

X

इंटरनेट

Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

"जानने का अधिकार, जीने का अधिकार" Mazdoor Kisan Shakti Sangathan "The Right to Information, The Right to Live"

"पुराने को छोड नये के तरफ" Jawaharlal Nehru "Step Out From the Old to the New"

मानक

IS 3681 (1995): Gears - Cylindrical Gears - Accuracies [PGD 31: Bolts, Nuts and Fasteners Accessories]

511 M

Made Available By Public.Resource.Org

"ज्ञान से एक नये भारत का निर्माण″ Satyanarayan Gangaram Pitroda "Invent a New India Using Knowledge"

"ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता Bhartrhari-Nītiśatakam "Knowledge is such a treasure which cannot be stolen"

BLANK PAGE

PROTECTED BY COPYRIGHT

भारतीय मानक गियर — बेलनाकार गियर — परिशुद्धताएँ *(पहला पुनरीक्षण)*

Indian Standard GEARS — CYLINDRICAL GEARS — ACCURACIES (First Revision)

UDC 621.833.1 : 620.178.151.4

© BIS 1995

BUREAU OF INDIAN STANDARDS MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002

Price Group 14

FOREWORD

This Indian Standard (First Revision) was adopted by the Bureau of Indian Standards, after the draft finalized by the Gears Sectional Committee had been approved by the Light Mechanical Engineering Division Council.

This standard was first published in 1966. In the revision of this standard the committee considered the availability of the ISO standards for tolerances as well as the other National Standards. While examining various standards, the committee felt that the Indian Gear Industry was following the provisions contained in the DIN standards. The committee felt that the tolerances specified in ISO 1328 : 1975 'Parallel involute gears — ISO system of accuracy' are quite wide for two flanked working deviation, concentricity deviation and pitch span deviation. Additionally, there is a large spread in their relationship to the other tolerances. From the work programme of ISO/TC 60, it has been noted that ISO 1328 : 1975 is under revision and the indications are that the ISO standards would be greatly influenced by the revised DIN standards for tolerances. In view of the above considerations the committee decided to refer the following DIN standards in revising IS 3681 : 1966:

DIN 3960-1987	Definitions, parameters and equations for involute cylindrical gears and gear pairs
DIN 3961-1978	Tolerances for cylindrical gear teeth, bases
DIN 3962 (Part 1): 1978	Tolerances for cylindrical gear teeth, Part 1 Tolerances for deviations of individual parameters
DIN 3962 (Part 2): 1978	Tolerances for cylindrical gear teeth, Part 2 Tolerances for tooth trace deviations
DIN 3962 (Part 3) : 1978	Tolerances for cylindrical gear teeth, Part 3 Tolerances for pitch span deviations
DIN 3963 : 1978	Tolerances for cylindrical gear teeth, tolerances for working deviations
DIN 3964 : 1980	Deviations of shaft centre distances and shaft position — Tolerances of costing for cylindrical gears
DIN 3967 : 1978	System of gearfits — Backlash and tooth thickness allowances — Tooth thickness tolerances — Principles

In the revision symbols, definitions and notations have been aligned with the ISO system which is also the case for the DIN standards referred above. In addition, information on tolerance families and test groups for function groups and teeth quality has been given.

Apart from this, it has been established in practice that for the same module, the profile deviations do not become larger with increasing diameter (increasing number of teeth). The profile tolerance therefore remain only module-dependent and not diameter-dependent. In view of this, the total profile deviation pitch span deviation, pitch span deviation over 1/sth of periphery, tooth trace from deviation and tooth trace total deviation have been redefined in accordance with ISO 1328 : 1975.

IS 7504: 1995 Gears — Cylindrical gears — Accuracies — Methods of inspection (*first revision*) may be referred for inspection procedure.

The following standards shall be withdrawn consequent to the publication of this standard since the content of these standards are covers in this standard:

- IS 4058 : 1967 Accuracy requirements for coarse quality low speed gears
- IS 4059 : 1967 Accuracy requirements for medium quality medium speed gears
- IS 4702 : 1968 Accuracy requirements for high precision gears
- IS 4725 : 1968 Accuracy requirements for precision gears

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2 : 1960 'Rules for rounding off numerical values (*revised*)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

Profile form error

Indian Standard

GEARS — CYLINDRICAL GEARS — ACCURACIES (First Revision)

ff

1 SCOPE

Profile waviness ffw 1.1 This Indian Standard covers the general accuracy Single flank tooth to tooth composite f'i for cylindrical gears of involute, modified involute error flank forms, comprising of gears with straight or inclined f''_i Double flank tooth to tooth teeth for connecting parallel shafts. composite error 1.2 This standard also covers the tolerances for gear Individual pitch error fp teeth on cylindrical gears of module 1 to 70 and with Base pitch error fpe reference circle diameter up to 10 000 mm, graded in Tooth to tooth pitch error fu 12 gear tooth qualities. The tolerances apply regardless Profile angle error fΗα of the pressure angle. Flank line angle error ſΉβ In the case of racks, the tolerances for their teeth shall Longitudinal form error *f*Bf not exceed those for the teeth of the mating gear. If the Flank line waviness details of mating gear is not known the rack length fβω Axes skew over length, LG should be taken equal to the circumference of the fΣß mating gears. Axes inclination over length, LG fΣð NOTE - This standard has been based on the assumption Theoritical backlash Ĵτ that the gears shall be suitably supported on shafts of ample Maximum circumferential backlash size and shall be provided with efficient thrust bearings where Jt Max required; and they shall be effectively lubricated. Minimum circumferential backlash jt _{Min} Number of teeth measured **2 REFERENCES** k Module т The following Indian Standards are necessary adjuncts Normal plane module mn to this standard: Pitch on the base diameter Рь IS No. Title Tooth thickness S 919 (Part 2): 1993 ISO System of limits and fits: Maximum tooth thickness on the S_{Max} Part 2 Tables of standard reference cylinder tolerance grades and limit Minimum tooth thickness on the SMin deviations for holes and shafts reference cylinder (first revision) Profile correction factor х Number of teeth z 2535:1978 Basic rack and modules for Virtual number of teeth Zv cylindrical gears for general A, B, C Test groups and engineering heavy Upper centre distance allowance Aae engineering (second revision) Lower centre distance allowance Aai **3 DEFINITIONS, NOTATIONS AND SYMBOLS** Upper allowance of tooth thickness Asne **FOR TOLERANCES** in normal section Asni Lower allowance of tooth thickness 3.1 Symbols in normal section *a*'' Radial pitch distance (double flank Upper allowance of tooth thickness Aste pitch distance) in transverse section b Face width Lower allowance of tooth thickness Asti in transverse section d Reference circle diameter dь Base circle diameter Ff Total profile error Single flank total composite error dм Measuring circle diameter F'i

1

IS 3681 : 1995

F″i		Double flank total composite error
Fp	1	Total cumulative pitch error
Fpk		Cumulative pitch error over k pitches
$F_{\rm pz}/8$		Cumulative pitch error over 1/8 of the
μz		periphery
Fr		Radial runout
F_{β}		Total alignment error
G, L, N,	Т	Function groups
L		Length of arc on reference circle
LG		Centre distance between bearings
		(nominal value), mm
М		Tooth width
<i>R</i> _p		Range of pitch errors
R_s		Tooth thickness fluctuation
TRA		Bearing surface
Ta		Centre distance tolerance
T_s		Tooth thickness tolerance
ΣA_{sne}		Sum of the upper allowances of tooth
		thickness of gear pair in the normal
		section
Σ A _{sni}	<u> </u>	Sum of the lower allowances of tooth
		thickness of gear pair in the normal
		section
$\Sigma A_{\rm ste}$		Sum of the upper allowances of tooth
		thickness of gear pair in the transverse
5 4		Security of the lower ellower and the th
ΣA_{sti}		sum of the lower allowances of toout
		section
a		Pressure angle
<u>с</u>		Normal pressure angle
Ch Ch		Transverse pressure angle
м N.		Transverse working pressure angle
R		Helix angle
р р		Pase balix angle
μb		Baselash modification through
ΔJ_{a}		centre distance tolerance
A i.		Backlash modification through
∆ Jae		upper centre distance tolerance
A ini		Backlash modification through
<u> </u>		lower centre distance tolerance
Λ if		Backlash modification through gear
- J1		tooth individual errors
Δ isa		Backlash modification through
<i>J 2</i> P		non-parallelism of bore-axes
		Pma Or Ovie allo

3.2 Definitions of Errors

3.2.1 Profile Form Error, ff

The profile form error of a tooth flank is the distance between the two involutes of the actual base circle which touch and envelope the actual profile within the profile test region taking into account the desired

modifications from the involute form. The profile form error, covers also the depth of the profile waviness.

3.2.2 Profile Waviness, ffw

A profile error, that is, periodically repeated with the working angle is called 'Profile waviness'. It is denoted by the wave depth and the wave length. In a test graph as shown in Fig. 1, the profile form error f_f is the measurement taken perpendicular to the paper feed direction between the lines B'B' and B''B'', which are parallel to the actual involute BB. Line BB is drawn to average the involute curve which touches the test curve within the profile test region.

3.2.3 Profile Angle Error, fHa

The profile angle error, $f_{H\alpha}$ is the distance between the two nominal profiles which cut the involutes of the actual base circle at the start and end points of the profile test region respectively.

The profile angle error, $f_{H\alpha}$ is generally given in μ m as the linear dimension correlated to the profile test region. The profile angle error $f_{H\alpha}$ is positive when the involute of the actual base circle rises in the direction of increasing pitch lengths with respect to the nominal profile and is negative when the involute of the actual base circle sinks in the direction of increasing pitch lengths towards the side of the material.

In a test graph as shown in Fig. 1, the profile angle error $f_{H\alpha}$ is the measurement taken perpendicular to the paper feed direction between the lines C'C' and C''C'', parallel to AA, which cut the line BB at the start and end point of the profile test region.

3.2.4 Total Profile Error, Ff

The total profile error, F_f of a tooth flank is the distance between the two nominal profiles which touch and envelop the tooth flank within the profile test region.

In Fig. 1, the total profile error F_f is the measurement made perpendicular to the paper feed direction between the parallel lines AA and A'A' drawn in the direction of the paper feed within the profile test region through the extreme points of the test graph.

3.2.5 Circular Pitch Errors

Circular pitch errors called as pitch errors in short, are measured on the reference circle or any other circle as close to it as possible and concentric with the gear axis. The difference between the measuring circle diameter, d_M and the reference circle diameter, d influences the measurement of error by the factor d_M/d and these errors are generally negligible. The measured values are also affected by the eccentricity of the teeth and profile form errors. Figure 2 shows the representation of pitch errors.

a = Individual pitch error, f_p marked as vertical blocks between the flank numbers.

R_p — Range of pitch error.

 f_0 — Tooth to tooth pitch error.

- b = Total cumulative pitch error referred to flank 21.
- F_p Total cumulative pitch error. $c = Cumulative pitch error over intervals of every three teeth, <math>F_p \Im(k=3)$ shown as vertical blocks in the middle of the flanks.
 - FIG. 2 REPRESENTATION OF PITCH ERROR (FOR EXAMPLE : z = 21)

IS 3681 : 1995

3.2.6 Individual Pitch Error, fp

Individual pitch error (adjacent pitch error) is the difference between the actual value of a single transverse pitch and the nominal transverse pitch.

3.2.7 Cumulative Pitch Error, Fpk

Cumulative pitch error is the deviation of the actual dimension of a pitch interval over k individual pitches from the corresponding nominal value. If the error of measurement is sufficiently small, the cumulative pitch error is obtained also as the algebraic sum of the k individual pitch errors contained in the interval

$$F_{\rm pk} = \sum_{k} f_{\rm p}$$

3.2.8 Cumulative Pitch Error Over $\frac{1}{8}$ of Periphery, $F_{pz} / 8$

Cumulative pitch error $F_{pz}/8$ is the cumulative pitch error over an interval of $\frac{1}{8}$ of the circumference of the gear $(k = \frac{z}{8})$.

3.2.9 Total Cumulative Pitch Error, Fp

The maximum cumulative pitch error in a gear is called the total cumulative pitch error. It is indicated without sign and is obtained from the cumulative pitch errors as the difference between the algebraic maximum value and the algebraic minimum value.

