

BLANK PAGE

Indian Standard

SPECIFICATION FOR ALUMINIUM TEE BARS FOR MARINE APPLICATION

(First Revision)

UDC 669.71-423.4: 629.12

© Copyright 1988

BUREAU OF INDIAN STANDARDS MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002

Indian Standard

SPECIFICATION FOR ALUMINIUM TEE BARS FOR MARINE APPLICATION

(First Revision)

Structural Sections Sectional Committee, SMDC 6

Chairman

SHRI M. DHAR
Flat No. 56, E-1, Kailash Apartments,
Lala Lajpat Rai Marg, New Delhi

Members

SHRI S. BANERJEE

Representing

SHRI V. K. AGRAWAL

Hindustan 'Aluminium Corporation Ltd,
Renukoot

SHRI N. G. SHARMA (Alternate)
SHRI R. N. AGGARWAL

Steel Authority of India Ltd (Bokaro Steel Plant), Bokaro

SHRI B. K. SRIVASTAVA (Alternate)

Steel Re-Rolling Mills Association of India,

SHRI A. P. BHATNAGAR

Calcutta
Steel Authority of India Ltd (Durgapur Steel
Plant), Durgapur

SHRI P. K. DEBNATH (Alternate)

)
Garden Reach Shipbuilder & Engineers Ltd,

SHRI N. BHATTACHARYA

Calcutta
Directorate General of Supplies & Disposals

Shri C. S. Chadha

(Inspection Wing), New Delhi Superintendence Co of India (Pvt) Ltd, Calcutta

SHRI B. B. CHAKRAVERTI SHRI A. K. SHOME (Alternate)

M. N. Dastur & Co Pvt Ltd, Calcutta

SHRI D. S. DESAI SHRI B. K. DUTTA

Iron & Steel Control, Calcutta

SHRI S. S. SAHA (Alternate)

(Continued on page 2)

© Copyright 1988

BUREAU OF INDIAN STANDARDS

This publication is protected under the *Indian Copyright Act* (XIV of 1957) and reproduction in whole are in part by any means except with written permission of the publisher shall be deemed to be an infringement of copyright under the said Act.

(Continued from page 1)

Members

SHRI S. K. GANGULY

SHRI M. P. JASUJA

Representing

Institution of Engineers (India), Calcutta

d Authority of India Ltd (Research & Development Centre for Iron & Steel),

Ranchi

Ministry of Railways

JOINT DIRECTOR STANDARDS

(WAGON I), RDOS

JOINT DIRECTOR STANDARDS

SHRI A. J. JOSHI

(B&S)SB, RDSO (Alternate)

Steel Authority of India Ltd (Bhilai Steel Plant), Bhilai

SHRI A. G. RAMA RAO (Alternate)

LT-COL KULWANT SINGH

Engineer-in-Chief's Branch, Army Headquarters, New Delhi

MAJ S. B. PURI (Alternate)

SHRI S. K. MITRA

SHRI S. DUTTA (Alternate)

SHRI P. K. MUKHERJEE

Braithwaite & Co Ltd, Calcutta

Joint Plant Committee, Calcutta

Indian Aluminium Co Ltd. Calcutta

EMC Steelal Ltd. Calcutta

Plant), Rourkela

SHRI AMIT KUMAR BHATTACHARYA

(Alternate)

SHRI P. V. NAIK SHRI KAMMAL PRAKASH Richardson & Cruddas Ltd, Bombay

Indian Iron & Steel Co Ltd, Burnpur

Metallurgical & Engineering Consultants (India) Ltd, Ranchi

SHRI C. S. KANNAN (Alternate)

SHRI N. S. R. V. RAJU Hindustan Shipyard Ltd, Visakhapatnam SHRI D. KRISHNAMURTHY (Alternate)

SHRI S. K. SADHU Jessop & Co Ltd. Calcutta

SHRI S. C. CHAKRAVARTI (Alternate) Stup & Co Ltd, Bombay

SHRI M. C. SARANGDHAR Stur SHRI M. K. CHATTERJEE (Alternate)

