Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

Indian Standard

CODE OF PRACTICE FOR PLASTICS PIPE WORK FOR POTABLE WATER SUPPLIES

PART 1 CHOICE OF MATERIALS AND GENERAL RECOMMENDATIONS

Fourth Reprint JULY 1998

(Incorporating Amendment No. 1)

UDC 696.115 : 69.001.3
Indian Standard

CODE OF PRACTICE FOR
PLASTICS PIPE WORK FOR POTABLE
WATER SUPPLIES

PART 1 CHOICE OF MATERIALS AND GENERAL
RECOMMENDATIONS

Sanitary Appliances and Water Fittings Sectional Committee, BDC 3

Chairman
Shri V. D. Desai

Representing
Bombay Municipal Corporation

Members

Adviser
Shri H. R. Badyal
Shri K. D. Biswas (Alternate)

Ministry of Health
Indian Iron & Steel Co Ltd, Calcutta

Shri V. D. Chadha
Shri S. P. Ghoshabarti

Ministry of Railways
Central Building Research Institute (CSIR), Roorkee

Shri S. K. Sharma (Alternate)

Chief Engineer
Central Public Works Department, New Delhi

Superintending Engineer (Alternate)
Local Self Government Engineering Department, Lucknow

Chief Engineer
Tamil Nadu Water Supply & Drainage Board, Madras

Superintending Engineer (Alternate)

Chief Engineer (Water)
Municipal Corporation of Delhi

Drainage Engineer (Alternate)

City Engineer
Bombay Municipal Corporation

Hydraulic Engineer (Alternate)

Shri H. N. Dallas
Lala G. C. Das
Shri M. T. Karme
Shri S. C. Kapoor
Shri R. V. Lele

Indian Institute of Architects, Bombay
National Test House, Calcutta
Directorate General of Supplies & Disposals
Delhi Development Authority
Central Glass & Ceramic Research Institute (CSIR), Calcutta

Prof. N. Majumder
Central Public Health Engineering Research Institute (CSIR), Nagpur

Shri J. M. Dave (Alternate)

(Continued on page 2)
IS: 7634 (Part 1) - 1975

(Continued from page 1)

Members

Shri R. N. Mallick
Shri N. R. Shrivastav (Alternate)
Shri R. M. Mehra
Shri D. Appukuttan Nayyar
Shri K. Ramachandran (Alternate)
Dr. A. V. R. Rao
Shri P. Jagannath Rao
Shri T. S. Chintamani (Alternate)
*Rishi B. B. Rau
Representative
Col. K. B. Seth
Shri I. S. Bedi (Alternate)
Shri J. L. Sethi
Shri A. N. Mehandale (Alternate)
Shri R. K. Somany
Shri V. S. Bhatt (Alternate)
Shri D. Ajitha Simha,
Director (Civ Engg)

Representing
Directorate General of Technical Development
Bombay Potteries and Tiles Ltd, Bombay
Public Health Engineering Department, Government of Kerala, Trivandrum
National Buildings Organization, New Delhi
E. I. D-Parry Ltd, Madras
Institution of Engineers (India), Calcutta
Public Health Engineering Department, Government of Rajasthan
Engineer-in-Chief's Branch, Army Headquarters
Public Health Engineering Department, Government of Haryana, Chandigarh
Hindustan Sanitaryware & Industries Ltd, Bahadurgarh
Director General, ISI (Ex-officio Member)

Secretary
Shri V. Kalyanasundaram
Assistant Director (Civ Engg), ISI

Plastic Pipes Subcommittee, BDC 3:8

Convener
Shri K. D. Mulekar
Bombay Municipal Corporation

Members

Deputy City Engineer
(Planning & Designs) (Alternate to
Shri K.D. Mulekar)

Adviser
Shri V. A. Anandadas (Alternate)
Dr. B. R. C. Anand
Shri S. Mitra (Alternate)
Shri N. S. Bhairavan

Chief Engineer

Chief Engineer (Water)
Deputy Chief Engineer
(Water) (Alternate)

*He is also alternate to Adviser, Ministry of Health.
AMENDMENT NO. 2 SEPTEMBER 1977
TO
IS:7634(Part I)-1975 CODE OF PRACTICE FOR
PLASTICS PIPE WORK FOR POTABLE
WATER SUPPLIES
PART I CHOICE OF MATERIALS AND
GENERAL RECOMMENDATIONS

Alterations

(Page 4, clause 1.1, line 2) - Delete the words 'up to 37°C'.

