$\star t \star t \star t \star * * * * * * * * *$

 А इंटरनेट

Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.
"जानने का अधिकार, जीने का अधिकार"
Mazdoor Kisan Shakti Sangathan
"The Right to Information, The Right to Live"
"पुराने को छोड नये के तरफ" Jawaharlal Nehru
"Step Out From the Old to the New"

IS 4996 (1984): reinforced concrete fence posts [CED 53:
Cement Matrix Products]

"ज्ञान से एक नये भारत का निर्माण"
Satyanarayan Gangaram Pitroda
"Invent a New India Using Knowledge"
"ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता है" Bhartṛhari-Nitiśatakam
"Knowledge is such a treasure which cannot be stolen"

BLANK PAGE

Indian Standard

SPECIFICATION FOR

 REINFORCED CONCRETE FENCE POSTS
(First Revision)

UDC $624 \cdot 971 \cdot 012 \cdot 45: 69 \cdot 028 \cdot 8$

(51)

(c) Copyright 1985

INDIAN STANDARDS INSTITUTION MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002

Indian Standard

SPECIFICATION FOR

 REINFORCED CONCRETE FENCE POSTS
(First Revision)

Cement and Concrete Sectional Committee, BDC 2

Chairman

Dr H. C. Visvesvaraya

Members

Additional Director, Stand- Research, Designs \& Standards Organization ards ($B \& S$)

Deputy Director, Stand$\operatorname{ards}(\mathrm{B} \& \mathrm{~S})($ Alternate $)$
Shri K. P. Baneliele
Shil Harish N. Malani (Alternate)
Shrt S. K. Bangrejee
Dr N. S. Bhal

Representing

Cement Research Institute of India, New Delhi

> (Ministry of Railways), Lucknow

Larsen \& Toubro Ltd, Bombay
National Test House, Calcutta
Structural Engineering Research Centre (CSIR), Roorkee

Shri V. K. Ghanekal: (Alternate)
Shri S. P. Chakraborti Roads Wing, Ministry of Shipping and Transport,
Shri N. Shivaquru (Alternate)
Chief Engineer (Designs) Central Public Works Department, New Delhi
Executive Enginefir (Disians III) (Alternate)
Chief Engineer (BD)
Shri J. C. Basur (Alternate)
Chief Engineer (Research- Irrigation Department, Government of Punjab, cum-Director) Chandigarh

Research Officer (IPRI) (Alternale)
Dr S. K. Chopra Cement Research Institute of India, New Delhi
De A. K. Mullick (Alternate)
Director A. P. Engineering Research Laboratories, Hyderabad
Director (C \& MDD-I) Central Water Commission, New Delhi
Dy Dimector (C \& MDD-I) (Alternate)
Director
Dy Directior (Allernate)
Shri T. A. E. D'Sa The Concrete Association of India, Bombay
Shri N. C. Duggal (Alternate)
(Continued on page 2)

(C) Copyright 1985
INDIAN STANDARDS INSTITUTION
This publication is protected under the Indian Copyright Act (XIV of 1957) and
reproduction in whole or in part by any means except with written permission of the
publisher shall be deemed to be an infringement of copyright under the said Act.

