative, then that stress has been changed. Thus
the benefits of plasticity have been used consciously or unconsciously
in design. It is also evident to most engineers that present design pro-
cedures completely disregard local over-stressing at points of stress-
concentration like bolt holes, notches, etc. Long experience with
similar structures so designed shows that this is a safe procedure. Thus,
the stresses that are calculated for design Ppurposes are not true
:inagcimum stresses at all, they simply provide an index for structural
esign.

8.3 A number of examples will now be given in which the ductility of
steel has been counted upon (knowingly or not) in elastic design. It
should be borne in mind that plastic analysis has not generally been
used as a basis for determining these particular design rules and as a
result the so-called elastic stress formulas have been devised in a rather
haphazard fashion. A rational basis for the design of a complete
steel frame (as well as its details) can only be attained when the
maximum strength in the plastic range is adopted as the design
criterion.

8.4 Such examples are the following and are listed in two categories:
(a) factors that are neglected because of the compensating effect of
ductility; and (b) instances in which the working stresses have been
revised because the ‘normal’ value was too conservative. Several
examples of each are given: i

a) Factors that are neglected:

1) Residual stresses (in the cdse of flexure due to cooling after
' rolling) ; '

2) Residual stresses resulting from the cambering of beams;
3) Erection stresses;

4) Foundation settlements;

5) Over-stress at points of stress-concentration (holes, etc);
6) Bending stresses in angles connected in tension by one leg only;
7) Over-stress at points of bearjng;

8) Non-uniform stress-distribution in splices, leading to design
of connections on the assumption of a uniform distribution
of stresses among the rivets, bolts, or welds;’

9) Difference in stress-distribution arising from the °cantilever’
as compared with the ‘portal’ method of wind stress
analysis; ‘
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10) IS: 800-1962 specifies the following values for bending stresses

1 650 kgf/cm? for rolled sections,
1575 kgf/cm? for plate girders, and
1890 kgf/cm? in flat bases.

b) Revisions in working stress due to rescrve plastic strength:

1) Bending stress of 2109 kgf/cm’ (or 30 ksi) in round pins (in
AISC specification);

2) Bearing stress of 2 812 kgf/cm2 (or 40 ksi) on pins in double
shear;

3) Bending stress of 1687 kgffcm? (or 24 ksi) in framed struc-
tures at points of interior supports;

4) Bending stress of 1650 kgf/cm? and 1575 kgf/cm’ for rolled
sections and plate girders respectively (in IS: 800-1962%);
and

5) Bending stress of 1 890 kgf/cm? in slab bases (in IS: 800-1962¥).

Consider Item (a) (1) for example: All rolled members contain
residual stresses that are formed due to cooling after rolling or due to
cold-straightening. A typical wide flange shape with a typical residual
stress pattern shown in Fig. 7. When load carrying bending stresses
are applied, the resulting strains are additive to the residual strains
already present. As a result, the ’final stress’ could easily involve
yielding at working load. In the example of Fig. 7, such yielding has

=) =
§
\ W
[} {
)y 34
A 4 (+) Y +
=)

RESIOUAL STRESS  APPLIED STRESS FINAL STRESS
(a) {b) () (d) te)

T RAE

Fic. 7 RESIDUAL STRESSES IN A ROLLED BEAM SECTION

( ‘C;)de of practice for use of structural steel in general building construction
vevised
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ococutred both at the compression flange tips and at the centre of the
tension flange. Thus, it is seen that cooling residual stresses (whose
influence is neglected and yet which are present in all rolled beams)
cause yielding in the flange tips even' below the working load.

8.5 Structural members experience yield while being straightened in
the mill, fabricated in a shop or forced into position during erection.
Actually, it is during these three operations that ductility of steel
beyond the yield point is called upon to the greatest degree. Having
permitted such yielding in the mill, shop and field, there is no valid
basis to prohibit it thereafter, provided such yield has no adverse effect
upon the structure. As an illustration of item (a) (3) in the list in 8.4,
Fig. 8 shows how erection forces will introduce bending moment into a
structure prior to the application of external load (see first line for P = 0).
Although the yield-point load is reduced as a result of these ‘erection
moments ’ (in the second line of the figure, the yield-point load has been
reached for case 2), there is no effect whatever on the maximum sirength.
The reason for this is that redistribution of moment followed the onset
of yielding at the corners (case 2) until the plastic moment was reached
at the beam centre; therefore, the ultimate load moment diagrams for
cases 1 and 2 are identical.

8.6 Consider, next, the design of a riveted or bolted joint {Item (a) (8)
in 8.4]. The common assumption is made that each fastencr carries the

RS HNRERSIAEISEINNI

P=0

PwPy(2)

#ap,

CAST1-NO ERECTION FORCE CASE 2-ERECTION FORCE

F1G. 8 DEMONSTRATION THAT ERECTION STRESSES DO NOT INFLUENCE
" ULTIMATE LoaD
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same shear force. This is true only in the case of two fasteners. When
more are added (Fig. 9), then as long as the joint remains clastic, the
outer fastners should carry the greater portion of the load. For example,
with four rivets, if each rivet transmitted the same load, then, between
rivets C and D one plate would carry perhaps three times the force in
the other. Therefore, it would stretch three times as much and would
necessarily force the outer rivet D to carry more load. The actual
forces would look something like these shown under the heading ‘ Elastic *.
What eventually happens is that the outer rivets yield, redistributing
forces to the inner rivets until all forces are about equal. Therefore,
the basis for design of a rivet joint is really its ultimate load and not the
attainment of first yield.

8.7 A ‘ revised working stress’ example [ss¢ Item (b) (1) in 8.4] is shown
in Fig. 10 and is concerned with the design of a round pin. In a simple
beam with wide flanges, when the maximum stress due to bending rea

the yield point, most of the usable strength has been exhausted, How-
ever, for some cross-sectional shapes, much additional load may be
carried without excessive deflections. The relation between bending
moment and curvature for wide flange and round beams is shown in Fig. 10.
The upper curve is for the pin, the lower for a typical wide flange beam, the
non-dimensional plot‘ being such that the two curves coincide in the
elastic range. The maximum bending strength of the wide flange beam.
is 1-14 M,, whereas that of the pin is 170 M,. The permissible design
stresses (for steel with yield stress 36 ksi) according to specifications
of the American Institute of Steel Construction are 1550 kgf/cm? (or
22 ksi) for the wide flange beam and 2320 kgf/cm? (or 30 ksi) for the
round pin.

A B C O

T 28R g E-¢—-¢—-? ¢-l ja————- T=4R

XSS

ACTUAL SMEAR
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ULTIMATE REDISTRIBYU TION

FiG. 9 REDISTRIBUTION OF SHEAR IN THE FASTENERS OF A LAP JoINT
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Fi1c. 10 MaxmmMuM STRENGTH OF A RoUND PIN COMPARED WITH THAT
oF A WIDE FLANGE BEAM

Expressing these stresses as ratios of yield point stress:

o 1550

wid P —— = (61

ide flange s, ~ 2530 0-6
e, 2320

Pin: 2= =091
e, 2530

For a simply-supported beam the stresses, moments, and load all bear
a linear relationship to one another in the elastic range and thus:

P G M

P," o, M,
Therefore, the moment at allowable working stress (M,) in the wide
flange beam is 0:61 M,,; for the pin, on the other hand, M,= 091 M,.
What is the true load factor of safety for each case?

P M 114 M
id . = - Mes Max _ Y 1-8
Wide flange: F P, M, 061 M, 7
P 170 M
P. M F —3 -;‘_{..‘.’ = y
" P, ~ 091 M,
The exact agreement between the true factors of safety: with respect to

ultimate load in the two cases, while somewhat of a coincidence, is indi-
.cative of the influence of long years of experience on the part of engineers

= 187
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which has resulted in different permissible working stresses for various
conditions resulting in practice. Probably no such analysis as the
foregoing influenced the choice of different unit stresses that give identical
factors of safety with various sections; nevertheless, the choice of such
stresses is fully justified on this basis. When years of experience and
common sense have led to certain empirical practices these practices are
usually justified on a scientific basis.

8.8 Permitting a 20 percent increase in the allowable working stress at
points of interior support in continuous beams represents another case
in which both experience and a ‘ plastic analysis’ justify a revision in
working stresses.

9. EXPERIMENTAL VERIFICATION

9.1 In the previous clauses some of the important concepts of the plastic
theory are described. How well does structural behaviour bear out the
theory ? Do structures really contain the ductility assumed? If we
test 2 ‘ full size ' structure with rolled members will it actually carry the
load predicted by plastic analysis ?

9.2 The important assumptions made with regard to the plastic beha-
viour of structures are recapitulated in Fig. 11). In Lecture 4 of
Ref 12 (see Appendix A), the experimental confirmation of these assump-
tions is given, demonstrating the ductility of steel, the development of
plastic hinges in beams and connections, and redistribution of moment.
In the last analysis, the most important verification of plastic theory is
that given by the results of full-scale tests and some of these will now
be presented.

9.3 Typical structures were tested both in USA and other countries.
The structure carried the predicted ultimate load, the load-deflection
curve being shown in Fig. 12.

9.4 Further tests conducted on frames fabricated from rolled sections
have shown that the actual strength of even the weakest structure was
within 5 percent of its predicted ultimate load an agreement much better
than obtained at the so-called ‘elastic limit '4.15,10,89,40.41  Tn tests on
beams with three supports, applying the vertical load, the central support
was raised until the yield point was first reached, with the result that
application of the first increment of external load caused the structure
to yicld. In spite of this, the computed ultimate load was attained.
In the tests conducted on pinned and fixed basis and with flat, saw
tooth and gabled roofs, the ultimate load computed by the plastic
theory was reached and in numerous cases it exceeded$s.i3.4¢,
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Fic. 11 AssuMPTIONS MADE IN REGARD TO PLASTIC
BEHAVIOUR OF STRUCTURES

10. THE CASE FOR PLASTIC DESIGN

10.1 As summarized in the preceding paragraphs the results of tests have

verified the theory of plastic analysis.

Is the engineer now justified in

giving further attention to the method of plastic analysis, in studying
it, a.nd m applying it to the appropriate design problems? The answer

is yes »

The case for plastic deengn is illustrated by the following observa-

tions:

a) The reserve in strength above conventional working loads is
considerable in indeterminate steel structures. Indced, in some
instances as much load-carrying capacnty is disrcgarded as is

used in conventional design.
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Fic. 12 LoaD-DEFLECTION CURVE OF A TEST FRAME

b) Use of ultimate load as the design criterion provides at least
the same margin of safety as is presently afforded in the elastic
design of simple beams (Fig. 1).

c) At working load the structure is still in the so-called elastic range
(Fig. 1).

d) In most cases, a structure designed by the plastic method will
deflect’ no more at working load than will a simply-supported
beam designed by conventional methods to support the same
load (Fig. 1).

¢) Plastic design gives promise of economy in the use of steel, of
savings in the design office by virtue of its simplicity, and of
building frames more logically designed ‘for greater over-all
strength.

Tt is important to beAr in mind that dependence may be placed
upon the maximum plastic strength only when proper attention is given
to ‘details’. These are the secondary design considerations mentioned
earlier and treated in Section E,
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SECTION C
FLEXURE OF BEAMS

11. ASSUMPTIONS AND CONDITIOINIIS

11.1 Certain of the fundamental concepts of plastic analysis were pre-
sented in Section A (see 3 and 4). The examples there, however, were
limited to cases of simple tension and compression. The next objective
is to determine how a beam deforms beyond the clastic limit under the
action of hending moments, that is, to determine the moment-curvature
(M —¢) relationship.
The assumptions and conditions used in the following development are:
a) strains are proportional to the distance from the necutral axis
(planc sections under bending remain plane after deformation).

b) the stress-strainrelationship is idealized to consist of two straight lines:
c=F (U<e<ey)
o=0, (ey<e< o) .. «..{9)
The complete stress-strain diagram is shown in Fig. 4 and
is shown in an idealized form in Tig. 2. The properties in

compression are assumed to be the same as those in tension.
Also, the behaviour of fibres in bending is the same as in tension,

¢) The equilibrium conditions are as given by Eq (10):

Normal force: P = adA ]

Area : ...(10)
Moment : M =j cdA.y j

Area

where ¢ 15 the stress at distance y from the neutral axis.

d) Deformations are sufficiently small so that ¢ =tan ¢ (¢ =
curvature).

12. BENDING OF RECTANGULAR BEAM

12.1 The moment-curvature relationship in the plastic: range and the
nagnitude of the maximum plastic moment are developed by followi
the same processes as in clastic analysis, that is, consider the deform
structure and obtain the corresponding curvature and moment. The
development of strain and stress distribution as a rectangular beam is
bent in successive stages beyond the elastic limit (Stage 1) and up to
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Fic. 13 Prastic BENDING OF RECTANGULAR BEAMS

the plastic limit (Stage 4) is shown in Fig. 13. The strain distribution
is first selected or assumed and this fixes the stress-distribution.

12.2 Let us now trace the stages of yield stress penetration in a rect-
angular beam subjected to & progressive increase in bending moment.
At the top of Fig. 13 is replotted for refercnce purposes the stress-strain
relationship. At Stage 1, as shown in the next line of Fig. 13, the strains
have reached the yield strain. When more moment is applied (say to
Stage 2), the extreme fibre strains are twice the elastic limit value. The
situation is similar for Stage 3 (eaes = 4¢,). Finally, at Stage 4 the
extreme fibre has strained to .

12.3 What are ‘the stress distributions that correspond to these strain
diagrams ? These are shown in the next line of Fig. 13. As long as the
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strain is greater than the yicld value e,, as could be noticed from the stress-
strain curve that the stress remains constant at g, The stress distri-
butions, therefore, follow directly from the assumed strain distributions.

As a limit we obtain the ‘ stress block *— a rectangular pattern which
is very close to the stress distribution at Stage 4.

A new term introduced in Fig. 13 is the curvaturec. This is the
relative rotation of two sections a unit distance apart, According to
the first assumption (as in elastic bending):

g=-=5=2 (1)

where P = radius of curvature and ¢, the strain at a distance y from the
neutral axis. Just as it is basic to the fundamentals of elastic analysis,
the relationship of Dbending moment to this curvature, ¢, is a basic
concept in plastic analysis.

The cxpressions for curvature and moment (and, thus, the resulting
M —¢ curve) follow directly from Fig. 13. Curvature at a given stage
is obtained from -a particular stress-distribution®. The corresponding
moment-value is obtiained by integration of stress-areas. The derivation
of expressions for curvature and moment now follow.

Stage 2 of the example shown in Fig. 13 is shown in Fig. 14. From
Eq 11 the curvature thus becomes:

) Ey, ' e «..(12)
where y, is the ordinate to the ncutral axis to the farthest still elastic
fibre.

To compute the bending moment for this same Stage 2, the stress
distribution of Fig. 14 is divided into parts in Fig. 15. The moment of

[
l

T'“ . .‘m jj eCpts—__§
¢ +—-— ("‘ “') JE/.X.h g =
A €
LN e
ody

YIELD ZONE MOMENT STRAIN STRESS

F1¢. 14 STRESS DISTRIBUTION IN A PARTIALLY PLASTIC RECTANGULAR
CROSS-SECTION

*Even though curvature is a moasure of strain distribution, the stress-distribution
is used, since in the clastic range, the stress varies lincarly with strain.
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é;f,,. ‘é?ﬂ _‘ | ==K
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Fic. 15 STRESs ELEMENTS OF A PARTIALLY PrasTtic DESIGN

resistance may thus be considered as being made up of an clastic (a,S,)
and a plastic part (g,Z,), or:

M = Cyugg'*'CyZp = 0'yS¢+0yZ"‘°'yZ¢ vea ---(13)
where the subscripts ‘¢’ and ‘ p ’ refer to the elastic and plastic portions
of the cross-section, respectively.

Equation 13 may also be derived direetly from Eq 10. Referring to
Fig. 14:

M =j‘ cdA.y
4
Yo 42 Yo y d/2
= Zj‘ o.bdy.y+25 c,.bdy.y = ZJ o,;—.bdy.y-{-ZI o,.bdy.y
0 Yo 0 Yo Yo
Y,
ZI °y’.bdy dj2
= gy ———— +0,2 y.bdy ...(13a)
Yo Yo

The quantity Z is a property of a cross-section that corresponds in
importance to the section modulus, S. It is called the plastic modulus,
and (for symmetric sections) represents twice the statical moment
(taken about the neutral axis) of the plastic section area above or below
that axis. General methods for computing Z will be discussed later.

For the rectangular section, necessary values for section modulus,
S, and plastic modulus, Z for use in Eq 13 are:

z, = 2by, %0 = by}

b(2y)* _ 2 =2
S‘ - 6 3 byzo - 3 Z‘
Z’ = Z—Z.
bd?
2= w(14)
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Thus, the bending moment in terms of Z is given by:

m=o,(z-%) .. .(15)

The maximum moment is obtained when the elastic part is reduced to
zero or: ,

My=o0,2 . .+.{16)
M, is called the ‘ plastic moment '

From the equations just derived for curvature and moment, we are
now in a position to write the desired moment-curvature relationship.
In terms of y,, then:

2
M=ugq (Z—- bTy" «{17)
In terms of ¢, using Eq 12:
" be?
M=o, (Z— 3—5%,) (¢y < ¢ <©) e (18)

The following non-dimensional relationship is obtained by dividing both
sides of Eq 18 by M, = ¢, S:

M 3 [ 1 (¢ )’]

= o - «.(19

= 7['" T )
The resulting non-dimensional M —¢ curve for a rectangle is shown in
Fig. 16. The numbers in circles in Fig. 16 correspond to ‘stages’ of

R =T, T _ @
[ L ® 9

|+ /e
[ Eq ¥

s U/ /

M'»
NI e
o 1 2 & [ 8 10

5
%’
F1G.- 16 NON-DIMENSIONAL MOMENT-CURVATURE RELATIONSHIP FOR
RECTANGULAR BEAM
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Fig. 13. Stage 4, approached as a limit, represents complete plastic yield
of the cross-section, where M, = 6,Z. Note that there is a 50 percent
increase in strength above the computed elastic limit (Stage 1) due to
this ‘ plastification’ of the cross-section. This represents one of the
sources of reserve strength beyond the elastic limit of a 1igid frame.

The ratio of the plastic moment (M) to the yield moment (M,),
representing the increase of strength due to plastic action, will be a
function of the cross-section form or shape. Thus the ‘shape factor’
is given by:

M oZ 2
1 ——9 == ¥y = —
S M,"35"73 ...(20)
. . bds | bd?
For the rectangular beam being considered, f=— + = 1-50 as
indicated in Fig. 16. 4

13. BENDING OF WIDE FLANGE BEAM

13.1 The action of a wide flange beam under bending moment is dia-
grammatically shown in Fig. 17. If it is assumecd that all of the material
in a wide flange shape is concentrated in the flanges then (when the
elastic limit is reached) the compression flange shortens at constant load
and the tension flange lengthens at constant load. The resulting
moment is, therefore, constant; the member acts just like a hinge except
that deformation occurs under constant moment (the plastic-hinge
moment).

13.2 A more realistic picture of the moment-curvature relationship of
a wide flange shape is shown in Fig, 18, Point 1 is the clastic limit; at
Point 2 the member is partially plastic and at Point 3 the cross-section
approaches a condition of full plastic yield.
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Fic. 17 IpmaLizep MOMENT-CURVATURE RELATIONSHIP FOR Wipe
FLANGE Brax
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Fic. 18 TypricalL THEORETICAL MOMENT-CURVATURE RELATIONSHIP OF
WIDE FLANGE BEAM

The magnitude of the moment, M,, may be computed directly from
the stress distribution shown for Point 3. As shown in Fig. 19 it is
equal to the couple created by the tensile and compressive forces. The
moment due to each of these forces is equal to the product of the yield
stress, oy, and the area above the neutral axis (4/2) multiplied by the
distance § measured to the centre of gravity of that area.

ELASTIC PLASTIC
o dy
| A |
s c— C,
- T - - I R
¥
| o J
“My OyS Mp 3 Oy %-;4 = Oy2
N

F1G. 19 ELASTIC AND PLASTIC LiMIT MOMENTS
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Thus:
A
My,=2gq, 5 7= o, 45 ... ...(21)
The quantity {V is called the ‘ plastic modulus’ and is denoted by Z;
therefore, as before,

My=o,2 ...(16)
The plastic modulus, Z, is thus equal to the combined statical moments
of the cross-sectional areas above and below the neutral axis, since the
stress at every point on these areas is the same.

The moment-curvature rclationship may be developed for wide-
flange shapes by the same procedvre as outlined for a rectangular cross-
section. Due to voriation of width of scction with depth, scparate
expressions are necessary when yielding is limited to the flanges and
when yielding has penctrated to the web.

For Casc 1, in which the yield zone has penetrated part way through
the flanges (Fig. 20), the non-dimensional M —¢ curve becomes:

%,‘"’ iy(l“ 2‘;3)+ i’f [1- ; (%;)“] o an(22)
(<% < wnzn)

For Case 2, in which vielding has peoetrated through the flanges and into
the web (Fig. 21), the non-dimensional M —¢ curve becomes:

RS
(J/‘g/_z)\- < gy <°0) ...(23)

Lr~b_-‘ ‘6,

;m—-—-——r } 7
(14
. B __.__..L_J_ —
- PyE
R

Fi1c. 20 PrasTic STRESS DISTRIBUTION IN WIDE FLANGE BEAM —
CASE 1: PARTIAL YIELDING
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Fic. 21 PrasTic STRESS DISTRIBUTION IN WIDE FLANGE BEAM -—
’ CAsE 2: PARTIAL YIELDING

x

The curve resulting from Eq 22 and 23 is shown in Fig. 18 for a
typical wide flange shape. (The stress-distributions correspond to the
numbered points on the M —¢ curve) It will be noted that the shape
factor is smaller than for the rectangle (compare Fig. 16), the average
value of *f’ for all wide flange beams being 114, Correspondingly
there is a more rapid approach to M, when compared with rectangle.
As a matter of fact when the curvature is twice the clastic limit value
(Stage 2 of Fig. 18) the moment has reached to within 2 percent of the
full A, -value.

14. PLASTIC HINGE

14.1 The reason a structure will support the computed ultimate load is
that plastic hinges are formed at certain critical scctions. What is the
plastic hinge? What factors influcnce its formation? What is its
importance ?

The M —¢ curve is characteristic of the plastic hinge (Fig. 18). Two
features are particularly important:

a) the rapid approach to M = M, = o,Z; and

b) the indefinite increase in ¢ at constant M.

An idealized M —¢ curve is obtained by assuming (for a wide flange
shape) that all of the matcrial is concentrated in the flanges as shown
in Fig. 17. The behaviour shown there is of basic importance to plastic
analysis. According to it, the member remains elastic until the moment
I M,. Thereafter, rotation occurs at constant moment; that is,
the member acts as if it were hinged except with a constant restraining
moment, M,. This, then, is the plastic hinge.

According to the idealization of Fig. 17, plastic hinges form at
discrete points of zero length. Actually the hinge extends over that part
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of the beam whose bending moment is greater than M,. That length
is dependent on the loading and geometry. It-is justified to neglect this
¢ distribution ’, however, and the length of hinge is assumed_to be zero.
Closely rélated to the plastic hinge is the plastic modulus, Z. It has
already been ddfined for the symmetrical sections as twice the statical
moment about the neutral axis, of the half sectional area. As noted
earlier, Z = Ay. For wide flange beam shapes, the quantity y may be
determined directly from the properties of split tces and thus:

d :
Zyide flange = A(E' —y,) see .o «.(24)

where y, is the distance from the flange to the centre of gravity.

The shape factors, already defined as f = Z/S, varies for wide flange
shapes from 1-09 to 1-22. The mode is 112 and the average is 1-14 for
I shapes. Examples of the ratio of Z/S = f for symmetrical shapes other
than the wide flange are shown in Fig. 22 and 23.

For sections with symmetry only about an axis in the plane of
bending, the neutral axis at the plastic moment condition follows directly
from Eq -10. The general definition for Z is ‘ The combined statical
moments of the cross-sectional arcas above and below the neutral axis’.
Since P == 0, and ¢ = o,, for equilibrium the area above the neutral
axis should equal that below. Thus, fir a triangular-section in Fig. 22
the clastic neutral axis is at a distance of 2/3d from the toe, while the

plastic ’ neutral axis is at a distance of d4/2.

—

d

AR

F1G. 22 NEUTRAL AXIS OF A TRIANGULAR SECTION
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Fic. 23 SHAPE FACTORs OF COMMON SYMMETRICAL SECTIONS
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In addition to the shape factor whdse influence on strength has
already been described, several other factors influence the ability of mem-
bers to form plastic hinges. Some of these factors are important from
the design point of view (such as shear, axial force, instability) and are
treated in Section E. Others are primarily of academic fnterest in so far
as routine design applications are concerned. Factors affecting the
bending strength and stiffness of beams have been listed in Chapter 2 of
Ref 9 (see Appendix A) with further reference being made to other
sources of information on cach factor.

The following definitions or principles briefly summarize this clause
and are important to a later understanding of plastic analysis:

a) A plastic hinge is a zone of yielding due to flexure in a structural
member — Although its length depends on the geometry and
loading, in most of the analytical work it is assumed that all plastic
rotation occurs at a point. At thosc sections where plastic hinges
are located, the member acts as if it were hinged, except with a cons-
tant rastraining moment M, (Fig. 17).

b) Plastic hinges form at points of maximum moment — Thus in a
framed structure with prismatic methbers, it would be possible
for plastic hinges to form at points of concentrated load, at the
end of cich member mieeting at a conuection involving a change
in gecometry, and at the point of zero shear in a span under dis-
tributed load.

¢) The plastic moment, M, ecquals o,Z.

d) The shape factor ( f=2Z[S= IA/Z) is one source of reserve strength
beyond the elastic limit.

Application of the plastic hinge concept to analysis is illustrated
in 15. '

15. REDISTRIBUTION OF MOMENT

15.1 The second factor contributing to the reserve of strength is called
‘ redistribution of moment ’ and is due to the action of the plastic hinges.
As load is added to a structure eventually the plastic moment is reached
at a critical section — the section that is most highly stressed in the
-lastic range. As further load is added, this plastic moment value is
maintained while the scction rotates, Other less highly-stressed sections
maintain equilibrium with the increased load by a proportionate increase in
moment. This process of redistribution of moment due tp the successive
formnation of plastic hinges continues until the ultimate load is reached.

15.2 This is exactly the process that took place in the case of the three-
bar truss of Fig. 6 except that tensile forces instead -of ‘moments were
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involved. When the force in Bar 2 reached the yield condition it re-
mained constant there while the forces continued to increase in Bars 1
anlads 3. The ultimate load was reached when all critical bars became
plastic.

15.3 The phenomenon of redistribution of moment will now be illustrated
with the case shown in Fig. 24, a fixed ended beam with a concentrated
load off-centre. As the load P is increased the beam reaches its elastic
limit at the left end (Stage 1). The moments at sections B and C are
less than the maximum moment. Note that in this example we will con-
sider the idealized M —¢ relationship as shown in the lower left-hand
portion. (The dotted curve shows the more ‘ precise’ behaviour).

As the load is further increased, a plastic hinge eventually forms at
Section B, The formation of the plastic hinge at A will permit the
beam to rotate there without absorbing any more moment. Referring
to the load-deflection curve immediately below the moment diagrams
the deflection is increasing at a greater rate.

o

vy

STAGE 1 STAGE 2 STAGE 3

P

2™
we't '\EJ::
([ Pw \a* \e

¢ —» DEFLECTION —w

T
A Y
Y
1
e

Fi1G. 24 RE-DISTRIBUTION OF MOMENTS
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Eventually,' at Stage 3, when the load is increased sufficiently to
form a plastic hinge at Point C, all of the available moment capacity of
thg beam will have been exhausted and the ultimate load reached.

It is evident from the load-deflection curve shown in the lower part
of the figure that the formation of each plastic hinge acts to remove one
of the indeterminates in the problem, and the subsequent load-deflection
relationship will be that of a new (and simpler) structure. In the elastic
range, the deflection under load can be determined for the completely
elastic beam. Starting from Point 1 the Segment 1-2 represents the
load-deflection curve of the beam in sketch b loaded within the elastic
range. Likewise.the load-deflection curve of the beam in sketch ¢ looks
similar to the portion 2-3.

Beyond Stage 3 the beam will continue to deform without an increase
in load just like a link mechanism if the plastic hinges were replaced by
real hinges. This situation is called a-‘ mechanism’ in the somewhat
special condition that motion is possible without an éncrease in load.

Two further fundamental concepts in addition to the four listed
in 14 are in summary of this clause and are demonstrated by Fig. 24:

a) The formation of plastic hinges allows a subsequent redistribution
of moment until M, is reached at each critical (maximum)
section.

b) The maximum load will be reached when a sufficient number of
plastic hinges have formed to create a mechanism.

On the basis of the principles just discussed one may readily visua-
lize how to compute the ultimate load: Simply sketch a moment diagram
such that plastic hinges are formed at a sufficient number of sections to
allow ‘ mechanism motion’. Thus in Fig. 25, the bending moment dia-
gram for the uniformly-loaded, fixed-ended beam would be drawn such

Wys wi
Lg_‘_r
2 / —?#n“,

O @) vo ugL
~7' Wy

Fi1G. 25 MOMENT DIAGRAM AT VARIOUS STAGES FOR FIXED-ENDED BEAM
wiTH UxIrFORMLY DISTRIBUTED LoAD

r

:2Mp
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»
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that M, is reached at the two ends and the centre. In this way a
mechanism is formed. By equilibrium:

w,L

8 ='2M’
16M,
W =—2

How does this compare with the load at first yield ? At the elastic
limit (see dotted moment-diagram in Fig. 25) we know from a considera-
tion of continuity. that the centre moment is one-half the end moment.
Thus:

w,L M, 3M,
——-—-8 =z Zuy+—-2-_.-——-2
12M
Wy = —‘L“!

Therefore, the reserve strength due to redistribution of moment is:
W, 16M,/L 4 M,

W;T12M,JLT 3 M,
Considering the average shape factor of wide flange beams, the total -

reserve strength due to redistribution and shape factor (plastification)
is:

W, 4

—W’—,=§ X 1°14 = 1.52
For this particular problem, then, the ultimate load was 52 percent
greater than the load at first yield, representing a considerable margin
that is disregarded in conventional design.

There are other methods for analyzing a structure for its ultimate
load, in particular the * Mechanism Mecthod * (to be described later) which
starts out with an assumed mechanism instead of an assumed moment
diagram. But in every method, there are always these two important

featmes:
a) the formation of plastic hinges, and
b) the development of a mechanism.
With these fundamental concepts regarding the mechanical pro-

perties of steel and the flexure of beams we are now in a.position to
examine the methods of plastic analysis.



SECTION D

PLASTIC ANALYSIS

16. FUNDAMENTAL PRINCIPLES

16.1 With the evidence presented in Section B that full-size structures
behave as predicted by plastic theory and having considered in Section C
the plastic behaviour of beams, we mav now proceed to a4 consideration
of the methods of plastic analysis. The objective of (his Section is to
describe brieflv the fundamental principles upon which plastic analysis
rests and then to describe how these principles are used in anadvzing
continuous bcams and frames.