(Page 4, clause 3.1.3) - Substitute the following for the existing clause:

"3.1.3 The tensile strength of plastics decreases with increase in temperature and impact strength tends to decrease with decrease in temperature. Thermoplastics in general deform under prolonged loading however small. Such a property of thermoplastics is called, 'cold flow'. Normally to prevent failure due to cold flow, it is advisable not to allow stresses in the pipe due to cold bending particularly when the radius is too short [see (Part II) of this code]. Therefore permanent thermoformed bends conforming to relevant Indian Standards on plastics fittings for potable water supplies are recommended to be used."

(Page 4, note under clause 3.1.3) - Delete.

(Page 6, clause 3.3, line 4) - Substitute 'pipe' for 'pump'.

1
(Page 6, clause 3.4.1, line 1) - Substitute 'plastics' for 'plastic'.

(Page 7, clause 5.1, line 1) - Substitute 'plastics' for 'plastic'.

(Page 8, note under clause 7.4, line 9) - Substitute 'steady' for 'study'.

(BDC 3)
Indian Standard

CODE OF PRACTICE FOR PLASTICS PIPE WORK FOR POTABLE WATER SUPPLIES

PART 1 CHOICE OF MATERIALS AND GENERAL RECOMMENDATIONS

0. FOREWORD

0.1 This Indian Standard (Part I) was adopted by the Indian Standards Institution on 4 January 1975, after the draft finalized by the Sanitary Appliances and Water Fittings Sectional Committee had been approved by the Civil Engineering Division Council.

0.2 The preparation of a code of practice for plastics pipe work for potable water supplies was taken up to make available comparative physical, chemical and mechanical properties of different types of plastic pipes as well as to give guidelines for their selection for different situations arising in practical usage and also to recommend good practices for the installation and jointing and testing of such pipe systems. It is hoped that this code will assist in proper usage of plastic pipes. Part I covers choice of material and general recommendations.

0.2.1 The other parts of the standard are the following:

Part II Laying and jointing polyethylene (PE) pipes
Part III Laying and jointing of unplasticized PVC pipes

0.3 In the formulation of this standard due weightage has been given to international co-ordination among the standards and practices prevailing in different countries in addition to relating it to the practice in this country. This has been met by deriving assistance from BS: CP 312: Part 1: 1973 ‘Code of practice for plastics pipe work (thermoplastics material): Part 1 General principles and choice of material’.

0.4 For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS: 2-1960*. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

*Rules for rounding off numerical values (revised).
IS: 7634 (Part I) - 1975

1. SCOPE

1.1 This code (Part I) deals with the selection of plastic pipe systems for cold water services up to 37°C and general recommendations applicable to all types of plastic pipe systems.

1.2 The code is limited to plastic pipes extruded from thermoplastic materials. In this code wherever the term 'polyethylene' appears singly, it refers to both low density and high density polyethylene pipes.

2. MATERIALS

2.1 The thermoplastic material generally used for plastic pipe systems and the relevant Indian Standards are listed below:

<table>
<thead>
<tr>
<th>Material</th>
<th>Relevant Indian Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Low density polyethylene (LDPE)</td>
<td>IS: 3076-1968*</td>
</tr>
<tr>
<td>b) High density polyethylene (HDPE)</td>
<td>IS: 4984-1972†</td>
</tr>
<tr>
<td>c) Unplasticized PVC</td>
<td>IS: 4985-1968‡</td>
</tr>
</tbody>
</table>

2.2 Visual inspection is necessary for major defects before installation.

3. GENERAL CONSIDERATIONS

3.1 General

3.1.1 Plastic pipes are suitable for conveying water and have certain advantages over metal pipes, such as the resistance to corrosion, light weight, toughness, ease of joining, laying and flexibility.

