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FOREWORD

This Handbook, which has been processed by the Structural
Engineering Sectional Committee, 5MBDe 7, the composition of which
is given in Appendix D, had been approved for publication by the
Structural and Metals Division Council and the Civil Engineering
Division Council of lSI"

Steel, which is a very important basic raw materials for indus
tdatization, had been receiving attention from the Planning Commis
l'ion even from the very early stages of the country's First Five Year
Plan period, The Planning Commission not only envisaged an increase
in production capacity ill the country, but also considered the question
of even groater importance, namely, taking of urgent measures for
the conservation of availahle resources. Its expert committees came
to the conclusion that a Rood proportion of the steel consumed bv the
structural steel industry In- India could be saved if higher- efficiency
procedures were adopted in the production and .use ofr,' steel, The
Planning Commission, therefore, recommended to the Government of
India that the Indian Standards Institution should take up fa. Steel
Economy Project and prepare a series of Indian Standard speci~tions

and codes of practice in the field of steel production and -utilization.

Over fifteen years of continuous study in India and abroad,' and
the deliberations at numerous sittings of committees, panels and study
groups resulted in the formulation of a number of Indian Standards
in the field of steel production, design and use, a list of which is,given
in Appendix E.

.. This Handbook which relates to the application of plastic theory
in design of steel structures is intended to present the important prin
ciples and assumptions involved in the plastic method of structural
analysis, and to provide illustrative examples for the guidance of the
designer in the analysis of practical design problems.

The subject is introduced by considering the various limits of
usefulness of a steel structure, the limits that are function (in part)
of the mechanical properties of steel. Knowledge of these properties
is used in Section A to show how the maximum strength of some simple
structures may be computed. The historical development of the
plastic theory of structures is also dealt with in brief.

Section B answers the question' Why plastic design ', It is shown I

that Itrell is an mad,equate desig,n criterion for a large number of

7
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practical engineering structures. The experimental verification of the
plastic theory (which bases the design of structures on .the maximum
strength) has also been indicated. The basic .theoretical work is dealt
with in Sections C and D. The concepts of plastic bending and redis
tribution of moments are described and the methods of analysis has
been indicated. Section ~ contains general comments on design
procedures. Although this section covers a few examples relating to
multistorey frames, it is proposed to deal with the subject in detail in
a supplement in due course. The limitations, modifications and design
details have been described under the heading 'Secondary Design
Consideration'. Proper attention should be given to the effect of shear
force, axial force, local and lateral buckling, etc. Further, the beams,
columns and connections should be designed to meet the requirements
of plastic hinge formation. '

. The section on design examples treats a number of building frames
of different profiles. The secondary design considerations are checked
throughout. Section 7 describes simplified procedures of solving design
problems with the use of formulas, charts and graphs.

In Appendix A is given a list of selected reference') for further
detailed information on plastic theory of structures.

What will plastic design mean? To the 'sidewalk superintendent',
it will mean nothing. The structure will look just the same as a con
ventionally designed structure. To the engineer, it will mean a more
rapid method of analysis. To the owner, it will mean economy, because
plastic design requires less steel than conventional design. For the
building authority, it would mean more efficient operations because
d~s may be checked faster. To steel industry, It would mean more
e8iCltmt usc of its products. Finally, to a nation, it will mean better
111I of her natural resources.

This Handbook is based on and requires reference to the following
publications issued by lSI:

IS: 226-1969. Specification for structural steel (standard quality)
Vourth revis"",)

IS: 800-1962 Code of practice for use of structural steel in general
building construction (revised)

IS: 875-1964 Code of practice' for structural safety of buildingS:
Loading standards (revised)

IS: 2062-1969 Specification for structural. steel (fusion w~ding
( quality) (first revisio1l) ,
IS: 400()..1967 Code of practice for assembly of stru,ctural joiDti

using high tensile friction grip fasteners

8
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In the preparation of this handbook, the technical committee has
derived valuable assistance from Dr Lynn S. Beedle, Professor of
Structural Engineering, Lehigh University, Bethlehem, USA. Dr Beedle
prepared the preliminary draft of this handbook. This assistance
was made available to lSI through Messrs Ramseyer & Miller, Inc, Iron,
and Steel Industry Consultants, New York, by the Technical Co-operation
Mic;.~ion to India of the Government of India under their Technical
Assistance Programme.

No handbook of this kind may be made complete for all times to
come at the very first attempt. As designers and engineers begin to
usc it, they will be able to suggest modifications. and additions for
improving its utility. They are requested to send such _valuable
suggestions to lSI which will be received with appreciation" and
gratitude.
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SYMBOLS

Symbols used in this handbook shall have the meaning assigned
to them as indicated below:
A
A,
A"

-Aw
b
c
II
E

E"
E,
e
F

I
f
G
G..
H
HB

1
1.
1,
J

K
k
KL
,L
i;
II

. -= Area of cross-section
== Area of both Banges of WF shape
z= Area of split-tee
== Area of web between flanges
== Flange width
== Distance from neutral axis to the extreme fibre
== Dept'h of section
== Young's modulus of elasticity

= Strain-hardening modulus = ~O'd

--"== Tangent modulus
= Eccentricity
= Load factor of safety

;:;: Shape factor = ~~ = ~., .

= Fixity factor for use in evaluating and restraint coefficient
= Modulus of elasticity in shear
= Modulus of elasticity in shear at onset of strain-hardening
c:: Hinge rotation required at a plastic hinge
= Portion of hinge rotation that occurs in critical (buckling) seg-

ment of beam
== Moment of inertia
== Moment of inertia of elastic part of cross-section
== Moment of inertia of plastic part of cross-section
== Number of remaining redundancies in a structure that is

redundant at ultimate load
== Euler length factor
= Distance from flange' face to end of fillet
== ERective (pin end) length of column
- Span length; actual column length
.. Critical length for lateral buckling
.. Moment

11
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m - Number of plastic hinges developed in a structure that "is
redundant at ultimate load

M. - Moment at the haunch point
M o - End moment; a useful maximum moment; hinge moment
M I' = Plastic moment
Mp = Plastic moment capacity of a beam section
M~ = Plastic hinge moment modified to include the effect of axial

compressionM,. = Plastic hinge moment modified to include effect of shear' force
M, = Maximum moment of a simply-supported beam
M, = Moment at which yield point is reached in flexure
M,e = Moment at which initial outer fibre yield occurs when axial

. thrust is present
M. = Moment at the working load
N = Number of possible plastic hinges
If = Number of possible independent mechanisms
P = Concentrated load
p~ = Useful column load. A load used as the f maximum column

load'
"p, "== Euler buckling load
Pro = Reduced modulus load
P. = Stabilizing load
p, = Tangent modulus load
p. == Theoretical ultimate load
p. c= Working load
P, = Axial load 'corresponding to yield stress level; P = Aa,
R - Rotation capacity
, = Radius of gyration
S = Section modulus, I]c
S_ = Section modulus of clastic part of cross-section
T = Force
II = Flange thickness
t. = Stiffncr thickness

'. F Web thickness
V = Shear force
Vc == Shear carrying capacity of a section
tI, v, III == Displacements in x, y, and , directions
W .. Total distributed load

12 
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a

y
y

Z

-,
8

IJ.
P

z,
Z,,
6.£
8

Wur-= External work due to virtual displacement
WINT = Internal work due to virtual displacement
UJ - Distributed load per unit of length
wtl = Thickness of the wet doublers
UI. = Total uniformity distributed load
X - Number of redundancies
~ = Longitudinal coordinate
x = Distance to position of plastic hinge under distributed load

= Transverse coordinate
- Distance from neutral axis to centroid of .half-area

- Plastic modulus = ~I!
tS,

- Plastic modulus of elastic portion
= Plastic modulus of plastic portion
= Lateral co-ordina te
= Equivalent length of connection
= Dr flection
= Strain
= Strain at strain-hardening
= Strain corresponding to _first attainment of yield stress level
== Mensurcd angle change; rotation. Rotation
= Poisson's ratio
= Radius of curvature
- Normalstress

a" = Lower yield pointa, = Proportion limit
a, == Residual stress
Ottu = Ultimate tensilo strength of material
(I., == Upper yield point
a., = Working stress
cr, = Yield stress level
T c=: Shear stress

at Rotation Per unit length, or average unit rotation; curvature
== Curvature corresponding to first yield in flexure

13
 



SECTION A

INTRODUCTION

I. SCOPE

1.1 .It is the purpose of this handbook to present the fundamental
concepts involved in plastic design and to justify its application to
structural steel frames. The methods of plastic analysis will be des
cribed together with the design procedures that 'have so far been
developed. Secondary design considerations arc also included.

13 Specific application may be made to statically loaded frames of
structural steel to continuous beams, to single-storeyed industrial frames
and to such other structures whose condition of loading and geometry
are consistent with the assumptions involved in the theory. Numerous
applications will undoubtedly be made to other types of structures
such as rings and arches, but for the time being the scope of application
is limited to "the indicated structural types.

2. GENERAL

J.l Steel possesses ductility,'- a unique property that no other structural
material exhibits in 'quite the S3.111C way. Through ductility structural
steel is able to absorb large deformations beyond the elastic limit with-
out the danger" of fracture. '

13 Although there arc a few instances where conscious usc has been
made of this property, by and large the engineer has not been able to
fully exploit this feature of ductility in structural steel. As a result of
ther- limitations it turns out that considerable sacrifice of economy is
involved in the so-called • conventional' design procedures.

1.3 Engineers have known of this ductility for years, and since the
1920's have been attempting to sec if some conscious use could be
made of this property in design. Plastic design is the realization of that
goal. This goal has been achieved because two important conditions
have been satisfied. First, the theory concerning the plastic behaviour
of continuous steel frames has been systematized and reduced to simple
design procedures, Secondly, every conceivable factor that might tend
to limit the load-carrying capacity to something less than that predicted

. 15
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'by the simple 'plastic theory has been investigated and rules have been'
formulated to safeguard against such factors.

3. STRUCTURAL STRENGTH

3.1 The design of any engineering structure, be it a bridge or building,
is satisfactory if it is possible to built it with the needed economy and
if throughout its usefu1 life it carries its intended loads and otherwise
performs its intended function. As already mentioned, in the process
of selecting suitable members for such a structure, it is necessary to
make a general analysis of structural strength and secondly to examine
certain details to assure that local failure does not occur.

3.2 The ability to carry the load may be termed I structural strength'.
Broadly speaking, the structural strength or design load of a steel frame
may be determined or controlled .by a number of factors, factors that
have been called "limits of structural usefulness'. These arc: first
attainment of yield point stress (conventional design), brittle fracture,
fatigue, instability, deflections, and finally the' attainment of maximum
plastic strength.

3.3 Strictly speaking, a design based on anyone of the above-mentioned
six factors could be referred to as a 'limit design', although the term
usually has been applied to the determination of ultimate load as limited
by buckling or maximum strengthv". C Plastic design' as an aspect of
limit design and as applied to continuous beams and frames embraces,
then, the last of the limits - the attainment of maximum plastic strength.

3.4 Thus, plastic design is first a design on the basis of the maximum
load the structure will carry as determined from an analysis of strength
in the plastic range (that is; a plastic analysis). Secondly it consists of
a. consideration by rules or formulas of certain factors that might other
wise tend to prevent the structure from attaining the computed maxi..
mum load. Some of these factors may be present in conventional,
(elastic) design. Others are associated only with the plastic behaviour
of the structure. But the unique feature of plastic"design is that the'
ultimate load rather than the yield stress is regarded as the design
criterion. I

3.5 It has long been known that whenever members are rigidly con
nected, the structure has a much. greater load-carrying capacity than
indicated by the elastic stress concept. Continuous or C rigid' frames
are able to carry increased loads above 'first yield ' because struct~

steel has the capa~ity to yield in a ductile manner with no loss in strength;

-This number refers to the eeriaI number of the .elected r eferencea riveD in
Appendix A.

16
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indeed, with frequent increase in resistance. Although the phenomenon
will be described in complete detail later, in general terms what happens
is this:

4\S load is applied to the structure, the cross-section with the
greatest bending moment will eventually reach the yield moment.
Elsewhere the structure is elastic and the I peak' moment values
are less than yield. As load is added, a zone of yielding develops
at the first critical section; but due to the ductility of steel, the
moment at that section remains about constant. 'The structure.
therefore, calls upon its less-heavily stressed portions to carry the
increase in loan. Eventually, zones of yielding are formed
at other sections until the moment capacity has been exhausted
at all necessary critical sections, After reaching the maximum load
value, the structure would simply deform at ,constant load.

3.6 At t he outset it is essential to make a clear distinction between
clastic design and plastic design. In conventional clastic design prac
tice, a member is selected such. that the maximum allowable bending
stress is equal to 1 650 kgf/cm:! at the working load. As shown in
Fig. 1 such a beam has a reserve of strength of 1·65 if tho yield point
stress is 2 400 kgfjcnl\l. Due to tho ductility of steel there is an

O£SDN 1.111

'u,...-....- ......._....-
"...---.---

'.
OESIGtt IASIS I

'IXED
P". , ...

~...ttIO ..",c,.J I I

""S ...,.,.to. I.. xtx'O I "'- SIN"'.
• IXI470 ,

., 022 c",1 "

~WI?l:~b:l ~
l

ISWI 300
0 0

CONVENTIONAL DESIGN PLASTIC DESIGN

FIG. 1 PLASTIC DESIGN COMPAUD WITH RuSTIC DaION, .
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additional reserve which amounts to 12 to 14 percent for a wide ftanp
8bape. Thus the total inherent overload factor of safety is equal to '
1-65xl·12=1·SS as an average value.

1.7 In plastic design, on the other hand, the design commences with
the til'"""" load. (As will be evident later, it is much easier to analyze
an indeterminate structure for its ultimate load than to compute the
yield load.) Thus the working load, p., is multiplied by the same load
factor (1·S5) and a member is selected that will reach this factored
load.

i.8 The load v deflection curve for the restrained beam is shown in
Fig. 1. It has the same ultimate load as the conventional design of the
simpl~ beam and the member is elastic at working load. The important
thing to note is that the factor of safety is the same in the plastic design
of the indeterminate structure as it is in the conventional design of tho
simple-beam.

I.' While there are other features here, the important point to get in
mind at this stage is that in conventional procedures one computes the
maximum moment under the wo,king load and selects a member such
that the maximum stress is not greater than 1650 kgf/cm 2 on the
other hand in plastic design one multiples the working load by
F - 1·85 and selects a member which will just support the ult.nW8
IMl.

1.11 Terminology - Plastic design naturally involves the use of some
new terms. Actually these are few in number, but for convenience are
lilted below:

Limit Design - A design based on any chosen limit of structural
usefulness.

Pl4stic Dssign - A design based upon the ultimate load-carrying
capacity (maximum strength) of the structure. The term f plastic'
is derived from the fact that the ultimate lo~d is computed from
a knowledge of the strength of stool in the' plastic range.

UUfmate £0,,4 (P.) 0' Maximum Strength - The highest load a
structure will carry. (It is not to be confused with the term as
applied to the ultimate load carried by an ordinary tensile test
specimens.) In the design p. is determined by I multiplying tho
expected working load (P.) by the load factor (~ below).

PlamftcaUon - The development of full plastic yield of the cross-
section. .

PltUftcM~ (M,)- Maximum moment of resistance of a fully
yielded er9SHeCtion.

18
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PIIJsIic Molultls (Z)- Combined static moments about the neutral
axis of the cross-sectional areas above and below the neutral axis.

Plastic Hinge - -A yielded section of a beam which acts .. if it
were hinged, except with. a constant restraining moment.

Shape Facto' (f)- The ratio of the maxUnum resisting moment
of a cross-section (MI») to the yield moment (M~).

MeCMftism - A 'hinge system',' a system of members that. can
move without an increase in load.

Redist,ib14tion of MOllle·"t~ A process which results in the sue
cessive formation of plastic hinges until the ultimate load is
reached. By it, the less-highly stressed portions of a struoture
also may reach the (MI»)-value.

Load Facto, (F)- A safety factor. The term is selected to empha
size the dependence upon load-carrying capacity. It is the
number by which the working load is multiplied to obtain p••

4. MECHANICAL PROPERTIES OF STEEL

4.1 An outstanding property of steel, which (as already mention~

sets it apart from other structural materials, is the amazing ductility
which it possesses. This is characterized by Fig. 2 which shows in
somewhat idealized form the stress-strain properties of steel in the initial
portion of the curve. In Fig. 3 are shown partial tensile stress-strain
curves for a number of different ~teels. Note that when the elMtic
limit is reached, elongations from 8 to 15 times the elastic limit tate
place without any decrease in load. Afterwards some increase in strength
19 exhibited as the material strain hardens.

4.1 Although -the first application of plastic design is to structures
fabricated of structural grade steel, it is not less applicable to steels of

N; 4000
~'11; 3000e 2530

I £_c: '.')('02
II' 2000 E-2-<M?X106kefl cmZ
tn d'yt 26. 2 kefl mmZ I f Eit .,.tZ)d05. f/ trl
W '000 !t. r I at
tit dE I

0
2.01 '0-20 0·1 '·0 t·1

STRAIN ...
FIG. 2 STRBSS-STRAIK CURVE OP ST-42 STEEL IDEALIZBD .
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higher strength as long as they possess the nocessarv ductilitv. Figure 3
attests to the ability of a· wide rapc;e of steels to deform plastically
with characterist ics similar to steel rx-.iforming to IS: 226-1969*.

4.3 It is important to bear in mind that the strains shown in l~j~. 3 arc
really verv small. At;, shown in Fig. 4. fl)r ordinary structural steel,
final failure by rupture occurs only after ~~. specimen has strctclic. l SOJne
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15 to 25 times the maximum strain that is encountered in plastic design.
Even in plastic design, at ultimate load the critical strains will not ha ve
exceeded percentage elongation of about 1·5. Thus, the use of ultimate
load as the- design criterion still leaves available a major portion of the
reserve ductility of steel which may be used as an added margin of
safety. This maximum strain of 1-5 percent is a strain at ultimate
load in the structure not at working load. In most cases under working
load the strains will still be below the elastic limit.

5. MAXIMUM STRENGTH OF SOME ELEMENTS

S.l On the basis of the ductility of steel (characterized by Fig. 2) it is
now possible to calculate quickly the maximum carrying capacity of
certain elementary structures. .

As a first example take a tension member such as an eye bar (Fig. 5).
The stress is a = PIA.

_ The load v deflection relationship will be elastic until the yield
point is reached. As shown in Fig. 5 deflection at the elastic limit is
given by 8)' = P"L/AE.

t
A

STRESS:

6' :-!...
A

PuL

AE
"y L

= T=

DEFLECTION:UNRESTRICTED
PLASTIC fLOWL

l -Jorl':'LECTlON
FIG. 5 MAxIMUM STRENGTH 01' AN EYE BAR (DETERMINATE STRUCTURE)
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Since the stress distribution Is uniform across the section. unrest
rioted plastic flow will set in when the load reached the value given by

p. = G',A
This is, therefore, the Ultimate load. It is the maximum load the

structure will carry without the onset of unrestricted plastic flow.

As a second example consider the three-bar structure shown in
Fig. 6. It is not possible to consider the state of stress by statics alone
and thus it is indeterminate. Consider the clastic state. From the
equilibrium condition there is obtained:

2Tl+T~ ~ ... (1)
where T1 is the force in bars 1 and 3 and T I the force in the bar 2.

PLAStiC 'LOW

OIr..ICTtQN~

"""tALlY PlASTICELAS'IC

~ = '~ill

'J • 1'1 • f

CQNf.MUfTY:

FIG. 6 PLASTIC AND ELASTIC ANALYSIS OF AN INDETERMINATE SYSTEM

•••(4)...

The DeXt condition to consider is continuity. For a rigid cross .bar,
the total displacement of Bar 1 will be equal to that of Bar 2. Therefore:

~-~ (2)AE - AE •••
T

T1=? (as LISA 2Lal ••• (3)

WJth this relationship between T1 and T. obtained by the continuity
coadition, using Eq (1) it is found that: .

p
T·-·I  
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The load at which the structure will first yield may then be determined
by substituting in Eq (4) the maximum load which T. can reach,
namely, (J,A.
Thus,

Py = 2T.= 2ayA •••(5)

The displacement at the yield load would be determined from:

8, = a;1L.= iEL
...(6)

Now, when' the structure is partially plastic it deforms as if it were a
two-bar structure except that a constant force equal to ayA is supplied by
Bar 2 (the member is in the plastic range). This situation continues
until the load reaches the yield value in the two outer bars. Notice
how easily it is possible to compute the ultimate load:

P., = 3a"A •••(7)

The basic reason for this simplicity is that the continuity condition
need not be considered when the ultimate load in the plastic rauce-is
being computed.

The load-deflection relationship for the structure shown in FIg. 6
is indicated at the bottom. Not until the load reaches that value
computed by a plastic analysis (Eq 7) did the deflections commenoe to
increase rapidly. The deflection when the ultimate load is first reacbecf
can be computed from:

8. = a;L1 = a'i •.•(8)

The three .esseatial features of this simple plastic analysis are as follows:
a) Each portion of the structure (each bar) reached a plastic' yield

condition,
b) The equilibrium condition was satisfied at ultimate load, and
c) There was unrestricted plastic flow at the ultimate load.

These same features are all that are required to complete the plastie
analysis of an indeterminate beam or frame, and in fact, this simple
example illustrates all of the essential features of a plastic analysis.

6. HISTORICAL DEVELOPMENT

6.1 The concept of design based on ultimate load as the criterion is
more than 40 years old I The application of plastic analysis to structural
design appears .to have been initiated br Dr Gabor Kazinszy, a Hunp
riaD, who published results of hi., Tests of Clamped Girders as early as 
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1914. He also suggested analytical procedures similar to those
now current, and designs of 'apartment-type buildings were actually
carried out.

6.2 In his Strength of Materialss , Timoshenko refers to early suggestions
to utilize ultimate load capacity in the plastic range and states as follows:

Such a procedure appears logical in the case of steel structures
submitted to the action of stationary loads, since in such cases a
failure owing to the fatigue of metal is excluded and only failure
due to the yielding Qf metals has to be considered.

Early tests in Germany were made by Maier-Leibnitz4 who showed that
the' ultimate capacity was not affected by settlement of supports of
continuous beams. In so doing he corroborated the procedures pre
viously developed by others for the calculation of maximum load capa
city. The efforts of Van den Broek1 in USA and J. F. Baker6•10 and
his associates in Great Britain to utilize actually the plastic reserve
strength as a design criterion are well known. Progress in the theory
of plastic structural analysis (particularly that at Brown University)
has been summarized. by Symonds and Neal'.

6.3 For more than ten years the American Institute of Steel Construc
tion, the Welding Research Council, the Navy Department and the
American Iron and Steel Institute have sponsored studies at Lehigh
Universit~·8,.. These studies have featured not only the verification
of this method of analysis through appropriate tests on large structures,
but have given particular attention to the conditions that should be
met to satisfy important secondary design requirements.

6.4 Plastic design has now' come of age ', It is already a part of the
British Standard specifications and numerous structures both in Europe
and North America have been constructed to designs based upon the
plastic method. IS: 800-1962* permits the use of Plastic Theory in
the design of steel structures (su 13.5.1 of IS: 800..1962*).

-eAKte, of practice for Ule of atructural ateel in Imetal buildiD.' CODatructloJi
(tMMI).

 



SECTION B

JUSTIFICATION FOR PLASTIC DESIGN

7: WHY PLASTIC DESIGN

7.1 What is the justification for plastic design? One could reverse the
question by asking, 'why use elastic design?' If the structure will
support the load and otherwise meet its intended function, are. the
magnitudes of the stresses really important?

1.'J It is true that in simple structures the concept of the hypothetical
yield point as a limit of usefulness is rational. This is because the
ultimate load capacity of a simple beam is but 10 to 15 percent greater
than the hypothetical yield point, and deflections start increasing very
rapidly at such a load. While it would seem logical to extend elastic
stress analysis to indeterminate structures, such procedures have tended
to overemphasize the importance of stress rather than strength as a
guide in engineering design and have introduced a complexity that 'now
seems unnecessary for a large number of structures.

7.3 Actually the idea of design on the basis of ultimate load rather than
allowable stress is a return to the realistic point of view that had to be
adopted by our forefathers in a very crude way because they did not
possess knowTedge of mathematics and statics that would allow them
to compute stresses.

7.4 The introduction of welding, of course, has been a very real stimulus
to studies of the ultimate strength of frames. By welding it is possible
to achieve complete continuity at joints and connections - and to do
it economically. The full strength of one member may thus be trans-
mitted to another. ,,-

'1,t, It has often been demonstrated that elastic stress analysis cannot
predict the real stress-distribution in a building frame' with anything
like the degree of accuracy that is assumed" in the design. The work
done in England by Prof. Baker and his associates as,a forerunner to

.» their ultimate strength studies clearly indicated this.

'1.6 Examples of 'imperfections' that cause severe irregularity .in
measured stresses are: differences in beam-column connection fit-UD and
lexib~ty, spreading of· supports, sinking of supports, residual stressel, 
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fteXibilitv 'a~~umed where actuallv' ther~ is rigiditv (and viu-vlrMl.
and points of stress concentration, Such factors, however, usually do
not i~ftuen~ the maximum plastic strength.

'1.7 ~ming that stress is not the most rational design criteria, in order
to justify our further consideration of maximum strength as the design
criteria there must be other advantages. There are two such advantages:
economy and simplicity. .

7.8 Since there is considerable reserve of strength beyond the elastic
-limit, and since the corresponding ultimate load may be computed quite
accurately, then structural members of smaller size will adequately
support the working loads when design is based on maximum strength.
Numerous demonstrations of this will be made later in this bandbook.. "" ,

1.9 The second feature\vas I simplicity'. An analysis based upon
, ultimate load possesses an inherent simplicity because the elastic con

dition of continuity need no longer be considered. This was evident
from a consideration of the three-bar truss in Section A (Fig. 6) and the
examples of Section D will demonstrate this further. Also the' imper
fections' mentioned above usually may be disregarded. .

7.10 As already mentioned the concept is more rational. By plastic
analysis the engineer can determine with an accuracy that far exceeds
Iris presently available techniques the real maximum strength of a
structure. Thereby the factor of safety has more real meaning than at
present. It is not unusual for the factor of safety to vary from 1·65 up
to 3 or more for structures designed according to conventional elastic
methods. '

"1.11 Thus the application of plastic analysis should be considered
seriously because it provides a less-expensive structure, it is a similar
design office technique, and it constitutes a rational design basis. Fur..
ther, these concepts are verified by tests and (as we shall now see) they
have- been used consciously or unconsciously in conventional design
practice.

8. INADEQUACY OF STRESS" AS T~E DESIGN CRITERION

8.1 The question, immediately ariS~s, will, it not be possible sbnply to
change the allowable stress 'and retam the present stress concept? While
theoretically possible, the practical answer is I no ', It would mean a
different working stress for every type of structure and would vary for
different loading conditions. ' ' -

8.1 To a greater extent than we may realize, the maximum strength of
a structure 11&5 always been the "dominant design criteria. When t~
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permissible working stress of 1400 kgfcmt has led to designs that wore
consistently too conservative, then that stress has been changed. Thus
the benefits of plasticity have been used consciously or unconsciously
in design. It is also evident to most engineers that present design pro.
cedures completely disregard local over-stressing at points of stress
concentration like bolt holes, notches, etc. Long experience with
similar structures so designed shows that this is a safe procedure. Thus,
the stresses that are calculated for design -purposes are not true
maximum stresses at all, they simply provide an index for structural
design.

8.3 A number of examples will now be given in which the ductility of
steel has been counted upon (knowingly or not) in elastic design. It
should be borne in mind that plastic analysis has not generally been
used as a basis for determining these particular design rules and as a
result the so-called elastic stress formulas have been devised in a rather
haphazard fashion. A rational basis for the design of a complete
steel frame (as well as its details) can only be attained when the
maximum strength in the plastic range is adopted as the design
criterion.

I

8.4 Such examples are the following and are listed in two categories:
(a) factors that are neglected because of the compensating effect of
ducti1ity; and (b) instances in which the working stresses have .been
revised because the C normal' value was too conservative. Several
examples of each are given:

1) Residual stresses (in the case of flexure due to cooling after
rolling); .

2) Residual stresses resulting from the cambering of beams;
3) Erection stresses;
4) Foundation settlements;
5) Over-stress at points of stress-concentration (holes, etc);
6) Bending stresses in angles connected in tension by one leg only;
7) Over-stress at points of bearfng:
8) Non-uniform stress-distribution in splices, leading to design

of connections on the assumption of a uniform distribution
of stresses among the rivets, bolts, or welds;"

9) Difference in stress-distribution arising from the ' cantilever '
as compared with the ' portal' method of wind stress
analysis;
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10) IS: 800-1962 specifies the following values for bending stresses:
1 650 kgf/cm2 for rolled sections,
1 575 kgf/cm 2 for plate girders, and
1 890 kgf/cm z in flat bases.

b) Revisions in working stress due to reserve plastic strength:

1) Bending stress of 2 109 kgf/cm t (or 30 ksi) in round pins (in
AISC specification); _

2) Bearing stress of 2 812 kgf/cm 2 (or' 40 ksi) on pins in double
shear;

3} Bending stress of 1 687 kgf/crnz (or 24 ksi) in framed struc
tures at points of interior supports;

4) Bending stress of 1 650 kgf/cm 2 and 1 575 kgf/cml for rolled
sections and plate girders respectively (in IS: 800-1962·);
and

5) Bending stress of 1 890 kgf/cm l in slab bases (in IS: 800-1962·).

Consider Item (a) (1) for example. All rolled members contain
residual stresses that are formed due to cooling after rolling or due to
cold-straightening. A typical wide flange shape with a typical residual
stress pattern shown in Fig. 7. When load carrying bending stresses
are applied, the resulting strains are additive to the residual strains
already present. As a result, the ' final stress' could easily involve
yielding at working load. In the example of Fig. 7, such yielding has

0, 6w <Sy

~~ ~'~.--
H "r .. .,' :'

) H' ! ,I

I .t

~ .'.'~ "~
, ~ ~

~ ~ a,.~ (+)
, ,.

- - +)'---(-)

RESIDUAL STRESS APPLIED STRESS 'INAL STRESS

Cal (b) (e) (d) ell

FIG. 7 RESIDUAL STRESSES IN A ROLLED BEAK SECTION

*Code of practice for- use of structural steel in general .buildiDg construction
(,.....)..
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occarred both at the compression flange tiPs and at the centre of the
tension flange. Thus, it is seen that cooling residual stresses (whose
influence is neglected and yet which are present in all rolled beams)
cause yielding in the flange tips even' below the working load.

S.& Structural members experience yield while being straightened in
the mill, fabricated in a shop or forced into position during erection.
Actually, it is during these three operations that ductility of steel
beyond the yield point is called upon to the greatest degree. Having
permitted such yielding in the mill, shop and field, there is no valid
basis to prohibit it thereafter, provided sudh. yield has no adverse effect
upon t he structure. As an illustration of item (a) (3) in the list in 8.4,
Fig. 8 shows how erection forces will introduce benning moment into. a
structure prior to the application of external load (see first line for P = 0).
Although the yield-point load is reduced as a result of these ' erection
moments' (in the second line of the figure, the yield-point load has been
reached for case 2), there is no effect whatever on the maximum strengUt.
The reason for this is that redistribution of moment followed the onset
of yielding at the corners (case 2) until the plastic moment was reached
at the beam centre; therefore) the ultimate load moment diagrams for
cases 1 and 2 are identical.

8.6 Consider, next, the design of a riveted or bolted joint [Item (a) (8)
in 8.4]. The common assumption is made that each fastener carries the

p p

CASt' • NO lAEeTlQM fORC!

=

CA51 2· fRECTtON fIOIICI

FIG. 8 DEMONSTRATION THAT ERECTION STRESSES DO NOT INFLUBNCE
. ULTIMATE LOAD
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same shear force. This is true only in the case of two fasteners. When
more are added (Fig. 9), then as long as the joint remains clastic, the
outer fastners should carry the greater portion of the load. For example,
with four rivets, if each rivet transmitted the same load, then, between
rivets C and D one plate would carry perhaps three times the force in
the other. Therefore, it would stretch three times as much and would
necessarily force the outer rivet D to carry more load. The actual
forces would look something like these shown under-the heading' Elastic '.
What eventually happens is that the outer rivets yield, redistributing
forces to the inner rivets until all forces are about equal. Therefore,
the basis for design of a rivet joint is really its ultimate load and. not the
attainment of first yield.

8.7 A t revised working stress' example [su Item (b) (1) in 8.4] is shown
in Fig. 10 and is concerned with the design of a round pin. In a simple
beam with wide flanges, when the maximum stress due to bending reaches
the yield point, most of the usable strength has been exhausted. How
ever, for some cross-sectional shapes, much additional load may be
canied without excessive deflections. The relation between bending
moment and curvature for wide flange and round beams is shown in Fig. 10.
The upper curve is for the pin, the lower for a typical wide flange beam, the
non-dimensional plot I being' such that the two curves coincide in the
elastic range. The maximum bending strength of the wide flange beam.'
is 1·14 My, whereas that of the pin is 1·70 My. The permissible design
stresses (for steel with yield stress 36 ksi) according to specifications
of the American Institute of Steel Construction are 1 550 kgf/cml (or
22 ksi) for the wide flange beam and 2 320 kgf/cm 2 (or 30 ksi) for the
round pin.

ELASTIC

ULTIMATE

It. BCD

ITII EQUALISES DUE TO
_ _ _ _ _ R£DlSTRteuTIOH

FIG. 9 REDISTRIBUTION 01' SOAR IN THE FASTENERS 01' A LAP Jo~
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= 0-61

~-.I."Ny

NIp 1-\4
WIDEFI.ANOE~_ =_ ....,

Mw 0-61

0------'----.......--......--------..-
FIG_ 10 MAXIMUM STRENGTH OF A ROUND PIN COMPARED WITH THAT

OF A WIDE FLANGE BEAM

Expressing these stresses as ratios of yield point stress:

Wed tf., 1 550
1 e flange: - = --= 0-61

tJy 2 530

Pin : a. == 2 320 = 0-91a, 2 530
For a simply-supported beam' the stresses, moments, and load all bear
a linear relationship to one another in the elastic range and thus:

PaM
ii;-= a" = M,

Therefore, the moment at allowable working stress (M.,) in the wide
flange beam is 0-61 M7 ; for the pin, on the other hand, M.,= 0-91 M,_
What is the true load factor of, safety for each case?

Wed PM.. MM.. 1-14 M,
1 e ftange:F == - == --==--- = 1·87e; M. 0·61 My

Pin: F = PII.. == 1-70 My = 1.87
r; 0-91 M,

The exact agreement between the true factors of safety, with respect to
ultimate load in the two, cases, while somewhat of a coincidence, is indi
.cative of the inftuence of long years of experience on. the part of engineers'

31
 



SP: 6(6) - 1972

which has resulted in different. permissible working stresses for various
conditions resulting in practice. Probably'no such analysis as the
foregoing influenced the choice of different unit stresses that give identical
factors of safety with various sections; nevertheless, the choice of such
stresses is fully justified on this basis. When years of experience and
'common sense have led to certain empirical practices these practices are
usually justified on a scientific basis.

8.8 Permitting a 20 percent increase in the allowable working stress at
points of interior support in continuous beams represents another case
In which both experience and a I plastic analysis' justify a revision in
.working stresses.

9. EXPERIMENTAL VERIFICATION

9.1 In the previous clauses some of the important concepts of the plastic
theory arc described. How well does structural behaviour bear out the
theory? Do structures really contain the ductility assurned ? If we
test a ' full size J structure with rolled members will it actually carry the
load predicted by' plastic analysis?

9.2 The important assumptions made with regard to the plastic beha
viour of structures are recapitulated in Fig. 11). In Lecture 4 of
Ref 12 (see Appendix A), the experimental confirmation of these assump
tions is given, demonstrating the ductility of steel, the development of
plastic hinges in beams and connections, and redistribution of moment.
In the last analysis, the most important verification of plastic theory is
that given by the results of full-scale tests and some of these will now
be presented.

9.3 Typical structures were tested both in USA and other countries.
The structure carried the predicted ultimate load, the load-deflection
curve being shown in Fig. 12.