The basis for computing the *ultimate load’ (or maximum plastic
strength) is the strength of steel in the plastic range. As shown in 3,
structural stecl has the ability to deform plastically after the yicld-point
is reached. The resulting flat stress-strain characteristic assures depend-
able plastic strength, on the one hand, and provides an effective * limit *
to the strength of a given cross-section making it independent of further
deformation. Thus, when certain parts of a structure rcach the yield
stress, thev maintain that stress while other less-highly stressed pare,
deform until they, too, reach the yicld condition.  Since all eriticad sec-
tions eventually reach the yield condition, the analvsis is considerably
simplified because only this fact need be considered. It is nnt of interest
how the stresses are redistributed; we should only ascertain that they
did. We arc thus freed from the often laborious calculations that resul
from the nccessity of considering the ‘ continuity ' conditions that ac
essential to clastic analysis.

While elastic and plastic analysis were compared at the outset in 2
from the design point of view, it is of .interest now, to compar: them
as regards to the fundamental conditions satisfied by each.

Whatever method of plastic analysis is used, it should satisfv the
following three conditions that may he deduced from what has been sl
in 15:

a) Mechanism condition (ultimate load is reached whea a niecha

nism forms),

b) Equilibrium condition (the structure must be in equilibruum),

and

¢) Plastic moment condition (the moment may nowhere be greater

49



SP: 6(6) - 1972

Actually these conditions are similar to those in elastic analysis which
requires a consideration of the comtinusty, the egquilibrium and the limits:
stress conditions. The similarity is demonstrated in Fig. 26. Wit
regard to continuity, in plastic analysis, the situation is just the reverse.
Theoretically, plastic hinges interrupt continuity, so the requirement
is that sufficient plastic hinges form to allow the structure (or part of it)
to deform as a mechanism. This could be termed a mechanism condi-
tion. The equilibrsum condition is the same, namely, the load should
be supporteg. Instead of initial yield, the limit of usefulness is the
attainment of plastic hinge moments, not only at one cross-section but
at each of the critical sections; this will be termed a plastic moment
condition.

As will be discussed further, two useful methods of analysis take
their name from the particular conditions being satisfied:

Mechanical condition
a) Mechanical Mgthod

satisfies
Equilibrium condition
b) Statical (Equilibrium) Method —-8gtistis

Plastic moment
condition

In the first method, a mechanism is assumed and the resulting equilibrium
equations are solved for the ultimate load. This value is only correct
if the plastic moment condition is also satisficd. On the other hand, in
the statical or *equilibrium’ mcthod, an equilibrium moment diagram
is drawn such that M < M,. The resulting ultimate load is only
the correct value if sufficient plastic hinges were assumed to create a
mechanism.

ELASTIC  ANALYSIS PLASTIC ANALYSIS
F~—r1 |coNTNUITY |MECHANISM | St
L 1 4
C ) ( )

EQUILIBRIUM

LESS THAN M, oLasTIC
A
VQQ YIELD MOMENT A
My

F1G. 26 CONDITIONS FOR ELASTIC AND PLASTIC ANALYSIS
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" Having considered these three neccssary and sufficient conditions,
it will next be of interest to examine certain additional principles and
assumptions upon which the plastic methods rest. Although the plastic
design procedures do not requirc a direct use of these principles (or
assumptions) they will be stated for background purposes.

a) Virtual Dlsplacéments

The principle of virtual displacements is as follows*:

If a system of forces in equilibrium is subjected to a virtual
displacement, the work done by the external forces equals the
work done by the internal forces. -

This is simply a means of expressing an cquilibrium condition. If the
internal work is called W, and the external work is called Wz, we may
write:

Wg =W, «.(25)
Application of this equation will be demonstrated in 18.

b) Upper and Lower Bound Theorems

It is not generally possible to solve all three of the necessary oondi-
tions (mechanism, equilibrium and plastic moment) in one operation.
Although the Equilibrinm condition will always bhe satisfied, a solution
arrived at on the basis of an assumed mechanism will give a load-carrying
capacity that is either correct or foo high. On the other hand, one that
is arrived at by drawing a statical moment diagram that does not violate
the plastic moment condition will either be correct or foo low. » Thus,
depending on how the problem is solved, we will obtain an upper ‘ limit ’
or ‘ bhound ' below which the correct answer should certainly lie, or we
will determine a lower ‘limit * or ‘ bound ' which is certainly less than
the true load empacity.

The important upper and lower bound theorems or principles were
proved by Greenberg and DPrager. When both theorems have been
satisfied in any given problem, then the solution is in fact the correct
one. The two principles will now be stated and illustrated.

Upper Bound Theorem — A load computed on the basis of an
assumed mechanism will always be greater than or at best equal
to the true ultimate load.

Consider - the fixed-ended beam in Iig. 27(A). If we assume a mecha-
nism on the basis of a guess that the plastic hinge in the beam forms at

*Refcrence 21 contains an excellent discussion of the principle of virtual dis-
placcments. :
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27A Upper Bound Theorem 27B Lower Bound Theorem

Fic. 27 UPPER AND LOWER BOUND THEOREMS

B, then the equilibrium moment diagram would be as shown by the solid
line in Fig. 27(A). The beam would have to be reinforced over the length
BB’ to carry the ‘ trial ’ load, W,; the load is too great. Only when the
mechanism is selected such that the plastic mnoment value is nowhere
exceeded (see the dotted lines) is the correct (lowest) valuc obtained.

Lower Bound Theorem — A load computed on the basis of an
assumed equilibrivm moment diagram in which the moments are
not greater than M, is less than or at best equal to the true
_ultimate load.

Illustrating with the fixed-ended beam of Fig. 27(B), if we sclect the
redundants such that the moment is never greater than M,, then the
corresponding trial load, W,, may be less than W,, [Fig. 29(13)]. We
have not used the full load capacity of the beam because the centre line
moment is less than M,. Only when the load is increased to the stage
where a mechanism is formed (dotted) will the correct value be obtained.

Thas, if the problem is approached from the point of view of assum-
ing a mechanism, an upper bound to the conrrect load will be obtained.
But this could violate the plastic moment condition, On the other hand,
if we approach it from the aspect of making arbitrary assumptions as
to the moment diagram, then the load might not be-sufficiently great to
create a mechanism.

Incndentally Fig. 27(B) demonstrates that conventional (elastic)
design is a ‘lower bound ’ solution. This is the explana.tmn as to why
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the ‘ local yielding ' involved in many of our current design assumptions
has not resulted in unsafe structures.

It is scen, then, that the ‘statical (equilibrium)’ method of analysis
is based on the lower bound principle. The mechanism method, on the
other hand, represents an upper limit to the true ultimate load.

c) Further Assumptions — In addition to the assumptions of 11
the following further assumptions are nccessary:

a) The theory considers only first order deformations. The defor-
mations arc assumed to be sufficiently small such that equilibrium
conditions can be formulated for the undeformed structure (just
as in the case of eclastic analysis).

b) Instabilitv of the structure will not occur prior to the attainmont
of the ultimute load (this is assured through attention to secon-
dary design considerations).

¢) The connections provide full continuity such that the plastic
moment, M,, can be transmitted (sec Scection E).

d) The influence of normal and shearing forces on the plastic
moment, Mpr, are neglected (see Scetion E  for lwccssary
modifications).

¢) The loading is proportional, that is, all loads are such that they
increase in fixed proportions to one another. However, inde-
pendent increase can be allowed, provided no local failure occurs
(see Sectior E for repeated loading).

With ﬁi&»l’rincii»lu% of Virtual Displacements, the Upper and Lower
Bouid Theorems, and the additional assumptions noted above, it is now
possible to consider the various methods of analysis.

17. STATICAL METHOD OF ANALYSIS

17.1 As noted in 16, the ‘statical’ method of analysis is based on the
Lower Bound Priuciple.  The procedure is first described and then several
examples are solved.

17.2 Method of Analysis by Statical Method — By the following
procedure find an cequilibriwin moment diagram in which M < M, such
that 4 mechanism is formed:

a) Select redundant(s),

b) Draw moment diagram for determinate structure,

¢) Draw moment diagram for structure loaded by redundant(s),

d) Sketch composite moment diagram in such a way that a mecha-

nism is formed (sketch mechanism),
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e) Coanpute value of ultimate load by solving equilibrium equation,
an

f) Check to see that M < M,.
Example 1:

Fized-endod, uniformly loaded beam, Fig. 25
($ndstermanate to second degree)

The problem (already treated in 15) is to find the ultimate load,
W, that a beam of moment capacity M, will support. For redun-
dants, one could select the end moments. The resulting moment
diagram for the determinate structure would be the solid parabola
in Fig. 25, with:

L
“;" ...(26)

The moment diagram for the structure loaded by the redundants
would be a uniform moment along the beam.

The composite moment diagram is actually what has been
sketched in Fig. 25 since, we can immediately see that a hinge must
also form at point 2. Notice that if the ‘ fixing line ' had been drawn

w,L .

in a.ny‘ other position than that which divides M, = —— in half,

then no mechanism would have been formed. The correct mecha-
nism is sketched in the lower portion and M = M, at the locations
of maximum moment.

The equilibrium equation, from Fig. 25 (at location 2), is:

W.L
8 = MP+MP

and the ultimate load is given by:

16M :
W=t . : e (27)

M, =

Exampls 2:

Two-span continuons beam, Fig. 28
(ndetorminated to first degres)
The redundant is selected as the moment at CW,). The
resultant loadings are shown in Fig. 28(a) and 28(b). '
Moment diagrams due to loads and redundants are shown in
Fig. 28(c) and 28(d). :
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DIAGRAM

MECHANISM

Fi1c. 28 PrastiIc ANALYSIS OF Two-SPAN CONTINUOUS BEaM

(StaTicAL METHOD)

The composite moment diagram is sketched in Fig. 28(e) in such

a way that the necessary mechanism is formed, Fig. 28(f), with
maximum moments, M,, at locations B, C and D.
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The equilibrium equation is obtained by summing the moments
at location B:

WL
Bl o Myt My
6M,
P, =77 ...(28)

Since all three of the necessary conditions are satisfied (Mechanism,
Equilibrium, and Plastic Moment), this is the correct answer. Further
examples of the use of this method are given in Section F, Design
Examples 1, 2, 4 and 6.

18. MECHANISM METHOD OF ANALYSIS

18.1 General Procedure — As thc number of redundants increases, the
number ‘of possible failure mechanisms also increases. Thus it may be-
come more difficult to construct the correct equilibrium moment diagram.
I'or such cases thc mechanism method of plastic analysis may be used
to find various ‘upper bounds’. The correct mechanism will be the one
which results in the lowest possible load (upper bound theorem) and
for which the moment does not exceed the plastic moment at any
section of the structure (lower bound theorem). Thus the objective is
to find a mechanism such that the plastic moment condition is not
violated.

The following, then, is the gencral procedure.
18.2 Method of Analysis by Mechanism Method — Find a mecha-
nism (independent or composite) such that M = M,:

a) determine location of possible plastic hinges (load points, con-
nections, point of zero shear in a beam span under distributed
load);

b) select possible independent and composite mechanisms;

c) solve cquilibrium equation (virtual displacement method) for
the lowest load; and .

d) check to see that M = M, at all sections.

Example 3:
Rectangular Portal Frams, Fig. 29 .

Given a rectangular frame of uniform section whose plastic
moment capacity is M,, what is the ultimate load it will carry?

In the frame shown in Fig. 29(a) locations of possible plastic hinges
are at locations 2, 3, 4. Now, in the previous examples there was
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Fi1c. 29 MEecHANISM METHOD OF ANALYSIS APPLIED TO A RECTANGULAR
PORTAL FRAME wiTH PINNED BARS

only one possible failure mechanism. However, in this problem there
are several possibilities. ‘ Elementary ’ or ‘ independent * Mechanisms
1 and 2 correspond to the action of the different loads, whereas
Mechanism 3, Fig. 29(d), is a ‘' composite ' mechanism formed by
combination of Mechanisms 1 and 2 to eliminate a plastic hinge
at location 2. Which is the correct vne? It is the one which resuits
in the lowest critical load P,.
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The method of virtual displacements may be used to compute the
critical load. After the ultimate load is reached, the frame is allowed
to move through a small additional displaccment such as shown by A
in Fig. 29(b). For equilibrium, the extcrnal work done by the loads as
thevy move through small displacements shall equal the internal work
absorbed at each hinge as it rotates through a corresponding small angle,

or

We=W,;
The following equations are obtained for the varioys mechanisms:
Mechanism 1:  PA = M, 04 M,(26)+ M0 ...{(29)
(Beam) PL®
=, = M,(40)
8M
P, = -El ...(30)
Mechanism 2: PA
(Pilllcl) ——2- = A!’(8+0) vee con ...(31)
P Le
-2— -2-— = ZM’ 0 (ilS h = L/Z)
8M
P’= —I‘:—t ...(32)
Mechanism 3:  PA,+ ;—A, = M,(20)+M,(20) ... ...(33)
(Composite) 1o P Lo
L]
16
Py =3 Iflf_’ =Py~ ... ..(34)

The lowest value is Py which is, therefore the true ultimate load, P,.

To make sure that some other possible mechanism was not over-
looked it is necessary to check the plastic moment condition to see that
M<&M, at all sections. To do this the complete moment diagram is
drawn as shown in Fig. 29. The moment at location 2 is determined as

follows:

H=MP=%

L2 L

P 16M, 1 _2M, 2 M,
H=g=H==p 3=T =3 1L
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Since the moment is nowhere greater than M,, we have obtained the
correct answer and the problem is solved.

In Example 3, the virtual work equation was solved anew for the
‘ composite ° mechanism. An alternate procedure for computing the
ultimate load for a composite mechanism is to add together the virtual
work equations for each mechanism in the combination, being careful
to subtract the internal work done in an elementary mechanism at any
hinges being eliminated by the combination. Using this procedure for
Example 3, there is obtained from the previous set of equations:

Mcchanism Virtual Work Hinges Cancelled
Egquation
Mcchanism 1: PLb
(Beam) Ty = 4M 0 —M,0
Mechanism 2: PL
(Panel) = 0=2M0 —M,8
" Mechanism 3: 3PL '
(Composite) 5 0 = [6M,6] —2M,6
Py= 16M,/3L

This is the same answer as obtained in Eq 34.

In the previous examples there were a sufficiently small number
of possible mechanism so that the combinations were almost obvious.
Further, the geometry in.the deformed position could be developed
with no difficulty. A number of guides and techniques will now be
discussed that are useful in solving more involved problems.

18.3 Typés of Mechanism — First of all, for convenience in referring
to different mechanisms of structures given in Fig. 30(a) there are the
following types which are illustrated in Fig. 30:

a) Beam Mechanism Fig. 30(b)

(Four examples are given here of the displacement of single
spans under load)

b) Panel Mechanism . Fig. 30(c)
(This motion is due to side-sway)
c) Gable Mechanism Fig. 30(d)

(This is a characteristic mechanism of gabled frames, involving
spreading of the column tops with respect to the bases)

d) Joint Mechanssm Fig. 30(e)
(This "independent mechanism forms at the junction of three
or more members and represents motion under the action of a
moment)
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. €) Composite Mechanism Fig. 30(f)
(Various combinations of the independent mechanism may be
mpade. The one shown is a combination of 3 beam and a gable
mechanism)

18.3 Number of Independent Mechanisms--If it were known in
advance how many independent mechanisms existed, then combinations
could be made in a systematic manner and there would be less likelihood
of overlooking a possible combination. [Fortunately, the following
simple procedure is available for determining this.

If the number of possible plastic hinges is N and if the number of
redundancics is X, then the number of possible independent mechanism,
n, may be found from

n=N-X ...(35)

Thus, in Example 3 there are 3 possible plastic hinges (locations 2, 3
and 4), the frame is indcterminate to the first degree, and, therefore,
there are two elementary mechanisms (Mechanisms 1 and 2).

This correlation is no coincidence because each independent mecha-
nism corresponds to the action of a different loading system. Said in
another way, each mechanism corresponds to an independent equation
of equilibrium. In Example 3 Mechanism 1 corresponds to equilibrium
. between applied vertical load and wvertical shear. Mechanism 2 corres-
ponds to equilibrium between applied horizontal load (Pf2) and hori-
zontal shear in the two columns. These force systems are * clementary’
or ‘independent’ and hence the term.

Equation 35 may be seen in this way. For a determinate system, if a
plastic hinge develops, the structure becomes a mechanism. Thus, for
cach possible phlastic hinge there corresponds a mechanism; if there are
‘n ° possible plastic hinges, there will be ‘ # ' mechanism [sce Fig. 31{a)].
As we add redundants to the structure, we add a plastic hinge for cach
redundant but do not change the number of mechanisms. Where the
member was free to deform beforchand (at a feal hinge), it is now
restrained ; however, the number of basie mechanisms remains unchanged
[see Fig. 31(b) and 31 (¢)]. Thus the number of possible plastic hinges, N,
equ~1s the number of mechanisms #, plus the number of redundants,
X, or n =(N—X).

18.4 Composite Mechanisms — Equation 35 is useful because it cnables
us to set out all the possible ‘ elcments ’ from which combinations may later
be made. These combinations are to be made in such a way as to make
the external work a maximum or the internal work a minimum, since
by this means the lowest possible load, P, is obtained. Thercfore, the
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Fi1c. 31 EXAMPLES OF PROCEDURE FOR DETERMINING THE
NUMBER OF MECHANISMS

«

procedure generally is to make combinations that involve mechanism
motion by as many loads as possible and the elimination or cancellation
of plastic hinges — as was done in composite Mechanism 3 of Example 3.

18.5 Indeterminacy — In order to determine the number of redun-
dants, X, for use in Eq 35 it is merely necessary to cut sufficient supports
and structural members such that all loads are carried by simple beam
or cantilever action. The number of redundants is then equal to the
number of forces and moments required to restore continuity. (In
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Example 3, cutting the horizontal reaction at Section 5 -- supplying a
roller — creates simple beam action: thus X = 1).

18.6 Geometry of Mechanisms (Instnataneous Centres)— As will
Iater be evident, in cases involving sloping roofs [Fig. 30(f)], computa-
tion of the geometrical relationship of the displacement in the direction
of the load as the structure moves through the mechanism may become
somewhat tedious. In such cases, the method of instantaneous centres
mayv be used, a term borrowed from mechanical engineering and the
consideration of linkages.

Although the use of instantaneous centres was not nceded in the
_solution of Example 3, consider its application to Mechanism 3 of this
problem [Fig. 29(d) and Tig. 32]. When the structure moves, Segment
1-2-3 pivots around the base at 1. Member 5-4 pivots about Point 5.
About what centre does Segment 3-4 move? The answer is obtained
by considering how the ends of the Segment move.

Point 4 is constrained to move perpendicular to line 4-5 and thus
its centre of rotation (as part of Segment 3-4) must be somewhere alon”
line 5-4 extended. Point_3, on the other hand moves about point 1
since it is a part of Segment 1-2-3. Therefore it moves normal to line
1-3 and its centre of rotation as part of Segment 3-4 should be along line
1-3 extended. Point 1 satisfics both conditions and thercfore Segment
3-4 rotates about Point 1, that point being its ‘ instantancous centre ' of
rotation,

What are the ‘ kink angles’ at the plastic hinges ?  The rotation
at both column bases is §. The horizontal motion of Point 4 is thus
(0)(1./2). Since the Length 1-4 is also equal to L/2, then the rotation

Lj2
Lj2
equals 20 and that at 3 is also 20 since the Lengths 1-3 and 3-1 are equal.

of 3-4 about I is @ = 0. The total rotation at location 4, therefore,

F16. 32 LocATiON OF INSTANTANEOUS CENTRE FOR THE RECTANGULAR
FraAME Mecuanism ofF Fig. 29
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What is the vertical motion of the load at Point 3? Since no hinge
forms in joint 2 it remaing as a right angle and the rotation of 2-3 with
respect to the horizontal is also equal to 0. The vertical motion is,
therefore, OLf2. This answer for vertical displacement and that in the
previous paragraph for kink angles are identical, <f course, to those
obtained in Example 3, Eq 33.

Example 4.

The suitable application of ‘instantaneous centres’ is to the
case of gabled frames. Consider, for example, the structure shown
in Fig. 33. Assign the value 6 to the arbitrarily small rotation of

4 @ @ -n
A
®

o4 a(—g_-‘n [{-(:-ﬂ]= ng

F1c. 33 LoOCATION OF INSTANTANEOUS CENTRE OF A GABLED FRAME
MECHANISM
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member 6-7 about Point 7. Segment 1-2.3 will rotate about Point 1
an amount yet to be determined. To find the instantaneous centre
of Segment 3-4-6, find the common point about which both ends
rotate. Point 6, being constrained to move normal to line 7-6 will
-have its centre along that line. Similarly, the centre of 3 will be
along 1-3 extended. Thus Point 1 is located.

By geometry' the Length I-7 is equal to (SL/4)(4)=5L, therefore,
6-I = 4L. Since the horizontal displacement of Point 6 is 6L, the
rotation at I = 6/4*. By similar triangles, the ratio of 3-I to 1-3 is 3: 1.
Thus the rotation at 1 is given by

8(3)_38
4\1) 4
Kink angles and' displacements in the direction of load may now be
computed. ~The rotation at 6 = 0+6/4 = (5/4)8. The rotation at

3 =0/4+3/40 = 6. The displacements of the loads in the direction of
application are as follows:

Horizontal load: A,=(3/4)(0)(L)

Left vertical load: A;=(6/4)(3L) ...(35a)

Right vertical load: Ay=(8/4)(L)
The accuracy of the last two equations may be seen in two ways. If
the loads are imagined as hung from the dotted positions shown, then
it is evident that the vertical displacements are as shown above and in
Fig. 33(a). Alternatively, working out thc geometry on the basis of
similar triangles as shown in Tig. 33(b), the vertical component of the
mechanism motion of Point 3 (for example) is equal to the rotation about
the appropriate instantaneous centre multiplied by the distance to
that centre, measured normal to the line of action. '

To complete the example the ultimate load for this mechanssm is

given by: ) :
0L 36L L 58
P(T)+2P(T)+2P(-—4—)—Mp (o + ;) ...(35b)

Horizontal\( Vertical Vertical\{location\flocation
Load J\Load L Load R 3 6
_oM, ..(35¢)
*TILL
Construction of the moment diagram shows that the moment is nowhere
greater than M,, so this is the correct answer,.

¢ *Note that the rotation at I is in general equal to the rotation at the column
base multiplied by the ratio of the distances 7-6 to 6-I.
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Precisely the same answer would have been obtained, of oourse
had we worked out the deformation at the various joints through a
consideration of the frame geometry in the deformed position. The
convenience of the use of ‘instantaneous centrfs should be evident,
however.

19. FURTHER CONSIDERATIONS

19.1 Further Methods of Analysis — In addition to the statical and
mechanism methods of analysis, there are additional techniques for
determining the ultimate load which a structure will support. Two
methods in particular are the ‘ method of inequalities '*® and a psuedo
‘ Moment Distribution Technique ‘335, TIn a great majority of cases,
however, recourse to those methods will not be necessary and, therefore,
no furtier discussion is presented here. The interested reader may see to
the indicated references.

19.2 Distributed Load — A slight modification of procedure is neces-
sary in case the load is distributed. In the event that a mechanism
involves formation of a hinge within the beam that is (between supports)
the precise location of the hinge in the beam is not known in advance.

Take the case shown in Fig. 34 —a portion of a continuous beam
— in which the M, values are as shown in the circles. If the load is
actually dlstrxbuted along the member, then the correct value of the
ultimate load is obtained by determining the distance to the point of
maximum moment. The distance x can be computed by writing the
virtual work equation in terms of x and either minimizing the loads by
differenciation or by solving for x by making a few trials. Alternatively
x may be found by plotting the uniform load parabola, 4-B-C-D, from
the base line A-D.

To illustrate the computations, from the mechanism of Fig. 34(b)
the virtual work Eq 25 gives:

X X b'e
W2_9-=3M,o(1+L X)+2M, %

2M,(3 L3 X ) )
X LXYI=x

_2M, 5X 16
W = < (3+ X) ...(36)

*The external work for a mechaniam under distributed load may oonvomzntly
be written as the load/unit length times area swept during moechanism motion.

this example ‘ area’==(L) (05) (1/2); work m wL(O:)(lIZ)-W%O.
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Fic. 34 PositioN oF HINGES IN BEaAM WITH DISTRIBUTED LOAD
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Selecting values of x and solving for W, the value of x to give the mini- .
mum value is:

x = 0-44L
and
= 230 R

The graphical method was used in Fig. 34 and a value x = 0:45L
was obtained.

With errors that are usually slight, the analysis could be made on
the basis that the distributed load is replaced by a set of equivalent
concentrated loads. Thus in Fig. 35, if the distributed load, wL = P,
is concentrated in the various ways shown, the uniform load paraboja
is always circumscribed (giving the same maximum shear). The result
is always conservative because the aciual moment in the beam is always
less than or at most equal to the assumed moment. Of course, the more
concentrated loads assumed, the closer is the approximation to actuality.

/wl.= P wie P
sy Mh
fEF F ¢

by

/
o v v v s

F16. 38 EFrFECT OF REPLACING A DISTRIBUTED LOAD BY AN EQUIVALENT
SET OF CONCENTRATED LoADS
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. Of course, if the distributed load is actually brought to the main
frame through purlins and girts, the uniform load may be converted, at
the outset, to actual purlin reactions (on the basis of assumed purlin
spacing). The analysis is then made on the basis of the actual concen-
trated loads. The only difficulty with this procedure is that numerous
additional possible plastic hinges are created — one at each purlin. And
for every possible hinge position there is another possible mechanism.
Of course, with experience the designer will be able to tell as to how
many of these mechanisms he should investigate.

19.3 Moment Check — One of the conditions that a ‘ plastic ’ solution
must satisfy is that the moment is nowhere greater tham the plastic
moment (se¢ 16). In the case of the Statical method (ses 17), there is
no particular problem, because the moment used in the equations equi-
librium presumed M <M, However, in the mechanism method the
solution loads to an upper bound and it is consequently necessary to see
if the solution also satisfies equilibrium with M <M, throughout the
frame. Otherwise it is possible to overlook a more favourable combi-
nation of mechanisms which would have resulted in a lower load.

When the structure is delermsnats at ultimate load, the equations
of simple statics are all that are necessary to determine the moments in
all parts of the frame. However, when the structure is indeterminate
at ultimate load, an elastic analysis would be required to determine
precisely the moments in those seginents that do not contain plastic hinges
at their ends. However, in solutions by plastic analysis, the precsse magni-
tude of moment at a section that remains elastic is not of interest. If
a mechanism has already been created, it is only necessary to show that
moments elsewhere are not greater than M,. As a result, approxi-
mations may be used to find a possible equﬁibrium moment diagram.
If the plastic moment condition is met, then the solution satisfies the
lower bound principle, and the computed load should be the correct
value,

Prior to considering the partially indeterminate cases further, it
should be pointed out that a design which leads to such a condition (that
is, part of the structure indeterminate) is probably not the best design.
The design objective is to make all of the structure perform as efficiently
as possible. If the frame is still indetetminate at ultimate load, it should
be obvious that it is possible to save material somewhere in the structure,
bringing moments up to their plastic values. What this means is that
simple statics will usually be adequate for making the ‘ moment check .
As a routine procedure it will not be required to carry eut what would
otherwise be a more complicated checking operation, because a structure
that turns out to be partially redundant would be redesigned for lighter
structure.
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Further examples of the moment check do not appear necessary
here for the dcterminate cases. Example 3 given in 18.1, and Design
Examples 5 and 7 given at the end of this handbook are illustrative.

The first step in the case of indeterminate structures is to check on
the redundancy. The following rule may be stated to indicate whether
or not the structure at failure is detcrminate.

If X = number of redundancies in the original structure, and
M = number of plastic hinges developed

Then I, the number of remaining redundancies, is given by
I =X--(M--1) ...(38)

In Fig. 36 are shown three continuous beams and a two span fixed
base frame. Equation 38 correctlv indicates the number of remaining

redundants in Fig. 36{c) and 36(d). The structures are redundant at
failure.

7/ M
1
X
A I
X
7 ’ 1
o TITTTT]) X =6
d)

M=3
] = X-(M=-9)=4 «ouuem (OK)

2
3
X~

(M-1)22~2=0--~(0K)

(M-1)=1-120 -~~- (OK)

1
2
X-
2
2
X-

(M=1) = 2~1a} = ----(0K)

W”; ‘ / ]

Fig. 36 EXAMPLE OF PROCEDURE FOR DETERMINING THE NUMBER OF
REMAINING REDUNDANCIES IN A STRUCTURE '
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‘ 1f, now the frame is redundant, two methods are convenient for
determining a possible equilibrium configuration. One is a ‘trial and
error ' method and the other a ‘moment-balancing’ method. Where
there are only one or two remaining redundancies (try Eq 38), the  trial
and error’ method is most suitable. Since this covers most ordinary
cases and since partial redundancy means inefficient design, the second
method will not be treated®. By the ‘trial and error’ method, then,
values for the remaining ‘I ' moments are guessed and the equilibrium
equations solved for the remaining unknown.

Example 5.

Given a three-span continuous beam of uniform section, My,
and with concentrated loads in cach span (Fig. 37). Assume that
the answer has been obtained on the basis of the assumed mecha-
nism shown in Fig.' 37(b). For this case:

k3.
P,= L’ «e(39)

The remaining redundancies from Eq 38 are J =X —(M-=1)==2
—(2—1)=1 (namely the moment at E).
The next step is to assume a value for this moment (say Mg=
M,). Solving the equilibrium equation for spans CE and EG,
M, Mg P, M, M, 3M}
Mo=7+5+3="773+%

>
®

pnn
o

| o
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m
-

fo—e

B e |
L;—"—‘L—*-*I‘—Wt—‘j
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{g

F1G. 37 MoMENT CEECK USING THE ‘ TRIAL AND ERROR’' METHOD

_*See Eq 28.
{Sese Eq 29.
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M
=-———2
M) 7
My Mg 15PL_ M, 9, .
Mp=—7+=5 +— =7t
A

The resulting moment diagram is shown by the dotted lines. Since

MM, throughout, the trial solution is correct and P, = %’

ite evidently, more efficient use of material would result if the
esign were revised to supply only the reguired plastic moment for
each span.

In summary, this section has presented the basis for and the
techniques of two methods of plastic analysis: the ‘statical’ and
the ‘ mechanism ' methods. Application to design will be discussed
next in Section E, followed by design examples in Section F.

Example 6:

The ‘ trial and error ' method of making the moment check will

be further illustrated for the frame shown in Fig. 38. Assuming

that mechanisms 8-9-10 is the one to form, the ultimate load is

given by:
4M

Pu=—* |

The remaining redundancies from this equation are
I=X—(M—1)=6—(3—1)= 4

which shows that it is not possible to obtain four moments by

statics. (There are a total of 7 unknown moments for which only

3 independent equilibrium equations are available).

The next step is to make a ‘guess’ as to the magnitude ol
moment at 4 hinge locations, and then to solve for the remaini
values. If M = M, then the correct mechanism (and P,-value
has been determined. The following ‘ trial > values are taken, using
the sign conventions that the moment is positive if tension occurs
on the ‘dotted’ side of the member:
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My > Mp

Fic. 38 MoMeNT CHEcK UsING ‘ TRIAL AND ERrROR’ METHOD

For span 46

2(4——”)
M 2PL M M L
My = 2‘+ +____.2£-_£+

My=—Mp+2Mp=+M,
For joint 6-7-8
M.== M._M'= 0
M'== M‘—MQH_M’-*'M': 0
From the sway equilibrium equation,
M,—My—My—~M,;+Mq,+My+PL =0

4M
My= My+My—Mp+0+Mp— (—L—Q)(L)
Mg- —-ZM,
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Since M,>M,, the plastic moment condition is violated and
an incorrect assumption was made, The moment diagram based
on the above calculation is shown in Fig. 38.