(Continued from page 1)
Members Representing
Shri A. V. Gokak Cement Controller (Ministry of Industry)
Shri S. S. Miglani (Alternate)
Shri A. K. Gupta
Hyderabad Asbestos Cement Product Ltd, Hyderabad
Shri P. J. Jagus The Associated Cement Companies Ltd, Bombay
Shei M. R. Vinayaka (Allernate)
Shri N. G. Joshi Indian Hume Pipes Company Ltd, Bombay
Shri S. R. Kulkarni M. N. Dastur \& Co Pvt Ltd, Bombay
Shri S. K. Laha The Institution of Engineers (India), Calcutta
Shri B. T. Unwatla (Alternate)
Shri G. K. Majumdar Hindustan Prefab Ltd, New Delhi
Shri H. S. Pashicha (Alternate)
Shri K. K. Nambiar In personal capacity (' Ramanalaya' 11 First Crescent Park Road, Gandhinagar, Adyar, Madras)
Shri Y. R. Phull
Indian Road Congress, New Delhi
Shri Y. R. Phull Central Roads Research Institute (CSIR), New Delhi
Shri M. R. Chaticerjee (Alternate I)
Shri K. L. Sethi (Alternate II)
Dr Mohan RaI Central Building Research Institute (CSIR),
Dr S. S. Rehsi (Alternate)
Dr M. Ramatah
Structural Engineering Research Centre (CSIR), Madras
Dr A. G. Madhava Rao (Alternate)
Shri A. V. Ramana Dalmia Cement (Bharat) Ltd, New Delhi
Dr K. C. Narang (Alternate)
Shri G. Ramdas
Directorate General of Supplies and Disposals, New Delhi
Dr A. V. R. Rao National Buildings Organization, New Delhi
Shri J. Sen Gupta (Alternate)
Shri R. V. Chalapathi Rao Geological Survey of India, Calcutta
Shri S. Rov (Alernate)
Shri T. N. S. Rao Gammon India Ltd, Bombay
Shri S. A. Reodi (Alternate)
Shri Arjun Rijhsinghani Cement Corporation of India Letd, New Delhi
Shri C. S. Sharma (Alternate)
Shri H. S. Satyanarayana Engineer-in-Chief's Branch, Army Headquarters, New Delhi
Shri V. R. Kotnis (Alternate)
Segretary Central Board of Irrigation and Power, New Delhi Shri K. R. Saxema (Alternate)
Shri K A. Subramaniam The India Cement Ltd, Madras
Shri P. S. Ramachandran (Alternate)
Superintendina Enginem Public Works Department, Government of
(Designs) Tamil Nadu, Madras
Executive Enaineer
(SM \& R Division) (Alternate)

Shri L. Swaroop
 Orissa Cement Ltd, New Delhi
 Shri D. S. Bhanoari (Alternate)
 Shri G. Raman, Director General, ISI (Ex-officio Member) Director (Civ Engg)

Secretary

Indian Standard

SPECIFICATION FOR

 REINFORCED CONCRETE FENCE POSTS (First Revision)
0. FOREWORD

0.1 This Indian Standard (First Revision) was adopted by the Indian Standards Institution on 30 April 1984, after the draft finalized by the Cement and Concrete Sectional Committee had been approved by the Civil Engineering Division Council.
0.2 One of the most durable and efficient post-and-wire fence is constructed with the help of concrete fence posts. Properly made reinforced or prestressed concrete fence posts have a long life, require very little or no maintenance and give a neat appearance to the fence. This standard covering reinforced concrete fence posts is intended to serve as a guide in the manufacture, selection, testing and use of suitable type of fence posts.
0.3 This standard was first published in 1968. The present revision has been prepared with a view to incorporating the modifications found necessary consequent to the revision of various related standards since its first publication so as to bring it in line with the present practices in the field in this country. In this revision deformed steel bars conforming to IS : 1139-1966* and IS : 1786-1979 \dagger have been allowed in the manufacture of reinforced concrete fence posts. In addition to significant changes in some figures, the requirement of minimum concrete cover to reinforcement and minimum strength of concrete for handling of units have also been modified.
0.4 For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS : $2-1960 \ddagger$. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

[^0]
1. SCOPE

1.1 This standard covers the requirements for reinforced concrete fence posts for general purposes. Recommendations for the provisions of wire holes and their spacing, as well as the erection of post-and-wire fence have also been included in this standards. The standard does not cover reinforced lightweight concrete fence posts and prestressed concrete fence posts.

2. CLASSIFICATION

2.1 Reinforced concrete fence posts may be classified into the following categories (see Fig. 1):
a) Line Posts - Line posts are intermediate posts forming the majority in a post-and-wire system and are intended to carry the fencing wire between the strainer posts.
b) Strainer Posts - Posts notched on three sides and used with struts or braces as strainers at the corners or ends, or at intermediate positions in a line of fence.
c) Strut or Brace - Member used in incline position for supporting the strainer post.

3. MATERIALS

3.1 The materials used for the manufacture of reinforced concrete fence posts shall comply with the requirements given in Table 1.

TABLE 1 REQUIREMENTS FOR MATERIALS

SL

 No.i) Cement shall be ordinary Portland cement or Portland slag cement or Portland pozzolana cement or rapid hardending. Portland cement or hydrophobic Portland cement
ii) Water
iii) Concrete aggregate
iv) Concrete
v) Reinforcement:

Mild steel and medium tensile steel bars and hard-drawn steel wire or hot rolled mild steel, medium tensile steel and high yield strength steel deformed bars, or cold-worked steel high strength deformed bars
*For titles of Indian Standards, see Appendix F.