9.4 Further tests conducted on frames fabricated tfrom rolled sections
have shown that the actual strength of even the weakest structure was
within 5 percent of its predicted ultimate load an agreement much better
than obtained at the so-called 'elastic limit '.,11.10••••40••1. In tests on
beams with three supports, applying the vertical load, the central support
was raised until the yield point was first reached, with the result that
application of the first increment of external load caused the structure
to yield. In spite of this, the computed ultimate load was attained.
In the tests conducted on pinned and fixed basis and with flat, saw
tooth and .gabled roofs.. the ultimate load computed by the plastic
theory was reached and in numerous cases it exceeded'··..··,.
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FIG. 11 ASSUMPTIONS MADE IN REGARD TO PLASTIC
BEHAVIOUR OF STRUCTURES

10. THE CASE FOR PLASTIC DESIGN

10.1 As summarized in the preceding paragraphs the results of tests have
verified the theory of plastic analysis. Is the engineer now justified in
giving further attention to the method of plastic analysis, in studying
it, and in applying it to the appropriate design problems? The answer
is ' yes'. . ~

The case for plastic design is illustrated bv the following observa-
tions: ..

a) The reserve in strength above conventional working loads is
considerable in indeterminate steel structures. Indeed, in some
instances as much load-carrying capacity is disregarded as is
used in conventional design,
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b) Use of ultimate load as the design criterion provides at lca~t

the same margin of safety as is presently afforded in the elastic
design of simple beams (Fig. 1). I

c) At working load the structure is still in the so-called elastic range
(Fig. 1).

d) In most cases, a structure designed by the plastic method will
deflect' no more at working load than will a simply-supported
beam designed by conventional methods to support the same
load (Fig.. I).

c) Plastic design gives promise of economy in the use of steel, of
savings in the design office by virtue of its simplicity, and of
building frames more logically designed -for greater over-all
strength. .-

It is important to bcflr in mind that dependence~ be pIaicecI
upon the maximum plastic strength only when propel" alt_tion is ciwn
to C details'. These are the secondary design consiM&tieas~
earlier and treated in Section E.
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SECTION C

FLEXURE OF BEAMS

11. ASSUMPTIONS AND CONDITIONS
I

11.1 Certain of the fundamental concepts of plastic analysis were pre
sented in Section A (see 3 and 4). The examples there, however, were
limited to cases of simple tension and compression. The next objective
i~ to determine 110\V a beam deforms beyond the elastic limit under the
action of bending moments, that Is, to determine the moment-curvature
(M-~) relationship.

The asgumptions and conditions used in the following development are:
a) strains are proportional to the distance from the neutral axis

(plane sections under benning remain plane after deformation).
b) the stress-strain relationship is idealized to consistof two straight lines:

a = E (O<E<E,,)}
( « ) ...(9)a = 0')1 Ey E ex>

TIle complete stress-strain diagram is shown in Fig. 4 and
is shown in an idealized form in Fig. 2. The properties in
compression are assumed to be the same as those in tension.
Also, the behaviour of fibres in bending is the same as in tension.

c) The equilibrium conditions are as given by Eq (10):

•••(10)
....1..,

J...
adA

Moment:

Normal force: P - J
Area

M -J adA.y
Art.

where (J 13 the stress at distance y from the neutral axis.
d) Deformations are sufficiently small so that ~ = tan ~ (~=

curvature).

11. BENDING OF RECTANGULAR BEAM

11.1 The moment-curvature relationship in the plastic range and the
nagnitude of the maximum plastic moment are developed by following
the same processes as in elastic analysis, that is, consider the deformed
structure and obtain the corresponding curvature and moment. The
development of strain and stress distrlbution as a rectangular beam is
bent in successive stages beyond tile elastic limit (Stage 1) and up to

3S 
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FIG. 13 PLASTIC BENDING OF RECTANGULAR BEAMS

the plastic limit (Stage 4) is shown in Fig. 13. T1Le strain distribution
is first selected or assumed and this fixes the stress-distribution.

11.2 Let us now trace the stages of yield stress penetration in a rect
angular beam subjected to a progressive increase in bending moment.
At the top of fig. 13 is replotted for reference purposes the stress-strain
relationship. !At Stage 1, as shown in the next line of Fig. 13, the strains
have reached the yield strain. When more moment is applied (say to
Stage 2), the extreme fibre strains arc twice the elastic limit value. The
situation is similar for Stage 3 (E.II.s = 4Ey). Finally, at Stage 4 the
extreme fibre has strained to Ed.

12.3 What are the stress distributions that correspond to these strain
diagrams? These are shown in the next line of Fig. 13. As long as the
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strain is greater than the yield value Eyt as could be noticed from the strell
strain curve that the stress remains constant at a. The stress distrI
butions, therefore, follow directly from the assumed strain distributions.

As a limit we obtain the ' stress block'- a rectangular pattern which
is very close to the stress distribution at Stage 4.

A new term introduced in Fig. 13 is the curvature. This is the
relative rotation of two sections a unit distance apart. According to
the first assumption (as in elastic bending):

1 E a
t/J =p=y= E.y ...(11)

where p = radius of curvature and E, the strain at a distance y from the
neutral axis. Just as it is basic to the fundamentals of elastic analysis,
the relationship of bending moment to this curvature, 4J, is a basic
concept in plastic analysis.

The expressions for curvature and moment (and, thus, the resulting
M -." curve) follow directly from Fig. 13. Curvature at a given stage
is obtained from' a particular stress-distribution". The corresponding
moment-value is obtained by integration of stress-areas. The derivation
of expressions for curvature and moment now follow.

Stage 2 of the example ShO\VI1'in Fig. 13 is shown in Fig. 14. From
Eq 11 the curvature thus becomes:

~ = a, ...(12)
Eyo

where Yo is the ordinate to the neutral axis to the farthest still elastic
~re. .

To compute the bending moment for this same Stage 2, the stress
distribution o~._ Fig. 14 is divided into parts in Fig. 15. The moment of

E=JiE

.tSy
YIELD ZONE MOMENT STRAIN STRESS

FJ~. 14 STRESS DISTRIBUTION IN A PARTIALLY PLAsTIC RECTANGULAR
CRoss-SECTION

-Even though curvaturo is a mouure of 8tnUn distribution. the stress-diatribatioa
dUIInm is uled, since in the e1utic rauso, tho Itrea varies linearly witb ,traIL
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FIG. 15 STRESS ELEMENTS OF A PARTIALLY PLASTIC DESIGN

resistance may thus be considered as being made up of an clastic (a,S,)
and a plastic part (a,ZI')' or:

M = ayS,+a,ZI' = oySc+O'yZ-O,Z, ... (13)
where the subscripts "e ' and (P' refer to the elastic and plastic portions
of the cross-section, respectively.

Equation 13 may also be derived directly from Eq 10. Referring to
Fig. 14:

II = J..4 atlA.y

== 2J"0 a.bdy.y+2 S·I't G".bdy.y = 2J"0 a".~.btly.y+2(·/l! a".btly.y
o 'Yo ,0 Yo J)'o

Zfo y'.lxly ./l!
== G,," +0,2 S y.btly ••.(13a)

Yo '"
= (J,S.+o)'Z/J
The quantity Z is a property of a cross-section that corresponds in

importance to the section modulus, S. It is called the plastic modulus,
and (for symmetric sections) represents twice the statical moment
(taken about the neutral axis] of the plastic section area above or below
that axis. General methods for computing Z will be discussed later.

For the rectangular section, necessary values for section modulus,
5, and plastic modulus, Z for usc in Eq 13 arc:

Z. = 2~0 i = by:

s = b(2Yo)1 = ~ b·,7. = ~ Z
, 6 3 70 3 '

Z, = Z-Z,
btl'

Z == ... •••(14)
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Thus, the bending moment in terms of Z is given by:

~== a,(Z- ~) ... •.. (15)

The maximum moment is obtained when the elastic part is reduced to
zero or:

•••(16)

•.. (19)

••• (17)

MI'=a, Z

MiJ is called the 'plastic moment '.

From the equations just derived for curvature and moment, we are
now in a position to write the desired moment-curvat ure relationship.
In terms of Yo, then:

( bY")M=a, Z--;f
In terms of ~. using Eq 12:

( . b~)
M = a, Z- 3E~' (~< r/J <00) .... (18)

The following non-dimensional relationship is obtained by dividing both
sides of Eq 18 by My = a,S:

~- -~[1- ~ (~')']
M, - 2 3 (;)

The resulting non-dimensional M -", curve for a rectangle is shown ill
Fig. 16. The numbers in circles in Fig. 16 correspond to 'stages' of

t

3 , 5 6 7 • I 10

~ .
FIG.· 16 NON-DIMENSIONAL MOMENT-CURVATUU :REunoKSIIIP 10.

RECTANGULAR BEAll
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•••(20)

Fig. 13. Stage 4, approached as a Unlit, represents complete plastic yield
of the cross-section, where MIJ =·a~Z. Note that there is a 50 percent
increase in strength above the computed elastic limit (Stage 1) due to
this I plastification ' of the cross-section, This represents one of the
sources of reserve strength beyond the clastic limit of a rigid frame.

The ratio of the plastic moment (M,l to the yield moment (M,) ,
representing" the increase of strength due to plastic action, will be a
function of the cross-section form or shape. Thus the C shape factor'
is given by:

/
~ _ a~Z __ !-

== M, - a;s - s
bdt bal

For the rectangular beam being considered, / = 4 + 6 = 1·50 as
indicated in Fig. 16.

'" PLASTIC HINGE (MaMp)

~

(0)
~UNtT LENGTH

~TUAL HINGE (M.O )

t..

13. BENDING OF WIDE FLANGE BEAM

13.1 The action of a wide flange beam under bending moment is dia
grammatically shown in Fig. 17. If it is assumed that all of the material
in a wide flange shape is concentrated in the flanges then (when the
elastic limit is reached) the compression flange shortens at constant load
and the tension flange lengthens at 00nstant load. The resulting
moment is, therefore, constant; the member acts just like a hinge except
that deformation occurs under constant moment (the plastic-hinge
moment).
13.2 A more realistic picture of the moment-curvature relationship of
a wide flange shape is shown in Fig. 18. Point 1 is the clastic limit; at
Point 2 the member is partially plastic and at point 3 the cross-section
approaches a condition of full plastic yield.

Mpr--~"""'--------1__-----"'"
My

FIG. 17 IDEALIZED MOMENT-CURVATURE RELATIONSHIP .~OR WIDS
FLANGB BEAll
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FIG. 18 TYPICAL THEORETICAL MOMENT-CURVATURE RELATIONSHIP OP
WIDE FLANGE BEAM

The magnitude of the moment, }.tIll' may be computed directly from
the stress distribution shown for Point 3. As shown in Fig. 19 it is
equal to the couple created by the tensile and compressive forces. The
moment due to each of these forces is equal to the product of the yield
stress, a y, and the area above the neutral axis (AI2) multiplied by the
distance y measured to the centre of gravity of that area. .

ElASTIC PLASTIC

...-__...6"

..,-
i

-My OJ! Mp 2 CSy t'i·z =~z
. • ~ c-i

FIG. 19 ELASTIC AND PLASTIC LIMIT MOKENTS
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Thus:
A

M~ = 2 0)' 2" y = a,A)i ... (21)

The quantity Ay is called the' plastic modulus t and is denoted by Z;
therefore, as before,

MI' = fJ)'Z •.•(16)
The plastic modulus, Z, is thus equal to the combined statical moments
of the cross-sectional areas above and below the neutral axis, since the
stress at every point on these areas is the same.

The moment-curvature relationship may be developed for wide
flange shapes by tho MmC procedure as outlined for a rectangular cross
section. Due to v-rintion of width of section with depth, separate
expressions arc necessary when yielding is limited to the flanges and
when yielding has penetrated to the web.

For Case 1, in which the yield zone has penetrated part way through
the flanges (Fig. 20), the non-dimensional M -tfJ curve becomes:

~~ = t_ (1- ~d~)+ ~_~~ [1- !.._(!~.)2] ... (22)
!t1y q,y 65· 45 3 tfJ

( 1< t < (d~~-t))
For Case 2, in which ~riel(lill~ has peuetruted through the flang~:i and into
the web (Fig, 21), the non-dimensional Jf-t/J curve becorncs:

~y =/- i'~;(:·'Y
(,/1/2

1( <~, < ex>) ••• (23)

,"---,1 ------1
-,- ---, d

1. Y
_._.-1..-1.

FIG. 20 PLASTIC STRESS DISTRIBUTION IN WIDE FLANGE BEAM 
CASE 1: PARTIAL YIELDIMG
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FIG. 21 'PLASTIC STRESS DISTRIBUTION IN WIDE FLANGE BEAM·
CASE 2: PARTIAL YIELDING

The curve result ing from Eq 22 and 23 is shown in Fig. 18 for a
typical wide flange shape, (The stress-d istributions correspond to the
numbered points on the ltl-~ curvc.) It will be noted that the shape
factor is smaller than for the rectangle (compare Fig. 16), the average
value of •f' fur all wide flange beams being 1·14. Correspondingly
there i~ a more rapid approach to AI" when compared with rectangle.
•'\s a matter of fact when the curvature is twice th.c clastic limit value
(Stage 2 of Fig. 18) the moment has reached to within 2 percent of the
{ull 111,. -value.

14. PLASTIC HINGE

14.1 The reason a structure will support the computed ultimate kiad is
that plastic hinges are formed at certain critical sections. What is the
plastic hinge? What factors influence its Iormation P What is its
importance ? ..,,, ,

The M -~ curve Is characteristic of the plastic hinge (Fig. 18). Two
features are particularly important:

a) the rapid approach to M = M p = a,Z; and
b] the indefinite increase in +at constant M.~

An idealized M -t/I curve is obtained by assuming (for a wide flange
shape) that all of the material is concentrated in the flanges as shown
in Fig. 17. The behaviour shown there is of basic importance to plastic
analysis. According to it, the member remains elastic until the moment
reaches Mr Thereafter, rotation occurs at constant moment; that is,
the member acts as if it were hinged except with a constant restraining
moment, 14;' This, then, is the plastic hinge.

Aamding to the idealization of Fig. 17, plastic hinges fonn at
discrete points of zero length. Actually the hinge extends over that part
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of the beam whose bending moment is greater than MI'. That 'length
is dependent on the loading and geometry. It-is justified to neglect this
C distribution', however, and the length of hinge is assumed.to be zero.
Closely related to the plastic hinge is the plastic modulus, Z. It has
already been ddfined for the symmetrical sections as twice the statical
moment about the neutral axis, of the half sectional area. As noted
earlier, Z = Ay. For wide flange beam shapes, the quantity y may be
determined directly from the properties of split tees and thus:

Zwl4e Range = A(~ -Y1) ...(24)

where Yl is the distance from the flange to the centre of gravity.
The shape factors, already defined as f = Z IS, varies for wide flange

shapes from 1-09 to 1-22. The mode is 1·12 and the average is 1·14 for
I shapes. Examples of the ratio of Z/S = f for symmetrical shapes other
than the wide flange are shown in Fig. 22 and 23_

For sections with symmetry only about an axis in the plane of
bending, the neutral axis at the plastic moment condition follows directly
from Eq ·10. The general definition for Z is 'The combined statical
moments of the cross-sectional areas above and below the neutral axis ',
Since P = 0, and a = CJ", for equilibrium the area above the neutral
axis should equal that below. "Thus, f. r a triangular-section in Fig. 22
the clastic neutral axis is at a distance of 2/3d from the toe, while the
plastic' neutral axis is at a distance of tlV2.

FIG. 22 NEUTRAL AxIS OP A TRIANGULAR SECTION

WI)! FLANG!' ........
-- (1)

STRONG AlII WIM ...

SECTION • I 1 ttl
f·~ 2-00 "'10 l·!tb 1-27 ..... -'-50• .

FIG. 23 SBAPIt FACTORS OF CoMMON SYMMETRICAL SaCTIONS 
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In addition to the shape factor wh6se influence on strength has
already been described, .several other factors influence the ability of mem
bers to form plastic hinges. Some of these factors are important from
the design point of view (such as shear, axial force, instability) and are
treated in Section E. Others are primarily of academic fnterest in so far
as routine design applications are concerned. Factors affecting the
bending strength and stiffness of beams have been listed in Chapter 2 of
Ref 9 (see Appendix A) with further reference being made to other
S011Tces of information on each factor.

The following definitions or principles briefly summarize this clause
and are important to a later understanding of plastic analysis:

a) A plastic hinge is a zone of yielding due to flexure in a structu,al
member -- Although its length depends on the geometry and
loading, in most of the analytical work it is assumed that all plastic
rotation OCCll.fS at a point. At those sections where plastic hinges

are located, the member acts as if it ioere hinged, except with a cons
tant r.:~sl,ail,illg moment M p, (Fi~. 17).

b) Plastic hingc.f\ fOTln at point,') 0.( maximum moment - Thus in a
framed structure with prismatic JTl{~t',ljer~, it would be possible
for plastic hirutcs to Iorrn at points of concentrated load, at the
end of each member meeting at a connection involving a change
in geometry, and at tho point of zero shear in a span under dis
tributed load.

c) The plastic moment, M 1" equals tJ"Z.

d) The shape Iactor (I = Z/S= ~f) is one source of reserve strength

beyond the clastic limit.
Application of the plastic hinge concept to analysis is illustrated

in 15.

15. REDISTRIBUTION OF MOMENT

IS.! The second factor contributing to the reserve of strength is called
, redistribution of moment ' and is due to the action of the plastic hinges:
·As load is added to a structure eventually the plastic moment is reached
at a critical section - the section that is most highly stressed in the
-lastic range. As further load is added, this plastic moment value is
maintained while the section rotates. Other less highly-stressed sections
maintain equilibrium with the increased load by a proportionate increase in
moment. This process of redistribution of moment due tp the successive
formation of plastic hinges continues until the ultimate load is reached.

15.2 This is exactly the process that took place in the case of the three
bar truss of Fig. 6 except that tensile forces instead ·of moments were
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c

involved. When the force in Bar 2 reached the yield condition it re
mained constant there while the forces continued to increase in Bars 1
and 3. The ultimate load was reached when all critical bars became
plastic. .

15.3 The phenomenon of redistribution of moment will now be illustrated
with the case shown in Fig. 24, a fixed ended beam with a concentrated
load off-centre. As the load P is increased the beam reaches its elastic
limit at the left end (Stage 1). The moments at sections Band Care
less than the maximum moment, Note that in this example we will con
sider the idealized M -tfJ relationship as shown in the lower left-hand
portion. [The dotted curve shows the more (precise' behaviour).

As the load is further increased, a plastic hinge eventually forms at
Section B. The formation of the plastic hinge at A will permit the
beam to rotate there without absorbing any more moment. Referring
to the load-deflection curve immediately below the moment diagrams
the deflection is increasing at a greater rate.

p

STAGE 1 STAGE 2 STAGE 3

t
M

"

DEFLEctiON --.....

FIG. 24 RK-DISTRIBUTION OF MOMENTS 
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Eventually, at Stage 3, when the load is increased sufficiently to
fonn a plastic hinge at Point C, all of the available moment capacity of
the beam will have been exhausted and the ultimate load- reached.

It is evident from the load-deflection curve shown in the lower part
of the figure that the formation of each plastic hinge acts to remove one
of the indeterminates in the problem, and the subsequent load-deflection
relationship will be that of a new (and simpler) structure. In the elastic
range, the deflection under load can be determined for the completely
elastic beam. Starting frOID Point 1 the Segment 1-2 represents the
load-deflection curve of the beam in sketch b loaded within the elastic
range. Likewise.the load-deflection curve of the beam in sketch cloaks
similar to the portion 2-3.

Beyond Stage 3 the beam will continue to deform without an increase
in load just like a link mechanism if the plastic hinges were replaced by
real hinges. This situation is called a. f mechanism.' in the somewhat
special condition that motion is possible without an increase in load.

Two further fundamental concepts in addition to the four listed
in 14 are in summary of this clause and are demonstrated by Fig. 24:

a) The formation of plastic hinges allows a subsequent redistribution
of moment until M p is reached at each critical (maximum)
section.

b). The maximum load will be reached when a sufficient number of
plastic hinges have formed to create a mechanism.

On the basis of the principles just discussed one may readily visua..
lize how to compute the ultimate load: Simply sketch a moment diagraJJ1
such that plastic hinges are formed at a sufficient number of sections to
allow 'mechanism motion '. Thus in Fig. 2S, the bending moment dia
gram for the uniformly-loaded, fixed-ended beam would be drawn such

FIG. 25 MOMENT DIAGRAM AT VARIOUS STAGES FOR FIXED-ENDED BBAII
WITH U:MIPORllILY DISTRIBUTED LoAD
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that M, is. reached at the t~. e!1ds and the centre. In this way a
mechanism IS formed. By equilibrium:

W;,L =.2Mf>

W.. = 16Mf>
L

How docs this compare with the load at first yield? At the elastic
limit (see (lotted moment ...diagram in Fig. 25) we know from a considera..
tion of continuity, that the centre moment is one-half tho end moment.
Thus:

W"L __ M +M, _ 3M,
8 - , 2 - 2

W _12M"
'J -- L

Therefore, the reserve strength due to redistribution of moment is:

~N 16Af~/L 4 Af~

w; ~ )2M~7L ="3 M,
Considering the average shape factor of wide flange beams, the total·
reserve strength due to redistribution and shape factor (plastiftcation)
is:

WN -1-
-= - X 1·14 = 1-52W, 3

For this particular problem, then, the ultimate load was 52 percent
greater than the load at first yield, representing a considerable margin
that is disregarded in conventional design. .

There are other 'methods for analyzing a structure for its ultimate
load. in particular the I Mechanism Method' (to be described later) which
starts out with an assumed mechanism instead of an assumed moment
diagram. But in every method, there are always these two important
features: i!

a) the formation of plastic hinges, and
b) the development of a mechanism.

With these fundamental concepts regarding the mechanical pro
perties of steel and the flexure of beams we are now in a.position to
examine the methods of plastic analysis.
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SECTION D

PLASTIC ANALYSIS

16. FUNDAMENTAL PRINCIPLES

16.1 With the evidence presented in Section B that full-size sf ructures
behave as predicted by plastic theory and having considered in Section C
the plastic behaviour of beams, we mav now proceed to a cousideration
of the methods of plastic analysis. The -objective of t hi..; Section i~ to
describe briefly the fundamental principles 11P01\ which plastic analysis
rests and then to describe how these principles an- used in un.ilvzing
continuous bvams and frames,

The basis for computing the • ultimat 0 load' (or maximum plast it:
strength) i'-l tho strength of steel in tho plastic range. As shown in :\.
structural ~te(~l has the ability to deform plastically after the yield-point
is reached. The resulting flat stress-strain characteristic a~SUIes d-pend
able plastic strength, on the one hand, and provides an effective f limit ·
to the strength of a given cross-section making it independent of further
deformation. Thus, when certain parts of a structure reach t h«~ yield
stress, thev maintain that stress while ot her le~~-hi~hlY-:-ltrt",~,'d p.ut .
deform until they, too, reach the yield condition. Siuc.: :dl «rit 1,:.\1 sec
tions eventually reach the yield condition, the aualv ... is is .:l.n~iderably

simplified because only this fact need be considered. It i" not of iut orest
how the stresses arc redistributed: we should only usc-rtain th.u thev
did. We arc thus freed from tho often laborious calcul.rtion- t h;..t l'i"ttl!'

from the necessity of considering the · continuity' (;dIH lit iou» t h.u ,l(c

essential to clastic analysis.
While clastic and plastic analysis were compared at t he outset in 1

from the design point of view, it is of .interest now, to compar« t hC~lt
as regards to the fundamental conditions satisfied by each,

Whatever method of plast ic an ..rlysis is used, it ~hl uild s.it isf v t he
following three conditions t hat mav he deduced from what has been ,~tid

in 1~:

a) Mochaniqm condit inn [ult irnate load is reached \VhlAll a. mech.r
nism Iorms),

b) Equilibrium condition (the structure must be ill equilibruuu},
and

c) Plastic moment condition (the moment may nowhere LJt~ gre.iter
than MfJ).

+9 
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Equilibrium condition
bJ StQtic~ fEquilibrium) Method-scti~fits

Actually these conditions are similar to those in elastic analysis which
requires a consideration of the cotltinuity, the IqUtlibritfm and the limiU..g
st,ss, conditions. The similarity is demonstrated in Fig. 26. With
regard to continuity, in plastic analysis, the situation is just the reverse.
Theoretically, plastic hinges interrupt continuity, so the requirement
is that sufficient plastic hinges form to allow the structure (or part of it)
to deform as a mechanism. This could be termed a mechanism condi
tion. The equiZwnu,m condition is the same, namely, the load should
be supported. Instead of initial yield, the limit ' of usefulness is the
attainment of plastic hinge moments, not only at one cross-section but
at each of the critical sections; this will be termed a plastic moment
condition.

As will be discussed further, t\VO useful methods of analysis take
their name from the particular conditions being satisfied:

Mechanical condition

Plastic moment
condition

In the first method, a mechanism is assumed and the resulting equilibrium
equations are solved for the ultimate load. This value is only correct
if the plastic moment condition is .also satisfied. On the other hand, in
the statical or 'equilibrium' method, an equilibrium moment diagram
is drawn such that M ~ MI'. The resulting ultimate load is onlv
the correct value if sufficient plastic hinges were assumed to create a
mechanism.

Q) Mechanical Method ----satis'i.s

£lASi,C At4;'l'SiS O. A~TI" .l~~At ,SiS, ... -eJ. tv

'~t
CONTINUITY MI,CHANISM ~

,ruUp .
(~)EQUILIBRIUM

LESS THAN My
PLASTIC

~
r<: YIELD
V~My

MOMENT

FI(;, 26 CONDITIONS FOR ELASTIC AND PLASTIC ANALYSIS
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. Having considered these three necessary and sufficient conditions,
it will next be of interest to examine certain additional principles and
assumptions upon which the plastic methods rest. Although the plastic
design procedures do not require a direct use of these principles (or
assumptions) they will be stated for background purposes.

a) Virtual Displacements

The principle of virtual displacements is as follows'":
If a system of forces in equilibrium is subjected to a virtual

displacement, the work done by the external forces equals the
work done by the internal: forces..

This is simply a means of expressing an equilibrium condition. If the
internal work is called lVI and the external work is called W E- we may
write :

li'E=W,
Application of this equation "rill he demonstrated in 18.

••.(25)

b) Upper and Lower Bound Theorems

It is not ~cneral1y possible to solve all three of the necessary oondi
tions (mechanism, equilibrium and plastic moment) in. one operation.
Although the Equilibrium condition will always be satisfied, a solution
arrived at on the basis of an assumed mechanism will give a load-carrying
capacitv that is either correct or too high. On the other hand, one that
is arrived at by drawing a statical moment diagram that docs not violate
the plastic moment condition will either he correct or too lots. ".. Thus,
depending on how the problem is solved, we will obtain an upper t limit '
or ' bOUJu!' below which the correct answer should certainly lie, or we
will determine a lower C limit' or "bound ' which is certainly less than
the true load ettpacity· ..

The important \\}lper and lower bound theorems or principles were
proved by Greenberg and Prager, When both theorems have been
satisfied in any given problem, then the solution is in fact the correct
one. Tho two Ilrinclplcs will' now be stated and illustrated.

Upper Bound Theorem - A load computed on the basis of an
assumed mechanism will always' he greater than or at best equal
to the true ultimate load.

Consider the fixed-ended beam in Fig. 27(A). If we assume a mecha
nism on the basis of a guess that the plastic hinge in the beam forms at

*Refcrencc 21 contains an excellent discusaion of the principle of virtual dis
placementa.
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A 8 C " 0

J"" IIII"~

27A Upper Bound Theorem

, 11.1 1 1'1 11111

278 Lower Bound Theorem

FIG. 27 UPPER AND LOWER BOUND THEOREMS

B J then the equilibrium moment diagram would be as shown by the solid
line in Fig. 27(A). The beam would have to be reinforced over the length
BB' to carry the' trial' load, W,: the load is too great. Only when the
mechanism is selected such that the plastic moment value is nowhere
exceeded (see the dotted lines) is the correct [lowest] value obtained.

Lower Bound Theorem - A load computed on the basis of an
assumed equilibrium moment diagram in which the moments are
not. greater than M I' is less than or at best equal to the true
ultimate load.

Illustrating with the fixed-ended beam of Fig. 27(B), if we select the
redundants such that the moment is never greater than M t~ then the
corresponding trial load, W" rnay be Jess than W." [Fig. 27(B)]. We
have not used the full load capacity of the beam because the centre line
moment is, less than M,_ Only when tho load is. increased to the stage
where a mechanism is formed (dotted) will the correct value be obtained,

Thus, if the problem is approached from the point of view of assum
ing a mechanism, an upper bound to the correct load will be obtained.
But this could violate the plastic moment condition. On the other hand,
if we approach it from the aspect of making arbitrary assumptions as
to the moment diagram, then the load might not be -sufficiently great to
create a mechanism.

Incidentally, Fig. 27(B) demonstrates that conventional ,(elastic)
design is a I lower bound' solution. This is the explanation as to why
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the ' local yielding' involved in many of our current design assumptions
has not resulted in unsafe structures.

It is seen, then, that the I statical (equilibrium)' method of analysis
is based on the lower bound principle. The mechanism method, on the
other hand, represents an upper limit to the true ultimate load.

c) Further Assumptions - In addition to the assumptions of 11
the following further assumptions arc necessary:

a) The theory considers only first order deformations, The defor
mations art assumed to bo sufficiently small such that equilibrium
conditions can be formulated for the undcformed structure (just
as in the case of clastic analysis).

b) Instabilit v of the structure will 110t occur prior to the attainment
of the ultimate load (this is assured through attention to secon..
dary design considerations).

c) The COIUIL'Ctions provide full continuity such that the plastic
moment, ~fp, can be transmitted (see Section E).

d) The influence of normal and shearing forces' Oil tilt: plastic
moment, Mil, are neglected (st:«: Section E fur necessary
modifications). \

c) The loading is proportional, that is, all ln.uls arc such that they
increase in fixed proportions to one another. However, indc
pendent .increase can be allowed, provided 110 local failure occurs
(see,. Section- E for repeated loading).

With tli~ ·l)rillcii~h..~ of Virtual Displaceumnts, the Upper and Lower
Bound Theorems, and the additjonnl assumptions noted above, it is now
possible to consider the various methods of analysis,

17. STATICAL METI-IOD OIl' ANALYSIS

17.1 As noted in 16, the C statical' method uf analvsis is based on the
Lower Bound Principle, The procedure is first described and then several
examples arc solved.

17.2 Method of Analysis by Statical Method - By the Iollowing
procedure fun1 &LIl equilibrium moment diaa.granl in which M ~ ~IJ1 such
t hat a mechanism is formed:

a) -Select redundant [s),
b) Draw moment diagram for determinate structure,
c) Draw moment diagram for structure loaded by redundant (s),
d)' Sketch composite moment diagram ill such a way that a mecha

nism ill formed (~ketd1 mucballi:ml),
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e) Compute value of"ultimate load by solving equilibrium equation,
and

f) Check to see that M ~M,.

E~ampZs 1:

Ft%Id-mtUd, uniformly IotuUl beam, Fig. 2S
(ind8termtnatl to slCOnll tUcree)

The problem (already treated in 15) is to find the ultimate load,
W t" that a beam of moment capacity MI' will support. For redun
dants, one could select the enp moments. The resulting moment
diagram for the determinate structure would be the solid parabola
in Fig. 25, with:

W.L
M. = -8- ...(26)

The moment diagram for the structure loaded by the redundants
would be a uniform moment along the beam.

The composite moment diagram is actually what has been
sketched In Fig. 2S since, we can immediately see that a hinge must
also form at point 2. Notice that if the I fixing line' had been drawn

in any' other position than that which divides M. = W8~ in half.

then no mechanism would have been formed. The correct mecha
nism is sketched in the lower portidn and M = M I' at the locations
of maximum moment.

The equilibrium equation, from Fig. 25 (at location 2), is:

W.L M M-8-= ,+ ,
and the ultimate load is given by:

W. ~ 16~ ( )L ... 27

Eumpu 2:

Two-spa,. coMfIfMHU bItmI, F'g. 28
(i~""," W..fi," tUV-)

The redundant is selected as the moment at Cl/4,). The
resultant loadings are shown in Fig. 28(a) and 28tb). ,

Moment diagrams due to loads and redundanH, are shown in
Fig. 28(c) and 28(d).  
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STRUCTURE

b) REDUNDANT LOADING ti

c) MOMENT DIAGRAM DUE TO
DETERMINATE LOADING

A

d) MOMENT DIAGRAM DUE TO
REDUNDANT LOADING

t) COMPOSITE MOMENT
DIAGRAM

f) MECHANSM

FIG. ·28 PLASTIC ANALYSIS OF TWO-SPAN CONTINUOUS BEAM
(STATICAL METHOD)

The composite moment diagram is sketched in Fig. 28(e) in sucb
a way that the necessary mechanism is formed, Fig. .2i(f). with
maximum moments, M" at locations B, C and D.
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The equilibrium equation is obtained by summing the moments
at location B:

PL·--t- =z MIJ+MpI2

6MI'
P; ~ -L ... (28)

Since all three of the necessary conditions arc satisfied (Mechanism,
Equilibrium, and Plastic Monlent), this is the correct answer. Further
examples of the use of this method arc given in Section F, Design
Examples 1, 2, 4 and 6.

18. MECHANISM METHOD OF ANALYSIS

18.1 General Procedure - As the number of redundants increases, the
number 'of possible failure mechanisms also increases. Thus it may be..
come more difficult to construct the correct equilibrium moment diagram.
For such cases the mechanism method of plastic analysis may be used
to find various 'upper bounds'. The correct mechanism will be the one
which results in the lowest possible load (upper bound theorem) and
for which the moment does not exceed the plastic moment at any
section of the structure (lower bound theorem), Thus the objective is
to find a mechanism such that the plastic moment condition is not
violated.

The following, then, is the general procedure.

18.2 Method of Analysis by Mechanism Method - Find a mecha
nism (independent or composite) such that M = M,,:

a) determine location of possible plastic hinges (load points, con
nections, point of zero shear in a beam. span under distributed
load) ;

b) select possible independent and composite mechanisms;
c) solve equilibrium equation (virtual displacement method) for

the lowest load; and
d) check to see that M = M IJ at all sections.

Esamp18 3:

Recta_gula, Porlal P,a"", Fig. 29 .

Given a rectangular frame of uniform section whose plastic
moment capacity is M" what is the ultimate load it will carry?

I~ the frame shown in Fig. 29(a) locations of possible plastic hinges
are at locations 2t 3, 4. Now, in the previous examples there was
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T <!) 0 0 t

0 @
.) HI H!

NECH 1
b)

MECH 2

c)

P
2--..t!-4~-------.--

MECH 3
(1.2 )

d)

.)
Mp

FIG. 29 ltlECHANISM METHOD OF AN:\LYSlS ApPLIED TO A RECTANGULAR
PORTAL FRAME WITH PINNED IJAKs

only one possible failure mechanism. However, in this problem there
are several possibilities. 'E16mentary" or f independent' Mechanisms
1 and 2 correspond to the action of the different loads" whereas
Mechanism 3, Fig. 29(d), is a f composite" mechanism formed by
combination of Mechanisms 1 and 2 to eliminate a plastic hinge
at location 2. Which is the correct one? It is the one which results
in the lowest critical load p •.
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The method of virtual displacements may be used to compute the
critical load. After the ultimate load is reached, the frame is allowed
to move through a small additional displacement such as shown by ~

in Fig. 29(b). For equilibrium, the external work done by the loads as
thev move through small displacements shall equal the internal work
absorbed at each hinge as it rotates through a corresponding small angle,
or

II'F: = llPI

The following equations are obtained for the various mechanisms:
Mechani~nl 1: p~ = M,9+M,(28)+MI'9 ... (29)

(Beaul) PL8
-2-· = M,(48)

PI = 8~t •.. (30)

Mechanistn 2: p~
(Panel) 2 = ~1,(9+8) ... (31)

P L92" -2 = 2M, 8 (as h = L/2)

p.= 8M, (L ... 32)

p .
Mechanism 3: P~l+ 2~1 = MI'(28)+M,(28) •.. (33)

(Compositc)

P L9 +P L8 = 4}\.f118
2 2 2 r

) 16 u,
1 3 = -3- 2- = P....' ... ... (34)

The lowest value is P" which is, therefore the true ultimate load, P.,.
To make sure that some other possible mechanism was not over

looked it is necessary to check the plastic moment condition to see that
McM, at all sections. To do this the complete moment diagram is
drawn as shown in Fig. 29. the moment at location 2 is determined as
follows:
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Since the moment is nowhere greater than MI>' we have obtained the
correct answer and the problem is solved.

In Example 3, the virtual work equation was solved anew for the
, composite' mechanism. An alternate procedure for computing the
ultimate load for a composite mechanism is to add together the virtual
work equations for each mechanism in the combination, being careful
to subtract the internal work done in an elementary mechanism at any
hinges being eliminated by the combination. Using this procedure for
Example 3, there is obtained from the previous set of equations:

Mechanism

Mechanism 1:
(Beam)

Mechanism 2:
(Panel)

Virtual Work
Equation

~I~9 _ 4M~(J
2 - r

PL
4 8 = 2MI'8

BingA!) CancelUtl

-2M1>8
Mechanism 3:

[Composite] 3~L 6 = [6M tOJ
Pa= 16M,/3L

This is the same answer as obtained in Eq 34.

In the previous examples there were a sufficiently small number
of possible mechanism so that the combinations were almost obvious.
Further, the geometry in· the deformed position could be developed
with no difficulty. A number of guides and techniques will now be
discussed that are useful in solving more involved problems,

18.3 Types of .Mechanism - First of all, for convenience in referring
to different meCllanisms of structures given jn Fig. 30(a) there are the
following types which are illustrated in Fig. 30:

a) BeaM MecluJ"ism Fig. 30(b)
(Four examples are given here of the displacement of single
spans under load)

b) Pan" MISCMfJism . Fig. 30(c)
(This motion is due to side-swa y)

c) Gab" M,cMfftSm Fig. 30(d)
(This is a characteristic mechanism of gabled frames, involving
spreading of the column tops with respect to the bases)

d) Jot'" Mulla"ism Fig. 30(e)
(This 'independent mechanism forms at the junction ~f three
or more members and represents motion under the acnon of a
moment)

S9
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STRUCTURE

BEAM

,,

c)

d)

II

PANEl

GABLE

JOINt

"DEPENDENT
MECHANSE

FIG. 30 TYPES OF MECH~NISJlS
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. e) Composite Mechanism Fig. 30(0
(Various combinations of the independent mechanism may be
made, The one shown is a combination of 3 beam and a gable
mechanism)

18.3 Number. of Independent Mechanisms ---. If it were known in
advance how many independent mechanisms existed, then combinations
«oukl he made in a systematic manner and there would be less likelihood
of overlooking a possible combination. Fortunately, the following
simple procedure is availa ble for determining this.