3.2.10 Range of Pitch Errors, Rp

The range of pitch errors R_p is the difference between the maximum and minimum actual values of the transverse pitches of the right or left flanks of a gear.

3.2.11 Tooth to Tooth Pitch Error, fu

The tooth to tooth pitch error is the difference between the actual values of two successive right or left transverse pitches.

Tooth to tooth pitch errors are directly obtained from circular pitch measurements as difference of the measurements of two neighbouring pitches.

3.2.12 Base Pitch Error, fpe

Base pitch error is the difference between the actual nominal values of the base pitch. Deviations, measured in the transverse plane are denoted by f_{pet} and in the normal plane by f_{pen} .

3.2.13 Tooth Thickness Fluctuation, Rs

The tooth thickness error is the difference between the maximum and minimum tooth thickness 's' of a gear

$$R_s = s_{Max} - s_{Min}$$

3.2.14 Total Alignment Error, FB

The total alignment error of a tooth flank is the distance between the two nominal flank lines which

touch and envelop the tooth flank within the flank line test region.

In Fig. 1, the total alignment error $F\beta$ is the distance measured perpendicular to the paper feed direction, between the parallel lines AA and A'A' which are drawn in the direction of the paper feed within the flank line test region through the extreme points of test graphs.

3.2.15 Longitudinal Form Error, fßf

The longitudinal form error of a tooth flank is the distance between the two helix lines with the actual lead which touch and envelop the actual flank line within the flank line test region taking into account the desired modifications from the helix line form. The longitudinal form error also covers the depth of the flank line waviness.

3.2.16 Flank Line Waviness, $f_{\beta\omega}$

Flank line waviness is the flank line form error, repeating periodically over the face width. It is characterized by the depth and length of the wave.

In a test graph as shown in Fig. 1, the longitudinal form error $f\beta f$ is the dimension, perpedicular to the direction of the paper feed, between the lines B'B' and B''B''which are parallel to the averaging actual flank line BBand touch the test graph within the flank line test region.

3.2.17 Flank Line Angle Error, fHB

The flank line angle error is the distance, on a transverse section plane, between the two nominal flank lines which cut the helix line with the actual lead at the start and end points of the flank line test region. The flank line angle error is generally indicated as the linear dimension in µm, co-related to the flank line test region.

In a test graph as shown in Fig. 1, the flank line angle error $f_{H\beta}$ is the distance measured perpendicular to the direction of the paper feed, between the lines C'C' and C''C'' which are parallel to the line AA and cut the line BB at the start and end point of the flank line test region.

3.2.18 Radial Runout, Fr

Radial runout is the radial positional difference of a measuring piece (ball, cylinder or wedge) placed successively in all the tooth spaces, which touches the tooth flanks near the reference circle (pitch circle), while the gear is free to rotate on its axis.

3.2.19 Single Flank Total Composite Error, F'i

Single flank total composite error is the fluctuation of the actual rotating postions with respect to the nominal rotating positions. It is given as the difference between the maximum advancing and retarding rotating positions with respect to a start value within a test rotation (see Fig. 3).

FIG. 3 SINGLE FLANK TOTAL COMPOSITE ERROR DIAGRAM

3.2.20 Single Flank Tooth to Tooth Composite Error, f_i

Single flank tooth to tooth composite error is the maximum difference that occurs in the rotating position deviations within a rotating angle corresponding to the period of a tooth contact (*see* Fig. 3).

From single flank total composite error diagram (see Fig. 3) pitch errors can be determined. Total cumulative pitch error is the long wave component of the test diagram. This component can be obtained by drawing an averaging line thereby suppressing the short wave components. The averaging line has sinusoidal shape. The total cumulative pitch error F_p is the perpendicular distance between the highest and the lowest points of the averaging line.

Individual pitch errors f_p are the short wave components of the test diagram. They are given by the perpendicular distance between the highest and the lowest points in the short wave component of the graph drawn on linear averaging line.

3.2.21 Double Flank Total Composite Error, Fi"

Double flank total composite error is the difference between the maximum and minmum working centre distance within one test run of the gears always having two flank contact (*see* Fig. 4).

3.2.22 Double Flank Tooth to Tooth Composite Error, fi"

Double flank tooth to tooth composite error is the maximum difference of the working centre distance

that occurs within a turning angle corresponding to the period of a tooth contact (*see* Fig. 4).

From double flank total composite error diagram (see Fig. 4) radial runout error Fr can be determined. Radial runout error is the long wave component of the test diagram. This component can be obtained by drawing averaging line thereby suppressing the short wave components. The radial runout error Fr is then the distance between highest and lowest points of the averaging line.

4 BASIC RACK AND MODULES

The profile of the basic rack and the series of modules for cylindrical gears shall be as specified in IS 2535 :1978.

5 CLASSIFICATION OF GEARS (SYSTEM OF TOLERANCES)

5.1 Various gears errors that are to be controlled/ checked for different functional requirements and gear quality are tabulated in Table 1. For this purpose, on the basis of required function, gear drives are classified into four functional groups.

5.2 Application of Tolerance Families

Whenever a particular gear requires a general service property without taking special functional requirements into account (function group N), a single gear tooth quality is prescribed, for example quality 8. In other cases, fulfilment of the requirements of a specific function group will be stipulated. In such cases the letter symbol of the function group must be quoted along with the required gear tooth quality.

Table 1	Function Groups of the Deviations
	(<i>Clause</i> 5.1)

	Function Groups	Important Deviations ¹⁾		
G	Uniformity of the transmission of movement	$F'_i f'_i F_p F''_i F_r f''_i$		
L	Smooth running and dynamic load capacity	$f'_{i} f_{p} (f_{pe}) f''_{i} F_{f} f_{H\beta} F_{p} (F_{r})$		
Т	Static load capacity	fpe fhß TRA		
N	No indication of the function	$F''_i f_{H\beta} F_f f''_i$		

¹⁾ Besides these deviations there are, of course, other factors also on which the operational properties are dependent. For instance, the smooth running depends also on speed and load and the load capacity depends on surface finish, the material and its conditions. It will, therefore, be necessary to make non-geometric requirements, for instance, specific hardness values or specific sound pressure level under given operating conditions.

For example :

- G8 means parameters for uniformity of transmission of motion (G) in gear tooth quality 8.
- L7 means parameters for smooth running (L) in gear tooth quality 7.

5.3 Quality Testing and Test Groups

Once the tolerances are selected based on functional requirements, it is not necessary to check all the gear errors when a specific function of the gear drive is defined. A definite 'functional group' can therefore be tested by means of different measuring instruments. Errors grouped under such a functional group is called the 'Test group'. Table 2 gives test groups A, B and C for each of the functional groups G, L, T and N and the quality of gears 1 to 12.

- a) Test group A is best suited but requires measuring instruments which are not normally and readily available.
- b) Test group B contains normally recommended gear errors to be checked which test the function

indirectly with measuring instruments which are normally available.

c) Test group C, facilitates checking in a still indirect manner compared to checking with test group B.

The scope of test procedures denoted by symbols in Table 2 is given in Table 3.

6 TOLERANCE DATA

Tolerances are given in the following tables:

Tolerance for	Refer to
Profile form error, <i>f</i> f	Table 4
Profile angle error, $f_{H\alpha}$	Table 4
Total profile error, $F_{\rm f}$	Table 4
Individual pitch error, fp	Table 4
Cumulative pitch error over $\frac{1}{8}$ of periphery, $F_{\rm pz}/8$	Table 4
Total cumulative pitch error, $F_{\rm p}$	Table 4
Tooth to tooth pitch error, $f_{\rm u}$	Table 4
Base pitch error, fpe	Table 4
Tooth thickness error $R_{\rm e}$	Table 4

FIG. 4 DOUBLE FLANK TOTAL COMPOSITE ERROR DIAGRAM

Table 2 Errors for Test Groups for the Function Groups and Teeth Qualities (Clause 5.3)

Function G, Uniformity of Transmission Group Group		L, Smooth Running and Dynamic Load Capacity		T, Static Load Capacity			N, No Indication of Function					
Test Group	A	В	с	A	В	с	A	В	С	A	В	С
Teeth quality 1												
2	F _i R _s			F΄iFβ	F _p F _f F _β		<i>F</i> ΄ i <i>F</i> β	$f_{pe} F_f F_{\beta}$	fpe TRA	F'i Rs	F _p R _s F _f F _β	$f_{ m pe} R_{ m s} F_{ m f} F_{ m eta}$
3	F'i Rs			F΄ _i Fβ	Fp Ff Fb		$\vec{F_i} F_{\beta}$	$f_{\rm pe} F_{\rm f} F_{\beta}$	fpe TRA	$F'_{i} R_{s}$	$F_{\rm p} R_{\rm s} F_{\rm f} F_{ m eta}$	fpe Rs Ff Fβ
4	$F_{i}R_{s}$	F _p F _f F _β		F΄iFβ	Fp Ff Fß	fpe Ff TRA	f _{pe} F _f F _β	fpe TRA	<i>F</i> ["] _i TRA	$F'_{i}R_{s}$	F _i $F_{\rm f} F_{\rm \beta}$	fpe Rs TRA
5	$F_{i}R_{s}$	F _p F _f F _β	fpe Ff Fβ	F΄ _i Fβ	F _p F _f F _β	fpe Rs TRA	$f_{\rm pe} F_{\rm f} F_{\beta}$	fpe TRA	<i>F</i> ["] _i TRA	F'i Rs	$F_{i}F_{f}F_{\beta}$	f _{pe} Rs TRA
6	F ['] i Rs	Fp Ff Fb	$f_{\rm pe} F_{\rm f} F_{\beta}$	Fp Ff Fß	F ['] _i F _f F _β	fpe R, TRA	$f_{\rm pe} F_{\rm f} F_{\beta}$	fpe TRA	<i>F</i> [″] i TRA	F ['] i Rs	$F^{"}_{i}F_{f}F_{\beta}$	fpe Rs TRA
7	F _p F _f F _β	$f_{\rm pe} F_{\rm f} F_{\beta}$	f _{pe} F _β	F _p F _f Fβ	$F_{i}F_{f}F_{\beta}$	fpe Rs	fpe TRA	F _i TRA	fp TRA	$F_{i}F_{f}F_{\beta}$	<i>F</i> [°] i TRA	fpe Rs
8	$F_{\rm p} F_{\rm f} F_{\rm \beta}$	$f_{\rm pe} F_{\rm f} F_{\beta}$	fpeFβ	F _p F _f F _β	$F_{i}F_{f}F_{\beta}$	fpe Rs	f _{pe} TRA	<i>F</i> ^{''} i TRA	fp TRA	$F_{i}F_{f}F_{\beta}$	<i>F</i> ['] _i TRA	fpe Rs
9					$F'_{i} F_{f} F_{\beta}$	fpe Rs	fpe TRA	<i>F</i> ^{''} i TRA	fp TRA	<i>F</i> ['] i TRA	<i>F</i> ″i	fpe
10					$F^{''}_{i}F_{f}F_{\beta}$	fpe Rs	fpe	<i>f</i> ″i	fp	<i>F</i> ^{''} i TRA	<i>F</i> ĩ	fpe
11					_		fpe	<i>f</i> ″i	fp	F i	fpe	Rs
12										<i>F</i> ['] i	fpc	Rs
If double flat a tooth thick	nk total comp ness test (as cl	osite error test hord, face wid	including the th or ball/rolle	centre distance er measuremen	e testing is not at).	carried but, then	the above mer	ationed test sho	uld always be	supplemented	by a radial run	out test and

Ż

Symbol	Test Method	Tolerance to be adhered to by
<i>F</i> 'i	Single flank total composite error testing	\vec{F}_{i} and \vec{f}_{i}
<i>f</i> ′i	Single flank tooth to tooth composite error teting	<i>f</i> i
<i>F</i> ″ _i	Double flank total composite error testing	$\vec{F'}_{i}, f'_{i}, a''$ (if Ts is not tested)
Rs	Testing of the tooth thickness error.	Rs
'TRA	Zone of contact testing	TRA
Fβ	Alignment testing	F _β , f _{Hβ} , f _β
Ff	Profile testing	F _f , fHa, ff
Fp	Total pitch error testing	<i>F</i> _p , <i>F</i> _{pz} /8
fр	Pitch single error testing	fp, fu
fpe	Base pitch error testing	fpe

 Table 3 List of Test Methods Indicated in Table 2 by Symbols

 (Clause 5.3)

Tolerance for	Refer to
Radial runout, F_r	Table 4
Single flank total composite error, F'_i	Table 5
Single flank tooth to tooth composite	Table 5
error, f'_i	
Double flank total composite error, F''_i	Table 5
Double flank tooth to tooth composite error, f''_i	Table 5
Total alignment error, F_{β}	Table 6
Longitudinal form error, f _{bf}	Table 6
Flankline angle error, fHB	Table 6
Cumulative pitch error, $F_{\rm pk}$	Fig. 5

7 TOLERANCES AND ALLOWANCES ON TOOTH THICKNESS, CENTRE DISTANCE TOLERANCES AND BACKLASH

7.0 General

To facilitate use of this standard the calculation of backlash of tooth thickness allowances has been included (see 7.5).

