Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“जाने का अधिकार, जीने का अधिकार”
Mazdoor Kisan Shakti Sangathan
“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”
Jawaharlal Nehru
“Step Out From the Old to the New”

IS 14616 (1999): Laminated veneer lumber - Specification
[CED 20: Wood and other Lignocellulosic products]

“ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता है”
Bhartrhari—Niti Satakam
“Knowledge is such a treasure which cannot be stolen”
Indian Standard

LAMINATED VENEER LUMBER — SPECIFICATION

ICS 83.140.20.79.060.10

© BIS 1999

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

January 1999

Price Group 4
AMENDMENT NO. 1 JUNE 2005
TO
IS 14616: 1999 LAMINATED VENEER LUMBER — SPECIFICATION

(Page 2, clause 8.2.3) — Substitute the following for the existing:

'Six specimens each shall be tested for modulus of rupture and modulus of elasticity, compressive strength parallel to grain and perpendicular to grain (both parallel and perpendicular to laminate), horizontal shear strength (both parallel and perpendicular to grain), tensile strength parallel to grain and nail and screw holding power in accordance with the methods given in IS 1659 (Annex J), IS 1708 (Part 8), IS 1708 (Part 11), IS 1734 (Part 9) and IS 1708 (Part 15), respectively and the average values for each test shall conform to the requirements given under SI No. (i) to (vii) of Table 1. The placement of forces for compressive strength shall be as given in Fig. 1.'

(Page 3, clause 10) — Insert the following figure after the clause:

![Diagram of forces placement for compressive strength](image)

Fig. 1 Placement of Forces for Compressive Strength
Amend No. I to IS 14616 : 1999

(Page 4, Annex A) — Insert the following at appropriate place:

IS 1659 : 2004 Block boards — Specification (fourth revision)
IS 1734 (Part 9) : 1983 Methods of test for plywood : Part 9 Determination of tensile strength (second revision)'

(CED 20)
A scheme of labelling environment friendly products to be known as Eco-Mark has been introduced at the instance of the Ministry of Environment and Forests (MoEF), Government of India. The Eco-Mark shall be administered by the Bureau of Indian Standards (BIS) under the BIS Act, 1986 as per the Resolution No. 71 dated 21 February 1991 and Resolution No. 425 dated 28 October 1992 published in the Gazette of the Government of India. For a product to be eligible for Eco-Mark, it shall also carry the Standard Mark of the BIS besides meeting additional environment friendly requirements. For this purpose, the Standard Mark of BIS would be a single mark being a combination of the ISI Mark and the Eco logo. Requirements to be satisfied for a product to qualify for the BIS Standard Mark for Eco friendliness will be optional. Manufacturing units will be free to opt for ISI Mark alone also.

The Eco-Mark criteria is based on the Gazette Notification No. 170 dated 18 May 1996 for Wood Substitutes as Environment Friendly Products published in the Gazette of the Government of India.'

9 ADDITIONAL REQUIREMENTS FOR ECO-MARK

9.1 General Requirements

9.1.1 The laminated veneer lumber shall conform to the requirements of quality specified in this standard.

9.1.2 The manufacturer shall produce to BIS environmental consent clearance from the concerned State Pollution Control Board as per the provisions of Water (Prevention and Control of Pollution) Act, 1974 and Air (Prevention and Control of Pollution) Act, 1981 and Water (Prevention and Control of Pollution) Act, 1977 along with the authorization, if required under the Environment (Protection) Act, 1986 while applying for Eco-Mark appropriate with enforced Rules and Regulations of forest department.
Amend No. 2 to IS 14616 : 1999

9.2 Specific Requirements

The laminated veneer lumber shall conform to the specific requirements given for Eco-Mark under relevant clauses of the standard.

NOTE — The manufacturer shall provide documentary evidence by way of certificate or declaration to Bureau of Indian Standards while applying for Eco-Mark.

[Page 3, clause 9.1 (renumbered 10.1)] — Insert the following matter at the end:

d) The criteria for which the laminated veneer lumber has been labelled as Eco-Mark.
AMENDMENT NO. 4 NOVEMBER 2011

TO
IS 14616 : 1999 LAMINATED VENEER
LUMBER — SPECIFICATION

(Page 2, clause 8.1) — Substitute the following for the existing:

‘8.1 Scale of Sampling and Criteria for Conformity

The scale of sampling and criteria for conformity shall be as prescribed in IS 7638.’