If the number of possible plastic hinges is N and if the number of
redundancies is X, then the number of possible independent mechanism,
n, may be found from

n = N-X ... (35)

Thus, in Example 3 there arc 3 possible plastic hinges (locations 2, 3
and 4), the frame is indeterminate to the first degree, and, therefore,
there are two elementary mechanisms [Mechanisms 1 and 2).

This correlation is no coincidence beC41.USC each independent mecha
nism corresponds to t he action of a different loading system. Said in
another way, each mechanism corresponds to an independent equation
of equilibrium. In Example 3 Mechanism 1 corresponds to equilibrium
between applied vertical load and vertical shear. Mechanism 2 cortes
ponds to equilibrium between applied horizontal load (PI2) and hori
zontal shear in the two columns, These force systems are ' elementary'
or 'ind.~pcndcnt' anti hence the term.

Equation 3S may be seen in this way. For a determinate system, if a
plastic hinge develops, the structure becomes a mechanism. Thus;. for
each possible ptastic hinge there corresponds a mechanism; if there arc
en' possible plastic hinges, there will be ' n' mechanism [see Fig. 31(a)].
As we add redundants to the structure, we add a plastic hinge for each
redundant but do not change the number of mechanisms. Where the
member was free to deform beforehand (at a. ~ical hinge). it is now
restrained; however, the number of basic mechanisms remains unchanged
[sel Fig. 31(b) and 31 (c)]. Thus the number of possible plast ic hinges, N,
equ-Is the number of mechanisms n. plus the number of redundants,
X, or II ==(N-X).

18.4 Composite Mechanisms - Equation 3S is useful because it cnables
us to set out all the possible « elements • from which combinations may later
be made. These combinations arc to be made in such a way as to make
the external work a maximum or the internal work a minimum, since
by this means the lowest possible load, P, is obtained. Therefore, the

;I .61
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..--_~_.......l_......

Ca)

(b)

NS4}xs2

ns 2

(C)~

~
FIG. 31 EXAMPLES OF PROCEDURE POR DETERMINING THE

NUMBER OF MECHANISMS

procedure generally is to make combinations that involve mechanism
motion by as many loads as possible and the elimination or cancellation
of plastic Ising's - as was done in composite Mechanism 3 of Example 3.

18.5 Indetermlllacy - In order to determine the number of redun
dants, X, for use in Eq 3S it is merely necessary to cut sufficient supports
and structural members such that all loads are carried by simple beam
or cantilever action. The number of redundants is then equal to the
number of f!>rce& and moments required to restore continuity. (In
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Example 3, cutting the horizontal reaction at Section 5 -- supplying a
roller - creates simple beam action; thus X = 1).

18.6 Geometry of Mechanisms (Instnataneous Centres)- As will
later he evident, in cases involving sloping roofs [Fig. 30(f)1, computa
tion of the ~eometrical relationship of the displacement in" the direction
of the load as the structure moves through the mechanism may become
somewhat tedious. In such cases, the method of instantaneous centres
may be used, a term borrowed from mechanical engineering and the
consideration of Iinkages..

Although the U~~ of instantaneous centres was not needed in the
-SL'Jution of Example 3, consider its application to Mechanism 3 of this
problem [Fig. 29(d) and 14'ig. 32]. When the structure moves, Segment
1-2-3 pivots around the base at 1. Member 5-·4 pivots about Point s.
About what centre does Segment 3-4 move? The answer is obtained
by considering how the ends of the Segment move.

Point ... is constrained to move perpendicular to line 4-5 and thus
its centre of rotation (as part of Segment 3-4) must be somewhere alon:~

line 5-4 extended, }>oint--.3... on the other ha.nd moves about point 1
since it i~ a part of Segment t -2-3. Therefore it moves normal to line
1-3 and its centre of rotation as part of Segment 3-4 should -00 alon~ line
1-3 extended, Point 1 satisfies hoth conditions and therefore Segment
3-4 rotates about Point 1, that point being its ' instantaneous centre · of
rotation.

What are the 'kink angles ' at the plastic hingos ? The rotation
at both column bases is 8. The horizontal motion of Point 4 is thus
(6)(1,,/2). Since the Length 1-4 is also equal to L12, then the rotation

of 3-4 about 1 i!\ 8 i~i = 8. The total rotation at location 4, therefore,

equals 29 and that at 3 is also 28 since the Lengths 1-3 and 3-1 arc equal.

FIG. 32 LOCATION OF INSTANTANEOUS CENTRE FOR THE RECTANGULAR
FRAME MECHANISM OF FIG. 29
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What is the vertical motion of the load at Point 3? Since no hinge
forms in joint 2 it remains as a right angle and the rotation of 2-3 with
respect to the horizontal is also equal to o. The vertical motion is,
therefore, 8L/2. This answer for vertical displacement and that in the
previous paragraph for kink angles are identical, (,I course, to those
obtained in Example 3, Eq 33.

E:xample 4:

The suitable application of 'instantaneous centres' is to the
case of gabled frames. Consider, for example, the structure shown
in Fig. 33_ Assign the value 8 to the arbitrarily small rotation of

G)

A2.~ [1(,-uJ= ,..~

.c =~tfAl ....~I-_rr----- rr

4"

-f:
3l

l r'
/

/ (0

4l

FIG. 33 LOCATION OF INSTANTANEOUS CENTRE OF A GABLED FRAME
MECHANISM 
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member 6..7 about Point 7. Segment l-W will rotate about Point 1
an amount yet to be determined. To find" t he instantaneous centre
of Segment 3+6, find the common point about which both ·sntls
rotate. Point 6, being constrained to move normal to line '-6 will

.have its centre along that line. Similarly, the centre of 3 will be
along 1-3 extended. Thus Point 1 is located.

By geometry' the Length 1-7 is equal to (5L/4)(4)=5L, therefore,
6-1 = 4L. . Since the horizontal displacement of Point 6 is 9L, the
rotation at 1==814*. By similar triangles, the ratio of 3-1 to 1-3 is 3: 1.
Thus. the rotation at 1 is given by

!!.(~) = 38
4 1 4.

Kink angles anddisplacements in the direction of load may now be
computed. '-The rotation at 6 = 8+9/4 = (5/4)8. The rotation at
3 = 8/4+3/48 = 8. The displacements of the loads in the direction of
application are as follows:

Horizontal load: ~1=(3/4)(8)(L)

Left vertical load: ~2=(8/4)(3L) •••(35.)
Right vertical load: As=(B{4)(L)

The accuracy of the last two equations may be seen in two ways. If
the loads are imagined as hung from the dotted positions shown, then
it is evident that the vertical displacements are as shown above' and in
Fig. 33(a). Alternatively, working out the geometry on the basis .of
similar triangles as shown in Fig. 33(b), the vertical component, of tho
mechanism motion of Point 3 (for example) is equal to the rotation about
the appropriate instantaneous centre multiplied by the distance to
that centre, measured normal to the line of action. \

To complete the example the ultimate load for this mechanism is
given by: .

~C:L)+ 2PC:L) + 2P(8~) = M~ (8 + ~8) ...(3Sb)

(
Horizont"'al) ( Vert ical) (Vertical)(location)(location)

Load . Load L Load R 3 6

P = ~_ M; ... (3Sc)
If 11'L

Construction of tile moment diagram shows that the moment is nowhere
greater 'than M" so this is' the correct answer.

• -Note that the rotation at I is in general equal to t)le rotation at the column
b.- aaultiplled' bY the ratio of the diatancea 7..6 to 6·1.
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Precisely the same answer would have been obtained, of course,
had we worked out the deformation at the various joints through a
consideration of the frame geornetry in the deformed position. The
convenience of the use of 'instantaneous centres' should be evident,
however..

19. FURTHER CONSIDERATIONS

19.1 Further Methods of Analysis - In addition to the statical and
mechanism methods of analysis, there are additional techniques for
determining the ultimate load which a structure will support. Two
methods in particular are the 'method of inequalities 'II and a psuedo
, Moment Distribution Technique'lt,tl. In a great majority of cases,
however, recourse to those methods will not be necessary and, therefore,
no further discussion is presented here. The interested reader may see to
the indicated references.

19.2 Distributed Load - A slight modification of procedure is neces
sary in case the load is distributed. In the event that a mechanism
involves formation of a hinge within the beam that is (between supports)
the precise location of the hinge in the beam is not known in advance.

Take the case shown in Fig. 34 - a portion of a continuous beam
- in which the MI' values are as shown in the circles. If the load is
actually distributed along the member, then the correct value of the
ultimate load is obtained by determining the distance to the point of
maximum moment. The distance x can be computed by writing the
virtual work equation in terms of x and either minimizing the loads by
differenciation or by solving for x by making a few trials. Alternatively
s may be found by plotting the .uniform load parabola, A-B-C-D, from
the base line A-D. --

To illustrate the computations, from the mechanism of Fig. 34(b)
the virtual work Eq 2S gives:

W: 0- = 3M, 0(1+ LX X)+2M,OL
X

X

W 2M, (3'+ _3X 2X ) e

=X L-~X+L X

W= ~'(3+ L5~) ... ....(36)

-The external work for a mechaaiam under distributed load may eoaveDieDtIy
be written as the load/unit length times area swept duriq mecbaDiua motion. 111

\ X
tIda example • area '-(L) (8.-) (t/2); work .. ",L(9.)(1/2)-W '2'.
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.)

b) ~)

D

c)

d)

FIG. 34 POSITION OF HINGES IN BEAM WITH DISTRIBUTED LOAD
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Selecting values of x and solving for W, the value of x to give the mini.. ,
mum value is: .

% = O·44L
and

W = 31·3M, ... (37)
.. L

The graphical method was used in Fig. 34 and a value x = O·4SL
was obtained.

With errors that are usually slight, the analysis could be made on
the basis. that the distributed load is replaced by a set of equivalent
concentrated loads. Thus in Fig. 35, if the distributed load, UJL == P,
is concentrated in the various ways shown, the uniform load parabola
is always circumscribed (giving the same maximum shear). The result
is always conservative because the actual moment in the beam is always
less than or at most equal to the assumed moment. Of course, the more
concentrated loads assumed, the closer is the approximation to actuality.

~Wl.PJt I I I I I I I I"'D I I I I I I I I 12l,..

p p p
T T 3

FIG. 35 EFFECT OF REPLACING A DISTRIBUTED LoAD BY AN EgulvALB1fT
SET OP CONCENTRATED LOADS _
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Of course, if the distributed load is actually brought to the main
frame through purlins and girts, the uniform load may be converted, at
the outset, to actual purlin reactions (on the basis of assumed purUn
spacing). The analysis is then made on the basis of the actual concen
trated loads. The only difficulty with this procedure is that numerous
additional"possible plastic hinges are created - one at each purlin, And
for every possible hinge position there is another possible mechanism.
Of course, with experience the designer will be able to tell as to how
many of these mechanisms he should investigate.

19.J Moment Check - One of the conditions that a ' plastic' solution
must satisfy is that the moment is nowhere greater than' the plastic
moment (see 16). In the case of the Statical method (s" 17), there is
no particular problem, because the moment used in the equations equi
librium presumed M<MI'. However, in the mechanism method the
solution loads to an upper bound and it is consequently necessary to see
if the solution also satisfies equilibrium with M<Mt throughout the
frame. Otherwise it is possible to overlook a more favourable combi
nation of mechanisms which would have resulted in a lower load.

When the structure is dete,.minat8 ail ultimate load, the equations
of simple statics are all that are necessary to determine the moments in
all parts of the frame. However, when the structure is indeterminate
at ultimate load, an elastic analysis would be required to determine
precisely the moments in those segments that do not contain plastic hinges
at their ends. However, in solutions by plastic analysis, the p"e_ magni·
tude of moment at a section that remains elastic is not of interest. If
a mechanism has already been created, it is only necessary to _show that
moments elsewhere are not greater than MJ!~ As a result, approxi
mations may be used to find a possible equilibrium moment diagram.
If the plastic moment condition is met, then the solution satisfies the
lower bound principle, and the computed load should be the correct
value.

Prior to considering the partially indeterminate cases further, it
should be pointed out that a design which leads to such a condition (that
is, part of the structure indeterminate) is probably not the best desip.
The design objective is to make all of the structure perfonn as .ciently
as possible. If the frame is still Indeterminate at ultimate load. it shoUld
be obvious that it is possible to save material somewhere. the structure,
bringing moments up to their plastic values. What· this means is that
-simple statics will usually be adequate for making the C moment check ',
Iu a routine procedure it will not be required to carry out what would
otherwise be a more complicated checking operation, becauae a structure,
that turns out to be partially l'edundant would be redesigned for lighter
structure.
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Further examples of the moment check do not appear necessary
here for the determinate cases. Example i given in 18.1, and Design
Examples 5 and 7 given at the end of this handbook are illustrative.

The first step in the case of indeterminate structures is to check on
the redundancy. The following rule may be stated to indicate whether
or not the structure at failure is determinate.

If X = number of redundancies in the original structure, and
M = number of plastic hinges developed

Then I, the number of remaining redundancies, is given by

1 :=.: X --(M --1) ... (38)

In Fig. 36 are shown three continuous beams and a two span fixed
base frame. Equation 38 correctly indicates the number of remaining
redundants in Fig. 36(c) and 36(d). The structures are redundant at
failure..)

b)

c)

d) i j I I I

x =2
M =3
I = X- (M-1)=2.-2-0---(0 K)

x =1
M =2
I =X-(M-1)-1-1-0----(OK)

X =2
M =2
I =X-(M-1).2-1.,--~-·(OK)

x • 6 ~
M =3
J - X-eM-1)-' ------(OK)

FIG. 36 EXAMPLE OF PROCEDURE FOR DETERMINING THE NUMBER OF
RE)IAI~ING REDUNDANCIES IN A STRUCTURE
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If, now the frame is redundant, two methods arc convenient for
determining a possible equilibrium configuration. One is a ' trial and
error' method and the other: a 'moment-balancing' method. Where
there are only one or two remaining redundancies (try E(J 38), the' trial
and error' method is most suitable. Since this covers most ordinary
cases and since partial redundancy means inefficient design, the second
method will not be treated'. By the • trial and error' method, then,
values for the remaining , I' moments are guessed and the equilibriwn
equations solved for the remaining unknown.

Example 5:
Given a three-span continuous beam of uniform section, M"

and with concentrated loads in each span [Fig, 37). Assume that
the answer has been obtained on the basis of the assumed mecha
nism shown in Fig.' 37(b). For this case:

P _ 3M~· ( ).,- L ... 39

The remaining redundancies frOID Eq 38 are I =X -(M -1)== 2
-(2-1)= 1 (namely tile moment -at E).

The next step is to assume a value for this moment (say M.=
M,). Solving the equilibrium equation for SPaJ1S CE and EG,

Me ME PL u, MfJ 3M1't
M D = 2+T+-T=-2-2+.

FIG. 31 MOMENT CBECK USING THE • TRIAL AND ERROR' METHOD

·5" Eq 28•
. tS" Eq 29.

71 



8P:6(6) -1972

M
MD==-~...
M

F==,M
s+MG+l'SPL ==_M~+2M/

2 2 .. 2 8'

M _ 5M;
B-+ 8

The resulting moment diagram is shown by the dotted lines. Since

M <.M, throughout, the trial solution is correct and p .. :::: 3~,.
Quite evidently, more efficient use of material would result if the
aesign were revised to supply only the ,equi,ed plastic moment for
each span. I

In summary, this section has presented the basis for and the
techniques of two methods of plastic analysis: the ' statical' and
the 'mechanism' methods. Application to design will he discussed
next in Section E, followed by design examples in Section F.

Eumpu 6:
The t trial and error' method of making the moment check will

be further illustrated for the frame shown in Fig. 38. Assuming
that mechanisms 8-9-10 is the one to form, the ultimate load is
given by:

p ..=4MII
L

The remaining redundancies from this equation are
1 = X-(M-l)= 6-(3-1)== 4-

which shows that it is not possible to obtain four moments b,
statics. (There are a total of 7 unknown moments for which only
3 independent equilibrium equations are available).

The next step is to make a • guess' as to the magnitude ol
moment at 4 hinge locations, and then to solve for the rem~
values. If M = Ml' then the correct mechanism (and p.-value)
has been determined. The following • trial I values are taken, usin8
the sign conventions that the moment is positive if tension occurs
on the 'dotted' side of the member:

M,=-M,
M.==-M,
M.==+M,
M.=-+,M,

... Eq 29.
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••c 2L ......--~

,
...... ;;:---'---1: 8

I I'I .
I I
I ,

I 'I I
I I
• . '2

2P

FIG. 38 MOMENT CHECK USING C TRIAL AND ERROR' METHOD

For span 4-6

'I (M)2 4-'
M, = ~& ;. ~. + ~L ==~ _ ~P + :
M,=-MI'+2MI'==+M,

For joint 6-7-8
M.== Me-M,== 0
M,== M.-M.--M,+M,,== 0

From the sway equilibrium equation.
M1-M.-M.-Mt,+M,+M10+PL == 0

Ml =" M,+M,-M,+O+M,- (4~')(L)
M1--2Jl.
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Since MI>M" the plastic moment condition is violated and
an incorrect assumption was made. The moment diagram based
on the above calculation is shown in Fig. 38.

Example 7:

A moment check for the 2-storey, 2-span structure shown in
Fig. 39 will now be made. The' trial and error' method will again
be employed. The plastic analysis gives:

2M~
P"=-L---

It is not possible to determine the number of redundants for
this frame by Eq 38 because that relationship does not apply when
• simultaneous' mechanisms occur. We can, however, determine
the - number of redundants for this special case by noting that
the number of remaining redundancies is equal to the number of
remaining unknown moments minus the number of independent
equilibrium equations (number of mechanisms) that were not used
in the analysis.

The number of unknown moments is 10 (Ml , M I , M., u; M I , M I ,

MIG' MIa, MIl' M I , ) · Out of the 10 original equilibrium equations,
4 have been used. Thus, the frame is redundant to the fourth
'degree. Accordingly, it should be possible to solve for the remain
ing moments by assuming the value of four of the unknowns.

Assume M t t=+MI'

M,
M'=+T

MI'
M·=--Z
M,=O

For joint 18-19-20
M11- lt!JO- lt!jl= 0
Ml t = MJ1-M..=-M,+M,= 0.•..OK

For joint 13-14-15
Mlt+MII-MII= 0
M u == M 11+M1t==-M,+M,= 0•.•• OK

For joint 8-11
M.+M,-:;-M10-M11= 0
M.-M10-M11-M.=-M,+M,= 0
M.= M 18

/'
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FIG. 39 MOMENT CHECK USING 'TRIAL AND' ERROR' MaTBOD lOa
TWO-STOREY TWO-SPAN STRUCTURE

For joint 4-6
M,-M.-M.== 0

u, -~
M,== M.+M.== 2 -M,1a -2 .... OK.

From the sway equation for the top storey
M1-M.-M"1&-M1.+Mu+M..== 0
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Mil
M.= Ma-Mla-Ml.+Ml.+Mn== T -MI'+M,+O-M,

-M
M·=T···· OK

-MilThus from Eq(a), M10 = -2-- ....OK

From the sway equation for the bottom storey

Ml-MI-Ma-M,+MIO+Mli = 0
M1= M.+Ma+M,-MIO-Mll

Mil M, MI'
= 0+ 2- - T +T -0

=+~p ....OK

The final moment diagram is shown in Fig. 39 and it is evident that
M ~M, throughout.. Therefore the ultimate load is, in fact, equal

to 2~.1.
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SECTION E

18. GENERAL

».1 Thus 'far the methods of plastic analysis have been presented.
The purpose of this section is to consider certain features involved in
the application of these methods to actual design. A question that
arises first concerns the relative strength of the different members. Next,
a discussion of the general design procedure will outline the steps involved
in a plastic desig:'..

Finally, the principle content of this section will concern the' secon
dary design considerations'. In arriving at the plastic methods of
structural analysis certain assumptions were made with regard to the
effect of axial force, shear, buckling, etc. Unless attention is given to
such factors, the structure may not perform its intended function due to
, premature I failure.

21. PRELIMINARY DESIGN

21.1 On what basis is the first choice of relative plastic moment values
made? In the various examples used to illustrate methods of analysis,
the problem was to find the ultimate load for a given structure with
known plastic moment values of its members. In design, the problem
is reversed. Given a certain set of loads the problem is to select suitable
members. Since' uniform section throughout J may not be the most
economical Solution, some guide is needed for selecting ,the ratio or ratios
of plastic moment strength of the various members.

~

21.1 Of course, this problem exists in elastic design, so it is not a matter
that is unique to design on the basis of ultimate load. However, a few
simple techniques will occur to the designer which, coupled with his
experience, will enable him to make a preliminary economic choice of
relative moment strength without too many trials. Some general prin
ciples are as follows: .

a) In' the event the critical mechanism is an "indepeadent ' one,
the rest of the material in the frame is not being used to full
capacity. This suggests that a more efficient choice of moment
r,atios may be made such that the critical mechanism is a ' com
posite mechanism' involving plastic hinges in several different
members.
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b) Adjacent spans of continuous beams will often be most economi
cally proportioned when the independent mechanisms for each
span form simultaneously. This is illustrated in Design Example
2. Numerous examples of the design of continuous beams are
given in Ref 26.

c) The formation of mechanisms simultaneously in different spans
of continuous beams or the creation of composite mechanisms
will not necessarily result in minimum weight. Examination
of alternate possibilities is desirable. Often it will be found that
the span involving the greatest determinate moment (M.) should
be given tliegreatest possible restraint (generally by supply equi
valent Z of adjoining members). Thus the best design in this
instance will usually result .when the solution commences with
uniform section for both the rafter and the stanchion. Design
Example 7 illustrates this.

d) The absolute minimum beam section for vertical load is obtained
if the joints provide complete plastic restraint (that is, restrain
ing members supply a restraining plastic moment equal to that
of the beam). Similarly, the minimum column sections are
obtained under the action of sway forces when ends are subject to
complete plastic restraint. This. therefore, suggests that, if the
important loads are the vertical loads, the design. might well be
commenced on the basis that-all joints are restrained as described,
the ratio of beam sections be determined on this basis, and that
the columns be proportioned to provide the needed joint moment
balance and resistance to side loadl • • Design Example 7

. is an illustration of this. Alternatively. if the important loads
were side loads, the design could start, instead, with the
columns. . ·

e) Finally, it should be kept in mind that maximum overall eco
nomy is not necessarily associated with the most etlicient choice
of section for each span. It is necessary to consider fabrication
conditions which may dictate uniform section where, theoreti
cally, sections of different weight might be used.

ft ".

:11. GENERAL DESIGN PROCEDUItE

]1.1 Although there will be variations as to specific procedure and detail.
tbe following six steps will be a part of practically every design:

a) Determine possib~e loading conditions,
b) Compute the ultimate load(s),
c) Estimate the plastic moment ratios of frame members,
cl) Analyse each JoadiDc condition for m~mum M"
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e) Select the section, and
f) Check the result according to ' secondary design rules'.

These steps will now be discussed briefly.
The design commences with a determination of the possible loadinl

conditions. There is no change here from conventional practice, except
that at this stage it is decided whether to treat distributed loads as such
or to consider them CJ.S concentrated (5" 19).

The step (b), 'compute the ultimate load', re\lresents a departure
from conventional methods. The loads determined In (a) are multiplied
by the appropriate load factor to assure the needed margin of safety.
This load factor is selected in such a way that the real factor of safety
for any structure is at least as great as that afforded in the conventional
design of a simple beam. In the latter case, F is equal to the conventional
, factor of safety' (1·65) multiplied by the shape factor, f. As .already
noted, this shape factor varies for different WF· beams from about 1·09
to about 1·23. The average for all shapes is 1·14 and the most common
value is 1·12. The actual load factor selected thus depends upon the
concept of safety; that is, if the present design of a beam with the smallest
shape factor (1·09) is satisfactory, then a load factor of (1·65) (1·09)= 1·~O

would be adequate. Alternatively, average values may be preferable.
The following table summarizes the possibilities:

Factlw of Saj,ty· Shape Facto" Load Factor

1·65 1·09 1·S0
1·65 1·12 1·8~

1·65 1·14 i- 88
1·65 1·23 2·03

The value 1·85 is selected instead of 1-88 because wide flange shapes with
a factor of 1·12 occur more frequently and, further, the number 1·88
implies an -lccuracy in our knowledge of safety that is not justified. In
the case of wind, earthquake, and otl,er forces, specifications normally
aUow a one-third increase in stresses. Following this same philosophy
the value of F 1or,_ combined dead, live. and wind loading would be .3/4X
l·SS == 1-40. In'. summary, then, the load factors are:

Dead load plus live load, F = 1-85}
Dead load plus live load, F == 1-40 •.-(40)

plus wind, earthquake,
or other forces

Aa was suggested above, the load factor of safety should be selected
in lOch a way tllat an indetemlinate structure is as safe as a simple beam

--YIeld ... divided by worldq etreII In 8uure.
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dellped elastically~ There is certainly no point' in making a riaid
atructure any mor« safe. There is no departure "from present practice
insofar as the necessary or minimum factor of safety. Plastic design
simply makes it psssible to design structures with a more nearly constant
factor of safety, no matter what the loading and geometry.

The load factor of a safetr of a simple beam according to elastic
design is equal' to the ratio 0 the ultimate load, PM' divided by the
working load, P"'. Since for a simple beam, the bending moment varies
linearly with the load, the expression for the load factor may be written
as:

P" MI'
F=p~ = M.

From Eq 16 and using the relationship, M", = GuS, the value of F may
be expressed as:

F - (J'YZ
-a,.5

from which

F = !!~f
G.

where ay is the yield stress level, and a", is the allowable or working
stress according to • elastic J specifications and f the shape factor. The
load factor is thus a function of the ratio between yield stress and
allowable stress and of the shape factor.

2320 -
According to IS: 800-1962* the ratio ay/o., is 1-5-00 = 1·55. The

average shape factor is 1·15. Thus:
F ~(1·55)(1·1S)= 1·78

A ,easonable figure for the load factor for gravity loads figured according
'to IS: 800-1962* is thus 1·8S.

Since section 11.1.1.1 of IS: 800-1962* permits, a one-third increase
in stresses when wind is acting, then the corresponding load factor for
plastic design may be taken as:

F.== 1·85 x3/4 = 1·40
It will be noted that the problems worked in the later portion of this
chapter are developed on the basis of Eq 40. The only effect of a change
in load factors to the values for use in designs according to .Indian Stan"
dard~ is that the required section sizes would be reduced somewhat.

-code of practice for use of structural steel in general building ~D.truCt1oD
(,,~. .
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,t .' TIle, Step (c~ is to ~ake an e~~itn~t,(~ ,of th.e l)l~tic Jnon~('nt ratio of
,_Jrftme me~t)ers~r;rrhi8(lla9J'bdendiSICb~~d In2~ll 11i!kKittille ttJw pro-
cedure would be as follows: '!I~J ',;,'1 ;l,i;.:~·r ".:)

A) Determine the absolute plastic moment v~aI'les,Jor'8opa"a,te~ading

conditions. (Assume that all joints are ftx~~J(~~i~\ I rotation,
I. _, r .but. fraplc free to sway.) For beams, solve beam mechanism

,'j':' .J, ,':·,.,cq.~ati~'.~a~4t·~~r·J~?\hl~tiS:; 'solve t'1l~ i)~t:t:~ l~i~chani~iW !~tidn.
J;' /,.1 J : •• 'The ·~cttta.t 'Secfiolf will be' gren:~et 'than dto ~ at ll~aast" equul lioi these
"':'"l ,)Q.lil~~~\(·:r .\.1 :l"~1 ,..,(,~,,;. """';',,:111 !,nl) 1,

";if;:;a~~~~)~plFGf'[p~~1.9p19.ID,C1Jt, ratios .p!>in&:tJi~',~M~~~I#ili~iif\,
... ; fi l , ( ' -a) I\B~rnt~.i.lJS~ ·,JAAiG l idqt~rmj.ncd ii~nr<",~tep,:~(~)., ";i: It! ,~.!.. j I

J

b) Colul1'inS~(" ,4t. lcotn.errr , cormectinns ':Mp(eol)m. M I'(bcam)·, ; ~

I' ~ ',I,'" :':~j\ JO~l1t!f: ~~ftPJ~'P rn.~iliJ?,~.¥n~~::;:., J I; . I' ,,: Of: 1,;:Ii 'i; ,,' .1
: ~We 'are 'ttlen ready to peebecd itotst(ap (<t).:'\ 'InlHOmc CnHUS it "ill be.dosin
;able prion itoJ final! 'selection of .sect ions! to {'~~'llliu<.··t the -framc-,,fot" .furtht~r

.~ccoJlO'inY"asl-,maf·be apparent Irom.a conb.idurutiun,of-'folntivd;,bJeom and
':$W8Y mOIDents.';'.l.d i';~l!"·,J. ' ., '!, ifll; i!,',. I' J .. ".1':::.:' I~ '/lj, r •

In the step (d) each loading conditiorris '~ntilyzcd.':ft)tr tlle maxirmim
re~~ir~.MI'. Eith~Ij,jh~te,st,\~,is:al.m,('thod ~.11) or t~lc.mechani~~ method

',:<~~' !of.' aJ\aT~l~ :~<t:r, ..~:' ~~,tld~ 'I Wla~~l1lit'HHY.!i t~]{~; sHi~pH1Wd'~JcM~""(:s
: I /~.f :~~~~'t:l' r~ .~~Y. '~e: ~~~ f~ltr ~.41~~~~~~r(l,': «~~)llt(~trle~~l ,c.pl~' J~ja(l~ ,C()~t!Jl
_\;~10~. ~or.J ~~~f(lrha.,~~,n~d, "r~hs :aI'S· (l(,,~v,,<1, (~\)It:<.~~,' t,"1 11: dl~ly ,Ul~erel\CC
" ,t~_t~, ~~~'~~11'~,~~e' ~al~s~s~:p~oc~~\tre~i'ot S~~l~j1'V J~ ~hat:,,~he IO,.es'
; .fatN,rr~(ii(}Yu .~~g.ht lI1:I~~e\~t er;' whcteas, ri6WIWe"ate"loo~ 'for the
:::~~~~~~ir~fP~sr.~:~-» a:})ds~ f6~;JsHe,~01gl'~hC'I~~i~~.
'j:; ..: Jtil~. stq, ,,(e),jl5! ;.t9 $~~ect the ,sectio,lj., the' fq\11:\~~~~),i, Cly~ is
I ·1,M_V~cldi'. fp~ j:~ IL~p,~ ~J1.Rl rS~cu~n'I'a~l~ct~a f from ;ui. \,CCOJ~~J}lY ~~~lp')Mr~q~erl

accor ng to Z-values. '

The S,l$P ,<,f) (and a most i~,lOlOf1rtant one) is to, check the design ,to
(...m ..t4at it lati~ ,.tlle~con~dc$gn cOJlsiderJJJ.iwls,~~.", maki11&a sure
~~.that:, _~rerliabire:~:.:la~e· does not "occur. This is~-the· '-subject oi'-°t;J1e
i:=-••iont::.1fhiC&·1 n•.','1OJldws in' ':.13'. : . I <,

~:D.-skcJN~~i~~ CONS~,RA'Tro~ ,r.--".,.,,,-,; . -~- ,,~ ... \, '

~ =·:--5ry~~:~P~~ti~~~t.~~}~ s~~~.~~~s.~~
This ~eo-·~~'ne81eftrsum~-as~1Utiarro~cc. shcar~ an ticKling. aud
yet the ~neer knaws'they age present' in most structures and he is
aceus~Jo taking"U,lJ.~ ,~t~rJlfcoun~,: -.lPose factors that arc neg
lected 01 rare not inclu<1eCim the 't SImple 1 ~ry (and for which revision
of that theory is sometimes needed) are the following: "

~ hy~ r ~~)1·.a~etio_ :~riChe~ fplutib '~~llt~(aJtial ' ~br'C1fj 1and (Ihdit' force);
t=;,':t')1!u'l .lld.XI', q~f. ~);'-:-J<1/::~11 4 1

; "i',tl').d:t .~(: .:L~~Lc .d/ t,
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b) Instability [local buckling, lateral buckling, column buck!ins);
c) Brittle fracture: .
d) Repeated loading; and
e) Deflections.

In addition, proper proportions of connections are needed in order that
the plastic moment will be developed. In the following paragraphs the
effect and characteristics of these factors will be indicated. Where
apropriate, the results of theoretical analysis and of tests will be indicated,
followed by a suggested ' rule' to serve as a guide for checking the suit
ability of the original design. Liberal reference is made to other sources
in order to condense this article as .much as possible.

It should be kept in mind that this situation is no different in
principle from that encountered in elastic design. The design should
always be checked for direct stress, shear, and so on. It simply means
that modifications or limitations in the form of 'rules of design' are
necessary as a guide to the suitability of a design based on the simple
theory that neglects these factors.

23.1 Influence of Axial Foree on the Pla.de Moment - The presence
of axial force tends to reduce the magnitude of the plastic moment.
However, the design procedure may be modified easily to account for
its influence because the important t plastic hinge' characteristic is still
rct.uncd. This influence has been discussed'. The stresss distribution
in =, beam at various stages of deformation caused by thrust and
moment is shown in Fig. 40. Due to the axial force, yielding on
the compression side proceeds that on I the tension side. Eventually
plastification occurs, but since part of the area must withstand the axial

o

ELAST':
LIMT

PARTIALLY PLASTIC COMPlETE
VIILD

FIG. 40 DISTI~IBUTJ()N OF STRESS AT VARIOUS STAGES OF YIBLDING :rOR
A MEMBER SUBJECTBD TO BENDING AND AxIA~ FORCES
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force, the stress block no longer divides the cross-section into equal
areas (as was the case of pure moment). Thus, as shown in Fig. 41 the
total stress distribution may be divided into two parts - a stress due to
axial load and a ,stress due to bending moment,

For the situation shown in Fig. 41 in which the neutral axis is in
the web. the axiallorce P is given by:

P = 2ayYofIJ •••(41)
where

a,,= the yield stress,
Yn= the distance from the mid-height to the neutral axis, and
w = the web thickness.
The bending moment M f't is given by the following expression and

represents the plastic hinge moment modified to include the effect of
axial compression:

M,... = ay (Z-U1>'~) , ... (42)
where

Z = the plastic modulus. By substituting the value of yn obtained
from Eq 41 into Eq 43, the bending moment may be expressed as a
function of tho axial force P, or

pi
Mpr. = M"-4 - ... (43)

a~w

By the same process, an expression for M 1" as a function of P could be
determined when the neutral axis is in the flange instead of the web.

+

TOTAL STR!SS _ STRESS OIJE TO + STRESS DUE TO
DISTRIBUTION P M

~) (~ (~

FIG. 41 REPRESENTATION OF STRESS DuE TO AxIAL FORCE AND DUE TO
B••DING MOMENT FOR A COMPLETELY PLASTIC CROSS-SBCTION $UBJECTBD

TO BENDING AND AXIAL FORCES
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The resulting equation for a wide flange shape is:

...(44)

For a wide flange section the C interaction' curve that results from
this analysis is shown in Fig. 42. When the axial force is zero, M = M /I_
When the axial force reaches the value P = .yA. then the moment capa
city is zero. Between these limits the relationship is computed as
described and the desired influence of axial force on the plastic moment has
thus been obtained.

In design, in .order to account for the influence of direct stress either
curves such as Fig. 42 could be used, or since most wide flange shapes
h:avc a similar cu~ve (W~lC~l plotted on a non-dimensional ba.~is)g the
simple approximation of'·Flg.. 43 could be used.

Summarizing. the following C d(\~ign rule' may be stated:

Rules for Beams

Rule 1 Axial Force - Neglect the effect of axial force on the
plastic moment unless P>O·15Py• If P is greater than lS percent of P,
the modified plastic moment is given by:

Mp, = 1·18 (l-~)Mp ...(45)

p

Py

1
p

~

\;

", ,
-,

"
" , , ,,

p
-:..... ,~. -

.: }

Mo .. My ~P : t ,_" " 1;'j-fT\ ff H _;), -i
FIG. 42 INTERACTIO~ CURVE FOR A WlfjB'::n~JtB.AKI.M3a

 



"",
" "-

"-

.; - - - ~~ - ~----~E
I r', I

, "I, ,
M ---- .

APPROXIMATtQNZ,,:Z T(~.O-85)
y

1" t

O'--.-l-- --'-.--I~.a.--'---......--.............-

o ,;.:: :.~::~; .:O~:~ .~~.•. .. .:': ,~_1•.~... ._, " . . .
. -_.-.- .....\~ .'- .