SHRI S. K. SARNA Visakhapatnam Steel Project, Visakhapatnam

SHRI G. N. RAO (Alternate) SHRI K. R. SENGUPTA

SHRI B. P. GHOSH (Alternate)

SHRI S. N. SINGH
SHRI C. K. NAG (Alternate)

SHRI K. S. SRINIVASAN

SHRI A. K. LAL (Alternate) SHRI K. SURYANARAYANAN

SHRI G. M. MENON (Alternate)

SHRI D. THIRUVENGADAM

Tube Products of India, Madras SHRI K. V. VIJAYARAGHAVAN (Alternate)

SHRI S. G. TUDEKAR

SHRI J. N. BHAMBRY (Alternate) SHRI P. VISHWAKARMA

SHRI A. HAQUE (Alternate)

SHRI B. MUKHERJI,

Director (Struc & Met)

Tata Iron & Steel Co Ltd, Jamshedpur

Director General, BIS (Ex-officio Member)

Steel Authority of India Ltd (Rourkela Steel

National Buildings Organization, New Delhi

Secretary

SHRI S. S. SETHI Joint Director (Struc & Met), BIS

(Continued on page 10)

Indian Standard

SPECIFICATION FOR ALUMINIUM TEE BARS FOR MARINE APPLICATION

(First Revision)

O. FOREWORD

- **0.1** This Indian Standard (First Revision) was adopted by the Bureau of Indian Standards on 22 July 1987, after the draft finalized by the Structural Sections Sectional Committee had been approved by the Structural and Metals Division Council.
- **0.2** Aluminium, because of its lightness, strength and better resistance to atmospheric corrosion, is extensively used in marine application.
- 0.3 A large number of variety of aluminium sections are being produced in the country. In order to standardize these sections for their economic production, the Sectional Committee had formulated an Indian Standard series covering angles, channels, beams and tee sections for structural use and other applications, and bulb angles, bulb plates and tee bars for use in marine application. Other standards on aluminium sections for marine application are:
 - a) IS: 6449-1987 Specification for aluminium bulb angles for marine application (first revision), and
 - b) IS: 6476-1987 Specification for aluminium bulb plates for marine application (first revision).
- 0.4 This standard was first formulated in 1971. In this revision, alloys with new designations as covered in IS: 733-1983* have been used.
- 0.5 In the preparation of this standard, the Sectional Committee kept in view the manufacturing and trade practices followed in the country in this field. Assistance has also been derived from ISO 1175-1976 Shipbuilding—Dimensions and sectional properties of aluminium alloy sections for marine use, issued by the International Organization for Standardization.

^{*}Specification for wrought aluminium and aluminium alloy bars, rods and sections (for general engineering purposes) (third revision).

- **0.6** A code of practice for use of aluminium alloys in structures, namely, IS: 8147-1976* was published which covered provisions for the design of structures (except bridges and pressure vessels) using aluminium alloys.
- 0.7 For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS: 2-1960†. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

1. SCOPE

1.1 This standard covers material, dimensions and sectional properties of aluminium tee bars for marine applications.

2. TERMINOLOGY

- 2.0 For the purpose of this standard, the following definitions shall apply.
- 2.1 Y-Y Axis A line parallel to the axis of web and passing through the centre of gravity of the profile of the section.
- 2.2 X-X Axis A line passing through the centre of gravity of the profile of the section and at right angles to the Y-Y axis.

3. SYMBOLS

3.1 Letter symbols used in the standard have been indicated in the figures apperaring along with Tables 1 and 2. The letter symbols used in Tables 1 and 2 shall have the meaning indicated against each as given below:

a =sectional area (without plate);

M =mass of the section per unit length (without plate);

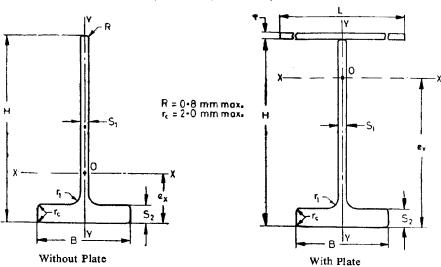
O =centre of gravity;

 $e_{\rm x}=$ distance of centre of gravity from the outerface of the flange;

 I_x = moment of inertia about X-X axis;

 $Z_{\rm x} = \frac{I_{\rm x}}{e_{\rm x}} = {\rm section \ modulus};$

t =plate thickness 5, 10 or 15 mm; and


L =width of plate = 40 t.