Ref to Indian Standards*
IS : 269-1976, IS : 455-1976, IS : 1489-
1976, IS : 8041-1978, and IS : 80431978

IS : 456-1978
IS : 383-1970, IS : 456-1978
IS : 456-1978, IS : 516-1959 and IS : 1199-1959

IS : 432 (Part 1)-1982, IS : 432(Part 2) - 1982, IS : 1139-1966 and IS : 1786-1979

All dimensions in millimetres unless otherwise mentioned.
Fig. 1 Typical Details and Dimensions of Line Post, Strainer Post and Brage for Fencing Intended for Homes and Housing Estates
3.2 Aggregates - The aggregate used shall consist of a graded mixture of clean coarse and fine aggregates. The nominal maximum size of coarse aggregate shall not exceed 12.5 mm .
3.2.1 Where specified, a sample of aggregates shall be submitted to the purchaser for approval.
3.3 Concrete - The mix proportions of the concrete shall be determined by the manufacturer and shall be such as will produce a dense concrete, but shall not be weaker than Grade M. 20 (see IS : 4561978*).

4. MANUFACTURE

4.1 Construction and Finish

4.1.1 Each post shall be made of concrete proportioned, mixed, placed and compacted to give a dense concrete free from voids (see $\mathbf{3 . 3}$).
4.1.2 Each post shall have a dense surface finish showing no coarse aggregate, and shall have no crevices likely to assist in the disintegration of concrete or rusting of the steel by the action of natural agencies.

4. 2 Reinforcement

4.2.1 Preparation - Reinforcement shall be clean and free from loose mill-scale, loose rust, mud, oil, grease and any other coating which could reduce the bond between the concrete and the steel. A slight film of rust shall not be regarded as harmful, but the steel shall not be visibly pitted by rust.
4.2.2 Positioning - Reinforced concrete posts of rectangular cross-section shall be reinforced with a minimum of one longitudinal bar in each corner, and posts which are circular in cross-section shall have at least four bars spaced equidistant around the circumference. The longitudinal reinforcing steel shall be in one piece. The longitudinal bars shall be firmly held by means of at least 3 mm dia steel ties or spacers spaced at not more than 200 mm so that they are not displaced from their correct position during placing and compaction of the concrete.
4.2.3 Anchorage -- Adequate hooks, or other form of anchorage, shall be provided to the main reinforcement at the bottom end of the posts.
4.2.4 Cover - To ensure durability in the finished posts, the longitudinal reinforcement shall have a minimum concrete cover of 15 mm , or twice the diameter of the main reinforcement, whichever is greater. The minimum cover shall be provided at the bottom of any corrugations and at any holes in the posts, and also at the top and bottom of all reinforced

[^1]concrete posts and struts. Where the posts and struts are to be used in corrosive and coastal areas, the minimum concrete cover over the longitudinal reinforcement shall be increased to 25 mm .
4.2.4.1 The manufacturer shall ensure that during placing and compaction of the concrete in the moulds, the minimum concrete cover specified above is maintained.
4.3 Curing - After placing, the concrete shall be adequately protected during setting and in the first stages of hardening, from shocks, running or surface water and the harmful effects of sunshine, drying winds and cold. The concrete shall be cured for at least 7 days unless special curing methods are adopted. Sieam curing of concrete may be adopted if so desired by the manufacturer, provided the requirements of pressure or non-pressure steam curing are fulfilled.
4.3.1 Maturing - From the date of casting, the posts shall be matured for the following period before testing or despatch including the period of normal moist curing:

> Ordinary Portland cement, Portland slag cement, Portland pozzolana cement, hydrophobic Portland cement

Rapid-hardening Portland cement 14 days
4.3.2 Minimum Strength of Concrete for Handling of Units - To prevent danage to units, concrete shall have a strength at least twice the stiess to which the concrete may be subjected at the time of first handling.
4.4 Recommendations for manufacture of reinforced concrete fence posts under field conditions are given in Appendix A.

5. SHAPE AND DIMENSIONS

5.1 The fence posts may be square, rectangular, circular or any polygonal in section. They may be of uniform section throughout their length or tapering on two sides or tapering on all four sides. The cross-sectional dimensions and the reinforcement shall be adequate to conform to the strength requirements given in 7. Unless otherwise specified by the purchaser and provided the strength requirements (see 7) are fulfilled, the dimensions and reinforcement given in Λ ppendix B may be used.
5.2 Tolerances - The tolerance on the overall length of the fence posts shall be $\pm 15 \mathrm{~mm}$. The tolerance on cross-sectional dimensions shall be $\pm 3 \mathrm{~mm}$. The tolerance on the straightness of the fence posts shall be ± 0.5 percent.