FIG.', 43 DESIGN APPROXI}fATIO~' FOR LOA~;r 'f)' 1\1<?-"tNt
. INTRRACTION CU'}{VE . _~-~~ I:: - i-' .:

The required design value "ot Z·· for a member is....defermliied· by multi
plying the value of Z found in the initial design by-the ratio M,,/M,.
or 4P

O·SSZ·
Zrlf = I-P/~ .•.(46)

An illustrational theuse of this ' rule • is given in Ds~.iin ExampJ~.~I~"

, '~~~~on ~~~~~ay also !~ cxl\f~ed in ~liel forf1i:. ," )f-":
,::~.- _. Ii{: ~r:.~ ..~M~ .-'';-. pt··, ~ 't,: .":. . .
.. , ';,;.;' "'I ISM- +R- .. 1 ~ -.1 ••• t -'. ~.......: ~i •• (4Sa)

I l '~J '''; • ~ >:.: J \: r·.~~J ~;c( L:, .:.:'.;::::
• ActuaUy this gi\~e8 a value ~ of Z tl.\at is too great. ~s illustrated by the

upper portion of Fig. 43, the PIP" ratio will be less in the re-design and thus the reduc
tioD in M, wilP be lti&8 than first. coJUputed. The cquatzon
}1:'·J~LJ.l'l-"i'.:·\ l ... ~ .'(J~I'·~·le..Il!~(~T~JP,rt:.0·")J·f., ''f0.j .~~ ...r .... ,.... t·····(.7)
i, an approxbn,tJ.~.toAUOu.a't~·~J: 'thi~l~tc :.f~'I!y' ~~.lq~' ~~'i~at~ ~trunedr in the
firat deailn. The final &electiun shoukl bo checked by Tho usc of~\f·4&.

~~
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Depending on the particular problem and approach the. designer wishes
to 'use, either Eq 45, 4Sa Q~ 47 whichever is appropriate as explained
below:

a) Equation 45 is appropriate if one wants to know the magnitude
of moment that a given shape will transmit in the presence of
axial force P.

b) Equation 47 is suitable jf the problem is to obtain the required
plastic modulus for P/P,>O·lS in one step without trial and
error procedures.

c) Equation 4Sa gives the condition that should be satisfied at a
given cross-section and intimates a 'cut .and- try J procedure,
The precautions of Rules RS to R8 should be borne in mind,

23.2 The In.ueace 'of Shear I'orce - The effect of shear force is some
what similar to that of axial force - it reduces the magnitude of the
plastic moment. .Two possibilities of premature 'failure J due to the
presence of shear exist:

a) General shear yield of the web uta)' occur ill the presence of high
shear-to-moment ratios, (sections at A and B of Fig. 44).

V

a

c 8 A

A e .e
FIG. 44 SHEAR AND FLEXURAL STRESS DISTRIBUTION IN A CANTILEVER

BBAM THAT HAS PARTIALLY YIELDSD 1M BENDJNG"
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b) After the beam has become partially plastic at a critical section
due to ftexural yielding, the intensity of shear stress at the centre
line may reach the yield condition (section at C of Fig. 44)12",.

Recent studies have shown that for structural steel with marked strain
hardening properties, behaviour - b ' need not be considered and it is
only necessary to guard against the possibility of complete shear yielding
of the web. .

For case (a) the maximum possible shear as given by:
V = T,.A. ...(48)

T fJ'Y ., = v3 and A.= ",(d-2'), theu

V = <1,_ w(d-2t)
'\13

Sinee for wide flange shapes d dit = t·05, and using 0" = 2 520 kg/em'

then the following design guide may be formulated:
I

Rule 1 Shear Force - The maximum allowable shear force (in kg)
in a beam at ultimate load is to be computed from:

V... · 1 265_ ... (49)
where

fI1 = web thickness in em and tl is the section depth in CQl.

13.3 Local Buckllna of Plaalles and Webs - As a wide flange beam
is strained beyond the elastic limIt eventually the flange or the web will
buckle. Although stocky sections could be expected to retain their
cross-sectional form through considerable plastic strain, with thin sec
tions local buckling might occur soon after the plastic moment was first
reached. nue to failure of a beam to retain Its cross-sectional shape,
the moment capacity would drop off; thus the rotation capacity would
be inadequate. Therefore, in order to meet .the requirements of deform
ation capacity (adequate rotation at MiJ values) compression elements
should have width-thickness ratios adequate to insure against premature
plastic buckling.

A solution to this complicated plate buckling problem has been
achieved by requiring that the section will exhibit a rotation capacity
that corresponds to a compression strain equal to the straiu-harc'ening
value. c., (Fig. 2). At this point the material properties may be more

. accurately and specifically defined than in the region between E, and «".
nee result of this analysis for flanges of wide flange shapes is shown;

in FiI. 45 tosether with the results of tests. From these curves and
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,'" ~ 1", ~~tf'" .-~~.~~'r~~.~·i" ·lh.i~~·e; b '\8 ~ '-om te~~io~' .elements, ;t'hat .; I""wd

1l) ' ~' l"~." ~~,;ee•• ,,~ 'J.'mf""",,·,'1'lPr~ ",I _\' ,f ..... , WQ,
be rr: "b~eetOO) 'to'~,r' ti: ., dh- I.: and' ..~., ' e' rotation' uilder ultim&f'
loaJ~g~ s~MfW;i\t& ~t~~lh1ch~' rati~"~~n;a.ter tii3.ii· the toliO~mg:~

Flanges of rolled shapes and flange plates 'of similar built-up
.. "s4~pes, 17; .for, rolledshapes .an .upward variation of, 3 percent may
L' : • ,~~~Ql~~t~d.. .The thickness of ,sloping flanges may be taken as
L'LI'J.thel~ a~ex:~e thickness,
f,'- Stiffeners and .'that . portion of flange" plates in box-sections and
:-"l:COvet" plM;te!firl~Irideabetween the' free edge and the first' longitudinal
, ... ·row ,of'f,ivets or. connecting welds; 8-5•.
• , I:. That' .portion 'of lIahge" plates in 'box-sections and' cover plates

included between .longitudinal lines of rivets or connecting welds, 32.
The width-thickness ratio of beam and girder webs subjected to

plastic bending without, axial, loading shall .not exceed 'O.L The- width-
thickness ratio for the Web of -bearns, girders' and columns designed f~r
combined» axial. force andl plastic j 'bending mo mentr ,atl ultimate loading,
shall be limited by the following formula but need not be less than 40:

• ~_L ;!'"
tl' P ,~ I"