3.1.2 Some of the plastics are to some extent permeable to many gases and care is thus required in the selection of material to be used and in siting of pipe work to avoid hazards.

3.1.3 The tensile strength of plastics decreases with increase in temperature and impact strength tends to decrease with decrease in temperature. Thermoplastics in general deform under prolonged loading however small. Such a property of thermoplastics is called 'cold flow'. Normally to prevent failure due to cold flow, it is advisable not to allow stresses in the pipe due to cold bending (see Part II of this code). Therefore permanent thermoformed bends are recommended to be used as indicated in the 'draft Indian Standard Specification for moulded PVC socket fittings for potable water supplies' (under preparation)§.

NOTE — The standard is under preparation and till it is published the use of thermoformed bends shall be subject to agreement between the concerned parties.

3.2 Relative Merits of Different Types of Plastics — The merits of different types of plastics relative to one another is given in Table 1.

*Specification for low density polyethylene pipes for potable water supplies (first revision).
†Specification for high density polyethylene pipes for potable water supplies (first revision).
‡Specification for unplasticized PVC pipes for potable water supplies.
§Since printed as IS: 7834 in eight parts.
TABLE 1 COMPARISON OF PROPERTIES OF PLASTICS PIPE MATERIALS
(Clause 3.2)

<table>
<thead>
<tr>
<th>Sl No.</th>
<th>Characteristic</th>
<th>LDPE</th>
<th>HDPE</th>
<th>UPVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i)</td>
<td>Chemical resistance</td>
<td>Good all round chemical resistance</td>
<td>Good all round chemical resistance</td>
<td>Good chemical resistance</td>
</tr>
<tr>
<td>ii)</td>
<td>Flexibility</td>
<td>Highly flexible; pipes can be coiled</td>
<td>Less flexible than LDPE, still pipes can be coiled</td>
<td>Relatively rigid</td>
</tr>
<tr>
<td>iii)</td>
<td>Tensile strength</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>iv)</td>
<td>Impact strength</td>
<td>Not applicable (highly ductile)</td>
<td>Very good</td>
<td>Fair</td>
</tr>
<tr>
<td>v)</td>
<td>Common jointing method</td>
<td>Insert type joints, compression fittings and threaded joints</td>
<td>Compression fittings, fusion weldings, flanged joints</td>
<td>Solvent welded joints, flanged joints, screwed or threaded joints, rubber ring joints</td>
</tr>
<tr>
<td>vi)</td>
<td>Application</td>
<td>Internal plumbing of buildings, water supply and distribution lines</td>
<td>Under ground water supply lines also for plumbing in buildings, flexible water supply connections in buildings, river crossings, highly corrosive applications, marshy and saline areas</td>
<td>For all applications like water services (except for hot water), highly corrosive applications, plumbing in buildings, river crossings, marshy and saline areas</td>
</tr>
</tbody>
</table>
3.3 Locating Pipes After Laying — Accurate records of laying of plastic pipes are very essential as they cannot be located by conventional electronic pipe locators. However, copper or galvanized wire can be spiralled around, taped to or laid along side the pump during installation to permit the use of locating device.

3.4 Limitations

3.4.1 In house installations plastic pipes cannot be used for electrical earthing being a non-conductive material.

3.4.2 In colder climates plastic pipes cannot be thawed by conventional and electric equipment.

3.4.3 Where pumps are used with plastics, starting and stopping are the occasions when damage may occur. The water hammer causes compression of the water in the pipe and consequently results in stretching of the pipe and where necessary, pressure relief devices should be included in the pipe lines.

3.5 Provision Against Effect of Sunlight — In order to take care of the possible deteriorating effect of direct sunlight or plastic pipes, certain additives, one of which is carbon black or stabilizers are generally incorporated in their manufacture; however, it is advisable to take further precautions by burying such pipes or by laying them in ducts wherever possible or otherwise to prevent direct exposure to sunlight.