The backlash system of fits for gear pair allows the limiting allowances and tolerances referred to their prevailing mounting arrangements, non-parallelism of the bore axes and gear tooth individual errors.

The system of fits is defined as a tooth thickness system of fits in the normal section on the reference cylinder.

The normal section is chosen because the necessary tooth thickness tolerance in the normal section is independent of the helix angle. The normal section is also chosen for metrological reasons, since the normal chordal tooth thickness and the base tangent length are measured in the normal section.

The calculation of the allowances, however, is made over the transverse section, since on the finished gear

transmission, the backlash is measured as circumferential backlash (see 7.5).

The system of fits provides for safeguarding the minimum backlash and limiting the maximum backlash.

The reference basis of the system of fits is the zero-play condition at the nominal centre distance, with nominal addendum modification and with error free components.

The backlash value says nothing about the quality of the gear teeth although, on the otherhand, the different gear tooth qualities demand given tooth thickness allowances in order to ensure the requisite or permissible backlash.

7.1 Backlash

The minimum backlash is determined by the upper tooth thickness allowances.

The maximum backlash is determined by the lower tooth thickness allowances which result from the upper allowances and the tooth thickness tolerances.

The minimum and maximum backlash do not correspond to the sum of the allowances because a whole series of factors alters the backlash (see 7.5).

7.1.1 Theoretical Backlash

The theoretical backlash j_t results from the tooth thickness allowances converted to the transverse section and from the converted allowances of the centre distance.

7.1.2 Acceptance Backlash

The acceptance backlash is the backlash obtained with the unloaded gear transmission at reference temperature when one of the gears is rotated against the other. It is usually smaller than the theoretical backlash, since the backlash reducing factors generally outweigh the factors tending to increase the backlash. Backlash reducing factors are, for example, errors in the gear teeth and also form and position errors.

FIG. 5 DETERMINATION OF CUMULATIVE PITCH ERROR, Fpk

7.2 Tooth Thickness Allowances and Tooth Thickness Tolerances

Normally, the tooth thickness allowances and tooth thickness tolerances can be found directly from Tables 7 and 8 on the basis of existing experience, such that, as a rule, the upper allowances for each gear should be at least as large (numerical value) as the lower allowance of the housing centre distance (without converting).

7.2.1 Upper Allowances

The upper allowances are to be taken from Table 7 corresponding to the reference diameter and allowance series. Their choice is largely independent of the gear tooth quality. As a rule for transmissions of the same kind, it is possible to choose the upper allowance for the pinion and gear from a single allowance series. It is also permissible, however, to select values from different allowance series.

7.2.2 Lower Allowances

The lower allowances are obtained by combining the upper allowances with the tooth thickness tolerances. Since the upper and lower allowances are always negative, the amount of tolerance has to be deducted from the upper allowance.

7.2.3 Tooth Thickness Tolerances

The tooth thickness tolerances are to be found from Table 8. The tooth thickness tolerance must be at least twice as large as the permissible tooth thickness fluctuation, R_s . In order to distinguish clearly from the gear tooth qualities, the tolerance series have been given the number 21 to 30, the preferred series being 24 to 27.

7.3 Centre Distance Allowance and Axes Parallelism for Cylindrical Gears

7.3.1 Centre Distance Allowance

For centre distance allowance A_a , ISO tolerance zone $j_s 5$ to 11 as per IS 919 (Part 2) : 1993 are used. Centre distance allowances (upper allowance $+A_{ae}$ and lower allowance $-A_{ai}$) are given in Table 9.

The centre distance toleracne T_a is given by :

$$T_{\rm a} = A_{\rm ae} + A_{\rm ai}$$

7.3.2 Axes Parallelism Tolerance

The axes parallelism tolerances, that is inclination of axes $f \Sigma \delta$ and skewing of axes $f \Sigma \beta$ are grouped according to R10 preferred number series under accuracy classes 1 to 12. They are dependent upon the centre distance between the bearings. The accuracy classes of parallelism tolerances are drawn considering the accuracy class of the gear, however, this accuracy class need not be same as the accuracy class of the gear and same class need not be selected for inclination of axis and skewing of axes. The tolerances of these two parameters, are given in Table 10.

The parallelism accuracy class and the values of $f \Sigma \delta$ and $f \Sigma \delta$ should be indicated in the drawings.

7.4 Calculation of Tooth Thickness Allowances and Backlash

7.4.1 Relation Between Backlash and Allowances

In contrast with cylindrical fits, the backlash arising with gear tooth fits cannot be calculated directly from the allowances; since various backlash modifying factors are effective. Conversly, if a specific minimum or maximum backlash is required, this amount cannot simply be distributed over the allowances, but instead, the backlash modifying effects have to be taken into account in the calculation.

7.4.2 Backlash Modifying Effects

a) Centre distance tolerance of the housing

Though this tolerance; the backlash is reduced or increased since there is a change in the theoretical centre distance.

b) Non-parallelism of bore axes in the housing

The non-parallelism of the bore axes in the housing may consist of axial inclination and axial skew. Axial inclination does not need to be taken into account because, it is not allowed to exceed the centre distance tolerances and is thus covered by these. Axial skew is always backlash reducing.

c) Gear tooth individual errors

Gear tooth individual errors may act differently at the circumference of the gear. In each case, however, a backlash reduction is effective at one or more points in case of individual tooth trace, profile and pitch errors and also with tooth thickness fluctuations. These errors are, in some cases inter-related, so that a summation of the maximum allowable values never occurs.

7.5 Calculation of Backlash

7.5.1 Determining the Theoretical Backlash

The upper tooth thickness allowances A_{sne} are selected based on the reference diameter and allowance series from Table 7.

The tooth thickness T_{sn} are selected based on the reference diameter and tolerance series from Table 8.

a) Sum of the upper allowances of tooth thickness of gear pair in the normal section.

$$\Sigma A_{\text{sne}} = A_{\text{sne1}} + A_{\text{sne2}}$$

(1 refers to pinion and 2 refers to gear)

b) Sum of the lower allowances of tooth thickness of gear pair in the normal section,

$$\Sigma A_{sni} = A_{sni1} + A_{sni2}$$

= (A_{sne1} - T_{sn1}) + (A_{sne2} - T_{sn2})

Sum of the upper allowances of tooth thickness of c) gear pair in the transverse section,

$$\Sigma A_{\rm ste} = \frac{\Sigma A_{\rm sn}}{\cos\beta}$$

d) Sum of the lower allowances of tooth thickness of gear pair in the transverse section,

> ΣA_{sni} $\Sigma A_{\rm sti}$ cosβ

Backlash modification through centre distance e) tolerance, Δj_{a}

In the calculation, the least favourable allowance has to be taken as the basis each time and given the appropriate sign. This means Aai for the minimum backlash and Aac for the maximum backlash in the case of external gear pairs, and Aae for the minimum backlash and Aai for the maximum backlash in case of internal gear pairs. Refer Table 9 for A_{ae} and A_{ai} ,

$$\Delta j_{\mathbf{a}} = 2 \cdot A_{\mathbf{a}} \cdot \frac{\tan \alpha_{\mathbf{n}}}{\cos \beta}$$

Backlash modification through lower centre distance tolerance,

$$\Delta j_{ai} = 2 \cdot A_{ai} \cdot \frac{\tan \alpha_n}{\cos \beta}$$

Backlash modification through upper centre distance tolerance,

 $\Delta j_{ae} = 2 . A_{ae} . \frac{\tan \alpha_n}{\cos \beta}$

Theoretical backlash, f)

> $j_{\rm t} = -\Sigma A_{\rm st} + \Delta j_{\rm a}$ Minimum theoretical backlash, $j_{t Min} = -\Sigma A_{ste} + \Delta j_{ai}$ Maximum theoretical backlash, $j_{t Max} = -\Sigma A_{sti} + \Delta j_{ae}$

7.5.2 Determining the Acceptance Backlash

Backlash modifying effects such as temperature rise, swelling or contraction, position, form and dimensional errors of components and elasticity are left out of consideration when determining the acceptance backlash.

Minimum backlash a)

> Backlash modification through non-parallelism of bore axes,

$$\Delta j \Sigma_{\beta} = -f \Sigma_{\beta} \cdot \frac{b}{L_{G}}$$

 $f \Sigma_{\beta}$ is selected from Table 10.

Backlash modification through gear tooth individual errors, Δj_F is determined from Table 11. Δj_{F1} refers to pinion and Δj_{F2} to gear.

The minimum backlash is determined from the equation

$$\int t M in = -\Sigma A_{ste} - \sqrt{\Delta J_{ai}^2 + \Delta J^2} \Sigma \beta + \Delta J^2 F_1 + \Delta j^2 F_2$$

b) Maximum backlash

The maximum backlash is determined from the equation.

$$j_{t_{Max}} = -\sum A_{sti} \pm \sqrt{|P|}$$

where

$$P = -\left(\Delta j_{ae}\right)^{2} + \left(\Delta j_{\Sigma\beta}\right)^{2} + \left(\frac{\Delta j_{F1}}{2}\right)^{2} + \left(\frac{\Delta j_{F2}}{2}\right)^{2}$$

The inidvidual backlash modifications are to be inserted with the signs determined for them. If the value of P is negative, use minus sign in front of square root and if P is positive use plus sign.

7.5.3 1	Example j	for the	Calculation	of Backlash
---------	-----------	---------	-------------	-------------

	Gear	Pinion
No. of teeth	75	24
Normal module, mm	3.5	3.5
Profile correction factor	+0.858 7	+0.9
Pressure angle	20°	20°
Helix angle	20° (R)	20° (L)
Quality grade	5	5
Face width, mm	68	
Centre distance, mm	190Js7	
Distance between the bearings, over which axes inclination and skewness are measured, mm (housing width)	340	
Tooth thickness allowance series	f	
Tooth thickness tolerance series	22	
Axes parallelism class	7	

Upper allowances of tooth thickness

From Table 7

A _{sne1}	=	– 19 µm
A _{sne2}	=	– 26 µm

Sum of the upper allowances of tooth thickness in the normal section:

$$\Sigma A_{\text{sne}} = A_{\text{sne1}} + A_{\text{sne }2}$$
$$= -19 - 26$$
$$= -45 \,\mu\text{m}$$

Lower allowances of tooth thickness

From Table 8

Tooth thickness tolerances $T_{sn1} = 10 \,\mu\text{m}$ $T_{sn2} = 12 \,\mu\text{m}$

Sum of the lower allowances of tooth thickness in the normal section:

$$\Sigma A_{\text{sni}} = (A_{\text{sne1}} - T_{\text{sn1}}) + (A_{\text{sne2}} - T_{\text{sn2}})$$

= (-19-10) + (-26-12)
= -67 \mum

Sum of the upper allowances of tooth thickness in the transverse section:

$$\Sigma A_{\text{ste}} = \frac{\Sigma A_{\text{sne}}}{\cos \beta}$$
$$= -\frac{45}{\cos 20} = -47.88 \,\mu\text{m}$$

Sum of the lower allowances of tooth thickness in the transverse section:

$$\Sigma A_{sti} = \frac{\Sigma A_{sni}}{\cos \beta}$$
$$= -\frac{67}{\cos 20} = -71.29 \,\mu\text{m}$$