W E; 70-1OOp, ',' .:' , , \ C I •• ( ... :;(~,O)
In./~ef;:l7.. is·treat,ed the·inftuence of, axial forceon.web buckling, Based
~~~1~J:1A~::m~~~;~~~, ~fl~9u~cy .of ~~:(~"m,~ be showrrapproximately,

\ I Stiffening would be used where the requirements of Rule 3 were not
met. Fortunately, nearly all Indian Standard beam section (s" IS:
8,Q~~19~~l,!f\f~~,~t~~~ ~llthis ,~,g~d, fo,: P/~,< 0·.15. ' ,

" '.' J.... ,_ '"

23.4 Lateral Bucklln'a'~Tire' effect 'of' 'lateral buckling is much like
that ~f local bu.~kling. In f~~~, in m~~ tests the. t~o frequen~ly. occur
slrnuJtaneoutb'. The problem of speclfYlnr the critical length ~f beam
such that premature lateral buckling wil ,,!be, .prevented has ..no~"be~
completely solved. Currently, studies .arcvbelng made somewhat along
the lines of those which proved to be successful in the case of local buck
ling.:,- Although .~hiS',~t~dy is not yet finished the results of tests and
~MJ~~ l¥>' .d~~J tp~qy~,·v ,,,~~ ; P~~f,nt.) ~;,4anG~ JOT .the. 4esign~f·,"~:T~,~
pr~~H;m,t~ ;~~f \ ~ec,'~; :R~CW& -;~eqJUJ;~rnents, to p{~\I;~n~r de(QIlWJ.tjQn_·.·~put
of the plane of the frame. .
.." ":~ieldih Il:'markear" redu "~" the':tesist; ccp~ a' m~t~',. r ·j,o ~lateral
~kling~,t .'H&etfirell~r~Mg1:tll'r~ITedrt~a a:t'otl*lIe ,- .'rilifit'wlUdl
pltmtl~:)f\~hg~ tire ~~ed"ll,r~~fflredi~t~!~ef~ni!tb~taitital·.~ectipn.:
toft~ttotiilt ItUtes'·1WritY1f1;e r 1fbUBwetl ['fu 'prot~tl ~st': el~i~' Jiitemi
buckling. In the event that consideration of the moment diagram
ttr,i11",·t'Jfzer', ,-,'r'f,);.,,' f';·f/l'~'~·' "i f"'lla~! I, ~ ttl'. • ••. .• ~

.Sllecjftca~ion for .rolled '~teel beams, channel and angle sections' ('ttfiserl)~i~'··n{.) 
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reveals that a considerable length of a beam is strained beyond the
elastic limit (such as in a region of pure moment) then additionallateraJ sup
port at ~uch a hinge may be required. The following guide may be used:

, The maximum laterally unsupported length of members
designed on the basis of ultimate loading need not be less than that
which would be permitted for the same members designed under
the provisions of IS: 800-1962* except at plastic hinge locations
associated with the failure mechanism. Furthermore, the following
provisions need not apply in the region of the last ·hinge to form in
the failure mechanism assumed as the basis for proportioning a
given member, nor in members oriented with their weak axis normal
to plane of bending. Other pla.stic hinge locations shall be adequately
braced to resist lateral and torsional displacement.

Rule 4 Lateral Bracini - The laterally unsupported distance l",
from such braced hinge locations to the nearest adjacent point on the frame
sitnilarly braced, need not be Iess than that given by the formula: .

1 -- (60-4O!J ),,,- M 'Y
I'

nor less than 35 '" where
r = the radius of gyration of the member about its weak axis,
M = the lesser of the moments at the end" of the unbraced seg

ment, and
MIMI' = the end moment ratio, positive when M and M p have the

same sign and negative when they are of opposite sign,
signs changing at points of contraflexure.

Members built into a masonry wall and having their web perpendi
cular to this wall may be assumed to be laterally supported with respect
to their weak axis of bending.

The magnitude of the forces required to prevent lateral buckling is
'small and slenderness ratio requirements will normally govern. Both the
compression and the tension flanges must be braced at changes of section.
Design examples in 26 illustrate a procedure for checking lateral bracing.

Equation 51 not only assures that the cross-section will be able to
plastify (develop the full plastic moment) but also be able to rotate
through a sufficient inelastic angle change to assure that all necessary
plastic hinges will develop- In deriving this equation, the basis latt1f&l

-Code of practice for usc of structural steel in leDeral buil_ CODItructioD
(,IrirI4).
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buckling equation&8 has been used, the analysis being based on an idealized
cross-section that consists of only two flanges separated by the web
distance. Therefore, it already reflects and, in fact, makes use of the
parameters Lib and illt. Using, the elastic constants of the material,
and considering idealized behaviour as shown in Fig. 21, it may be shown
that this procedure leads to a critical slenderness ratio of about 100.
(Su also the footnote in Appendix B.)

While this might be reasonable for a section that was only called
upon to support MI'l it is unlikely that the resulting critical bracing would
allow much inelastic rotation - a rotation that is ordinarily required
at the first plastic hinge. It will be adequate to require only that plastic

I yield penetrate through the flange l O• It is q.uite evident from Fig. 18,
however; that the resulting further inelastic hinge rotation thus available
is relatively small. One of the important contributions of Ref 18 was
that it developed methods of correlating the critical length for lateral
buckling with the magnitude of required hinge rotation.

13.5 Columns - The plastic theory assumes that failure of the frame
(in the sense that a mechanism is formed) is not preceded by column
instability. Altbough the load at which an isolated column will fail
when it IS loaded with axial force and bending moment can be predicted
with reasonable accuracy, the buckling problem becomes extremely
complex when the column is a part of a framework. Since a complete
solution to this problem is not in hand, somewhat over-conservative
simplifications must be made.

Rule 1 would suggest (and the results of tests confirm) that if the
axial load is relatively low and, further, if the moment is maximum at
the ends of the member, then the stability problem may be neglected.
On the other hand, if an examination of the moment diagram shOws that
the column is bent in single curvature, then a more serious situation exists
and a modification would certainly be necessary to assure a safe design.

The following design guide for columns in industrial frames may be
immediately formulated:

RaJ.. for Columna

Rule 6 - In the plan~ of bending of columns whieh would develop
a plastic hinge at ultimate loading, the slenderness rat,io l/~ shall not
exceed 120, f being taken as the distance centre-to-centre .of adjacent
members COIUlccting to the column or the distance from such a member
to the base p1 the .eclumn. The maximum axial load·P on such columns
at uJtJmate loading sball net exceed six-tenths P" where: P, is the
prodUct of yield, point etress times column area.
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: '-~:R~le 6 ~Columns' 'in' continuous tt~es where sidesway is;''''n~'t
Pf~ve~i'e~:,(a).' by diag~n;~ br~cin~~. (p) l;>y, attachment to an' 'adi.a.~t
structure having ample Iateralstabillty, or' (c), by Boor slabs or roof '4~Clts
secured horizontally by walls or bracing system parallel to the plane' of
the continuous frames shall be so proportioned that:

2P 1
.P -+ 70r ~1·0

;',:' .' -, I, 1 ': f , , .' j ,

.' '.. ,{ ;Rule ,,71~ .Except (~as otherwise :provided in .this section, M lilA/III
the ~ ratio 'of, allowable en<l, moment to the full plastic bending strength
of columns and other axially loaded members, shall not exceed unity nor
the value given by the ,following formulas, where they ·are applicable:

Case I - For columns bent in double curvature by moments
producing plastic hinges at both ends of the columns:

, r , 1'.18-1'1.8(~),. ". ' '-I"";'" I

Case 11 - For pin-based columns required to develop a hinge at
; ~ r:' l'", .': .. I I one I M~l.ol?JY, ~:~~d double curvature; columns ,~eglJircd

'--,:~,', to develop u hinge at one end when the moment at, the'
,if ):j\ .. '.1'" ":~, ,o:t~le~:-J~~4,"~~ouJ~: be less than the hlngevalue: . '" '.'\·"., B~C("P) .. ':' ~' , ' ,', J', :,i~ '\'.

!.t, 'l""-"" ' ' 'P~' " ,;/:; ,"

the numerical values for Band G. for' 'a;.;.y;l;grJ~n
slenderness ratio in the plane of bending, I", belng
those listed in Table 1.

"j I'. :: :ta;s~: 111 ~ For columns 'bent in' single' 'culvatt:re' 'by' end tnbfuent9
'. '" of opposite 'sign: ',' - ' . , :,

"'-",,,,:.;, " ~:~~~'J~)~j(~JI . '.\ "_', ,. ·,;",,'
the numerical values for -K and J being those, Slven in
Table 2. For Case II columns wliere III' in the plane

.of bending is less than 60, and for Case I columns, the
'full plastic strength of the member ~Xj·~~~H~ WOf!f}H.t)
when P/Py would not exceed O.lS~· ~",,, ".,,' .. " · 4"" '

. (I li·~',Rillei :8'~~(I.,-no .ease ~sba1l tlwl ;l1ati()t~ofi!axialI load· to· plaMtio·,~ load
8Jace~:;that. given -:by: !t~,,"lJawil\8F,QxplJeS$iotl~:.t: ~' 1:: ~r~H!\i; :_~~ ~:":;1,.; '.-
; n I~ ~ i:~·'; ~ '. ', ': ~ .. ,p 'I ~ • -8:·700 .:~.";::~ ~ It' :' ;,;,:;.. ;. •. : :..:;; ,::,.-: : r ~ ~,:.. ' ~.: .... ~'••,

! 'Jdi1i~r!i " Ii ..\ I);; "pi;~:1T~)tli)Vlj~J.1. 't.~J2Q,', ,,;! i )~. ;~j I in' iJ/ j! '.", ;'U,: "~ -t.

~\t..~¥~(CI :~~a,::~ ..~~:~::~~]"e:·;.WJJ~~~(I:~hdt~ .ailiilr~u;{,n¥': Jiii~;'1 f~~tire ~lunln intfie pl~e ·rtbr.'m~~o: . .j"fq oJ)becQ- t~rili)"')', f1'til':J~~
consideration. ·." ,J, • ~n':";'(. '. .". ". " " '~J' I J,~9Pt. ll-. ~~':TI'Jt'i11j
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TABL•. ·l·~ CASE"lli·PIN BASED'COLU,MN8~~ALUBS OF-B·.~-G

No N <"'0
1":\ '"'·r ;' ! 11 ] ~Mo P L--B-G-

M, P'1 L
~ ~

N<No No No

Ilr B G 1/,. B G I,,, B G
l- t 'l-

.. ;

16· 1·140 1·112 51 ' 1'164: 1·271 86 1-201 1·616
17 1·140 1'1'4 52 1·165' 1·276 87· 1·202 1·633
18 1·t41: 1·t77 S3 1'165 1·281 88 1-204- 1·651
19 t,'1411 1·179 54 1'166 1·286 89 1·205 1'669
20 1·142 1-182 , SS. 1'167 1·292 90 1'206 1·688

21 1·1.2 l·t84 '56 1·168 1·297 .91 1-,207 1'707
22 t-t43 1'187. .51 1·169 1·303 92 1·2b9 1·726
23 1·143 1-189 S8 1·170 1-310 93 1-210 1~146

24 1·144 1'.'191 S9 1·171 1·316 94 t -21l' 1;~7

2S 1-145 1-194 60 1-17'1- 1-323 95 1·213 1·788

26 1·t45 1'196 61 t-173 1·330 96 1·214- l~O

27 1·146 r-rss :62 1~174 1-337 97 1'2t5 1·832
28 t~l·46 1·200 63' 1-17S 1~344 98 1·211 1~5

29 t·l.•? 1·203 .64. 1'176 1·352 99 1'218 1'879
30 1·t·48 1'205 ,.1)5 1·177 1·360 tOO· 1·220 t·903

31 t·148 1·207 66 t-178 1'369 101 1-221 1'928
32 1~149 1·209 67. t'179 1'-3.77 102 1·222 1'953
33 1·150 1·212 68 1·180 1-386 103 1·224 t'979
34 l'ISO 1'215 69' 1·181 1-396 104 1·225 2-006
35 j·t51 1'217 70 1·182 1·406 ,t05 1·221 2~O33

1·1'52
"

36 1·220 11 1-183 1·416 106 1'228 2·061
37 1·152 1-222 72 1'184 1-426 '1'07 1·230 20090
38 1-153 1-225 73 1'186 1'.37 108 1'231 2'IJ9
39 t·154 1'228 74 t-187 1·448 109 1'233 2-t~9

40 1·155 1-231 ' 75 1-188 1.-460 110, 1-234 2'·)19
41,: , '~\7~:. _ 1'".72 tp. .r

1-155 1-234 1'189 1'2_3~ 2~~1
.42 1'156 1-237 .~, 1-190 t'48S t 2 1'~3 2~43

,~" t~1S7

r~
"., 8' 1·19't 1,497 :rt3( t· 39 2·275

.~. 1"t58 J~ !'7ej. l,·t92 i-sn t'14· 1'2:40 2-309
,:~ .~~15 ~'. ,1-1,5? 1,'2 7 ~~o.! t~t~" 1'~!24 -,~ 5. ~ ~~l~~~ 2'343

• , 'i 1.,_,- .,' I" '"'J' ,
~. ~ ;,.'

;''-:1.' .. 1~tS9 l i251 -.iSl·,' t~·t9S 1·539 "llt6,' ].·243' 2"'8
~..,:.. 1;161 1·"2S4 1)1.,,3 1~t.96 1~5-S3 -t.17 1'245, ' 2-414
uM:~· t·~)61 t",358 ,~;183 ,I t.·.191 1':568 .1t~IS : 1'24', 2'410.
:...~:.. -- t,162 t463 r.~~, ..__ 1~S'8 1~5.84 .1191 .: 1~a48' 2'487
:t'P~. ~ S"l~ t.a67 ~,',., 1_·2f)Q t~600 '·120', ' 1,250, 2'525..-~.,.~ *..' ~l l' i r. ~'f.'._.-. ~ \ .. . ~ ; .: ";~' 1 \I}: " ..'l I : : ~ 1 : Ii ..
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TABLE ~ CASE III COLUMNS BENT IN SINGLE OUBVAT'UR&,
VALURS OF Ie AND J

N<M.

11
~r"

Mo (P) ( P)' If l r- lID: t'O-K -- -J-Mp P y Py

"-.J ~ ,
"0 "0 .. < ....

1/" K ] 1/" K J 1/" K J
A. , A, A.

1 0·434 0·7S3 41 1·015 0·149 81 1'824 -0·738
2 0·449 ()'736 42 1·032 0'133 82 1·850 -0,769
3 0·463 0'720 43 1·048 0·116 83 1'877 -0-801
4 0·478 0·703 44 1·064 0·0998 84 1·903 -0,833
5 0'492 0·687 4S 1·081 0·083 2 85 1·930 -0,866
6 0·506 0'671 46 1'097 0'0663 86 1'958 -0,900
7 0·520 0·655 47 1·114 0·0492 87 1'986 -0-984
8 0·534 0'640 48 1'131 ·0·031 8 88 2·014 -0'969
9 0·548 0'624 49 1·148 0·0143 89 2'042 -1-004

10 0·562 0'609 SO 1·166 -0,0036 90 2-071 -1-041
11 0·576 0·594- 51 1'183 -0,021 7 91 2'101. -1,077
12 0·590 0'579 S2 1·201 -0,040 1 92 2'130 -I-lIS
13 0·604 0·564 53 1'219 -()oOS88 93 2'161 -1,153
14 0'619 0·549 S4 1·237 -0-0777 94 2'191 -1'192
15 0·633 0·534 SS 1·256 -0,0970 95 2·222 . -1,231
16 0'647 0·519 S6 1-274- -0-tI7 96 2'254- -1-272
17 0'661 0'504 57 1·293 -()Ot37 97 2'286 -1'313
18 0·675 0·490 S8 1·312 -0,157 9H 2·318 -1,354
It) 0'689 0'475 59 1·332 -0·177 99 2'350 -1'397
20 0'703 0·461 60 1·351 -0,198 100 2'384 -1-440
21 0·717 0·447 61 1·371 -0,220 101 2'417 -1,484
22 0'731 0·432 62 1'391 -00241 102 2'451 -1,529
23 0'746 0'418 63 1·411 -0,263 103 2·486 -1-575
24- 0'760 0'403 64 1'432 -0,286 104 2-521 -1-621
2S 0·774 0·389 65 1'452 -0,309 lOS 2'556 -1,668
26 0·789 0'374- 66 1'473 -0'332 106 2'592 -1,716
27 0'803 0'360 67 1·495 -0'356 107 2'628 -1'765
28 0-818 0'345 68 1·516 -0'380 ~ 108 2-665 -1,814
29 0·832 0·331 69 1·538 -0,404 . 109 2-703 -1,865
30 0'847 0-316 70 1'560 -0'429 110 2'741 -1'916
31 0·862 0'301 71 1'583 -0,455 111 2·719 -1-968
32 0'817 0'287 72 1'605 -()o481 112 2-816 -2,021
33 00892 0'272 73 1'628 -()oS07 113 2·857 -2-057
34 0-907 0'257 74 1-652 -0'534 114 2-897 -2'123
3S 0-922 0'242 7S 1·675 -0,562 115· 2'937· -1-185
36 0·937 0-227 76 1'699 -()o590 116 2·978 -2-242
37 0'953 0'211 77 1-724 -0'618 117· .·3·020 -2,300
38 0·968 0-196 78 1'748 -0,647 118 3-Q62 -2,358
39 0·984- 0'180 79 1'773 -~677 119 3·104 -2-147
40 1·000 0·165 .80 1'799 -00107 120 ~l+~ __ 2"78

"('
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As already implied, the failure load of a column and its ability to
transmit plastic moments are dependent upon the loading conditions.
These are as follows: '

a) 'Double curvature with plastic hinges at both ends,
b) Double curvature with plastic hinge at one end and opposite

end intermediate between pinned and at plastic hinge value,
c) Single curvature with one end pinned and moment applied at

the opposite end, .
d) Single curvature with unequal end moments, and
e) Single curvature with equal end moments.

Ref .33 treats these cases and develops formulas that will assist the. de
signer. However, most of the column problems that arise in the struc
tures considered in this handbook will not require the corresponding
refinements.

Whenever it is found that conditions for the preceding I rules'
arc not met, it will be conservative to use the solution for (c) above, as
given in Rule 7 for Case III.

It will be recognized that the single curvature loading condition
places the mid height of the column in the most critical loading condi
tion. Thus, in the plastic analysis, if a hinge were assumed to form in
one or both ends of the column, this may occur if the column strength
has been increased adequately to assure that any' necessary hinges win
form in the adjoining beams. Therefore, when the design is complete,
the column should be selected so that it will have an actual end moment
capacity five to ten percent greater than required for the development
of hinges in the beam.

23.6 ConrieetloD8 - Connections play a key role in assuring that
the structure reaches the computed ultimate load. Points of maximum
moment usuallv OCC\lr at connections; and further, at corners the con
nections must ·change the direction of the forces. Also, the connecting
devices (welds, rivets, or bolts) arc often located at points subjected to
the greatest moments. Design procedures must, therefore, assure the
performance that is assumed in design - namely, that connection win
develop and subsequently maintain the required moment.

The ability of Iabricaters to successfully connect members by welding
has lent impetus in recent years to the application of plastic design
methods; because bv welding it is possible to join members .with suffi-

, cient strength that" the full plastic moment ruay be transmitted from
one member, to another. .However, this is but one of the methods of
'fabriCation for which plastic (lc.'Iign is suitable. Plastic design is also
applicable ~ structures/ with partially welded (top plate) or with riveted
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or bolted connections whenever demonstrated that. they will allow the
,formation of hinges, ~ 1,1 " " i l

, : " . ' ·',.;I,iJ.t -,I.:' \.,;d:,(~! ":',:"lt~ ~11,

• 4" " j \ a ,~ I ' " ~ .. I·,' I ,). r . -4 • i- • ~ •• : 1~. ','!,' I ~,' '-,:: e, : " ';- _ , ~ _ - ~ ~ 4 ,\,~ !. ;-,~, r • ~ Jl' tF.j : )', : y
The various types of connections that might be encountered in-steel

frame structures are shown in Fig. 46 and are as follows: corner connec
tions (straight," haunchedj,« beam-cohrmn ..connecticns, beam-to-girder
connections, splices {beam, p?~mn", r~f),: <;olu~,,~or~~~.~eJla
neous connections (purlins.; gir;ta•., QraciAg)~. ;prim~),~ ;.tt~~i()l} t'~S given
to corner connections and to beam-column connections... but ~imilar
approaches may be used when consideritlg the 'other Connection
types.

23.6.1 Reguifemettls jo, ;C()flftttttOfJS ~',The;;;design 'recqm",ment~

,~r connections, .~~-,~~t~Qd\J.~d.;bY;)~I\Si4er,~~,tAe,_.g~~~~~l ,P,~4a~~ur-,~f
cWJ~e~t corner ~~n~~ttqn, \lX~~ ~; 1~l>~~r~e4 under ;~9a4·, "X~r1 h~~, ,P..~~P4one, rn a~ 19: and,~ ~d~~t;!lS~~~~US,'W~l~~e;,~o"f.~~lat~'f,~p~r.p~lg~~V41
-design 'requIrements --. requirements that In principle are common to p..lJ
connections. These are ~a) strength, (b) sti1!fness, (c) ~otatioil 'c.~racit~"

. I·, " , •• J 1If:I I I ~,.. , , i :.. ~ ,

....._'...1'_) ~'I.! ..... , :1:.,.)

, " j.l ' ",,' ~'
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and (d) economy. They are now discussed in the light of the be
haviour of corner and interior connections:

a) SW'lIgUJ - The connection should be designed in such a way that
the plastic moment (M,) of the members (or the weaker of the
two members) will be developed. For straight connection! the.
critical or C hinge' section is assumed at point H in Fig. 47(a).
As will be seen below, for haunched connections, the critical
sections are assumed at R1 and ~2' Fig. 47(b).

b) S'i/fMss - Although it is not essential to the development of
adequate strength of the completed structure, it is desirable that
average unit rotation of the connecting materials does not exceed
that of an equivalent length of the rolled beam being joined. It
would be an unusual situation, in which deflections of the structure
were extremely critical, that this requirement would be applicable.
The equivalent length is the length of the connection or haunch
measured along the frame line. Thus in Fig. 47(a):

6L = "1+". ...{S3)
This requirement reduces to the following:

~ M,
". ~ EI 6L ·..(54)

which states that the change in angle between sections R1 and
R. as computed shall not be greater than the curvature (rotation
per unit of length) times the equivalent length of the knee.

HAUNCH
PO~T .

,H R,

(a)

FIG. 47 DESIGNATION OF CRITICAL SECTIONS IN STRAIGHT AND HAUNCHED
SECTIONS
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Normally an exaJDiJation of the design to see whether or
not it meets the .stiffness requirement ,wiD not be DeceIIa!Y.
Compared with .the total length of the frame line, the length of
the connection is small. Therefore, if it is a bit more flexible than
the beams which it joins, the general overall eftect will not be
very great1

' .

c) RollJlton Capac." - Of much greater impertance than sufticient
elastic stiftnes.t; is an adequate reserve of ductility after the plastic
moment value has been reached. This rotation is necessary to
assure that all necessary plastic hinges will form throughout
structure. Thus all connections must be proportioned to develop
adequate rotation at plastic hinges. This subject is. disc1IIsed
later in further detaiL ,

11) ECDfIOfIIY - Obviously. extra connecting materiall should be
kep~ to a minimum. Wasteful joint details will result in 1011

. of overall economy.
On the basis of the above requirements, we are now in a position to._yze the behaviour of various connection types.

. 21.'.2 S",.ig'" Cor". CemMa",," - The strength of ~sti.ftened corner
toDDections will be considered first; the connection and loading it shown
ia Fie- 48. The design objective is to prevent yielding of the web due
to shear force at low load. This leads immediately to the following
ItrengtJa requirement: 'The moment at' which yieIdiDg commences due
to mear force, M. ('r), should not be less than the plastic ~meJlt, ltI,.

v

....--l

p
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Using the maximum shear stress yield condition ('ry = a,{Z), and assum
ing that the shear stress is uniformly distributed in the web of knee, and
that the flange carries all of the flexural stress, we can obtain a value
of MA('f) which may then be equated to Mr. Using these assumptions
(s., stress-distribution and forces in Fig. 491, it '. may be shown that:

UJlll~

Mi(~) == ( tl
vi I-i)

y

......----~.....-FI
~ v- f
~d ~'1

FIG. 49 FORCES AND STRESSES AsSUMED TO ACT ON UNSTJBFENED
STRAIGHT CORNBR CONNECTION

. Equation S5 is equated to M,,= ¥ to obtain the required ..web
thickness :,

, = ·V3/5(1_!..) ( )., tlI L .... 56

Summatizing, the following design guide may be given:
Rule 9 Stralaht Corner CoDD8Ctloae - Connections are to be

pro~rtioned to develop the full strength of the members joined. 'The
critical section is to be taken at the haunch, , H '. The required web·
thickness is given by:

S
t. ;. v'3 cP •.-(56&)

Examination of rolled shapes (using Eq 56) shows that many of them
require stiffening to realize the design objective for 'Straight conneotiolll.
When such stiffening is required, Rule 10 should be followed. Alterna
tively if doublers are suitable they would be proportioned accordial to

W'-~_'•.
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Assuming, now, that the knee web is deficient as regards to its
.ability to resist the shear force, a diagonal stiffener may be used. A
• limit' approach may be used to analyze such a connection as sketched
in Fig. SO. The force Fo is made up of two parts, a force carried by the
web in shear and a force transmitted at the end by the diagonal stiffener,
that is, F o= Fweb +F'tiftener

when both web and diagonal stiffener have reached the yield condition:

F == a"lIJ~ + Gyb_", ( )
tI v'3 v'2 ... ~ 57

where b, and t, are the width and thickness of stiffener.

1-
It;::======~ """'-Fi

FIG. 50 CORNER CONNECTION WITH DIAGONAL STIFFEliRR

The available moment capacity of this connection type is thus given by:

a,4 [ 4 lJ.4 ]M1 ~ (1- ~) "'\13+ vi" ...(58:

Equating this moment to the plastic moment (a, Z), the following guide
is obtained in which similar approximations have been made as before:

Rule 10 Dlaaonal Stiffeners In Connections - The required
thickness of diagonal stiffeners in comer connections that would other
wise be deficient in shear resistance is give by:"

I. = ~2 (; _;j ...(59)

'Instead of using the maximum shear stress theory of yielding,
Eq 56 and S9 could have been derived using the Miscs-Hcncky yield
criterion. The result will be a more liberal nile, and the above-mentioned
equations become:

I __ v'3S ...(568)
" 42
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and

v'2(~_-)t. = T tl v'3 ...(S9a)

Design Examples will be found in Section F. Generally the use of a
diagonal stiffener with a thickness equal to that of the rolled section will
be adequate and not unduly wasteful of material.

23.6.3 HauncW Connsctions - Haunched connections are the pro
duct of the elastic design concept by which material is placed in confor
mity with the moment diagram to achieve greatest possible economy.
On the other hand, in plastic design (through redistribution of moment)
material is used to full capacity without necessity for use of haunches.

Since the use of a haunch will automatically cut down on the span
length, than a smaller rolled shape should be possible in a plastically
designed structure. If a haunch is to' be-specified for architectural con
siderations, the designer might just as well realize the additional savings
in the' material. Further the use of haunches in long span frames might
make possible the use of rolled sections, whereas built-up members would
otherwise be needed.

Four types of haunehed connections are shown in Fig. 51. Analysis
and test have shown all of them to be suitable in design, although the
designer may find more frequent demand for the types shown in the figure.

It is difficult to generalize with regard to comparative deft.ections
as between a frame designed with haunches and one without them. A
frame with straight connections will have larger rolled members.. tending
to decrease frame flexibility. On the other hand, a frame with haunches
is more flexible on the one hand because of the lighter members, but is
stifter on the other hand because of the deeper haunched knees. In one
comparison- a plastically designed frame with straight connections was
actually smIener than the corresponding elastic design in which haunChes
were used,

••• ._. Ce' (en
'FIG- 51 TYPICAL HAUNCBltD CORNER CONNECTIONS

101
 



SPa 6(6) -197~

The analysis of a frame with hauncbed connections inwlves no
new principles, The eflect of the haunches is to increase the number
of sections at which plastic hinges may form, but otherwise the procedures
are the same as before.

Similarly, the methods for computing deflections would embody
the same principles as those described in 13.9.

The design requirements will generally be quite similar to those
for straight comers. Haunched knees may exhibit poor rotation
capacity1'.

This is due to inelastic local and/or lateral buckling. The solution
is to force the formation of the plastic hinge to occur at the end of the
haunch. This is accomplished by requiring that the haunch proper
remain elastic throughout. Thus the flange thickness should be increased
to 'meet the demands of the applied plastic moment. Stiffness is auto
matically provided .in a great majority of cases; and no rotation capacity
is required because all plastic deformation occurs in the rolled sections
Joined.

Adequate bending strength in the strong direction is only one of
the strength requirements. The other is that it does not 'kick out' or
buckle laterally prior to reaching the design condition. The tendency
for this mode of failure is greater than in the straight connections because
in the haunched knees the stress distribution is more nearly uniform along
the compression Bange, it cannot be lateraDy supported along the full
length, and, therefore, a larger amount of energy can be released by buckl
ing .. The requirement that the connection remain elastic is, therefore, of
considerable advantage.

For tapered haunches the design problem will be to find the required
thickness of inner Bange. of the haunch to assure hinge fonnation at the
extremities (locations A and C of Fig. 52). Also the knee web should
have adequate thickness to prevent general plastic shear-.

Therefore, the analysis problem is to have a method for predicting the
maximum danse stress due to the applied loading; secondly, a method
of suitable simplicity should be available for computing the maximum
shear stress. In a receatly completed report avaiAb]e methods are com
pared, and in so far as normal' ~esses are concerned, it was found that
the method of Olander was quite reasonable. The report also compares
the results with tests.

Curved knees have been treated. ill Ref 32 and the results of this
work have been a~ to conventional desip procedures in Ref 29.
It it stiD necessary to force hiDae formation at the extremeties of the
Iwmch and thus a further iDcftaIe· of 8aDp thicJmell appears neceuary.

~ .. daeck .. RfI'Ilnd maIy" tor type abowa ID ..... 51(b).
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.~

FIG. 52 EXAMPLE OF TAPERED HAUNCH

Although studies to date have not been completed to the point wheN
the required flange thicknesses may be picked from a chart, the resultl
suaest that an increase 'of SO percent in flange thickness requiremea~

should lead to a safe design. .

In summary, then:

Rule 11 HaaRched Connecdon8 - Haunched connections are to be
proportioned to develop plastic moment at the end of rolled section
Joined.

In Older to force formation of hinge at the end of a ",p.r_ JuatMCi.
make flange thickness SO percent 'greater than that of section joined,
For CWVM kfftllS the inner flange thickness is to be SO percent greater
thaD required ~Y the rules of Ref 29. .

Use Rule 9 to check web thickness (adequate to resist shear forces).'
The distance ' II' is to be that as shown .in Fig. 52.

, C~ent research has extended and systematized the procedures with
regard to the actual Pl'9portioning of haunched connections. A theore
tical ~dy and experiment~ investigation are nearing completion OD
this upect of the problem.

23.6A AfUIIyris oj 1""'"" BMM-CoZtM. COil~ - The interior
beun-to-column connectioD.I are those shown as t 2' in Fig. 46 and ill1

further detail in FiI- 53. ,The function of the • Top J and the ' Interior'
CQqD~ iI to transmit moment from the left to the right beam, that
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(b) SIDE (e) INTERIOR

FIG. S3 BEAM TO COLUMN CONNECTIONS OF- (a) Top, (b)' SIDE. AND
(c) INTERIOR TYPE

column carrying any unbalanced moment. The ' Side' connection
transmits beam moment to upper and lower columns. The design
problem is to provide sufficient stiffening material so that the connection
will transmit the desired moment (usually the plastic moment M,).
Therefore, methods should be available for analyzing the joint to predict
the resisting moment of unstiffened and stiffened columns.

The moment capacity of unstiffened beam-to-column connections
[Fig. 54(a)] may be computed on a somewhat similar basis as that adopted
usually in conventional (elastic) design practice. In the limit, the force

~
F

..~ .:~

A...

~

r

.:.~ ......

-
...

cc) WI. S''''''''
FIG. 5.4 METHODS OF STiFFENING AN lllTBBIOB ·BBAII TO CoLUKH

CONNECTIONS '
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wbleh tbe column web can sustain is equal to the area available to carrv
the reaction times the yield-point stress. Referring to I.iS. 55, the force

which should be transmitted is known (T = 0,A6i~."-')- The reaction

width is eq.ual to the column web thickness, We. As a couscrvat ive
approximation .it can be assumed that the length of reaction zone is half
of the beam depth plus three times the k-di:;tancc of the column. "There
fore one may write:

T =(Reaction area) X (0',,) ... (60)
or

a,:b=rWe (~i +3 kC)] (0,)

From Eq 61 a direct design check may be formulated,

:2= A.,
"',-d.+6k,

..• (61)

... (62)

FIG. 55, ASStJllED 5nmss DISTRIBUTION IN BEAll COLUMN CONNECTION
.WITH No STl;nBN'Ba
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which gives the required column web thickness, .c to allure that the
plastic moment will be developed in the beam. Except for those. cases
where the columns are relatively heavy in comparison to the beams, the
test by Eq 62 will often show inadequate strength of the column. Re
course is then made to flange or web stIffeners of the type shown in Fig. 54.

A I limit ' analysis of connections with flange stiffeners- may be used
which results in a direct design procedure for determining the required
thickness of stiffener, ',. Assume that a stiffener is required and that
it will adequately brace the column web against buckHng. Then, refer
ring to Fig. 57 in which the plastic moment (Mil) is acting at the end of
the beam, the thrust T should be balanced by the strength of the web
(T.) and of the flange plate (T.) or

T == T.+T, ... (63)
with T. == force resisted by the web

= cry•• (~. +3k.)
and 1. = force resisted by stiffener plate

= a, t;1J
A.

and T = a, 2'

&,

r" ,~"

1t d :r.Cfr~
~.lCc

! \- .... . . ;'p 4lI~.
cit»

~

~ ...-

I,
FIG. 56 AssUMED STRESS DISTRIBUTION IN BEAll TO CoLUJIN CollHBCTlON

WITH FLANGE TYPE STIPJrBNBB 
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• direct solution for required stiffener thickness is:

'.= ~ [A t - We(db+6ke)] •••(64)

The results of tests show that this approach is conservative.

Web stiffeners may be proportioned on a similar basis to that des
cribed for unstiffened connections. For use in Eq 60 the reaction area
is made up of the area supplied by the column web and the two inserted
auxiliary webs [Fig. S4(c)]. This is given by:

Reaction area = We (~~ +3kc)+2W. (tb+3ke) •••(65)

wherc
UJ,= the thickness of the web-type stiffener, and
'6 = the stress of, the beam flange.

Adt..~uate information is thus available for obtaining its required
value.

The second general type of stiffener that might be needed is that
necessary to assist in transmitting shear forces. 'Side' connections
[Fig. S3(b)] or interior connections with large unbalanced moments may
require ' shear stiffening' if the column does not carry much direct
stress. III such a case the column web at the joint is called uPOI1 to
transmit forces such like those of Fig. 49. An examination IimiIar to
that leading to Eq S6 would. therefore, be desirable in this infrequ_tly
encouatered case.

In summary the following design guide is sugested:

...(65)......

Rule 11 Interior Beam-ColulIUl Connection. - To assure that 811
unstiffenc4' column will transmit the plastic moment of the adjoiniDI

.beam, its, web thickness should be governed by:
A.

WI: -- 4~6kll •••(62]

, If ' ~e' stiffeners are used for reinforcement, their reqaiIed
thidalesa is given by:

1
'..... 2i [A. -w.(i.+6A.)l

Alternatively, if ' web' type aWleaen are used:
A.--.(l.+6i.)., - 4<,. + 6iJ ••• •...

The ~811 •• should Dot be .. tbaD that of the 001.....
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In exterior columns or in other cases of large unbalanced moment,
examine adequacy of web to transmit shear force. ..

EUMp/4 8:

Illustration of the application of the equations in Rule 12 will now
be given. Joints that are typical of interior beam-column connections
are shown in Fig. S3 and an example of their occurrence in design is shown
in Sheet 1 of Design Example 9, sketch (a). The designs of three types
of connections will now be considered.

. The connection shown in Fig. 57(a) should transmit moment from
the beam to the columns above and below. The first question is, 'are
stiffen~rs required?'
From Eq 62 using properties of the ISLB 600 and ISLB 550:

A,= 126·69 em"
db = 60·0 em
K,= 3-70 em
W,= 0·99 em

The required thickness of column web is:

A" 126·69
t. ~ = d.+6k

c
- (60+22'2) = 1·54 cm>0·99 em

Therefore stiffeners are required. Using horizontal 'flange' stiffeners.
the required thickness is given by Eq 64:

1
t = 2b [A,,-U1~(d6+6kt;)]

= 2(~1) [126,69-0'99(60+22,2)]

= 1·09 em
Use 12 mm thick stiffeners.
Next. the web should be examined to see if it is adequate to resist

the shear force introduced by the column moments Very recently it has
been shown that an extension of Eq 58 leads to the following relation
ship for a 3- or 4-way connection:

71M
t. ;. T ...(66&)

where
'-== column web thickness in em,

M c::: unbalanced moment on the connection in m.t. and
~ == planar area of connection in CJD'.
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(a)

ISLB 600

45·12mJ

(
ISl.B 550
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)25-H

l~leOO

'J
19·77m.t

ISle 350

(b)
..

ISl' JIO

,

..... r:(
.,.

... ~
.."'#' ISLI4IO

ISla.

I

ISlI 150

". "

I

1.. -_. -·'-1_. ---- --_ .. _-~

~--

~) ~)

FIG. 57 BEAM TO COLUMN CONNECTION WITH STIFFENERS - Contll

In an actual design, the moment computed in the frame analysis would
be used. In this problem, the moment will be taken as the maximum
possible value, namely, M ~ of. the section, Thus

71 x70~52
'.-- 6OX55 -= 1-57>0-.99
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tSMS 800
1
IOclft

.-b---..-1
T

,
147cmISlB 350

ISMB 1550 (e) Connection Uilftl Hiatt T.....
Friction Grip Futenen

FIG. 57 BEAK TO COLUMN CONNECTION WITH STIFFENERS

Thus shear stiffening is required. A diagonal stiffener as shown in
Fig. S7(a) will be specified. Assuming that all of the unbalanced. moment
j!14 carried by the flanges, the area of stiffener may be computed from:

a, A. cOS 480 = M.
d.

A == M. __ Z. (1-57-0-99)
• 0, cos 48 0 tI. - (1·57 cos 48°)11.

A 2 798·6 X 0·57 I
• =:= 1057(0.67)60 == 25·3 -cm

Use 2 stiffeners of size 100 XIS mm.
The connection shown in Fig. 57(b) is next examined to see if the

web is adequate for shear.
From Eq 66a:

71M

'.-- --;r
. 71(45-12-25-35)
= SSx3S
== 0·726>0·'4-

No additional stiffening is considered necessary.
The connection shown in Fig. 57(c) should be examined for adequacy

with regard to moment and shear stifteners. Having in mind ~hat a
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connection of this type will frequently have a beam framing into it at
~ht angles to the plane of the joint, a web type stiffener should be used
if the calculations suggest that one is required. Further, the two beams
framing into the column arc of different depths. Using Eq 62:

W A•
• ;. 4+6kc

126·69
== 60·0+6(3·085)
= 1·43 cm>O·74 em

SNI_ing is rtJfflirlil

Using Eq 66:

W = A.-W&(tl.+6k~
• 4(t.+6kc)

. 126·69-~74[60+6 x 3·085]
== 4(1-55+3 x 3·085)
== 1·58 em'

'The stiffener shown in Fig. 57(d) may either be fabricated' from
plate stock or by, splitting ~SLB 3S0, trimming the flanges to suit the

.purpose. ,There is a tabrieation advantage in using the latter since it
would' only involve. the procurement of a short additional length ·of the
column 'section already specified.

In checking for shear,'
~ 11M 71(60-08~33·71)

'. " It == 60 x3S

, == 0·89 em.
More than an"--ade1uate amount of material is thus available to transmit
the applied shear orce. ' _

2I.6.IC~ Usifll HigIJ-Strengt1l BoUs-High-strength bolts (see IS:
4000-1967·) may be used to j~ members [see Fig_ 57(e)] in one of two
ways. Either they may be considered as splices in regions of negligible
moment or they may be lISed at positions at which plastic hinges are
expected to form.. In the latter case at ultimate load the- design may
be based upon tension values equal to the guaranteed minimum proof
load and shear values' equal to the normal area of the bolt times 1 760
kgf/cml • '
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An illustration of the design of a moment connection in the vicinity
of a plastic hinge will now be given. The example chosen is joint 8 of
sheet 5 of Design Example 7, sketch (h), shows the welded detail. The
problem is to join the- girder to the column at section 8 with high strength
bolts to transmit the necessary moment. The design calculations follow.
Bolts of dia 14 mm will be specified with a proof load of 7 900 kg.

33·7 X 101

For vertical shear, 7 900 = 4·3 bolts

Minimum number of bolts = 5
Bolts required to develop top flange load

n = A.., x 2 540 _ [2·08 x21·~-~(2·08)(2·S)]2..S40 = 10.7
7900 - 7900

Top plate design:

. 7 900 x 12
Thickness = 2 540[20-(2 X 2'5)] = 2'48 em

Use a top plate of 200 X 25 mm connected by 12 bolts to the top flange.
Try 6 bolts in tension. Moment capacity of connection should be greater
than plastic moment of ISMB 600.

MI'= (J"Z == 88·46 m.t
M =[12x7 900 x (60-S·0)+16 300(2)(37r5+30·S+23·0)]

=(49·40+29·6)= 79·0
This is less than M,.

NOTE - Vertical plates joined by bolts loaded in tension by the applied
moment must be designed adequate to tran~mit the tension.

The following comments are in explanation of the above steps:
a) The I tension value' of a 24 mm bolt is taken as the guaranteed

minimum proof load of 16 300 kg. The shear, value is assumed
as 79(;0 kg.

b) With a vertical shear of 33·7 t acting upon the joint, a minimum
of 5 bolts are needed. The 8 bolts fUJnished will be adequate.

c) The calculation of the number of bolts required to • develop'
the strength of the top flange when it is plastic results in the
number 10·7 bolts are, therefore, furnished, and the top .plate is
proportioned such that it will actually transmit the force due Ito
12 bolts loaded in shear. Thus this plate will transmit not only
the flange force) but also a portion of the web force.

(1) The 6 bolts in tension are also assumed to be working at their
guaranteed minimum proof load when the plastic moment comes
on the joint. Actually the bolts will be considerably stronger
than this minimum value. 
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e) .Bolts in the splice just over the column would be in sufticient
number to transmit the, necessary shear to the column. The
exact number would depend upon the number of bolts that would
be required for the ISLB 350, beam joining the left flange of the
column.

».6.6 Riveted, Connections - Riveted connections could be propor
tioned in a manner that would make use of similar principles to those
involved in 23.6.5. For this purpose the tension value of a rivet would
be computed on the basis of a yield stress of 2 540 kg/cm l • For rivets
in shear, at ultimate load the shear stress would be limited to 1 760
kgf/cms•

13.7 Brittle 'Fracture - Since brittle fracture would prevent the for
mation of a plastic hinge, it is exceedingly important to assure that such
failure does not occur. But it is an equally important aspect of con
ventional clastic design when applied to fully-welded continuous structures,
As has already been pointed out in previous sections the assumption of
ductility is important in conventional design and numerous design
assumptions rely upon it.

In the past years the failures of ships and pressure vessels have
focussed attention on the importance of this problem. And although
hundreds of articles have been published on the problem of brittle frac
ture, no single easy rule is available to the designer.

In plastic design the engineer should be guided by the same principles
that govern the proper design of an all-welded structure designed by
conventional methods, since the problem is of equal importance to both.
Thus:

a) The proper material should be specified to meet the appropriate
service conditions.

b) The -1abrication and workmanship should meet high standards.
In this regard, punched holes in tension zones and the- use of
sheared edges are not permitted. Such severe cold working ex