(Page 4, Annex A) — Insert reference of the following in the list of standards at appropriate place:

<table>
<thead>
<tr>
<th>IS No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 7638 : 1999</td>
<td>Wood/lignocellulose based panel products — Methods of sampling (second revision)</td>
</tr>
</tbody>
</table>

[Page 2, clause 8.2.2(b)] — Substitute the following for the existing:

‘After subjecting to six cycles, each cycle consisting of 8 h boiling in water and 16 h drying in an oven at 65 ± 5°C, and’

(CED 20)

Reprography Unit, BIS, New Delhi, India
FOREWORD

This Indian Standard was adopted by the Bureau of Indian Standards, after the draft finalized by the Wood Products Sectional Committee had been approved by the Civil Engineering Division Council.

To conserve our natural forest cover and the ecology and environment, the government, amongst several other measures, has suggested a search for possible wood substitutes that may be produced without affecting our natural forest system and the environment. Wood is a ligno-cellulosic material. Amongst alternative materials that have been identified for adoption, reconstituted ligno-cellulosic products that can be manufactured from plantation wood grown outside the natural forest system or even from ligno-cellulosic agro-residues have also been recommended for use as environmentally friendly materials.

Wooden components used in construction, furniture, packaging and other industrial and domestic requirements fall into two categories:

 a) Panels for sheathing and diaphragms, siding, casing, partitions, panelling, shelving, topping, decking, etc.
 b) Load bearing members like beams, posts, stringers, structural frame work in construction, joinery, furniture, etc.

The use of reconstituted ligno-cellulosic products like plywood, particle board, fibre hardboard and medium density fibreboard as substitutes of wood as panel material is already well established in the country. Till now, however, substitution of wood for load bearing components like beams, posts, stringers and structural frame work in construction, joinery, furniture, etc, with reconstituted ligno-cellulosic products has not been seriously considered in our country. Primarily, the high anisotropic (along the grain) strength of solid wood has a significant and critical role to play in these applications.

In some advanced countries certain reconstituted ligno-cellulosic products with the fibre oriented along a specific direction have been developed and are gradually being adopted for such load bearing applications as completely appropriate wood substitutes, having high anisotropic (along the oriented direction) strength like natural wood. Such reconstituted ligno-cellulosic products are:

 a) Laminated Veneer Lumber (LVL).
 b) Parallel Strand Lumber (PSL) along with its variant ‘Scrimber’.
 c) Parallel-Fibre Oriented Strand Board (OSB).

Since direct use of solid timber from plantations is beset with problems of inherent growth stressed brittle heart, tension wood, excessive warping and small girths, and use of conventional timbers from the natural forests has been banned there is an acute paucity of timber in the country. The above mentioned new structural composites (including LVL), reconstituted from plantation grown wood, are eco-friendly products. They effectively overcome all the problems associated with direct use of plantation timber.

Being based on lamination technology, these products eliminate the adverse effects of growth stresses such as excessive warping. Through a re-distribution of natural defects such as knots, cross grain, etc, they can be engineered to give more uniform strength properties, greater reliability and lower factors of safety than are possible with natural solid wood.

Commercial manufacture of these products need to be initiated and promoted in the country on an urgent basis and since some of them have already been developed and investigated recently by national research institutes, like Forest Research Institute, Dehra Dun and Indian Plywood Industries Research and Training Institute, Bangalore as well as by the R&D Divisions of wood products manufacturers in the country, there is a need to formulate Indian Standards for these products for the technical guidance of manufacturers and new entrepreneurs.

The Committee responsible for the preparation of this standard is given at Annex C.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2:1960 ‘Rules for rounding off numerical values (revised)’. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.
1 SCOPE

1.1 This standard covers Laminated Veneer Lumber (LVL) of density range 0.6 to 0.75 in which most natural structural wood fall.

1.2 Its applications include all the end uses to which structural wood has been traditionally used, such as, beams, rafters, stringers, joists, posts and framework construction, stiles, rails and frames of doors and windows, vehicle bodies, railways coaches, containers, framework of furniture, cabinets, shelving, etc.