Backlash modification through centre distance tolerance:

From Table 9

$$A_{ae} = +23 \,\mu m$$
$$A_{ai} = -23 \,\mu m$$

Backlash modification through lower centre distance tolerance:

$$\Delta j_{ai} = 2 \cdot A_{ai} \frac{\tan \alpha_{n}}{\cos \beta}$$
$$= 2 (-23) \frac{\tan 20}{\cos 20}$$

$$= -17.81 \,\mu m$$

Backlash modification through upper acentre distance tolerance:

$$\Delta j_{ae} = 2 \cdot A_{ae} \cdot \frac{\tan \alpha_n}{\cos \beta}$$
$$= 2 (+23) \frac{\tan 20}{\cos 20}$$
$$= 17.81 \,\mu\text{m}$$

Theoretical backlash

Minimum theoretical backlash:

$$j_{t Min} = -\Sigma A_{ste} + \Delta j_{ai}$$

= - (- 47.88) - 17.81
= 30.07 µm

Maximum theoretical backlash:

$$j_{t Max} = -\Sigma A_{sti} + \Delta j_{ae}$$

= - (- 71.29) + 17.81
= 89.1 µm

Determining the acceptance backlash

Backlash modification through non-parallelism of bore axes

$$\Delta j\Sigma \beta = -f\Sigma\beta \frac{b}{L_{\rm G}}$$

From Table 10

$$f \Sigma \beta = 40 \,\mu m$$
$$\Delta j \Sigma \beta = -40 \times \frac{68}{340}$$
$$= -8 \,\mu m$$

Backlash modification through gear tooth individual errors:

From Table 11

$$\Delta j_{F1} = 14 \,\mu m$$

 $\Delta j_{F2} = 14 \,\mu m$

Acceptance backlash

Minimum acceptance backlash

$$j_{h Min} = -\Sigma A_{ste} - \sqrt{\Delta j_{ai}^2} + \Delta j \Sigma_{\beta}^2 + \Delta j^2 F_1 + \Delta j^2 F_2$$

= -(-47.88) - \sqrt{(-17.81)^2 + 8^2 + 14^2 + 14^2}
= 47.88 - 27.806
= 20.07 \mu m

Maximum acceptance backlash

$$j_{1 Max} = -\Sigma A_{sti} \pm \sqrt{|P|}$$

$$P = -(\Delta j_{ac})^{2} + (\Delta j_{\Sigma}\beta)^{2} + \left(\frac{\Delta j_{F1}}{2}\right)^{2} + \left(\frac{\Delta j_{F2}}{2}\right)^{2}$$

$$= -(17.81)^{2} + 8^{2} + 7^{2} + 7^{2}$$

$$= -155.196$$

Since the value of P is negative minus sign is to be used in front of the square root in the formula

$$j_{t_{Max}} = -(-71.29) - \sqrt{155.196}$$

= 58.83 µm

Theoretical backlash

$$\begin{array}{rcl} \text{Minimum} &=& 30.07 \, \mu \text{m} \\ \text{Maximum} &=& 89.1 \, \mu \text{m} \end{array}$$

Acceptance backlash

Table 4 Tolerance Data
(Clause 6)

Normal module from 1 to 2 mm.

Tolerances in µm.							
			Gear Too	th Quality			
Deviation –	1	2	3	4	5	6	
$f_{\rm f}$	1	1.5	2	3	4.5	6	
f _{Ha}	1	1.5	2	3	4	5	
F _f	1.5	2	3	4	6	8	

											Devi	ation								
					$f_{\rm p}$,	$f_{\rm pe}$					j	f _u					1	ГГ Р		
G	ear To Qualit	oth v→	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
	up to	10	1	1.5	2.5	3	4.5	6	1.5	2	3	4	5.5	8	2.5	4	5	7	10	14
	over to	10 50	1	1.5	2.5	3.5	5	7	1.5	2	3	4.5	6	9	3.5	5	7	[•] 10	14	18
IIII.	over to	50 125	1.5	2	2.5	4	5	7	2	2.5	3	5	6	9	4.5	6	9	14	18	25
d in	over to	125 280	1.5	2	3	4	5.5	8	2	2.5	3.5	5	7	10	5	8	11	16	20	28
leter	over to	280 560	1.5	2	3	4.5	6	8	2	2.5	3.5	5.5	8	10	6	9	12	18 -	25	32
dian	over to	560 1 000	2	2.5	3.5	5	7	9	2.5	3	4	6	9	11	7	10	14	20	28	36
circle	over to	1 000 1 600	2	2.5	4	5	8	10	2.5	3	4.5	6	10	12	8	11	16	20	32	40
rence	over to	1 600 2 500	2	3	4	6	8	11	2.5	3.5	5	7	10	14	8	12	16	22	32	45
Refe	over to	2 500 4 000	2.5	3.5	4.5	6	9	12	3	4	5	8	11	16	9	14	18	25	36	50
	over to	4 000 6 300	2.5	3.5	5	7	10	14	3	4.5	6	9	12	18	10	14	20	28	40	56
	over to 1	6 300 0 000	2.8	4.0	6	8	11	16	3.5	5	7	10	14	20	11	16	22	28	40	63

											Devi	ation								
					F	, / 8					ļ	F J					R	5		
G	ear To Qualit	oth y →	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
	up to	10	1.5	2	3	4	6	8	2	3	3.5	5.5	8	11	1	1.5	2.5	3.5	4.5	7
	over to	10 50	2	3	5	4	6	8	2.5	3.5	5	7	10	14	1.5	2	3	4.5	6	8
i di la	over to	50 125	3 🗂	4	6	8	11	16	3	4	6	8	12	16	2	2.5	3.5	5	7	10
in m	over to	125 280	3	5	7	9	12	16	3.5	5	7	9	14	18	2	3	4.5	6	8	12
er d	over to	280 560	4	5.5	8	11	14	22	4	5.5	8	11	16	22	2.5	3.5	5	7	10	14
iamet	over to	560 1 000	4.5	6	9	12	16	25	4.5	6	9	12	18	25	3	4	5.5	8	11	14
rcle d	over to	1 000 1 600	5	7	10	14	18	25	5	7	10	14	18	28	3	4.5	6	8	12	16
ice ci	over to	1 600 2 500	5	7	10	14	20	28	5	7	10	14	20	28	3.5	4.5	7	9	12	18
eferei	over to	2 500 4 000	6	8	11	16	22	32	5.5	8	11	16	22	32	3.5	. 5	7	10	14	20
R	over to	4 000 6 300	6	9	12	18	25	36	6	-9	12	18	25	36	4	5	7	10	14	20
	over to	6 300 10 000	7	9	14	18	28	36	7	10	14	20	28	40	4	5.5	8	11	16	22

 Table 4 (Continued)

Normal module from 1 to 2 mm.

			n.	wiatia						Gear	Toot	n Quali	ty							
				ev natio	"	7		8		9		10		11		1	2			
				$f_{\rm f}$		9		12		16		28		45	;	7	1			
				$f_{\rm H\alpha}$		7		10		14		22		36	5	5	6			
				$F_{\rm f}$		12		16		22		36		56	5	9	0			
											Dev	iation								
					f_	, <i>f</i> _{pe}						f _u					· F	P		
G	ear To Qualit	oth y →	7	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
	up to	10	9	12	18	28	45	71	11	16	22	36	56	90	20	25	36	56	90	160
	over to	10 50	9	14	18	28	50	80	11	18	22	36	63	100	28	36	50	80	140	220
	over to	50 125	10	14	20	32	50	80	12	18	25	40	63	100	32	50	63	110	180	280
um u	over 10	125 280	11	16	22	36	56	90	14	20	25	45	71	110	40	56	80	125	200	320
r d i	over to	280 560	12	16	22	36	56	100	16	20	25	45	71	125	45	63	90	140	220	360
amete	over to	560 1 000	14	18	25	40	63	100	16	22	32	50	80	125	50	71	100	160	250	400
cle di	over to	1 000 1 600	14	20	28	45	71	110	18	25	36	56	90	140	56	80	110	180	280	450
ce cir	over to	1 600 2 500	16	22	32	50	80	125	20	28	40	63	100	160	63	90	125	200	320	500
feren	over to	2 500 4 000	18	25	36	56	90	140	22	32	45	71	100	180	71	100	140	220	360	560
Ŗ	over to	4 000 6 300	20	28	40	63	100	160	25	36	50	80	125	200	80	110	160	250	400	630
	over to	6 300 10 000	22	32	45	71	110	180	28	40	56	90	140	220	80	125	180	280	450	710

											Devi	ation								
					F	, / 8						F,					I	ર <u>ુ</u>		
G	rar To Qualit	oth y →	7	8	9	10	11	12	7	8	9	10	П	12	7	8	9	10	11	12
	up to	10	12	16	22	36	63	90	16	22	32	45	63	80	9	12	18	25	36	50
	over to	10 50	18	25	32	50	90	140	20	28	40	56	80	110	12	16	22	32	45	63
H.	over to	50 125	22	32	40	71	110	180	22	32	45	63	90	125	14	20	28	40	56	80
in ni	over to	125 280	25	36	50	80	125	200	28	36	56	71	110	160	16	22	32	45	63	90
ter d	over to	280 560	28	40	56	90	140	220	32	45	63	90	125	180	18	25	36	50	71	100
diame	over to	560 1 000	32	45	63	100	160	250	36	50	71	100	140	200	20	28	40	56	80	110
ircle	over to	1 000 1 600	36	50	71	110	180	280	36	56	80	110	160	220	22	32	45	63	90	125
nce c	over to	1 600 2 500	40	56	80	125	200	320	40	56	80	110	160	220	25	36	50	71	100	140
٤rfere	over to	2 500 4 000	45	63	90	140	220	360	45	63	90	125	180	250	28	40	56	80	110	140
	over to	4 000 6 300	50	71	100	160	250	400	50	71	100	140	200	280	28	40	56	80	110	160
	over to 1	6 300 10 000	50	71	100	180	280	450	56	80	110	160	220	320	32	45	63	90	125	180

Normal module from 2 to 3.55 mm.

Destat			Gear Tool	th Quality		
Deviation -	1	2	3	4	5	6
f	1.5	2	3	4	6	8
f _{Ha}	1	1.5	2	3	4.5	6
	2	3	4	5	7	10

											Devia	tion								
					$f_{\rm p}^{},$	f _{po}					ſ	u					F	P		
Ge (ar To Qualit	oth y →	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
	over to	10 50	1	2	2.5	3.5	5	7	1.5	2.5	3	4.5	6	9	4	6	8	11	16	20
	over to	50 125	1.5	2	2.5	3.5	5	7	2	2.5	3	4.5	6	9	5	7	10	14	20	28
E	over to	125 280	1.5	2	3	4	6	8	2	2.5	3.5	5	8	10	6	8	12	16	22	32
in m	over to	280 560	1.5	2	3	4	6	8	2	2.5	3.5	5	8	10	7	10	14	18	25	36
ter d	over to	560 1 000	1.5	2.5	3.5	4.5	6	9	2	3	4.5	5.5	8	11	8	11	16	20	28	40
liame	over to	1 000 1 600	2	3	4	5	7	11	2.5	3.5	5	7	9	12	9	12	18	22	32	45
rcle o	over to	1 600 2 500	2	3	4.5	6	8	12	2.5	3.5	5.5	8	10	14	9	12	18	25	36	50
nce ci	over to	2 500 4 000	2.5	3.5	5	7	9	14	3	4	6	9	11	16	10	14	20	28	40	56
kefere	over to	4 000 6 300	2.5	3.5	5	7	10	14	3	4.5	7	9	14	r 8	11	16	22	32	40	63
H	over to	6 300 10 000	2.8	4	6	8	12	16	3.5	5.5	8	11	16	22	12	16	22	32	45	63

											Devia	ition						- 10 - - - - - - - - - -		
					F	/ 8						F _r					J	<i>`</i> ,		
Ge	ear To Qualit	oth y →	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	1	5	6
	over to	10 50	2.5	3.5	5	7	10	16	3	4	5.5	8	11	16	2	2.5	3.5	5	7	10
	over to	50 125	3	4	6	9	12	18	3.5	5	7	10	14	20	2	3	4.5	6	8	12
um.	over to	125 280	4	5	7	10	14	20	4	5.5	8	11	16	22	2.5	3.5	5	7	10	14
, ni	over to	280 560	4.5	6	8	12	16	22	4.5	6	9	12	18	25	3	4	5.5	8	J 1	16
eter	over to	560 1 000	5	7	9	14	18	25	5	7	10	14	20	28	3	4.5	6	9	12	18
diam	over to	1 000 1 600	5	8	10	14	20	28	5.5	8	11	16	22	32	3.5	5	7	10	14	20
circle	over to	1 600 2 500	6	8	11	16	22	32	6	8	12	16	25	32	4	5.5	8	11	14	20
rence	over to	2 500 4 000	6	9	12	18	25	36	7	9	14	18	25	36	4.5	6	8	12	16	22
Refei	over to	4 000 6 300	7	9	14	18	28	36	7	10	14	20	28	40	4.5	6	8	12	16	25
	over to	6 300 10 000	7	10	14	20	28	40	8	11	16	22	32	45	5	7	9	14	18	25

 Table 4 (Continued)

Normal module from 2 to 3.55 mm.