6. FIXING AND SPACING OF FENGING WIRES

6.1 Fixing of Fencing Wires - Posts shall be designed for the attachment of the fencing wire by one of the following methods. Holes cast in metal projections or clips shall be located at distances from the end of the post varying not more than $\pm 6 \mathrm{~mm}$ from the position specified.
a) Using Cast-in Metal Projection or Clips - Clips shall be embedded in the fence posts along the centre line of the post at right angle to one face of post during casting (see Fig. 2A). They shall however, invariably be of galvanized steel or a suitable corrosion resisting material and the inner ends shall be bent or hooked to prevent extraction. The clips shall be sufficiently robust to withstand service conditions and repeated fixing and unfixing of wires. A single wire clip shall not be used for this purpose as it may be too easily broken. In coastal climates, however, this method is not recommended, because even the galvanized steel staples may be subject to corrosion.
b) Attaching Fencing Wire with Galvanized Wire - Fencing wire may be tied to the fence posts with a short piece of light wire, as shown in Fig. 2B. One end of the short wire shall be twisted round the line wire and brought around the back of the fence post, the other end shall then be pulled tight and twisted around the fencing wire on the other side of the post. If the edges of the posts are chamfered, this will enable the tying wire to be pulled tighter. Shallow notches may also be cast in the two back edges of the post so that these will firmly house the line wire and prevent any possibility of its slipping down the post. In order to provide a choice of wire spacing, corrugations with a pitch of approximately 25 mm and a depth of approximately 5 mm may be provided on one side of the posts, so that the attachment of fencing wire in chosen corrugations may be made with galvanized wire in the manner described above.
c) Using Holes in the Posts - Holes may be cast in the fencing posts through which the fencing wire could be passed (see Fig. 2C). The holes may be formed by inserting steel rods, slightly greased, horizontally through the holes in the divisions of the mould and withdrawing them before the concrete sets too hard, say 4 or 5 hours after it has been placed. Holes shall have a uniform diameter of not less than 10 mm and shall be along the centre line of the post. They present a reasonably smooth surface. All arrisses shall be removed from the edges of the holes to prevent chaffing of the fencing wire. Holes shall not be provided in struts unless specified by the purchaser, and, when so specified, the holes shall take the form of long slots so that the fencing wires will not be kinked as they pass through.

Abstract

Note - This method is good for plain wire, but if barbed wire is used the holes may have to be bigger which will reduce the cover of the reinforcement bars at these points, unless the section of the post is increased. For barbed wire fencing, holes may be cast in the fence posts in a dircction from front to back with an indent at one end instead from side to side as for plain wire. To attach the barbed wire, a piece of plain wire shaped like an hairpin shall be passed over the barbed wire and through the hole in the post. The ends of the hairpin wire shall be twisted around a short piece of rod placed in the indent (see Fig. 2D).

6.2 Fencing Wire Spacing - Spacing of fencing wire will vary with the use for which the fencing is required. Unless otherwise specified, the spacing as recommended in Appendix B may be adopted.

7. STRENGTH OF REINFORCED CONCRETE FENGE POSTS

7.1 Impact Test - When tested in accordance with the method of test described in Appendix C, the test specimen shall show no visible permanent cracking.
7.2 Static Load Test - When tested in accordance with the method of test described in Appendix C, the load required to produce the first visible crack in the reinforced concrete post shall be not less than that specified below and the section modulus of the post should be adequately designed:

Type of Post

Line post
Strainer post
Strut or angle post

Minimum Static Load at First Crack

N

700
2500
450

8. ERECTION OF FENCE POSTS

8.1 The general recommendations regarding erection of reinforced concrete fence posts are given in Appendix D.

9. SAMPLING AND INSPECTION

9.1 The method of drawing representative samples of the material and the criteria for conformity shall be as prescribed in Appendix E.

10. MARKING

10.1 The fence posts shall be clearly and indelibly marked with the following particulars either during or after manufacture, but before testing, at a position so as to be easily read after erection in position:
a) Year of manufacture,
b) Type of fence post (see 2), and
c) Maker's serial number or trade-mark.

Fig. 2 Typical Arranoement for Fixing Fencing Wires
10.1.1 Each fence post may also be marked with the ISI Certification Mark.