Example 7.

A moment check for the 2-storey, 2-span structure shown in
Fig. 39 will now be made. The ‘ trial and error ' method will again
be employed. The plastic analysis gives:

2M

P..:‘—" “L-e

It is not possible to determine the number of redundants for

this frame by Eq 38 because that relationship does not apply when
‘ simultaneous ° mechanisms occur. We can, however, determine
the -number of redundants for this special case by noting that
the number of remaining redundancies is equal to the number of
remaining unknown moments minus the number of independent
equilibrium equations (number of mechanisms) that were not used
in the analysis.
The number of unknown moments is 10 (M,, M,, M,, M,, M;, M,,
Mo M, My, My). Out of the 10 original equilibrium equations,
4 have been used. Thus, the frame is redundant to the fourth
degree. Accordingly, it should be possible to solve for the remain-
ing moments by assuming the value of four of the unknowns.

Assume M, ,=+M,

M’= 0
For joint 1§-19-20 .

M, —My— =0
Miy= My —Miy=—My+My=0... OK

For joint 13-14-15
My+Myy—My=0
Mn= MI‘+M1‘=—‘M’+M’= o- e OK
For joint 8-11
My+Myr-Myo—My=0
My—My—M,, —My=—~Mp+Mp=0
My=M,,
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3
’7;1 727 ,75.77.}.
—— o L
»0 Y +0

05

Fic. 39 MoMENT CHECK USING 'TRIAL AND ‘ERROR’ METHOD roR

TwO-STOREY TWO-SPAN STRUCTURE

For joint 4-6
M""’M.—M.= 0

M= M;+M= y""'

—M,

M=, ok

From the sway equation for the top storey
M—My—My— Mg+ Myy+My= 0
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M
My= My—My;— MM+ Myy= =2 —M,+Mp+0—M,

2
M,= :%l—’ ....0K
—M,
Thus from Eq (a), M= 2 . ....0K

From the sway equation for the bottom storey
Ml“—Ma—Ma—Mc+M1o+Mu =0
M= M;+My+M—Myg— M,

MP JM? JMP
0+_2._.__,§_+,T_
MP
= —2—....0K

The final moment diagram is shown in Fig. 39 and it is evident that
M <M, throughout.. Therefore the ultimate load is, in fact, equal

to 2_’{_'. |
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SECTION E
APPLICATION TO DESIGN

20. GENERAL

20.1 Thus far the methods of plastic analysis have been presented.
The p of this section is to consider certain features involved in
the application of these methods to actual design. A question that
arises first concerns the relative strength of the different members, Next,
a discussion of the general design procedure will outline the steps involved
in a plastic desig-.

_ Finally, the principle content of this section will concern the ‘secon-
dary design considerations’. In arriving at the plastic methods of
structural analysis certain assumptions were made with regard to the
effect of axial force, shear, buckling, etc. Unless attention is given to
such factors, the structure may not perform its intended function due to
‘ premature ’ failure,

21. PRELIMINARY DESIGN

21.1 On what basis is the first choice of relative plastic moment values
made ? In the various examples used to illustrate methods of analysis,
the problem was to find the ultimate load for a given structure with
known plastic moment values of its members. In design, the problem
is reversed. Given a certain set of loads the problem is to select suitable
members. Since ‘uniform section throughout' may not be the most
economical solution, some guide is needed for selecting the ratio or ratios
of plastic maoment strength of the various members.

21.2 Of course, this problem exists in elastic design, so it is not a matter
that is unique to design on the basis of ultimate load. However, a few
simple techniques will occur to the designer which, coupled with his
experience, will enable him to make a preliminary economic choice of
relative moment strength without too many trials., Some general prin-
ciples are as follows:

a) In the event the critical mechanism is an ‘independent’ one,
the rest of the material in the frame is not being used to full
capacity. This suggests that a more efficient choice of moment
ratios may be made such that the critical mechanism is a ‘ com-
positgerx;xechanism ' involving plastic hinges in several different
members.
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b)

c)

d

Adjacent spans of continuous beams will often be most economi-
cally £roportioned when the independent mechanisms for each
span form simultaneously. This is illustrated in Design Example
2. Numerous examples of the design of contiriuous beams are
given in Ref 26.

The formation of mechanisms simultaneously in different spans
of continuous beams or the creation of composite mechanisms
will not necessarily result in minimum weight. Examination
of alternate possibilities is desirable. Often it will be found that
the span involving the greatest determinate moment (M,) should
be given the greatest possible restraint (generally by supply equi-
valent Z of adjoining members). Thus the best design in this
instance will usually result when the solution commences with
uniform section for both the rafter and the stanchion. Design
Example 7 illustrates this.

The absolute minimum beam section for vertical load is obtained
if the joints provide complete plastic restraint (that is, restrain-
ing members supply a restraining plastic moment equal to that
of the beam). Similarly, the minimum column sections are
obtained under the action of sway forces when ends are subject to
complete plastic restraint. This, therefore, suggests that, if the
important loads are the vertical loads, the design might well be
commenced on the basis that-all joints are restrained as described,
the ratio of beam sections be determined on this basis, and that
the columns be proportioned to provide the needed joint moment
balance and resistance to side load. Design Example 7
is an illustration of this. Alternatively, if the important loads
were side loads, the design could start, instead, with the
columns, .

Finally, it should be kept in mind that maximum overall eco-
nomy is not necessarily associated with the most efficient choice
of section for each span. It is necessary to consider fabrication
conditions which may dictate uniform section where, theoreti-
cally, sections of different weight might be used.

22. GENERAL DESIGN PROCEDUliE

22.1 Although there will be variations as to specific procedure and detail,
the following six steps will be a part of practically every design:

a) Determine possible loading conditions, :

b) Compute the ultimate load(s),

c) Estimate the plastic moment ratios of frame members,

d) Analyse each loading condition for maximum M),

78



SP: 6(6) - 1972

e) Select the section, and
f) Check the result according to ‘secondary design rules’.
These steps will now be discussed briefly.

The design commences with a determination of the possible loading
conditions. There is no change here from conventional practice, except
that at this stage it is decided whether to treat distributed loads as such
or to consider them as concentrated (ses 19).

The step (b), ‘ compute the ultimate load ', represents a departure
from conventional methods. The loads determined in (a) are multiplied
by the appropriate Toad factor to assure the needed margin of safety.
This loadp factor is selected in such a way that the real factor of safety
for any structure is at least as great as that afforded in the conventional
design of a simple beam. In the latter case, F is cqual to the conventional
‘ factor of safety’ (1-65) multiplied by the shape factor, f. As already
noted, this shape factor varies for different WF ‘beams from about 1-09
to about 1-23. The average for all shapes is 1-14 and the most common
value is 1-12. The actual load factor selected thus depends upon the
concept of safety; that is, if the present design of a beam with the smallest
shape factor (1-09) is satisfactory, then a load factor of (1-65) (1-09)= 1-%0
would be adequate. Alternatively, average values may be preferable.
The following table summarizes the possibilities:

Factor of Safety* Shape Factor Load Factar
1-65 "~ 1-09 1-80
1-65 1412 1-88
1-65 1-14 1-88
1-65 1-23 2-03

The value 1-85 is selected instead of 1-88 because wide flange shapes with
a factor of 1:12 occur more frequently and, further, the number 1-88
implies an fSccuracy in our knowledge of safety that is not justified. In
the case of wind, earthquake, and other forces, specifications normally
allow a one-third increase in stresses. Following this same philosophy
the value of F for.combined dead, live, and wind lcading would be 3/4 X
1-85 = 1-40. In summary, then, the load factors are:

Dead load plus live load, F =185

Dead load plus live load, F = 1:40 .. (40)
plus wind, earthquake,
or other forces

. As was suggested above, the load factor of safety should be selected
in such a way that an indeterminate structure is as safe as a simple beam

*Yleld stross divided by working strees in flexure.
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designed elastically. There is certainly no point in making a rigid
structure any more safe. There is no departure from present practice
insofar as the mecessary or minimum factor of safety. Plastic design
simply makes it pessible to design structures with a more nearly constant
factor of safety, no matter what the loading and geometry.

The load factor of a safety of a simple beam according to elastic
design is equal to the ratio of the ultimate load, P,, divided by the
working load, P,. Since for a simple beam, the bending moment varies
linearly with the load, the expression for the load factor may be written
as:

From Eq 16 and using the relationship, M, = 6,S, the value of F may
be expressed as:

_ %
F—-a,,S
from which
G,
;=
I‘_cwf

where o, is the yield stress level, and o, is the allowable or working
stress according to ‘elastic’ specifications and f the shape factor. The
load factor is thus a function of the ratio between yield stress and
allowable stress and of the shape factor.

According to IS:800-1962* the ratio o,fo, is 12..;-5%= 1.55. The

average shape factor is 1-15. Thus:

F =(1-55)(1-15)=1-78 -
A reasonable figure for the load factor for gravity loads figured according
‘to IS: 800-1962* is thus 1-85.

Since section 12.2.1.1 of IS: 800-1962* permits,a one-third increase
in stresses when wind is acting, then the corresponding load factor for
plastic design may be taken as:

Fo=1-85x3/4 =140
It will be noted that the problems worked in the later portion of this
chapter are developed on the basis of Eq 40. The only effect of a change

in load factors tp the values for use in designs according to Indian Stan-
dards is that the required section sizes would be reduced somewhat.

( *Code of practice for use of structural steel in genera! building conltructbn
'M). ’
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~ The Step ngc) is to make an estimate of the plastic moment ratio of

| the utie bers.:: This has. bden djsetrksed in 21 i odithine the pro-
cedure would be as follows: Sttt b

A) Determine the absolute plastic moment va&ues for sopaiate dpading

conditions. (Assume that all joints are hved,,,a,gams&vmt'ltlon.

T but frame free to sway.) For beams, solve beam mechanism

.'.':‘ cquation’ ‘dfid, for” golumitis, solve thu 1)‘:171,(‘! meéchanisny I(':‘q'uatidn

y 3‘ 3 ‘dctua.l‘ ‘Séchon will be greater than ot’ '1t Jewst Lqu‘dl"t‘os these
alied.” ' Dot :

. B) Now..sglect plastic moment ratios usmg “the fo)lowmg g\uﬂe?
... a) Beamss  Use. ratio; datermined | in- step, ,(a) Coov
b) Columms:- At. :corner: connections M ,,(eol)m M ,(bum)
o o€) Joints: Establish eguilibrivm,., . 0 oo

- 'We are theh ready to prodecd itolstep (d). - “Tirome cases m wxll b(u dusire-
‘able ptiprito! finaliselection of scetions to oxaminet the ‘fraine for further
ecowomy as.may bé apparcrtt from a eonsideration of mlntwd beam and
“sway moments.: il il - ol oy e g EETH

In the step (d) each loadmg conditinn s m*ilwcd for tlie maximum

required M, Either %l)xae statical method l or the mechanism method

gi of ‘aﬁaTysw ’ﬁ"ﬁ} "A'lt'éﬁxiﬁ‘i'\ Hitige" ~fﬂ.plrﬁi‘(l' deddures
of Section GG may be ustd’ fbf s‘ s’éanthut geonictricil and’ loaditg condi-
| hortismlzi; wﬁxcfr ‘char‘ts’” hs are déveloped. he only Uifferditce
H :(n

‘ H i the sié ocd&urcé of Séctiop D ¢ tlmt ‘the lowest
:faibire %,gl rag' soug t m t ;ter wlicréas now ' We are lookinlg for the
N Ma:mné pe u&re'd plashc mm as'a bdsxs for: sLlcctmg the section.

L. The, ‘ste s, to select the section. "The’ equation Mp=a,Z is
f pqlvqad fo: f ng thq section .selected ,from k. cconpmy tablp.)prranged

according to Z-values.
The step (f) (and_a most important one) is to check the dcsign to

.8ee_that if_satisfies .tle * seconddty design considerations.’, making. sure
+= that prerhahmja%me does mot occur. This isi—the sub]cct*vf ‘the
t d;scumom wlm:fx* newr. iolldws in-23. | -

: DES:Q&:I CONSR)ERA'PION&S :
BI“oi the ests prgsqhtcd in 9 the results confirm

in a satxsfactory N -predictions of ‘the * si io-theory '
This theoiy neglem as AXi forCC, shear. and buckKling, md
yet the efgineer knows they afe present'in muost structures and he is

accustamed fo taking.t into, count,, Those factors that are neg-
lected or ;ave not inclu aecfyil »fheq"gfm le “theory (and for which revision
of that theory is sometimes needed) are the iollowmg ‘

1o 7d) Rieductions inlthe"pllmb ‘morment -{axial - fb!'cdland‘sheﬁi' force).

20Ul JALZL A DI o o blie e
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b) Instability (local buckling, lateral buckling, column buckling);
c) Brittle fracture; ' S

d) Repeated loading; and

e) Deflections.

In addition, proper proportions of connections are needed in order that
the plastic moment will be developed. In the following paragraphs the
effect and characteristics of these factors will be indicated. Where
apropriate, the results of theoretical analysis and of tests will be indicated,
followed by a suggested ‘rule ’ to serve as a guide for checking the suit-
ability of the original design. Liberal reference is made to other sources
in order to condense this article as much as possible.

It should be kept in mind that this situation is no different in
principle from that encountered in elastic design. The design should
always be checked for direct stress, shear, and so on. It simply means
that modifications or limitations in the form of ‘ rules of design’ are
necessary as a guide to the suitability of a design based on the simple
theory that neglects these factors.

23.1 Influence of Axial Force on the Plastic Moment — The presence
of asial force tends to reduce the magnitude of the plastic moment.
However, the design procedure may be modified easily to account for
its influcnce because the important ‘ plastic hinge * characteristic is still
retained.  This influence has been discussed®. The stresss distribution
in » Dbewn at various stages of deformation caused by thrust and
moment is shown in Fig. 40. Duc to the axial force, yielding on
the compression side proceeds that on' the tension side. Eventually
plastification occurs, but since part of the area must withstand the axial

Oy

‘ o
N v AP

A Oy 8 0
ELASTC PARTIALLY PLASTIC " COMPLETE
™ YIELD

Fic. 40 DISTRIBUTION OF STRESS AT VARIOUS STAGES OF YIELDING FOR
A MEMBER SUBJECTED TO BENDING AND AXIAL FoORCES
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force, the stress block no longer divides the cross-section into equal
areas (as was the case of pure moment). Thus, as shown in Fig. 41 the
total stress distribution may be divided into two parts — a stress due to
axial load and a stress due to bending moment.

For the situation shown in Fig. 41 in which the neutral axis is in
the web, the axial Yorce P is given by:

P = 20,y ...(41)
where

a,= the vyield stress,

»= the distance from the mid-height to the neutral axis, and

w = the web thickness,

The bending moment My, is given by the following expression and
represents the plastic hinge moment modified to include the effect of
axial compression: )

M, = o, (Z—w)?) e ...(42)
where

Z = the plastic modulus. By substituting the value of y, obtained

from Eq 41 into Eq 43, the bending moment may be expresch as a
function of the axial force P, or
j
Mp‘: = M{’—4O';E vee ves ere ...(43)

By the same process, an expression for My, as a function of P could be
determined when the neutral axis is in the flange instead of the web.

- 6_7_ Ina
W% —
. Z — 4+ -t
% y -
- - -
w2z’ Leurmn
—el Oy | AXIS

TOTAL STRESS . STRESS DUE T0 , SIRESS DUE T0
DISTRIBUTON ~ — P + M

(@ (b) (¢)

F1G. 41 REPRESENTATION OF STRESS DUE TO AXIAL FORCE AND DUE TO
BENDING MOMENT FOR A COMPLETELY PLASTIC CROSS-SECTION SUBJECTED
T0 BENDING AND AXIAL FORCES

83



' SP: 6(6) - 1972

The resulting equation for a wide flange shape is:

(i 0 I

For a wide flange section the 'interaction’ curve that results from
this analysis is shown in Fig. 42. When the axial force is zero, M = M,.
When the axial force reaches the value P = y4, then the moment capa-
city is zero. Between these limits the relationship is computed as
described and the desired influence of axial force on the plastic moment has
thus been obtained.

In design, in order to account for the influence of direct stress either
curves such as Fig. 42 could be used, or since most wide flange shapes
have a similar curve (when plotted on a non-dimensional basis)® the
simple approximation of TFig. 43 could be used.

Summarizing, the following ‘ design rule’ may be stated:

. Rules for Beams

Rule 1 Axial Force;Neglect the effect of axial force on the
plastic moment unless P>0-15P,. If P is greater than 15 percent of P,
the modified plastic moment is given by:

P
M, = 1-18 (l—j);)MP ee ...(45)

p

Mo
Py
P .
T
N A IN FLANGE
P DIV AN
R NA IN WEB
My ™
Mg —— y Ue R E R VI X I |

FIG. 42 INTERACTION CURVE FOR A Wxﬂ;-fn—Amf'Bnnwwaﬁ
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g

The reqmred desxgn value of Z for a mcmbcr is determmed by multi-
plying the value of Z found in the initial design by-the ratio Myp/Mpe

or
0 852%
Zogy —P/Py ...(46)
An illustration of the use of this ‘ rulc ’is given in Dygsign Example 7.,
'”LEqMon «5. may also Bq expgﬂsed in bhq form S
- . ;M . 3 .
,§ b= ~1 18M,+ — <1 1 i SRS i.(452)

- RN .
N v
L 0 d [ e b

4

‘Actua.!ly this gises a valuc of Z that s too groat As illustrated By the
upper portion of Fig. 43, the P|Py ratio will be lesa in the re-design and thus the reduc-
in Mp wild be less than first codiputed. The cquatipn
ALy 0 oty ER et ETBIRy RO 8 1 v e - (47)

is an approximdtion ﬁo avcount . for; this utfat, 2 Py bu%g thq‘tatxgénbmnod in the
first design. The final seloctivn should bo checked by the use of

és’)
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Depending on the farticulu problem and approach the designer wishes
to use, either Eq 45, 45a or 47 whichever is appropriate as explained

w:

a) Equation 45 is appropriate if one wants to know thc magnitude
of moment that a given shape will transmit in the presence of
axial force P.

b) Equation 47 is suitable if the problem is to obtain the required
plastic modulus for P/P,>015 in onc step without trial and
error procedures. :

c) Equation 45a gives the condition that should Le satisfied at a
given cross-section and intimates a ‘cut and- try’ procedure,
The precautions of Rules R5 to R8 should Le borne in mind.

23.2 The Influence of Shear Force — The cffect of shear force is some-
what similar to that of axial force — it rcduces the magnitude of the
plastic moment. Two possibilities of premature failure’ due to the
presence of shear exist:

a) General shear yield of the web may occur in the presence of high
shear-to-moment ratios. (scctions at A and B of Tig. 44).

v
YIELD ZONE

N a -
N | {

ol L

AR e

Fi1G. 44 SHEAR AND FLEXURAL STRESS DISTRIBUTION IN A CANTILEVER
BEAM THAT HAS PARTIALLY YIELDED IN BENDING
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b) After the beam has become partially plastic at a critical section
due to flexural vielding, the intensity of shear stress at the centre-
line may reach the yield condition (section at C of Fig. 44)2%,

Recent studies have shown that for structural steel with marked strain-
hardening properties, behaviour ‘5’ need not be considcred and it is
only necessary to guard against the possibility of complete shear yielding
of the web.

For case (a) the maximum possible shear as given by:
V =T,A4, ...(48)

Ty= 33— and 4,= w(d—2f), theu

V= % w(d—24)

Since for wide flange shapes ‘-i——_d—z-t = 108, and using o, = 2 520 kg/cm?

then the following design guide may be formulated:
|

Rule 2 Shear Force — The maximum allowable shear force (in kg)
in a beam at ultimate load is to be computed from:

Vomas = 1 265wd ...(49)
where '
w = web thickness in cm and d is the section depth in cm.

23.3 Local Buckling of Flanges and Webs — As a wide flange beam
is strained bevond the elastic limit eventually the flange or the web will
buckle. Although stocky sections could be expected to retain their
cross-sectional form through considerable plastic strain, with thin sec-
tions local buckling might occur soon after the plastic moment was first
reached. Due to failure of a beam to retain its cross-sectional shape,
the moment capacity would drop off; thus the rotation capacity would
be inadequate. Therefore, in order to meet the requirements of deform-
ation capacity (adequate rotation at M, values) compression elements
should have width-thickness ratios adequate to insure against premature
plastic buckling. ,
A solution to this complicated plate buckling preblem has been
achieved by requiring that the section will exhibit a rotation capacity
that corresponds to a compression strain equal to the strain-harcening
value, ¢4 (Fig. 2). At this point the material propertics may be more
- accurately and specifically defined than in the region betwceen €y and ¢

The result of this ané.lysis for flanges of wide flange shapes is shown’
in Fig. 45 together with the results of tests. From these cu:ives and
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© Rufe Ct}nibrzsglod M gx’bm’s —Com te§$xon eléments,” tha.t would
e”’;ub_\ec tlc g and . hmgé rotation undet  ultimafe
loa&ing, sha }&ave h-thlcknm ratios no greater than the following:

Flanges of rolled shapes and flange plates of similar built-up
. shapes, 17; for. rolled shapes an upward variation of 3 percent may
‘. be tolerated “The thickness of sloping ﬂanges may be taken as
their average thickness. .

.. Stiffeners and that - portion - of ﬂange plates in box-secttons and
© ~covet plites'included between tlie free edge and the ﬁrst longitudinal
-row of rivets or connecting- welds; :

" That portion of flange plates in box-sectlons and cover plates
included between longitudinal lines of rivets or oon.nectmg welds, 32.

The width-thickness ratio of beam and girder webs subjected to
plastic bending without axial loading shall not exceed 70. The- width-
thickness ratio for the web of ‘beams, girders and columns designed for
combined::axial .force and: plastic: bending moment- at: ultimate loading,
sha.ll be limited by the following formula but n.eed not be less than 40:

U
SRk

W < 70— 100- B, ' . . (50)
In_ Ref 17 is treated the influence of axial force on vmb bucklmg Based
upen  this. work, the adequacy of Rule 3 may be shown approximately.

Stiffening would be used where the requirements of Rule 3 were not
met. Fortunately, nearly all Indian Standard beam section (see IS
808-1964*), are satisfactory in this regard for P/P,< 0-15.

234 Lateral Buckling =~ The effect of ‘lateral buckling is much like
that of local buckling. In fact, in many tests the two frequentl occur
simultaneougly. The problem’ of specifying the critical length of beam
such that premature lateral buckling wﬂf be prevented has not been
completely solved. Currently, studies are bemg made somewhat along
the lines of those which proved to be successful in the case of local buck-
ling. Although this study is not yet finished the results of tests and
Mt ¢s to. da,tpnprqv :, Some, : pregent., guidance for the. designer. ... The

ro ﬁm is ;to., specify, bracing . requirements to prevent,, deforxnatxon .out
vo the plane of the frame.

“¥Yielding'‘matkedly reduc?:{ the' rcs:st*u;ce of a member “to lateral
b‘&%klin i g%ﬂé;rgﬁr:pégd Ierl”m d?iF ireeg w:i‘ t:xese ) i'cs lat egihxc}\
fnges At expicted.’’ Inte ‘b i {eritical section:
gbh%tféﬁal titles iy (e followed ! it, iprotedt’ ag s% elastic- Exteral
bucklmg In the event that conslderat:on of the moment dlagram

Lgeraes |r|!'-,.‘. [T S SR

‘Speciﬁcation for rolled steel beams, channel and angle sectxons (n.nsed) s
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reveals that a considerable length of a beam is strained beyond the
elastic limit (such as in a region of pure moment) then additional lateral sup-
port at such a hinge may be required. The following guide may be used:

‘The maximum laterally unsupported length of members
designed on the basis of ultimate loading need not be less than that
which would be permitted for the same members designed under
the provisions of I1S:800-1962* except at plastic hinge locations
associated with the failure mechanism. Furthermore, the following
provisions need not apply in the region of the last hinge to form in
the failure mechanism assumed as the basis for proportioning a
given member, nor in members oriented with their weak axis normal
to plane of bending. Other plastic hinge locations shall be adequately
braced to resist %atera.l and torsional displacement.

Rule 4 Lateral Bracing — The laterally unsupported distance /,,
from such braced hinge locations to the nearest adjacent point on the frame
similarly braced, need not be less than that given by the formula: '

M
l¢'= (60"‘40ﬁp)ry e see :..(51)

nor less than 35 r,, where
r, = the radius of gyration of the member about its weak axis,

M = the lesser of the moments at the ends of the unbraced scg-
ment, and

M|M;, = the end moment ratio, positive when M and M, have the
same sign and negative when they are of opposite sign,
signs changing at points of contraflexure.

Members built into a masonry wall and having their web perpendi-
cular to this wall may be assumed to be laterally supported with respect
to their weak axis of bending.

The magnitude of the forces required to prevent lateral buckling is
small and slenderness ratio requirements will normilly govern. Both the
compression and the tension flanges must be braced at changes of section.
Design examples in 26 illustrate a procedure for checking lateral bracing.

Equation 51 not only assures that the cross-section will be able to’
plastify (develop the full plastic moment) but also be able to rotate
through a sufficient inelastic angle change to assure that all necessary
plastic hinges will develop. In deriving this equation, the basis lateral

sCode of practice for usc of structural steel in general building construction
({revised).
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buckling equation4® has been used, the analysis being based on an idealized
cross-section that consists of only two flanges separated by the web-
distance. Therefore, it already reflects and, in fact, makes use of the
parameters L/b and d/t. Using the elastic constants of the material,
and considering idealized behaviour as shown in Fig. 21, it may be shown
that this procedure leads to a critical slenderness ratio of about 100.
(See also the footnote in Appendix B.)

While this might be rcasonable for a section that was only called
upon to support My, it is unlikely that the resulting critical bracing would
allow much inelastic rotation — a rotation that is ordinarily required
at the first plastic hinge. It will be adequate to require only that plastic
yield penetrate through the flange!®. It is quite evident from Fig. 18,
however, that the resulting further inelastic hinge rotation thus available
is relatively small. One of the important contributions of Ref 18 was
that it developed methods of correlating the critical length for lateral
buckling with the magnitude of required hinge rotation.

23.5 Columns — The plastic theory assumes that failure of the frame
(in the sense that a mechanism is formed) is not preceded by column
instability. Although the load at which an isolated column will fail
when it 1s loaded with axial force and bending moment can be predicted
with reasonable accuracy, the buckling problem becomes extremely
complex when the column is a part of a framework. Since a complete
solution to this problem is not in hand, somewhat over-conservative
simplifications must be made.

Rule 1 would suggest (and the results of tests confirm) that if the
axial load is relatively low and, further, if the moment is maximum at
the ends of the member, then the stability problem may be neglected.
On the other hand, if an examination of the moment diagram shows that
the column is bent in single curvature, then a more serious situation exists
and a modification would certainly be necessary to assure a safe design.

The following design guide for columns in industrial frames may be
immediately formulated:

Rules for Columns

Rule 5 — In the plane of bending of columns which would develop

a plastic hinge at ultimate loading, the slenderness ratio ljr shall not

exceed 120,n? being taken as the djstance centre-to-centre of adjacent

members connecting to the column or the distance from such a member

to the base of the column. The maximum axial load P on such columns

at ultimate loading shall net exceed six-tenths P,, where P, is the
product of yield point stress times column area.
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Rule 6 — Columns ‘in continuous frames where sidesway is not
prevented (a) by diagonal bracing, (b) by attachment to an adjacent
structure having ample lateral stabxhty, or (c) by floor slabs or roof decks
secured horizontally by walls or bracing system parallel to the plane of
the continuous frames shall be so proportxoned that:

Rule 7u—-.Except as. otherwise provxded in thls section, MalM
the ratio ‘of alowable end moment to the full plastic bending strength
of columns and other axially loaded members, shal] not exceed unity nor
the value given by the following formulas, where they are applicable:

Case I — For columms bent in double curvature by moments
producing plastic hinges at both ends of the columns:

118 f
118—1 18(Py)

Casa IT — For pm-basod columns rcqmrcd to devclop a hmge at
G . . one end only, and double curvature columns, required
. to develop a hinge at one end when the moment at the

.. other. end would be less than the hinge value:

i eee(B) e
the numerical values for B and G, for zmy givrén
slenderness ratio in the plane of bendmg, l/r bemg

those listed in Table 1.