2 REFERENCES

The Indian Standards listed in Annex A contain provisions which through reference in this text, constitute provision of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated in Annex A.

3 TERMINOLOGY

3.1 For the purpose of this standard, the definitions given in IS 707 and the following shall apply.

3.2 Laminated Veneer Lumber (LVL)

A structural composite made by laminating veneers, 1.5 to 4.2 mm thick, with suitable adhesive and with the grain of veneers in successive layers aligned along the longitudinal (length) dimension of the composite.

4 MATERIALS

4.1 Veneers

4.1.1 Veneers of the required thickness shall be obtained from timber logs grown in plantations outside the natural forest system, such as rubber wood, silver oak, eucalyptus, poplars, acacias, etc.

4.1.2 Veneers shall be free from knot holes, decayed knots except pin knots, unfilled splits wider than 3 mm, concentrated borer holes, shakes, objectionable decay or termite attack, except that for the face veneers none of these defects nor cross grain exceeding 1 in 10 shall be permitted. The nominal thickness of all the veneers used shall be identical and uniform within a tolerance of ± 5 percent.

4.2 Adhesives

4.2.1 Only BWP grade adhesive conforming to IS 848 shall be used for making LVL.

4.3 Preservatives

4.3.1 Veneers used for LVL shall be given suitable preservative treatment before lamination, with a preservative that is compatible with the adhesive to be used.

4.3.2 Only fixed type of water soluble preservatives, CCA or CCB, or non-leachable, solvent soluble preservatives as per IS 401 shall be used for treating the veneers.

4.3.3 Retentions of preservatives shall be as per IS 401 depending upon the proposed end use.

5 MANUFACTURE

5.1 The veneers shall be reasonably smooth to permit an even spread of glue. After preservative treatment they shall be dried and conditioned to moisture content not exceeding 10 percent before bonding.

5.2 LVL may be directly manufactured in the nominal size of the components ultimately desired (allowing margin for final dressing and sanding) or in planks of larger lengths and widths from which the desired size of components may be obtained by ripping.

5.3 Glue shall be evenly spread over the veneers, not leaving any unglued or glue-starved areas. The glued
8 SAMPLING AND TESTING

8.1 Test Samples

For purposes of tests, samples shall be drawn at random from a batch as given below:

<table>
<thead>
<tr>
<th>Size of Batch</th>
<th>No. of Pieces to be Selected at Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>(No. of Pieces of Any Size)</td>
<td></td>
</tr>
<tr>
<td>Less than 50</td>
<td>2</td>
</tr>
<tr>
<td>51 to 100</td>
<td>4</td>
</tr>
<tr>
<td>101 to 200</td>
<td>5</td>
</tr>
<tr>
<td>201 to 250</td>
<td>6</td>
</tr>
<tr>
<td>251 to 500</td>
<td>7</td>
</tr>
</tbody>
</table>

8.1.1 The pieces selected as samples for test shall contain joints in case the pieces in the batch represented contain joints.

8.2 Tests

8.2.1 Moisture Content

The average moisture content of three test specimens, when determined in accordance with IS 1734 (Part 1), shall be between 5 to 15 percent.

8.2.2 Adhesion of Plies

Adhesion of plies shall be tested by knife test described in IS 1734 (Part 5) on three specimens each under the following conditions:

a) In the dry state,
b) After boiling in water for 72 h followed by cooling in water at room temperature, and
c) After subjecting to attack by micro-organism as per Annex B.

Under each condition the fractured specimens shall show some adherent fibres distributed more or less uniformly. Also the test should offer appreciable resistance to the separation of layers.

8.2.3 Strength Tests

Six specimens each shall be tested for modulus of rupture and modulus of elasticity, compressive strength parallel to grain, compressive strength perpendicular to grain, horizontal shear strength (both parallel and perpendicular to laminae), horizontal shear strength (both parallel and perpendicular to grain), tensile strength parallel to grain.

NOTE — Unlike solid timber, LVL components generally need minimum of dressing, planing and sanding to correct warping, remove surface and end cracks or surface roughness.