Abstract

Notr - The use of the ISI Certification Mark is governed by the provisions of the Indian Standards Institution (Certification Marks) Act and the Rules and Regulations made thereunder. The ISI Mark on products covered by an Indian Standard conveys the assurance that they have been produced to comply with the requirements of that standard under a well-defined system of inspection, testing and quality control which is devised and supervised by ISI and operated by the producer. ISI marked products are also continuously checked by ISI for conformity to that standard as a further safeguard. Details of conditions, under which a licence for the use of the ISI Certification Mark may be granted to manufacturers or processors, may be obtained from the Indian Standards Institution.

APPENDIX A (Clause 4.4)

RECOMMENDATIONS FOR THE MANUFACTURE OF REINFORGED CONGRETE FENGE POSTS UNDER FIELD CONDITIONS

A-1. GENERAL

A-1.1 This Appendix gives recommendations for the manufacture under field conditions of reinforced concrete posts complying with the performance requirements of the specification. Details of manufacture not covered specifically in this Appendix shall comply with the appropriate clauses of the specification.

A-2 MANUFACTURE

A-2.1 Cross-Sectional Dimensions and Reinforcement - The minimum cross-sectional dimensions, the minimum reinforcement of posts may be as given in Appendix B.
A-2.2 Concrete - The concrete mix proportions shall not be weaker than that specified in 3.3. The minimum cover shall be as given in 4.2.4.

A-2.3 Minimum amount of water shall be used in the mix so that the concrete shall be non-porous and of high density. While designing water-cement ratio, moisture present in the aggregate shall be considered.

A-2.3.1 The use of mechanical vibrators assists in reducing the amount of water used as a relatively dry mix can be compacted by this means. Effective compaction of the concrete in the moulds and around the reinforcement is essential to produce a strong, durable post. If a mechanical vibrator is not available, thorough rodding of the concrete
with a round-pointed 12 mm diameter rod will be effective. At the beyinning of the rodding operation the rod shall be pushed through the concrete almost to the bottom of the mould and the strokes shall be well distributed.
A-2.3.2 When the aggregate has a high proportion of fine material or when hand rodding is used with a wetter mix, some additional cement may be required to give the desired strength. If time is available, a trial mix and the casting of a few posts, subsequently tested for strength, will ensure that the final production of posts is likely to be satisfactory, and more than compensate for any delay.
A-2.4 Typical details of a suitable mould are given in Fig. 3.

Fig. 3 Typical Detalls of a Multiple Mould for Making Three Fencing Posts at a Time

APPENDIX B

(Clauses 5.1, 6.2 and A-2.1)

DIMENSIONS AND REINFORGEMENT

B-1. The design, length and area of cross-section of concrete fence posts vary depending upon the use for which they are intended. Some of the common sizes and shapes are given in Table 2 for general guidance.

TABLE 2 COMMON SIZES FOR REINFORGED CONCRETE FENGE POSTS

F

$\begin{aligned} & \text { Su } \\ & \text { No. } \end{aligned}$	Typin or Post	Cross-Section		$\underbrace{\text { Length }}$		Reinforcement Grade I or Grade II Mild Steel of IS : 432 (Part 1)1982*		Fencing Wire Spacing from Ground Level	Spacing of Line Post	Spacing of Strainer Post	Rematios
		Bottom	Top	Total	Above Ground Level						
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
		mm	mm	m	m			mm	m	m	
i)	Line post	100×125	100×125	$1 \cdot 5$	$1 \cdot 07$						
	Strainer post or Corner post	125×125	125×125	$1 \cdot 6$	$1 \cdot 0$	$\begin{aligned} & 6 \mathrm{~mm} \phi \\ & 4 \mathrm{No.} \end{aligned}$	$\begin{aligned} & 3.15 \mathrm{~mm} \phi \\ & \mathrm{at} \\ & 100 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 150,300 \\ & 450,650 \\ & 900 \text { and } \\ & 1150 \end{aligned}$	3	30 S	Suitable as barbed or plain wire fencing for
	Strut or brace	85×85	85×85	$1 \cdot 6$	-1			1150			es and housing estates 1see Fig. 4 for typical details)

ii) Line post $\quad 125 \times 125 \quad 85 \times 85 \quad 1.85 \quad 1 \cdot 25$)

30
30 Suitable as barbed or plain wire fencing for farms and gardens (see Fig. 4 for typical details)
iii) Line post $100 \times 100 \quad 75 \times 75$

30 Suitable as barbed or plain wire fencing for heavy stock and estate work (see Fig. 4 for typical details)
*Specification for mild steel and medium tensile steel bars and hard-drawn steel wire for concrete reinforcement: Part 1 Mild steel and medium tensile steel bars (third revision).
$\dagger t$ is the thickness of the line post at the height where the strainer post meets the line post.