"'Cdse’ I1I = For coluitins bent in single curvature by end fomerits
of opposxte 51gn

e )

the numerical values for K and J bemé those gxir,(:n in
Table 2. For Case II columns where l/r in the plane
_of bending is less thfan 60, and for Case I columns, the

full plastic strength of the member be. used (M=
when P[P, would not excced 0- lxrslgy W Mt)
+Ruolei:8w-—JIw.no. case shall the ratio.of.axial Joad to plastw load
wedd that ngen by the: ,follnmng, prﬂessxom Heoh o

MTURR g_u.‘. B R sm
PUONY L dian 'P?’ Fﬁ' tuwhﬁn > *20

g0, ey 1 A ) t I
ere ! . an are. the un.ll) t rad; 'f fation ¢
he c%lumn in the pla.ne nor,ma.l,,go (}pﬁg }} the oqp,m?:qnfp fr;’mq}mi'

consideration.
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TABLE 1~ CASE II'PIN BASED cowMNs VALUES OF B ANB'G

AN

N L%
M<M, Mg Mo
114 B G iy B G iy B G
~ A - LI sy A N - )

16 1-140 1-172 51 1-164 1-271 86 1:201 1-616
17 1-140 1-174 52 1-165 1:276 87 1-202 1-633
18 1-141 1177 53 1-165 1-281 88 1:204 1-651
19 1-141 1179 54 1-166 1-286 89 1-205 1-669
20 1-142 1-182 55 1:167 1-292 90 1:206 1-688
21 1-142 1:184 56 1-168 1-297 91 1-207 1-707
22 1-143 1-187 57 1-169 1-303 92 - 1209 1-726
23 1-143 1-189 58 1170 1-310 93 1:210 1-746
24 1-144 1191 59 1-171 1-316 94 1-211 1-767
25 1-145 1-194 60 1-172 1:323 95 1-213 1'738
26 1-145 1 196 - 61 1173 1-330 96 1-214 118‘10

27 1146 1-198 62 1174 1:337 97 1-215 1.832

4 1158 1 79 1192 1511 114 140 2309
45 1:159 1:2 80 1-194 1324 115 M2 2343

547 3 1254 .82 1-196 1 553 117 1 5 2:414

1 14361 1258 183 197 1568 118 1:247 2-450

5 1:162 1,263 1:198 1.884 119 1:248 2487

v 50 1163 1:267 85 4 1:600 120/ 1 250 2-525
] i L Vi) i Uy o 2
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TABLE 2 CASE III COLUMNS BENT IN SlNGLE OURVATURI,

VALUES OF K AND J

“%
M, (P ) ( P )a r
20 e t0-Kk (s ) —J(< L
Mp Py j Py L
A
M, u<u,
Uy K J 1114 K J l[r - J
B 0434 0753 = 41 1015 0149 81 1824 —0738
2 0449 0736 42 1032 0133 82 1850 —0-769
3 0463 0720 43 1048 0116 83 1877 —0-801
1 0478 0703 44 1064 00998 8¢ 1903 —0-833
5 0492  0-687 45 1081 00832 8 1930 —0-866
6 0506 0671 4 1097 00663 86 1958  —0-900
7 0-520 0655 47 1114 00492 87 1986 —0-984
8 053¢ 0640 48 1131 00318 88 2014 —0969
9 0-548 0624 49 1148 00143 89 2042 —1-004
10 0562 0609 50 1166 —00036 90 2071 —1-041
11 0576 0594 51 1183 —00217 91 2101 —1077
12 0590  0-579 52 12001 —00401 92 2130 —1-115
13 0604 0564 53 1219 —00588 93 2161 —1-153
14 0619  0-549 54 1237 —00777 94 2191 —1192
15 0633  0-534 55 1256 —00970 95 2222 . —1-231
16 0647 0519 56 1274 —0-117 9 2254 —1272
17 0661 0-504 57 1293 —0137 97 228 —1-313
18 0675 0-490 58 1312 —0-157 o8 2318 —1-354
19 0689  0-475 59 1332 —0177 99 2350 —1-397
20 0703 0461 60 1351 —0198 100 2384 —1-440
21 0717 0447 61 1371 —0220 101 2417 —1-484
22 0731 0432 62 1391 —0241 102 2451 —1-529
23 0736  0-418 63 1411 —0263 103 2486 —1-575
24 0760  0-403 64 1432 —028 104 2521 —1-621
25 0774  0-389 65 1452 —0309 105  2:556 —1-668
26 0789 0374 66 1473 —0332 106 2592 —1-716
27 0803  0-360 67 1495 —0356 107 2628 —1-768
28 0-818  0-345 68 1516 —038 ,108 2665 —1-814
29 0832 0331 69 1538 —~0404 109 2703 —1-865
30 0847 0316 70 1560 0429 110 2741 —1916
31 0862 0301 7 1-583 —0-455 111 2779 —1968
32 0877 0287 72 1605 —0481 112 2816 --2:021
33 0892 0272 73 1628 —0507 113 2857 —2:057
34 0907 0257 74 1652 —0534 114 2897 —2123
35 0922 0242 75 1675 —0562  115. = 2:937° —2:188
36 0937  0-227 76 1699 —0-590 116 2978 —2:242
37 0953 0211 77 1724 -—0618 117. 3020 —2-300
38 0968  0-19 78 1748 —0647 118 3062 —2-358
39 093¢ 0180 79 1773 —0677 119 3104 —2:147
40 1-000 0165 80 1799 0707 120 3147 —2478
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As already implied, the failure load of a column and its ability to
transmit plastic moments are dependent upon the loading conditions.
These are as follows: '

a) Double curvature with plastic hinges at both ends,
b) Double curvature with plastic hinge at one end and opposite
end intermediate between pinned and at plastic hinge value,

c) Single curvature with one end pinned and moment applied at
the opposite end,

d) Single curvature with unequal end moments, and
e} Single curvature with equal end moments.

Ref 33 treats these cases and develops formulas that will assist the. de-
signer. However, most of the column problems that arise in the struc-
tures considered in this handbook will not requirc the corresponding
refinements.

Whenever it is found that conditions for the preceding ‘rules’
are not met, it will be conservative to use the solution for (¢) above, as
given in Rule 7 for Case III.

It will be recognized that the single curvature loading condition
places the mid height of the column in the most critical loading condi-
tion. Thus, in the plastic analysis, if a hinge were assumed to form in
one or both ends of the column, this may occur if the column strength
has been increased adequately to assure that any neccessary hinges will
form in the adjoining beams. Therefore, when the design is complete,
the column should be selected so that it will have an actual end moment
capacity five to ten percent greater than required for the development
of hinges in the beam.

23.6 Conneetions — Connections play a key role in assuring that
the structure reaches the computed ultimate load. Points of maximum
moment usually occur at connections; and further, at corners the con-
ncctions must change the direction of the forces. Also, the connecting
devices (welds, rivets, or bolts) arc often located at points subjected to
the greatest moments. Design procedures must, therefore, assure the
performance that is assumled in design — namely, that connection will
develop and subsequently maintain the required moment.

The ability of fabricaters to successfully connect members by welding
has lent impetus in recent vears to the application of plastic design
_ methods; because by welding it is possible to join members with suffi-
cient strength that the full plastic moment may be transmitted from
onc member to another. However, this is but one of the methods of
fabrication for which plastic design is suitable. Plastic design is also
applicable to structures with partially welded (top plate) or with riveted
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or bolted connections whenever demonstrated that they will allow the
formation of hinges. © - ‘I*"‘ AR R A A N S
TP N TR T R R N R A N MY { AR FE S|
The various types of connections that might be encountered inr steel
frame structures are shown in Fig. 46 and are as follows: corner connec-
tions (straight, : haunched), . beam-column: .connectioms, beam-ta-girder
connections, splices (beam, colummn,. roof), column anchorages, miscella-
neous. connections (purlins, girts, bracing).. Primary  attention s given
to corner connections and to beam-column connections,. but similar
approaches may be used when considering the other connection

23.6.1 Requirvements for - Conmections — The ‘. design requirements
for conncctions, are introduced by, considering the general behaviour of
different corner, connection typps as observed under load. This; has heen
done in Ref 19 and 9 and 1t is thus possible to formulate four principal
design ‘requirements — requiréments that in principle are common, to all
connections. These are (a) strength, (b) stiffness, (c) rotation capadity,
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and (d) economy. They are now discussed in the light of the be-
haviour of corner and interior connections:

a) Strsngth — The connection should be designed in such a way that
the plastic moment (M,) of the members (or the weaker of the
two members) will be developed. For straight connections the
critical or ‘ hinge’ section is assumed at point H in Fig. 47(a).
As will be seen below, for haunched connections, the critical
sections are assumed at R, and R,, Fig. 47(b).

b) Stiffness — Although it is not essential to the development of
adequate strength of the completed structure, it is desirable that
average unit rotation of the connecting materials does not exceed
that of an equivalent length of the rolled beam being joined. It
would be an unusual situation, in which deflections of the structure
were extremely critical, that this requirement would be applicable.
The equivalent length is the length of the connection or haunch
measured along the frame line. Thus in Fig. 47(a):

AL = r,+4-r, ...(53)
This requirement reduces to the following:
M,
G.SE-I—AL ...(54)

which states that the change in angle between sections R; and
R, as computed shall not be greater than the curvature (rotation
per unit of length) times the equivalent length of the knee.

PONT —
L . J, R H - - R --—l’
r H ” ’ P

, R:
J‘#

{a) ) (b)

FI1G. 47 DESIGNATION OF CRITICAL SECTIONS IN STRAIGHT AND HAUNCHED
: SECTIONS
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Normally an examin\ation of the design to see whether or
not it meets the stiffness requirement will not be necessary.
Compared with the total length of the frame line, the length of
the connection is small. Therefore, if it is a bit more flexible than
the beams which it joins, the general overall effect will not be
very great!®,

c) Rotation Capacity — Of much greater impertance than sufficient
elastic stifiness i3 an adequate reserve of ductility after the plastic
moment value has been reached. This rotation is necess to
assure that all necessary plastic hinges will form throughout
structure. Thus all connections must be proportioned to develop
adequate rotation at plastic hinges. This subject is .discussed
later in further detail.

d) Economy — Obviously, extra connecting 'materials should be
kept to a minimum. Wasteful joint details will result in loss
of overall economy.

On the basis of the above requirements, we are now in a position to
‘anslyze the behaviour of various connmection types.

~ 33.6.2 Straight Corner Connections — The strength of unstiffened corner
oconnections will be considered first; the connection and loading is shown
in Fig. 48. The design objective is to prevent yielding of the web due
to shear force at low load. This leads immediately to the following
strength requirement: The moment at which yielding commences due
to shear force, M, (), should not be less than the plastic moment, M.

FiG. 48 IDEALIZED LOADING ON STRAIGHT CORMER CONNECTION
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Using the maximum shear stress yield condition (vy,= 0,/Z), and assum-
ing that the shear stress is uniformly distributed in the web of knee, and
that the flange carries all of the flexural stress, we can obtain a value
of M\(x) which may then be equated to M,. Using these assumptions
(see stress-distribution and forces in Fig. 49;. it' may be shown that:

t
My = 22 ...(55)

@ 1ﬂm”‘ .h Fo\

——
=
- ——i—-—-- v
e Q——'F|

gV
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Fic. 499 FORCES AND STRESSES ASSUMED TO ACT ON UNSTIFFENED
STRAIGHT CORNER CONNECTION

. Eqguation 55 is equated to My= a,Z to obtain the required web

thickness: R
' = '\/3{5 (1_ _;_) .(56)

Summarizing, the following design guide may be given:

Rule 9 Straight Corner Connections — Connections are to be
proportioned to develop the full strength of the members joined. The
critical section is to be taken at the haunch, ‘ H'. The required web
thickness is given by:

S
t,> xfiﬁ «+(56a)

Examination of rolled shapes (using Eq 56) shows that many of them
require stiffening to realize the design objective for straight connections.
When such stiffening is required, Rule 10 should be followed. Alterna-
tively if doublers are suitable they would be proportioned according to

W‘- “\g:g - ‘-.
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_Assuming, now, that the knee web is deficient as regards to its
ability to resist the shear force, a diagonal stiffener may be used. A
‘limit * approach may be used to analyze such a connection as sketched
in Fig. 50. The force F, is made up of two parts, a force carried by the
web in shear and a force transmitted at the end by the diagonal stiffener,
that iS, F°= Fwep +Fuinene:

when both web and diagonal stiffener have reached the yield condition:
o,wd  o,b,8

Fy== X 4 22 ...[57

==3 + V3 .(57)

where b, and ¢, are the width and thickness of stiffener.

1g ° /

F1G. 50 CorNER CONNECTION WITH DIAGONAL STIFFENER

The available moment capacity of this connection type is thus given by:
6,4 ' .
S d | b
= d — = (58!
M, = (,__L_) [w o (

Equating this moment to the plastic moment (o, Z), the following guide
is obtained in which similar approximations have been made as before:

Rule 10 Diagonal Stiffeners in Connections — The required
thickness of diagonal stiffeners in corner connections that would other-
wise be deficient in shear resistance is give by:’ .

V2 (S w : :
t=Y2(> — (59
*TTh @ 2 9)

Instead of using the maximum shear stress theory of yiclding,
Eq 56 and 59 could have been derived using the Mises-Hencky yield
criterion. The result will be a more liberal rule, and the above-mentioned
equations become:

V3S ...(564)

t,» Fo
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and

5 ...(59a)

Design Examples will be found in Section F. Generally the use of a
diagonal stiffener with a thickness equal to that of the rolled section will
be adequate and not unduly wasteful of material.

= 26-%)

23.6.3 Haunched Connections — Haunched connections are the pro-
duct of the elastic design concept by which material is placed in confor-
mity with the moment diagram to achieve greatest possible economy.
On the other hand, in plastic design (through redistribution of moment)
material is used to full capacity without necessity for use of haunches.

Since the use of a haunch will automatically cut down on the span
length, than a smaller rolled shape should be possible in a plastically-
designed structure. If a haunch is to be-specified for architectural con-
siderations, the designer might just as well realize the additional savings
in the material. Further the use of haunches in long span frames might

make possible the use of rolled sections, whereas built-up members would
otherwise be needed.

Four types of haunched connections are shown in Fig. 51. Analysis
and test have shown all of them to be suitable in design, although the
designer may find more frequent demand for the types shown in the figure.

It is difficult to generalize with regard to comparative deflections
as between a frame designed with haunches and one without them. A
frame with straight connections will have larger rolled members, tending
to decrease frame flexibility. On the other hand, a frame with baunches
is more flexible on the one hand because of the lighter members, but is
stiffer on the other hand because of the deeper haunched knees. In one
comparison®® a plastically designed frame with straight connections was

actually stTHener than the corresponding elastic design in which haunches
were used.

(o 1Y) (e) @
Fic. 51 TyricaAL HAUNCHED CORNER CONNECTIONS
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The analysis of a frame with haunched connections involves no
new principles. The effect of the haunches is to increase the number
of sections at which plastic hinges may form, but otherwise the procedures
are the same as before.

Similarly, the methods for computing deflections would embody
the same principles as those described in 23.9.

The design requirements will generally be quite similar to those
for straight corners. Haunched knees may exhibit poor rotation
capacity4, :

This is due to inelastic local and/or lateral buckling. The solution
is to force the formation of the plastic hinge to occur at the end of the
haunch. This is accomplished by requiring that the haunch proper
remain elastic throughout. Thus the flange thickness should be increased
to meet the demands of the applied plastic moment. Stiffness is auto-
matically provided in a great majority of cases; and no rotation capacity
iis.rzgtxired because all plastic deformation occurs in the rolled sections
oin

Adequate bending strength in the strong direction is only one of
the strength requirements. The other is that it does not ‘kick out’ or
buckle laterally prior to reaching the design condition. The tendency
for this mode of failure is greater than in the straight connections because
in the haunched knees the stress distribution is more nearly uniform along
the compression flange, it cannot be laterally supported along the full
length, and, therefore, a larger amount of energy can be released by buckl-
ing.. The requirement that the connection remain elastic is, therefore, of
considerable advantage,

For tapered haunches the design problem will be to find the required
thickness of inner flange of the haunch to assure hinge formation at the
extremities (locations 4 and C of Fig. 52). Also the knee web should
have adequate thickness to prevent general plastic shear*.

Therefore, the analysis problem is to have a method for predicting the
maximum flange stress due to the applied loading; secondly, a method
of suitable simplicity should be available for computing the maximum
shear stress. In a recently completed report available methods are com-
pared, and in so far as normal stresses are concerned, it was found that
the method of Olander was quite reasonable. The report also compares
the results with tests.

Curved knees have been treated in Ref 32 and the results of this
work have been applied to conventional design procedures in Ref 29.
It is still necessary to force hinge formation at the extremeties of the
haunch and thus a further increase of flange thickness appears necessary.

*Normally this check is required only for type shown in Fig. Si(b).
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~4/

oy li

Fi1c. 52 EXAMPLE OF TAPERED HAUNCH

Although studies to date have not been completed to the point where
the required flange thicknesses may be picked from a chart, the results

suggest that an increase of 50 percent in flange thickness requiremenats
should lead to a safe design, :

In summary, then:

Rule 11 Haunched Connections — Haunched connections are to be

proportioned to develop plastic moment at the end of rolled section
joined.

In osder to force formation of hinge at the end of a tapered haunch,
make flange thickness 50 percent greater than that of section joined.

For curved kmees the inner flange thickness is to be 50 percent greater
than required by the rules of Ref 29.

Use Rule 9 to check web thickness (adequate to resist shear forces).
The distance ‘d’ is to be that as shown in Fig. 52.

. Current research has extended and systematized the procedures with
regard to the actual proportioning of haunched connections. A theore-
tical study and experimental investigation are nearing completion on
this aspect of the problem.

23.64 Analysis of Interior Beam-Columm Conmsctions — The interior
beam-to-column connections are those shown as ‘2’ in Fig. 46 and in
further detail in Fig. 53. The function of the ‘ Top ' and the ‘ Intesior °
connections is to transmit moment from the left to the right beam, the
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(a) TOP (b) SIDE {c) INTERIOR

Fic. 53 BeaM 10 COoLUMN CONNECTIONS OF (a) Top, (b) SIDE, AND
(c) INTERIOR TYPE

column carrying any unbalanced moment. The ‘Side’ connection
transmits beamm moment to upper and lower columns. The design
problem is to provide sufficient stiffening material so that the connection
will transmit the desired moment (usually the plastic moment Af?).
Therefore, methods should be available for analyzing the joint to predict
the resisting moment of unstiffened and stiffened columns.

The moment capacity of unstiffened beam-to-column connections
(Fig. 54(a)] may be computed on a somewhat similar basis as that adopted
usually in conventional (elastic) design practice. In the limit, the force

=

j’[ | j
-, jf‘ - ty t' Jr .
F_
1,.-.}.. A
(8) NO STHFENER (b) FLANGE STFEENER (e} wao STerEmen

Fic. 54 METHODS OF STIFFENING AN INTERIOR BEAM TO COLUMN
CONNECTIONS ‘

104



SP: 6(6) - 1972

which the column web can sustain is equal to the area available to carrv
the reaction times the yield-point stress. Referring to Fig. 55, the force

which should be transmitted is known (T = o,ﬁ";!'). The rcaction

width is equal to the column web thickness, w..

As a couservative

approximation it can be assumed that the length of reaction zone is half
of the beam depth plus three times the k-distance of the column.  There-

fore one may write:

T =(Reaction area) X (o)

_‘_’zg.’.’ = [w, (‘—izé +3 kc)] (oy)

From Eq 61 a direct design check may be formulated,

or

> A2
= 4T 6k,

"We

Hj !

...(60)

..(61)

...(62)

Fic. 55. AssuMED STRESS DISTRIBUTION IN BEAM CoLUMN CONNECTION

WITH NO STIFFENER
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which gives the required column web thickness, w, to assure that the
plastic moment will be developed in the beam. Except for those cases
where the columns are relatively heavy in comparison to the beams, the
test by Eq 62 will often show inadequate strength of the column. Re-
course is then made to flange or web stiffeners of the type shown in Fig. 54.

A ‘limit ' analysis of connections with flange stiffeners'may be used
which results in a direct design procedure for determining the required
thickness of stiffener, #,. Assume that a stiffener is required and that
it will adequately brace the column web against buckling. Then, refer-
ring to Fig. 57 in which the plastic moment (M) is acting at the end of
the beam, the thrust T should be balanced by the strength of the web
(Tw) and of the flange plate (T,) or

T = Te+T, ...{63)
with T, = force resisted by the web

dy
= el — 3,
a,w(2+k)

and 7, = force resisted by stiffener plate
= Oy t:b

md T == o,%bl

.'
" L | o
} £y | s
i &%

+— 15k g

'Y
'
Fic. 56 AsSUMED STRESS DISTRIBUTION IN BEAM T0 COLUMN CONNECTION
wiTE FLANGE TYPE STIFFENER

1NL



SP: 6(6) - 1973
a direct solution for required stiffener thickness is:

L= [A,— ,(d,,+6k,)] -.(64)

The results of tests show that this approach is conservative,

Web stiffeners may be proportioncd on a similar basis to that des-
cribed for unstiffened connections. For use in Eq 60 the reaction area
is made up of the areca supplied by the cclumn web and the two inserted
auxiliary webs [Fig. 54(c)]. This is given by:

d
Reaction arca = w, (2«9 +3k.)+2w. (t,,+3kc) «-<(65)
where
w,= the thickness of the web-type stiffener, and
& = the stress of,the becam flange.
Adequate information is thus available for obtaining its required
value.

The second general type of stiffener that might be needed is that
necessary to assist in transmitting shear forces. ‘Side’ connections
[Fig. 53(b)] or interior connections with large unbalanced moments may
require ‘shear stiffening’ if the column does not carry much direct
stress. In such a case the column web at the joint is called upon to
transmit forces such like those of Fig. 49. An examination similar to

that leading to Eq 56 would, therefore, be desirable in this infrequently
encountered case.

In summary the following design guide is suggested:

Rule 12 Interior Beam-Column Connections — To assure that an
_unstiffencd column will transmit the plastic moment of the adjoining
beam, its. web thickness should be governeéd by:

Ay
W, > Ty e ()

- If ‘flange’ stiffeners are used for reinforcement, their required
thickness is given by:
b= g5 [y =, (dy +-6R)] (65

Alternatively, if ‘web’' type stiffeners are used:

Wy W= A.—.‘(‘.+“. (11} see 0..(“;
" Mk + 6h) o
The thickness w, should not be less than that of the columus.
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In exterior columns or in other cases of large unbalanced moment,
examine adequacy of web to transmit shear force. '

Example 8:

Ilustration of the application of the equations in Rule 12 will now
be given. Joints that are typical of interior beam-column connections
are shown in Fig. 53 and an example of their occurrence in design is shown
in Sheet 1 of Design Example 9, sketch (a). The designs of three types
of connections will now be considered.

The connection shown in Fig. 57(a) should transmit moment from
the beam to the columns above and below. The first question is,  are
stiffeners required ?’

From Eq 62 using properties of the ISLB 600 and ISLB 550:
Ap= 126-69 cm*
dp = 60-0 cm
K= 370 cm
W= 099 cm
The required thickness of column web is:
Ay 126-69
t, > = T 6k, = 60+229) = 1-54 cm>099 cm

Therefore stiffeners are required. Using horizontal ‘ flange * stiffeners,
the required thickness is given by Eq 64:

= —2‘3 [As—w,(ds+6k.)]

_ 1
~2(21)
= 109 cm

Use 12 mm thick stiffeners.

Next, the web should be examined to see if it is adequate to resist
the shear force introduced by the column moment: Very recently it has
been shown that an extension of Eq 58 leads to the following relation-
ship for a 3- or 4-way connection:

6> 7—12”1 ...(66a)

[126:69—0-99(60-22:2)]

where
t,= column web thickness in em,
M = unbalanced moment on the connection in m.t, and
A = planar area of connection in cm?®.
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4
45412 mi 4
C )25-35«.
% 2 - e
e —
e 1SLB 550 ISL8 4«00
ISL8 600 J /
>
9-77m.t
LB 850 1SL8 350
N
 j
Ar 1R

(®)

d)
Fic. 57 DBeAM TO COLUMN CONNECTION WITH STIFFENERS — Contd

In an actual design, the moment computed in the frame analysis would
be used. In this problem, the moment will be taken as the maximum
possible value, namely, M, of the section. Thus

71 % 70:52
b# —m = 1:57>0-99
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e |
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F1G6. 57 BeAM TO COLUMN CONNECTION WITH STIFFENERS

Thus shear stiffening is required. A diagonal stiffener as shown in
Fig. 57(a) will be specified. Assuming that all of the unbalanced moment
is carried by the flanges, the area of stiffener may be computed from:

a, 4, cos 48° =M+
b
A4 — M, _ 2. (1-57—0-99)
' a, cos 48° 4y (157 cos 48°)d,
2 7986 X 0-57
An == ——--——————-1.57(0_67)60 = 25-3 .cm?
Use 2 stiffeners of size 100x15 mm.
The connection shown in Fig. 57(b) is next examined to see if the
web is adequate for shear.
From Eq 66a: : v
7IM
“ 4

__ 71(45-12—25-35)
o 55x35
= 0-726>0-74
No additional stiffening is considered necessary.

The connection shown in Fig. 57(c) should be examined for adequacy
with regard to moment and shear stiffeners. Having in mind that a
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connection of this type will frequently have a beam framing into it at
right angles to the plane of the joint, a web type stiffener should be used
if the calculations suggest that one is required. Further, the two beams
framing into the column are of different depths. Using Eq 62:

- 126-69
60-04-6(3-085)
== 1-43 cm>0'74 cm

Stiffening is requived
Using Eq 66:

W — A.—Wt(d.+6ki
' 4(‘)+6k¢:)
- 126:69—0-74{60-+-6 x 3-085]
- 4(1-55+43 x3-085)
The stiffener shown in Fig. 578d) may either be fabricated from
plate stock or by splitting ISLB 350, trimming the flanges to suit the
purpose. There is a fabrication advantage in using the latter since it

would only involve, the procurement of a short additional length ‘of the
column séction already specified.

In checking for shear,
| 5 1M _ 71(6008—3371)
» A 60 % 35
= 0-89 cm.

More than an adequate amount of material is thus available to transmit
the applied shear force.

23.6.5 Connections Using High-Strength Bolts — High-strength bolts (see IS:
4000-1967*) may be used to join members }see Fig. 57(e)] in one of two
ways. Either they may be considered as splices in regions of negligible
moment or they may be used at positions at which plastic hinges are
expected to form. In the latter case at ultimate load the design may
be based upon tension values equal to the guaranteed minimum proof
lko;‘xll a::d shear values equal to the normal area of the bolt times 1760

m . :

*Code of practice for assembly of structural joints using high tenmsile friction
fastensers. e
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An illustration of the design of a moment connection in the vicinity
of a plastic hinge will now be given. The example chosen is joint 8 of
sheet 5 of Design Example 7, sketch (h), shows the welded detail. The
problem is to join the girder to the column at section 8 with high strength
bolts to transmit the necessary moment. The design calculations follow.
Bolts of dia 14 mm will be specified with a proof load of 7 900 kg.

33-7x10*
7 900
Minimum number of bolts = 5
Bolts required to develop top flange load
_ Auux2540 _ [2:08x21-0—2(2:08)(2-5)]12 540 _

For vertical shear, = 4-3 bolts

7900 = 7900 10.7
Top plate design:
Thickness = 7900x 12 = 248 cm

2 54020 —(2 x 2-5)] :
Use a top plate of 200 X 25 mm connected by 12 bolts to the top flange.
Try 6 bolts in tension. Moment capacity of connection should be greater
than plastic moment of ISMB 600.
My= 0,Z = 88-46 m.t
M ={12x7 900X (60 —8-0)-+16 300(2)(37:5-+30-5+23-0)]
=(49-40+4-29-6)= 79-0
This is less than M,.

NoTr — Vertical plates joined by bolts loaded in tension by the applied
moment must be designed adequate to transmit the tension.

The following comments are in explanation of the above steps:

a) The ‘tension value’ of a 24 mm bolt is taken as the guaranteed
minimum proof load of 16300 kg. The shear value is assumed
as 7 9G0 kg.

b) With a vertical shear of 33-7 t acting upon the joint, a minimum
of 5 bolts are needed. The 8 bolts fusnished will be adequate.

¢) The calculation of the number of bolts required to ‘develop’
the strength of the top flange when it is plastic results in the
number 10-7 bolts are, therefore, furnished, and the top plate is
proportioned such that it will actually transmit the force due to
12 bolts loaded in shear. Thus this plate will transmit not only
the flange force, but also a portion of the web force.

d) The 6 bolts in tension are also assumed to be working at their
guaranteced minimum proof load when the plastic moment comes
on the joint. Actually the bolts will be considerably stronger
than this minimum value.
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e) Bolts in the splice just over the column would be in sufficient
number to transmit the necessary shear to the column. The
exact number would depend upon the number of bolts that would
bel required for the ISLB 350, beam joining the left flange of the
column.

23.6.6 Riveted Connections — Riveted connections could be propor-
tioned in a manner that would make use of similar principles to those
involved in 23.6.5. For this purpose the tension value of a rivet would
be computed on the basis of a yield stress of 2540 kg/cm32. For rivets
in shear, at ultimate load the shear stress would be limited to 1760

kgf/cm?.

23.7 Brittle Fracture — Since brittle fracture would prevent the for-
mation of a plastic hinge, it is exceedingly important to assure that such
failure does not occur. But it is an equally important aspect of con-
ventional elastic design when applied to {ully-welded continuous structures.
As has already been pointed out in previous scctions the assumption of
ductility is important in conventional design and numerous design
assumptions rely upon it.

In the past years the failures of ships and pressure vessels have
focussed attention on the importance of this problem. And although
hundreds of articles have been published on the problem of brittle frac-
ture, no single easy rule is available to the designer. ‘

In plastic design the engineer should be guided by the same principles
that govern the proper design of an all-welded structure designed by
conventional methods, since the problem is of equal importance to both.
Thus:

a) The proper material should be specified to meet the aphropriate
service conditions.

b) The fabrication and workmanship should meet high standards.
In this regard, punched holes in tension zones and the use of
sheared edges are not permitted. Such severc cold working ex-
hausts the ductility of the material.

¢) Design details should be such that the material is as free to
deform as possible. The geometry should be examined so that
triaxial states -of tensile stress will be avoided.

How can we be sure that brittle fracture will not be a problem even
if the suggestions mentioned above are followed ? While no positive
.guarantee is possible, experience with tests of rolled members under
normal loading conditions (but with many ‘adverse circumstances’
present that might be expected to lead to failures) has not revealed pre-
mature brittle fractutes of steel beams. Further, the use of fully conti-
nuous welded ‘construction in actual practice today has not resulted in
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failures, and factors that are otherwise neglected in design have most
certainly caused plastic deformations in many parts of such structures.
Summarizing, the following guides are suggested:

Rule 13 Structural Ductility — Ordinary structural grade steel for
bridges and buildings may be used with modifications, when nceded, to
insure weldability and toughness at lowest service temperature,

Fabrication processes should be such as to promote ductility.
Sheared edges and punched holes in tension flanges are not permitted.
Punched and reamed holes for connecting devices would be permitted
if the reaming removes thc cold-worked material.

In design, triaxial states of tensile stress set up by geometrical
restraints should be avoided.

23.8 Repeated Loading — Up to this point the tacit assumption has been
made that the ultimate load is independent of the sequence in which the
various loads are applied to the structure. One would also suppose that
a certain degree of fluctuation in the magnitude of the different loads
would be tolerable so long as the number of cycles did not approach values
normally associated with fatigue.

In the large majority of practical cases this is true. For ordinary.
building design no further consideration of variation in loads is warranted.
However, if the major part of the loading may be completely removed
from the structure and re-applied at frequent intervals, it may be shown
theoretically that a different mode of ‘failure’ may occur. It is cha-
racterized by loss of deflection stability in the sense that under repeated
applications of a certain sequence of load, anincrement of plastic defor-
mation in the same sense may occur during each cycle of loading. The

‘ question is, does the progressive deflection stop after a few cycles (does

it ‘shake down’) or does the deflection continue indefinitely ? If it
continues, the structure is ‘unstable’ from a deflection point of view,
even though it sustains each application of load.

Loss of deflection stability by progressive deformation is character-
ized by the behaviour shown in Fig. 58. If the load is variable and
repeated and is greater than the stabilizing load, P,, then the deflections
tend to increase for each cycle. On the other hand if the variable load
m to or less than P,, then, after a few cycles the deflection will
stabniz at a constant maximum value and thereafter the behaviour will

‘ tic.

In the event that the unusual loading situation is encountered,
methods are available for solving for the stabilizing load, P, and the
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(stabie)
adie
NUMBER P<Pg /

OF
CYCLES

>Ps
(unstabdle)

DEFLECTION ———t

Fic. 58 CurveEs EXPLAINING Loss OF DEFLECTION STABILITY BY
PROGRESSIVE DEFORMATION

design may be modified accordingly'1**, As mentioned -earlier,
however, this will not be necessary in the large majority of cases. In
the first place the ratio of live load to dead load should be very large in
order that P, be significantly less than P,, and this situation is unusual.
Secondly, the load factor of safety is made up of many factors other than
possible increase in load (such as variation in material properties and
dimensions, errors in fabrication and erection, etc). Variation in live
load, alone, could not be assumed to exhaust the full value of the factor
of safety; and thus the live plus dead load would probably never reach
P,. Further, as pointed out by Neal'!, failure in this sense is accom-
panied by a very definite warning that loss of deflection stability is
imminent. This implies that a lower load factor would be appropriate
as regards P, than as regards P,. '

Rule 14 Repeated Loading — Plastic design is intended for cases
normally considered as °static ’ loading. For such cases the problem of
repeated loading may be disregarded.