hausts the ductility of the material.

c) Design details should be such that the material is as free to
deform as possible. The geometry should be examined so that
triaxial states -of tensile stress will be avoided.

How can we be sure that brittle fracture will not be a problem even
if the suggestions mentioned .above are followed? While no positive

.guarantee is possible, experience with tests of rolled members under
normal loading conditions (but with many , adverse circumstaaces '
present that might be expected to lead to failures) has not revealed pre
mature .brittle fractures of steel beams. Further. the use of fully conti
nuous welded' construction in actual practice today has not resulted in

113
 



&P: 6(6) - 197:J

failures, and factors that are otherwise neglected in design have mOlt
certainly caused plastic deformations in many parts of such structures.
Summarizing, the following guides are suggested:

.Rule 13 Structural Ductility - Ordinary structural grade steel for
bridges and buildings may be used with modifications, when needed, to
insure weldability and toughness at lowest service temperature.

Fabrication processes should be· such as to promote ductility.
Sheared edges and punched holes in tension flanges are not permitted.
Punched and reamed holes for connecting devices would be permitted
if the reaming removes the cold-worked material.

In design, triaxial states of tensile stress set up by geometrical
restraints should be avoided.

33.8 Repeated Lo~dlna - Up to this point the tacit assumption has been
made that the ultimate load is independent of the sequence in which the
various loads are applied to the structure, One would also suppose that
a certain degree of fluctuation in the magnitude of the different loads
wuaId be tolerable so long as the number of cycles did not approach values
normally associated with fatigue.

In the large majority of practical cases this is true. For ordinary 4

building design no further consideration of variation in loads is warranted,
However, if the major part of the loading may be completely removed
from the structure and re-applied at frequent intervals, it may be shown
theoretically that a different mode of ' failure J may occur. It is cha
racterized by loss of deflection stability in the sense that under repeated
applications of a certain sequence of load, an increment of plastic defor-

. mation in the same sense may occur during each cycle of loading. The
.. queltion is, does the progressive deflection stop after a few cycles (does

. it 'ahake down') or does the deflection continue indefinitely? If it
COIltiaaes, the structure is ' unstable J from a deflection point of view,
even though it sustains each application of load.

. ~

Loss of deflection stability by progressive deformation is character
iIed by the behaviour shown in Fig. 58. If the load is variable and
~ted and is greater than the stabilizing load, P" then the deflections
teIld to increase for each cycle. On the other hand if the variable load
__~ to or less than p., then, after a few cycles the deflection will
~ at a constant maximum value and thereafter the behaviour will

"be elastic.

III the eyent that the unusual loading situation is encountered.
IIIItJ.cIt are available for solving for the stabilizing load, P" and the
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DEFLECTION -

FIG. S8 CURVES EXPLAINING Loss OF DEFLECTION STABILITY BY
PROGRESSIVE DEFORMATION

design may be modified accordlngty'!,1'.. As mentioned earlier,
however, this will not be necessary in the large majority of cases. In
the first place the ratio of live load to dead load should be very large in
order that P, be.significantly less than P." and this situation is unusual.
Secondly, the load factor of safety is made up of many factors other than
possible increase in load (such as variation in material properJies and
dimensions, errors in fabrication and erection, etc), Variation in live
load, alone, could not be assumed to exhaust the full value of the factor
of safety; and thus the live plus dead load would probably never reach
P,. Further, as pointed out by Neall~, failure in this sense is. accom
panied by a very definite warning that loss of ,deflection stability is
imminent. This implies that a lower load factor would be appropriate
as regards ~, than as regards p.. .

Rule 14 Repeated Loadlnl& - Plastic design is intended for C&Ie$
normally considered as • static ~ loading. For such cases the problem of
repeated loading may be disregarded.

• Another repeated load.ing effect is called • alternating pldticitr' 01' • plutla
fatlpe '. . It is characterized by an actual revenal of atreu of • magmtude auJ1lC'-' ,
to cause plutlc deformation duriq each cycle. Unless the deeiln criterion • at
~ to be controlled by fatigue. the di&cuesiOD which follows. thia eectioD .,....
jqaaI1y well to • plastic fatipe' u wen as to 'de6ection stability'.
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Where the full magnitude of the principle load(s) is expected to
vary, the ultimate load may be modified according to analysis of deflec
tion stability.

:13.9 DefleetloDs - Methods for computing .the deflection at ultimate
load and at working load have been summarized in Ref 9, and these will
be outlined herein. However, the problem of deflections is not a serious
one to plastic design, because in most cases. a structure designed for
ultimate loading by the plastic method will actually deflect no more at
working loads (which are nearly always in the elastic range) than a struc
ture designed according to 'elastic' specifications. For example, Fig. S9
lbo·~ three different designs of a beam of 10 m span to carry a working
load of 11) t. Curve I is the simple beam design. Curve III is the plastic
design. The deflections at working load for the plastic design are signi
ficantly less than those of the simply-supported beam, albeit slightly
greater than the elastic design of the restrained beam (Curve II).

t
n

m

DEFLECTION -----

FIG. S9 LoAD 'DEFLltCTION RELATIONSHIP FOR· THREE DESIGN BEAMS
FOR SUPPORTING THE SAME LoAD·
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The primary design requirement is that the structure 'should carry
the assumed load. The deflection requirement is a secondary one - the
structure should not deform too much out of shape. Therefore, our
needs involving deflection computation may be satisfied with approxi
mations and they fall into two categories:

a) Dete,mination of apJwoximale magnitude of deflection at ultimale
load - The load factor of safety does not preclude the rare over
load, and an estimate of the corresponding deflections would be
of value.

b) Estimate of deflection '" wo,king load - In certain cases, the design
requirements may limit deflection at this load.

Fortunately, even though such calculations will rarely be required,
methods are available for making these computations that approach in
simplicity the methods for analysing, for ultimate load. The analysis
neglects catenary forces (which tend to decrease deflection and increase
strength) and second-order effects (which tend to increase deflection and
decrease strength). Also ignored are any factors that influence tile
moment-curvature relationship. (In Ref 9, 15, and 30 may be found
discussion of these and other factors.)

23.9.1 Deflection at Ultimate Load -.The so-called 'hinge method'
(discussed in the references mentioned above) gives a reasonably precise
approximation to the load-deflection curve and affords a means for
estimating the deflection at ultimate load. This method is based on the
idealized ,M-~ relationship (Fig. 17) which means that each span
retains its elastic flexural rigidity (EI) for the whole segment between
sections at which plastic hinges arc located. Further, although f kinks'
form at the other hinge sections, just as the structure attains the com
puted ultimate load, there is still continuity at that section at which the
las' plastic hinge forms. .

As a cgnsequence, the slope-deflection equations may be used to
solve for relative deflection of segments of the structure. The moments
having been determined from the plastic analysis. The following form of'
these equations will be used, the nomenclature being as shown in Fig. 60
with clockwise moment and angle change being posifive:

l A Z ( MBA)6.4 =9-+- +-- M A B - - -
A J 3El 2

The only remaining question is: which hinge is the last to form?
An elasti-plastic analysis could be carried out to determine the sequence
of formation of hinges, and, thus the last hinge. However, a few examples
will demonstrate that a simpler method is available: calculate the deflec
tion on the assumption that each hinge, in tum, is the last to form. The
correct de1lection at ultimate load is the maximum value obtained from
the various trials.
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FIG. 60 SIGN CONVENTION AND NOMENCLATURE" FOR USE IN THE
SLOPE-DEFLECTION EQUATIONS

In outline, the following summarizes the procedure for computing
deflections at ultimate load:

Rule 15 De8ectlOD at Ultimate Load

a) Obtain the ultimate load, the corresponding moment diagram
and the mechanism (from the plastic analysis).

b) Compute the deflection of the various frame segments assuming,
in turn, that each hinge is the last to form:
i) Draw free-body diagram of segment, and

ii) Solve slope-deftection equation for assumed condition of conti
nuity.

. c) Correct deflection is the largest value (corresponds to last plastic
hinge).

d) A check: From a deflection calculation based on an arbitrary
assumption', compute the ' kinks' formed due to the incorrect
assumption. Remove the 'kinks' by mechanism motion and
obtain correct deflection. (This is also an alternate procedure.)

The procedure is now illustrated in examples 6 and 7 which follow:

E••;" 6:
(Fixed-ended beam, uniform vertical load)
a) UUifIItIU Zotul (Eq 27)
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b) MOMe'" lJUIp"". "Ill MICIta",tsM - Fig. 61(a)
c) C~icm 01 Yenical D~ftecliOfJ

i' ,£~.~, ,"~I , , , i , i I .'{

I. L---..........-.

•

YIELD

~T~TE ~

11.11111111 n IIII1111
, 2

-----...-- "·t
(b)

,-
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TRiAL· AT LOCATION 2 (Location 2 assumed as last hinge to form)

Free-body diagram - Fig. 61(b)
S1ope-deflection equation for memher 2-1 using the condition that:

8.= 0 I

8 8' 8V2 Z ( Mil).= 1+ -1- + 3EI M I 1 - T

'i = Simple beam end rotation == - ~~
hi=: Vertical deflection with continuity assumed at Section 2

• M,L 8vt L/2 ( M,)
•• 0 =-ITEI + £/2 + 3EI -M~ +"2

M LI
3vs=+ 1JU

TRIAL AT LOCATION 1,

Even though it is obvious that last hinge forms at • 2 " what is the
effect of incorrect assumption?
Free body - Fig. 61(c)
SIope..<Jefiection equation for sequent 1-2 using the condition that:

81= 0

8 8' BV1 l (M Mil)
1= 1 + -Z- + 3EI 11- T

M~ BV1 LI2 ( Mp)o=+ 12E1+L/2 + 3EI -M~+,-

:.8y ! = 0
M~t

Thus the correct answer, is 8V = 12EI

E...;u 7:

(Rectangular portal frame, fixed bases) - Fig. 62
a) UUi"",* Load (by plastic analysis)

6Mp.=?
b) Moment Diagram and Mechanism Fig. 62(b) and (c)
e).Frle-botly !Mg1ams - Fig. 62(d)
d)C~ oj Vmktll Dejleclitm
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FIG. 62 DEFLECTION ANALYSIS OF RECTANGULAR FRAIm WITH FIXED
BASES
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RAno OP aBo AND 8v:
From the' condition of continuity at Location 2, '.- '.:

I' 8v. '(M MBA)
'A- A +T + 3EI AB --2-

8y, L/2 ( ~) 28VI M,L
' .... 0+1J2+3E1 0+ 2 .... Y+IID

as. L/2 ( M,) 2381 ~
'.-0+ Li2 +3E1 0+ 2 =y+ 12E1

2Iv. ~ 28BI M,L
Y+l2El==Y+ UE1
:.Bv =:& 3H

T1uAL AT LocATION 1: Member 1-2, 91= 0
381 L/2o.... 0+ L/2 + 3E1 (-M,.+O)

M,Lt
3s 1==+ 12EI

• M,Lt
• •3V

1 = 12EI

TalAL AT LocATION 3: 9,.= 8..
8va - L/2 28va M,L

9..= 0+ L/2 + 3E1 (-M,.+0) = -L- - 6E1

By, L/2 (M ~) 23va M,L'11= 0- L/2 + 3E1 ,.- 2 = L + l2E1
8••== 8,.

M,LI
:.8Ya := 16E1

TlUAL AT LOCATION 4: Similar procedure using ',,= 9••

M,L'
3v. a:: 24EI

TJuAL AT LocATION 5: Similar procedure using ',== 0

M,L'
8va == 24EI

- M,L'
Correct answer is: 8v == 8.... == BV1 .. f2ET (Last hinge at location 1)
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23.93 Deflection III Work.,., LlHId - Usually the structure will be elastic
at working loac1 implying a need for an elastic analysis of the structure.
But it is desirable to avoid such an elastic analysis, if at all possible. For
certain standard cases of loading and restraint, solutions ale already
available in handbooks. For such cases one would divide the computed
ultimate load by F, the load factor of safety, and solve for working load
deflection from tables. Taking the fixed-ended beam of Example 6,
for instance (Fig. 61), it is found that: .

W3Ls M,J.-'
8., = 384E1 = 0·022 EI

When end restraint conditions are not known, often they may be esti";
mated and the above technique employed.

As·an indication as to whether or not an actual calculation of deflee
tion at working load should be made, recourse may be had to the methods
of the previous section. The deflection at ultimate load (8..) may be
computed by the hinge method, and a value that will be gretIUt than the
true deflection at working load may be obtained from:

~ 8.. •••(68.)
0.' = F

This is illustrated by the dashed line in Fig. 63 for the uniformly-loaded,
fixed-ended beam. The error may often be greater than 100 percent,

CALCULATED IN PREVIOUS
EXAMPLES

BWu ~....---=-Jii!l------'~---

w
1

w'
., y

ww .....--I+---I-------.~_w.=W.l_~

FIG. 63 IDE,uIZED LOAD DEFLECTION RELATIONSHIP POR F'IxBD-ElQ)EJ)
BEAK WITH UNIFOBMLY DISTRIBUTED LoAD . .
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but it gives an upper limit to 8. and indicates when' more refined calcu
lations are necessary.

Rule 16 Deflection at Working Load - If computation of beam
deflection at working load is required, this may be done by reference
to handbook tables.

An upper limit of the deflection of a frame at working load is obtained
from 8.1 == StifF.

In Section F will be found several additional examples of the esti
mation of deflections for design purposes.

23.9.3 Rotation Capaci'y - In order that a structure attains the com
puted ultimate load, it is necessary for redistribution of moment to occur.
As pointed out in 15 this is only possible if the plastic moment is main
tained at the first hinge to fonn while hinges are developing 6lsewhe,e in
the structure. The term 'rotation capacity' characterizes this ability
of a structural member to absorb rotations at near-maximum (plastic)
moment. It is evident that certain factors such as instability and
fracture may limit the rotation capacity of a section; and one might
anticipate having to calculate the amount of requ.ired rotation ill any
given problem to meet the particular limitation. This would seriously
complicate plastic design.

However, computations of the required rotation angle (called' hinge
rotation') are normally not required in design, since the foregoing rules
of practice will assure that structural joints possess it in adequate mea-
.sure. In setting up the procedure for safeguarding against local buckling
(Rule 3) it was specified that the section should not buckle until the
extreme fibre strain had reached Es' . The hinge rotation supplied. in
this case is about 12 (~I,/~y= 12); this value is sufficient to meet most
practical structural requirements.

The procedure for computing the hinge rotation at a plastic hinge
in a given structure is based directly on the methods for computing
deflections at ultimate load. It has been illustrated in Ref 9 and the
problem has been treated in Ref 31.
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SECTION F

DESIGN EXAMPLES

14. INTRODUCTION

24.1 This section will treat actual design problems for the purpose of
illustrating the principles of plastic design. In addition to obtaining
the required section following the general procedures laid down in· 21
and ~1, each design will be examined in the light of the 'secondary
design considerations' (Section E). In the process of analyzing each
st~cture, /I short cut'· meth~s will 110t be used. Inst~ad, each problem
Will be worked by a direct and complete plastic analysis, The
experienced designer will, of course, want to use all possible techniques
to shorten the design time. but at this stage the objective is to illustrate
the principles.

The available 'short-cuts' for speeding up the design process will be
treated in Section G. Just as in conventional elastic design where the
engineer has available various formulas, tables and charts with which
to analyze standard cases, so also it has been possible to arrange con
venient design aids for the rapid selection of member sizes.

In arriving at a final section size it will be noticed that 3. table of
Z-values bas been used: when the required MI'-value has been determined,
Z is computed and Table a is used to select the section. An alternate
procedure that would save a step in the calculations is to arrange the
sections according to Mt>-values instead of Z-values. This limits the use
of the table.zhowever; to a single value of the yield stress level (1,_ Still
another method would be to use the presently available tables of section
modulus, S. This would involve a guess as to the proper value- of the
shape factor, f, a value that would be corrected, if necessary, in the final
step.

The load. factor of safety has been discussed in 21. A value of 1-85
is used for dead load plus live load and a value of 1·40 for these loads
plus wind or earthquake forces.

As a convenience for later reference, the examples are all worked in
figures or • plates), the discussion of the steps being included in the text.

25. DESIGN EXAMPLES ON CONTINUOUS BEAMS

25.1 Dealto Example 1 - A design example is worked out in the
following two sheets to illustrate the design of a beam of uniform section
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throughout. It develops that' fhe end span is critical and, therefore, it
is not possible to determine by statics alone the moments and reactions
for the three central spans. The semi-graphical construction demons
trates that the plastic moment is not exceeded so the selection of the
ISLB 600, will provide adequate bending strength.

A precise determination of the reactions at ultimate load would
require an elastic analysis. They are computed in this problem, how
ever, on the assumption that the load On the interior span 3-5 is divided
evenly between the two supports 3 and 5, 30·06 t being distributed to
each. Actually the shear in span 3 to 5 does not vary too much and should
fall somewhere between values that would correspond to the two limiting
conditions indicated by Cases I and II in the portion of, the moment
diagram re-plotted. Thus, Val may vary between the assumed value of
30·06 t (Case I in the sketch) and which would be obtained from Con-

dition II (30·06+3~;2 = 32·86 t).

The maximum shear (35·22 t to the left of support 3) is well within
the permitted value of 79·7 t for this shape. But when the cross-sectional
proportions are checked it is found that dlw = 57·14>55 (permissible).
Hence it is recommended that an 15MB 550 be used. It is checked that
the cross-sectional proportions for this profile is adequate.

With regard to bracing, the structure is assumed to be enclosed.
Thus the top flange is continuously braced. Vertical plates are supplied
at section 2 to provide some torsional restraint to the beam.

Splices for shear only will be adequate at the indicated sections. At
a distance of 2·5 m from the support (at the indicated points), a small
variation from the actual point of inflection is not of serious consequence
to Joad-carrying capacity.

Whether or not the deflection calculation would be made depends
on the design conditions. The greatest deflection will be in the end
spans and will probably not be far from the value 2-9 em for the case of
the indicated approximation.
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DESIGN EXAMPLE I BEAM WITH UNIFORM SECTION

Swuchlr. OM LotJdi.,

L ~13 m
W -=2·5 tim

Uniform Section Throughout

<D

!
I SYM ABOUT t
I

--4I...t--.......3m ---....~-13 in ........-

@ ~

DETERMINATE MOMENT DIAGRAM

f

MECHANISM

W.L' 4·625 X 13'
M. - -8- - 8 .. 97·7 m.t

M, - 0-686 M. - 0-0858 w.L'- 0·0858 X 13 X 13 x4·62S
MI (100000).-67·06 m.t Z - 0, - 67·06 2 520 - 2661·2 cml

100000
....... caIouIa~ ute ...~ - i 610
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DESIGN EXAMPLE I BEAM WITH UNIPORM SECTION - COt".

R..aiou (at Ultimate load)

~Wu I)Mp

R,f[I 1= I I I I I I I I I V

u
R (O.414L)-W (O-414L)' -= M Try ISLB 600

I .. Z" W =- 10'S em
R 1 t= 24·91ttl=- 60 em
.R.,c= y •• +V., == (-24-91+60-125)+30-06 1 =- 72867·6 em'
R. =t 65·275 t, R, == JV.L R. =60-125 t

Max SMar

V VI. ==35,22 t
Y (allowable) (Rule 2) == t 265 wd :::a 796·95 kg or 79·7 t<3S·22 t

.....OK
Cross-Se,'iofl Proportions (Rule 3)

6/'- :~~ = 13-55<17, •.. OK:i.L\\~/~?}/,:,:·.:-':/«~-:
600

4/W .. to.S em 57-14> 55

:. adopt 15MB 550.
check as follows

,- 1·93 em
b - 19-0 em
fI) -=- 1·12 em
tl ~SS-O em

V.... (allowable)=:z1 26S wdac77'92 '>35·22 .•••• OK
bIt == 9·8< 17 .•... OK
dlw ==49·1<55 ..... OK

Brae'", Requir~me,.ts (Rule 4)

Not' - Beam supports concrete slab, bottom flange exposed.

1'~·~m ..,. 13m T 13m 1 8m r- 1~·5m 1
f= lJm:l f f , ,
l1l 5@13m a65m -I

1'111111111" I(
(Cofl'itltfl4)

128
 



SP:6(6) -1m

DESIGN EXAMPLE 1 BBAM WITH UNIFORM 8EC'rl0N - e-M

Provide shear splices at points jndicated above. Alternatively splice at con.......t
Jocations for moment indicated in diagram.

Provide welded vertical plates at section 2.

DIft~/., WorAi"l Load P (Rule 16)

WL· 2·5 X 10' X 13·
3 at t8SEI - 185 X EI r= 2·9 em

3 4 · 5 6
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25.2 De.lan Example 2 - This is the design example of a 3-span conti
nuous beam. with dissimilar sections are to meet the needs of the different
spans. The simple span moment diagram is first laid out to scale to'
facilitate the semi-graphical solution. The centre span is the critical
one and requires an ISLB 450 shape.

Since it is only planned to splice for shear, the ISLB 450 member
will extend into the side spans to the points of inflection. The required
moment capacity of these two spans will thus be determined by the
moments at Sections 2 and 6. The magnitude of these moments (17·3 rn.t
and 16·0 m.t) are either calculated as shown or picked off graphically
as are the distances to hinge points 2 and 6.

All sections are satisfactory with regard to shear force. Since the
smallest beam carries the largest shear, the 15MB 300 need not be
checked.

Splices arc located at points of inflection and need be designed for
shear only. Alternatively, if full moment splices were desirable, then
the length of the heavier ISLB 450 beam could be decreased 1·5 10 on
the left and 1·0 m on the right. The position of the splices are indicated
by the dotted ordinates in the moment diagram. It is doubtful if the
additional fabrication cost warrants the savings in weight of main
material unless the latter is of paramount importance.

No additional bracing at Section 4 was specified because in this
configuration, this hinge will not form prior to that at Sections 3 and' 5.

1.-' • '''r' ~;':.~ ,. ,'•

. , "
. i'~'" '-r~' . :'

~',.- ." 130
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DESIGN EXAMPLE:.J CONTINUOUS BEAM

Structure and Loading

3-Span Continuous Beam

Dissimilar sections wil 1
be sp('cificrl to suit. the
moment diagram,

L ==8 m
•• 1-1 :,= 1·25 L

L 2 ::.:; 1·5 L
1.3 = t·O L

- ....--- L2 • 12m ---41.....~

JV" z:-: (1.4) (1. 35) --';' 2·59 t In1 .' . Ul IN '=- It'N
H/~.. ;...~ t·5 W"

Design thr- beam for single loading condition.

Moment Diagram

M.l = ~V"l~~ ~ ~~.5? ~~~ ;;; 32·375 m.t
8 8

t·S >,' 2'59 x 12'
AI,! = --- ~'8---- -- = 69·93 m.t

t·S x 2·59 x 8'M,s = ~-----_. _.._-. = 31·08 nv.t
8

a{ _ 1'5 WHL: ]\1: .
IY. p... - - . f6-'- = -2" = 350 111.t

M.2

J_.....

1'31
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DESIGN EXAMPLE 2 CONTINUOUS BEAM - Contd

M,,, (detr-rrruncd by scale)=zt7·3 m.t
M,e (determined by scale)=: 16·0 m.t

Mule ....,," - See moment diagram below

Z, - ~~ := 34-965 X 39·68 == t 387·41 em'
ay

R,tJelUms (tJltimate load) Use ISLB 450

dlw

450/0'806 =- 52·3
32'5/0,7 =46,4
30'0/0-67 ==44·8

bll

17/1·34 =12·69
16-5/0·98 ~--16'H4

14'0/102-4= 11·3

W..(J·S)'
R 1(3'8) - -2--- = ltfl'2 R 1 = 9·47 t

\ ) (t·S WNL.) R. GIl 39·74 t Use ISLB 338
R. :: V~n+ Va. = (W~L,-Rl + ----2"--- z as 687·8 em'

- W.(3·O) 117 IE: 11·16 t
R.,(3·O)-(1·5) = -2- == Alpe

R
I

=0 l's.+ VIC = (1'5 W UL3-R,)+
(~:~~"f_.! RI = 43·23 t Usc ISLB 315

Note-Total R=t03·6==Totalload applied ..... OK

Crou-SectitJn PrO/>orli01ts (Rule 3)
d Section

(blt< 17; .-. < 55'0)
, w ISLB 450

ISI.,B 325
ISl.1B 300

S/Jlie,s

Provide shear
splices at poin ts
indicated

---17 rn ----

'til' Right End Span
VAlu c= V (in this case) at point 0:splice ==1'5 X 2'S9x (8-2·25)-B7 ::alt-t? t
From Rule 3 V c of 15MB 300=1 26S wd ==25,4>11,17 t .

1.. Middle Spa,.
V'c of 15MB 450== 1265 wd -=48·95 t
VJI •• == Va.==23·31 t<48'9S t
The ~illd tnll span need not be checked as the smaller section used in right end

span is found adequate.

Braei", R~qui"ttttntts (Rule 4)
Top flange continuously supported by concrete slab as in Design Example 1.
Provide welded vertical plates at sections 2 and 6 as in Design Example 1.
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15.3 Deslin Example 3 - This design example is the same as Desicn
Example 2 except that a uniform section is used throughout, reinforced
where necessary with cover plates on top and bottom flanges. The left
hand span controls the selection of the uniform section, a section which
turns out to be adequate for the right-hand span as well without being
wasteful of material. , .

To carry the moment at location 4, cover plates are required with
a moment capacity of 25-51 m.t (M.-2M,). Two plates 12'Ox2-5 em
will be adequate. They should extend somewhat beyond the point at
which M,= M p• This distance is selected as about 0-2 m and the plates
should, therefore, be 8 m long.

'Two local (beam) mechanisms result. The reactions were not com
puted in this example, the same procedures being used as in Design
Example 2_

The shear force begins to approach (but does not reach) a critical
value in this problem. Had it exceeded 35·9 t, then local stiffening of
the web would have been required in the region in which V > VJI ...

The position of the splice(s) is controlled ill this problem by trans
.port requirements. A single splice (for shear) is shown at the point of
inflection in span 3-4. The cover plates are to be fillet-welded to the
beam flanges.

Comparing the weights of three designs (uniform section, design
Examples 2 and 3), the following is' obtained:

Design Shapes Unit Weight Length Weight

Uniform section ISLB 450 65-3 kg 30m = 1 959 kg

Dissimilar'section ISLB 450 65-3 kg 17m= 1 113-1 kg
ISLB 325 43-1 kg 7·25 m =- 312·5 kg
ISLB 325 43·1 k~ 5-75 m = 247-8 kg

1 673·4 kg

Uniform section with 15MB 350, 52-4 kg 18 m - 1 572 kg
cover plates 12·0x2·S 18~-4 kg

em plate
1 760-4 kg

The lightest design is, therefore, the one in which dissimilar sections
are used (Design Example 2). However, local fabrication conditions
would dictate whether or not the extra splice in this design would be a
more economical choice than the fillet welding of the cover plates of
l)esign Example 3.
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DESIGN EXAMPLE 3 CONTINUOUS BEAM WITH
COVER PLATES

(Same as Design Example 2 except for cover plates being used on a uniform section)

SIrwfN,e aM Loading

Same as in Design Example 2

II...,., Diagram

Left span controls
the design.

M,. -=0·686 M,
-=22·21 m.t

Z -=881·46 em'

SlII,'io,. of Seclion

Uae ISMB 350
Z -=-889·57 em'
M~ - 2~·.2 m.t

I
" I

22·21 m.t'Y-L.- M ....

I
I
Il __

._/om., PliJUs

1
~ M, ca69·93-2(22-21)-=2S·S1 m.t

A'J :aa AM~ _ 28-9 em.
o"d

V.. l~O X 25 mm plate
AItI~ -~6·66 m.t

134
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DESIGN EXAMPLE 3 CONTINUOUS BEAM WITH
COVER PLATES - Contil

M.cltJ"is". - 2 beam mechanisms

RMeIiOftI- Compute by statics. 5" prevlous examples.

Slt,tw Forc, (Rule 2) VAl•• -= V•• =:23·31 t*
VJI.. -=(1'26S)«()081)(3S0)==3S'9 t>23·31 t OK

14·0 35·0
Cross-Section (Rule 3) bl' == 1'42 -= 9·S, dlw I:: 0.81 -43-14·0 em. · · •..• OK

ISMB3SO

r 120.25""" PLATE

f
Provide splice as indicated in the sketch above.
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26. DESIGN EXAMPLES ON INDUSTRIAL BUILDING
lPRAMES

16.1 The designs of rigid steel building frames of the ' industrial' type
are illustrated in this clause. This includes single-storey structures
only. Single-span and multiple-span frames are treated. The problems
include fiat and gabled roofs, pinned and fixed bases, and the use of
haunches is illustrated.

26.1 Deelin Example 4 (Sln~le SpaD, Flat Roof, Hln&ed Baee)
A single span, flat roof, pin-based frame to withstand vertical and hori
zontal load is worked out in this example.

All applicable f rules' will be checked. In the absence of wind-,
F -,1·85. For the second loading condition a load factor of 1·40 is
applied against all loads (livc+dead+wind). The uniform vertical load
is replaced by concentrated loads at the quarter points (sketch d), since
in tile previous examples we have already seen how to analyze a problem
in which the loading was actually assumed as distributed. The distri
buted horizontal load is replaced by a single load acting at the eaves line.

In arriving at the preliminary choice of member sizes, it is assumed
that a uniform section will be used. The important load is the vertical
load and thus maximum restraining moments at the ends are desirable (21).

The analysis is carried out by the statical method (17), The redun
dant is selected as H., the horizontal reaction at 6. The fixing line
t-a-b-6 is drawn such that a mechanism forms as shown in sketch tI.
This is a case where, necessarily, the frame is overdeterminate at failure
with hinges forming at .locations 2, 5 and along 3-4. The required plastic
moment is 29·97 rn.t ,

Case II is now analyzed and it is found that the mechanism is the
same as that for Case I, being shown in sketch f. The composite
moment diagram is that shown by the shaded portion of sketch e. In
that sketch, the solid line is the determinate moment, the dashed line
the moment due to loading by the redundant H,. The required plastic
moment for Case II is 39·69 m.t, This case, _therefore, controls the
design.

In selecting the section, a plastic modulus of 1 764 em' would be
required. ISLB SOO supplies a Z of 1 774 em'. In view of the fact that
the analysis was carried out on the basis of concentrated loads
(sketch b) the lighter section would certainly be adequate. The dotted
parabolic moment diagram reveals, in fact, therequired M, is reduced
hom 39~9 m.t to about 38·0 m.t as determined by scale.

After the reactions are computed, the next step is to cheek the
secoadary design considerations. In checking the axial force (Rule 1)
it is found that PIP, == 0·14; the full value of M, is thus available.
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In checking for lateral bracing, it will be assumed that the purlin
spacing is 1·5 m, Between bracing points the ratio L/" is 44·5. Now,
this value is greater than the value L/" = 30 given in Eq 51, but this
value also assumes that some plastic rotation is required. In the rafter
all that is required is that the section reach M p since the last hinge forms
there. So the 1·5 m spacing is adequate.

Turning attention, now, to the columns, the girt spacing is also
assumed as 1·5 m. Since the first hinge forms at location S, the selected
spacing may OT may not be adequate depending on how much plastic
rotation is required to develop the last hinge in the rafter, and how much
the adjoining beam lengths restrain the C critical' segment. While one
could calculate the required plastic rotation at point 5·, it is quicker to
check the restraint coefficient according to Appendix C. This has been
done in the problem; the restraint coefficient, CI , turns out to be 1·3,
increasing the critical bracing slenderness ratio to 39·0. This is close
enough to 39·5 for the selected 1·5 m spacing to be adequate.

Bracing details are suggested in the example.
None of 'the columns are loaded in single curvature and, since

P/P,<O·15 the full plastic moments will be transmitted.
The connection detail is sketched b, the thickness of diagonal stiffener

being determined from Rule 10.
Although the deflection of such a structure would probably not be

computed, an C estimate' by Rules 15 and 16 shows that the deflec
tion is less than 2·27 em. This is undoubtedly satisfactory since the
crude limitation, L/360. gives 2·5 cm as the limit,

, -The rotation ans1e bas been calcu1&ted and found to live a value of I/f!s < SoO

iDcUeatiDS a small rotation anale requirement. ·
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DESIGN EXAMPLE 4 SINGLE SPAN PRAME, FLAT ROOP
WITH PIN BASES

SINt"'re lind Loadi",
LCHldiftl ConditiOfts

Case 1-- (DL+LL) F IE: 1·85
W.. as" X 1-25:mr7·40 tim

CtU6 11- (DL+LL+Wind) -=1·40
Wv ==4'Ox 1·40=-5-6 tIm.. w..
WA =0·95 X 1·40-1·33 t/m==O·3 W.

'i'III",,'~::,7"''''i
J 4 I

I.JJllmJ
T

L.t. L.''''al''
1
•

(a)

.~f12~t
3 "

, .
(b)

Replace uniform vertical load by concentrated loads at quarter point P ,." W;L

Replace horizontal load with concentrated load with equal overturning moment
0·3 W ..14

W == ----.- == 0·1 W ..L
3

Plastic Mome," Ratios -- Uniform section throughout
Case 1 - Analysis

MOnJe,,' Diagram (Redundant == H.)
PL W..LI 7·4 (9)'

M, == -- sa _.- ---
4 8 8·

M, &: 59-94 m.t
M,

Mil aa 2 -=29·97 rn.t

M,cluJnu. - 5" sketch d
R,flel'OfU

M, 29'97
H. -HI - -I - -6- '.. 5 t

VI - Y... P- 7-4x4'S .. 33'3 t
(COfUi.."tI)
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DESIGN EXAMPLE 4 SINGLE SPAN FRAME, FLAT ROOF
WITH PIN BASES _w Contd

(e)

"- "I

(d)

NOTE - The values given above are to be compared with values for Case II
and maximum figures used.

CIJU 11 - Analysis
Mom,,,' Diagra.", (Redundant -= II,)

W"LI
M, (Det)z=.W1a==WoL/IO(2L/3):= ·--fS

... 5·6x9'/tS=3~24m.t
PL W..l..1

M. 1::2 -.- == "8' == 56·7 m.t

Epilibritlfn at 3 -~ M. +1 M'=2 Mp case II (with wind) la-erltleal

M, - ~fl.:1t22-68 "'" 39·69 m .t

Selec';cnt of Seclion
39·69 x 100 000

Z ~MI'Gy sc -·~2S0·-- =1764

Try ISLB SOO
Z - 1 773-7 em'

AI"11.,,;5,,, .- Sketch f

Iletittitnts (ultimate load)

H. - ~~ ..~ -6·6 t
" 6·

H 1 - H. - W -=6·6 - S·04.. t·S6 t

(e)
(CO",;"...)
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DBSION BXAMPLB 6 SINGLE SPAN FRAME, PLAT ROO.
WITH PIN BASES -- COfdtl

V H,i+M, t·S6 x 6+39·69
I - L/4 - 2-25

-21-& t
V. -2P~ V l-47-44-So-4-21·&-28-6 t

", N.

More refinecl cbeek .. nee......,
aa pea- Appendix C.

(f)

MOIIf#II' CA,c.
M. -M,-M,-39-69-30e24-=9-45 m.t
M, - V.(2·2S)"-H.(6) ==24·66 m.t .. _. - .. - . OK

.d.ual Foru (Rule t) (Right-hand column critical]
P V. 33-300
p''' GyA all 2S20x9S.S ms: 0-14<0'15

SAt.,. For" (Rule 2)

VJlIU - V•• =- V.-33·3 t
VJI .. (ISLB 5(0)-=1'265 wd e:S8'2> 33·3 - ..• _OI{

Cr'OSs-SIe'io" ProportioNs (Rule 3) r

18 50-0 ~
bl' - t-41 aal'27, dlw == 9-=2 ..54, ...OJ\.

~IJI B,ae;"1 (Rule 4)

S/HMJifll
!:lJ _ t -5 X 100 all 44-9r, 3'34

Rafter hinle OK, Last hinge forms in rafter
_ M 314M,

Column binle - - -- ..O~7S
Mit M,

( 60-40:,)-30<39'5
La - 1-5 m
LL - 1-5 ID

(,)

(Coflfi.tU4)
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DESIGN EXAMPLE ~ SINGLE SPAN FRAME, FLAT ROOP
WITH PIN BASES - COHill

Lila ~ critical length of elastic segment in column between the tirst and
second girt down from the roof.

•• I.R" == L .. -=3·6· m

LL" == critical length of partially plastic segment in girder adjacent to
section 5

LLer =(60-40 M/Mj)",- (60-40 3~:~~) 3034

-190 em
Evolution of restraint coefficient:

.f ~ ~(l:!l-_ +L.!:-) == I (I.S + !.:!) sa 0·6
LRM t.u; 3·6 1·9

Cf r= 1·3 ( LeB ) == ct LB -= (t·3)(30·0)aa39·0<39·S (Adequate)
"y , ry

nraei", Details
1) Provide welded vertical plates at the three central purlins.
2) At sections 2 and S brace to inner (compression) cover from pu rlln,

Col.,,,.,,s (Rule S) (Rule 7) (Right-hand column critical)

~ -=0·14<0·15
PI

., Full Ml' is available

. LI"v 39·5
weak axIS: t- 330 5111- 330 11:I:0·88>0·125

COtItUcliOJJ Del4il (Rule to)

1• .-: ~~(~ _ Wd)=- V2 ( 1 543.2 _ 0·92 x SO)
b d \1'3 18 so V3

-O·$cf"cm

Su Sketch Jt.

NOM - 0-7 em thick,plate required to meet
bl' use 9-0x 0-7 em plates al
Itiftenerl.

Spli e e«: Provided u part 01comer connectlon
detail

Nc* - Snap the comers (no weld).

•• 10-0
,,' ISLB 100) - m - 16·6 correlpondiq to this ratio ~/'. if 1/6 - 10 ("ax) the pehIlltsible be8d1Dc

sue. ,.. - 1 .71 kI'tm' (HI Table I). , - 10x IS-leO GIll or a·, m.
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DESIGN EXAMPLE'& SINGLE SPAN FRAME, :fLAT ROOF
WITH PIN BASES -' Co,lItJ

D_jl,cli01t "' Worki", Load (Rules IS. 16)
Ultimate load P., := 25·2 t
Moment diagram Sketch c
Mechanism Sketch f
Free body diagram Sketch i
Slope deflection Eq: (9,.-9••)
8 8fJa + 1 (M Mt ) 8u. 1./4 (9 9'45)

11':= I 3EI 3- 2 ICII L/4 + 3El -3 '69+ T

9...... 9~& + 3~;4 + ~~~(39.69 + 39~69)
Ii' PLtfl., IDS 0·028 »r
•• 3t1. __ 3" ~ 4·2 em

3u 4·2
3w < Ii = t.8S ::: 2'27 em

(I)

M.::II 9·45 m.t
M 3 == 39'69 rn.t
M. ca 39'69 m.t
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26.1 D••lall Example 5 Sinale Span Frame with Flat Roof and Fixed
BaM - In this design example a similar frame to that of Design
Example 4 will be designed except that the bases will be fixed. The
frame will have a span of 16 m, a column height of 5·33 m, a uniform
distributed vertical load of 1-7 tIm and a side (wind) load of 0-7 tIm.

Considerable expense is involved in providing sufficient rigidity to
resist the overturning moments at column bases, and this factor should
be considered carefully to see that the additional expense is warranted.
There is less advantage to fixed column bases if the side loads are small.
At the opposite extreme is a structure designed to withstand blast load.
In one instance the capacity of a structure to resist externally-applied
side load was increased nine-fold simply by fixing tht.- column bases and
without changing member sizes whatsoever. Quite evidently there are
areas where the additional construction expense would be' warranted in
view of .the improved load-carrying capacity of the structure. Since
plastic design makes maximum possible usc of the material, it extends
the applicability of fixed column bases. Tall buildings, and industrial
frames carrying relatively large cranes which might otherwise be sensitive
to lateral deflections would constitute two other cases where fixed bases
would be considered.

As in the previous example, the most economical design results from
using a uniform member throughout.

Of the various methods for handling distributed loads, one which
has been discussed (see 19) but not yet illustrated is to assume the purlin
spacing at the outset and to analyze the frame on the basis of the purlin
loads. This method will be used here; the purlin load is found to be
6·29 t for Case I and 5·76 t for Case II.

The mechanism method of analysis is used in this problem in view
of the greater redundancy of the structure when compared with Design
Example 4~ For Case I with no side load, mechanism 1 will control and
it is found that M, = 50·32 m.t, Note that if the actual distributed load
had been used, then M, = W..LI/16 = 50·32 m.t, This is the same value
as for concentrated load, rnd is contrary to expectation. The reason
is that the end purlin reacts directly on the column, Although the frame
is redundant at failure [1=X-(M-l)=3-(3-1)=1] the moment
check is easily made by remembering that the elastic carry-over factor
is .one-half for cases such as members 3-1 and 4-5.

Analyzing Case Il it is found that mechanism 1 still controls with
a required MIJ of 46-08 m.t, In this part of the problem two approaches
are possible: (a) try the two most 'likely' mechanisms, namely, Mechanisms
1 and 3; or (b), try Mechanism 1 and make a moment 'check, The fonner
was done in this case, the moment check following for mechanism 1··
when it was discovered that Mechanism 1 controlled.
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Case I is found to be critical with a required M, of 50-32 m.t con
sequently an ISLB 550 shape is specified (Z = 2 228-2 cml).

The check (according to Eq 51) to determine the adequacy of the
selected girt spacing again indicates that more refined calculation is
needed. This is made according to Appendix C and it is found to be
adequate.

The work axis check for the column is not needed, the axial load ratio
being a very low value. -

A deflection analysis was not made in t'his example. If desired, the
procedure is as outlined in 23.9.1. Since Case I is the controlling condi
tion, the deflection would be calculated on the basis that 9•• = 0 (last
hinge forms at the centre of beam).
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DESIGN EXAMPLE 5 SINGLE SPAN, FLAT ROOF,
FIXED BASE

S',,"clur. and Loadi"6 - Sketch a
Loadi,., Conditions [Purlins at 2 m spacing)
Cas.l-{DL+LL) F=I'SS

W tf == (1 7(0) (l'SS) ::::II 3 145 kg/m
p • .. 2 W.. == 6'29 t

1700kg/m~
-~_-___ __ .. -.Z~ e- _~-~~-=... _

700kl/m~ z~__

I·

(b)

<I>
Wv =-(1'7)(1·40) =2'38 tIm = W.
W. =-(0·7)(1·40) ==0·98 tIm ==0·412 W.

f P P
w~ _ ~ -

W,.ht

W =:-va
e-O'412 W,,(2·67)

cz= t·l W.,==2·62 t

Plastic Moment Ratio-Uniform section
throughout

C.,. 1 - Analysis (Mechanism method)
Pos.ibZc plastic IJi"'Ies -=S (sections 1. 2. 3, 4. 5)
Po&sibz" mecIJClnisms lZK 2 (tic: N - .."f(= 5- 3 == 2)

Elementary: No. t and 2
CompOjite: No. 3

t ~!.

Case II - (DL +LL == Wind) F = 1'40
P u == 2 "'11 I:: 5·96 t

NECH , "CHZ

1 1•

MEeH I

(c)
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DESIGN EXAMPLE 5 SINGLE SPAN, PLAT ROOF,
FIXED BASE - Co,tttl

Solution for Mee1atJ"ism 1

MI(9+29+9) - P~A ( 1+2+3+ ;)2 - 2PL9

M PL 6·29 X 16,-=,- == 2

50·32 m.t