Tolerances in µm.

Deviation			Gear Tool	th Quality		
Deviation	7	8	9	10	11	12
$f_{\rm f}$	11	16	22	36	56	90
$f_{_{\rm H\alpha}}$	9	12	18	28	45	71
F _f	14	20	28	45	71	110

										Devi	ation								
				f _p ,	f _{pe}					ſ	- u					F	P		
G	ear Tooth Quality →	7	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
	over 10 to 50	10	14	20	32	50	80	12	18	25	40	63	100	28	40	56	90	140	250
	over 50 to 125	10	14	20	32	50	80	12	18	25	40	63	100	36	50	71	125	180	320
Ë	over 125 to 280	11	16	22	36	56	90	14	20	28	45	71	110	45	63	90	140	220	360
Ē	over 280 to 560	12	16	22	36	56	90	16	20	28	45	71	110	50	71	100	160	250	400
eter d	over 560 to 1 000	12	18	25	40	63	100	16	22	32	50	80	125	56	80	110	180	280	450
diam	over 1 000 to 1 600	14	22	28	45	71	125	18	25	36	56	90	160	63	90	125	200	320	500
circle	over 1 600 to 2 500	16	25	32	50	80	140	20	28	40	63	100	180	71	100	140	220	360	560
ence (over 2 500 to 4 000	18	25	36	56	90	140	22	32	45	71	110	180	80	110	160	250	400	630
Refer	over 4 000 to 6 300.	20	25	40	63	100	160	25	36	50	80	125	200	80	125	160	250	400	630
	over 6 300 to 10 000	28	32	45	71	110	180	28	40	63	100	160	250	90	125	180	280	450	710

											Devi	ation								
					F _{pz}	/ 8					ł	7 T					F	R		
G	ear To Qualit	oth y →	7	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
	over to	10 50	20	25	36	56	90	140	22	32	45	63	90	125	14	20	28	36	56	71
	over to	50 125	25	32	45	71	125	180	28	40	56	80	110	160	16	22	32	45	63	90
ци.	over to	125 280	28	40	56	90	140	220	32	45	63	90	125	180	20	28	36	50	71	100
u	over to	280 560	32	45	63	100	160	250	36	50	71	100	140	180	22	32	40	56	80	110
ter d	over to	560 1 000	36	50	71	110	180	280	40	56	80	110	160	220	25	36	45	63	90	125
diame	over to	1 000 1 600	40	56	80	125	200	320	45	63	90	125	180	250	28	36	50	71	100	140
ircle	over to	1 600 2 500	45	63	90	140	220	360	50	71	100	140	200	280	28	40	56	80	110	160
ence c	over to	2 500 4 000	50	71	90	160	250	400	50	71	100	140	200	280	32	45	63	90	125	180
Refer	over to	4 000 6 300	56	71	110	180	280	450	56	80	110	160	220	320	32	45	63	90	140	180
	over to 1	6 300 0 000	56	80	110	180	280	450	63	90	125	180	250	360	36	50	71	100	140	200

•

Normal module from 3.55 to 6 mm.

		· · ·	Gear Too	th Quality		
Deviation	1	2	3	4	5	6
$f_{\rm f}$	2	3	4	5	7	10
f _{Hα}	1.5	2	3	4	5.5	7
F _f	2.5	3.5	5	7	9	12

											Devi	ation								
					f _p	, f _{pe}						f _u					F	P		
Ge	ar To Qualit	oth y →	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
,	over to	10 50	1.5	2	3	4	6	8	2	2.5	4	5	8	10	1	6	8	12	16	22
	over to	50 125	1.5	2	3	4	6	9	2	2.5	4	5	8	11	5	8	10	16	20	28
.uu	over to	125 280	1.5	2.5	3.5	4.5	7	9	2	3	4	5.5	9	11	6	9	12	18	25	36
i in r	over to	280 560	2	2.5	3.5	5	7	10	2.5	3	4.5	6	9	12	7	10	14	20	28	40
eter d	over to	560 1 000	2	3	4	5.5	8	11	2.5	4	5	7	10	14	8	12	16	22	32	45
diame	over to	1 000 1 600	2	3	4	6	8	12	2.5	4	. 5	8	10	16	9	12	18	25	36	50
circle	over to	1 600 2 500	2.5	3	4.5	6	9	12	3	4	5.5	8	11	16	10	14	20	28	36	56
ence	over to	2 500 4 000	2.5	3.5	5	7	10	14	3	4.5	6	9	12	18	11	16	22	32	40	63
Refer	over to	4 000 6 300	3	4	5.5	8	11	16	3.5	5	7	10	14	20	12	16	22	32	45	63
	over to 1	6 300 0 000	3.5	4.5	6	9	12	18	4	5.5	8	11	16	22	12	18	25	36	50	71

											Devi	ition								
					Fpz	/ 8					F	г					R,			
Ge	ar To Qualit	oth y →	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
	over to	10 50	2.5	4	5	7	10	14	3	4.5	7	9	14	18	2	3	4	6	8	11
	over to	50 125	3	5	7	9	14	18	4	5.5	8	11	16	22	2.5	3.5	5	7	10	14
m	over to	125 280	4	6	8	11	16	22	4.5	6	9	12	18	25	3	4	5.5	8	11	16
u L	over to	280 560	5	6	9	14	18	25	5	7	10	14	20	28	3	4.5	6	9	12	18
ter d	over to	560 1 000	5	7	10	14	20	28	5.5	8	11	16	22	32	3.5	5	7	10	14	20
diame	over to	1 000 1 600	6	8	11	16	22	32	6	9	12	18	25	36	4	5.5	8	11	16	22
ircle	over to	1 600 2 500	6	9	12	18	25	36	7	10	14	20	28	40	4.5	6	9	12	16	25
ence c	over to	2 500 4 000	7	10	14	20	25	36	7	10	14	20	28	40	5	7	9	12	18	25
Refere	over to	4 000 6 300	7	10	14	20	28	40	8	11	16	22	32	45	.5	7	9	14	18	28
	over to 1	6 300 0 000	8	11	16	22	32	45	9	12	18	25	36	50	5	7	10	14	20	28

Table 4 (Continued)

Normal Module from 3.55 to 6 mm.

.			Gear Too	th Quality		
Deviation -	7	8	9	10	11	12
f _f	14	20	28	45	71	125
f _{Ha}	10	14	20	32	50	80
F _c	18	25	36	56	90	140

											Devi	ation				-				
					f _p	, f _{pe}						<i>f</i> _u					ŀ	г Р		
G	ear To Qualit	oth y →	7	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
	over to	10 50	11	16	22	36	56	90	14	20	28	45	71	110	32	45	63	100	160	250
	over to	50 125	12	16	25	40	63	100	16	20	32	50	80	125	40	56	80	125	200	320
mu	over to	125 280	12	18	25	40	63	100	16	22	32	50	80	125	45	71	90	140	250	360
ř.	over to	280 560	14	20	28	45	71	110	18	25	36	56.	90	140	56	80	110	180	280	450
eter (over to	560 1 000	16	20	28	45	75	125	20	25	36	56	90	160	63	90	125	200	320	500
diam	over to	1 000 1 600	16	22	32	50	80	125	20	28	40	63	100	160	71	100	140	220	360	560
circle	over to	1 600 2 500	18	25	36	56	90	140	22	32	45	71	110	180	71	110	140	250	360	630
ence	over (to	2 500 4 000	20	28	40	63	100	160	25	36	50	80	125	200	80	125	160	250	400	630
Refer	over to	4 000 6 300	22	32	45	71	110	180	28	40	56	90	140	220	90	125	180	280	450	710
	over to 1	6 300 0 000	25	36	50	80	125	200	32	45	63	100	160	250	100	140	200	320	500	800

											Devi	ation								
					F	r _{pz} /8						F _r						R,	,	
G	ear Too Quality	th →	7	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
	over to	10 50	20	28	40	63	100	160	25	36	50	71	100	140	16	22	32	45	63	90
	over to	50 125	28	36	50	80	125	200	32	45	63	90	125	180	20	28	36	50	71	100
E	over to	125 280	36	45	56	100	160	250	36	50	71	100	140	200	22	32	45	63	80	110
'n	over to	280 560	36	50	71	110	180	280	40	56	80	110	160	220	25	36	50	71	90	125
eter a	over to 1	560 000	40	56	80	125	200	320	45	63	90	125	180	250	28	36	56	80	100	140
diam	over 1 to 1	000 600	40	63	90	140	220	360	50	71	100	140	200	280	32	, ⁴⁰	63	80	110	160
circle	over 1 to 2	600 500	45	63	90	140	250	400	56	80	110	160	220	320	32	45	63	90	125	180
ence	over 2 to 4	500 000	50	71	100	160	250	400	56	80	110	160	220	320	36	50	71	100	140	200
Refer	over 4 to 6	000 300	56	80	110	180	280	450	63	90	125	180	250	360	36	56	71	110	160	220
	over 6 to 10	300 000	63	90	125	200	320	500	71	100	140	200	280	400	40	56	80	110	160	220

Normal module from 6 to 10 mm.

			D	3 - 49						Gear	Tooth	Quali	ty]		
			Dev	auon		1		2		3		4		5		(5			
			-	f _f		2.5		3.5		5		7		10)	1	4			
				f _{Ha}		2		2.5		3.5	-	5		7		9)			
				F _f		3		4		6		8		12		1	6			
											Devi	ation								
					f _p ,	f _{pe}					j	r u					I	7 P		
0	Gear T Quali	ooth ity →	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
	over to	10 50	2	2.5	3.5	5	7	10	2.5	3	4.5	6	9	12	4.5	6	9	14	18	25
	over to	50 125	2	2.5	3.5	5	7	10	2.5	3	4.5	6	9	12	6	8	11	16	22	32
um.	over to	125 280	2	2.5	4	5,5	8	11	2.5	3	5	7	10	14	7	10	14	20	25	36
r d ir	over to	280 560	2	3	4	6	8	11	2.5	3.5	5	8	10	14	8	11	16	22	28	40
amete	over to	560 1 000	2.5	3	4.5	6	9	11	3	3.5	5.5	8	11	14	9	12	18	25	32	45
cle di	over to	1 000 1 600	2.5	3.5	5	7	9	12	3	4.5	6	9	11	16	10	* 14	18	28	36	50
ice cir	over to	1 600 2 500	2.5	3.5	5	7	10	14	3	4.5	6	9	12	18	11	15	22	28	40	56
eferen	over to	2 500 4 000	3	4	5.5	8	11	16	3.5	5	7	10	14	20	12	16	22	32	45	63
a a a a a a a a a a a a a a a a a a a	over to	4 000 6 300	3	4.5	6	9	12	18	4	5.5	8	11	16	22	12	18	25	36	50	71
	over to	6 300 10 000	3.5	5	7	10	14	20	4.5	6	9	12	18	25	14	20	28	40	56	80

											Devi	ation								
					F _{pz}	/ 8					ŀ	7 T					R	8		
G	ear T Quali	ooth ity→	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
	over to	10 50	3	4	6	8	11	16	3.5	5.5	8	11	16	22	2.5	3.5	5	7	9	14
	over to	50 125	4	5	7	10	14	20	4.5	6	9	12	18	25	3	4	5.5	8	11	16
u mm.	over to	125 280	4.5	6	8	12	16	22	5	7	10	14	20	28	3.5	4.5	6	9	12	18
leter d in I	over to	280 560	5	7	10	14	18	28	5.5	8	11	16	22	32	3.5	5	7	10	14	20
amete	over to	560 1000	6	8	11	16	20	28	6	9	12	18	25	36	4	5.5	8	11	16	22
cle diamete	over to	1 000 1 600	6	9	12	18	22	32	7	10	14	20	28	40	4.5	6	9	12	18	25
nce cin	over to	1 600 2 500	7	9	14	20	25	36	8	11	16	22	32	45	5	7	10	14	18	25
keference	over to	2 500 4 000	7	10	14	20	28	40 [.]	8	12	16	22	32	45	5.5	7	10	14	20	28
	over to	4 000 6 300	8	11	16	22	32	45	9	12	18	25	36	50	5.5	7	11	14	22	28
	over to	6 300 10 000	9	12	18	25	32	50	10	14	20	28	40	56	6	8	12	16	22	32

IS 3681 : 1995

 Table 4 (Continued)

Normal module from 6 to 10 mm.