*Another repeated loading effect is called °alternating plasticity * or * plastic
fatigue ’. . It is characterized by an actual reversal of stress of a mag:xymde sufficient
to cause plastic deformation '"3, each cycle. Unless the d criterion is ge-
Quired to be controlled by fatigue, the discussion which follows in section applies
equally well to ‘ plastic fatigue® as well as to ‘ deflection stability ’.
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Where the full magnitude of the edprinciple load(s) is expected to
vary, the ultimate load may be modified according to analysis of deflec-
tion stability.

23.9 Deflections — Methods for computing the deflection at ultimate
load and at working load have been summarized in Ref 9, and these will
be outlined herein. However, the problem of deflections is not a serious
one to plastic design, because in most cases a structure designed for
ultimate loading by the plastic method will actually deflect no more at
working loads (which are nearly always in the elastic range) than a struc-
ture designed according to ‘elastic’ specifications. For example, Fig. 59
sho'ws three different designs of a becam of 10 m span to carry a working
load of 19 t. Curve I is the simple beam design. Curve III is the plastic
design. The deflections at working load for the plastic design are signi-
ficantly less than those of the simply-supported beam, albeit slightly
greater than the elastic design of the restrained beam (Curve II).

A
4
1

;
:
¢

(

A
y"’t‘aeox SPAN

-

DEFLECTION ——o

F1c. 59 LoAp DEFLECTION RELATIONSHIP FOR THREE DESIGN BEAMS
FOR SUPPORTING THE SAME LoAD'
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The primary design requirement is that the structure should carry
the assumed load. The deflection requirement is a secondary one — the
structure should not deform too much out of shape. Therefore, our
needs involving deflection computation may be satisfied with approxi-
mations and they fall into two categories:

a) Determinalion of approximate magnitude of deflection at ultimate
load — The load factor of safety does not preclude the rare over-
load, and an estimate of the corresponding deflections would be
of value.

b) Estimate of deflection at working load — In certain cases, the design
requirements may limit deflection at this load.

Fortunately, even though such calculations will rarely be required,
methods are available for making these computations that approach in
simplicity the methods for analysing for ultimate load. The analysis
neglects catenary forces (which tend to decrease deflection and increase
strength) and second-order effects (which tend to increase deflection and
decrease strength). Also ignored are any factors that influence the
moment-curvature relationship. (In Ref 9, 15, and 30 may be found
discussion of these and other factors.)

23.9.1 Deflection at Ullimate Load — The so-called ‘hinge method’
(discusscd in the refercnees mentioned above) gives a reasonably precise
approximation to the load-deflection curve and affords a means for
estimating the deflection at ultimate load. This method is based on the
idealized M —¢ relationship (Fig. 17) which means that each span
retains its elastic flexural rigidity (EI) for the whole segment between
sections at which plastic hinges are located. Further, although °kinks’
form at the other hinge sections, just as the structure attains the com-
puted ultimate load, there is still continuity at that section at which the
last plastic hinge forms.

As a sequence, the slope-deflection equations may be used to
solve for relative deflection of segments of the structure. The moments
having been determined from the plastic analysis. The following form of
these equations will be used, the nomenclature being as shown in Fig. 60
with clockwise moment and angle change being positive:

1 A l Mg,
ba=02+7 %35 (M“’ 2

The only remaining question is: which hinge is the last to form?

An elasti-plastic analysis could be carried out to determine the sequence

of formation of hinges, and thus the last hinge. However, a few examples

will demonstrate that a simpler method is available: calculate the deflec-

tion on the assumption that each hinge, in tum, is the last to form. The

correct deflection at ultimate load is the maximum value obtained from
the various trials.
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Fi1G. 60 SicN CONVENTION AND NOMENCLATURE FOR USE IN THE
SLOPE-DEFLECTION EQUATIONS

In outline, the following summarizes the procedure for computing
deflections at ultimate load:

Rule 15 Deflection at Ultimate Load

a) Obtain the ultimate load, the corresponding moment diagram

" and the mechanism (from the plastic analysis).

b) Compute the deflection of the various frame segments assuming,
in turn, that each hinge is the last to form:

i) Draw free-body diagram of segment, and
ii) Solve slope-deflection equation for assumed condition of conti-
nuity.

- ¢) Correct deflection is the largest value (corresponds to last plastic
hinge). .

d) A check: From a deflection calculation based on an arbitrary
assumption, compute the ‘kinks'’ formed due to the incorrect
assumption. Remove the ‘kinks’ by mechanism motion and
obtain correct deflection. (This is also an alternate procedure.)

The procedure is now illustrated in examples 6 and 7 which follow:

Example 6:
(Fixed-ended beam, uniform vertical load)
a) Ultimats load (Eq 27)
16M,

W, = My

L
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b) Momeni Diagram and Mechanism — Fig. 61(a)

c) Computation of Vertical Defleciion

wleW -
W
\ ! \
!—‘ N

——l)

M,_, =-Mp
-2
Mz_' s - Mp

L

(b)

e T e
S —"

(¢)
Fi1G. 61 DrerLecTioN ANaLYSIS OF FIXED-ENDED, UNIroRMLY
LoADED - BEAM
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TwIAL AT LocAtioN 2 (Location 2 assumed as last hinge to form)

Free-body diagram — Fig. 61(b)
Slope-deflection equation for member 2-1 using the condition that:

6y=0
3v M
=0+ + 3EI(M"” ‘2‘")
ML

03 = Simple beam end rotation =— ET

$vy= Vertical deflection with continuity assumed at Section 2
. — M,L svz L/Z M’
O=—prrtiptaEr\~Mt2

ML
=+ pE7

TRIAL AT LOCATION 1

Even though it is obvious that last hinge forms at ‘2°’, what is the
effect of incorrect assumption ?

Free body — Fig. 61(c)

Slope-deflection equation for sequent 1-2 using the condition that:

6,— 0
M
l"' ol+-———-+3EI( 2'1)
N pL svl L/Z (_ Mp
0=+ppm tiptie\ "Mt
. .81’1 = 0

ML
Thus the correct answer is 8V = BET

Example 7:
(Rectangular portal frame, fixed bases) — Fig. 62
a) Ultimate Load (by plastic analysis)
6M,

Po=7*
b) Moment Dtagram and Mechanism Fig. 62(b) and (c)
¢). Froc-body Diagrams — Fig. 62(d)
d) Computation of Vertical Deflection
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fo— 4 ——t
P ]
h:&.
Vecaudd Ve/d l‘
b L -

LN
(d)
1
Mp s | Mg,
N
F1G. 62 DEFLECTION ANALYSIS OF RECTANGULAR FrRameE witH FIXED

BAses
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RATIO OF 85 AND 3yp:
From the condition of continuity at Location 2, Oy 8y

. Bvy Mg,
0=+ +3EI(M“ —z

5 M)\ 2y M
0,=0+7"§+§‘1{:21(0+ )= Vs _ELI}

le 28”, Mé
=0+ 7 2 381 (0‘*‘ 'z'")"‘ T T12E
28?. & 2833 ’L

T T1EI=T Ti2EI
o3V =30
TriaL AT LocatioNn 1:Member 1-2, 8,=0

8"1 le

M,L*
¥1=+ 13Er
M,L*
12E1
TRIAL AT LOCATION 3: Oy,= 04
Sv L2 28y M
b= 0+ 773 + 3:@1( —My+0) = —* — 6E’IL

3v,  LJ2 M, 2av, M,L
Oy=0— L/2+3EI(M - z) T Y 2ET

... 8V1 =

Oya= Osq
8y, = ML
" 16E7
TRIAL AT LocCATION 4: Similar procedure using 8,3= 04
ML
24E1
TriAL AT LocATiON 5: Similar procedure using 6= 0

Bvp = e

24E1 )

BV‘ ==

1
Correct answer i8: 8y = 30y = 87y = :%LT (Last hinge at location 1)
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33.9.3 Deflection at Working Load — Usually the structure will be elastic
at working load, implying a need for an elastic analysis of the structure.
But it is desirable to avoid such an elastic analysis, if at all possible. For
certain standard cases of loading and restraint, solutions are already
available in handbooks. For such cases one would divide the computed
ultimate load by F, the load factor of safety, and solve for working load

deflection from tables. Taking the fixed-ended beam of Example 6,
for instance (Fig. 61), it is found that:

WAL M,L?
= 35457 = V02 &1

When end restraint conditions are not known, often they may be esti-
mated and the above technique employed.

As’an indication as to whether or not an actual calculation of deflec-
tion at working load should be made, recourse may be had to the methods
of the previous section. The deflection at ultimate load (3,) may be
computed by the hinge method, and a value that will be greater than the
true deflection at working load may be obtained from:

)
S =5 ...(68)
This is illustrated by the dashed line in Fig. 63 for the uniformly-loaded,
fixed-ended beam. The error may often be greater than 100 percent,

CALCULATED IN PREVIOUS

EXAMPLES
Wy 8
' /
AW /
’ /
A Wy 'J— A //
Ww 4
w //lbw : W=wl
/ H
1 7 v
/ -
//
> Y
6B, 82 B
w y u 5

F16. 63 IpEALIZED LOAD DEFLECTION RELATIONSHIP FOR FIXED-ENDED
BeAM witH UNIFORMLY DISTRIBUTED LoOAD
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but it gives an upper limit to 8, and indicates when more refined calcu-
lations ard necessary.

Rule 16 Deflection at Working Load — If computation of beam
deflection at working load is required, this may be done by reference
to handbook tables.

An upper limit of the deflection of a frame at working load is obtained
from 8, =8,/F.

In Section F will be found several additional examples of the esti-
mation of deflections for design purposes.

23.9.3 Rotation Capacity — In order that a structure attains the com-
puted ultimate load, it is necessary for redistribution of moment to occur.
As pointed out in 15 this is only possible if the plastic moment is main-
tained at the first hinge to form while hinges are developing élsewhere in
the structure. The term °rotation capacity’ characterizes this ability
of a structural member to absorb rotations at near-maximum (plastic)
moment. It is evident that certain factors such as instability and
fracture may limit the rotation capacity of a section; and one might
anticipate having to calculate the amount of required rotation in any
given problem to meet the particular limitation. This would seriously
complicate plastic design.

However, computations of the required rotation angle (called * hinge
rotation ’) are normally not required in design, since the foregoing rules
of practice will assure that structural joints possess it in adequate mea-
-sure. In setting up the procedure for safeguarding against local buckling
(Rule 3) it was specified that the section should not buckie until the
extreme fibre strain had reached e;. The hinge rotation supplied in
this case is about 12 (ey/e,= 12); this value is sufficient to meet most
practical structural requirements.

The procedure for computing the hinge rotation at a plastic hinge
in a given structure is based directly on the methods for computing
deflections at ultimate load. It has been illustrated in Ref 9 and the
problem has been treated in Ref 31.

r
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SECTION F
DESIGN EXAMPLES

24. INTRODUCTION

24.1 This section will treat actual design prdblems for the purpose of
illustrating the principles of plastic design. In addition to obtaining
the required section following the general procedures laid down in 21
and 22, each design will be examined in the light of the ‘secondary
design considerations’ (Section E). In the process of analyzing each
structure, ‘ short cut ’-methods will not be used. Instead, each problem
will be worked by a direct and complete plastic analysis. The
experienced designer will, of course, want to use all possible techniques
to shorten the design time, but at this stage the objective is to illustrate
the principles.

The available ‘short-cuts’ for specding up the design process will be
treated in Section G. Just as in conventional elastic design where the
engineer has available various formulas, tables and charts with which
to analyze standard cases, so also it has been possible to arrange con-
venient design aids for the rapid selection of member sizes.

In arriving at a final section size it will be noticed that a table of
Z-values has been used: when the required M,-value has been determined,
Z is computed and Table 4 is used to select the section. An alternate
procedure that would save a step in the calculations is to arrange the
sections according to Mp-values instead of Z-values. This limits the use
of the table, however, to a single value of the yield stress level o,. Still
another method would be to use the presently available tables of section
modulus, S. This would involve a guess as to the proper value- of the
shape factor, f, a value that would be corrected, if necessary, in the final
step.

The load factor of safety has been discussed in 22. A value of 1-85
is used for dead load plus live load and a value of 1-40 for these loads
plus wind or earthquake forces.

As a convenience for later reference, the examples are all worked in
figures or ‘ plates ’, the discussion of the steps being included in the text.

25. DESIGN EXAMPLES ON CONTINUOUS BEAMS

25.1 Design Example 1 — A design example is worked out in the
following two sheets to illustrate the design of a beam of uniform section

125



SP: 6(6) - 1972

throughout. It develops that the end span is critical and, therefore, it
is not possible to determine by statics alone the moments and reactions
for the three central spans. The semi-graphical construction demons-
trates that the plastic moment is not exceeded so the selection of the
ISLB 600, will provide adequate bending strength.

A precise determination of the reactions at ultimate load would
require an elastic analysis. They are computed in this problem, how-
ever, on the assumption that the load on the interior span 3-5 is divided
evenly between the two supports 3 and 5, 30:06 t being distribyted to
each. Actually the shear in span 3 to 5 does not vary too much and should
fall somewhere between values that would correspond to the two limiting
conditions indicated by Cases I and II in the portion of the moment
diagram re-plotted. Thus, V;; may vary between the assumed value of
30:06 t (Case I in the sketch) and which would be obtained from Con-

dition 11 (3006 3%‘?? - 3286 1).

The maximum shear (35:22 t to the left of support 3) is well within
the permitted value of 79-7 t for this shape. But when the cross-sectional
proportions are checked it is found that dfw = 57-14>>55 (permissible).
Hence it is recommended that an ISMB 550 be used. It is checked that
the cross-sectional proportions for this profile is adequate.

With regard to bracing, the structure is assumed to be enclosed.
Thus the top flange is continuously braced. Vertical plates are supplied
at section 2 to provide some torsional restraint to the beam.

Splices for shear only will be adequate at the indicated sections. At
a distance of 2:5 m from the support (at the indicated points), a small
variation from the actual point of inflection is not of serious consequence
to load-carrying capacity.

Whether or not the deflection calculation would be made depends
on the design conditions. The greatest deflection will be in the end

spans and will probably not be far from the value 29 cm for the case of
the indicated approximation. -

+
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DESIGN EXAMPLE 1 BEAM WITH UNIFORM SECTION
Styucture and Loading

L =13 m
W =25 tfm

Uniform Section Throughout

£
W/ | svM asout §

DETERMINATE MOMENT DIAGRAM

}"——.1— Q-a14 L

MECHANISM
. ’ . \J
My = W;L _ 46258x13 — 977 mat

Mp = 0-686 M = 0-0858 WoL® == 0085 8 X 13 x 13 X 4:625
- * -—fﬂ l -
6706 m.t Z o 6706( 2520) 26612 cm®

Qumm&nm»m—%

. (Continwed)
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DESIGN EXAMPLE 1 BEAM WITH UNIFORM SECTION — Conid
Reactions (at Ultimate load)
D

Ry Vu

Wu

0-414L)* Try ISLB 600
R,(0-414L) - W, (——2——)- = Mp wri 10:'5 cm
R, = 2491 ¢t 4 =60 cm .
Ry = Vg4 Ve = (—24-91+60-125) +30-06 I = 728676 cm
Ry = 65-275¢, Ry = Wyl R, =60-125 t

Max Sheay

Vas = Vg =35:22
V max (allowable) (Rule 2) = 1 265 wd = 79695 kg or 79-7 t<35-22 t

Cross-Section Proportions (Rule 3)
210

bt = Tos = 13-55<17.

600

', adopt ISMB 550,
check as follows

f= 193 cm

b w190 cm

w= 112 cm

d =550 cm

Vs (allowable)==1265 wd==77-92 $>35-22..... OK
bjt = 98<17..... OK
djw =49-1<55..... OK

Bracing Requirements (Rule 4)
Note — Beam supports concrete slab, bottom flange exposed.

I‘IS-Sm-rﬁm -r-lam -1 8m rls-sm 4'
Fad 11 1 1

fe——————5 @ 3+ 65 M e}

) IO A A 0 A O 00 I O O O |

*

P raca s sl

_ (Continued)
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DESIGN EXAMPLE 1 BEAM WITH UNIFORM SECTION — Conid

Provide shear splices at points indicated above. Alternatively splice at convenient
Jocations for moment indicated in diagram.

Provide welded vertical plates at section 2.

Deflection’ at Working Load P (Rule 16)

. » 4
WLt 25x100%13¢ o

3~

185E1 ™ T 1S < ETI

-
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25.2 Design Example 2 — This is the design example of a 3-span conti-
nuous beam, with dissimilar sections are to meet the needs of the different
spans. The simple span moment diagram is first laid out to scale to
facilitate the semi-graphical solution. The centre span is the critical
one and requires an ISLB 450 shape.

Since it is only planned to splice for shear, the ISLB 450 member
will extend into the side spans to the points of inflection. The required
moment capacity of these two spans will thus be determined by the
moments at Sections 2 and 6. The magnitude of these moments (17-3 m.t
and 160 m.t) are either calculated as shown or picked off graphically
as are the distances to hinge points 2 and 6.

All sections are satisfactory with regard to shear force. Since the
smallest beam carries the largest shear, the ISMB 300 need not be
checked.

Splices are located at points of inflection and necd be designed for
shear only. Alternatively, if full moment splices werc desirable, then
the length of the heavier ISLB 450 beam could be decreased 1-5 m on
the left and 1-0 m on the right. The position of the splices are indicated
by the dotted ordinates in the moment diagram. It is doubtful if the
additional fabrication cost warrants the savings in weight of main
material unless the latter is of paramount importance.

No additional bracing at Section 4 was specified because in this
configuration, this hinge will not form prior to that at Sections 3 and 5.
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DESIGN EXAMPLE 2 CONTINUOUS BEAM

Wy=tétfm %= 21t/m

HEEEEENREEN

Styucture and Loading

3-Span Continuous Beam

Dissimilar sections  will
be specified to suit the
moment diagram,

L =8m
S L, =125 L L— Li=0m Ly =12m 3=8m
L,= 15 L
1.: =10 L ® ® ® ® ® ® @

Wy =(1-4)(1:35}-.2:59 t/m . Wiu = Wa
Way = 1'§ Wy

Design the beam for single loading condition.

Mowment Diagram

1 . 2
My = IR0 2975 e
NIV ]
Mo - 1§.>_2 ;_23:._12_ = 6993 m.t

. .
Ms - 1_§__»_<_2§S_‘34x_8_ = 31-08 m.t

. H ’
1 5 Wy«Ls {"l = 350 m.t

““wu

|

43

(Continwued)
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DESIGN EXAMPLE 2 CONTINUOUS BEAM —- Contd

Mp2 (determined by scale)=17-3 m.t
Mps (determined by scale)=16-0 m.t

Mechanism — See moment diagram below

Zo= M2 — 34965 x 3968 = 138741 cm?
y

Reactions (Ultimate load) f 28m ﬂ ’ Mp, Use ISLB 450

) vy
Q)%
Ry(38) ~ .“1-1(21?)_ = Mpz Ry =947 t
‘ 1S Wal. R, = 3974 t Use ISLB 328
Ry = Viyg+ Vg = (Wulj—Ry) -+ ('—_'»f'.‘”—’l ! 3974 zs:: 6878 cm?!
B wers. o
Ry(3:0)~(1:5) = —';3-@ = Mpe fo = 016 €

Ry = Vst Vae = (15 WaLy—Rp)4 (13 Wals) Ry =4323 t  Usc ISLB 325

2
Note — Total R=103-6=Total load applied..... OK
Cross-Section Proportions (Rule 3)
Secti
(bJ1<17; d <550) Section b/t djw
w ISLB 450 17/1-34 ==12:69 450/0-806 =523
ISLB 325 16:5/0-98 . 1684 32:5/07 =464
ISMB 300 14-0/102'4=11-3 30:0/0-67 =448
Splices / 1SL8 350 I1SLB 45? \ISLB 00
Provide shear T
splices at points
indicated | 275m—l - 225m—e] |e
fo—r7:25 M —opat————n—17 1}~ gtat— 575 iy

For Right End Span
VMas = V in this case) at point of splice =1:5x 2-59 % (8 —2-25)— B, =11-17 t
From Rule 3 V. of ISMB 300==1 265 wd =254>11-17 ¢t
In Middle Span
Ve of ISMB 450=1265 wd --48-95 ¢
VMas = Vyg=23-31 t<4895 t
The right end span nced not be checked as the smaller scction used in right end
span is found adequate.

Bryacing Regquirvements (Rulc 4)

Top flange continuously supported by concrete slab as in Design Example 1,
Provide welded vertical plates at sections 2 and 6 as in Design Example 1,
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25.3 Design Example 3 — This design example is the same as Design
Example 2 except that a uniform section is used throughout, reinforced
where necessary with cover plates on top and bottom flanges. The left
hand span controls the selection of the uniform section, a section which
turns out to be adequate for the right-hand span as well without being
wasteful of material.

To carry the moment at location 4, cover plates are reqmred with
a moment capacity of 25-51 m.t (M,—2M,). Two plates 12-0x2:5 cm
will be adequate. They should extend somewhat beyond the point at
which M,= M,. This distance is selected as about 0-2 m and the plates
should, therefore, be 8 m long.

Two local (beam) mechanisms result. The reactions were not com-
puted in this example, the same procedures being used as in Design
Example 2.

The shear force begins to approach (but does not reach) a critical
value in this problem. Had it exceeded 35-9 t, then local stiffening of
the web would have been required in the region in which V > V.

The position of the splice(s) is controlled in this problem by trans-
port requirements. A single splice (for shear) is shown at the point of
inflection in span 3-4. The cover plates are to be fillet-welded to the
beam flanges.

Comparing the weights of threc designs (uniform section, design
Examples 2 and 3), the following is obtained:

Design Shapes Unit Weight Length Weight
Uniform section ISLB 450 . 653 kg I0m= 1959 kg
Dissimilar3ection ISLB 450 65-3 kg 17m = 11131 kg

ISLB 325 43-1 kg 725m == 312-5 kg
ISLB 325 431 kg 575m= 2478 kg

. 1673-4 kg

Uniform section with ISMB 350, 524 kg 18 m = 1572 kg
cover plates 12:0x2-5 188-4 kg

cm plate 17604 kg

The lightest design is, therefore, the one in which dissimilar sections
are used (Design Example 2). However, local fabrication conditions
would dictate whether or not the extra splice in this design would be a
more economical choice than the fillet welding of the cover plates of

Design Example 3.
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DESIGN EXAMPLE 3 CONTINUOUS BEAM WITH
COVER PLATES

(Same as Design Example 2 except for cover plates being used on a umiform section)
Structure and Loading ;
Same as in Design Example 2

Moment Diagram Wy *5 Wy

Left span controls
the design.

My, =0686 M,
=2221 m.t

V4 ==881-46 cm?

Sslection of Section

Use ISMB 350
Z =88957 cm?
Mp = 2242 m.t

Reinforcing Plates

A Mp=69-93—2(22-21)=25-51 m.t
) AMp ,

Use 120 x25 mm plate
AMpc =26:46 m.t

(Continued)
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DESIGN EXAMPLE 3 CONTINUOUS BEAM WITH
COVER PLATES — Contd

Meckanism — 2 beam mechanisms
Reactions — Compute by statics. See previous examples.

Shear Force (Rule 2) VMax = Vg =23-31 t*

Vas =(1-265)(0-81)(350)=35-9 t>23-31 t ......... OK
Cross-Sectson (Rule 3) bt = :—44——(2) w= 98, dfwv = %—%(-; =43m14-0cm....... OK

L o120 mm

I2‘."m|m

ISMB 350

Splices

\!S!‘ 80 12025 mm PLATE

- dE J-

Provide splice ad indicated in the sketch above.

*Ses Design Bxample 2 V=15 Wyly/2,
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26. DESIGN EXAMPLES ON INDUSTRIAL BUILDING
FRAMES

26.0 The designs of rigid steel building frames of the ‘industrial’ type
are illustrated in this clause. This includes single-storey structures
only. Single-span and multiple-span frames are treated. The problems
include flat and gabled roofs, pinned and fixed bases, and the use of
haunches is illustrated.

26.1 Design Example 4 (Single Span, Flat Roof, Hinged Base)—
A single span, flat roof, pin-based frame to withstand vertical and hori-
zontal load is worked out in this example.

All applicable ‘rules’ will be checked. In the absence of wind,
F == 1.85. For the second loading condition a load factor of 1.40 is
applied against all loads (live+dead+wind). The uniform vertical ldad
is replaced by concentrated loads at the quarter points (sketch d), since
in the previous examples we have already seen how to analyze a problem
in which the loading was actually assumed as distributed. The distri-
buted horizontal load is repluced by a single load acting at the caves line.

In arriving at the preliminary choice of member sizes, it is assumed
that a uniform section will be used. The important load is the vertical
load and thus maximum restraining moments at the ends are desirable (21).

The analysis is carried out by the statical method (17), The redun-
dant is selected as H4, the horizontal reaction at 6. The fixing line
1-a-b-6 is drawn such that a mechanismn forms as shown in sketch 4.
This is a case where, necessarily, the frame is overdeterminate at failure
with hinges forming at locations 2, 5 and along 3-4. The required plastic
moment is 2997 m.t.

Case II is now analyzed and it is found that the mechanism is the
same as that for Case I, being shown in sketch f. The composite
moment diagram is that shown by the shaded portion of sketch e. In
that sketch, the solid line is the determinate moment, the dashcd line
the moment due to loading by the redundant H,. The required plastic
moment for Case II is 3969 m.t. This case, therefore, controls the
design. T

In selecting the section, a plastic modulus of 1764 cm® would be
required. ISLB 500 supplies a Z of 1774 cm®. In view of the fact that
the analysis was carried out on the basis of concentrated loads
(sketch 2) the lighter section would certainly be adequate. The dotted

lic moment diagram reveals, in fact, the required M, is reduced
3969 m.t to about 38-0 m.t as determined by scale.

After the reactions are computed, the next step is to check the
secondary design considerations. In checking the axial force (Rule 1)
it is found that P/P, = 0-14; the full value of M, is thus available,

4
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In checking for lateral bracing, it will be assumed that the purlin
sﬁacing is 1-5 m. Between bracing points the ratio Lfr, is 44-5. Now,
this value is greater than the value L/r, = 30 given in Eq 51, but this
value also assumes that some plastic rotation is required. In the rafter
all that is required is that the section reach M, since the last hinge forms
there. So the 1-5 m spacing is adequate.

Turning attention, now, to the columns, the girt spacing is also
assumed as 1'5 m. Since the first hinge forms at location 5, the selected
spacing may or may not be adequate depending on how much plastic
rotation is required to develop the last hinge in the rafter, and how much
the adjoining beam lengths restrain the critical’ segment. While one
could calculate the required plastic rotation at point 5%, it is quicker to
check the restraint coefficient according to Appendix C. This has been
done in the problem; the restraint coefficient, Cy, turns out to be 1-3,
increasing the critical bracing slenderness ratio to 39-0. This is close
enough to 39-5 for the selected 1-5 m spacing to be adequate.

Bracing details are suggested in the example.

None of ‘the columns are loaded in single curvature and, since
P|P,<0-15 the full plastic moments will be transmitted.

The connection detail is sketched 4, the thickness of diagonal stiffener
being determined from Rule 10.

Although the deflection of such a structure would probably not be
computed, an ‘estimate’ by Rules 15 and 16 shows that the deflec-
tion is less than 2-27 cm. This is undoubtedly satisfactory since the
crude limitation, L/360, gives 2-5 cm as the limit.

¢The rotation angle has been calculated and found to give a value of % <10
indicating a small rotation angle requirement. :
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DESIGN EXAMPLE 4 SINGLE SPAN FRAME. FLAT ROOF
WITH PIN BASES
Struciure and Loading
Loading Conditions

Case I — (DL+LL) F = 185
Wy = 4x1:25=7-40 t/m

Case 1] — (DL +4LL+Wind) =140
Wy =40X1-40=5-6 t/mem Wy
Wir =095x140=1-33 tim=0-3 Wy

L!Im

- jlllmg\ m tomady

N e
) %

L o 4

Replace uniform vertical load by concentrated loads at quarter point P = ',‘12:_"

Replace horizontal load with concentrated load with equal overturning moment

W = 9:_’...W",‘ = 01 WuL

3
Plastic Moment Ratios ~— Uniform section throughout
Case I — Analysis
Moment Diagram (Rcdunilant = Hy)
PL Wul® 7-4 (9)*
M= =75"="3
Mg = 5994 m.t

Mp = 1‘2& =29-97 m.t

Mechanism — See sketch d

Reactions
H. -H‘ %’ -= 2—9—69—7- =5t

Vim Vo Pan 774 xX45 = 333 t
{Continued)
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DESIGN EXAMPLE 4 SINGLE SPAN FRAME, FLAT ROOF
WITH PIN BASES — Conid

...mlﬂ““"l"“mll'

3 4 $ §

FIXING LINE
DE TERMINATION LINE

1 ]

n.—""' 1’.__'»0.

vy vg

(d)
NoOTE — The values given above are to be compared with values for Case I1
and maximum figures used.
Case 11 — Analysis
Moment Diagram (Redundant e H,)

M; (Det)m Whe=WoL/10(2L]3) = .‘Y.-%’.
» 5:6%9%/15=30:24 m.t
Mo PE WA
Equilibriwm at 3 —- Ms +3} Mi=2 M, Case II (with wind) is-critical
- Mp - 5_9;1%'33'_@ = 3969 m.t
Selection of Section Try ISLB 500
Z = Mpoy w IO _ 1, Z = 17737 cm?
Mechanism -— Sketch f ! 2 ) “« 8 s
Reactions (ultimate load) 2 ws o !TI(‘:[[ r
He = E'T? = :19—66—9 =66t s<sms < \ it I 7 e
Hy==Home Wn6:6—504==1-56 t -o| 31}
Wm

(0 '
(Continusd)
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DESIGN EXAMPLE 4 SINGLE SPAN FRAME, FLAT ROO¥F
WITH PIN BASES —- Conid

V. o HidtMp _ 1:56%6+39-69
1 L/ 335
~-218 t
Ve =2P-V,m47 44 50-4—21-8m286 t

ot |

NG

M 1 e
v v‘
)

Moment Check

My ==Mp—M,;e=39-69—30-24=9-45 m.t

M, =V4(2:25)—Hy(6)=2466 mt......... OK
Asxial Force (Rule 1) (Right-hand column critical)

P Ve 33-300

B, = o = 7505 = O14<01S

Shear Force (Rule 2)
V"“ - V‘.SV.—33'3 t

Vias (ISLB 500)=1:265 wd =582>333..... OK
rim
Cross-Section Proportions (Rulc 3) v X .1 1 x-.; r H"’
18 . 500 .4
bt = iy =120 djw = 5 =54... Ok L
Lateral Bracing (Rule 4) T
. 1wy
Spacing ¢
Lp 1-5x100 .
P = @
Rafter hinge OK. Last hinge forms in rafter
. M 3/4Mp -0
Column hinge M = Mp 0:75
M More refined check is necessar
((s0—s035;)=30<39s as per Appendix C. Y
Lr =15 m
LL =15 m

(Continuad)

140



SP: 6(6) - 1972

DESIGN EXAMPLE 4 SINGLE SPAN FRAME, FLAT ROOF
WITH PIN BASES — Conid

Lg,,

= critical length of elastic scgment in column betwcen the first and
second girt down from the roof.

o LR" = Ly=36* m
Lr,, = critical length of partially plastic segment in girder adjacent to
section 5

Lr,, =(60-40 MMplry= (60—40 525 ) 3:34
=190 cm
Evolution of restraint coefficient:

e LR LL 5 15 .
S = *(Lm.*l.u,) = ‘(3'6 + 1-9) =06
L Lp
Cf =13 (——) = Cf == =:(1-3)(30:0) =39-0< 39-5 (Adequate)
'yC' ry
Bracing Delails

1) Provide wclded vertical plates at the threc central purlins.
2) At sections 2 and 5 brace to inner (compression) cover from purlin.

