Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“जानने का अधिकार, जीने का अधिकार”
Mazdoor Kisan Shakti Sangathan
“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”
Jawaharlal Nehru
“Step Out From the Old to the New”

IS 6598 (1972): Cellular concrete for thermal insulation
[CHD 27: Thermal Insulation]
Indian Standard

SPECIFICATION FOR CELLULAR CONCRETE FOR THERMAL INSULATION

Third Reprint AUGUST 2006
(Including Amendment No. 1 & 2)

UDC 662.998 : 666.973.6

© Copyright 1972

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

Gr 2 November 1972
4.2 Density — The average bulk density of the material shall be as given below when tested in accordance with the method prescribed in 4 of IS 5688 : 1982:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Density, kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Minimum 320</td>
</tr>
<tr>
<td>B</td>
<td>321 to 400</td>
</tr>
<tr>
<td>C</td>
<td>401 to 500</td>
</tr>
</tbody>
</table>

(4.2 Density) — The average bulk density of the material shall be as given below when tested in accordance with the method prescribed in 4 of IS 5688 : 1982:

†Methods of test for preformed block-type and pipe covering type thermal insulation (first revision).

4.3 (4.3) — Substitute '5688 : 1982' for 'IS : 5688 - 1970'.
Alterations

(Page 4, clause 4.2) - Substitute the following for the existing clause:

'4.2 Density - The average bulk density of the three grades of the material shall be as given below when tested in accordance with the method prescribed in 4 of IS :5688-1970†:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Density, kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Up to 320</td>
</tr>
<tr>
<td>B</td>
<td>321 to 400</td>
</tr>
<tr>
<td>C</td>
<td>401 to 500</td>
</tr>
</tbody>
</table>

(Page 5, clause 4.3) - Substitute the following for the existing clause:

'4.3 Crushing Strength - The crushing strength of dry cellular concrete shall be as given below when tested in accordance with the method prescribed in 6 of IS:5688-1970*.

<table>
<thead>
<tr>
<th>Grade</th>
<th>strength, min, kg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type 1</td>
</tr>
<tr>
<td>A</td>
<td>7.0</td>
</tr>
<tr>
<td>B</td>
<td>12.0</td>
</tr>
<tr>
<td>C</td>
<td>20.0</td>
</tr>
</tbody>
</table>

(CDC 37)
Indian Standard

SPECIFICATION FOR CELLULAR CONCRETE FOR THERMAL INSULATION

Thermal Insulation Materials Sectional Committee, CDC 37

Chairman
SHRI T. D. BANSAL

Representing
National Physical Laboratory (CSIR), New Delhi

Members
SHRI M. BALA SUBRAMANIAM
DR B. K. BANERJEE
DR H. C. ROY (Alternate)
SHRI M. B. L. BHATNAGAR
SHRI A. K. CHATTERJI

BASF India Ltd, Bombay
Fertilizer Corporation of India Ltd, New Delhi

DR K. R. RAO (Alternate)
CHEMIST & METALLURGIST
RDSO, LUCKNOW
SHRI M. H. GAJENDRADKAR
SHRI S. K. MUKHERJEE (Alternate)
SHRI G. K. KABRA
SHRI S. R. KHANNA

Insulation Manufacturers', Distributors' and Contractors' Association Ltd, Bombay
Central Building Research Institute (CSIR), Roorkee

SHRI R. PARIKSHIT (Alternate)
SHRI M. G. KUTTY
SHRI K. B. MISTRY (Alternate)
SHRI S. K. NAYAK

Railway Board (Ministry of Railways)

SHRI J. D. CHOUDHURY (Alternate)
SHRI R. P. PUNJ
SHRI Y. P. PUNJ (Alternate)
DR B. C. RAYCRAUDHURI

Hindustan Steel Ltd, Ranchi

SHRI S. B. SARBAR

Directorate General of Technical Development, New Delhi

SHRI N. R. SAWHNEY

Hyderabad Allwyn Metal Works Ltd, Hyderabad

SHRI B. L. SEN
SHRI D. S. MADAM (Alternate)
DR S. P. SUKHATME
SHRI V. A. SUKHA
SHRI P. K. AMIN (Alternate)

Indian Oil Corporation Ltd (Refineries and Pipeline Division), New Delhi

(Continued on page 2)
Panel for Cast and Moulded Thermal Insulation Products, CDC 37 : P4

Convener

SHRI N. K. D. CHOUDHURY

Member

SHRI B. CHATTERJEE

DR H. C. ROY (Alternate)