†Rules for rounding off numerical values (revised).

^{*}Code of practice for use of aluminium alloys in structure.

TABLE 1 TEE BARS WITHOUT WELDING FLANGE

(Clauses 3.1, 5.1 and 5.3)

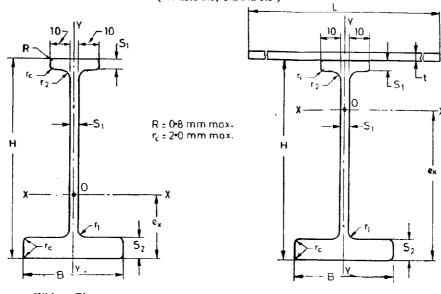

Desig- NATION		1	DIMENSI	ons		Mass* (Without	SECTIONAL PROPERTIES													
NATION	,				1	PLATE)		Section Without Plate			Section with Plate									
										$L \times t: 200 \times 5 \text{ mm}$			$L \times t: 400 \times 10 \text{ mm}$			$L \times t: 800 \times 15 \text{ mm}$		15 mm		
	H mm	B mm	S ₁	S ₂ mm	r ₁ mm	<i>M</i> kg/m	a cm²	e_{x} cm	I _x cm ⁴	e _x	I _x cm⁴	Z _x cm ³	e _x	I _x cm⁴	Z_{x} cm ³	e _x	I _x cm⁴	Z _x cm ³		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)		
AMT 80	80	40	4.0	8.0	6.0	1.64	6.30	2.27	36.9	5.96	174	29.2	7:66	249	32.4	8,33	297	35.7		
AMT 90	90	45	4.0	9.0	6.0	1.96	7:41	2.43	54.5	6.35	252	39.8	8.39	370	44.1	9.19	438	47.7		
AMT 100	100	50	4.0	10.0	6.0	2.31	8.82	2.57	78·1	6.67	352	52.7	9.08	530	58.4	10.0	625	62.4		
AMT 110	110	55	4.0	11.8	6.0	2.68	10.1	2.71	105	6.95	47 3	68.0	9.72	733	75.4	10·8	866	80.0		
AMT 120	120	60	4.0	12.0	6.0	3.08	11.6	2.83	140	7·19	617	85.9	10.3	986	95.5	11.6	1 170	101		
																	(Con	tinued)		

TABLE 1 TEE BARS WITHOUT WELDING FLANGE — Contd.

Desig- NATION			_			MASS* SECTIONAL PROPERTIES												
	DIMENSIONS					(WITHOUT PLATE)	Section Without Plate			Section With Plate								
										$L \times t : 200 \times 5 \text{ mm}$			L:	× t : 400 ×	$L \times t : 800 \times 15 \text{ mm}$			
	H mm	<i>B</i> mm	S_1 mm	S ₃	r ₁ mm	<i>M</i> kg/m	a cm²	e _x cm	I _x cm ⁴	e _x	I _x cm ⁴	Z _x cm ³	e _x	I _x cm ⁴	$Z_{\rm x}$ cm ³	e_{x} cm	I _x cm ⁴	$Z_{\rm x}$ cm ³
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)
AMT 130	130	65	4.5	13.0	7.0	3.68	13.9	3.12	198	7:36	795	108	10.8	1 310	121	12.3	1 570	128
AMT 140	140	70	5.0	14.0	7.5	4.32	16.3	3.42	273	7.53	1 000	133	11.3	1 700	150	13.0	2 064	159
AMT 150	150	75	5.0	15.0	7:5	4.82	18-2	3.54	342	7.69	1 230	160	11.8	2 130	182	13.7	2 620	191
AMT 160	160	80	5.5	16.0	8.2	5.26	21.0	3.83	453	7.84	1 500	191	12.1	2 670	220	14.3	3 310	232
AMT 170	170	85	6.0	17:0	9.0	6.34	23.9	4.12	589	7.99	1 800	226	12.5	3 270	262	14.9	4 120	277
AMT 180	180	90	6.0	18.0	9.0	6.95	26.2	4.25	710	8.11	2 130	262	12.9	3 930	306	15.2	5 000	323
AMT 190	190	95	6.5	19.0	10.0	7.83	29.6	4.54	899	8.26	2 520	305	13.1	4 710	358	16.0	6 060	379
AMT 200	200	100	7.0	20.0	10.2	8.76	33.0	4.83	1 120	8.41	2 950	350	13.4	5 570	415	16.5	7 264	441
AMT 220	220	110	7.5	22.0	11.0	10.48	39 ·5	5.25	1 610	8.68	3 920	451	13.9	7 530	541	17.4	10 000	577
AMT 240	240	120	8.0	24.0	12.0	12.4	4 6·8	5.66	2 240	8· 94	5 090	569	14.4	9 890	689	18.5	13 500	738
AMT 260	260	130	9.0	26.0	13.5	14.7	55.6	6.24	3 180	9.29	6 570	707	14.7	12 700	865	18·9	17 600	933
*Based	on a der	sity of 2	2·65 g/cn	n³.				i										