Columns (Rule 5) (Rule 7) (Right-hand column critical)
P
B =0-14<0-15

.. Full Mp is available

N T P
wcak axis: 1— 135 =] — 30 =088 >0-125

Connection Detail (Rule 10)

¢_!§(i wd ,,_[1(1_5_43-3 0-92x 50

. b\d ™ /3 1 SO \/‘5‘)
w=0-50"cm

Ses Sketch A

Noie — 0:7 cm thick plate required to meet

b/t use 90x07 cm plates as
stiffeners. ;
. $NIPE CORNERS
Spli ¢ as: Provided as part of corner connection NO weLD
detail (h)
Note — Snap the corners (no weld). \

:;(ISLB 800) = ;9‘-2 = 355 corresponding o this ratio dff, if I/b = 20 (Max) the permissible beading
stress F) = 1 575 kgj/om® (ses Tadle 1), I = 20 x 182300 ocm or 880 m.

(Continued)
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DESIGN EXAMPLE 4 SINGLE SPAN FRAME, FLAT ROOF
WITH PIN BASES —- Conid

Deflection at Working Load (Rules 15, 16)

Ultimate load Py =252 ¢t
Moment diagram Sketch ¢
Mechanism Sketch f
Free body diagram Sketch

Slope deﬁcction Eq: (Bsm=0y4)

O35 = 8';' + 351 (M’ M') 101'4 + .{!1/:1( 3969+ 92£)
b it 25+ 2+ 9)
0, = 0028 ZE
s 8uy> 8u == 42 cm
B < 24 £2 =227 em
B rtﬂ e —
2 3 g b

M

M. = 945 m.t
M,y = 3969 m.t
My = 3969 m.t
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26.2 Design Example 5 Single Span Frame with Flat Roof and Fixed
Base — In this design example a similar frame to that of Design
Example 4 will be designed except that the bases will be fixed. The
frame will have a span of 16 m, a column height of 5-33 m, a uniform
distributed vertical load of 1-7 t/m and a side (wind) load of 0-7 t/m.

Considerable expense is involved in providing sufficient rigidity to
resist the overturning moments at column bases, and this factor shculd
be considered carefully to see that the additional expense is warranted.
There is less advantage to fixed column bases if the side loads are small.
At the opposite extreme is a structure designed to withstand blast load.
In one instance the capacity of a structure to resist externally-applied
side load was incrcased nine-fold simply by fixing the column bases and
without changing member sizes whatsoever. Quite cvidently there are
areas where the additional construction ¢xpense would be warranted in
view of the improved load-carrying capacity of the structure. Since
plastic design makes maximum possible use of the material, it extends
the applicability of fixed column bases. Tall buildings, and industrial
frames carrying relatively large cranes which might othicrwise be sensitive
to lateral deflections would constitute two other cases where fixed bascs
would be considered.

As in the previous example, the most economical design results from
using a uniform member throughout.

Of the various methods for handling distributed loads, one which
has been discussed (see 19) but not yet illustrated is to assume the purlin
spacing at the outsct and to analyze the frame on the basis of the purlin
loads. This method will be used here; the purlin load is found to Le
629 t for Case I and 576 t for Case II.

The niechanism method of analysis is used in this problem in view
of the greater redundancy of the structure when compared with Design
Example 47 For Case 1 with no side load, mechanism 1 will control and
it is found that M, = 50-32 m.t. Note that if the actual distributed load
had been used, then My = W, L¥16 = 50-32 m.t. This is the same value
as for concentrated load, ?nd is contrary to expectation. The reason
is that the end purlin reacts'directly on the column. Although the frame
is redundant at failure [/ = X~ (M ~—1)=3—(3—1)=1] the moment
check is easily made by remembering that the elastic carry-over factor
is one-half for cases such as members 3-1 and 4-5.

Analyzing Case II it is found that mechanism 1 still controls with
a required M, of 4608 m.t. In this part of the problem two approaches
are possible: {a) try the two most ‘likely’ mechanisms, namely, Mechanisms
1 and 3; or (b), try Mechanism 1 and make a moment check. The former
was done in this case, the moment check following for mechanism 1.
when it was discovered that Mechanism 1 controlled.
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Case I is found to be critical with a required M, of 50-32 m.t con-
sequently an ISLB 550 shape is specified (Z = 22282 cm?).

The check (according to Eq 51) to determine the adequacy of the
selected girt spacing again indicates that more refined calculation is

needed. This is made according to Appendix C and it is found to be
adequate.

The work axis check for the column is not needed, the axial load ratio
being a very low value.

A deflection analysis was not made in this example. If desired, the
procedure is as outlined in 23.9.1. Since Case I is the controlling condi-
tion, the deflection would be calculated on the basis that 8, = 0 (last
hinge forms at the centre of beam).
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DESIGN EXAMPLE 5 SINGLE SPAN, FLAT ROOF,
FIXED BASE

Structure and Loading — Sketch a
Loading Conditions (Purlins at 2 m spacing)
Case I — (DL LL) F=1-85
Wy = (1 700)(1-85) =3 145 kg/m
Py wa2 Wy =629 ¢
1700kg/

P$ ¢ I 13X T X T x4
‘-.}—Zm
) e —————= .\.3.5.,,".
700 kg /m 1 s
/7;7/9/7 577
()
Case II — (DL+LL=Wind) F = 140 Wy =(1-7)(1-40) =238 t/m = W
Py =2 Wy =596t Wy ={07)(1-40) =098 t/m =0412 W
Wikt P (P P P P P P
L W x O S AR O A A A

=0-412 Wu(2:67)
= 11 We=2-62 t

Plastic Moment Ratio—Uniform scction

throughout Y/ /4

Case I — Analysis (Mechanism method) (b)
Possible plastic hinges =35 (sections 1, 2, 3, 4, 5)
Possible mechanisms =2 MBe=N—-X=5-3=2)

Elementary: No. 1 and 2
£ &'

Compggite: No. 3
MECH 1 MECH 2

MECH 3 -
(© (Continued)
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DESIGN EXAMPLE 5 SINGLE SPAN, FLAT ROOF,
FIXED BASE — Contd

Solution for Mechanism 1 -
PLA { 4
Mp(§+20+0) = 3 (1+2+3+ 5)2 = 2PL#
Mp = 225 - 6-29 % 16 -
50-32 m.t

Moment Chech — Sketch d
M, =2 5932 a5q6met
2 2
sway equilibribm

My = M, = 2516<M, ..OK

Reactions at Ultimate Load
Vim Vy=4P =2516 t

Myt M, 75
Hy= Hy =200 2308 460 @

Cass 11 — Analysis
Hinges and Mechanism (See Casc 1)
Solutions for Mechanism 1 — Sketch ¢

u,-}—;’:-=s-76xs=46-08t
.
PP PP

$0

(o)

Solution for Mechanism 3 — Sketch e

MpO(l +348 +1) - W0k+!%—0 [1+2+3+% (1+2+3+4)]

52 Mp = 2-62(5'33)+—; (5-76)16

Mp =29-27 m.t o
NoTe — Moment at the centre of beam <50-32 m.t.

(Continsed)
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DESIGN EXAMPLE 5 SINGLE SPAN, FLAT ROOF,
FIXED BASE - Contd
Moment Check jor Mechanism 1
Assume My = Mp and use trial and error method.
M;—M;+-Wh =0
Ml_.lvl,——Wh = NMp-—(2:62)(5- 33)=46 08 —13-96
==32-12< 46-08 nvt= Iv!p .OK
Selectic of Section — Case I (without wind) is critical
Use ISLB 550
A =109-97 cm* b =990 mun
d =550 mm; w ==15-0 mm
O =190 mm; § =19332cm?
ry =3-48; F == 531616 cm*
Axial Force (Ruic 1)
pr %

L e 15 ¢
A T 0091 <015..... 0K

31

Sheay Force {(Rule 2)

VMax == V3= Vy=-25-16

Allowable V =1-265 wd =68-9>2516.. .OK
Cross-Section (Rulc 3)

bt =12-67< 17

dfwr =55-56 Slightly >~55..... OK
Latryal Bracing (Rule 4) — Spacing Check

Rafter (purlin spacing = 2 m)

Le 23190 co49535.. ... OK as last hinge in the rafter
7y .548

Column (girt spacing =15 1 from top)
L 15x100 .
W = Taag 8

5

u Mo—qg Mpt M [50 2 S (so 32425 16)]_ 053
My . M 16 50-32 -

From Eq 51 ("B 60—40 M . 388<431

rom Eq 51, (7F),, = 6040 37, =

'. A more refined check is necessary
Evaluation of restra:int coefficient

f= i(,_R“ )~ i (1 3 +Lh) i(%:—;-.“ 4%—:8—3) = 0-715
Cf =12

. (—f;‘-’)mcf—”=12+388x4656>431 ..... oK
Bracing Detasls
Provide vertical welded plates at centre as in Design Example 1.
2) At Section 2 and 4 brace to inner (compression) corners.
Y- I = 366, | = 30x19 = 38 m.

(Con“mnd)
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DESIGN EXAMPLE 5 SINGLE SPAN, FLAT ROOF,
FIXED BASE — Contd

Columns (Rule 5) (Rule 7)
«P% = 0-092<0-15
. Full My is available
Connection Detail {Rule 10)

“ _l/_%(% _ Wd) _ V2719332 0.99><55)= 03 cm

V3/ T190\ 7550 T T 473

Use 806 cm plates as sy 'ices
Spiices
Ses detail b in Design Example 4. Provide as part of corner connectio
(Beam is continuous across column top).

Frams Layou!

ISLB §50
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263 Design Example 6 (Single-span Portal Frame with Gabled
Roof)— In this design example a single-span portal frame with gabled
roof will be designed to resist vertical and side load. The frame has a
span of 30 m, the column height is 6 m and the rafter rise is 4-5 m. Greatest
economy of steel will be realized if haunches are used at the corners.

The vertical distributed load is replaced by concentrated loads applied
at the purlins (1-5 m spacing). The horizontal distributed load is replaced
by a single concentrated load, acting at the eaves, which produces the
same moment about point 1. In other words, it is a concentrated load
which produces an over-turning moment equal to that of the uniformly
distributed load.

Since the frame is only redundant to the first degree, the equilibrium
method of analysis is used. It may thus be determined that the hinge
forms under the second rafter from the crown. The problem is to find
the required plastic moment, of the girder and then to proportion the
column for the required moment at location 2. The required Mp-value
is determined by equating the moments at these locations. The required
plastic moment for this case is 599 m.t.

Instead of using the statical method of analysis, the mechanism of
sketch ¢ could have been used as the basis for satisfying the equilibrium
condition. The position of the instantaneous centre is first located (see
sketch a below), the coordinate being 9-6 m vertically and 417 m hori-
zontally from column base number 1. The mechanism angle at hinge 3
is, therefore, (2:7/6:941)8—1-39 6. The angle at section 4 is eq to
8. The vertual work equation may next be written. The external work
for one-half of the frame is:

Wg = P8(0-33+1:834-3-33+4-83+6:33+47-83+7:83+7-83/2)

--P(2:70/6:9)(1:5+3-0)

Wg = 3:-46 P8

The internal work is:
Wi = My0(1-39+1)= 2-39M,0
thus '

My = 3446 Pj239 = HEXIE_ 500 1y ®
which is, of course, identical with the answer obtained before by the
statical method.

Analyzing for Case II, the redundant is selected as H, (sketch d).
- The moment diagram for the determinate structure is shown by the solid
line in sketch ¢, Rather than work Case II as a new problem, it will
only be determined whether or not the member selected for Case I is
adequate for the Case II loading. Therefore, the composite moment
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diagram is drawn such that the girder moment is 599 m.t, the value
obtained for Case I. The mechanism is shown in sketch f with hinges
forming at Sections 4 and 8. The problem is to find the moment at 8
and observe whether or not it is greater than the 101:1 m.t found for
Case I. From equilibrium at Section 4, H, is determined (695 P); hence
by equilibrium at Section 8 it is found that the required A,—887 m.t.
Since fhis is less than the value of 101-1 m.t, the Case I appears to
control,

The moment check should still be made, and while satisfactory, the
moment at Section 7 is very close to the maximum available M,(59-22
as compared with 59-9). The design of details should therefore be
carried out on the basis that a plastic hinge could form at Sections 4, 7,
and 8 (and by symmetry Sections 2, 3, and 6).

Case I is thus found to be the critical case; the reactions for this
case are also the greatest.

In checking for axial force, it is found that the P/P, ratios are
greater than in the previous problems. As a matter of fact, the axial
force ratio is higher in the girder than in the column because the member
is lighter and due to the sloping roof, both the horizontal and vertical
reaf\ctions at the column base produce a thrust component in the
rafter.

With a purlin spacing of 15 m the Lpfr, turns out to be 39-5. 1In
the centre hinge positions (locations 4 and 6) this slenderness ratio is
satisfactory even though the moment diagram is ‘flat’ because the
corresponding plastic hinges will be the last to form. With regard to
the hinges that form in the rafter and adjacent to the haunch, a consi-
deration of the moment ratio (M/M, = 0-406) shows that the resulting
allowable slenderness ratio is 47-8 which is greater than the value of 39-5
supplied. No further check is therefore necessary. Concerning the
column, the member was proportioned simply to provide strength and
not to participate in mechanism action. A single brace between thé
end of the haunch and the column base would, therefore, be
adequate, :

With regard to the bracing details, support is required on the inner
(compression) side at all points on the haunch where the flange force changes
in direction. It is considered desirable to provide similar bracing at the
peak. Concerning the bracing at plastic hinges that form near the peak,
it was pointed out above that the two loading conditions required very
nearly the same plastic modulus. In the one case the plastic hinge forms
at the second purlin (3 m) from the crown and in the other at the third
purlin (4-5 m). Therefore it is desirable to brace at all four locations.

In calling for a 10 cm plate at the peak (sketch j), it is assumed
that the web will carry no thrust, and a plastic analysis is carried out to
proportion the vertical plate stiffener.
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The ‘design’ of the haunch details is controlled in part by the
initial choice of dimensions. At the outset it was decided that the
haunch would extend 3 m into the girder span and 2:0 m down the column
as shown in sketch 5. The remaining geometry is open to choice, to
a degree at least. For a geometry similar to that selected in this example,
it has been shown that the angle shown in sketch j should be greater
than 11°%, An angle of about 13° gives a depth 4, of 118 cm providing
. a reasonable appearance, and is therefore selected. As required by
Rule 11, the flange thickness is made 2-5 cm which is 50 percent greater
than that of the ISLB 600. The width of this flange is made uniform
at 21-0 cm along the girder portion of the haunch and then is gradually
tapered to meet the 25:0 cm width of the ISWB 600 flange. The web
is selected at 1:2 cm which is about the same as that of the rolled members
joined. )

If, for some other problem the geometry were much different from
that shown in sketch k, a further check on adequate strength of the
haunch could be made either by the elastic method of Ref 28 or by arn
approximate plastic analysis. In the latter case, we would check to see
that the plastic modulus supplied at the critical section exceeds the
required value by the same margin as that which exists at Section 7.
This calculation may be carried out using as a value for Z the expression
given in Eq 69:

Z'— bd—t)+ % (d—2¢) ...(69)

Such a calculation for this particular problem also shows the design to
be adequate.

As far as the remaining details of the haunch are concerned, the end
plates need only be of reasonable thickness, and on the basis of the cal-
culations made for the peak, are selected as 1-0 cm. The diagonal stiffener
thickness shguld be equal to that of the rolled section flange. A 1:6 cm
plate is therefore selected. '

This completes the design of the frame which is shown in sketch I,
With regard to splices, the columns and haunches could be shop-assembled
with a Eeld splice at Section 7. Alternatively, a splice for tull moment
using high-strength bolts could be made at Section 7 or bolted splices for
less than full moment strength could be supplied at a section near the
point of inflection (haunch in sketch I).

It is of interest to compare the results of this design with the elastic
solution and with the plastic solution for the case where no haunch has
been used. Not only is there considerable savings in each case of the
plastic over the elastic design, but it may be shown that possible weight
savings may be achieved in plastic design as well as elastic design when-
ever a haunch is specified. Of course, the haunch fabrication expense
should be borne in mind when making comparison of overall costs.
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\

‘ DESIGN EXAMPLE 6 SINGLE SPAN GABLED FRAME
Structurs and Loading — Sketch b

Loading Conditions

Purlin spacing assumed = 1.6 m
Cas¢ I — (DL4LL) F =185

We =(1-5)(1-85)=2-775 t/m

Py =15 Wu =416t

P, Py P P
Whs 900 kg/m

Wy =1800 hg/m

Cass II — (DL4LL+4+Wind) F =140

Py w15 Wam15x21=315 t Wy =(1-5)(1-40)=2-10 t/m = W,
Wi =(09)(1-40)=1-26 t/ m=06 Wu
2Ty |
W"( 2 ) 1-26 (10-5)*
- - - =~ 11-58 =3-67 P
» 2(6)

Plastic Moments Ratios
Adjust Mp to suit the Moment Diagram —— See below:

Cass I — Analysis (Statical Method)

Moment Diagram
" (Redundant = H,)

My = 2775(30)1 § = 312 mt
+ Eguilibrium — H(8) — M, (Determinate) =M, (Determinate) —H,{9:6) = My
M, = (19?)(3-0)-?(1,-s+ %) =27P

Mo (10P)(120) = P(1:5 43445 +6+7-5+9+105+ 7 ) = 12.P

- M+M,\ 9P
Hi=ger60 =165 = 6P

Mp =72P—6P (9:6)m1i4:4 Pm59.9 mt
Columan : Mp (Col)ma (H,)(4-05) = 6P(4-05) 24-3Pm=101-1 m.t '
' (Continued)
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DESIGN EXAMPLE 6 SINGLE SPAN GABLED FRAME — Conid

Mechanism — Sketch ¢

Moment Chech — All M<Mp ~

Reactions \\-
Hl '=H. = 6P=24'96 t
Vy=Vy= 10P=416t

(©

Case 11 — Analysis:
Moment Diagram— (Redundant = H,)
M, =75 Py
M corner (det)=Q(6)-=22-02 P

Mechanism — Sketch f

Equilibrium at Section 4
M+ Hy(9:15) = Determinate Moment
at 4

Determinate Moment at 4 —(0:65)
(22:04) + Ma e

M ==(10P)(10~5)-—P(l'5+3+4-S+6-0+7-5+9-0+1%'—5) ()
Mo =68-25 P

M, should bé adjusted as M= Mp = gg——’: =19-01 P
Hy(9-15)=(6-9)(22:02 P)+ 6825 P—19-01 P e
635 )
H' 9——_1—5- = 6 95 P . :l
Equitibriwm & Section 8 F J
M, = H(4-05) Y]

M, = 887 m.t<101-1 (Case I)
Moment Check — Diagram plotted — gkeotch ¢

My = H,(6:9)~ M,(Determinate) =6-95 P(6-9) - [10 PO)- p( 154 3_;9) ] _2202P
M, = 188 B =59-22 m. t<599 m.t : 10

Reactions
Hy = 695 P m219 ¢ ,t‘o \
Hy, = Hy—Q =219 t -3:67 P m
Hy =~ 1032 t ' :
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DESIGN EXAMPLE 6 SINGLE SPAN GABLED FRAME — Contd

18 P(15)+‘23 (30)— Q(6) -

V, = =~ 877 P
30 -
W Vi=2762t
Vg = 20 P—V,;=189=3538 t oo
NoTE — Case 1 reactions control the design. —ed
Case I (without wind) is critical. ]
Selection of Section (h)

100 000 s
3520 ) 2 380 cm!

Use ISLB 600
A = 12669 cm? 9y =
= 600 mm i

Girdey: Z = —]:’1’ = (59-9)(
y

g T oR

= 10-5 mm

100 000\ - .

Use ISWB 600
A = 18486, cm® w =
d = 600 mm Z =
S =
I -

Column: Z =(101-1) (

b = 250 mm
¢t = 236 mm
Yy == 5-35 cm

Axial Force :
Ve _41:6x1000 41600

P
[ — = = =) 15 ..
Column 7, oy 23520 4 46588 0-089 3 <015
. . P__ H,co38+(V,—2-5 P)sin f

Girder: &, 2 520(126-69)

45

=Y 1D e ©.
) tan is 16°40
sin @ = 0-288 -
cos § = 0960
Ji - (24-96)(0-96) + (41:6 ~2-5x 4-16) 0-288 . K
Py 2:320 12669 =g103 <015--e: o
Shear Force

Vmes = Shear at end of girder
Veas = Vg — §=41-6—‘-'2’—6 =3952 t
Permissible shear =79-7 t>39-52t...,.0K

-~y

3:79 cm

= 27986 cm®
= 210 mm S = 24289 cm®
155 mm [ = 728676 cm?*

11:8 mm
4 341-6 cm®
38542 cm®

1156266 cmé

(Continued)
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DESIGN EXAMPLE 6 SINGLE SPAN GABLED FRAME — Conid

Cross-Section Proportions

Girder Column
b/t = 13-55 10-59 <17..... OK
dlw = 5714 S0-85 <55..... OK

Lateral Bracing — Spacing Check
Girder — (purlin spacing =1-5 m)
Lp 1-5>100
P B T N 39-5>-35
‘ centre’ position OK as hinges form there last.
Check moment ratio correction on hinges at haunches.
My=Mp=59-9 m.t

Ma = —H,(735) + V,(4-5)— P (1-5+3 + ‘t';)

Mas =~2434 m.t
Ma
el = 899 d
S Mp 59-9= +0-406
(f:’?)c. - 60-—30% = 60--30 x 0-406 235m
= 4782
>39-5 ...0OK
Provide brace midway. between end of Hy 3

v

haunch (Section 8) and column buse.

s m——

-~ ®

Lp 200x100 7 OK because large hinge rotation not required
vy =535 = 37-4 at Location 2.

Byacing Details
: Hawunches—Provide bracing to inner (compression) flange at each end and at centre.

Peak — Provide bracing to inner flange.
Note — These purlins should be adequately braced in order to provide
support to rafters.
Columns .
P e 0098<015.......0K
Py
Lir = 37:4<60.....0K (Rule 7)

(Continued)
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DESIGN EXAMPLE 6 SINGLE SPAN GABLED FRAME — Contd

Connsction Details
Peak — Proportion stiffener to transmit flange thrust.
oyAs = 20y Ay sin 8
big = 2b¢ sin
i = 2¢ sin
= (2)(1-55)(0-288)
= 089 cm
Use 10 mm plate
Haunch (Rule 11) —
Geomeiry — Sketch A
Select B ~13° (>11°)

f
#f =(1-50)(1-55)=2-33 cm
Use 28 mm plate §)]

(k) (Continued)
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DESIGN EXAMPLE 6 SINGLE SPAN GABLED FRAME — Contd

End Plates
Only plates of ‘ nominal’ thickness are required, as at peak.
Diagonal Stiffener Use 10 mm plate
g =t m1-55 cm Uge 16 mm plate
web Use 12 mm plate
Splices

Provide as part of the haunch and peak detail,

Frame Layout — as shown below:
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26.4 Design Example 7 (Two-Span Industrial Flat Roof, Frame) —
In this design example an industrial fiame will be designed to carry
a vertical load of 1 800 kg/m and a horizontal side load of 900 kg/m. The
mechanism method will be used to analyze the various loading condi-
tions. Distributed load will be treated as such, although the loads will
actually come to the structure through purlins. Opportunity will be
afforded in this two-span frame to illustrate the ‘ preliminary design’
procedures for estimating plastic moment ratios. As shown in sketch a
glae column height is 5 m, the left span is 10 m, and the right span is
m,

For the time being the. value M, is assigned to the left rafter, the
value k,M, to the right rafter and %,M, for the interior column. The
dotted lines shown in sketch 4 are simply an aid towards keeping the
signs straight — positive moment produces tension on the side of the
beam next to the dotted lines.

There are two possible loading conditions. ¥or Case I with dead
load and live load, the load factor of safety is 1-85. The distributed load
becomes 3-33 t/m. For Casc II (dead load plus live load plus wind) the load.
factor of safety is 1-40 and the vertical load is 2:52 t/m, thc horizontal
load being half this value.

In order to determine the plastic moment ratio for the rafters, the
beams are considered as fixed ended as shown in sketch . The value
k, is thus determined as 4-0. For this special condition, the minimum
possible plastic moment values would be determined, the joints being
fixed against rotation but the frame theoretically free to sway. The
resulting ratio is thercfore the basis for later analysis of the frame. For
greatest economy the end columns should provide full restraint to the
beams, and therefore the plastic moment values are made equal to the
appropriate beam values. The value %, for the-interior column may be
determined by considering equilibrium of joint 6-7-8 (sketch ¢). A
value of 2, equal to 3 is obtained.

The structure is now analyzed for Case I loading. Actually the
analysis was completed in the previous step but we will go through the
various operations. There are 7 possible plastic hinges. The frame is
redundant to the third degree (X = 3). Therefore, there are four possible
independent mechanisms and these are shown in sketches b, ¢ and d.

The solution for Mechanism 1 is made on the basis that Mechanisms
1 and 2 form simultaneously. Consequently M, is determined as 20-8
. -m.t and A M, is 832 m.t. :

The moment check as shown in sketch e reveals that the moment
is nowhere greater than M, and thus the solution is correct for this loading
condition. The computation of reactions at ultimate load completes
the first analysis.
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The analysis for Case II is then performed to see whether or not the
plastic moment values determined will be adequate. The same plastic
moment ratios, %, and %, will be used.

. The solution for Mechanism 1 may be determined from Case I and
is found to be 1574 m.t. The solution for Mechanism 4 (sketch c¢)
shows that M, is so much less than the value determined for Mechanism 1
that no further consideration of this mechanism is necessary.

The solution for Mechanism 5, which is a combination of Mechanisms
1, 2, 3 and 4, shows a required M, value of 16-5 m.t. Although it is less
than the value of 20-8 m.t for Case I, it is close enough so that the mo-
ment check should be made. Incidentally, the solution for this mecha-
nism assumed that hinges formed in mid span. Thus, x, in sketch 4
was made equal to L,/2 and x, = L. The moment check gives a possible
equilibrium configuration as shown in sketch f (page 165). The plastic
moment condition will be violated near Sections 5 and 9. Even so, if the
analysis were completed on the basis of a precise determination of the
values x, and x,, the requircd Mj-value would be Icss than the value

determined for Case I. Therefore, no precise consideration of dist.-ibuted
load is necessary.

In further explanation of this moment check, we shall expect in the
first place that the plastic moment condition will be violated in each of
the rafters because of our initial assumption that plastic hinges formed
at mid-span (locations 5 and 9). This is only the correct position when
the end moments are equal. The moment check is completed by using
the equilibrium equations, and these are shown in skctch f. Using the
equation for beam 4-6 it is found that M, equals 13-5 m.t which is
less than M,, and similarly for span 8-10. Using the joint cqujlibrium
equation for 6-7-8, it is found that thc moment in the column top is also
less than kyM.

Sufficient information is thus available for drawing the moment
diagram, and it is plotted to scale in sketch f. As expected, the
moment is greater than the plastic moment value near the centre of the
two rafters. To the left of Section 5, M = 16-63 m.t as compared with
My = 16:5 m.t. To the left of Section 9, M = 664 1.t as compared
with 4M, = 66:0 m.t. We may, therefore, conclude that Mechanism
5 is the correct one, M, being slightly larger than 16-5 m.t. Case I
(M, = 20-8 m.t) therefore controls the design.

If it had been desirable to analyze Mechanism 5 and determine the
precise location of plastic hinges this could either be done graphically,
by trial and error, or by maximizing the required M,-value expressed
in terms of the distances x, and x,. The following equation in terms of -
%, and z, would be differentiated partially in respect to x, and with respect
to z,, would be set equal to 0, and the resulting two equations solved

159



SP: 6(6) - 1972

simultaneously for the x; and x, value:

L | x 2L %y
My (L—x, + L-x,) +k1M’e(2L—-x, + ZL—x,)

I h
=u, 2 0x, +w.L_2'ox,+w,,.2.ho (10)

Since Case I (without wind) is the critical comdilion, the selection of
required section will be made on the basis of the M, values thus deter-
mined. In selecting the section for the right-hand beam and column
a plastic modulus of 3 311-2 cm? is required. The ISMB 600, supplies
a plastic modulus of 3 510:6 cm®. Even if the moment capacity of the
beam section is somewhat less than the required value, it is considered
adequate, particularly since the centre column provides a restraining mo-
ment that is considerably greater than the required value of 2 183-4 cm3,

In checking Rule 1 for axial force in the members, it is found that
the centre column has a P/P, value of 0-156 which is greater than 0-15.
Using the recommended formula (Eq 47) it is found that the original
choice was satisfactory since the Z-value actually furnished is greater
than the modification factor requires. No check of the right-hand column
is necessary since the centre column is satisfactory, and the beams are
adequate because the horizontal thrusts are less than the vertical ones.

All members are satisfactory as far as shear force is concerned.

In evaluating the cross-section proportions it is found that the sec-
tions have b/t ratio of less than 17 and therefore satisfactory. The ISLB
600 is found to have inadequate dfw ratio. The section is therefore revised
to ISMB 550 which is checked and found satisfactory.

Concerning the problem of lateral bracing, the purlin spacing is
selected as 2 m and the girt spacing as 1:67 m. The left rafter will be
the most critical since it has the smallest r,-value. A slenderness ratio
of 63-1 will be adequate since the plastic hinge in the centre of the rafter
will be the last to form. A preliminary check of the left-hand column
ISLB ‘359 shows that ‘a more refined examination is required. A consi-
deration of the restraint coefficient improved the situation somewhat
(compare the required slenderness ratio of 42:4 with the value of 52-7
that exists in the structure). The designer could either place an additional
brace part way down the column or could check the hinge rotation at
Section 4 to see if it was as severe as assumed in the theory.

In proportioning the diagonal stiffener for Connection 4 (ISLB 350),
the member is so light that the initial choice will be based on a diagonal
with thickness equal to that of the rolled section flange. In checking
for local buckling of this element (Rule 3) even slightly lesser thickness
is  required. Therefore, a 12-mm plate is specified.
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A similar situation arises for connection 10, except that the local
buckling provision becomes more critical. In this case, instead of start-
ing out with the flange thickness, the equation for 4, was used, resulting
in a required value of 1:0 cm. The buckling provision requires a thick-
ness of 1:23 cm and therefore a 1:4-mm plate is specified. Use of the flange
thickness 2:08 cm would have been adequate, and the problem suggests
that this rule-of-thumb guide is probably the best one to use in design
where light members are involved.

With regard to interior connection 6-7-8, since the full moment
capacity of the ISMB 600 member need not be transmitted -into the
vertical column, the existing web thickness may be adequate. Equation
56 may be employed as a check, using for S and 4 the values for member
2-7 (ISMB 550), the required thickness to be compared with that furnished
by the ISMB 600 shape. This amounts to making sure that the joint
will transmit the moment in the column top. The web is inadequate
on this basis. Because of the position of the ISLB 350 with respect to
the ISMB 600 (see Sketch %), thc upper portion of the knee web may
be adequate and the lower part inadequate. By considering equilibrium
of forces on the top flange it may be shown that a web thickness of
10 cm would be adequate for the upper part. Good use of a diagonal
stiffener (4,= 15 mm) in the lower part may be made as shown and this is
all that is necessary.