TABLE 2 COMMON SIZES FOR REINFORGED CONCRETE FENGE POSTS - Contd

IS : 4996-1984

All dimensions in millimetres unless otherwise mentioned.
Fig. 4 Typical Details and Dimensions of Line Post, Strainer Post and Brace for Fenging Intended for Farms and Gardens

All dimensions in millimetres unless otherwise mentioned.
Fig. 5 Typigal Details and Dimensions of RGC Line Post, Strainer Post with Brace for Permanent Barbed or Plain Wire Gattle Fence

IS : 4996-1984

APPENDIX C

(Clauses 7.1 and 7.2)

METHOD OF STRENGTH TEST FOR REINFORCED CONCRETE FENCE POSTS

C-1. IMPACT TESTING OF POSTS AND STRUTS

C-1.1 The specimen shall be laid horizontally on two round bar supports not less than 25 mm in diameter so arranged as to be at rightangles to the length of the specimen and at a distance of 75 mm from the ends. The specimen shall have its greater cross-sectional dimension vertical. The bar supports shall themselves rest on a flat rigid floor (see Fig. 7).

Fig. 7 Typical Arrangement for Impact Test
C-1.2 A mass of $20 \pm 1 \mathrm{~kg}$, in the form of a metal rod with a minimum cross-sectional area of $25 \mathrm{~cm}^{2}$, shall then be dropped from the height specified below appropriate to the type of post or strut, on to the centre of the specimen. The specimen shall then be examined in a good light for permanent cracking:

$$
\left.\begin{array}{lr}
\text { Type of Post or Strut } & \text { Height of Drop } \\
& \mathrm{mm}
\end{array}\right\}
$$

C-2 METHOD FOR STATIC-LOAD TESTING OF POSTS AND STRUTS

C-2.1 The specimen shall be arranged horizontally with the greater cross-sectional dimension vertical (see Fig. 8). The round bars used for the fixed points of support and for the application of the load, shall be not less than 25 mm in diameter and shall be located in the position shown in Fig. 8.

Fig. 8 Typical Arrangement for Static Load Test
C-2.2 The load shall be increased gradually until the first visible crack is observed in a specimen. The applied load than shall be recorded as the test load. Careful observation in a good light is necessary to detect the first crack.

C-2.3 The load at any step should not be maintained for longer than the time necessary to check for the first visible crack.

APPENDIX D

(Clause 8.1)

RECOMMENDATIONS FOR EREGTION OF FENCE POSTS

D-1. GENERAL

D-1.1 In addition to the quality of the fence posts, the life and appearance of the post-and-wire fence depends upon the proper erection of fence posts and placing of fence wire. For good results, the recommendations in D-2 to D-4 may be followed.

D-2. SPACING OF POSTS

D-2.1 Line posts may normally be spaced 3 m apart and strainer posts 30 m apart.

D-3. ERECTION OF FENCE POSTS

D-3.1 The lower end of the fence post shall be inserted in the hole dug in the ground for the purpose and ground repacked very carefully maintaining the plumbness of the posts. The earth shall be watered and rammed back thoroughly around the foot of the post layer by layer. Rocks and large stones burried against the face of the post will give it additional support. Where the soil is so poor, that even these precautions do not work, the posts shall be set in lean concrete. Posts with rectangular sections shall be set with their larger face perpendicular to the line of the fencing.
D-3.2 Proper functioning and appearance of the post-and-wire fence depends upon the stability of the posts as well as the tightness and tautness of the wires. This, in turn, depends upon the firmness and stability of end, corner and strainer posts. These should be provided with braces and set in a black of concrete unless the posts themselves are made very massive, strongly reinforced and set deep in the ground. The use of braces is generally the most economical (see Fig. 1, 4, 5 and 6).

D-3.2.1 The brace shall be placed in line with the fence so that it will bear at a point not more than two-thirds of the distance from the ground level to the top of the post. The foot of the brace may bear against the adjacent line post provided this is set at a distance closer than the normal, alternatively it may be set in a block of concrete below grcund level.