			Gear Too	th Quality		
Deviation -	7	8	9	10	11	12
$f_{\rm f}$	20	28	40	63	100	160
f _{Hα}	12	18	25	40	63	100
F,	22	32	45	71	110	180

											Devi	ation								
					ſ _p ,	f _{pe}					J	r u					ŀ	7 P		
G	ear I Qual	`oo th ity →	7	8	9	10	11	12	7	8	9	10	11	12	.7	8	9	10	11	12
	over to	10 50	12	18	25	40	63	110	16	22	32	50	80	140	32	45	71	110	180	280
	over to	50 125	14	20	28	45	71	110	18	25	36	56	90	140	45	63	90	140	220	360
- un -	over to	125 280	14	20	28	45	71	125	18	25	36	56	90	160	56	71	100	160	250	400
r d b	over to	280 560	16	22	32	50	80	125	20	28	40	63	100	160	63	80	110	180	280	450
amete	over to	560 1 000	16	25	32	56	90	140	20	28	40	71	110	180	71	90	125	200	320	500
cle di	over to	1 000 1 600	18	25	36	56	90	140	22	32	45	71	110	180	71	100	140	220	360	560
ice cir	over to	1 600 2 500	20	28	40	63	100	160	25	36	50	80	125	200	80	110	160	250	400	630
eferen	over to	2 500 4 000	22	32	45	71	110	180	28	36	50	80	140	220	90	125	180	280	450	710
H	over to	4 000 6 300	25	32	50	80	125	200	32	45	63	100	160	250	100	140	200	320	500	800
	over to	6 300 10 000	28	36	56	90	140	220	32	50	71	110	180	280	110	160	220	360	560	900

											Devi	ation								
					F	_/8						F,					1	R _s		
G	ear T Quali	ooth ity →	7	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
	over to	10 50	22	32	45	71	110	180	32	40	63	80	125	160	18	25	36	50	71	100
	over to	50 125	28	40	56	90	140	220	36	50	71	100	140	200	22	32	45	63	80	110
u um	over to	125 280	32	45	63	100	160	250	40	56	80	110	160	220	25	36	50	71	90	125
r d i	over to	280 560	36	50	71	110	180	280	45	63	90	125	180	250	28	40	56	80	110	140
iamete	over to	560 1 000	40	56	80	125	200	320	50	71	100	140	200	280	32	45	63	80	125	160
rcle d	over to	1 000 1 600	45	63	90	140	220	360	56	80	110	160	220	320	34	50	63	90	125	180
nce ci	over to	1 600 2 500	50	71	100	160	250	400	63	90	125	160	250	320	36	50	71	100	140	200
Refere	over to	2 500 4 000	56	80	110	180	280	450	63	90	125	180	250	360	40	56	80	110	160	220
	over to	4 000 6 300	63	90	125	200	320	500	71	100	140	200	280	400	40	56	80	125	160	250
	over to	6 300 10 000	71	100	140	220	360	560	80	110	160	220	320	450	45	63	90	125	180	250

Normal module from 10 to 16 mm.

Durtation			Gear Too	th Quality		
Deviation	1	2	3	4	5	6
f _f	3	4.5	6	9	12	18
f _{Ha}	2	3	4	6	8	12
F,	4	5.5	.8	11	16	22

											Devi	ation								
					f _p ,	f _{pe}					j	ſu					I	Fr P		
G	ear T Quali	ooth ity →	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
	over to	50 125	2.5	3	4.5	6	9	12	3	4	5.5	8	11	16	6	9	12	18	25	32
	over to	125 280	2.5	3.5	4.5	6	9	12	3	4.5	5.5	8	11	16	7	10	14	20	28	40
in nu	over to	280 560	2.5	3.5	5	7	10	14	3	4.5	6	9	12	18	8	12	16	22	32	45
eter d	over to	560 1 000	2.5	4	5	7	10	14	3	5	6	9	12	18	10	14	18	25	36	50
e diam	over to	1 000 1 600	3	4	5.5	8	11	16	4	5	7	10	14	20	11	16	20	28	40	56
e circl	over to	1 600 2 500	3	4	6	8	12	16	4	5	7	10	16	20	12	16	22	32	45	63
ference	over to	2 500 4 000	3.5	4.5	7	9	12	18	4.5	5.5	8	11	16	22	14	18	25	36	50	71
Re	over to	4 000 6 300	3.5	5	7	10	14	20	4.5	6	9	12	18	25	14	18	28	36	56	71
	over to	6 300 10 000	4	5.5	8	11	16	22	5	7	10	14	20	28	14	20	28	40	56	80

											Devia	tion								
					F _p	_z / 8					1	ក ក					I	? ,		
6	ear Te Qual	ooth ity →	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
	over to	50 125	4	5	8	11	16	22	5	7	10	14	20	28	3	4.5	6	9	12	18
É	over to	125 280	5	6	9	14	18	25	5.5	8	11	16	22	32	3.5	5	7	10	14	20
	over to	280 560	5	7	10	16	20	28	6	9	12	18	25	36	4	6	8	11	16	22
leter d	over to	560 1 000	6	8	12	18	22	32	7	10	14	20	28	40	4.5	6	9	12	18	25
e diam	over to	1 000 1 600	7	9	14	18	25	36	8	11	16	22	32	45	5	7	10	14	20	28
e circl	over to	1 600 2 500	7	10	14	20	28	40	8	12	16	25	32	45	5.5	8	11	14	20	28
eferenc	over to	2 500 4 000	8	11	16	22	32	45	9	12	18	25	36	50	6	8	12	16	22	32
R	over to	4 000 6 300	8	12	16	25	32	45	10	14	20	28	40	56	6	8	12	16	12	32
	over to	6 300 10 000	9	12	18	25	36	50	11	16	22	32	45	63	6	9	12	18	25	36

IS 3681 : 1995

 Table 4 (Continued)

Normal module from 10 to 16 mm.

	Dev	Gear Tooth Quality 7 8 9 10 11 12																
	f_t					8		9		10		11		1	2			
		f_{f}		25		36		50		80	_	12	5	20	0			
	, ,	Ηα		16	_	22		32		50		80		12	:5			
		$F_{\rm f}$		28		40		56		90		140)	25	i0			
									Dev	iation								
			f _p ,	$f_{\rm pe}$						f _u						F _p		
ooth ity →	7	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
50 125	18	25	32	56	90	140	22	32	40	63	110	140	45	63	90	140	220	360
125 280	18	25	36	56	90	140	22	32	45	71	110	180	56	80	110	180	280	450
280 560	20	28	36	56	90	160	25	36	45	71	110	200	63	90	125	200	320	500
560 1 000	20	28	40	63	100	160	25	36	50	80	125	200	71	100	140	220	360	560
1 000 1 600	22	32	40	63	110	180	28	36	50	80	140	220	80	110	160	250	400	630
1 600 2 500	22	32	45	71	110	180	28	40	56	90	140	220	90	125	180	280	450	710
2 500 4 000	25	36	50	80	125	200	32	45	63	100	160	250	100	140	180	320	500	800
4 000 6 300	28	40	56	90	140	220	36	50	71	110	180	280	110	140	220	360	560	900
6 300 10 000	28	40	63	100	160	250	36	56	80	125	200	320	110	160	220	360	560	900
	ooth ity -> 50 125 125 280 560 560 1000 1 600 2 500 2 500 4 000 6 300 6 300	ooth 7 ity -> 7 50 18 125 18 125 18 280 20 560 20 560 20 560 20 1000 22 1 600 22 2 500 25 4 000 28 6 300 28	ooth ity \rightarrow 7 8 50 125 18 25 125 280 18 25 280 560 20 28 560 1 000 20 28 1000 1 600 22 32 1 600 2 500 22 32 2 500 4 000 25 36 4 000 6 300 28 40	F_r f_p f_p 7 8 9 50 18 25 32 125 18 25 36 280 20 28 36 560 20 28 40 1000 22 32 40 1000 22 32 40 1000 22 32 40 1000 22 32 40 1000 25 36 50 4000 28 40 56 6300 28 40 63	F_{f} 28 f_{p} f_{p} f_{p} f_{y} f_{p} f_{p} f_{125} 18 25 32 56 280 20 28 36 56 280 20 28 40 63 1000 22 32 45 71 2500 25 36 50 80 4000 28 40 56 90 6300 28 40 63 100	F_{f} 28 f_{p} f_{pe} $f_{y \rightarrow}$ 7 8 9 10 11 50 18 25 32 56 90 125 18 25 36 56 90 280 20 28 36 56 90 280 20 28 36 56 90 560 20 28 40 63 100 1000 22 32 40 63 110 1 600 22 32 45 71 110 2 500 25 36 50 80 125 4 000 28 40 56 90 140 6 300 28 40 63 100 160	F_{f} 28 40 f_{p} , f_{pe} f_{p} , f_{pe} f_{p} , f_{pe} $f_{ty} \rightarrow$ 7 8 9 10 11 12 50 18 25 32 56 90 140 125 18 25 36 56 90 140 280 20 28 36 56 90 160 560 20 28 36 56 90 160 560 20 28 40 63 100 160 560 20 28 40 63 110 180 1000 22 32 45 71 110 180 1600 25 36 50 80 125 200 4000 28 40 56 90 140 220 6 300 28 40 63 100 160	$F_{\rm f}$ 28 40 $F_{\rm f}$ 28 40 $f_{\rm p}$ $f_{\rm p}$ $f_{\rm p}$ $f_{\rm p}$ $f_{\rm p}$ 50 17 8 9 10 11 12 7 50 125 18 25 32 56 90 140 22 125 18 25 36 56 90 140 22 280 20 28 36 56 90 160 25 560 20 28 40 63 100 160 25 1000 22 32 45 71 110 180 28 1600 22 32 45 71 110 180 28 2500 25 36 50 80 125 200 32 4000 28 40 56 90 140 220 36 6300	$F_{\rm f}$ 28 40 56 $f_{\rm p}$ <th< td=""><td>$F_{\rm f}$ 28 40 56 Devi $f_{\rm p}$, $f_{\rm pe}$ Devi $f_{\rm 25}$ 18 25 32 56 90 140 22 32 40 125 18 25 36 56 90 140 22 32 45 280 20 28 36 56 90 160 25 36 45 560 20 28 40 63 100 160 25 36 50 1000 22 32 40 63 110 180 28 40 56 2500 22 36 50 80 125 200 32 45 63</td><td>$F_{\rm f}$ 28 40 56 90 Deviation $f_{\rm p}$, $f_{\rm pe}$ Deviation $f_{\rm p}$, $f_{\rm pe}$ $f_{\rm u}$ 50 18 25 32 56 90 140 22 32 40 63 125 18 25 32 56 90 140 22 32 40 63 125 18 25 36 56 90 140 22 32 45 71 280 20 28 36 56 90 160 25 36 45 71 560 20 28 36 56 90 160 25 36 50 80 1000 22 32 40 63 110 180 28 36 50 80 1000 22 32 45 71 110 180 28 40 56</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></th<>	$F_{\rm f}$ 28 40 56 Devi $f_{\rm p}$, $f_{\rm pe}$ Devi $f_{\rm 25}$ 18 25 32 56 90 140 22 32 40 125 18 25 36 56 90 140 22 32 45 280 20 28 36 56 90 160 25 36 45 560 20 28 40 63 100 160 25 36 50 1000 22 32 40 63 110 180 28 40 56 2500 22 36 50 80 125 200 32 45 63	$F_{\rm f}$ 28 40 56 90 Deviation $f_{\rm p}$, $f_{\rm pe}$ Deviation $f_{\rm p}$, $f_{\rm pe}$ $f_{\rm u}$ 50 18 25 32 56 90 140 22 32 40 63 125 18 25 32 56 90 140 22 32 40 63 125 18 25 36 56 90 140 22 32 45 71 280 20 28 36 56 90 160 25 36 45 71 560 20 28 36 56 90 160 25 36 50 80 1000 22 32 40 63 110 180 28 36 50 80 1000 22 32 45 71 110 180 28 40 56	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