~ This completes the design.
/
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DESIGN EXAMPLE 7 TWO-SPAN FRAME

Structure and Loading

£

? " L) 37. '9 10

sH i w H 1
: :klMP : 9.5
' {
0 ' 2 3|1L—-&
L Lm0 m ;L =20m -

(2)

Loading Conditions
Troat problem with distributed load:
Case I--(DIL.-LL); F =185 we =(1-8)(1-85;-3-33 t/m
Case 1T (DI LL4Wind); [ =140 1wy =(1-8)(1-40)=2-52 t/m =Wy
wh «=(09)(1-40)=1-26 t/m = Wu/s

Plasiic Moment l'alios®

Consider heams as fixed-ended (sketch b), Mp = LV{.;L_{
ul! ‘ 2L
Mp (4-8) ==~ = Mp b="13
3
Mp(8-10) = !’.“_‘1_26’:’_ - A My -

(®)

End columns provide full restraint to beams
Mp(1-4)=Mp, Mp(3-10)=FAlp=4 Mp

*Sign con miton — + M produces tension on side with dotted line,

A"m —'M’, M.- —th'

{Continne
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DESIGN EXAMPLE 7 TWO-SPAN FRAME — Conid

Interior column to provide joint equilibrium sketch ¢

My—~My—M=0 a
Mo M=M= (=hMA= M -0, @ .in.[.w

Cass I — Analysis (Mechanism Method) ©
Possible Plastic Hinges — N =7 (Sections 4, 5, 6, 7, 8, 9 and 10)
Possible Independent Mochanisms —-# = N — X x4

Mechanisms 1 and 2 Beam

Mechanism 3 Joint
Mechanism 4 Tane!
Mechanism § Composite

> ]

(d)

Solution for Mechanism 1

Mp(0+20+0) = -I-;Q 25

Mp= 9111'6.' __113_312_)_)' = 20-8 m.t (Momber 4-6)
NMp = (4)(208)m83-2 m.t (Member 8-10)
(Conbinued)
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»

DESIGN EXAMPLE 7 TWO-SPAN FRAME — Contd
Moment Chech — Sketch e
Joint equilibrium ab 6-7-8 — Ay Mp=62-4 m.t (Member 2-7)

All M<Mp.. ... OK
(Mp)y= Mp = 20-8 m.t

< ll“'
“_ N I
2

f | .

v A\ Vs
(¢
Reactions a8 Ultimate Load
o= 2_05'_8 —-416 ¢t Vy = e L2 = —————3'332“0) ~ 1665 ¢
H._L‘hi’nﬁ?_n-st V.,.’."—;_f‘+'.‘1;2.1‘_)_1-5w,,L
: = 1-5%3-33x10
- 4995 ¢t
Hy = _IS;LW__, - Q:;__Z =167 t Ve = l'"-'i-é_._w = 33:30 t

Case II — Analysis
Hingss and mechanisms — See Caso 1
Solution for Mechanism 1 — Mp = (20-8) g——:g w=15-74 m'.t
Solution for Mechanism 4 — (Sketch d)
M-+ (hMp)-+ (3, M p)0mund b. §

1-26 (100)
8

]
Mp(14344) = ‘”2"" (%)
Mp=197 m.t<Mp Case I

(Continued)
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e

DESIGN EXAMPLE 7 TWO-S8PAN FRAME — Conid
Solution for Mechanism 5§ — (1+2+3+4): Sketch d
NoTeE — Assume hinges form at mid span (v,=L/[2, xy=L, 0,_0..:9,-0"--2’,0)
Mobiz+2+@x4+@x 4 = w (G 0)w)(})+weni@rit2)+ %5 ( 03)

20Mpmwul?(1/44-141/16) == f% (2:52)(10)%, M p=16'5 m.t (Upper Bound Solution)

', Check Moment

Moment Check
M, .A!! wul?

Beam (4-6) — M, = 20t 4 50 4 2o
M, = 2My—=Me— 2 L aarp by — 3"’-‘34'-"—
= 3168 - 2200 435 me<tss.....0k
Beam (3-10) — M, = 206, — M,y ZEL = (2) M)+ 40 p— e (22
My = 12016:5) - Z2 89 | _54<66 mt.....0K

Joint (6-7-8) — MymMy—Mym —16:5+54=37-5 m.t<3IM,
=l12'5 mt......OK
Case I (without wind) is critcal

664

4]
Selection of Sections — Controlling momont diagram — Skotch 6, Mp=220-8 m.t

Loft bea
Left colunrlnn} Ziy= I-:? = 20-8 X39-8==827-8 cm?

Use ISLB 350, Z =831-1 cm
A = 63-01 cm? W= 0:74

d =350 s = 7519
b == 65 mm I = 13158
f == 1"9 ',— 13'17

(Continusd)
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n

DESIGN EXAMPLE 7 TWO-SPAN FRAME — Contd

ht beam
l!?l:ht column}zn-u-4 Zyem= 33112 cm®

Use ISMB 600 Z =3 510:6 cm?®

A = 156-21 W e 12 mm
d = 600 mm s = 30604 cm?
b = 210 mm I = 918130 cm*
$ = 208 mm vy = 412 cm

Centre column Z, ym3Z, =2 483-4 cm?
Use ISLB 600 Z =3 798:6 cm?
A = 1267 cm? W= 10:S mm

d = 600 cm s = 24289 cm?
b = 10 mm I = 728676 cm¢
{ = 2105 mm ry = 379 cm
Axial Force (Rule 1)
P vV, 16-65
Left column 7 = oyA e =3 520(63-01) — 0105<15..... OK
. P Vs 49-95
Interior column &

B, ™ Ay, ~ (1269)@ s20) — 0156>015
{Modification Required)

ZReq = ZTrhal (;-:; +uss)
= 2483-4(0-156--0-85) 2 498 cm*<2798 cms . ... .. OK

Shear Force (Ruls 2)
Loft beam Ves = V,==16-65

(ISLB 350)
Vallow. =1 265 twd =32:8>>1665 t..... OK
ht beam VaesV, =33-7 t
(ISMB 600)
Vallow =1 265 wd =91-1>33-7..... OK
Cross-Seciion Proportions (Rule 3)
Shape bji(<17) &]u(<585)
ISLB 350 14-S 47-30..... oK
ISLB 600 13-5§ 87-00..... Not good
ISMB 600 101 5000..... OK

djw for ISLB 600 is not adequate
.. use ISMB 550

132:11 cm®
$50 mm
190 mm
19-3 mm
11-2 mm
‘23598 cm®
64 8936 cm*

~o g =R

(Conilinued
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DESIGN EXAMPLE 7 TWO-SPAN FRAME — Contd

ry =373 cm
P Vs 4995 x 1 000

T =By~ aads, 2520x13211 ~0150
-015..... OK
Alt = 98
diw =49-1
(Laterul Bracing) (Rule 4)
Purlin spacing =2-0 m, Girt spacing =1:67 m
Spacing
Left Raftor (ISL1 350) f“’ 20 631 oK
Ly _ 167 oo (M _23Mp o
Loft column (ISLB 350) 22 = 187 w527 (M,, =~ Ut = 067)

Eq 51 = (%)" =38<52-7 ~. More refined check ncecessary.

Rostraint coefficient

_ LL (s0-40
1/2 (I.R(cr)+LL(w) ; LR@en=1y\ 60 403?})

664\, .
= (6o+4o 5 8)3~17==230-7 cm

LL(LRr) = 30:7; I[b =20,
!-20x 16:5=335 cm
. 1-67
o fm 1/2(”1 + 33 ) - 0:685
S Cf w1421
5‘7")“ -t ’;" - (1:21)(35) m42:4 <52:7

Nots — Sma.ll hinge rotation requirement would exist for this case. Therefore,

assume it to be OK. Altematively, provide additional brace.

Bracing Details

1) Provide vertical welded plates at centre purlins at both rafters.
2) At sections 4, 7 and 10 brace to inner {compression) corners,

Columns (Rule $)(Rule 7) \
Left column (ISLB 350) ; = 0-105<015 Full M available
P 333
Right column (ISMB 600) - Mo—u T5200321) <01=015
s~ Full Mp available
(Continued)
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DESIGN EXAMPLE 7 TWO-SPAN FRAME — Conid

‘Intorior column (ISMB 550) 5 =015=015  (Ruls 1) 16 adequater

L|Py = ;20?-6 = 22:6 .. original design is OK

Connection Delails
(Use straight connoctions without haunches)
Conncection 4 (ISLB 350)
Use diagonal stiffener cqual to flange thickness ==1:14 cm

S 165 ; .
for local buckling: ¢t5/17 = I = 097 c¢cm;
Sse detail %, in sketch & of Design Example 4.
Connection 10 (ISMB 600) (Sketch g)

W VI (5o ) L L5 (30604 _ 1260y

T TN\d T 4 /3/ T 210\ 7600 V3

3 = 0-57 cm

ha L0123 cm

17 17
Use 100 x 14 mm plate

s <,

ISMB 600 \ C

) !
(2 .

Interior connection 6-7-8 (Sketch k)
AM
wy = 06 a—da
62:4 x 100
= 0% =60
= 1.04 cm
Wy pm= 1-2<1: 6 cm
Usec partial diagonal stiffener (1:2 cm thick) as per aketch.
Splices — Provide as part of corner connection detail (interior column contimmuu)
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26.5 Design Example 8 (Two-S Frame with Gabled Roof and
Fixed Column Bases)— The use of gabled roofs and the fixing of column
bases adds sufficient additional complexity to a structure to justify fur-
ther consideration of the mechanism method of analysis. Since most
of the design rules have been illustrated in the previous problems, in
this example attention will be focussed solely upon the over-all analysis
and design of the structure. The examination of details is left as an
exercise.

In actual design practice, problems of this type would undoubtedly
be solved by the simplified procedures described in 31. However, this
example is given to illustrate basic principles. More complicated pro-
blems, for which charts are not available, could then be solved.

The methods presented here would also be helpful in the solution
of problems involving three or more bays.

The two-span frame, symmetrical throughout is shown in sketch
a of Sheet 1.” The roof load, concentrated at the quarter points of
the rafters, might be thought of as an approximation to a uniformly
distributed load of 1-5 t/m. Similarly, the side load -produces the same
overturning moment about the base as that of a uniformly distributed
horizontal load of 06 t/m. acting on the vertical projection of the
structure.

There arc 18 possible plastic hinges, 6 1edundants, and, therefore,
there are 12 indcpendent mechanisms as shown in sketch & The
mechanism solutions are worked in tabular form. The sketch of the
various mechanisms in the table does not repeat the deformed shape,
since thc cssence of these mechanism are shown in sketch 5. The
internal work is computed in column 3 of the table of mechanism ana-
lysis, and to facilitate checking, the work done at each hinge is listed
in the same sequence as the numbering given in sketch a. Column 4
contains the computation of external work, and M, in terms of P,L is
given in Col 5.

Independent Mechanisms 1 to 10 are shown first. Possible com-
binations follow, and these arc made in such a way as to eliminate plastic
hinges that appear in the independent mechanism so combined. Only
in this way can the ratio M/P,L be increased. Mechanism 13 is formed
by combining Mechanisms 9 and 10. Hinges will be eliminated at
Sections 1 and 4 only if 8, = 26,,. Mecchanism 13 is skctched accordingly.
The required plastic moment is less than for Mechanism 10 alone.

Mechanism 13(.) is the same as Mechanism 13 cxcept that the
solution is obtained by a summation of work equations for the indepen-
dent mechanisms as described in 18. The combination eliminates mecha-
nism angles of 26 at Sections 1 and 4 of Mechanism 10 and of 20 at the
same sections of Mechanism 9 (‘Cancel 8M,’). The same answer is
thus obtained as by the first method.
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A moment check was made, next, to see if Mechanism 10 was the
correct failure mode. It was found to be incorrect because M = 1-5M
at Section 8. This suggests a combination of Mechanisms 10, 11, 2 an
4, and the resulting Mechanism 15 does, in fact, give the correct answer
as shown in sketch d. The required value of M, for the Case I loading
is 57 m.t.

For Case II loading, Mechanisms 9 and 16 are investigated. The
latter is a combination of Mechanisms 9, 10, 11, 5 and 7. The moment
check for this case is shown in sketch e. Since the frame is deter-
minate at failure [/ = X—(M—1)=6—(7—1)= 0], a possible equili-
brium moment diagram may be obtained directly. It is obtained by
plotting the known Mj-values (sections 2, 3, 4, 6, 10, 14 and 18) and solving
first for the moment at location 7 (M,=-+4-0-13M,). Since M,, =—M,,
the moment at location 8 equals +M,, so the moment diagram may be
completed for rafter 4-7-10. Using the °trial and error’ method, it
is assumed that M,;= 0. Hence M,,= M, and the moment diagram for
the right hand span would be identical to the left hand span. Making use
of the sway equilibrium equation, the moment at Section 1 is +0-56 M,
Therefore M is less than or equal to M, throughout and the value
Mp= 0-139PL is correct for the Case II loading.

Since (M) <(M,);, the Case I loading controls the design and
Mp= 57 m.t. An ISWB 500 supplies the needed plastic modulus. To
complete an actual problem the appropriate design °rules’ would have
to be checked.
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DESIGN EXAMPLE 8 TWO-SPAN GABLED FRAME

Structuval and Loading
P=9t
T 72¢
Column bascs fixed
Ty=72t

%

o— ¥

ol
k)
4

()
Loading Conditions
Case I Load (DL+LL) Case 11 (DL+LL+ Wind)
F=1-85 Fom1:40
Py (9) (1-85) =16-65 t (9) (1-40) =126t
Te — (7°2) (1'40) =1008=0-8 P

Plastic Momens Ratio — Try constant section throughout

Independent Meochanisms

Possible Plastic Hingss, N =18 (Numbered section in sketch &)
Redundant, X =6 (Remove support at Sections 2 and 3)

Number of Independent Mechanism, # = N— Xm12

Mechanisms 1-4: Beam mechanisms
Mechanismy 5-8: Beam mechanisms
Mechanism 9: Panel mechanism
Mechanisms 10, 11: Gable mechanisms
Mechaniam 12: - Joint mecbanism

(Coniinued)
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DESIGN EXAMPLE 8 TWO-SPAN GABLED FRAME —- Conid

¥

(b)

(Continy
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DESIGN EXAMPLE 8 TWO-SPAN GABLED FRAME — Contd

Case I — Solution
Mechanism Analysis

No. MECHANISK INTERNAL WORK EXTERNAL Mp|PyL
(WI1/MpB) Work (WE|PL@)
(1 ) () 4 )
¥ 4,18 11 (1)(1) 1
14 H3t3=1 3t 3 16
wt =1
6
5-8 Similar (see 1,3 1 1
sketch b) 1+443=8  g+3g=3 16
9 d Yy 1+1+141 0 0
1:3 3 1 1
stststs 8
-1
1,3,3 1 1
§+§T§+§ 12
13a Solution by sum- Two times 12
mation mechanism Mechanism 9 0
solution Mechanism 10 8 1 3
Cancelled -8 = 12
Total 127 1
244414242 1 (143 2
g 2H4H1H242 g (14 1%
+14245=19  _ +3+4+1)2)
(Continued)
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DESIGN EXAMPLE 8 TWO-SPAN GABLED FRAME - - Contd

-

No. MECHANISM INTERNAL WORK EXTERNAL Mp|Pul
(WI|Mp0) Work (WE|PLO)
L)) (2) 3) ) (5)
14a Solution by Mechanism 11 8 1
summation Mechanism 13 12 1
Mechanism 12 3 0 2
Cancclled (Sec- -4 72 19
tions 11, 12) _
Total 19
Moment Check for
Mp = —P%L (Mechanisms 10 and 11)
Beam 7-10
'3 gy M PL
My=3 M= +g
3 Mp
=+3 Mp——7 +Mp
=1-5 Mp (Violates)
My 2
(<)
Mechanism Amalysis (Additional)
18
2+7 8,5 28 1.3 5 /71\y/5\ 4 1
+10+11) 234543=F  grarat(s)3)-3 3

(Due to symmetry only onec-half of frame is solved)

(Comtinued)

174



SP: 6(6) - 1972

DESIGN EXAMPLE 8 TWO-SPAN GABLED FRAME — Conid

Moment check for Mechanism 15 — (Mp = -;- P.L) .

Beam 7-10
1

PL
My = %Mv +;Mu+ 7

1 - PL
My = ; Mof-g M+ <

(d)
Beam 4-7

M= Mot} My EE)

1 3 7
- -3 Mp+§ M’+§ Mp, My w=+Mp

Al M < Mp
My = Do - 16:65 x 24
T
- =57 m.t
Case II — Solution -
Mechanism solutions
No. MECHANISM INTERNAL WoORK EXTERNAL Mp|PuL
' (WI[MpBY Work (WE/PLS)
(1) (2) (3) , 4 (5)
14141414141 1 1
b(I) +e ©8)(3 ) =02 %
(Continued)
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DESIGN EXAMPLE 8 TWO-S8PAN GABLED FRAME -- Contd

No. MECHANISM INTERNAL WORK EXTERNAL Mp|PuL
: (WIIMpH) WoRrx (WE/PLG)
(1 (2) (3) 4) (5)
16 8 1\/5 3\/5
' M3 )+{z 03 0139
Sitn 243664313 (82(31)+(s)(3)
+5+7) Ta106 +§ 1 ()(2)

Moment check for Mechanism 16 — (Mp)r = 0-139 PyL
Beam 4-7
3 PL
Mgy = —+ M'+

o ..

4 oMy
+T+3 Mr— %0139
My = 4013 Mp<Mp.....OK
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Sbay
Tal 4 My—My— My~ M+ My -+ M,y = 0
Tal +M,~Mp—Mp+Mp4+0—Mp = 0

e Talaan = =08) M(0) .
M, Tal42Mp (0-139)(30) +2Mp = 056Mp ..... OK -
(Mp)I = 0-139 PuL == 0-139 (12:6)(24) = 42 m.t <57 m.t Case I comtrols
Reuction for Case I
Mp 57
Hy=3"=7%

=19 ¢
Vi Vo= 2 P = t
V=2V =4 P=136¢

Selection of Seclions

Z = Mp _ 57, 100 000
oy
= 2 260 cm® , Use ISWB 500
Z = 235136 cm?
Aerial Force

P Vs
Central column = -135' == ;3'.2
36 000
- 2 520)( 121.2 = 0 12<0 15 ..... OK

177



8P: 6(6) - 1972
27. DESIGN EXAMPLE ON MULTI-STOREY STRUCTURES

27.0 So far, our attention has been restricted to one-stor¢y structures
consisting of rectangular and gabled portal frames and to the multi-span
frames that are typical of the industrial-type buildings to which plastic
design can now be applied. A fair quantity of stecl, however, goes into
the construction of multi-storey structures, both of the tier building
type and the mcre frcquent two- or threc-storcy - structure. ‘ .

What is the reason that our attention has becn restricted to th
single-storey building ? First of all, a considerable tonnage of steel goes
into such structures and, therefore, it is most advantageous to document
the necessary provisions which will enable the engineer to apply plastic
design to the industrial building. Secondly, and perhaps the most
-important, as the number of stories increases, the columns become more
and more highly loaded. As already mentioned, the moment capacity
of columns with relatively high axial load drops rapidly. The related
problems are not completely solved and more research is nceded before
a ‘ complete * plastic design can be applied to all classes of tier buildings.
As will be noted below, however, the outlook is heartening for at least
a limited application of plastic analysis, and as Walter Weiskopf, con-
sulting engineer, has remarked: ‘it seems natural, therefore, to take
the next step, that is to apply plastic design to this large class of buildings’.

In a stimulating and thought-provoking article3®, Weiskopf has
discussed the application of plastic design to multi-storey structures,
emphasizing the tier building type. He has suggested that the appli-
cation of plastic.design to such structures depends on the relative im-
portance of horizontal forces. If horizontal forces are not a consideration
(they may be so small that an ordinary masonry wall panel would carry
any such small forces-that might exist), then the regular connections are
free of moment due to side sway and a very large savings in steel is
possible when comparing a plastic design of the beams to a conventional
simple beam design. In fact, for uniformly distributed load the savings
theoretically could be 50 percent if it were not for other factors such as
the cost of connections, etc, that tend to cancel out the potential savings
due to economy in main material. When compafed with rigidly con-
nected elastic design there will, of course, be a savings in a plastic design.

The approach to design will be largely influenced by what is done
about bracing against horizontal forces. Three situations may arise, -
as follows:

a) No horizontal load should be resisted (any minor loads taken by

wall panels), :

b) Horizontal forces carried by moment connections, and

¢) Those cases in which the horizontal forces are carried by cross-

bracing around elevator shafts or elsewhere in walls,
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The application of plastic design to Cases (a) and (c) above will simply
consist of a plastic analysis of continuous beams. For the second con-
ditions (horizontal forces resisted by moment commections), the area of
possible application of plastic design is dependent to the greatest extent
on further research because plastic hinges might form in the columns, and
as already mentioned, more needs to be known about the performance
of columns under high axial load and as part of a ftamework.

It is for the third case in which the horizontal fo¥ces are carried by
cross-bracing that a plastic design apprbach scems’ possible. When
provision is made for wind bracing in wall panels, the beam and girders
would be proportioned for full (plastic) continuity. The columns, on
the other hand, would be proportioned according to conventional (elastic)
methods. By this procedure, none of the plastic hinges participate in
the resistance to side load. Such load is all carried by the diagonal
bracing. The only mechanisms are the beam mechanisms,

The top one or two stories might be designed by a 'complete’
plastic analysis, hinges forming both in the columns and in the beams.
In those cases the vertical load in the columns would be relatively low
and would be governed by considerations alrcady described for the
previous examples.

As far as the tall building is concerned, the column problem actunally
may not be as severe as first intimated. The most critical loading con-
dition on a column is one which subjects it to equal end moments pro-
ducing single curvature; the maximum moment then occurs agFthe
midheight of the member. On the other hand, in tall building® the
columns will usually be bent in double curvature with a point of inflectior.
(zero moment) near the middle of the member. The critical .sections
in that case are at the ends. Such columns are better able to develop
plastic hinges than columns loaded in single curvature,

The problem of the connection for tier buildings also relates to the
ability of these components to form plastic hinges. In riveted work

_it is very difficult to design a connection of strength cqual to that of the

beams unless large brackets are used. Therefore, if riveting were to be
used to achieve continuity at connections in a plastically designed
structure and without the use of these large brackets, furt{er' studies
would be needed. The use of Ligh-strength bolts offers another method
of achieving continuity.

As has already been emphasized, maximurh continuity with mini-
mum added connection material can -often be achieved by the use of
welding. Numerous design recommendations have been made in Section
E that are directly applicable to multi-storey buildings. :
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Naturally, no sharp dividing line exists between the form of structure
that, on the one hand, may be designed by the plastic method and, on
the other hand may not. An example will now be given of the plastic
design of a two-storey building in which cross-bracing is not used, but any
possible side sway is resisted by moment connections. After the
selection of member sizes, the design of some of the connections also will
be examined.

27.1 Design Example 9 (Two-Storey Bullding)— Using the mecha-
nism method of analysis, a two-storcy, two-span building frame is
designed to support the loads shown in sketch a. A study of all possible
loading conditions shows that Case I (dead load plus live gravity load)
is critical. ‘Therefore only this condition will be illustrated, the pro-
cedures for investigation of the other cases being identical.

The loads are uniformly distributed, but, for the sake of analysis
are replaced by concentrated loads acting at the quarter points. The
side loads, 7, produce equivalent overturning moment about the bottom
of the columns of the particular storey. Alternatively, it would have
been possible to assume that plastic hinges formed in the centre of each
beam span, to treat the load as uniformly distributed, and to revise the
design (upward) to suit the precise plastic moment requirement.

Assuming that vertical load alone will control the design, the plastic
moment ratio of the different members are seclected such that simulta-
neous failure of beams A, B, C, and D will occur. If Span B has a
plastic moment value of M,, it is found that for Span A4 the plastic
moment value should be 1-78 M,; for Span C, 2:37 M,; and for Span D,
1'33 M’.

The fourtecen independent mechanismssare shown in sketch b
except that only two of the eight possible beam mechanisms are shown;
the rest would be similar. The solutions for the various mechanisms
are worked in tabular form. All beam mechanisms give the same
answer — a check on the accuracy of the selection of M,-ratios. The
sequence of terms in the work equations follows the’ numbering sequence
of sketch a. ‘

Although for a frame of this type, one could be reasonably sure that
the correct answer had been obtained already, Mechanism 15 is also
investigated. It is found to require a smaller plastic modulus and
therefore the critical case sclected for the moment check is the simulta-
neous formation of the beam mechanisms.

In making the moment check, the diagram for the beams may be
drawn without difficulty and this is shown in sketch ¢. Quite evi-
dently the plastic moment condition is not violated in any beam.
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A possible equilibrium momment diagram for the columns is shown
in sketch d. Since the frame is still indeterminate at failure, it is not
‘exact '; but it shows that the plastic moment condition is not violated.
The method used is the ° trial and error ' one. M,,, M,,, and M,, are
first obtained by the joint cquilibrinin equations. The left and right
columns are selected as having a moment strength equal to that of the
beams which they restrain, and the same moment capacity is assumed
for the full column height at this stage. In order to obtain an
idea of the magnitude of moment at Section 16, since the horizontal
reaction at 3 would act to the left, it is assumed that M,, is at the full
plastic value 25-35 m.t in the direction indicated. The joint equilibrium
equation gives the magnitude of M,,. M,, is assumed equal to —M,,;
this is a completely arbitrary assumption, but since there is no side loaa,
any small value would be reasonable at this stage. Mj is then obtained
by the panel (sway) cquilibrium equation and is found to be 28:13 m.t.
Since all moments are less than A2M,, thc upper storey is satisfactory
thus far.

The moments at Scctions 4 and 11 may now be determined by joint
equilibrium. Subsequently, the sway equation is used to check the
bottom storey, a calculation that is made on the basis that the moments
are zero at the column bascs. KEquilibrium is satisfied, and, thercfore,

"the moment check is complete.

M, for the Case I loading is thus equal to 25-35 m.t. Cases II and
III loading are not shown here, but are found to require a smaller
plastic modulus. Therefore, sections would bc sclected on the basis of
the Case I solution, care being taken to modify the sections used for the
columns to account for the influence of axial force.

A result of the moment check given above and shown in sketches
¢ and d is that the fixed bases are not required for this problem,
Pinned bases would have been just as’satisfactory and would not have
resulted in an increase in member sizes. ,
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DESIGN EXAMPLE 9 TWO-STOREY, TWO-SPAN BUILDING

Structure Loading
Roof load =4S t/m
Floor load #6-0 t/m

Wind load =0-6 t/m
Replace distributed load by concentrated loads at quarter points.

Replace horizontal load by concentrated loads at roof and floor lives.

7.‘__l06><66><3 18 ¢t

T, 06x4455x225 135 t

6P = 30t : g
A= 45 Um 30t 22584 2251
T, %951 23
® 19 A 20 21022 2¢ B 2% 26 f
WIND LOAD “hm
:061/m '

e ofoee 2 —fa-t -tht-'-— e Jied

Lle2m Hem

Loading Conditions
Case 1--DL4LL F =185 Py =925 ¢t
Case 11 -—- DL4LL4+Wind from left F =140 Py =70 t
Case 111 - - DL4LL+Wind from right I -1.40 Py =70t

Plastic Moment Ratios
For simultancous failurc of spans 4 and B under Case I loading use plastic

moment in ratio of square of spans. For equal spans, the ratio is to vary as the load.
Loft column: Use b = Kyg4 =178

Ks = 1-00
1]
K4 = (E) Kp =178
Kp = (13 s)ha =133 Centrc column: Use b m K5 =100
K = ('5‘) Kp =237 Right column: Use A = KB =1-00
{Continued)
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DESIGN EXAMPLE 9 TWO-STOREY, TWO-SPAN BUILDING — Conid
Case 1 — Solulion

Mechanisms

Possible Plastic Hingss — N =26 (At all neutral scctions in Sketch a except 1 and 3

Redundant, X =9 (Cut bearhs 4 and B, remove reaction at 2, remove
fixity at 1 and supply roller at 3)

Independent Mechanisms — 8 m N—X w14
Beam mechanism 1-8
Mechanisms 2, 3, 5-8 similar

®
L

30

_}'; ‘ 40

0,

Panel Mechanisms 9 and 10

oulbn - -

o 0 g o~

(®)
(Continwed)
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DESIGN EXAMPLE 9 TWO-STOREY, TWO-SPAN BUILDING — Contd

&om
K

Joint Mechanism 11-12-13-14

1 12 13
Mechanism Solutions
“No. MecHANISM INTERNAL WORK EXTERNAL WORK Mp/PeL
(W1]MpB) (We/PLE) -
m @ B “ ()
] ' 4.1 6(1)(1) 1-69
. > Ka{l45+4
1 n "( 3 3) +6(3) =8
5 - =3 178) =474
1 3
2 ﬁ/ NoTe— 2 is identical ‘with 1.
- e a—— 3
1 . 2 .
1 1 t I\a(1+3+ ) es(3) e
* +5(3)(3)
+ (l 00)=267 T r
=45
5-8 NoTtE — Mechanisms aud vertical work equations 1-69
arc similar. _
Kc+Kp+KA+Kp 1 1 .
B Vo) (m)se(i]) v
+6+8 "c( ) HE3*3 3 1
19410 A (3)+6(1+3)+4s
12 +HKa (‘3‘ 5) 1\/3
()
4 4 3/\4
+Ks ( '+1) 32 :
11 '=.'3-+6+8+4'5
= yK4 +“ K +" -29:17
(Kc+KD)
(Continued)
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DESIGN EXAMPLE 9 TWO-STOREY, TWO-SPAN BUILDING — Contd ~
--(l 78)+ t (100

+ 5(2-37-{- 1-33)

=21-07
L
1) X 3
&
) 'li' 4
LY k)
&4
L 3 &
- 3 -~ 3 -~
1 1 1
Moment Check for Beam Mechanisms (See Sketch o)
Mp =169 Pyl =1-69(5)(3)=25:35 m.t
Mpqg =178 Mp =451 m.t
MpB =10 Mp ==25-35 m.t
Mpc =237 M, =60-08 m.t
. Mpp =1:33 Mp =33-71 m.t
Joint 21-23: My, = — M, —M,,
. Mgy v —45: 12+25 35=19-77 m.t
Assume M,; == —~Mp
4512 4512
- 25-35 25:33
1 .
60-08 T @
1
.é o - J33-n
S 2535 2535
4512 4512 6
6 “Rzk= ‘ A 11 7
l :
1 AN 3,
t 1
i

60-08 60-08

@.

(<) Beam Moments
. {Continned)
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DESIGN EXAMPLE.') TWO-STOREY, TWO-SPAN BUILDING — Contd

Joint 15-17: M,, --.M +M

_Assume Myq = —Mgy== 41977 m.t

Swey of top storey
My Mg+ Mg+ Mg Myg+ Mygm 0
My =19-7748-36— 45 12+19 77+25 -35=28-13 m.t

Joint 4-6: M =M+ My +28:13—60-08= —3195 m.t

Sway of boltom stony
M.-—-M' M‘+M“+Mn—0 Allowable M(hM,
0+0+0+31 95 —6-6—-25-35=0 S (Mp)r = 25:35 m.t

Use the following sections as differont members of the frame

Left column, & = Kq4=1:78, Mp =2535%x1-78=45'12 m.t
Use ISLB 550
Beam C = K = =237, Mp =2-37x%2535=6008 m.t
Use ISLB 600
Similarly other scctions may be decided. i
Thesc spclions should be checked to see if they salis{ly other sccondary
considerations. .