D-4. ATTACHMENT OF LINE WIRES

D-4.1 For attachment of line wires, the neatest arrangement is to pass the wires through the holes in the post. This method is, however, not suitable when barbed wire is to be used.
D-4.2 In case of barbed wires, the wires may be tied to the posts with short pieces of light wire according to the arrangements indicated in 6.

D-4.3 For tightening the fence wire, the device shown in Fig. 9 is useful. One end of each wire shall be attached to a length of 5 mm diameter mild steel bar having a hook at one end and threaded at the other. The threaded end shall be passed through the holes in the strainer post, and a washer and nut shall then be put on. The nut shall be turned on with a spanner until the wire is sufficiently taut. Alternatively, turn buckle straining screw arrangement shown in Fig. 10 may be used.

Fig. 10 Straining Scirew por Tightening Fenge Wire

APPENDIXE

(Clause 9.1)
SAMPLING AND INSPECTION

E-1. SCALE OF SAMPLING

E-1.1 Lot - In any batch, all fence posts of the same class and same dimensions shall be grouped together to constitute a lot.

E-1.1.1 Sub-Lot - If the number of fence posts in a lot exceed 500, the lot shall be divided into a suitable number of sub-lots such that the number of posts in any sub-lot shall not exceed 500. The acceptance or otherwise of a sub-lot shall be determined on the basis of sample selected from it.

E-1.1.2 The number of fence posts to be selected from a lot or a sublot shall depend upon its size and shall be in accordance with col 1 and 2 of Table 3.

E-1.1.3 These fence posts shall be selected at random. In order to ensure randomness, all the fence posts in the lot or the sub-lot may be arranged in a serial order and starting from any random post, every $r \boldsymbol{r} \boldsymbol{h}$ post may be included in the sample, r being the integral part of \mathcal{N} / n, where \mathcal{N} is the size of the lot or the sub-lot and n the sample size.

E-2. NUMBER OF TESTS

E-2.1 All the fence posts as selected in E-1.1.2 shall be tested for overall length, cross-section and uprightness (see 5.2).

E-2.2 The number of posts to be tested for strength test (ses 7.1 and 7.2) shall be in accordance with col 4 and 5 of Table 3. These posts may be selected from those already tested in E-2.1.

E-3. CRITERION FOR GONFORMITY

E-3.1 A lot or a sub-lot shall be considered as conforming to this specification if the conditions under E-3.2 and E-3.3 are satisfied.

E-3.2 The number of fence posts which do not satisfy the requirements of overall length, cross-section and uprightness shall not exceed the corresponding number given in col 3 of Table 3. If the number of such fence posts exceed the corresponding number, all fence posts in the lot or sub-lot shall be tested for these requirements and those not satisfying the requirements shall be rejected.

E-3.3 All the fence posts tested for strength test shall satisfy the requirements of the test. If one or more fence posts fail, twice the number of fence posts originally tested shall be selected from those already selected and subjected to the test. If there is no failure among these fence posts, the lot or the sub-lot shall be considered to have satisfied the requirements of this test.

TABLE 3 SAMPLE SIZE AND GRITERION FOR CONFORMITY
(Clauses E-1.1.2, E-2.2 and E-3.2)

Size of Lot or Sub-Lot	Dimensional Requirements		No. of Fence Posts for Strength Test	
	Sample Size	Permissible No. of Defectives	Impact Test	Static Load Test
(1)	(2)	(3)	(4)	(5)
Up to 100	10	1	1	1
101 to 200	15	1	1	2
201 to 300	20	2	2	2
301 to 500	30	3	3	3

APPENDIX F

(Table 1)

TITLES OF INDIAN STANDARDS

IS : 269-1976 Ordinary, and low heat Portland cement (third revision)
IS : 383-1970 Coarse and fine aggregates from natural sources for concrete (second revision)
IS : 132 (Part 1)-1982 Mild steel and medium tensile steel bars and hard-drawn steel wire for concrete reinforcement: Part 1 Mild steel and medium tensile steel bars (third revision)
IS : 432 (Part 2)-1982 Mild steel and medium tensile steel bars and hard-drawn steel wire for concrete reinforcement : Part 2 Hard-drawn steel wire (third revision)

IS : 455-1976 Portland slag cement (third revision)
IS : 456-1978 Code of partice for plain and reinforced concrete (third revision)