6 DIMENSIONS

6.1 Dimensions of LVL composite supplied shall be inclusive of margin required for dressing and finishing over and above the size of finished component desired, unless finished components (ready for painting) are ordered.

6.2 The margin for dressing and finishing shall not exceed 3 mm in the width and thickness and 12 mm in the length.

7 WORKMANSHIP AND FINISH

The following defects shall be permissible in the manufactured LVL:

<table>
<thead>
<tr>
<th>Defects</th>
<th>Permissible Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jointing gaps</td>
<td>Not more than 3 mm wide, provided they are well staggered in their spacing and position between the successive plies.</td>
</tr>
<tr>
<td>Slope of grain</td>
<td>Not exceeding 1 in 10 in the face layers.</td>
</tr>
<tr>
<td>Tight knot</td>
<td>Three numbers up to 25 mm diameter in one square metre provided they are spaced 300 mm or more apart.</td>
</tr>
<tr>
<td>Warp</td>
<td>Not exceeding 1.5 mm per metre length.</td>
</tr>
</tbody>
</table>
and nail and screw holding power in accordance with
the methods given in IS 1708 (Parts 6, 8, 9, 11, 12 and
15) respectively and the average values for each test
shall conform to the requirements given under Sl No (i)
to (vii) of Table 1.

Table 1 Requirements of LVL
(Clauses 8.2.3 and 8.2.4)

<table>
<thead>
<tr>
<th>Sl No.</th>
<th>Properties</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>i)</td>
<td>Modulus of rupture (N/mm²), Min</td>
<td>50</td>
</tr>
<tr>
<td>ii)</td>
<td>Modulus of elasticity (N/mm²), Min</td>
<td>7500</td>
</tr>
<tr>
<td>iii)</td>
<td>Compressive strength parallel to grain (N/mm²), Min</td>
<td>35</td>
</tr>
<tr>
<td>iv)</td>
<td>Compressive strength perpendicular to grain:</td>
<td></td>
</tr>
<tr>
<td>a)</td>
<td>Parallel to laminae (N/mm²), Min</td>
<td>35</td>
</tr>
<tr>
<td>b)</td>
<td>Perpendicular to laminae (N/mm²), Min</td>
<td>50</td>
</tr>
<tr>
<td>v)</td>
<td>Horizontal shear:</td>
<td></td>
</tr>
<tr>
<td>a)</td>
<td>Parallel to grain (N/mm²), Min</td>
<td>6</td>
</tr>
<tr>
<td>b)</td>
<td>Perpendicular to grain (N/mm²), Min</td>
<td>8</td>
</tr>
<tr>
<td>vi)</td>
<td>Tensile strength parallel to grain (N/mm²), Min</td>
<td>55</td>
</tr>
<tr>
<td>vii)</td>
<td>Screw holding power:</td>
<td></td>
</tr>
<tr>
<td>a)</td>
<td>Edge (N), Min</td>
<td>2300</td>
</tr>
<tr>
<td>b)</td>
<td>Face (N), Min</td>
<td>2700</td>
</tr>
<tr>
<td>viii)</td>
<td>Thickness swelling in 2 h water soaking (percent), Max</td>
<td>3</td>
</tr>
</tbody>
</table>

8.2.4 Swelling in Water

The average swelling in thickness of three specimens
due to general absorption when determined in
accordance with IS 2380 (Part 17) shall comply with
the requirements given under Sl No. (viii) of Table 1.

9 MARKING

9.1 Each LVL piece shall be legibly and indelibly
marked or stamped on the face near one corner with
the following:

a) Name of the manufacturer or trade-mark,
b) Thickness, and
c) Year of manufacture.

9.2 BIS Certification Marking

The LVL may also be marked with the Standard Mark.

9.2.1 The use of Standard Mark is governed by the
provisions of Bureau of Indian Standards Act, 1986
and the Rules and Regulations made thereunder.
The details of conditions under which the licence for
the use of Standard Mark may be granted to
manufacturers or producers may be obtained from the
Bureau of Indian Standards.