MOtIf"" Check - Sketch d

MIJ 50·32
Nt 11:= 2- == -2- ED 25·16 m.t

lWay equilibrium

M. - M 1 z=: 25'16<M~ .• OI{

RMe/iOftS at UltiMate Load

VI -= V. -= 4P .. 25·16 t
M.+M1 75'48

Hi .. HI =:-- == -- - 14'16 tA 5,33, -

c... II-Analysis
H ,''',, .IId M echanis", (See Case I)
501"';011& for M ,chtJflism 1 - Sketch o

PL
AI, - 2" &::: S'76x8 =- 46'08 t

(d)

50-32

(.)
SolI/lion jot' Mechanism 3 - Sketch •

Mp8(1+; +; +1) "'" W91+ Pi9 [1+2+3+~ (1+2+3+.) ]
3

5,2 M, - 2'62(5-33) + "2 (5'76)t6

M, ..29'27 mot
NOTB - Moment at the centre of beam <50-32 m.t.
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DESIGN EXAMPLE 5 SINGLE SPAN, FLAT ROOF,
FIXED BASE -- . Contd

Mo» ..en! Cluck j;.JI' Mechanism 1
Assume ]\4" .-;;-';: MI' .md use trial and error method.
: J\{t-Mt·+UPh =0

M 1~ Jl,f.-:- TVh -=-..:JIt!p.- (2·62}(S·3J) =46'08-13'96~
. =32-12<46-08 m:t~M" _.. _OK

Selection of Section - Case I (w rthout wind) is critical
Use ISLB 550
A :.= 109-97 em' b =9·90 nun
ti ==550 min; u' =15-0 rum
II ~ 190 mm; S :::: 1 933·2 CUll

rv =3,48; 1 ~= 53161·6t: tn f.

Axial Force (Ru 1(~ 1)

Slt~a,. FOYfr (Rule 2)
VM4I% == Va.!-=:.: V,;~2S·t6
Allowable V = 1-265 tud -=68-9> 25·t6 _..Ol{

Cross-Section (l~ull: J}
hIt =12-67<:' 17
diu' =55,56 Slightly> S5 _.... Ol{

Lateral Bracing (Rule 4) - Spacing Clleck
Rafter (purlin spacing c:: 2 m)

:: = ~;.;:;o = 57-47>35 - - - - - OK as last hinge in the rafter

Col~m" (girt spacing =zt·5 rn from top)
LB t·5x100- ==- -_.__.- = 43-1
"'" 3·48

5

~ ~. MI'-16 (MI'+Mt~ = [50-32- M~ (.~O-32-±'.~~-~)]= 0-53
Mp Mp 16 50-32

'''(LB) MFrom Eq 51. - == 60-40
M

::::: 38-8<43'1
ry c,. p

: _ A more refined check is necessary
Evaluation of restretint coefficient

(
1 R LL ) (t-5 2'0) (l'S' 2'0)f -= t _J_ + - = j --- + - =. --- 4- ._:- == 0·715
L~" LL" t.; La 3'8* 1·93

C/o: 1·2

(LB) LS .
:" - mz C/- -= t·2+3S·Sx46·S6>43·t .. _.. OI\.

,~ ")1 .
lJraei,., Deta,Us

1) Provide vertical welded plates ~ centre as in Design Example 1.
2) At Section 2 and 4 brace to .inner (compression) corners. .

." 110i" - W -. ae·a, I ~ IOxll- a·8 m.
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DESIGN EXAMPLE 5 SINGLE SPAN, PLAT ROOl',
FIXED BASE - Ccn"d

Col","", (Rule 5) (Rule 7)
p15; -= 0·092<0·15

:. Full M, is available

COfuueliOfl D,'ail (Rule 10)

t• .. v.~(~ _~~) = V2(t933·2 _ 0'99 X 55)= 0.3 em
b d v'j 19·0 55·0 '\1'3

Use 8 x ,-, em plate. as .~",lces

Spliu,
Su detail 11 in Design Example 4. Provide as part of comer connectioi

(Beam ia continuous aCT05.t; column top).

FrQnN Layout

ISlB ISO
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The internal work is:
W, == M,8(1-39+1)= 2·39M1'8

thus

SP:6(6) -1m

~'.3 OHlin Example 6 (Slna1e-speD Portal Frame with Gabled
Roof)- In this design example a single-span portal frame with gabled
roof will be designed to resist vertical and side load. The frame has a
span of 30 m, the column height is 6 m and the rafter rise is 4·5 m. Greatest
economy of steel will be realized if haunches are used at the comers.

The vertical distributed load is replaced by concentrated loads appUecj
at the purlins (1-5 m spacing). The horizontal distributed load is replaced
by a single concentrated load, acting at the eaves, which produces the
same moment about point 1. In other words, it is a concentrated load
which produces an over-turning moment equal to that of the uniformly
distributed load,

Since the frame is only redundant to the first degree. the equilibrium
method of analysis is used. It may thus be determined that the hinge
forms under the second rafter from the crown, The problem is to find
the required plastic moment of the girder and then to proportion the
column for the required moment at location 2. The required MJt-value
is determined by equating the moments at these locations, The required
plastic moment for this case is 59·9 met.

Instead of using the statical method of analysis, the mechanism of
sketch c could have been used as the basis for satisfying the equilibrium
condition. The position of the instantaneous centre is first located (s"
sketch a below), the 'coordinate being 9·6 m vertically and 4-17 m hori..
zontally from column base number 1. The mechanism angle at hinge 3
is, therefore, (2-7/6-9+1)9-1-39 8. The angle at section 4 is equal to
8. The vertual work equation may next be written. The external work
for one-half of the frame is:

WE = P8(O-33+1·83+3-33+4-S3+6·33+7·S3+7-S3+7-S3/2)
--P(2-70/6-9)(1·5+3·0) '--"

WE = 34-46 P8 2.....
4 , •

ROTATES BY •
ROtATES IV (i:i+ 1 ).

--l 1--1-".
34-46x4·16

M, == 34·46 P/2·39 z:: _ 2.39 = 59·0 m.t

which is, of course, identical with the answer obtained before by. the'
statical method.

Analyzing for Case II, the redundant is selected as H. (sketch ~•
.The moment diagram for the determinate structure is shown by the lOUd
line in sketch o. Rather than work Case II as a new problem., it wiD
only be determined whether or Dot the member selected for Case I II
adequate for the Case II loadine. Therefore. the compolite momeat
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diap-am is drawn such that the girder moment is 59·9 m.t, the value
obtained for Case I. The mechanism is shown in sketch f with hinges
forming at Sections 4 and 8. The problem is to find the moment at 8
and observe whether or not it is greater than the 101·1 m.t found for
Case 1. From equilibrium at Section 4. H. is determined (6-95 P); hence
by equilibrium at Section 8 it is found that the required llfp - 8S-7 m.t,
Since this is less than the value of 101·1 m.t, the Case I appears to
control.

The moment check should still be made, and while satisfactory, the
moment at Section 7 is very close to the maximum available M,(59·22
as compared with 59·9)_ The design of details should therefore be
carried out on the basis that a plastic hinge could form at Sections 4, 7,
and 8 (and by symmetry Sections 2. 3, and 6).

Case I is thus found to be the critical case; the reactions for this
case are_also the greatest.

.In checking for axial force, it is found that the PIP" ratios are
greater than in the previous problems. As a matter of fact. the axial
force ratio is higher in the girder than in the column because the member
is lighter and due to the sloping roof, both the horizontal and vertical
reactions at the column base produce a thrust component in the
rafter.

With a purlin spacing of 1·5 In the Ls!,.y turns OU~ to be 39-5. In
the centre hinge positions (locations ... and 6) this slenderness ratio is
satisfactory even though' the moment diagram is • flat' because the
corresponding plastic hinges will be the last to form. With regard to
the hinges that form in the rafter and adjacent to the haunch, a consi
deration of the moment ratio (MIMI' = 0-406) shows that the resulting
allowable slenderness ratio is 47-8 which is greater than the value of 39·~

supplied. No further check is therefore necessary. Concerning the
column, the member was proportioned simply to' provide strength and,
not to participate in mechanism action. A single brace between the
end of the' haunch and the column base would, therefore, be
adequate.

With regard to the bracing details, support is required on the inner
(compression) side at all points on the haunch where the flange force changes
in direction. It is 'considered desirable to provide similar bracing at the
peak. Concerning the bracing at plastic hinges that form near the peak,
it was pointed out above that the two loading conditions required very
nearly the same plastic modulus. In the one case the plastic hinge forms
at the second purlin (3 m) from the crown and in the other at the third
purlin (4-5 m), Therefore it is desirable to brace at all four locations.

In calling for a 1-0 em plate at the peak (sketch ,), it is assumed
tb..t the web will carry no thrust, and, a plastic analysis is carried out to
proportiOn the vertical plate stifiener.
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The 'design' of the haunch details is controlled in part by the
initial choice of dimensions. At the outset it was decided that the
haunch would extend 3 m into the girder span and 2-0 m down the column
as shown in sketch b. The remaining geometry is open to choice, to
a degree at least. For a geometry similar to that selected in this example,
it has been shown that the angle shown in sketch j should be greater
than 11018• An angle of about 13° gives a depth d1 of 118 em providing

, a reasonable appearance, and is therefore selected. As required by
Rule 11, the flange thickness is made 2-5 em which is 50 percent greater
than that of the ISLB 600. The width of this flange is made uniform
at 21·0 em along the girder portion of the -haunch and then is gradually
tapered to meet the 25·0 ern width of the ISWB 600 flange. The web
is selected at 1-2 em which is about the same as that of the rolled members
joined.

If, for some other problem the geometry were much different from
that shown in sketch k, a further check on adequate strength of the
haunch could be made either by the elastic method of Ref 28 or by an
approximate plastic analysis. In the latter case, we would check to see
that the plastic modulus supplied at the critical section exceeds the'
required value by the same margin as that which exists at Section 7.
This calculation may be carried out using as a value for Z the expression
given in Eq 69:

J UJ
Z = bt(d-t)-t-:4 (d-2t)1 ... (69).

Such a calculation for this particular problem also shows the design to
be adequate.

As far as the remaining details of the haunch are concerned, the end
plates need only be of reasonable thickness, and on the basis of the cal
culations made for the peak, are selected as 1·0 ern, The diagonal stiffener
thickness shsald be equal to that of the rolled section flange. A 1·6 em
plate is therefore selected. .

This completes the design of the frame which is shown in sketch I.
With regard to splices, the columns and haunches could be shop-assembled
with a field splice... at Section 7. Alternatively, a splice for full moment
using high-strength bolts could be made at Section 7 or bolted splices for
less than full moment strength could be supplied at a section near the
point of inflection (haunch in sketch I).

It is of interest to compare the results of this design with the elastic
solution and with the plastic solution for the case where no haunch has'
been used. Not only is there considerable savings in each' case of the
plastic over the elastic design, but it may be shown that possible ~ht
savings may be achieved in plastic design as well as elastic design when~
ever a haunch is specified. Of course, the haunch fabrication. expense
should be borne in mind when making comparison of overall costs.
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DESIGN ItXAMPLE 6 SINGLE SPAN GABLED FRAME

S'rw"", .nd Loadi1l' - Sketch b

l.otJ4t., COtIdit·ions
Purlin spacing assumed == 1·6 m

C.., 1- (DL+LL), F -=1·85
W • .. (1'5){1'8S) =2·775 tIm
p. -1'5 W.. ==4·16 t

(~)

ellu 11-(DL+LL+Wind) F =1·40
P. -1-5 W..==t·s X 2·1 =3,15 t W" = (1'5)(t '40) c:=2·10 tIm == W..

WJa ==(0,9)(1'40)=1,26 tl mfZ:l0·6 W..

(h+f )'w. T 1·26 (to.S)'
g- .. 11·S8=-3·67P

It . 2(6)

PltuHe MOfJUnls Ralios
Adjllat AI, to suit the Moment Diagram - See below:

C... 1- ,AftlJlysis (Statical Method)

)I...., DifJlf'am
I (Redundant ell H.)

WvL' t
JI, - -8- =- 2.775(30)1 8 == 312 m.t

tBpiUl>rium - H 1(8)-M. (Determinate)==M. (Determinate)-H1(9·6)- M,

M. ... (t~P)(3.0)-P(1-5+ D... 27 P

M. (10P)(U.~)-p(1-5+3+4·5+6+7.5+9+10·5+~2) ... 72 P

M,+M.\ 99P
HI - 9.6+6.9 =- 16.5 - 6 P
M, -72P-6P (9·6)-14·4P-59·9 m.t

Cobuaa: M, (Col)-(HJ'<4·05)-6P(4·0S) 24·3P-l01·t m.t
. (C""Httw4)
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DESIGN EXAMPLE 6 SINGLE SPAN GABLED FRAME-Co,,'"

M "IuJ"ism - Sketch a
MOJIUfI' Chech - All M<M~

R,aeltOfts
HI -=H. == 6P==24·96 t
Y l .. Y. == 10P=41·6 t

(c)

•---- ...t..(d)

HAIIClI

.... .,
11\....

Mechanism - Sketch f
Equilibrium at Section 4
M,+H.(9·tS)-=Determinate Moment

at 4
Determinate Moment at 4 == (0'65)

(22·04)+M.

M. -(10P)(10'S)-P(H+3+'H+6'O+7'S+9'O+ l~'S) (e)

M. ~68'2SP
59·9

M. should be atljuste4 asM.'lIC:M, :aD 3.15 -19·01 P

H.(9·lS)==(6·!){22·02 P)+68'2S P-t9'Ol P
63·5

H. a:a 9.15 :=: 6·95 P

EfuilibriN". " Sectio« 8
M. == H.(4·05)
M. - 88·7 m.t<101·1 (Case I)

MOffN'" Cue" - Diqram plotted - sketch,

M, - H.(6·9) - M ,(Determinate) -6'95 P(6'9)- [ toP(3) - p( i-5+ ~O)]_ 22~O: P

M, - 18·8 ~ -59,22 m. t<59·9 m.t

Cas, 11 - A"alysis :
Mo.,.ent Diag,.am-(Redundant -H.)
M, =75 P.,
M corner (det) c= (2(6);-:22·02 P

R,aelicms

H. - 6·95 ~ -21'9 t
HI - H.-fi -21·9 t -3,67 P
H, - 10'32 t
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DESIGN EXAMPLE 6 SINGLE SPAN GABLED FRAME - Cotll4

18 P(1SH: (30)-Q(6) .

VI CZ :s: 8·71 p
30

VI == 27'62 t
~ Y, all 20 p- V1=lS·9a::a3S·38 t

NOTE - Case t reactions control the design .
•

Caae I (without wind) la crldcal.

)el,ction of Slclion

Girder: Z =:2 ~ -= (59.9) (100 000) =-"2 380 em'
0)' 2 520

Va. ISLB 600
A II::: 126·69 em'
d .. 600 mm
b z= 2tO mm
t -= 1S'S mm
w m:a 10·S rom

Column : Z =(101-1) C~~) .; 4 020 em'

Vee ISWB 600
A - 184'S6,cml

d -= 600 mm
b == 250 mm
I === 23·6 mm1',.. 5·35 em

(h)

1'2: 3·79 em
Z - 2 798·6 em8

S:IC: 2 428·9 em'
I II: 12 867·6 em'

w.. 11·8 mm
Z .. 4341·6 em'
S == 3 8~'2 em'
I == 1 15 626·6 em'

p V. 41·6 x t 000 41 600
Column: P, o"A == 2 520 A == 465.85 ==0'0893 <0-15 .. · · · OK

Gi,d,,,: P H. cos 9+(Y.-2·S P) sin 8
P, 2 520(126'69)

8 c= tan-1 ~-? := 16°40
15

sin 8 == 0·288
cos (J == 0·960

~ :a: (24,96)(0,96) +(41·6-2·5 X 4·16) II: 0·288 <0.t5 ••••• OK
P, 2'S20x 126·69 0·103.

SA6ar Fore,
y..... a: Shear at end of girder

Y_ - Y, - ~ -41,6-4i6 -39'52 t

Permisaible shear -79·7 t>39'S2 t ...•. OK
(CO"",,,,")
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DESIGN EXAMPLE 6 SINGLE SPAN GABLED FRAME - COlI'"

Cross-Section Proportions
Girder

bIt ~ 13'55
dlw = 57·14

CO/14mn
10'59 <17 OK
50'85 <55 - . OJ\:

Late~tJl Brat:ing -- SPaci'llg Check
Gi,.d,,. - (purlin spacing =:: 1·5 m)

LB = !-'5xl00 = 39-5>35
,., 3·79
, centre' position OK as hinges form there last.
Check moment ratio correction on hinges at haunches.
M.=M/J=S9·9 m.t

( 4-2~~)MA c=-Hl(7'~S)+V1(4·S)-P 1,5+3 +

M..t -== -24,34 m.t

.M..t.. M- ex 59-9= +0-406p ,

(LB) M- C, I::: 60-30- e: 60--30xO'406r, ~W,

=·47·82

>39,5 ....OK

Provide brace midway. between end of .!!!......
haunch (Section 8) and column base.

OK because large hinge rotation not required
at Location 2.

(I)

LB c::I 2·00x 100 ZlIl 37,4
ry 5·35

8,tUI.., DIIIJils
Haunc~.s-Providebracing to inner (compression) flange at each end and at centre.

PellA -'Provide bracing to inner llange.
. Nol. - l"hese purlins should be adequately braced in order to provide

support to rafters.Col.,,,.,...
p . .~ .
P, -= 0-098<0-15 .. _.•.• Ol{

L/, - 37-4<60 - ••.. OK (Rule 7)

(COfI,iflw,tl)
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DESIGN EXAMPLE 6 SINGLE SPAN GABLED :BRAME - COllI"

COfI".mOtJ DettJils
P,a" - Proportion stiffener to transmit llange thnlst_

o,A. c= 20)' AI sin 8
bt, :II:Z 2bt sinI
I, 81 21 sin

.. (2)(1-55)(0-288)
=- 0·89 em

Uae 10 mm plate
HIJ"flcA (Rule t t)

GeOfMtry - Sketch Ie
Select ~ ~ 13° (>11°)

FltJfJ"
'/ -1-50 t
II 11::1 (1-50)(1'55) ==2·33 cm

Uae 1& mm plate (J)

(k)

- --

 



SP: 6(6) - 197.

DESIGN EXAMPLE 6 SINGLE SPAN GABLED FRAME - Co,dtl

B.tI PltJl~$

Only plates of • nominal' thickness are required. as at peak.

DUJI0ftal S'iff~'"~'

ltl-t-t·SS em
rwb

Uae 10 mm plate
Ute 16 rom plate
Use 12 mm plate

Splius
Provide as part of the haunch and peak detail.

Fr... Layout - as shown below:

•

I
•

I
I

I
•

I
I

I
t

-----+
(I)
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26.t De.Jan Example 7 (Two-Span Industrial Flat Roof, -"Frame) 
In this design example an industrial flame will be designed to carry
a vertical load of 1 800 kg/m and a horizontal side load of 900 kg/m. The
mechanism method \\i11 be used to analyze the various loading condi
tions. Distributed load will be treated as such, although the loads will
actually come to the structure through purlins, Opportunity will be
afforded in this two-span frame to illustrate the 'preliminary design '
procedures for estimating plastic moment ratios. As shown in sketch a
the column height is 5 m, the left span is 10 rn, and the right span is
30 m.

For the time being the value M p is assigned to the left rafter, the
value kJMI' to the right rafter and k.Mp for the interior column. The
dotted lines shown in sketch a are simply an aid towards keeping the
signs straight - "positive moment produces tension on the side of the
beam next to the dotted lines.

There are two possible loading conditions. For Case I with dead
load and live load. the load factor of safety is 1·8S. The distributed load
becomes 3·33 tim. For Case II (dead load plu« live load pitts wind) the load
factor of safety is 1·40 and the vertical load is 2·52 tIm, the horizontal
load being half this value.

In order to determine the plastic moment ratio for the rafters, the
beams are considered as fixed ended as shown in sketch b. The value
k1 is thus determined as 4·0. For this special 'condition, the minimum
possible plastic moment values would be determined, the joints being
fixed against rotation but the frame theoretically free to sway. The
resulting ratio is therefore the basis for later analysis of the frame. For
greatest economy the end columns should provide full restraint to the
beams, and therefore the plastic moment values are made equal to the
appropriate beam values. The value k2 for the .interior column may be
determined by" considering equilibrium of joint 6-7-8 (sketch c). A
value of k, equal to 3 is obtained.

The structure is now analyzed for Case I loading. Actually the
analysis was completed in the previous step but we will go through' the
various operations. There are 7 possible plastic hinges. The frame is
redundant to the third degree (X = 3). Therefore, there are four possible
independent mechanisms and these are shown in sketches b, c and fl.

The solution for Mechanism 1 is made on the basis that Mechanisms
1 and 2 form simultaneously. Consequently Mp is determined as 20·8

.m.t and kIM, is 83·2 m.t,

The moment check as shown in sketch e reveals that the moment
is nowhere greater than M, and thus the solution is correct for this loading
condition. The computation of reactions at ultimate load completes
the first analysis.
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. The analysis for Case II is, then performed to see whether or not the
plastic moment values determined will be adequate. The. same plastic
moment ratios, k1 and k, will be used.

. The solution for Mechanism 1 may be determined from Case I and
IS found to be 15-74 m.t, The solution for Mechanism 4 (sketch c)
shows that Mil is so much less than the value determined for Mechanism 1
that no further consideration of this mechanism is necessary.

The solution for Mechanism S, which is a combination of Mechanisms
1, 2, 3 and 4, shows a required MIJ value of 16·5 m.t. Although it is less
than the value of 20·8 m.t for Case I, it is, close enough so that the mo
ment check should be made. Incidentally, the solution for this mecha
nism assumed that hinges formed in mid span. Thus, Xl in sketch d
was made equal to L1/2 and %2 = L. The moment check gives a possible
equilibrium configuration as shown in sketch f (page 165). The plastic
moment condition will be violated near Sections 5 and 9.. Even so, if the
analysis were completed on the basis of a precise determination of the
values Xl and x.' the required MI'-value would be less than the value
determined for Case' I. Ther-efore, no precise consideration of dist.ibuted
load is necessary.

In further explanation of this moment check, we shall expect in the
first place that the plastic moment condition will be violated in each of
the rafters because of our initial assumption that plastic hinges formed
at mid-span (locations Sand 9). This is only the correct position when
the end moments are equal. The moment check is completed by using
the equilibrium equations, and these are shown in sketch j. 'Using the
equation for beam 4-6 it is found that M. equals 13·5 m.t which is
less than M" and similarly for span 8-10. Using the joint equilibrium
equation for 6-7-8, it is found that the moment in the column top is also
less than k.".¥,.

Sufficient information is thus available for drawing the moment
diagram, and it is plotted to scale in sketch f. As expected, the
moment is greater than the plastic moment value near the centre of the
two rafters. To .the left of Section 5, M = 16·63 m.t as compared with
Mil == 16·5 m.t, To the left of Section 9, M = 66·4 m.t as' compared
with 4M, == 66·0 m.t, We may, therefore, conclude, that Mechanism
5 is the correct one, M, being slightly larger than 16·5 m.t. Case I
(M, == 20·8 m.t) therefore controls the design.

If it had been desirable to -analyze Mechanism 5 and determine the
precise location of plastic hinges this could either be done graphically"
by trial and error, or by maximizing the required MI'-value expressed
in terms of the distances x" and XI' The following equation in terms of 1

Sl and x. would be differentiated partially in respect to Xt and with respect
to s., would be set equal to 0, and the resulting two equations solved
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simultaneously for the ~ and %. value:

M,B (--!:- -f 2L) +klM~6(--E:- + -i-)L-xt L-x1 2L-x1 2L-x.

11 !'., h 1..9 (to=w_"2 8X1 +W-2 %1+""2''' ...)

Since Case 1 (wU1Iou4 wind) is the aitical co1Siltfion, the selection of
required section will be made On the basis of the MJ values thus deter
mined. In selecting the section for the right-hand beam and column
a plastic modulus of 3 311·2 em' is required. The ISMB 600, supplies
a plastic modulus of 3 510·6 em l • Even if the moment capacity of the
beam section is somewhat less than the required value I it is considered
adequate, particularly since the centre column provides a restraining mo...
ment that is considerably greater than the required value of 2 183·4 em l •

In checking Rule 1 for axial force in the members, it is found that
the centre column has a PIP, value of 0·156 which is greater than 0-lSot
Using the recommended formula (Eq 47) it is found that the original
choice was satisfactory since the Z-value actually furnished is greater
than the modification factor requires. No check of the right-hand column
is necessary since the centre column is satisfactory, and the beams are
adequate because the horizontal thrusts are less than the vertical ones.

All members are satisfactory' as far as shear force is concerned.

In evaluating the cross-section proportions it is found that the sec
tions have bl' ratio of less than 17 and therefore satisfactory. The ISLB
600 is found to have inadequate tllw ratio. The section is therefore revised
to ISMB 550 which is checked and found satisfactory.

Concerning the problem of lateral bracing, the purlin spacing is
selected as 2 m and the girt spacing as 1·67 m. The left rafter will be
the most critical since it has the smallest ry-value. A slenderness ratio
of 63-1 will be adequate since the plastic hinge in the centre of the rafter
will be the last to form. A preliminary check of the left-hand column
ISLB .3!~ shows that "a more refined examination is required, A consi
deration' of the restraint coefficient improved ·th~ situation somewhat
(compare the required slenderness ratio of 42·4 with the value of 52·7
that exists in the structure), The designer could either place an additional
brace part way down the column or could check the binge rotation at
Section 4 to see if it was as severe as assumed.in the theory.

In proportioning the diagonal stiffener for Connection 4 (ISLB 350),
the member is so light that the initial choice will be based on a diagonal
with thickness equal to that of the rolled section flange. In checking
for local buckling of this element (Rule 3) even slightly lesser thickness
is· required. Therefore, a 12-mm plate is specified. ,
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A similar situation arises for connection to, except that the local
buckling provision becomes more critical. In this case, instead of start
ing out with the flange thickness, the equation for e. was used, resulting
in a required value of 1·0 em. The buckling provision requires a thick
ness of 1·23 em and therefore a 1·4-mm plate is specified. Use of the Bange
thickness 2·08 em would have been adequate, and the problem suggests
th~t this rule-of-thumb guide is probably the bes t one to use in design
where light members are involved.

With regard to interior connection 6-7-8, since the full moment
capacity of the 15MB 600 member need not be transmitted -into the
vertical column, the existing web thickness may be adequate. Equation
56 may be employed as a check, using for Sand d the values for member
2-7 (15MB 550), the required thickness to be compared with that furnished
by the 15MB 600 shape. This amounts to making sure that the joint
will transmit the moment in the column top. The web is inadequate
on this basis, Because of the position of the ISLB 350 with respect to
the 15MB 600 (see Sketch h), the upper portion of the knee web may
be adequate and the lower part inadequate. By considering equilibrium
of forces on the top flange it may be shown that a web thickness of
1·0 em would be adequate for the upper part. Good use of a diagonal
stiffener (1,= 15 mm) in the lower part may be made as shown and this is
all that is necessary.

This completes the design.
/

,,~,

"t
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DESIGN EXAMPLB 7 TWO-SPAN JPRAME

SIrtu:/f4t'~ and Loadi",

=======-~: - ~~-------------
I IC;- , I •

"

10

~
I -----------, -7- ---- ~, -Ic~p - ------,
I

Np , •
I I

IcIMp
t t·1

I I I, • I -l,
I 1 • Z 3 I

~L~m--.f. L=20m J
(a)

Loadi", Co"tlitj()n,(;

Treat problem wrth distributC'd load:
Case 1- - (DL··~Ll~); F a::zj·85 w. ==(1'8)(1'85)-3'33 tIm
(,tl.~(' 1I ... (Dl ; r.L +Wind); F -= 1·40 WI' me (1'8)(1 '40) ..2·52 tIm '= W.

Wi aI(O'9)(I'40)==j'26 tIm -W.,I

(b)

End eotumns provide full restraint to beams
M,(l-4) -=Mp, M~(3-10)~/u\[1'a=:4Mil

-s".. COft', tIUott - + M prndur.... t ..nsloo OD side wltb dotted ""..

162.
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DESIGN EXAMPLE 7 TWO-SPAN I'RAMB - Con,il

Interior column to provide joint equDibrium sketch e
M.-M,-M.-O
M,-M.-M.--M,-(-1I1M , )- M ,(" a- t)==3M,

(....3)

(c)
e",. 1 - A fUJlyris (Mechanilm Metbod)

Posst"" Pltulic HI_," -N -7 (Sections 4, 5, 6.7. 8, 9 and 10)
PtJlnbh lfUkp."tlMI Melu",ufftS _.-... N -x 11=-:4

Mecham.ma 1 and 2 Beam
Mechanism 3 Joint
Mechanism 4 Panel
Mechanism 5 Composite

o

•
(d)

21. •a=.-

SoIttliOfi for M"lItJtJis". t

L' L
M,(B+28+9) - • "2 ·2
MA .. ~. _ 3-33 (to)1 _ 20-8 m..t (Member 4..6)

r 16 · 16"1M, - (4)(20-8)-83-2 m.t (Member 8-tO)
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,
DE81GN EXAMPLE 7 TWO-SPAN PRAMB - Cu"td

14"..,., CII,c" - Sketch ,

104.' IpUibrltlffl a~ 6-7-8 - ".M,..62-4 m.t (Member 2-7)
All M<M".. - -. OK
(M,h.- M, - 20-8 m.t

(e)

R~ .. UIHiMU LOIJd

Mb 20-8
HI - ~ - - - 4-16 tA 5

/taM, 62-4 .H.- -11- -= T -12·5 t

VI ='= U1w L/2 _ 3·33 (10) -= 16·65 t
2

tlJ., L w.. (2L)
V. ZII -- +-- -1-5 wtlL2 2

-1·Sx3-33xl0
- 49·95 t

KIMI' 83-2
H. - -- - - =- 16·7 tII S

y._!!~(1L)
2

.. 33-30 t

C... 11 - A filiI,,"

Hi_," 11M "..cli."isms - Se, Cue I
2-52 .,Sol"'"'" lor M~c"tJttis". t - M; - (20-8) 3.33 -15·74 m.t

Sol"'"'" for M ,cu"is", 4 - (Sketch tl)
A

M;8+(".M,)8+("IM,)8--19 A. '2

MII.(1+3+4) _ «>5 .. (LI) 1·26 (100)
2 4 8

M,-t·97 m.t<M, Cue I
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DESIGN EXAMPLE 7 TWO-SPAN PRAME - Co,dd

SoIuliMJ for MecntJltis". S - (1+2+3 +4): Sketch d
NOTB- Assume hinges form at mid span (.r1=-L/2, xl~L. 8...9.-=8.-8••-·29)

M,o(2+2+(2x.)+(2x4)] W_(~ 8)(L)G)+W_(OL)(2L)(I/2)+ Wi'( ,;)
20MJI-w..L~(I/.+ 1+1/16) ~~ (2'S2)(tO)-,JJp= 16'5 m.t (Upper Bound Solution)

:. Check Moment
MOMIHI Check

"am (4-6) - M. _ J\<:. + ~~ + w_:--
~.Ll wNL'

M. - 2M.-M.- - ..- ~ 2:ll~+£\11' - ·'-4
2'52 (100)

- 3(16-5) - 4 =-- -13,5 m.t-c 16-5 . • • • • OK
-.LJ . ft'., (21.)'

Seam (8-10) - M. - 2M.-.M11 - -.- =- (2) ("~'JI')+4.&\II'- 4
2·52 (400) ,.

M. - 12(16'5)- 4 -.. -54,,66 m.t ••••• OK

Jo'''' (6-7-8) - M,..M.-M.- -16-5+54-37'5 1l1.t<3~1p
. -112·5 m.t ...••• OK

caa. I (without wind) I. crftca1

66
54

66-4

(I)
S,lIclioH 01 SectioNS - ControUinl ll\Umcnt diacrd.nl - Skotch e, MJI:o.:a20eS m.t

Loft beam } M"
Left column Z... - -e" .. 20·Sx39·8c.827-S cnt'

V •• ISLB 350.
.If =- 63-01 em·
II -350
b - 6-5 mm
, - 1·19
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DBSIGN ItXAMPLB 7 TWO-SPAN FRAME - CO.,,"=: ~mn}Z~1.-4 Z... - 33U'2 em'
U.. 18MB 600 Z -3 510·6 em'
A - 156'21 ., ~ 12 mm
fl - 600 mm s -= 3 060·4 cm:l
b - 210 mm 1 ~ 91 813·0 em·
, - 2008 mm r, ... 4·12 CDl

Ceatre column Z...,-3Z....1- 2 483-4 em-
U.. ISLB 600 Z .. J 798·6 em:l

.If =- 126·7 em· w :=r. 10'S mm
tl - 600 em s:.=- 2 428·9 ema

b - 10 mm 1 = 72 867·6 em·
I - 210'5 mm r» e;,: 3·79 em

~Mial Fore, (Rule t)
P VI 16·65

Left colu mn P, s: o,A 1-1 - 2 520(63-01j == 0-1OS < t 5 - · · . . Ol(

_ P V. 49·95
Intenor column P," CJ,A .., =-: (126'1)(2520) == 0'156>0-15

(Modification Required)

ZReq - ZTrfal (;, +0-85)
- 2483'4(0'156+0-85) 2498 cm' < 2 798 em' OK

$,", Porc, (Rule 2)
Left beam V... - Vaal16'65
(ISLB 350)

VaIIow. -1 265." -32-8>16'65 t ..... OK
Rlaht beam V...V. -33·7 t
(ISMB 600)

VaUow -1265 _-91·t>33·7 ••... OK

132-11 em'
550mm
190 mm

19-3 mm
11-2 mm

- 1235.' em
~ 64 893-6 em'

CrNI·S6eIiota Pf'oJIorliofu (Rule 3)

Shape 6/'(< 17) "/,,;(< 55)
ISLB 350 14-5 47·30 - . · .. OK
ISLB 600 13-55 57·00 ...•. Not 1000
18MB 600 1o.t so-oo . · ... OK

",_ for ISLB 600 i. Dot adequate
:. use ISMB 550

ad .
II ,
•
I
I

166
 



BP: 6(6) ·-1972

DESIGN EXAMPLE 7 TWO-SPAN l'1lAM1t - Co.tlll

r1 - 3·73 em
r. _ ~ _~ _ 49·95 x 1 000 -0.150

'Py ClAA..., 2 520x 132-11 -
-0-t5 ..... OK

111' - .9·S
tll_ -49'1

(Tialtl',,1 Brae;,.,) (Rule 4)
Purlin spacing aa2'O m, Girt spacing - 1'67 m

Spaei"G
LB 200

Left Rafter (ISLB 350) ;; :liZ 3'1'; 0:::63'1 •• · • . OK

L8 167 ( M 213MI' )
Left column (lSLD 350) "y -= 3.t7 ==5 2·7 Mp:a M" II:Z 0'67

Eq 51 == (!J!) ::;35<52'7 :. Morc refined check necessary.
. "'1 er
Rctltraint coefficient

I ~ 1/2(L[R + LLL ) LS(m-",(60-40 ~M! )
-R(et) L(.,; p

... (60+40 ~:':)3'17"'230'7 em

LL(LR) - 30'7; lib -20,

1-20xt6-5-335 em

:. f - 1/2 (:.~~ + ~::D - 0'685

:.CI- 1·21

(LB) ,.CI f!I _ (1-21)(35)-42-4<52-7r, e, r,
Non - Small binge rotation requirement would exist for thi8 cue. Therefore,

uaume it to be OK. Alternatively, provide adc1itioDal brace.

p,
i';" 00105<0·t5 pun M, available

P V. 33-3
Rilht colulDD (18MB 6(0) P, - 0,.4 ..18 - 2520(132-1) <0-1-0·1S

•• PuD M~ available

(Co.".tNI)

Brae•., D,ltJU,
1) Provide vertical welded plates at centre parlin. at both raltel'll.
2) At sections 4, 7 and to brac,e to inner (compreaion) comers,

CoI..".tU (Rule 5)(Rule 7)

Left column (I8LB 350)
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DESIGN EXAMPLE 7 TWO-SPAN FRAME - Co,""
. . P Simple check for axial force
Interior column (15MB 550) P, -0·15==0-15 (Rule 1) I. adequate.

500
LIP., == 22:16 == 22'6 :. original design is OK

Co,.,.lIel'att D,tails
(Use straight connections without haunches]

Co",.eclicm 4 (ISLB 350)
Uee diagonal stiffener equal to 'flange thickness - 1·14 em

16'5for local buckling: '>bf17 =- 17 -= 0'97 em;

s•• detail h, in sketch h of Design Example 4.
CottnecliMl 10 (15MB 600) (Sketch I)

t _ v'2 (~_ WIl ) _ 1·45 (3 060·4 _ t'2X60)
, b tl V3 2t·0 60·0 V3

t, a:: 0·57 ~m

b 2t·O
I. -- 17 .. 17 == 1·23 em

Uee 100 X 14 mm plate

'SMB 600

(I)

l,sterior COftIl"'ion 6-7-8 (Sk~ch It)
AM

w, == 0·6 -- I4e. ,

0.6 62·4x 100
X 60x60

t·04 em
_ ...,- 1·2<1'6 em
VIC partial diagonal stiffener (t'2 em thick) as per sketch. .

SI"ie,. _. Provide as port of corner connection detail (interior column continuous).
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26.5 D.•laa Example 8 (Two-Span Frame with Gabled Roof and
FIxed Column B....)- The use of gabled roofs and the fixing of column
bases adds sufficient additional complexity to a structure to justify fur
ther consideration of the mechanism method of analysis. Since most
of' the design rules have been illustrated in the previous problems, in
this example attention will be focussed solely upon the over-all analysis
and design of the structure. The examination of details is left as an
exercise.

In actual design practice, problems of this type would undoubtedly
be solved by the simplified procedures described in 31. However, this
example is given to illustrate basic principles. More complicated pro
blems, for which charts are not available, could then be solved.

The methods presented here would also be helpful in the solution
of problems involving three or more bays.

The two-span frame, symmetrical throughout is shown in sketch
II of Sheet I: The roof load, concentrated at 'the quarter points of
the rafters, might be thought of as an approximation to a Wliformly
distributed load of 1·5 tim. Similarly, the side load -produces the same
overturning moment about the base as that of a uniformly distributed
horizontal load of 0·6 tim. acting on the vertical projection of the
structure.

There arc 18 possible plastic hinges, 6 reduudnnts, and, therefore,
there are 12 independent mechanisms as shown in sketch b. The
mechanism solutions are worked in tabular form. The sketch of the
various mechanisms in the table does not repeat the deformed shape,
since the essence of these mechanism are shown in sketch b. The
internal work is computed in column 3 of the table of mechanlsm ana
lysis, and to facilitate checking, the work done at each hinge .is listed
in the same sequence as the numbering given in sketch tJ. Column 4
contains tbc computation of external work, and },[I' in terms of P.L is
given in Col S.

Independent Mechanisms 1 to 10 arc shown first. Possible com
binations follow, and these arc made in such a way as to eliminate plastic
hinges that appear in the independent mechanism so combined. Only
in this way can the ratio M,IP..L be increased" Mechanism 13 is formed
by combining Mechanisms 9 and 10. Hinges will be eliminated at
sections 1 and 4 only if 8, == 2810 • Mechanism 13 is sketched accordingly.
The required plastic moment is less than for Mechanism 10 alone.

Mechanism 13(cL) is the same as Mechanism 13 except that the
solution is obtained by a summation of work equations for the indepen
dent mechanisms as described in 18. The combination eliminates mecha
nism angles of 28 at Sections 1 and 4 of Mechanism 10 and of 28 at the
same sections of M~~hanism 9 (' Cancel SJltf,'). The same answer is
thus obtained as by the first method. •
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A moment check was made, next, to see if Mech~ism 10 was the
correct failure mode. It was found to be incorrect because M == 1·5M~
at Section 8. This suggests a combination of Mechanisms 10, 11, 2 and
4, and the resulting Mechanism 15 does, in fact, give the correct answer
as shown ill sketch d. The required value of M, for the Case I loading
is 57 m.t. .

For Case II loading, Mechanisms 9 and 16 are investigated. The
latter is a combination of Mechanisms 9, 10, 11, 5 and 7. The moment
check for this case is shown in sketch e. Since the frame is deter
minate at failure [1==:X-(M-l)=6-(7-1)==O], a possible equili
brium moment diagram may be obtained directly. It is obtained by
plotting the known M,-values (sections 2, 3, 4, 6, 10, 14 and 18) and solving
first for the moment at location 7 (M,=+O·13M,). Since MI, = -M"
the .moment at location 8 equals +MI" so the moment diagram may be
completed for rafter 4-7-10. Using the ' trial and error' method', it
is assumed that Mil= 0. Hence M I I == M" and the moment diagram for
the right hand span would be identical to the left hand span. Making use
of the sway equilibrium equation, the moment at Section 1 is +0·56 Mil'
Therefore M is less than or equal to M" throughout and the value
M,= 0·139PL is correct for the Case II loading.

Since (MIJ}11 < (MII)l, the Case I loading controls the design and
M,= 57 m.t, An ISWB Soo supplies the needed plastic modulus. To
complete an actual problem the appropriate design f rules'~ have
to be checked.
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DESIGN EXAMPLE 8 TWO-SPAN GABLED FRAME

Slyuclural a,ul LOIUli"6

P:::9 t
T -= 7·2 t

Column ba.~ fixed

T. a: 7-2 t

It It II It

......----~aNt.,. -----.......--~-----I. m----.-.....

LoatJi_, Cotwlili,..

Caee I Load (DL+LL)
11-1-85

P. (9) (l-~J -16-65 t
T.

(a)

Case II (DL+LL+ Wind)
F-I-40

(9) (1-40) -12-6 t
(7-2) (1-40) - to-OS-0-8 p-

Pltu.u M...., RIIMo- Try coutant eectiOD tb.roulbout
IflMlJnuIMI M ~

PoIsiW. PIIUIic Hi , N -t8 (Numbered eection in sKetch .)
Red~4azat. %-6 (Remove support at SectiODS 2 and 3)

N...". of ''''-'''' M.,IuI.is., tI - N-X-12
llee......... 1-4: Beam mecbaniama
lIecbgt.. 5-8:. B<tam mecbaniama
lIec....... 9: Paael mechanism
lIec........ 10. It: Gable mechaniaml
........... 12: -' Jobat mechaniam
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DESIGN EXAMPLE 8 TWO-8PAN GABLED FRAME - c-eu
CIU' 1 - Sol.";""
M,cAtJ"'!". Atll""'.'
No. MECHANISM INTERNAL WORX· EXTERNAL M,/P.L

(WI/MI'8) WORX (WE/PL8)

(I) (2) (3) (4) (5)

o

1
I

1
16

1
16

~ (1+3 -l;
_ +3+1)(~)

(CotIH..r)

o

1 . 3 3 t
8+8+8+8

-=at

!+~+~+!
,I

8 888 n
-1

12
0

t8 1
-,8 12
12 -1-

2+2+t+2
+1+2+2
- 12

2+3+2+1
-=.8

t+4+3 .. 8

Two times
Mechanism 9

Mechanism to
Cancelled
Tot8J,

,'1 4

2'" ••
" 2+4+t+2+2

+1+2+5-19

Similar (",
sketch b)

Solution by sum
matton mechanism
aolutlon

t·

.f

4 (11
~12 •1-13)

13
(9+10)

13.

to
11

9

5·8

1-4
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DESIGN EXA)4PLE 8 TWO-SPAN GABLED FRAMB - - C;0II14

INT.aNAL Woax EXnRNAL M,/P.L
(WI/Mp/J) WORK (WE/PLI1)

(3) (4) (5)

Mechanism 11 8 1
Mechanism 13 12 t
Mechanism t 2 3 0 2
CanC'clle4 (Sec- -4 2 19

tions t 1, 12)
Total 19

(2)

Solution by
summation

(1)

No.
-----------------------

MECHANISM

14&

MOfMttl CA,c" lor
PL

M, - '8 (Mechanisms 10 and 11)

B.tlM 7..10
· 3 Mi. PL

M • .. 4 M,--.-+S
3 MI'

lIS +4 M/J-. +M,
..1·5 M, (Violates)

,....,.

(c)
Mlclt••iJ. AtuJlYI'$ (Additional)
IS

(2+7
+10+11) 2+3+!+!==~ !+~+~+(!)(!)JI8:~ !

333 888833 7
(Due to symmetry only one-balf of f..me is solved)

,
~ I ..

,,,,<~~
till' .,.....

, I,
I
•J
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DESIGN EXAMPLE 8 TWO-SPAN GABLED FRAME - Cott,tl

MOM...' clllM lor MlClMIh_ IS - ( M~ - ~ PrJ. )

B.G". 7·tO

(d)

1 3 PL
M. - 4 M,+. M'+T(t)

t 3 7
- -. M'+i M"+i M,. M. - +Mp

All Me M,

M
P.L 16-65 x 24

'--,--- 7
...... ==57 m.t

C... 11 - Soltllion
Mechanism solutions

No.

(1)

9(11)

M.BC~NlSM

(2)

INTBIlMAL WORK
(WIIM~

(3)

1+1+1+1+1+1
-6

115

EXTBRNAL
WORK (WE/PL8)

(4) (5)

1
JO

 



SPI6(6) - 1972

DESIG_N EXAMPLE 8 TWO-SPAN GABLED FRAME .-. Con'lI

No. MECHANISM INTBRNAL WORK EXTERNAL MI,fP.,L
(WIIM;8) WORK (WE/PLO)

(1) (2) (3) (4) (5)

16
(9+tO 5 8 G)(D+G)G) 0·t39
+11+12

2+3'66+'3+3

+5+7) +3 +3·2+4·86
3 1 C)e=21·06 +-+-+ - (2)8 8 8

.G) (2HG) (1'2)

+(A)(1'2) =2,93

1.
241~ ,

/ .,
// I

.~, t / I
,*" / I 22m

tJ' I "-
• I
I

,,.__
I

6'm

MOfIIIfll ,II,ek for MeeA.ftism 16 - (MI')11 - 0·139 P.L
B,a", 4·7

M. _ M.+3M,+PL
4 4 8

M, 4 PLM,- -+- M.-336
M, 4 Nt

- + T+j' MII- (6)(0-139)

M, - +0-13 M~<M, ••••• OK

(.)
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s..,
TJ.+M1-M.-M.-M,+M\1+Mll t=I 0
T.L+M1-M,-M,+MIi+O-M, == 0

. - (0'.8).MIi(20)
M 1 - -TtJl+2/tll' =a -(o:t'39)(SO) +2MJ> == O·S6M, • .•• • OK

\

(M,)Il -= 0·139 P.L == 0·139 (12'6)(24) == 42 m.t<S7 m.t Cas. I COftIroi.

R,tulion for Cas, 1

H,x6 ~ 2MI'
MI' 57

Ha-T-T
-19 t

VI- V,=- 2 P::m 18 t
. Y I :=: 2V1- 4 P = 36 t

Sele&tioJl of 5'&"0"5

M, 100 000.Z - - =a S7x .-.__...
ay 2 520

== 2 260 em' . Uee ISWS 500
Z ID 2351'36 em'

A.,rial Fore,

Central column =- .!- == ~-~
Py ayA

36 000
2 520 x 121'2 == 0'12<0'1$ · · · , , OK
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37. DESIGN EXAMPLE ON MULTI.STOREY STRUCTURES

17.0 So far, our attention has been restricted to one-storey structures
consisting of rectangular and gabled portal frames and to the multi-span
frames that are typical of the industrial-type buildings to which plastic
design can now be applied. A fair quantity of steel, however, goes into
the construction of multi-storey structures, both of the tier building
type and the more frequent t\VO~ or three-storey I structure, ,

What is the reason that our attention has been restricted to the
single-storey building? First of all, a considerable tonnage of steel goes
into such structures and, therefore, it is most advantageous to docum-ent
the necessary provisions which will enable the engineer to apply plastic
et.ign to the industrial building. Secondly, and perhaps the most

.Important, as the number of stories increases, the columns become more
ana more highly loaded. As already mentioned, the moment capacity
of columns with relatively high axial load drops rapidly. The related
problems are not completely solved and more research is needed before
a • complete ' plastic design can be: applied to all classes of tier buildings.
As will be noted below, however, the outlook is heartening for at least
a limited application of plastic analysis, and as Walter Weiskopf, con
sulting engineer, has remarked: f it seems natural, therefore, to take
the next step, that is to apply plastic design to this large class of buildings',

In a stimulating and thought-provoking articleU , Weiskopf has
discussed the application of plastic design to multi-storey structures,
emphasizing the tier building typ~. He has suggested that the appli
cation of plastic -design to such structures depends on the relative im
portance of horizontal forces. If horizontal forces are not a consideration
(they may be so small that an ordinary masonry wall panel would carry
any such smalJ forces-that might exist), then the regular connections are
free of moment due to side sway and a very large savings in steel is'