TABLE 2 TEE BARS WITH WELDING FLANGE

(Clauses 3.1, 5.2 and 5.3)

Without Plate

With Plate

Desig- NATION	Dimensions						Mass* (Without	Sectional Properties												
111111111	•					•	PLATE)	Section Without Plate				Section With Plate								
								•		•	$L \times t : 200 \times 5 \text{ mm}$			$L \times t: 400 \times 10 \text{ mm}$			$L \times t : 600 \times 15 \text{ mm}$			
	H	\boldsymbol{B}	S_1	S_2	r_1	r ₂	M	a	$e_{\mathbf{x}}$	$I_{\mathbf{x}}$	' e _x	I_{x}	$Z_{\rm x}$	e_{x}	I_{x}	Z_{x}	e_{x}	I_{x}	$\overline{Z_x}$	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	
	mm	mm	mm	mm	mm	mm	kg/m	cm ²	cm	cm ⁴	cm	cm4	cm ³	cm	cm4	cm³	cm	cm4	cm³	
AMTW 80	80	40	4.0	8.0	6.0	4.0	1.87	7.05	2.93	59.7	6.02	177	29.2	7.67	249	32.4	8.33	298	35.7	
AMTW 90	90	45	4.0	9.0	6.0	4.0	2.19	8.26	3.08	85.3	6.46	258	39.9	8.40	371	44.1	9.19	438	47.7	
AMTW 100	100	50	4.0	10.0	6.0	4.0	2.54	9.57	3.21	117	6.81	360	52.8	9.09	531	58.3	10.0	625	62.4	
AMTW 110	110	55	4.0	11.0	6.0	4.0	2.91	11.0	3.33	156	7.11	485	68.8	9.74	734	75.4	10.8	866	80.0	
AMTW 120	120	60	4.0	12.0	6.0	4.0	3.31	12.5	3.44	204	7:36	634	86.2	10.4	987	95.4	11.6	1 170	101	
AMTW 130	130	65	4.5	13.0	7.0	4.5	3.94	14.9	3.75	282	7.57	822	188	10.9	1 310	121	12.3	1 570	128	
																		(Conti	inued)	