4. HYDRAULIC CHARACTERISTICS

4.1 The extrusion and injection moulding processes of manufacturing plastic pipes and fittings respectively ensure very smooth and generally highly polished bores. The effect of this is to give excellent hydraulic characteristics resulting in low frictional losses and high flow capacities.

4.2 Plastic pipes maintain the flow characteristics throughout their life due to resistance to corrosion. For calculation of flow rates using the Hazen-Williams equation, a constant ‘C’ of 140 (for dia 75 mm and less) and 150 (for dia greater than 75 mm) should be used. The following equation gives approximate values of frictional losses caused by injection moulded plastics fittings:

\[E = F \times D \]

where

\[E = \text{equivalent pipe length in cm}, \]
\[D = \text{pipe bore in cm}, \text{ and} \]
\[F = \text{constant as given below:} \]
5. HANDLING AND STORAGE

5.1 The detailed precautions in handling and storing plastic pipes are given in the appropriate parts (see Parts II and III) of this code. There is a tendency for plastic pipes to be abused during handling and storage much more than metal pipes and this should be discouraged and proper care taken since plastic pipes are susceptible to damage.

6. LAYING AND JOINTING

6.1 This aspect of work also has its different requirements as compared to metal pipes and needs different techniques and skills. Details of laying and jointing are given in Part II and Part III of this code.

7. TESTING OF INSTALLATIONS

7.1 All pipe work, fittings and appliances shall be inspected and tested hydraulically after the completion of installation. Before starting any test the system shall be visually inspected to ensure that the recommendations for the correct installation procedure have been complied with, and that the pipe line together with appliances, valves and fittings are laid in the prescribed manner. Solvent welded pipe lines should not be pressure tested until at least 24 hours after the last solvent welded joint has been made.

7.2 All control valves shall be positioned 'open' for the duration of the test and open ends temporarily closed with water-tight fittings. The testing pressure should not be less than one and a half times the rated pressure of the pipe under use.

7.3 Pressure should be applied either by hand pump or power driven pump. Pressure gauges should be correctly positioned and closely observed to ensure that at no time are the test pressures exceeded. The system should be slowly and carefully filled with water, to avoid surge pressure of water hammer. Air vents should be open at all high points so that air may be expelled from the system during filling.

Fitting
Value of Constant 'F'

<table>
<thead>
<tr>
<th>Fitting</th>
<th>Value of Constant 'F'</th>
</tr>
</thead>
<tbody>
<tr>
<td>90° Elbow</td>
<td>21.6</td>
</tr>
<tr>
<td>Tee (straight through)</td>
<td>10.8</td>
</tr>
<tr>
<td>Tee (through branch)</td>
<td>42.0</td>
</tr>
<tr>
<td>Reduced tee (straight through)</td>
<td>21.6</td>
</tr>
<tr>
<td>Sweep bend (90°)</td>
<td>10.8</td>
</tr>
<tr>
<td>Angle valve</td>
<td>180.0</td>
</tr>
<tr>
<td>Globe valve</td>
<td>360.0</td>
</tr>
</tbody>
</table>
When the system has been fully charged with water and air displaced from the line, air vents should be closed and the line initially inspected for seepage at joints and the firmness of support under load. Pressure then may be applied until the required test pressure is reached (see Note).

Note — Thermoplastic pipes expand under pressure to a greater extent than pipes of asbestos cement or cast iron. This expansion is due to low modulus of elasticity of the material and results in initial fall of pressure even though there is no leakage for all the four pressure classification of pipes. The amount of water required to build up a steady test pressure for the plastics pipes is given in Table 2 and Table 3 for polyethylene and PVC pipes respectively. The values are only approximate to give a guideline as variations occur due to temperature fluctuation and variation in test pressure and wall thickness. The time taken to build up approximate study pressure is 12 hours. Without any additional requirement of make up water, the test pressure should not fall more than 0.2 kg/cm² at the end of one hour test duration. This extra quantity of water required is normally termed as make up water.