10 DELIVERY

Unless otherwise specified, the LVL shall be delivered
in good condition and shall be suitably packed
according to normal trade practices.
ANNEX A
(Clause 2)
LIST OF REFERRED INDIAN STANDARDS

<table>
<thead>
<tr>
<th>IS No.</th>
<th>Title</th>
<th>IS No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>707 : 1976</td>
<td>Glossary of terms applicable to timber technology and utilization (second revision)</td>
<td>(Part 12) : 1986</td>
<td>Determination of tensile strength parallel to grain (second revision)</td>
</tr>
<tr>
<td>848 : 1974</td>
<td>Specification for synthetic resin adhesives for plywood (phenolic and aminoplast) (first revision)</td>
<td>(Part 15) : 1986</td>
<td>Determination of nail and screw holding power (second revision)</td>
</tr>
<tr>
<td>1708 (Part 6) : 1986</td>
<td>Method of testing of small clear specimens of timber: Determination of static bending strength under two-point loading (second revision)</td>
<td>1734 (Part 1) : 1983</td>
<td>Methods of test for plywood: Determination of density and moisture content (second revision)</td>
</tr>
<tr>
<td>(Part 8) : 1986</td>
<td>Determination of compressive strength parallel to grain (second revision)</td>
<td>(Part 5) : 1983</td>
<td>Test for adhesion of plies (second revision)</td>
</tr>
<tr>
<td>(Part 9) : 1986</td>
<td>Determination of compressive strength perpendicular to grain (second revision)</td>
<td>2380 (Part 17) : 1977</td>
<td>Methods of test for wood particle boards and boards from other lignocellulosic materials: Part 17 Determination of swelling in water (first revision)</td>
</tr>
</tbody>
</table>
ANNEX B

[Clause 8.2.2 (c)]

B-1 OBJECT

This test is intended to evaluate the resistance of glue line to attack by micro-organism.

B-2 PROCEDURE

B-2.1 A flat rectangular dish of enamelled iron, glass or porcelain (such as a photographic developing dish), of a minimum depth of 50 mm, shall be filled to a depth of about 25 mm with a layer of saw dust obtained from the sapwood of a perishable timber, like semul (Bombax ceiba) in its natural condition. The saw dust shall have previously been moistened with water containing 15 g of sucrose (normally sugar may be used; but if unavailable, 30 g commercial malt extract may be substituted) to a litre of water so that it is saturated with moisture, but not so wet that free water is squeezed out of it by hand pressure. To attain this condition with dry saw dust, it is usually necessary to add three times its mass of water.

B-2.2 The saw dust shall then be charged with spores of commonly occurring wood destroying fungi and loosely compacted. The test specimens shall be pressed down into it so that their upper surfaces are level with the top of the saw dust layer.

B-2.3 The dish shall then be covered with a sheet of glass and the edges of the dish sealed against the glass with modelling clay or a similar suitable material so that the atmosphere around the test specimens shall remain saturated with water vapour.

B-2.4 The dish and the contents shall be maintained at a temperature of 27 ± 2°C for a period of three weeks, after which the test pieces shall be removed, washed in water at room temperature.
ANNEX C

(Foreword)

COMMITTEE COMPOSITION

Wood Products Sectional Committee, CED 20

Chairman

SHRI V. SVANANDA
Indian Plywood Industries Research and Training Institute, Bangalore