											Devi	ation								
					F _p	₂ /8		_				F,					1	R.		
G	ear T Qual	'ooth iity →	7	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
	over to	50 125	28	40	56	90	140	250	40	56	80	110	160	220	25	36	50	71	100	140
ġ	over to	125 280	36	50	71	110	180	280	45	63	90	125	180	250	28	40	56	80	110	160
ri E	over to	280 560	40	56	80	125	200	320	50	71	100	140	200	280	32	45	63	90	125	160
eter d	over to	560 1 000	45	63	90	140	220	360	56	80	110	160	220	320	36	50	71	100	140	180
e diam	over to	1 000 1 600	50	71	100	160	250	400	63	90	125	180	250	360	36	56	71	100	140	200
e drol	over to	1 600 2 500	56	80	110	180	280	450	71	90	140	180	280	360	40	56	80	110	160	220
ferenc	over to	2 500 4 000	63	90	110	200	320	500	71	100	140	200	280	400	45	63	90	125	180	250
R	over to	4 000 6 300	63	90	140	220	320	500	80	110	160	220	320	450	45	63	90	125	180	250
	over to	6 300 10 000	71	100	140	220	360	550	90	125	180	250	360	500	50	71	100	140	200	280

Normal module from 16 to 25 mm.

Durintin			Gear Too	th Quality		
Deviation	1	2	3	4	5	6
$f_{\rm f}$	4	6	8	12	16	22
f _{Hα}	3	4	5.5	8	11	16
F _f	5	7	10	14	20	28

											Devi	ation								
					f _p ,	f _{pe}					ſ	u					F	P P		
G	ear I Qual	°ooth ity →	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
	over to	125 280	3	4	6	8	11	16	4	5	8	10	14	20	8	11	16	22	32	40
um.	over to	280 560	3	4.5	6	8	12	16	4	5.5	8	10	16	20	9	14	18	25	36	45
d in r	over to	560 1 000	3	4.5	6	9	12	18	4	5.5	8	11	16	22	10	14	20	28	40	56
ameter	over to	1 000 1 600	3.5	5	7	9	14	18	4.5	6	9	11	16	22	11	16	22	32	45	56
ircle di	over to	1 600 2 500	3.5	5	7	10	14	20	4.5	6	9	12	18	25	12	18	25	36	50	63
ence ci	over to	2 500 4 000	4	5.5	8	11	14	20	5	7	10	14	18	25	14	20	28	40	56	71
Refer	over to	4 000 6 300	4	5.5	8	11	16	22	5	7	10	14	20	28	14	20	28	40	56	80
	over to	6 300 10 000	4.5	6	9	12	18	25	5.5	8	11	16	22	32	16	22	32	45	63	90

											Devi	ation								
					F _p	₂ / 8					1	F,					I	२		
G	ear T Qual	'ooth lity →	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
	over to	125 280	5	7	10	14	18	28	6	9	12	18	25	36	4	6	8	11	16	22
Ë	over to	280 560	6	8	11	16	22	32	7	10	14	20	28	40	4.5	7	9	12	18	25
d In	over to	560 1 000	6	9	14	18	25	36	8	11	16	22	32	45	5	7	10	14	20	28
ameter	over to	1 000 1 600	7	10	14	20	28	36	9	12	18	25	36	50	5.5	8	11	16	22	32
ircle di	over to	1 600 2 500	8	11	16	22	28	40	9	14	18	25	36	50	6	8	12	16	22	32
rence c	over to	2 500 4 000	8	12	18	25	32	45	10	14	20	28	40	56	7	9	12	18	25	36
Refe	over to	4 000 6 300	9	12	18	25	36	50	11	16	22	32	45	63	7	10	14	18	25	36
	over to	6 300 10 000	10	14	20	28	40	56	12	16	25	32	50	71	7	10	14	20	28	40

Normal module from 16 to 25 mm.

```
Tolerances in µm.
```

Deviation			Gear Too	oth Quality		
Deviation	7	8	9	10	11	12
$f_{\rm f}$	32	45	63	110	160	250
Г _{На}	22	28	40	71	110	180
F _f	40	56	80	125	200	320

											Devi	ation								
					ſ,,	f_{po}					, L	ſ,					1	Г Р		
	Gear 7 Qua	ſooth lity →	7	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
	over to	125 280	22	32	45	71	110	180	28	40	56	90	140	220	56	80	110	180	280	450
mm.	over to	280 560	22	32	45	71	110	180	28	40	56	90	140	220	71	90	125	200	320	560
er d in	over to	560 1 000	25	36	50	80	125	200	32	45	63	100	160	250	80	110	140	220	360	630
diamet	over to	1 000 1 600	25	36	50	80	125	200	32	45	63	100	160	250	90	110	160	250	400	710
e circle	over to	1 600 2 500	28	40	56	80	140	220	36	50	71	110	180	280	90	125	180	280	450	750
eference	over to	2 500 4 000	28	40	56	90	140	220	36	50	71	110	180	280	100	140	200	320	500	800
ц Ц	over 10	4 000 6 300	32	45	63	100	160	250	40	56	80	125	200	320	110	160	220	360	560	900
	over to	6 300 10 000	32	50	63	110	180	280	40	56	80	125	220	360	125	180	250	360	630	1000
											Devi	ation								

											Dev	ation	_							
					F	, <u>,</u> /8						F,						R,		
	Jear∶ Qua	Footh lity →	7	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
	over to	125 280	36	50	71	110	180	280	50	71	100	140	200	280	32	45	63	90	125	160
mm.	over to	280 560	40	63	80	140	220	320	56	80	110	160	220	320	36	50	71	100	140	180
er d in	over to	560 1 000	50	71	90	140	250	360	63	90	125	180	250	360	40	56	80	110	140	200
diamete	over to	1 000 1 600	56	71	100	160	250	400	71	100	140	200	280	400	40	56	80	110	160	220
circle	over to	1 600 2 500	56	80	110	180	280	450	71	100	140	200	280	400	45	63	90	125	180	250
ference	over to	2 500 4 000	63	90	125	200	320	500	80	110	160	220	320	450	50	71	100	140	180	280
R	over to	4 000 6 300	71	100	140	220	360	560	90	125	180	250	360	500	50	71	100	140	200	280
 	over to	6 300 10 000	80	110	140	250	400	630	100	140	200	280	360	560	56	80	110	160	200	280

Normal module from 25 to 40 mm.

·

Deadarthan			Gear Too	th Quality		
Deviation	1	2	3	4	5	6
f _t	6	8	11	16	22	32
f _{Hα}	4	5.5	8	10	14	20
F _f	7	10	14	20	25	36

					-						Devi	ation								
					f _p ,	f _{pe}					į	ſ _u					1	с р		
G	ear To Quali	ooth ty →	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
	over to	125 280	4	5.5	8	11	15	22	5	7	10	14	20	28	8	12	16	22	32	45
Ë	over to	280 560	4	6	8	11	16	22	5	8	10	14	20	28	10	14	18	28	36	50
d in n	over to	560 1 000	4	6	8	12	16	22	5	8	10	16	20	28	11	16	20	32	40	56
ameter	over to	1 000 1 600	4.5	6	9	12	18	25	5.5	8	11	16	22	32	12	18	25	32	45	63
circle d	over to	1 600 2 500	4.5	7	9	12	18	25	5.5	9	11	16	22	32	12	18	25	36	50	71
rence	over to	2 500 4 000	5	7	10	14	20	25	6	9	12	16	25	32	14	20	28	40	56	80
Refe	over to	4 000 6 300	5	7	10	14	20	28	6	9	12	18	25	36	16	22	32	45	63	90
	over to 1	6 300 0 000	5.5	7	11	14	20	28	7	9	14	18	25	36	16	22	32	45	63	90
F					· · · · · ·															
											Devi	ation								
					F _p	z/8		<u> </u>			Devi	ation F _r			-			R,		
(ear To Quali	ooth ity →	1	2	<i>F</i> _р 3	z/ 8	5	6	1	2	Devi 3	ation F _r 4	5	6	1	2	3	R _s	5	6
	Gear To Qual over to	booth ity → 125 280	1	2	<i>F</i> _р 3 10	2 / 8 4 14	5	6 28	1 7	2	Devi 3 14	ation <i>F</i> _r 4 20	5 28	6 40	1	2	3	R ₈	5	6 25
	Jear To Quali over to over to	booth ity → 125 280 280 560	1 5 6	2 7 9	F _p 3 10 12	2 / 8 4 14 16	5 20 22	6 28 32	1 7 8	2 10 11	Devi	ation <i>F</i> _r 4 20 22	5 28 32	6 40 45	1 4.5 5	2 7 7	3 9 10	R _s 4 12 14	5 18 20	6 25 28
d in mm.	over to over to over to	ooth ity → 125 280 280 560 1000	1 5 6 7	2 7 9 10	F _p 3 10 12 14	z/8 4 14 16 18	5 20 22 25	6 28 32 36	1 7 8 9	2 10 11 12	Devi 3 14 16 18	ation <i>F_r</i> 4 20 22 25	5 28 32 36	6 40 45 50	1 4.5 5 5.5	2 7 7 8	3 9 10 11	R _s 4 12 14 16	5 18 20 22	6 25 28 32
uncter d in mm.	over to over to over to over to	ooth ity → 125 280 560 1000 1000 1000	1 5 6 7 8	2 7 9 10 11	F _p 3 10 12 14 16	z / 8 4 14 16 18 20	5 20 22 25 28	6 28 32 36 40	1 7 8 9 10	2 10 11 12 14	Devi 3 14 16 18 20	ation F _r 4 20 22 25 28	5 28 32 36 40	6 40 45 50 56	1 4.5 5 5.5 6	2 7 7 8 9	3 9 10 11 12	R _s 4 12 14 16 18	5 18 20 22 25	6 25 28 32 32
ircle diameter d in mm.	over to over to over to over to over to over to	both 125 280 560 560 1000 1000 1000 1600 2500	1 5 6 7 8 8	2 7 9 10 11	F _p 3 10 12 14 16 16	2/8 4 14 16 18 20 22	5 20 22 25 28 32	6 28 32 36 40 45	1 7 8 9 10	2 10 11 12 14	Devi 3 14 16 18 20 20	ation Fr 4 20 22 25 28 28	5 28 32 36 40	6 40 45 50 56 56	1 4.5 5.5 6 7	2 7 7 8 9 9	3 9 10 11 12 12	R, 4 12 14 16 18	5 18 20 22 25 25	6 25 28 32 32 36
rence circle diameter d in mm.	over to over to over to over to over to over to over to	ooth ity → 125 280 560 560 1 000 1 000 1 600 2 500 2 500 2 500 4 000	1 5 6 7 8 8 8 9	2 7 9 10 11 12 12	F _p 3 10 12 14 16 16 18	2/8 4 14 16 18 20 22 25	5 20 22 25 28 32 36	6 28 32 36 40 45 50	1 7 8 9 10 10	2 10 11 12 14 14 16	Devi 3 14 16 18 20 20 22	ation F _r 20 22 25 28 28 32	5 28 32 36 40 40 45	6 40 45 50 56 63	1 4.5 5.5 6 7 7 7	2 7 7 8 9 9 9	3 9 10 11 12 12 14	R 4 12 14 16 18 18 20	5 18 20 22 25 25 28	6 25 28 32 32 36 40
Reference circle diameter d in mm.	over to over to over to over to over to over to over to	ity → 125 280 560 1000 1000 1000 1000 1000 2500 2500 2500 2500 2500 4000 4000 6300	1 5 6 7 8 8 8 9 9 9	2 7 9 10 11 12 12 12	F _p 3 10 12 14 16 16 18 18	2/8 4 14 16 18 20 22 25 25 25	5 20 22 25 28 32 36 36	6 28 32 36 40 45 50 56	1 7 8 9 10 10 10 11 12	2 10 11 12 14 14 16 18	Devi 3 14 16 18 20 20 20 22 25	ation Fr 4 20 22 25 28 28 32 36	5 28 32 36 40 40 40 45 50	6 40 45 50 56 63 71	1 4.5 5 5.5 6 7 7 7 7	2 7 7 8 9 9 9 10 10	3 9 10 11 12 12 14 14	R, 4 12 14 16 18 18 20 20	5 18 20 22 25 25 25 28 28	6 25 28 32 32 36 40 40

IS 3681 : 1995

Table 4 (Continued)

Normal module from 25 to 40 mm.