SHRI C. L. KASLIVTAL

SHRI V. A. SURA

Representing

Fibreglass Pilkington Ltd, Bombay

Director General, ISI (Ex-officio Member)

Secretary

SHRI P. S. ARORA

Assistant Director (Chem), ISI

Central Building Research Institute (CSIR), Roorkee

Fertilizer Corporation of India Ltd, New Delhi

Hindustan Housing Factory Ltd, New Delhi

Newkem Products Corporation, Bombay
Indian Standard

SPECIFICATION FOR CELLULAR CONCRETE FOR THERMAL INSULATION

0. FOREWORD

0.1 This Indian Standard was adopted by the Indian Standards Institution on 30 June 1972, after the draft finalized by the Thermal Insulation Materials Sectional Committee had been approved by the Chemical Division Council.

0.2 Cellular concrete is a versatile thermal insulation material on account of its light weight and high thermal insulation. Its versatility is due to its resistance to sulphate action, resistance to alternate cooling and thawing (when high pressure steam cured) and due to its resistance to penetration of water.

0.3 When cast in-situ, it can be applied over flat roofs as thermal insulation material.

0.4 For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS: 2-1960*. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

1. SCOPE

1.1 This standard prescribes the requirements and the methods of sampling and test for cellular concrete for thermal insulation.

2. TYPES AND GRADES

2.1 Types — There shall be two types of the material depending on the manner of manufacture, namely:

Type 1 — High pressure steam cured (autoclaved) material in the form of precast blocks.

*Rules for rounding off numerical values (revision).
Type 2 — Materials cured under natural conditions (that is, under ambient pressure and temperature) by water. The material may be either cast in-situ or may be in the form of precast blocks.

2.2 Grades — Each of these two types of the material shall have three grades, namely:

Grade A — Light weight cellular concrete;
Grade B — Medium weight cellular concrete; and
Grade C — Heavy weight cellular concrete.

3. MATERIALS

3.1 Aggregate — A variety of silicious fines, such as ground quartz, sand, shale, fly ash and granulated slag may be used in the manufacture of cellular concrete.

3.2 Binders — Portland cement conforming to IS : 269-1967* or lime shall be used.

3.3 Gassing Agents — Organic foaming agents based on resin soap, glue, surface active agents, or fine aluminium powder, zinc, dust, calcium carbide, calcium hypochlorite, etc, may be used for gassing the concrete.

3.4 Water — The water used for making the concrete shall be clean and free from any matter injurious to the durability of cellular concrete.

4. REQUIREMENTS

4.1 Description — Cellular concrete is a light weight concrete formed by producing gas or air bubbles in a cement slurry or a cement-sand slurry.

4.2 Density — The average bulk density of the three grades of the material shall be as given below when tested in accordance with the method prescribed in 4 of IS : 5688-1970†:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Up to 300 kg/m³</td>
</tr>
<tr>
<td>B</td>
<td>301 to 400 kg/m³</td>
</tr>
<tr>
<td>C</td>
<td>401 to 500 kg/m³</td>
</tr>
</tbody>
</table>

* Specification for ordinary, rapid-hardening and low heat Portland cement (second revision).
†Method of test for preformed block-type and pipe covering-type thermal insulation.
4.3 Crushing Strength — The crushing strength of dry cellular concrete shall be as given below when tested in accordance with the method as prescribed in 6 of IS : 5688-1970*:

| Grade | Strength, kg/cm²
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type 1</td>
</tr>
<tr>
<td>A</td>
<td>7.0</td>
</tr>
<tr>
<td>B</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>20</td>
</tr>
</tbody>
</table>

4.4 Capillary Absorption — The capillary absorption shall not exceed 20 percent in case of Type 1 cellular concrete when tested in accordance with the method prescribed in Appendix A.

4.5 Thermal Conductivity — The thermal conductivity of the material shall be as given below when determined in accordance with the method prescribed in IS : 3346-1966†:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Thermal Conductivity in mW/cm deg at 50°C Mean Temperature, Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.7</td>
</tr>
<tr>
<td>B</td>
<td>0.85</td>
</tr>
<tr>
<td>C</td>
<td>1.0</td>
</tr>
</tbody>
</table>

4.6 Dimensions — The dimensions of the Type 1 and Type 2 precast cellular concrete blocks shall be either 50 or 60 cm in length; 20, 25 or 30 cm in width; and 7.5, 10, 15, 25 or 40 cm in thickness.