IS : 516-1959 Methods of test for strength of concrete
IS : 1139-1966 Hot rolled mild steel, medium, tensile steel and high yield strength steel deformed bars for concrete reinforcements (revised)
IS : 1199-1959 Methods of sampling and analysis of concrete
IS : 1489-1976 Portland pozzolana cement (second revision)
IS : 1786-1979 Cold-worked steel high strength deformed bars for concrete reinforcement (second revision)
IS : 8041-1970 Rapid hardening Porland cement (first revision)
IS : 8043-1978 Hydrophobic Portland cement (first revision)
(Continued from page 2)
Precast Concrete Products Subcommittee, BDC $2: 9$

Convener

Shri G. K. Majumdar

Members

Deputy Dirfotor, Standards Research Designs \& Standards Organization ($\mathrm{B} \& \mathrm{~S}$)

Assistant Director, Standards (B \& S)-II (Alternate I)
Shri C. G. Vithal Rao (Alternate II)
Directior
Deputy Director (Alternate)
Shri Z. George
Dr A. G. Madiava Rao (Alternate)
Shri V. G. Gokhale
Shri B. K. Jindal
Dr S. S. Rehsi (Alternate)
Shri L. C. Lar
Shris. Naharoy

Shri D. B. Natk Engineer-in-Chief's Branch Army Headquarters, New Delhi
Shri Sucha Singh (Alternate)
Shri K. K. Nambiar
Shri B. V. B. Par
Shri P. Srinivasan (Alternate)
Shri H. S. Pasricha Hindustan Prefab Ltd, New Delhi
Dr N. Raghavendra Cement Research Institute of India, New Delhi
Shri V. Ramadingam Neyveli Lignite Corporation Lid, Neyveli
Shri K. A. Ramabhadran (Aliernate)
Dr A. V. R. Rao National Buildings Organization, New Delhi
Shri J. Sen Gupta (Alternate)
Shri B. G. Shirke B. G. Shirke \& Co Ltd, Pune
Shri R. T. Pawar (Alternate)
Shri C. N. Srinivasan G. R. Narayana Rao, Madras
Shri C. N. Raghaventran (Alternate)
Superintending Engineer Tamil Nadu Housing Board, Madras
($\mathrm{P} \& \mathrm{~S}$)
Project Officer (Aliernate)
Superitending Surveyof of Central Public Works Department, New Delhi Works (NZ)

Surveyor of Works (NZ) (Allernate)

Headquarters :

Manak Bhavan, 9 Bahadur Shah Zafar Marg. NEW DELHI 110002
Telephones: 266021,270131
Telegrams : Manaksanstha (Common to all Offices)

Regional Offices:

Telephone

*Western : Manakalaya, E9 MIDC, Marol, Andheri (East). BOMBAY 4000936329295
\dagger Eastern : 1/14 C. I. T. Scheme VII M, V. I. P. Road, Maniktola 362499 CALCUTTA 700054

Southern : C. I. T. Campus, MADRAS $600113 \quad 412442$
Northern : B69 Phase VII, Industrial Focal Point.

Branch Offices :

'Pushpak', Nurmohamed Shaikh Marg, Khanpur, AHMADABAD 380001

'F' Block, Unity Bldg, Narasimharaja Square, BANGALORE 560002024805
Gangotri Complex, Bhadbhada Road, T. T. Nagar, BHOPAL 462003 62716
22E Kalpana Area, BHUBANESHWAR 751014 10 5627
5-8-56C L. N. Gupta Marg, HYDERABAD 500001 221083
R14 Yudhister Marg. C Scheme, JAIPUR 302005 (69832
$117 / 418$ B Sarvodaya Nagar, KANPUR 208005 , 47292
Patliputra Industrial Estate, PATNA $800013 \quad 62305$
Hantex Bidg (2nd Floor), Rly Station Road, TRIVANDRUM $695001 \quad 322$ 7
Inspaction Office (With Sale Point) :
Institution of Engineers (India) Building. 1332 Shivaji Nagar. PUNE $410006 \quad 62435$

[^2]
[^0]: *Specification for hot rolled mild steel, medium tensile steel and high yield strength steel deformed bars for concrete reinforcement (revised).
 \dagger Specification for cold-worked steel high strength deformed bars for concrete reinforcement (second revision).
 \ddagger Rules for rounding off numerical values (revised).

[^1]: *Code of practice for plain and reinforced concrete (third revision).

[^2]: *Sales Office in Bombay is at Novelty Chambers, Grant Road,
 896528
 Bombay 400007
 \dagger Sales Office in Calcutta is at 5 Chowringbee Approach, P. O.
 276800 Princep Street, Calcutta 700072