<table>
<thead>
<tr>
<th>Members</th>
<th>Representing</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHRI B. S. ASWATHANARAYANA</td>
<td>Indian Plywood Industries Research and Training Institute, Bangalore</td>
</tr>
</tbody>
</table>
| SHRI P. D. AGARWAL
SHRI V. S. SINGH (Alternate) | Public Works Department, Uttar Pradesh |
| SHRI K. K. BARUAH
SHRI T. K. DAS (Alternate) | Forest Department, Government of Assam, Guwahati |
| SHRI N. M. CHACHAN
SHRI B. B. ROY (Alternate) | Plywood Manufacturers’ Association of West Bengal, Calcutta |
| SHRI A. K. CHATTERJEE
SHRI O. P. SHARMA (Alternate) | Directorate General of Technical Development, New Delhi |
| SHRI P. G. DESHMUKH
SHRI P. L. NAGARJUKAR (Alternate) | Indian Institute of Packaging, Mumbai |
| SHRI M. GANGARAJU
SHRI V. K. VERMA (Alternate) | Directorate General of Supplies & Disposals, New Delhi |
| SHRI M. M. JALAN
SHRI P. V. MEHTA (Alternate) | Federation of Indian Plywood and Panel Industry, New Delhi |
| SHRI M. KANCHAN
SHRI K. D. NARULA | Central Public Works Department, New Delhi |
| SHRI D. K. KANJUNDO
SHRI B. K. BEHRA (Alternate) | National Test House, Calcutta |
| SHRI A. K. KASHERKUDY | The Western Indian Plywood Ltd, Cannanore |
| SHRI S. K. KAMACHI
SHRI A. C. SODA (Alternate) | Nuchem Ltd, Faridabad |
| SHRI PARESH KAPADIA
SHRI DIVYA KRUSHI (Alternate) | The Indian Institute of Architects, Mumbai |
| SHRI HARISH KUMAR TAMBAR
SHRI S. KUMAR (Alternate) | Andaman Chamber of Commerce and Industry, Port Blair |
| SHRI RAVINDER KUMAR | Ministry of Defence (R&D), New Delhi |
| SHRI K. S. LAXI
SHRI P. T. S. MENON (Alternate) | The Indian Plywood Manufacturing Company Ltd, Mumbai |
| SHRI PRASAD MEENAKSHI
SHRI AMRITA RAI (Alternate) | Engineer-in-Chief’s Branch, Army Headquarters, New Delhi |
| SHRI A. MUKHERJEE
SHRI B. S. NARULA (Alternate) | Directorate of Standardization, Ministry of Defence, New Delhi |

(Continued on page 7)
Members

SHRI S. A. NAQUI
SHRI A. V. V. RAGHAVACHARYA (Alternate)

DR A. N. NAYER

DR K. S. RAO
SHRI A. K. ANANTHANARAYANA (Alternate)

SHRI S. K. SANGANERIA

SHRI K. SANKARAKRISHNAN

SHRI S. N. SANVAL
SHRI N. K. SHUKLA (Alternate)

SHRI S. N. SANVAL
SHRI K. S. SHUKLA (Alternate)

SHRI F. C. SHARMA
SHRI N. M. WALECHA (Alternate)

DR Y. SINGH
DR L. K. AGARWAL (Alternate)

SHRI J. K. SINHA
SHRI RAM CHANDRA (Alternate)

DIRECTOR STANDARDS (CARRIAGE)
ASSISTANT DIRECTOR (Alternate)

SHRI ANIL TALWAR
SHRI K. SRIDHAR (Alternate)

SHRI M. ZAFRUULLA
SHRI TRIDIB SEN (Alternate)

SHRI VINOD KUMAR,
Director (Civ Engg)

Representing

Novopan India Ltd, Hyderabad

In personal capacity (C-29 Inderpuri, New Delhi 110012)

Institute of Wood Science and Technology, Bangalore

Assam Plywood Manufacturers' Association, Tinsukhia

The South Indian Plywood Manufacturers' Association, Kannur

Forest Products Division, FRI, Dehra Dun

Indian Academy of Wood Science, Bangalore

Directorate General of Civil Aviation, New Delhi

Central Building Research Institute (CSIR), Roorkee

Ministry of Defence (DGQA)

Ministry of Railways (RDSO), Lucknow

Mangalam Timber Products Ltd, Calcutta

Sitapur Plywood Manufacturers' Ltd, Sitapur

Director General, BIS (Ex-officio Member)

Member Secretary
SHRI T. B. NARAYANAN
Joint Director (Civ Engg), BIS

Plywood and Veneers Subcommittee, CED 20: 1

Convener

SHRI V. SIVANANDA

Members

SHRI P. D. AGARWAL
SHRI V. S. SINGH (Alternate)

SHRI ANIL BANCA
SHRI F. L. SAHU (Alternate)

MAJ S. S. BHUT
SHRI B. S. NARULA (Alternate)

Indian Plywood Industries Research and Training Institute, Bangalore

Public Works Department, Uttar Pradesh

Kitply Industries Ltd, Tinsukia

Directorate of Standardization, New Delhi

(Continued on page 8)
Members

SHRI N. M. CHACHAN
SHRI B. B. ROY (Alternate)