TABLE 2 MAKE UP WATER REQUIRED WHILE TESTING POLYETHYLENE PIPING

<table>
<thead>
<tr>
<th>Nominal Size mm</th>
<th>Litre/100 m Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1.1</td>
</tr>
<tr>
<td>32</td>
<td>1.6</td>
</tr>
<tr>
<td>40</td>
<td>2.6</td>
</tr>
<tr>
<td>50</td>
<td>4.0</td>
</tr>
<tr>
<td>65</td>
<td>5.9</td>
</tr>
<tr>
<td>80</td>
<td>8.5</td>
</tr>
<tr>
<td>100</td>
<td>16.4</td>
</tr>
<tr>
<td>125</td>
<td>26.9</td>
</tr>
</tbody>
</table>

TABLE 3 MAKE UP WATER REQUIRED WHILE TESTING PVC PIPING

<table>
<thead>
<tr>
<th>Nominal Size mm</th>
<th>Litre/100 m Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>2.28</td>
</tr>
<tr>
<td>75</td>
<td>4.55</td>
</tr>
<tr>
<td>100</td>
<td>6.83</td>
</tr>
<tr>
<td>125</td>
<td>10.92</td>
</tr>
<tr>
<td>150</td>
<td>14.56</td>
</tr>
<tr>
<td>180</td>
<td>18.20</td>
</tr>
<tr>
<td>200</td>
<td>22.30</td>
</tr>
</tbody>
</table>
7.5 Long lengths of pipes may be tested in convenient sections of 1000 to 1500 m length.

8. EFFECT ON WATER QUALITY

8.1 For carefully executed installations using properly manufactured plastic pipes, no taste and odour problems should normally be encountered. The plastic pipes are safe from bacteriological point of view (see 0.3 of IS: 3076-1968*, IS: 4984-1972†, and IS: 4985-1968‡). New PVC installations should be flushed with fresh water for a period of about one hour in order to flush out any lead deposits on the inside surface left over from the extrusion process using lead stabilizers.

*Specification for low density polyethylene pipes for potable water supplies (first revision).
†Specification for high density polyethylene pipes for potable water supplies (first revision).
‡Specification for unplasticized PVC pipes for potable water supplies.
(Continued from page 2)

Members

Maj P. S. Chilka
Shri B. R. N. Gupta (Alternate)
Shri J. M. Dave
Shri R. Paramasivam (Alternate)
Shri S. K. Dey
Shri R. K. Jain
Shri S. P. Chakraborti (Alternate)
Shri A. R. Kanga
Dr S. L. Kapur
Shri A. E. Ladhabhoy
Shri P. C. Sanyal (Alternate)
Shri R. A. Mehenadle
Dr G. C. Motwani
Shri G. V. Desai (Alternate)
Shri R. Parikh
Shri M. Ramabhadrnan
Shri K. R. Rangarajan (Alternate)
Dr A. V. R. Rao
Shri C. P. Ratra (Alternate)

Representative

Shri R. Sivaramakrishnan
Shri R. Kalidas (Alternate)
Shri A. K. Subbaraman

Shri B. K. Chakrabarty (Alternate)

Representing

Ministry of Defence
National Environmental Engineering Research Institute (CSIR), Nagpur
EMCO General Plastic Industries (P) Ltd, Calcutta
Central Building Research Institute (CSIR), Roorkee
City & Industrial Development Corporation Ltd, Bombay
National Chemical Laboratory (CSIR), Poona
Imperial Chemical Industries (India) Ltd, Calcutta
Garware Plastics (Pvt) Ltd, Bombay
Union Carbide India Ltd, Calcutta
Directorate General of Technical Development
Wavin India Ltd, Madras
National Buildings Organization, New Delhi
Central Public Works Department
Polyolefins Industries Ltd, Bombay
Local Self Government Engineering Department, Lucknow
Public Health Engineering Department, Government of Haryana
Chemicals & Plastics (India) Ltd, Madras
Housing & Urban Development Corporation Ltd, New Delhi