TABLE 2 TEE BARS WITH WELDING FLANGE - Contd

Desig-	DIMENSIONS						Mass*	SECTIONAL PROPERTIES												
NATION							(WITHOUT PLATE)	Section Without Plate				Section with Plate								
								_ _				$L \times t : 200 \times 5 \text{ mm}$: 400 ×	10 mm	$L \times t : 600 \times 15 \text{ mm}$			
	H	В	S_1	\mathcal{S}_2	r ₁	r_2	M	a	$e_{\mathbf{x}}$	$I_{\mathbf{x}}$	ex	I _x	$\overline{z_x}$	ex	Ix	$\overline{Z_{x}}$	ex	$I_{\rm x}$	$Z_{\mathbf{x}}$	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	
	mm	mm	mm	mm	mm	mm	kg/m	cm²	cm	cm ⁴	cm	cm ⁴	cm ²	cm	¢m⁴	cm³	cm	cm4	cm ³	
AMTW 140	140	70	5.0	14.0	7.5	5.0	4.61	17:4	4.06	382	7.78	1 040	134	11.3	1 710	150	13.0	2 064	158	
AMTW 150	150	75	5.0	15.0	7.5	5.0	5.11	19.3	4.17	471	7.95	1 280	161	11.8	2 140	182	13.7	2 620	191	
AMTW 160	160	80	5.5	16.0	8.5	5.2	5.88	22.2	4.48	614	8.13	1 570	193	12.2	2 680	220	14.3	3 310	231	
AMTW 170	170	85	6.0	17.0	9.0	6.0	6.70	25.3	4.79	788	8.32	1 901	229	12.6	3 300	262	14.9	4 120	276	
AMTW 180	180	90	6.0	18.0	9.0	6.0	7:30	27.6	4.90	939	8.45	2 250	266	13.0	3 960	306	15.5	5 000	322	
AMTW 190	190	95	6.5	19.0	10.0	6.5	8.22	31.0	5·20	1 180	8.63	2 650	309	13.2	4 750	358	16.0	6 070	379	
AMTW 200	200	100	7.0	20.0	10.2	7.0	9·18	34.6	5.51	1 450	8.81	3 140	356	13.6	5 630	416	16.5	7 280	441	
AMTW 220	220	110	7.5	22.0	11.0	7.5	10.9	41.3	5.93	2 050	9·11	4 190	460	14· 1	7 630	542	17:5	10 100	576	
AMTW 240	240	120	8.0	24.0	12.0	8.0	12.9	48.5	6.32	2 810	9.41	5 470	582	14.6	10 000	690	18.3	13 500	738	
AMTW 260	260	130	9.0	26.0	13.5	9.0	15.3	57:7	6.95	3 940	9.80	7 110	725	15.0	13 000	867	19.0	17 700	933	

^{*}Based on a density of 2.65 g/cm³.

4. DESIGNATION

4.1 Aluminium tee bars shall be designated as AMT or AMTW respectively for without and with welding flange, followed by the depth of section in mm, for example AMT 100 or AMTW 100.

5. DIMENSIONS AND SECTIONAL PROPERTIES

- 5.1 Dimensions and mass of Indian Standard aluminium tee bars without welding flange shall be as given in Table 1.
- 5.2 Dimensions and mass of Indian Standard aluminium tee bars with welding flange shall be as given in Table 2.
- **5.3** For convenience of reference, sectional properties are also given in Tables 1 and 2.
- 5.4 Dimensional tolerances for the sections shall be as specified in IS: 3965-1981*.

6. MATERIAL

- **6.1** Aluminium sections covered in this standard shall be manufactured from the alloys 53000, 54300 and 64430 in appropriate temper.
- **6.1.1** Aluminium alloys and temper selected shall conform to the provisions of IS: 733-1983†.

7. MARKING

- 7.1 Each lot/bundle of aluminium tee bars shall be clearly marked with designation, alloy and temper, manufacturer's name and lot number/year of manufacture.
 - 7.1.1 Tee bars may also be marked with the Standard Mark.

Note — The use of the Standard Mark is governed by the provisions of the Bureau of Indian Standards Act 1986, and the Rules and Regulations made thereunder. The Standard Mark on products covered by an Indian Standard conveys the assurance that they have been produced to comply with the requirements of that standard under a well-defined system of inspection, testing and quality control which is devised and supervised by BIS and operated by the producer. Standard marked products are also continuously checked by BIS for conformity to that standard as a further safeguard. Details of conditions under which a licence for the use of the Standard Mark may be granted to manufacturers or producers, may be obtained from the Bureau of Indian Standards.

^{*}Dimensions for wrought aluminium and aluminium alloys, bars, rod and section (first revision).

[†]Specification for wrought aluminium and aluminium alloy bars, rods and sections (for general engineering purposes) (third revision).