SHRI A. K. CHATTERJEE
SHRI O. P. SHARMA (Alternate)

SHRI SUREEP CHITLANCRA
SHRI K. K. MAHESHWARI (Alternate)

SHRI P. G. DESHMUKH
SHRI S. C. PURUSHOTHAMAN (Alternate)

DR. R. GNANAHARAN

SHRI V. K. GUPTA

SHRI T. K. JACOB

SHRI A. K. KAUKKUTTY

SHRI S. KUMAR

SHRI K. S. LALLY
SHRI P. T. S. MENON (Alternate)

SHRI HARISH KHAIKANT
SHRI YASH PODAR (Alternate)

SHRI B. C. KHAIRANDA
SHRI M. SURESH BARU (Alternate)

SHRI K. S. LAULY
SHRI A. K. ANANTHANARAYANA (Alternate)

Representing

Plywood Manufacturers' Association of West Bengal, Calcutta

Directorate General of Technical Development, New Delhi

Sarda Plywood Industries Ltd, Calcutta

Indian Institute of Packaging, Mumbai

Indian Plywood Industries Research and Training Institute, Bangalore

Kerala Forest Research Institute, Poocherry

Forest Research Institute, Forest Products Division (Timber Mechanics), Dehra Dun

Veneers and Lamination (India) Ltd, Cochin

The Western India Plywood Ltd, Cannanore

Institute of Wood Science and Technology, Bangalore

Andaman Timber Industries Ltd, Calcutta

Kerala State Wood Industries Ltd, Nilampur

Andaman Chamber of Commerce and Industry, Port Blair

The Indian Plywood Manufacturers Association Ltd, Mumbai

Assam Plywood Manufacturers' Association, Tinsukia

Directorate General of Civil Aviation, New Delhi

Forest Research Institute, Forest Products Division (Composite Wood), Dehra Dun

Central Public Works Department, New Delhi

Directorate General of Supplies and Disposals, New Delhi

The South Indian Plywood Manufacturers' Association, Kannur

Central Food Technological Research Institute (CSIR), Mysore

Sitapur Plywood Manufacturers Ltd, Sitapur

SHRI F. C. SHARMA

SHRI K. S. SHUKLA

SHRI S. K. LAULY

DR. S. P. SINGH (Alternate)

SUPERINTENDING ENGINEER (S&S)
EXECUTIVE ENGINEER (S&S) (Alternate)

SHRI N. K. UPADHYAY

SHRI MOIZ VAGHI

SHRI A. R. VIJAYENDRA RAO
SHRI N. BALASUBRAMANYAN (Alternate)

SHRI M. ZAPRULLA
SHRI TIRUMOHA SEN (Alternate)
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and tending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Inquiries relating to copyright be addressed to the Director (Publication), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of ‘BIS Handbook’ and ‘Standards Monthly Additions’.

This Indian Standard has been developed from Doc. No. CED 20 (5572).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:

Janak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002

Telephones: 323 01 31, 323 33 75, 323 94 02

Regional Offices:

Central: Manak Bhavan, 9 Bahadur Shah Zafar Marg

NEW DELHI 110002

323 76 17, 323 38 41

Telephones: 323 01 31, 323 33 75, 323 94 02

Eastern: 1/14 C.I.T. Scheme VII M, V.I.P. Road, Maniktola

CALCUTTA 700054

337 84 99, 337 85 61

337 86 26, 337 91 20

60 38 43

Southern: SCO 335-336, Sector 34-A, CHANDIGARH 160022

60 20 25

60 20 25

Northern: C.I.T. Campus, IV Cross Road, CHENNAI 600113

60 20 25

60 20 25

Western: Manakalaya, E9 MIDC, Marol, Andheri (East)

MUMBAI 400093

832 92 95, 832 78 58

832 78 91, 832 78 92

Branches: AHMADABAD. BANGALORE. BHOPAL. BHUBANESHWAR.

COIMBATORE. FARIDABAD. GHAZIABAD. GUWAHATI.

HYDERABAD. JAIPUR. KANPUR. LUCKNOW. NAGPUR.

PATNA. PUNE. THIRUVANANTHAPURAM.

Printed at Dee Kay Printers, New Delhi, India