4.6.1 A tolerance of ± 3 percent shall be allowed on width and height and ± 1 percent on thickness.

5. MARKING

5.1 Each block shall be marked with the manufacturer's identification mark or initials and the type and grade of the material.

5.1.1 The product may also be marked with Standard Mark.

The use of the Standard Mark is governed by the provisions of the Bureau of Indian Standards Act, 1986 and the Rules and Regulations made thereunder. The details of conditions under which the licence for the use of Standard Mark may be granted to manufactures or producers may be obtained from the Bureau of Indian Standards.

*Methods of test for preformed block-type and pipe-covering type thermal insulation.
†Method for the determination of thermal conductivity of thermal insulation materials (two slab, guarded hot-plate method).
6. SAMPLING
6.1 The method of sampling shall be as prescribed in Appendix B.

APPENDIX A
(Clause 4.4)
CAPILLARY ABSORPTION TEST

A.1. TEST SPECIMENS
A-1.1 Three test specimens 4 × 4 cm base and 16 cm height shall be prepared.

A.2. PROCEDURE
A-2.1 Dry the specimens in an oven at 105 ± 5°C and weigh them. Place them on their bases in a water-bath with the water level 1 cm above the base of the specimen. The specimen shall be weighed a few times during the test. Allow them to stand for 48 hours in the water and determine their masses.

A-3. CALCULATION

Capillary absorption, percent by mass = \(\frac{w}{W} \times 100 \)

where

- \(w \) = increase in mass in g of the specimen, and
- \(W \) = mass in g of the specimen after drying.

APPENDIX B
(Clause 6.1)

SAMPLING OF CELLULAR CONCRETE BLOCKS

B-1 LOT
B-1.1 In a consignment, cellular concrete of the same type and grade and manufactured approximately in the same period shall be grouped to form a lot. If it is in the form of blocks, a lot shall be made up of not more
than 1,000 blocks. If the material is in situ, not more than 10 tonnes of material shall constitute a lot. If the material is transported in lorries and received as such, the material in a lorry (or vehicle) load may conveniently be termed as a lot.

B.2. SCALE OF SAMPLING

B-2.1 Each lot shall be tested for all the requirements of this specification.

B-2.2 If the material is received in bulk, samples shall be drawn from different portions so as to be representative of the lot. It is recommended that at least 20 increments, each weighing about 1 kg be taken from the bulk and kept for conducting various tests.

B-2.3 If the lot is made up of precast blocks, the number of blocks to be sampled depends upon the size of the lot and shall be in accordance with col 1 and 2 of Table 1.

B-2.3.1 The sample blocks shall be selected at random with the help of random number tables. For guidance IS : 4905-1968* may be referred.

TABLE 1 SCALE OF SAMPLING FOR CELLULAR CONCRETE BLOCKS

(Clauses B-2.3)

<table>
<thead>
<tr>
<th>LOT SIZE</th>
<th>SAMPLE SIZE (BLOCKS TO BE SAMPLED)</th>
<th>PERMISSIBLE NO. OF DEFECTIVES (VISUAL AND DIMENSIONAL REQUIREMENTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (1)</td>
<td>n (2)</td>
<td>a (3)</td>
</tr>
<tr>
<td>Up to 100</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>101 to 300</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>301 ,, 500</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>501 ,, 1,000</td>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>

B.3. NUMBER OF TESTS AND CRITERIA FOR CONFORMITY

B-3.1 Visual and Dimensional Requirements — In respect of visual and dimensional characteristics (4.6), the sample blocks selected according to B-2 shall be examined. The lot shall be accepted only if the number of defective blocks in the sample does not exceed the permissible number (a) given in col 3 of Table 1.

B-3.2 Preparation of Samples for Other Tests — In case of the material in bulk form, the increments shall be grouped into four portions.

*Methods for random sampling.
and the material in each portion shall be combined thoroughly to give a test sample. There will thus be four test samples to be used for different tests. In the case of precast blocks four test samples shall be prepared from the sample blocks selected under B-2.

B-3.3 Density and Crushing Strength — Four tests shall be conducted for each of the two characteristics on test samples or blocks mentioned in B-3.2. No failure shall occur if the lot is to be accepted.

B-3.4 Thermal Conductivity — One test shall be conducted for this characteristics on test samples prepared under B-3.2. The test shall not fail for acceptance of the lot.

B-3.5 Capillary Absorption — One test shall be conducted on any one of the test samples and the lot shall be accepted if the test result complies with the requirement in 4.4.