(Continued from page 2)

Panel for Structural Sections in Aluminium and Aluminium Alloys, SMDC 6: P 3

Convener

Representing

DEPUTY DIRECTOR STANDARDS, CARRIAGE L. RDSO

Ministry of Railways

Memhers

DEPUTY DIRECTOR STANDARDS (B&S) SB (Alternate to Deputy Director Standards, Carriage I, RDSO)

SHRI V. D. AGGARWAL

Bharat Aluminium Co, Calcutta SHRI V. K. AGRAWAL

SHRI N. G. SHARMA (Alternate)

Hindustan Aluminium Corporation Ltd. Renukoot

SHRI D. K. BARAI

SHRI B. S. BRAHMACHARI

Cochin Shipyard Ltd, Cochin

Metallurgical & Engineering Consultants (India). Ltd. Ranchi

SHRI A. V. KELKAR

Maharashtra State Road Transport Corporation. Pune

SHRI B. Y. DESHPANDE (Alternate)

SHRI A. S LAKRA

Delhi Transport Corporation, Delhi

SHRI M. KHAJA MOHIDEEN SHRI K. B. PATEL

Integral Coach Factoy, Perambur Gujarat State Road Transport Corporation, Ahmadahad

SHRI D. K. NIMAVAT (Alternate) SHRI K. PURKAYASTHA Índian Aluminium Co Ltd. Calcutta

SHRI V. RAMASWAMY (Alternate)

SHRI K. R. RAGHUNATH

REPRESENTATIVE REPRESENTATIVE

Jindal Aluminium Ltd, Bangalore Hindustan Shipyard Ltd, Visakhapatnam Garden Reach Shipbuilder & Engineers Ltd.

SHRI K. K. SUD

Calcutta Ministry of Defence (R & D)

BUREAU OF INDIAN STANDARDS

Headquarters:	
Manak Bhavan, 9 Bahadur Shah Zafer Marg, NEW DELHI	110002
Telephones: 3 31 01 31, 3 31 13 75 Telegrams: 1	
(Common to	all Offices)
Regional Offices:	Telephone
*Western: Manakalaya, E9 MIDC, Marol, Andheri (East) BOMBAY 400093	6 32 92 95
†Eastern: 1/14 C. I. T. Scheme VII M. V. I. P. Road, Maniktola, CALCUTTA 700054	36 24 99
Northern: SCO 445-446, Sector 35-C, CHANDIGARH 160036	{2 18 43 3 16 41
Southern: C. I. T. Campus, MADRAS 600113	£41 24 42
	{ 41 25 19 41 29 16
Branch Offices:	
'Pushpak', Nurmohamed Shaikh Marg, Khanpur, AHMADABAD 380001	{2 63 48 2 63 49
F' Block, Unity Bldg, Narasimharaja Square. BANGALORE 560002	22 48 05
Gangotri Complex, 5th Floor, Bhadbhada Road, T. T. Nag BHOPAL 462003	gar, 6 67 16
Plot No. 82/83, Lewis Road, BHUBANESHWAR 751002	5 36 27
53/5, Ward No. 29, R. G. Barua Road, 5th Byelane, GUWAHATI 781003	
5-8-56C, L. N. Gupta Marg (Nampally Station Road). HYDERABAD 500001	23 10 83
R14 Yudhister Marg, C Scheme, JAIPUR 302005	\[\begin{pmatrix} 6 34 71 \\ 6 98 32 \end{pmatrix}
117/418 B Sarvodaya Nagar, KANPUR 208005	£21 68 76
117/410 5 50/1005/4 11095/7 15/11/ 5/1 25/5/5/5	21 82 92
Patliputra Industrial Estate, PATNA 800013	6 23 05
Hantex Bldg (2nd Floor), Rly Station Road, TRIVANDRUM 695001	7 66 37
Inspection Offices (With Sale Point):	
Pushpanjali, 205-A West High Court Road, Bharampeth Extension, NAGPUR 440010	2 51 71
Institution of Engineers (India) Building, 1332 Shivaji N PUNE 411005	lagar, 5 24 35
"Sales Office in Bombay is at Novelty Chambers, Grant Ro Bombay 400007	ad, 89 65 28
†Sales Office in Calcutta is at 5 Chowringhae Approach P. O. Prin Street, Calcutta 700072	cep 27 68 00