45-12

(d) Column Moments
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SECTION G

SIMPLIFIED PROCEDURES

28. INTRODUCTION

28.1 One of the advantages of plastic design is that the engineer is able
to complete the analysis in less time than required by conventional
(elastic) procedures. It is possible, however, to shorten the design
time even further, by taking advantage of the same technique that is
used in conventional design and one that is frequently used whenever
a procedure becomes time-consuming. The solution of frequently-
cncountered standard cases may be given as a formula or in chart form,

Such an opportunity is open to the engineer interested in plastic
design.  In this section some tecliniques will be described and certain
of them illustrated. The presentation is by no means a complete one.
Indeed, the ingenuity of engineers will undoubtedly lead them to develop
many other such design aids.

Two words of caulion:

a) Since superposition docs not hold in plastic analysis, generally
it is not possible to combine two separate solutions as is done
so commonly in clastic design. Any ‘formula’ or ‘chart’ can
only assist in the solution of the particular loading and geometry
for which it was developed.

b) Even though the formulas and charts are correct in themsclves,
it is a Food rule to check the plastic moment condition by draw-
ing the moment diagram. In this way one is assured of the
correct answer.

The simplified procedures which apply to continuous beams are
discussed in 29. This will include a tabulation of solutions for various
loading conditions. Yormulas for the rapid determination of the required
plastic moment for single-span frames with pinned bases are given
in 30. The use of charts for the same purpose is also described there.

Finally, in 31 thc solution of problems involving multi-span frames are
discussed.

29. CONTINUOUS BEAMS

9.1 Althouih the analysis of continnous beams for maximum strength
represents the simplest possible application of the plastic method, the
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engincer may wish to avail himself of tables and charts for the rapid
solution of continuous becam problems.

In Fig. 66 (sec Appendix C) are given ‘ beam diagrams and formulas’
for certain loading conditions on beams. The table is patterned after
similar tables contained in Ref 13. In addition to the reaction and
M,-values for these standard cascs, the position of plastic hinges and
points of inflection are indicated. Eventually values for deflection at
ultimate load (8,) and deflection at working load could be added to
such a table. )

30. SINGLE-SPAN FRAMES (SINGLE STOREY)

30.1 Two approaches are possible in simplifying the procedure for the
solution of single-span frames. The virtual work equations can be
expressed as a formula which would reflect both the frame geometry
and the loading conditions. Alternatively curves may be prepared which
present the solution in chart form. At Lehigh University, Dr Robert
L. Ketter has made an outstanding contribution® that enables the
engineer to determine with the aid of charts the required plastic moment
of a single-span frame in a fraction of the time required in a ‘ routine’
plastic analysis. The method of derivation and some examples are
contained in Ref 46. Ref 47 makes use of both the ’formula’ and
the ‘ chart * approach and in this aspect is based substantially on Ketter's
work. It is cited here for reference (when available) for additional
examples. A few illustrations will be given.

Restricting ourselves to single storey-structures of uniform plastic
moment throughout, Fig. 67 (see Appendix C) shows a gabled frame
with uniformly distributed vertical and horizontal loading. For simpli-
city the horizontal distributed load is replaced by a concemtrated load,
acting at the eaves, such that it produces the same overturning moment
about the base at Location 1.

Since
M == W !a-}-b)’L’ .
2
" then .
wxla-+b)3L
T = J_(‘—z“aﬂ— ) a--(71)

In order to simplify the form of the solution a pafameter C is intro-
duced which is a function of the magnitude of the overturning moment.
It is determined from: '
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and thus
, C= iTL =2 @t (72)

Consider, now, the mechanism shown in Fig. 68 (see Appendix C).
{Of course there arc other possible mechanisms but in most practical
cases, this will be the one to form.) Using instantaneods centres, the
rotations at each of the plastic hinges may be computed and then, by
use of the mechanism method, the required plastic moment may be
determined in terms of the variables w,, L, @, C and x.

The following equation results:

M, = “’4_’_-3[(1 _;) (C+z)] (73)

V{I+0)(1—¢C)

where x is given by:

x =& [vaFom=eo)-1] >0

X = L(‘—EE) (@=0) 74
and is computed by the methods already discussed.

“The only remaining problem is to determine the range of variables
for which the mechanism shown in Fig. 68 (sec Appendix C) is in fact
the correct solution. Figure 69 (see Appendix C) summarizes the appli-
cable formulas for the pinned base single-span, single-storey frame.

Similar solutions .may be developed for other loading conditions
and for fixed bases.

Kettert® las presented all possible solutions to the single-span,
single-storey frame in the form of two charts —one which gives the
value of Mp/wl? as influenced by C and @, and one which gives the
distance, x, to the plastic hinge in the rafter (also a function of C and Q).
These two charts are indicated in Fig. 69 (se¢ Appendix C) and for the
major range of variables, they are simply representations of Eq 73
an¢ 74, Their use will be indicated by the example which follows:

Example 8 — Single-Span Rigid Frame Without Haunched Cormers

This example is the same as that of Design Example 6 except that
no haunch is to be used. The two loading conditions are as shown at
the top of Fig. 70 (see Appendix C). The distributed Joad acting hori-
zontally on the frame produces an overturning moment from which C
may be computed (Eq 72). The values of C are thus determined as
zero for Case I and 0:074 4 for Case II. Knowing that @ == a/b = 075,
all the needed information is available for entering the chart of Fig. 69(a).

189



SP: 6(6) - 1972

For Case I, M)/wi? is equal to 0-046 and for Case II it is 0-055. T
determine the critical or controlling case, it is sufficient to compar
My|L*? ratios since L is the same in both cases. On this basis, Case I is
found to be critical. A ISWB 600 member is specified.

The moment check shows that the plasticity condition is not violate

and thus thc answer is correct. The secondary design conditions wouls
next be checked.

Wy=185x12 t/m

(

~Whs+40x 0-7 t/m Wyal-40x1-2 t/m

( le L=30m 31-
Case I Case II
F(DL+LL)=1-85 F(DL+LL+Wind)= 1-40
w, =(1-85)(1-50)= 2:22 t/m wy ==(1-40)(}-2) = 1-68 t/m
cC =0 wy(a-{-b)*
0 = bja=075 = W 0-073 5
Analysis from chart in Iig. 69(a)
M,jwl3= 0-046 My|wL3= 0-055
My/L2=(0-046)(2-22) = 0-102 t/m M,/L3=(0-055)(1-68)= 0-092 t/in
' My=91-8 m.t

Case I (without wind) Is critical
Selection of Section

Use ISWB 600
Z =3 9867 cm?
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Mowment Check ”
=YL My 05y 222X300 918 ..
M="g — 2 (105)=" < X105
=893 mt<M, = ........ OK

31. MULTI-SPAN FRAMES

31.1 When multi-span single storey frames are considered, Ref 45 makes
possible an even more dramatic savings of design time. Again, graphical

: re¥resentation of the equilibrium equations may be used to facilitate the
solution of these problems.

Example 9

- Consider the problemn shown in Fig. 70(a) (se¢ Appendix C) below,
that of a two-span flat roof frame. It is the same structure, in fact, that
was studied in Design Example 7. As the frame fails, the usual mode
of failure will be that shown in sketch . Now actually we can consider
the behaviour of two separate structures as shown in sketch ¢ without
changing the total internal and external work. (The work d:ne by the
moments and forces as the two separate structures move through the
virtual displacement becomes zero when ‘continuity’ is restored at
the cut section.) The problem may be simplified still further by replacng
all overturning forces and moments by imaginary moments acting about
the column bases. The resulting separate structures which are equi-
valent to the original structure are shown in sketch d.

Charts may then be prepared for the general case shown in sketch
d of Fig. 71 (see Appendix C) just as described before. Panel A is
given a virtual displacement and the work equation is then written. It
takes the following form4s:

Kz::».} (1_{)(%+C— )—2005 . (75)

L
“ 1407

. Ll , |
with X=@[VI-Q{C(1+Q)-D(1-Q)—1}] @>0)

X = L(-’——%i"_’) ©@=0)  ..(6)
Whereas D was zero in the single-span problem (see 30), for the multi-
span frame D becomes an additional parameter, Therefore it is necessary
to prepare one set of charts for each value of Q for which a solution is
desired. Figure 71 represents the solution for the flat roof frame in chart
form. The left hand portion represents Eq 75 with Q=0. The right
is the second form of Eq 76. Notice that the lower cut-off line on the
chart is a beam mechanism in which M,/wL® = 1/16 (Appendix C, C-5).
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Now, to solve a problem we note from the loading [Fig. 70(d)] that
C,= w)/w,a® and that Dyg=0. The correct answer will be determined

)

when the overturning moments at 2 are equated. Thus, D,Zé'—‘- =
. :

G,w-;'!; so we will use the chart of Fig. 71(a) twicc one for structure

A and once for structure B and will eventually obtain an answer in terms

of M,/wL? for which the overturning moments at Section 2 will just cancel.
The following example will help to explain this.

Example 10 — Two-Span Flat Roof Frame

The case for vertical load alone will result in beam mechanisms and
need not be considered here further to illustrate the use of the charts.

[The problem is the same as Design Example 7, for which Casc I (without
wind) was critical.]

In the first portion of the calculation, the known quantities arc
indicated. The value of C; is found to be 0-0125. The value of Dy is 0
since therc is no external overturning moment applicd to member 3-10.
The only unknown values at this stage are D, and C,, both of which may
be found at the samc time the value M,fwL? is determined from the
condition that D,= 4C,,

Although it would not be possible to pick at thc outset the value of
MpjwL? that satisfies this condition, by use of the chart of Fig. 71(a) in
Appendix C one can determinc possible solutions for each panel and find
the correct answer graphically., A table is thus prepared with the aid of
the chart. Panel A is first analyzed for C,= 0-125 and for various values
of D. (Linear interpolation will be satisfactory if the range of C—D-
values is small when compared with that of the chart; therefore two
points will be sufficient, and D,= 0 and Dy= 0-10 were selected.) The
same thing is-donc for pancl B cxcept that now D, is known and Cj is
unknown. So, valucs of MpfwL?® are dctermined for two values of Cy
{0 and 0-50). The sketch ¢ shows how this is done.

Now on a separate graph may be plotted the information contained
in the table in the calculation sheet, it is shown in sketch d. Where
the two curves intersect, Dg== 4C,= 0102, M,[wLl?*=0-006 52, and the
problem is solved. Notc that the valuc of M, for member 4-6 [My =
(16-43 m.t)] agrees with the value determined for this same problem by
direct use of the mechanism method. [KBee Design Example 7, Case II
(Mp = 165 m.t).]

These charts and others were devcloped in Ref ‘45 covering both
" fat-roof and gabled frames. E

In all of these procedurcs, the final step in the analysis will be to
draw the moment diagram with the aid of charts such as Fig. 71(b).
Finally the setondary design considerations foust be examined. !

.
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DESIGN EXAMPLE 10 TWO-SPAN FRAME
Case II — Vertical load plus wind (loads same as in Design Example 7)

\
y)
wyl} wall wsl} F (DL+4LL4Wind) =1-40 wyL}
63 ) Cagm wy = (1-40){1'8) =2-52 t/m D=3
wa = (1-40)(09) =1-26 t/m
Q =0

e <2 () (3)-orm

1
D, aC.(Iﬁ) =4C,

Dyw= 0
[]
Mp 1 ,IQ
wi? '
1
| L}
!
0 0 005 ¢ ‘
(c)

(Continued)
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DESIGN EXAMPLE 10 TWO-SPAN FRAME — Co#nid

Analysis from chart in Fig. 71

Analysis of Panel A Analysis of Panel B
for C|= 0125 for Da=-" 0
D, Mp|wL} Cs MplwL} 4C,
() 0-078 7 0 0-062 5 0
- 010 0-065 5 0-05 0-068 2 0-20
Mp (4-6) ==0:0652 wyl}
=0-065 2 (2-52)(10)*
My =16'43
0-08
PANEL A
—ME; Vs D
wl 2
M 0-07
wl’ | 0-0652_ _ _

0-06

/WNEL 8
Mo ws4Cr—f—
wl

AN
N l
le
¥=]
{
0 0410 0+20°
D2 AND 4C: (d)
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APPENDIX B
(Clause 23.4)

SPACING OF LATERAL BRACING

B-1. Equation 51 not only assures that the cross-section will be able to
plastify (develop the full plastic moment) but also be able to rotate
through a sufficient inclastic angle change to assure that all necessary
plastic hinges will develop. In deriving this equation, the basic lateral
buckling equation®® has been wused, the analysis being based on
an idealized cross-section that consists of only two flanges separated
by the web-distance. Therefore it already reflects and, in fact, makes
use of the paramcters /i and dJt. Using the clastic constants of the
material, and considering idealized bebaviour as shown in Fig. 17, it
may be shown that this procedure leads to a critical slenderness ratic
of about 100.

While this might be reasonable for a section that was only called
upon to support My, it is unlikely that the resulting critical bracing
would allow much inclastic rotation -—a rotation that is ordinarily
required at the first plastic hinge. Reference 10 suggests that it will be
adequate to require only that plastic yield penetrate through the flange.
It is quite evident from Tig. 18, however, that the resulting furthict
inelastic hinge rotation thus available is relatively small. Onc of the
important contributions of Ref 18 was that it developed methods of
correlating the critical length for lateral buckling with the magnitude
of required hinge rotation.

B-2. This appendix is to outline the procedure for checking the ade-
quacy of the spacing of bracing to prevent lateral buckling. It is thc
procedure that was used in the cxamples of Section VI. The problem
is a two-fold one: First of all, what is the lateral buckling strength of
an elastic-plastic segment of a member that has_been called upon to
absorb varying amounts of rotation at the plastic hinge ? Secondly,
what is the necessary hinge rotation, namely, the required rotation of
a given plastic hinge to assure that the total structure reaches the com-
puted ultimate load ?

B-3. There will be considered first the matter of lateral buckling of an
elastic-plastic beam segment. Figure 64 represents an approximation ta
the work of Ref 18. In preparing the figure, assumptions werec made
with regard to various factors that influence lateral buckling strength.
Commencing with a beam that is deformed until the point of strain-
hardening has been reached throughout, the resulting critical length
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(Liry)er =18 may Dbe revised upward to account for the influence of
moinent gradient, St. Venant's torsion, the extent of yiclding (partial
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Fic. 64 COMPARISON OF SLENDERNESS AND MOMENT RATIOS

yielding), and the effect of cnd restraint. Reference 18 considered the
influence of each of these factors and Fig. 64 is an approximation to these
results, presented in terms of the moment ratio. The equation Lfr,=
18430 (1—M/M,) is, in fact, the cquation of the heavy dashed line
shown in the figure with a ‘cut-off ' at M/M,= 0-6. The Ssignificance
of various parts of IFig. 4 should appear in the course of the follow-
ing description. The procedure for using Fig. 64 is as follows:

a) Assume a3 purlin bracing (usually dictated by available roofing
materials); Compute Ljr,. '

b) Examine the structure to see which segment (or se§ments) will
be the most critical. For equal purlin spacing it will be the one
near each hinge with the largest moment ratio. Referring to
the insert sketch, call this the Dbraced span, Lp.

¢) Compute the precisc moment ratio for the span being considered
(length = Lp). This moment ratio is the ratio of the smaller
moment to the plastic moment (Mg/M,). ‘
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d) Compare the slenderness ratio existing in the structure with that
which would be permitted for the particular moment ratio accord-
ing to the dashed line in Fig. 64 (or the equation noted above),
neglecting for the time being the paramecter Hy/Lpd, which
relates to hinge rotation. The selected purlin spacing is ade-
quate if its slenderness ratio is less than permitted according to
the figure. Otherwise, further refinements are required as follows,

1) As a first step in evaluating the end fixity correction, compute
the value f which gives the °fixing ' influence of the adjoining
spans. In the equation for the abscissa of the inset sketch on
Fig. 64 the values L; and Lz are the lengths to left and right of
the braced span, and the subscripts ‘ ¢r’ indicate the correspond-
ing criticai lengths of those members. These latter values may
be determined roughly, as follows:

If the member is partly plastie (L., for example) then the
critical value to use would be that obtained from the chart —
a value Lp that could, itself, be refined to account for Cy. Thus,
if the adjacent span, Lr, had a moment ratio of zero, then the
value L;,, would be taken as 48. This value could either be
computed from Eq 51 or from Fig. 64 (for Hg/Lpd,= 3-0). In
other words, in order to obtain the ctitical length of a partially
plastic adjacent span for use in determining f, it is assumed
that Cy= 1-0 and the critical length is obtained as if it were a
‘ buckling ' segment. If the number is elastic (like span I'z) then
the elastic critical lateral buckling length weuld be used and as
a conservative approximation one could take L, as given in the
AISC Handbook of steel construction.

2) The resulting value of f enables one to compute C; from the
insert chart. Multiplying the allowable slenderness ratio by C;
then gives a value which can be compared to the ratio existing
in the structure. ‘

If the selected spacing is still too great and a closer spacing is
undesirable, the rotation requirement may next be checked. The
principles and general methods for computing hinge rotations have
already been described. However, the calculations are tedious and,
if required, would tend to obviate one of the advantages of plastic
design. Alternatively, charts may be prepared which would enable
the rapid determination of the magnitude of hinge rotations and
the sequence of formation of plastic hinges. (The latter question
assumes some importance because a ‘last hinge ' would require
a very small rotation®.)

% As discussed in Ref 9 a slenderness ratio of 100 conld be permitted for this case,
& value incidentally, which agrees with the British recommendation (one that is
intended to cover all cases).
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Figure 65 presents some of the limiting values obtained as a
result of a study by G. C. Driscoll in which such charts are being
prepared. It shows that the last hinge occurs in the rafter in
most cases until the columns become relatively high with respect
to the frame span.

As regards to the hinge rotation, the valuc H/L¢, in Fig. 64
and 65 is a non-dimensional function in which H is the calcu-
lated hinge rotation, L is the frame or beam span, and ¢, is the
curvature at Mp(¢p= M,[EI). Before it can be used in Fig. 64
it should be corrected to Lp (the length of the braced segment) and
Hp (the hinge rotation within the braced-scgment). 1t was sug-
gested in Ref 18 that value the Hp may be determined from
the gradient of the moment diagram. The following equation
may, therefore, be used to compute Hp:

H H
g M,—MgL, ...(A1)
o M aL, oM I
where the values are as indicated in Fig. 64,
Thus the final step in the procedure would be:

f) Determine the value H/L¢, cither from a deformation analysis
or from charts (Fig. 65 summarizes a portion of the pertinent
information), compute Hp/Lgd,, and revisc the allowable slender-
ness ratio according to Fig. 64. :

Hy=
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Sl No. Structuye Location of Last Maximum ° Augles ' -
Hinge to Form Jor Given Geontelyy
(1) w At midspan in all H/Lép
W cases except the First hinge at support
following: 0425 (@min =0-25)
(1) 0-7 <ﬁ<z’-(3) First hinge at midspan
0-25<a<0-30 0:05 (amin =—=0-25)
— - Lok —pied (2) 1-3 <p<29 IFirst hingo inside span
NOTE" @5 0-25 MN 06 <a<10 0-186
(2) w In the rafter for the First hinge at
SERREETRT. following cascs: the corner:
o~ a "
]
. .
t 02 o A4<10 02 0475
3 },J_ 04 0 A<10 04 0455
05 O A<10 06
06 00241 <A <10 0-6 0-450
08 00674<4<1-0 0-8 0-440
1-0 0106 <A<10 1-0 0-425
. Otherwise at column ’
(3) In the rafter for the ‘Tirst hinge at
following cases: the corner:
a a
r A —_ A
0-2 0 <A<0S5 0-2 Q-85
0-4 0 <A<0S5 0-4 0-64
0-6 0 <A14<05 0-6 0-57
0-8 0:02<41<0-5 0-8 0-53
1-0 0-05<1 <05 1-0 0-50
Otherwise at column
4 In the rafter for:
0<A4 <05 1-0¢

T1G. 65 LOCATION AND ANGLES OF PLASTIC HINGES
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APPENDIX C
(Clauses 29, 30 and 31)

CHARTS AND FORMULAS FOR BEAMS
C-1. SIMPLE BEAMS

Mp o=MMasx
"’u == W
8 = AMasz

C-2. BEAM FIXED AT ONE END, SUPPORTED AT THE
OTHER — UNIFORMLY DISTRIBUTED LOAD

Ry = V,—0-414 WL
v Ry = V,=0586 WL
vz Mp — 00858 WL
04141 _’LA‘_"'"“

C-3. BEAM FIXED AT ONE END, SUPPORTED AT THE
OTHER — CONCENTRATED LOAD AT THE CENTRE

MA " ’ jﬂz
I‘_—t—j Rt”V1=
% [T
{1111 £ no T

PL
.&. Mp=- 3 :

o

8l
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C-4. BEAM FIXED AT ONE END, SUPPORTED AT THE
OTHER — CONCENTRATED LOAD AT ANY POINT

V'
[]] R
' Pb
i'-—l——— b —n Ry=Vi=
1% 2Pa

V.
2 My =

C-5. BEAM FIXED AT BOTH ENDS — UN ]
BUTED LOAD UNIFORMLY DISTRI

WL

v R = VT
" WL
v -
Im] Mp =6
01669 L—-‘] }.._.

C-6. BEAM FIXED AT BOTH ENDS — CO
AT ANY CENTRE

NCENTRATED LOAI

»
L,
v R—V—.g.
v y,..f_’s!:

e~

Mo
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C-7. BEAM FIXED AT BOTH ENDS — CONCENTRATED LOAD
AT ANY POINT

[
m——— Ry= V=
v.ﬂﬂﬂ]: R.=V.—{;ﬁ
i PR

C-8. BEAM FIXED AT ONE END, FREE BUT GUIDED AT THE
OTHER — UNIFORMLY DISTRIBUTED LOAD

Re V =1L

]_l
Mp = W4

b
Q=3
LI A Wul®
M= Wi (f_'t_gll_ = c-M%_
(a+h)tL
T = W.—T; :

2Ta _ Wala+b)*
Wl Wu
Z = constant

C ==
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TABLE 3 'FORMULAS FOR THE SOLUTION OF PINNED
BASE FRAMES

VERTICAL LoAD ALONE VERTICAL AND HORIZONTAL LOAD

Vim vy = Pak Vo= 2k 40y v, = Bt a4

Hy = Wi(a+4-b)tHy; Hy = HplaL

M
H, = H, "’EZ’
For C> -1-::f0 (Pancl Mech):
Wyl.3 L s
ForQ'——-O:Mp=—'"1'~'6-.x=-=§- Mpulil,—:;l—‘-c,xzo

For @ >0: Mp = -7 i\ )
vV i+6

: 3

xs%[\/ﬁa—l] 0-—0: Mpa:wl“:— (1+C)* =L (-Lz-c—)

§>0: Mp = ‘KEQ[(‘ _ ;)(c+ ;)]
V(1 +6)(T=60C)
Lo

# =5 [VUFHIT=00=T]

_
Wul [tr (1 — E)] For C < 1_::9 (Combined Mech):

Ao 1L
(n h,

F1G6. 67 SINGLE-STOREY STRUCTURE WITH UNIFORM PLAan MOMENT
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APPENDIX D

COMPOSITION OF STRUCTURAL ENGINEERING
SECTIONAL COMMITTEE, SMBDC 7

The ISI Structural Engineering Sectional Committes which is -responsible for
this Handbook, consists of the following:

Chairman Representine
Dimxcror Stanpanrps (Civiv) Ministry of Railways
Members
Sux: L. N. AcrawarL Industrial Fasteners Association of India, Calcutta.
Snrt M. M. MURARKA (Alternate) :
Surt B. D. Anuja National Building Organization, New Delhi
Smumt P. C. JAIN (Alternate)
Sun: P. C. Buasin Ministry of Transport & Communication, Depart-

ment of Transport (Road Wing) .
SHR! S. R. CHAXRAVARTY Central Engineering & Design Bureau, Hindustan
Steol Ltd, Ranchi
Surt P. D. DHARWARKAR (A Mernate)
Sur: D. P. CHATTERIEE Inspection Wing, Directorate General of. Supplics
‘& Disposals (Ministry of Supply, Technical
Development & Materials Planning)

Dx P. N. CHATTERIERE Government of West Bengal
Dx P. K. CHOUDHURI Bridge & Roof Co (India) Ltd, Howrah
Surt A. SEN GUPTA (Allernate) ;
Dr P. DAYARATNAM Indian Institute of Technology, Kanpur
Surt D. S. Desa: M. N. Dastur & Co Private Ltd, Calcutta
Suri M. DHAR Draithwaite & Co (India) Ltd, Calcutta
Director {(Dans 1) Centre Wnterh& Power Commission (Water Wing),
New Delhi

Surr B. T. A. SAGAR (A4lternate)
‘SRt M. A. D'Souza Bombay Municipal Corporation, Bombay
Surt J. S. PInTO (Alternate)
Executive ENGINERER (CENTRAL Central Public Works Department, New Delhi
Stores Division No. 1I)

Sur1 W. FERNANDES Richardson & Cruddas Ltd, Bombay
Suri P. V. Naix (4 lternate) ‘
SHRT SAILAPATI GUPTA Public Works Department, Goveinment of West
*  Bengal
Sur1 G. S. IveEr The Hindustan Construction Co Ltd, Bombay
Dr O. . JaIN Institution of Engineers (India), Calcuttia
jozn‘t I)qu;n-:cron STANDARDS Ministry of Railways
B & €

.

DepuTy TIRECTOR STANDARDS
(B & S)-11 (Alternate; i

SHR1 OM KiosrLa Electrical Manufacturing Co Ltd, Calcutta
‘ Sur1 8. N. Sinau (.4Hernats) . ‘
Pror K. D. MARAJAN Engineer-in-Chief's Branch, Ministry of Defence.

Pror P. V. Pawar (Alternate) ‘ )
Sunmi P. K. MaLLIiCK Bum & Co Ltd, Hownah

Sunt A. P. Kavar (diernats)

/
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Members Representing
Sart A. K. MiTrA Hindustan Steel Ltd, Durgapur
Sur1 K. V. BHASKAR Rao
PANTULU (Alternate)
Sar:t M. G. PADRYE Irrigation & Power Department, Government ot
: Maharashtra
RESEARCH OFricEr (Alisynate)
Suxi B. K. PANDHAKY Indian Roads Congress, New Dethi
Surt B. BALWANT Rao (Alternate)
Pror G. S. RAMASWAMY Structural Engineering Research Centre (CSIR),
Roorkee
Dr S. NARHARI RAo (Alternate)
Dr B. R. SEN Indian Institute of Technology, Kharagpur
Sari1 P. SEN GurTA Stewarts & Lloyds of India Pvt Ltd, Calcutta
SHR1 M. M. GrosH (Altsrnate)
Sum1 K. V. SHETTY Central Mechanical Engineering Research Institute

(CSIR), Durgapur
Sur! S. K. Guosn (4iternate)
Pror . K. Sou Jadavpur University, Calcutta
SUPERINTENDING ENGINEERING Government of Madras
(PLANNING & DESIGN CIRCLE)
ExXicuTivE ENGINEER
(BUILDING CENTRE DIVISION)

(Alleynate) °

Maj R. P. E. Vazirpar Bombay Port Trust, Bombay

Surl K. VEERARAGHVACHARY Bharat Heavy Electricals Ltd, Tiruchirapally

‘Sumt M. N. VENKATESAN Central Water & Power Commission (Power Wing)
New Delhi :

Sur1 P. V. N. IvENGAR (Alternate)
SHr1 R. K. SRIVASTAVA, Director General, ISI (Ex-officio .Member)
Deputy Director (Struc & Met)

Secvetary

SuR1 M. S. NAGARA)Y
Assistant Director (Struc & Met), ISI

Panel for Handbook for Structural Engineers No. 6

Sur1 K. VearamraGHVACHARY  Bharat Heavy Electricals Ltd, Tiruchirapally
Dz 5. Naraar: Rao Struﬁtur;l ngineering Reosearch Centre
oorkee
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APPENDIX E

(See Foreword)

INDIAN STANDARDS RELATING TO
STRUCTURAL ENGINEERING

General

1S:
IS:
IS:

1S:
I1S:
1S:
1S:
1S8:
IS:
IS:

IS:
IS:

1S:
1S:
IS:

IS:
IS:

IS:
IS:

800-1962 Code of practice for use of structural steel in general
building construction (revised)

801-1958 Code of practice for use of cold formed light gauge steel
structural members in general building construction

802 (Part I)-1967 Code of practice for use of structural steel in
overhead transmission-line towers: Part I Loads and permissible
stresses ‘
803-1962 Code of practice for design, fabrication and erection
of vertical mild steel cylindrical welded oil storage tanks
804-1967 Specification for rectangular pressed steel tanks
&ﬁrst rem'siovge

06-1968 Code of practice for use of steel tubes in general build-
ing construction (firs! revision)

807-1963 Code of practice for design, manufacture, erection and
testing (structural portion) of cranes and hoists

808-1964 Specification for rolled steel beams, channel and angle
sections (revised) ‘
811-1965 Specification for cold formed light gauge structural
steel sections (revised)

1173-1967 Specification for hot rolled and slit steel, tee bars
(first rcvisson)

1252-1958 Specification for rolled steel sections, bulb angles
1730-1961 Dimensions for steel plate, sheet and strip for struc-
tural and general engineering purposes ’ -
1731-1961 Dimensions for steel flats for structural and general
engineering purposes ‘ .

1732-1961 Dimensions for round and square steels bars for
structural and general engineering purposes

1852-1967 Specification for rolling and cutting tolerances for
hot-rolled steel products (jfirst rem'sionz

1863-1961 Dimensions for rolled steel bulb plates

1864 -1963 Dimensions for angle sections with legs of unequal
width and thickness ‘ .

2314-1963 Specification for steel sheet pilling sections
2713-1969 Specification for tubular steel poles  for overhead
power lines (first revision) ‘ :
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SP: 6(6) - 1972

3177-1965 Code of practice for design of overhead travelling
cranes and gantry cranes other than steel work cranes
3443-1966 Specification for crane rail sections

3908-1966 Specification for aluminium equal leg angles
3909-1966 Specification for aluminium unequal leg angles
3921-1966 Specification for aluminium channels

3954-1966 Specification for hot rolled steel channel sections for
general engineering purposes

3964-1967 Specification for light rails

4000-1967 Code of practice for assembly of structural joints

using high tensile friction grip fasteners

4014 (Part I)-1967 Codge of practice for steel tubular scaffolding:
Part I Definitions and materials

4014 (Part II)-1967 Code of practice for steel tubular scaffolding:
Part II Safety regulations for scaffolding

4137-1967 Code of practice for heavy duty electric overhead
travelling cranes including special service machines for use in
steel works

Handbooks

SP: 6 ISI Handbook for structural engineers:

SP: 6(1)-1966 Structural sicel sections
SP: 6(2) Steel beams and plate girders
SP: 6(3) Steel columns and struts
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