possible when comparing a plastic design of the beams to a conventional
simple beam design. In fact, for uniformly distributed load the savings
theoretically could be SO percent if it were not for other factors such as
the cost of connections, etc, that tend to cancel out the potential savings
due to economy in main material. When compared with rigidly con
nected elastic design there wilt, of course, be a savings in a plastic design.

The approach to design will be largely influenced by what is done
about bracing against horizontal forces. Three situations may arise,
as follows:

a) No horizontal load should be, resisted (any minor loads taken by
wall panels), .

b) Horizontal forces carried by moment connections, and
, .c) Those cases in which the horizontal forces are carried by cross

bracing around elevator shafts or elsewhere in walls.'
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The application of plastic design to Cases (a> and (c) above will simply
consist of a plastic analysis of continuous beams. For the second COD
ditions (horizontal forces resisted by moment connections), the area of
possible application of plastic design is' dependent to the greatest extent
on further research because plastic hinges might fOrQl in the columns, and
as already mentioned. more needs to be known -about the performance
of columns under high axial load and as part of a ~ta~uework.

It is for the third case in which the horizontal "fOree'S .are carried by
• cross-bracing that a plastic design approach seems possible. When

provision is made for wind bracing in wall panels, the beam and girders
would be proportioned for full (plastic) continuity. The columns, on
the other band, would be proportioned according to conventional (elastic)
methods. By this procedure, none of the plastic hinges participate in
the resistance to side load. Such load is all carried by the diagonal
bracing. The only mechanisms are the beam mechanisms.

The top one or two stories might be designed by a · complete'
plastic analysis, hinges forming both in the columns and in the beams,
In those cases the vertical load. in the columns would be relatively low
and would be governed by considerations already described for the
previous examples.

As far as the tall building is concerned, the column problem actually
may not be as severe as first intimated. The most critical loading' con- .
dition on a column is one which subjects it to equal end moments .Jl.rO
ducing single curvature; the maximum moment then occurs atp'be
midheight of the member. On the other hand, in tall buildinff' ~ the
columns will usually be bent in double curvature with a point of inflection
(zero moment) near the middle of the member. The critical isections
in that case ate at the ends. Such columns are better able to develop
plastic hinges than columns loaded in single curvature.

The problem of q,.e connection for tier buildings also relates to the
ability of these components to form plastic hinges. In riveted work
it is very difficult to design a connection of strength equal to that of the

I beams unless large brackets are used. Therefore, if riveting were to be
used to achieve continuity at connections in a plastically designed
structure and without the use of these large brackets. further' studies
would be needed. The usc of high-strength bolts offers allother method
of achieving continuity.

As has already' been emphasized, maximum continuity with mini
mum added connection material can .often be achieved by the use of
welding. Numerous design recommendations have been made in SectioD
E that are directly applicable to multi~torey buildings. '
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Naturally, no sharp dividing line exists between the form of structure
that. on the one hand, may be designed by the plastic method and, on
the other hand may not.' An example will now be given of the plastic
design of a two-storey building in which cross-bracing is not used, but any
possihlc side sway is resisted by moment connections, After the
selection of member sizes, the design of some of the connections also will
be cxam illcu.
'J7.1 Deslin Example 9 (Two-Storey BuUding)- Using the mecha
nism method of analysis, a two-storey, two-span building frame is
designed to support the loads shown in sketch 4. A study of all possible
loading conditions shows that Case I «lead load pl'J~ live gravity load)
is critical. Therefore only this condition will be illustrated, the pro
cedures for investigation of the other cases being identical.

The loads arc uniformly distributed, but, for the sake of analysis
are replaced by concentrated loads acting at the quarter points. The
side loads, T, produce equivalent overturning moment about the bottom
of the columns of the particular storey. Alternatively, it would have
been possible to assume that plastic hinges formed in the centre of each
beam span, to treat the load as uniformly distributed, and to revise the
design (upward) to suit the precise plastic moment requirement.

Assuming that vertical load alone will control the design, the plastic
moment ratio of the different members are selected such that simulta
neous failure of beams A, B, C, and D will occur. If Span B has a
plastic moment value of MJ , it is found that for Span A the plastic
moment value should be 1·78 MIJ; for Span C, 2·37 MIJ; and for Span D,
1-33 u;

The fourteen independent mechanisms • are shown in sketch; b
except that only two of the eight possible beam mechanisms are shown;
the rest would be similar, The solutions for the various mechariisms
are worked in tabular form, All beam mechanisms give the same
answer - a check on the accuracy of the selection of .tlf,-ratios. The
sequence of terms in the work equations follows the- numbering sequence
of sketch a.

Although for a frame of this type, one could be reasonably sure that
the correct answer had been obtained already, Mechanism 15 is also
Investigated. It is found to require a smaller plastic modulus and
therefore the critical case selected for the, moment check is the simulta
neous formation of the beam mechanisms.

In making the moment check, ~the diagram for the beams may be
drawn without difficulty and tbis is shown in sketch c. Quite evi
dently the plastic moment condition is not violated in .any beam.
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A possible equilibrium moment diagram for toe -columns is shown
in sketch a. Since the frame is still indeterminate at failure, it is not
, exact'; but it shows that the plastic moment condition is not violated.
The method used is the' trial and error' one. MIS' M 22, and Mit are
first obtained by the joint equilibrium equations. The left and right
columns are selected as having a moment strength equal to that of the
beams which they restrain, and the same moment capacity is assumed
for the full column height at this stage. In order to obtain an

I idea of the magnitude of moment at Section 16, since the horizontal
reaction at 3 would act to the left, it is assumed that MIt is at the full
plastic value 25·35 rn.t in the direction indicated. The joint equilibrium
equation gives the magnitude of MI'. MIG is assumed equal to -M. :
this is a completely arbitrary assumption, but since there is no. side kNiA,
any small value would be reasonable at this stage. M, is then obtained
by the panel (sway) equilibrium equation and is found to be 28·13 m.t,
Since all moments are less than kMI" the' upper storey is -satisfactory
thus far.

The moments at Sections 4 and 11 may now be determined by joint
equilibrium. Subsequently. the sway equation is used to check the
bottom storey, a calculation that is made on the basis that the moments
are zero at the column bases. Equilibrium is satisfied;' and, therefore,

. the moment check is complete.

MI' for the Case I loading is thus equal 10 25·35 m.t, Cases XI and
III loading are not shown here, but arc found to require a smaller
plastic modulus. Therefore, sections would be selected on the basis of
the Case I solution, care being taken to modify the sections used for the
columns to account for the influence of axial force.

A result of the moment check given above and shown in sketches
c and d is ~at the fixed bases are not required for this problem.
Pinned bases would have been just as-satisfactory and would not have
resulted in an increase in member sizes.
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DB~tGN EXAMPLE 9 TWO-STOREY, TWO-SPAN BUILDJNG

Sltwltlr. Loading
Roof 10a4 == 4· 5 tim
Floor load =6·0 tIm
Wind 10&4 ==0·6 tim , -

Replace distributed load by concentrated loads at quarter points.
Replace horizontal load by concentrated loads at roof and floor lives.

T, _ 0·6 X
66X

3 = i-a t

T.- O·6x4·Sx2·2S == 1·35 t
4·5 .

2S 26 t
301 IeeIm

1S~

r

30t

t 2 3

I:l-l:~2L-+:-l'±~'t~-+iJ
Q.~. 3~tM~

<a)

".IP • JOt

WIND LOAD
:0-6 tIm

Loatli,ttg Conditions
Case 1 .. - DT~+l..L 1; = 1·SS
Cas» ] I -- /)!...+LL+ 'Vintl from Jeft F a: 1·40
Case III - ~ DL+LL+Wind Irum right F :.=1·40

P .. ==9·25 t
P., .. 7·0 t
P., aoa7·0 t

Centre column: Vee " - KB -1·00

Rilht column: Uee" - KB - t-oo
(Co",.",")

Plaslic Moment Ratios
For simultaneous failure of spans .1 and B under Case I loading use plastic

moment in ratio of square of spans. For equal "pans, the ratio is to vary as the load.
Ks coo 1·00 Left column: Use " - K.4 =-1·78

(12)'KA =z 9 KB =1·78

ltD .. ("!!.)KB -=1·33
13·5

(12)'Xc - T KD ..2·37
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DBSIGN EXAMPLE 9 TWO-STOREY, TWO·SPAN BUILDING - COfII4

M .eu"isIIIS

PO$libu Plastic Hi"", - N ==26 (At all neutral sections in Sketch II except 1 and 3
Redundant, X ==9 (Cut beams A and B, remove r~tiOD at 2, remove

fixity at t and supply roller at 3) ,
C"iU9ItttU'" M~cAtI.,.isms-,. - N-X -14

Beam mechanism 1-8

Mechaniams 2, 3, 5-8 similar

1

Panel Mechanisms 9 and to

9

9 e

e e

(b)
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I DESIGN EXAMPLE 9 TWO.8TO"l,,~Y. TWO-SPAN BUILDING-COfd4

Joint Mechanism 11-12-13-14

1 12 13
MleluJ,.;s," 501.,,;0fII

-------------.
INTERNAL WORK EXTZ1tNAL Woax M~/P"L

(Wl/MI'8> (WsIPLI1) .
'"No.

(1)

II~HAMJSM

(2)
/

(3) (4) (5)

1lr1 '1-69

3 INOTE- 2 is identical 'with I. '

t-69

4'5(I>U) 1·69

+4'SG)a)
-=4·5

NOTB - Mechanisms and vertical work equations
are similar.

_------------.-- -.--r----

--------- -_.--_. ------_.-_...-
5-8

1 , t K (1+4 t)
3'41-----~1 ...........-==-.r=...-1 B 3 +3..,. =~(I.OO)-2.67

15
(2+4
+6+8
+9+10
+1,1+12
+13+14)

8('*D+6(1+~) 1-38

a)+6(I+D+4'5
-(1+0(1)

32 .
-- 3-+ 6+8+4-5

-29-17
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DESIGN EXAMPLE 9 TWO-STOREY. TWO-SPAN BUILDING- COfIU"

Ira 1t (1-78) +14 (t '00)
. 3 3

+ ~(2·37+t -33,3
==21-07

Alo",tNI Checll for Btam Mec1eatJisms (5" Sketch c)

Mp :at·69 P.L=t-69(S)(3)==2S-3S m.t

MPA =1-78 AI" 11I&45·1 m.t
MPB II:: 1·0 M /I :cz 25-35 m. t
Mpc ==2-37 Itt, ==60·08 m.t
MPD 1:1I:1·33 M" ==33·71 m.t

Jo•., 21-23: M 1. - -M11-.V1•

M •• - -4S-12+2S-3Scs19'77 m.t
A,stlHJe M l 7 --Mil

45-12

.....

(c) Bum Homen.
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SPI 6(6) .' 1m .

DBlJIGN EXAMPLE 9 TWO-STOREY, TwO-SPAN BUILDING - CowI4

Jot., 15-17: MI, - -MI.+M1,
MI, =-33·71-25·35-8·36 m.t

........ Mil .. -M1.:=Il+19·77 m.t

S..y 0/ lot' slor.y

M. +MI.+MI.+M11+M••+M••-O
M.·..19·77+S·36-4S·12+19·77+2S·3S-2S·13 D1.t

]oi'" 4-6: M.-=M.+M.-+28·13-60·OS--31·95 ~.t

S.." 01 60110", 'lor'"
M 1-M.-M.-M.+M11+M1,= O
0.+0+0+31·95-6-6-25·35::;:0

l'. the folJowiog sections as different" membees of the frame

Left column. ,k aa KA-t·78, MiJ ==2S·3Sx1·78==45·12 m.t
Vee ISLB 550
Beam C == K == 1\~=2·37. Itl, ==2·37 x 2S·3SIIm60·08 m.t ,
Vee ISLB 600
Similarly oth~r sections may be decided. _
These sections should be checked to see if they salittfy other 8CCon~ry

considerations.

28·13

19·77

(cI) Column Moments
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SECTION G

SIMPLIFIED PROCEDURES

28. INTRODUCTION

18.1 One of the advantages of. plastic design is that the engineer is able
to complete the analysis in less time than required by conventional
(elastic) procedures. It is possible, however, to shorten the design
time even further, by taking advantage of the same technique that is
used in conventional design and one that is frequently used whenever
a procedure becomes time-consulning. The solution of frequently
encountered standard cases may be given as a formula or in chart form.

Such an opportunity is open to the engineer interested in plastic
design. In this section SOllie techniques will he described and certain
of them illustrated. The presentation is hy no means a complete one.
Indeed, the ingenuity of engineers will undoubtedly lead them to develop
many other such design aids.

Tsco "'ortis 0/ ca"l;ofJ:
a) S~nce superposition docs not hold in plastic analysis, generally

it is not possible to ('0111biuc t\VO separate solutions as is done
so commonly in elastic design. Any' Iormula ' or 'chart-," can
only assist in the solution of the particular loading and geometry
for which. it was developed.

b) EVl'1l though the formulas and charts arc correct in themselves,
it is a"food rule to check the plastic moment condition by draw
inR the moment diagram, In this way one is assured of the
correct answer,

The simplified procedures which apply to continuous beams are
discussed in 19. 'nits will include a tabulation of solutions for various
loading conditions. Formulas for the rapid determination of the required
plastic moment for single-span frames with pinned bases are given
in 38. The usc of charts for the same purpose is also described there.
Finally, in 31 the solution of problems involving muttt-spaa frames ant
m~. .

~. CONTINUOUS BEAMS

)t.l Although the analysis of continuous beams for maximum stre~h
re~ts tne simplest possible application of the plastic. method, •.
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engineer may wish to avail himself of tables and charts for the rapid
solution of continuous beam problems.

In Fig. 66 (see Appendix C) are given' beam diagrams and formulas'
for certain loading conditions on beams, The table is patterned after
similar tables contained in Ref 13. In addition to the reaction and
Mt-values for these standard cases, the position of plastic hinges and
points of inflection are indicated. Eventually values for deflection at
ultimate load (3.) and deflection at working load could be added to
such a table.

a8. SI~GLE-SPANFRAMES (SINGLE STOREY)

30.1 Two approaches are possible in simplifying the procedure for the
solution of single-span frames. The virtual work equations can be
expressed as a formula which would reflect both the frame geometry
and the loading conditions. Alternatively curves may be prepared which
present the solution in chart form. At Lehigh University, Dr Robert
L. Ketter has made an I outstanding contribution" that enables the
engineer to determine with the aid of charts the required plastic moment
of a single-span frame in a fraction of the time required in a ' routine'
plastic analysis. The method of derivation and some examples are
contained in Ref 46. Ref 47 makes use of both the ' formula' and
the • chart' approach and in this aspect is based substantially on Ketter's
work. It is cited here for reference (when available) for additional
examples. A few illustrations will be given.

Restricting ourselves to single storey-structures of uniform plastic
moment throughout, Fig. 67 (ue Appendix C) shows a gabled frame
with uniformly distributed vertical and horizontal loading. For simpli
city the horizontal distributed load is replaced by a concentrated load,
acting at the eaves, such that it produces the same overturning moment
about the base at Location 1.

Since
M == Wi (a+b)ILS

2

•••(71)

, then ,
T _ U'A(a+~)IL

- 2.
In order to simplify the form of the solution, a parameter C is intro

duced whicll is a function of the magnitude of tile overturning momeot.
It is determined from: -

M .. C _.LI--r
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••.(74)

and thus

c = 2T
L"

= w" (a+b)1 •••(72)
tt'.. UJ.

Consider, now, the mechanism shown in Fig. 68 (see Appendix C).
(Of course there arc other possible mechanisms but in most practical
cases, this will be the one to forrn.) Using instantaneous centres, the
rotations at each of the plastic hinges may be computed and then, by
use of the mechanism method, the required plastic moment may be
determined in terms of the variables tt't fJ L, Q, C and x.

The following equation results:

I [(1-~) (c+~~)]M = ,,,1,, L L .
, 4 v(l+Q)(f-Qd

where oX is given by:

X. ~ [V(l+Q)(l-QC)-l] (Q>O)

(I-C)X=L T (Q=O)

and is computed by the methods already discussed•
.The only remaining problem is to determine the range of variables

for which the mechanism shown in, Fig. 68 (sec Appendix C) is in·~ fact
the correct solution. Figure 69 (see Appendix C) summarizes the appli
cable formulas for the pinned base single-span, single-storey frame.

Similar solutions -rnay be developed for other loading conditions
and for fixed bases.

KetterC' t.,s presented all possible solutions to the single-span,
single-storey frame in the form of two charts - one which gives the
value of MfJlUlLI as influenced by C and Q, and one which gives the
distance, x, to the plastic hinge in the rafter (also a function of C and Q).
These two charts are 'indicated in Fig. 69 (see Appendix C.) and for the
major range of variables, they are simply representations of Eq 73
anc" 74.. Their use will be indicated by the example which follows:

Es.",pze 8 - Single-Span Rigid Frame lVithoul Ifauftched CONe'S

This example is the same as that of Design Example 6 except that
no haunch is to be used, The two loading conditions are as shown at
the top of Fig. 70 (SH Appendix C). The distributed load acting hori
zontally on the 'frame produces all overturning moment from which C
may be computed (Eq 72). The values of C are thus determined as
zero for Case I and 0·074 4 for Case II. Knowing that Q === alb == 0.75,
all the needed information is available for entering the chart of Fig. 69(a).
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For Case I, M,/UlI1 is equal to 0·046 and for Case II it is 0-055. T4
determine the critical or controlling case, ~t is sufficient to compar
M,ILI ratios since L is the same in both cases. On this basis, Case I i!
found to be critical. A ISWB 600 member is specified.

The moment check shows that the plasticity condition is not violates
and thus the answer is correct. The secondary design conditions wouk
next be checked.

(

I -t
m

-'Om...i..
( ....1.-.......------L.30m-_-..-~..J

\¥hc1-40x 0.7 tim

Case I
F(DL+LL) = f-S5
"'. =(1-85)(1·50)= 2·22 tim
C =0
Q =-= bl« = 0·75

AfUIlysis from chart in Fig. 69(a)
M,,110LI= 0·046
M,IL' . (0·046)(2-22)= 0·102 t/01

Cue I (without wind) I. critical
5""'ion oj Section

Case 11
F(DL+LL+Wind)= 1-40
W., =(1·40)(1·2)= 1·68 tint
C = 7~~~(~-1-b)1 :-::= 0-073 5

W..

AI,,/u,LI;=-: 0-055
A1i'ILt=(O·OSS)(t·68)= 0·092 t/ln
MI'= 91-8 m.t

Uee ISWB 600
Z ==3986-7 emS
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14.."" Check
M,= WLI_ M~ (10'5)== 2·22X 301 _ 91·8 X 10.5

8 aL 8 6
== 89·3 m.t<M, OK

31. MULTI.SPAN FRAMES
31.1 When multi-span single storey frames are considered,' Ref 4S makes
possible an even more dramatic savings of design time. Again, graphical

. representation of the equilibrium equations may be used to facilitate the
solution of these problems.

,Example 9 .
. Consider the problem shown in Fig. 70(a) (see Appendix C) below,

that of a two-span fiat roof frame. It is the same structure, in fact, that
was studied in Design Example 7. As the frame fails, the usual mode
of failure will be that shown in sketch b. Now actually we can consider
the behaviour of two' separate structures as shown in sketch c without
changing the total internal and external work. (The work (I. -ne by the
moments and forces as the two separate structures move through the
virtual displacement becomes zero when 'continuity' is restored at
the cut section.) The problem may be simplified still further by replac'ng
all overturning forces and moments by imaginary moments acting about
the column bases. The resulting separate structures which are equi
Valent to the original structure are shown in sketch d.

Charts may then be prepared for the general' case shown in sketch
~ of Fig. 71 (ses Appendix C) just as described before. PaneJ A is
given a virtual displacement and the work equation is then written, It
takes the following form cl :

~=-! (l-i)(i:+C-D) - 2DQ i
UlL· ... l+Q!.

L

with X =~ [.J'I-Q{C(l+Q)-D(l-Q)-I}] (Q>O)

x = LC-~+D) (Q==O) . '; ...(76)

Whereas D was zero in the single-span problem (see 38), fOr the multi
span frame D becomes an addifional parameter. Therefore it is necessary
to prepare one set 'of ,charts. for each value of Q for which. a solution is
detU.red. Figure 71 represents the solution for the fiat roof frame in chart
form. The left hand portion rep-esents Eq 75 with Q==O. The right
il the second form of Eq 76. Notice that the lower. cut-off line on the
chart is a beam mechanism ill which M,I",LI == 1/16 (Appendix C. C-5).
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Now, to solve a problem we note from the loading (Fig. 70(d)] that
C1= w,/w..al and that Da= O. The correct answer will be determined

WLI
when the overturning ~oments at 2 are equated. Thus, D. T ==

G,"'~:; so we ,.; will use the chart of Fig. 71(a) twice one for structure

A and-once for.structure B and will eventually obtain an answer ill terms
of Ml'lwL" for which the overturning moments at Section 2 will just cancel.
The following example will help to explain this,

Example 10 - Two-Slum Fla' Roof Frame

The case for vertical load alone will result in beam mechanism! and
need not be considered here further to illustrate the use of the charts.
[The problem is the same as Design Example 7, for which Case I (without
wind) was critical.]

In the first portion of the calculation, the known quantities arc
indicated. The value of C1 is found to be 0-012 5. The value of, D. is 0
since there is no external overturning moment applied to member 3-10.
The only unknown values at this stage are D" and CI , both of which may
be found at the same time the value M,/wLI is determined from the
condition that D,,= 4C,.

Although it would not -be possible to pick at the outset the value of
M,lwLt that satisfies this condition, by use of the chart of Fig. 71(a) in
Appendix C one can determine possible solutions for each panel and find
the correct answer graphically. A table is thus prepared with the aid of
the chart. Panel A is first analyzed for C1= 0·125 and for various values
of D. (Linear interpolation will be satisfactory if the range of C-D
values is small when compared with that of the chart; therefore two
points will be sufficient, and D 2= 0 and D,= 0·10 were selected.) The
same thing is -done for panel B except that now Da is known and C1 is
unknown. So, values of Ml'lwLI are determined for two values. of C.
,(0 and 0-50). 'file sketch c shows how this is done.

Now on a separate graph may be plotted the information contained
in the table in the calculation sheet, it is shown ill sketch d. Where
the two curves intersect, D.= 4(·2= 0·102. J't,f,/7tJLI=O·OO652, and the
problem is solved. Note that the value of MI' for member 4-6 [M" ::::
(16·43 m.tj] agrees with the value determined for this same problem by
direct U~ oi the mechanism method, [6/',t Design. Example 7, Case II
(Mp = 16·5 m.tj.] ..

:. These charts and others were developed in Ret'\45 covering both
. flat-roof and gabled frames. ' \"

In all ·of these procedures, the final step in the analysis will be ·to
draw the moment diagram with the aid of charts such as Fig. 71(b).
Finally the Sf)c~nd,ary design conslderatlons must be examined. ~
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DESIGN EXAMPLE 10 TWO-SPAN FRAME

C(JS, 11- Jl'ertical load plus wina (loads sa",e as in Design E#ampZ~ 7) .

+++ Wu ')

8

%1
~..

l--

(I l!J

c w..Lt
12

5 6 7

(a)

9

)

D~
• 2

a 0-125
(c)
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DESIGN EXAMPLE 10 TWO-SPAN FRAME - Contd

AfUII,.i'/rom ,hart in Fig. 71

Analysis of Panel A
for C 1 -= 0·12S

Analysis of Panel B
for D a= 0

A-Il'lwLf

----- ---

----~--_.-------..._--~-~~.- ... _- -------------.

0·0787

0·065 5

o

0·05

0'062 5

0·0682

o

0·20

0-10
02 AND Ie c.

o

PANEL B

J-------t1t--~r__MP2 'Is ItC2-......-
wL:

0-06

II~ (4-6) ==0·065 2 wilLi
:=0·065 2 (2·S2)(10)a

Itt, ==16·43

0-08 .---,---- --------1-----
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APPENDIX B

(Ctattse 23.4)

SPACING OF LATERAL BRACING

8-1. Equation 51 not only assures that the cross-section will be able to
plastify (develop the full plastic moment) but also be able to rotate
through a sufficient inelastic angle change to assure that all necessary
plastic hinges will develop, In deriving this equation, the basic lateral
buckling equatiorr" has been used, the analysis being based On
an idealized cross-section that consists of only t\VO flanges separated
by the web-distance. Therefore it already reflects and, in fact, makes
use of the parameters tIll and dlt. Using the clastic constants of the
material, and considering idealized behaviour as shown in Fig. 17, it
may be shown that this procedure leads to a critical slenderness ratio
of about 100.

While this might be reasonable for a section that was only. called
upon to support M(I' it is unlikely that the resulting critical bracing
would allow much inelastic rotation - a rotation t hat is ordinarilv
required at the first plastic hinge. Reference 10 suggests that it will be
adequate to require only that plastic yield penetrate through the flange.
It is quite evident from Fig. 18, however, that the resulting further
inelastic lunge rotation thus available is relatively small. One of the
important contributions of Ref 18 was that it developed methods 01
correlating the critical length for lateral buckling with tho magnitude
of required hinge rotation.

B-2. This appendix is to outline the procedure for checking the ade
quacy of the spacing of bracing to prevent lateral buckling. It is the
procedure that was used in the examples of Section '''1. The problem
is a two-fold one: First of all, what is the lateral buc kling strength oi
an elastic-plastic segment of a member that has been called upon to
absorb varying amounts of rotation at the plastic hinge? Secondly,
what is the necessary hinge rotation, namely, the required rotation ol
a given plastic hinge to assure that the total structure reaches the com
puted ultimate load?

B-3. There will be considered first the matter of lateral buckling of an
elastic-plastic beam segment. Figure 64 represents an approximation to
the work of Ref 18. In preparing the figure, assumptions were made
with regard to various factors that influence lateral buckling strength.
Commencing with a beam that is deformed until the point of strain
hardening has been reached throughout, the resulting critical length
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(LI',)ft' = 18 may be .revised upward to account for the inftuence of
moment gt\ldicnt, St. Venant's torsion, the extent of yielding (partial

1·0

I"0-8

t0·6

I 0-4 0' '·5

0-2 I
MOMENT ~RATIO 0

(J!. ) 0·' '·0
Mp -0·2 f. t(!B • !l J

I
lR u LLcr

"0·4 <'LASIIC-t+i'~
LL. Ret

ELAIlIe- Lu
-0-6 ~ • 2

l8~P

-oe

-'·0
0 20 40 60 80 100 120 140

__ 1 (J:...) ..CT r,
FIG. 64 COMPARISON OF SI...E~nERNESS AND MOMENT RATI()S

yieldin~), aq9. the effect of end restraint, Reference 18 considered the
influence of each of these factors and Fig. 64 is an approximation to these
results, presented in terms of the moment ratio. The equation I~/'y=

18+30 (l-AfllJp) is, in fact, the equation of the heavy dashed line
shown in the figure with a 'cut-off' at t..fIMI'= 0·6. The 'significance
of various parts 'of Fig, 4 should appear in the course of the follow
ing description. The procedure for using Fig. 64 is as follows:

a) Assume ct. purlin bracing (usually dictated by available roofing
materials); Compute L/,y. - 'Ii

b) Examine the structure to see which segment (or segments) will
be the most critical, For equal purlin spacing it will be the one
near each hinge with the largest moment ratio. Referring to
the insert sketch, call this the braced span, LB -

c) Compute the precise moment ratio for the span being considered
(length = LB)- This moment ratio is the. ratio of the smaller
moment to the plastic moment (MaiM,).
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d) Compare the slenderness ratio existing in the structure with that
which would be permitted for the particular moment-ratio accord
ing to the dashed line in Fig. 64 (or the equation noted above).
neglecting for t he time being the parameter lIn!LB~P which
relates to hinge rotation. The selected purlin spacing is adc ..
quate if its slenderness ratio is less than permitted according to
the figure. Otherwise, further refinements are required as follows.

1) As a first step in evaluating the end fixity correction, compute
the value f which gives the 'fixing·. influence of the adjoining
spans. In the equation for the abscissa of the inset sketch on
Fig. 64 the values LL and LR are the lengths to left and right of
the braced span, and the subscripts ' cr ' indicate the correspond...
Ing critical lengths of those members. These latter values may
be determined roughly, as follows: .

If the member is partly plastic (LL, for example) then the
critical value to use would be that obtained from the chart
a value LB that could, itself, be refined to account for Ct. Thus,
if the adjacent span. LL, had a moment ratio of zero. then the
value Lu , would be taken as 48. This value could either be
computed from Eq 51 or from ~'ig. 64 (for HBIL~r= 3·0). In
other words. in order to obtain the critical length 0 a partially
plastic adjacent span for use in determining,~ it is assumed
that C,= 1·0 and the critical length is obtaine as if it were a
• buckling • segment. If the number is elastic (like span Ill) then
the elastic critical lateral buckling length would be used and as
a conservative approximation one could take L. as given in the
AISC Handbook of steel constructiea,

2) The resulting value of f enables one to compute C/ from the
insert chart. Multiplying the allowable slenderness ratio by C,
then gives a value which can be compared to the ratio existing
in the structure. '

If the selected spacing is still too 'great and a closer spacing is
undesirable, the rotation requirement may next be checked. The
principles and general methods for computinghinge rotations have
already been described. However, the calculations are tedious and,
if required. would tend to obviate one of the advantages of plastic
design. Alternatively, charts may be prepared which would enable
the rapid determination of the magnitude of hinge rotations and
the sequence of formation of plastic hinges. (The tatter question
assumes some importance because a ' last hinge ' would require
a very small rotation*.)

eAI diaeulSed in Ref 9 a slendernea ratio of tOOcoul~ be permitted for tbi. c_.
& Yalae inc i4en tally, which agrees with the British recommeudatlOll (one that te
i.tea'" to cover all caaea).
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Figure 65 presents some of the' limiting values obtained as a
result of a study by G. C. Driscoll in which such charts are being
prepared. It shows that the last hinge occurs in the rafter in
most cases until the columns become relatively high with respect
to the frame span.

As regards to the hinge rotation, the value HILt/Jp in Fig. 64
and 6S is a non-dimensional function in which H is the calcu
lated hinge rotation, L is the frame or beam span,' and .p is the
curvature at M,(c/JI'= Mi,EI). Before it can be used in Fig. 64
it should be corrected to B (the length of the braced segment) and
H B (the hinge rotation within tM braced-segment). It was sug
gested in Ref 18 that value the HB may be determined from
the gradient of the moment diagram. The following equation
may, therefore, be used to compute HB :

H
B
= H = __!!-__

t g" t Mt-MR LL ••.(At)
+gr + Afl'-ML Ls

where the values are as indicated in Fig. 64.
Thus the final step in the procedure would be:

f) Determine the value HILt/J~ either from a deformation analysis
or from charts (Fi~. 65 summarizes a portion of the pertinent
information), compute HBIL~I" and revise the allowable slender
ness ratio according to Fig, 64.
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Strflc/ure Locatioft of Last
Hittge to F(»r,"

~1ox;", ..", • .1 uglr« , .
Jot' (ittt." Gr",nrtry

(1)

--. .-
~_L-+--l -I- .L~

NOTE' a. 0·25 MN

At midspan in nil
cases except the
Iollowing :

(1) 0·7 <~<1'O

0·2S<lX<O·30
(2) 1·3 <~<2'9

0-6 <cx<I'O

HIL~
First hinge at support

0,425 (<<min = 0-25)
First hinge at mi<l:01pan
0-05 (cxmin =0'25)

Firat hinge inside ~pnn

0·186

0·2 0 <A <t·O 0·2 0·475
0·4- 0 <A<I'O 0·4 0·455
O'S 0 <A<1'O 0·6
0·6 0·0241 <A <t·O 0·6 0'450
0-8 0·067 4<A < 1-0 0·8 0,4410
too 0·106 <A<I·0 t-Q 0·425
Otherwise at column

(2)

~~"-------1
a

1

In the rafter for the
following casos :

a

Fint hinge at
the corner:

(I

_--- -..A----- _

I n the rafter for tho .Fint hing~ :l t
following cases: th,. corner:

a a
_----.A----~ ,- ".._~__ .

(3)

(4)

0·2 0 <A <O·S
0·4 0 <A <O'S
0-6 0 <.1<0·5
0·8 0·02</1 <O'S
t·O O'OS<A <0,5
Otherwise at column

In the rafter f01:

O<A<O'S

0·2
0-4
0e6
0-8
1-0

0-85
0·64
OeS7
0-S3
0-50

FIG. 65 J...OCATION ANIl ANGJ..ES OF PI..ASTIC HINGRS
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APPENDIX C

(Clauses 29, 30 and 31)

CJIARTS AND FORMULAS FOR BEAMS

c-r. SIMPLE BEAMS

MI' -=MMII~

Tt'" :c::: W
3.. ell ~MtJs

C-2. BEAM FIXED AT ONE END, SUPPORTED AT THE
QrrHER - UNIFORMLY DISTRIBUTED LOAD

R 1 t:S V 1 = 0·4 t 4 IV L

fl. == V.=O·S86 li't
MI' = 0-085 8 ~VLI

.lilt'

C-3. BEAM FIXED AT ONE END, SUPPORTED AT THE
OTHER - CONCENTRATED LOAD A.T THE CENTRE

"1\

P
R1 sea Yl =: 3

2Pn,J:"2v·=T
PL

1\11':::''1 6 .
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0-4. BEAM FIXED AT ONE END, SUP~ORTED AT THB
OTHER - CONCENTRATED LOAD AT ANY POINT

p

II,

0-5. BEAM PIXED AT BOTH ENDS - UNIFORMLY DISTRI
BUTED LOAD

RI-e;: }Wl *wf A

v R =- V WL
2

WLI
M/J-

16

0-6. BEAM FIXED AT BOTH E"NDS - C0I-\CENTRATED LOA]
AT ANY CENTRE f'

I'
R ~....--I--~R

P
R - V- j

PL
M'-T
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0-7. BEAM FIXED AT BOTH ENDS -CONCENTRATED LOAD
AT' ANY POINT

p

v, rrmm
I ......JI'I"'I"'IJJI........II.....,n.....lI~ll-lJJ \f2

Pab
Itt#'= 2L

C-8. BEAM FIXED AT ONE END, FREE BUT GlJIDED AT THE
OTHER - UNIFORMLY DISTRIBuTED LOAD

Er*fl~,wmfA

~,

R c= Y = JVL

Afp == ~YL·
4

Q =-~.
tJ

AI _ IV, ~tJ+b)·I..• == C !~.!~
2 2

T == W, (a+b)~~
2(1

C _ 2T. ~ WA(a+,,)1
W.L W..

Z - constant
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TABLE 3 'FORMULAS POR THE SOLUrrlON OF PINNED
BASE FRAMES

VERTICAL LOAD ALONB

W.L
VI = V., == -2-

MI'
HI c;:z H., =-. tii

i

VBRTICAL AND HORIZONTAL LOAD

W"L ~V.,L
VI ;;c --2- (l-C); V., = -2 (1+C)

H, := Wi(a+b)tH,; II, lII: Hl'laL

t
For C> ----- (Panel Mech}:

t -+-8
WuLI

M p as ~-4- c. x = 0

t» C < _1_(J- [Combined Meehl:
1+

2

.-..------- L

7

FIG. 67 SINGLE-STOREY STRUCTURE, WITH UNIFORM ~ASTIC MOilIt NT
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APPENDIX D

COMPOSITION OF STRUCTURAL ENGINEEIUNG
SECTIONAL COMMITrEE, 5MBDO 7

, The lSI Structural Enlineerinl Sectional Committee which i. ·~bIe for
Pft)C'MiDI thiI Handbook, coulat8 of the fonowing:

C~.

~. STAMDAIlDS (CIVIL)

R-IW'$,,,,iflr
lIt.uatry of Railways

SBaI S. R. CHAXRAV.RTY

SRRI G. S. IYER
Da O. ]l. JAIN
JOINT IlIRI':CTOR STANDARDSen It: S)

DEPUTY DIRECTOR STANDAROS
(B It S)-II (AlltrHtJl,)

SaRI OM KU05LA Electrical M&DufacturiJ.tJ Co Ltd, "Calcutta
SRR I S. N. SINGH (.41,~"tI'.) . . .

PaOl' K. D.•IAHAJAN Engioeer-ill-Cbief', Braacb, MiDiatry of Defence.
PltOI' P. V. P.cwAa (.4.1""",,,,)

SIIa! P. K. MALLICK Bura " Co Ltd, Howrah
S... A. P, KAy..,~)

MMlhrI
SOl L. N. AGJlAWAL Industrial Fasteners Association of India, Calcutta·

lllal M. M. MuuaxA (A llntlau) .
SImi B. D. AHUJA National Building Organization, New Delhi

. Sftl P. C. JAI~ (AI""""')
8IIaI P.. C. BHASIN Ministry of Transport et Communication, Depart-

ment of Transport (Road '''ing) . .
Central Engineering & Design Bureau, J-lindultan

Steel Ltd, Ranchi
SR.I P. D. DHARWARKAR (4"JUn••'.)

S••I D. P. CHATTBRJBB Inspection Win., Directorate General of. S"pplios
.& Disposal. (Miidstry of Supply, Technical
Development & Materiala Planning)

Da P. N. CHATTERJEE Government of West Ben,at
Da P. K. CHOUDHlJRI Bridge & Roof Co (India) Ltd, Howrah

SHRI A. SEN GUPTA (4'4ltnlttlle) :
Da P. DAYARATNAM Indian In''stitute of Technology, Kanpur
SHal D. S. llESAI M. N. Dastur &. Co Private Ltd, Calcutta
8»:1_. M. DHA. llraithwaite & Co (India) Ltd, Calcutta
D••ECTOR (DAMS 1) Centre Water & Power COmmiuion (Water WiJII),

New Delhi
SHRI B. T. A. SAGAR (.4IIe,,..,)

·S••I M. A. D'SOUZA Bombay Municipal Corporation, Bombay
SHRI J. S. PINTO (A II,null,)

EXECUTIVE ENGINEBR (CENTRAJ~ Central public Worb Department, New DeIhl'
STORES DIVISION No. II) .

S•• I 'v. FERNANDES Richardson" Cruddas Ltd, Bombay
SHRI P. V, NA1K (Alt,rntill') ~

S••I SAILAPATI GUPTA PubHc Work. Department, Govelnment of W.t
. .Bengal
Tho' Hinduataa Construction Co l,td. Bombay
Institution ...of Engineera" (India), C&lcutta
M.inistry of. Railways
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R,/W,..ftU'"
Hindultan Steel I..td, Durppur

M".
SHU A. K. MITaA

SRal K. V. BHASKA. RAO
PAMTULU (AIUnuiU)

S.RI M. G. PADSYB Imption & Power Department, Governmeat ot
Maharashtra

Ra.AReM O.....ca. (A'"",.u)
SR.I B. K. PANDHAKY Indian Roads Congress, New Delhi

SHat B. BALWAMT RAO (A"'''tlGI,)
PaOI' G. S. RAIIASWAIIY Structural Engineering Research Centre (CSIIl)..

Roorkee
DR S. NAasA.1 RAo (AIUnltJU)

nR B. R. SEN Indian Institute of Technology, KharaaPur
S••• P. SEN GUPTA Stewarts & Lloyds of India Pvt Ltd, -Calcutta

SSRI M. M. GRoaB (AI"",tJ'.)
S.al K. V. S8BTTY Central Mechanical Engineerinl'Reeearch Institute

(CSIR), Durgapur
SHRr S. K. GHOSH (A It"'ftG")

Pa01l' P, K. Soli Jadavpur University, Calcutta
Sun.INTENDING ENGINEERDfG Government of Madras

(PLANNING & DESIGN CIRCLE)
EX~CUTIVE ENGINEBR

, (BUILDING CBNTJUt DIVISION)
(A Iler"tJI.) '1,

MAJ R. P. E. VAZlPDAR Bombay Port Trust, Bombay
5••1 K."tzBRARA.GBVAOHARY Bharat Heavy Electricals Ltd, Tiruchirapally
,Sau M. N. VEKItATIUIAN Central Water et Power Commission (Power WiDe)

New Delhi
SR,al P. V. N. IYENGAR (AlllrtttU.)

S.RI R. K. SRIVASTAVA, Director General, lSI (E6-0IJietO .MMt6Ir)
Deputy Director (Struc 4 Met)

S,cr'''ry
SaRI M. S. NAGARAJ

Aaaiatant Director (Struc e.t Met), lSI '

Panel for Handbook for Structural Engineers No.6
. !

SHU K. V••IlAaAGBVACBA.Y
D. S. NA1UIAaa RAo

Bbarat Heavy Electricala. Ltd, Tiracbirapan,
Structural EDgineeriDl Research CeDtre.

Roorkee
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APPENDIX E

(See Foreword)

INDIAN STANDARDS RELATING TO
STRUCTURAL ENGINEERING

OeD-raJ

IS: 800-1962 Code of practice for use of structural steel in general
building construction (rtvised)

IS: 801-1958 Code of practice for use of cold formed light gauge steel
structural members in general building construction

IS: 802 (Part 1)-1967 Code of practice for use of structural steel in
overhead transmission-line towers: Part I Loads and permissible
stresses

IS: 803-1962 Code of practice for design, fabrication and, erection
df vertical mild steel cylindrical welded oil storage tanks

IS: 804-1967.. Specification for rectangular pressed steel tanks
(first ,evts~oft)

IS: 806--1968 Code of practice for use of steel tubes in general build
ing construction (first revision)

IS: 807-1963 Code of practice for design, manufacture, erection and
testing (structural portion) of cranes and hoists

IS: 808-1964 Specification for rolled steel beams, channel and angle
sections (revised) .

IS: 811-1965 Specification for cold formed light gauge structural
steel sections (revised)

IS: 1173-1967 Specification for hot rolled and slit steel, tee bars
(firs' ,evision)

IS: 1252-1958 Specification for rolled steel sections. bulb angles
IS: 1730-1961 Dimensions for steel plate, sheet and strip for struc-

tural and general engin...eering purposes "
IS: 1731-1961 Dimensions for steel fiats for structural and general

engineering purposes
IS: 1732-1961 Dimensions for round and square steels bars for

structural and general engineering purposes
IS: 1852-1967 Specification for rolling and cutting tolerances for

hot-rolled steel products (firs' revision)
IS: 1863-1961 Dimensions for rolled steel bulb plates
IS: 1864-1963 Dimensions, for angle sections with· legs of unequal

width and thickness '
IS: 231~1963 Specification for steel sheet pilling sections
IS: 2713-1969 S~cifi.catiOD for tubular steel poles· for 'over~

power lines (ftru ",w.iott) ,
218

 



SP: 6(6) -1m

IS: 3177·1965 Code of practice for design of overhead traveUiDI
cranes and gantry cranes other than steel work cranes

'IS: 3#3-1966 Specification for crane rail sections
IS: 3908-1966 Specification for aluminium equal leg angles
IS: 3909-1966 Specification for aluminium unequal leg angles
IS: 3921-1966 Specification for aluminium channels
IS: 3954-1966 Specification for hot rolled steel channel sections for

general engineering purposes
IS: 3964-1967 Specification for light rails
lS: '4000-1967 Code of practice for assembly of structural joints

using high tensile friction grip fasteners
IS: 4014 (Part 1)-1967 Code of practice for steel tubular scaffolding:

Part I Definitions and materials
IS: 4014 (Part 11)-1967 Code of practice for steel tubular scaffolding:

Part II Safety regulations for scaffolding
IS: 4137-1967 Code of practice for heavy duty electric overhead

travelling cranes including special service machines for use in
steel works

Handbooks

SP: 6 lSI Handbook for structural engineers:

SP: 6(1)-1966 Structural steel sections
SP: 6(2) Steel beams and plate girders
SP: 6(3) Steel columns and struts

 