<u></u>			Gear Too	th Quality		
Deviation	7	8	9	10	11	12
$f_{\rm f}$	45	63	80	140	220	360
f _{Ha}	28	40	56	90	140	220
F _f	56	71	100	160	250	400

											Devia	ation								
					f _p ,	f _{pe}					f	B			-		F	p		
G	ear T Qual	ooth ity→	7	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
	over to	125 280	28	40	56	90	140	250	36	50	71	110	180	320	63	90	125	200	320	500
um.	over to	280 560	32	45	63	100	160	250	40	56	80	125	200	320	71	100	140	220	360	560
d in 1	over to	560 1 000	32	45	63	100	160	250	40	56	80	125	200	320	80	110	160	250	400	630
lameter	over to	1 000 1 600	32	45	63	100	160	280	40	56	80	125	200	360	90	125	180	280	450	750
circle d	over to	1 600 2 500	36	50	71	110	180	280	45	63	90	140	220	360	100	140	200	320	500	800
erence	over to	2 500 4 000	36	50	71	110	180	280	45	63	90	140	220	360	110	160	220	360	560	850
Ref	over to	4 000 6 300	40	56	71	125	200	320	50	71	100	160	250	400	125	180	220	360	560	1 000
	over to	6 300 10 000	40	56	80	125	200	320	50	71	100	160	250	400	125	180	250	400	630	1 000

											Devi	ntion								
					F _p	z/ 8						F.					ļ	R,		
G	ear T Quali	ooth ity →	7	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
	over to	125 280	40	56	80	125	200	320	56	80	110	160	220	320	36	50	71	100	140	200
Tu	over to	280 560	45	63	90	140	220	360	63	90	125	180	250	360	40	56	80	110	160	220
i di in 1	over to	560 1 000	50	71	100	160	250	400	71	100	140	200	280	400	45	63	80	125	160	220
liameter	over to	1 000 1 600	56	80	110	180	280	450	80	110	160	220	320	450	45	63	90	125	180	250
circle d	over to	1 600 2 500	63	90	125	200	320	500	80	110	160	220	320	450	50	71	100	140	200	280
erence	over to	2 500 4 000	71	100	140	220	360	560	90	125	180	250	360	500	56	80	110	140	200	280
Ref	over to	4 000 6 300	71	100	140	220	360	630	100	140	200	280	400	560	56	80	110	160	220	280
	over to	6 300 10 000	80	110	160	250	400	630	100	140	200	280	400	560	63	90	110	160	220	320

Normal module from 40 to 70 mm.

Deviation	Gear Too	th Quality
	5	5
$f_{\rm f}$	32	45
f _{Hα}	22	28
F _t	36	50

											Devi	ation								
					$f_{p}^{},$	f _{pe}					ſ	r u					F	7 P		
G	ear To Quality	oth y →	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
	over to	125 280	6	8	12	16	22	32	7	10	14	20	28	40	9	12	18	25	36	50
'n'n	over to	280 560	6	8	12	16	22	32	8	10	14	20	28	40	10	14	20	28	40	56
ui p	over to 1	560 1 000	6	8	12	16	22	32	8	10	14	20	28	40	12	16	22	32	45	63
ja meter	over 1 to 1	1 000 1 600	6	9	12	16	25	32	8	10	16	22	28	40	14	18	25	36	50	71
circle d	over 1 to 2	1 600 2 500	6	9	12	18	25	36	8	12	16	22	32	45	14	20	28	40	56	80
erence	over 2 to 4	2 500 4 000	7	10	14	18	25	36	8	12	16	22	32	,45	16	22	32	45	63	80
Ref	over 4 to 6	4 000 5 300	7	10	14	20	25	36	9	12	18	25	32	45	18	25	36	45	63	90
	over 6 to 10	6 300 0 000	7	10	14	20	28	36	9	12	18	25	36	50	18	25	36	50	71	100
											Devi	ation								
					Fp	_/ 8						F _r					1	R _s		
G	ear To Qualit	oth Y→	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
	over to	125 280	6	8	12	16	22	32	8	12	16	25	32	50	6	7	10	14	20	28
	over	280										<u> </u>	1							

		200								1										
un.	over to	280 560	7	9	12	18	25	36	9	14	18	25	36	50	6	8	12	16	22	32
d in 1	over to	560 1 000	7	10	14	20	28	40	10	14	20	28	40	56	6	9	12	18	22	32
lameter	over to	1 000 1 600	8	12	16	22	32	45	11	16	22	32	45	63	7	10	12	18	25	36
circle d	over to	1 600 2 500	9	12	18	25	36	50	12	16	22	32	45	63	7	10	14	20	28	36
erence	over to	2 500 4 000	10	14	20	28	36	50	12	18	25	36	50	71	7	12	16	22	28	40
Ref	over to	4 000 6 300	10	14	20	28	40	56	14	20	28	40	56	80	8	12	16	22	32	45
	over to	6 300 10 000	12	16	22	32	45	63	14	20	28	40	56	80	9	14	18	25	36	50

IS 3681 : 1995

Table 4 (Concluded)

Normal module from 40 to 70 mm.

280

560

560

1 000

1 600 over 1 600

2 500

4 000

6 300

over 1 000

over 2 500

over 4 000

over 6300

to 10 000

over

over

to

to

to

to

to

to

Reference circle diameter d in mm.

Tolerances in µm.

			Gear Too	th Quality		
Deviation	7	8	9	10	11	12
J _f	63	90	125	200	320	500
f _{Ha}	40	56	80	125	200	320
F _c	71	100	140	220	360	560

					1						Devia	ation								
					f _p ,	f _{pe}					ſ	u					F	P		
G	ear Tooth Ouality →		7	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
	over 12 to 28	5 4	45	63	80	140	220	360	56	80	110	180	280	450	71	100	125	200	360	560
- Wa	over 28 to 56) 4	45	63	90	140	220	360	56	80	110	180	280	450	80	110	160	250	400	630
i di In	over 56 to 1.00		45	63	90	140	220	360	56	80	110	180	280	450	90	125	180	280	450	710
liameter	over 100 to 160	0 0 4	45	63	90	140	220	360	56	80	110	180	280	450	100	140	180	320	500	800
circle d	over 1 60 to 2 50	0	50	63	90	140	250	400	63	80	125	180	320	500	110	140	200	320	560	850
lerence	over 1 600 to 2 500 over 2 500 to 4 000		50	71	100	160	250	400	63	90	125	180	320	500	110	160	220	360	560	900
Ref	over 4 00 to 6 30	0	50	71	100	160	250	400	63	90	125	220	320	500	125	180	250	400	630	1000
	over 6 30 to 10 00	0	56	80	110	180	280	450	71	100	140	220	360	560	140	200	280	450	710	1100
		T									Devi	ation								
					F _p	_z/ 8						F _r						R _s		
0	Gear Tooth Ouality -		7	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
	over 12	5	45	63	80	140	220	360	71	90	140	180	280	360	40	56	80	110	160	200

50	71	100	160	250	400	71	100	140	200	280	400	45	56	90
56	80	110	180	280	450	80	110	160	220	320	450	45	63	90
63	80	110	200	280	500	90	125	180	250	360	500	50	71	100
71	90	125	220	320	560	90	125	180	250	360	500	56	80	100
71	100	140	220	360	560	100	140	200	280	400	560	56	80	110
80	110	160	250	400	630	110	160	220	320	450	630	63	90	125
90	125	180	280	450	710	110	160	220	320	450	630	71	100	140

110

125

140

140

160

180

180

160 220

180 250

200

200

220

250

250 360

280

280

320

360

Table 5 Tolerance Data (Clause 6)

Normal module from 1 to 2 mm.

							Toleranc	es in µm.						
								Devi	ation					
					F	''' 1				-	<i>f</i> "	i.		
G	ear To Qualit	ooth ty →	1	2	3	4	5	6	1	2	3	4	5	6
	up to	10	2.5	3.5	5	7	9	14	1	1	1.5	2.5	3	4.5
	over up to	10 50	3	4.5	6	9	12	16	1	1.5	2.5	3.5	4.5	6
Ē	over up to	50 125	4	5	7	10	14	20	1.5	2	3	4	6	8
ų. E	over up to	125 280	4.5	6	9	12	16	25	2	2.5	3.5	5	7	10
ter d	over up to	280 560	5	7	10	14	20	28	2	3	4	6	8	12
diame	over up to	560 1 000	5.5	8	11	16	22	32	2.5	3.5	5	7	10	14
circle	over up to	1 000 1 600	6	9	12	18	25	32	3	4	5.5	8	11	14
rence	over up to	1 600 2 500	7	10	14	18	28	36	3	4.5	6	8	12	16
Refe	over up to	2 500 4 000	8	11	14	20	28	40	3.5	5	7	9	14	18
	over up to	4 000 6 300	8	11	16	22	32	45	3.5	5	7	10	14	20
	over up to	6 300 10 000	9	12	18	25	36	50	4	6	8	12	16	22

								Devi	ation					
					F	'' i					ſ	, i		
G	ear To Qualit	oth y →	1	2	3	4	5	6	1	2	3	4	5	6
	up to	10	3	4.5	6	9	12	18	2	2.5	3.5	5	7	10
	over up to	10 50	4	5.5	8	11	16	22	2	2.5	4	5.5	7	10
_	over up to	50 125	5	7	10	14	18	25	2	3	4	5.5	8	11
in m	over up to	125 280	5.5	8	11	16	22	28	. 2	3	4	5.5	8	11
ter d	over up to	280 560	6	9	12	16	25	32	2	3	4	6	8	12
diame	over up to	560 1 000	7	10	14	18	25	36	2.5	3	4.5	6	9	12
circle	over up to	1 000 1 600	7	10	14	20	28	40	2.5	3.5	4.5	7	9	12
erence	over up to	1 600 2 500	8	11	16	22	32	45	2.5	3.5	5	7	10	14
Rel	over up to	2 500 4 000	9	12	16	25	32	45	2.5	4	5.5	7	10	14
	over up to	4 000 6 300	9	12	18	25	36	50	3	4	5.5	8	11	16
	over up to 1	6 300 10 000	10	14	20	28	40	56	3	4.5	6	9	12	18

Normal module from 1 to 2 mm.

					· · · · · · · · · · · · · · · · · · ·			Devi	ation					
					I	Ŧ",					ſ	i i		
	Gear To Qualit	ooth ty →	7	8	9	10	11	12	7	8	9	10	11	12
	up to	10	18	25	36	50	71	100	6	9	12	18	25	36
	over up to	10 50	22	32	45	63	90	125	9	12	18	25	36	50
L .	over up to	50 125	28	40	56	80	110	160	12	16	22	32	45	63
u	over up to	125 280	32	45	63	90	125	180	14	20	28	36	56	71
er d	over up to	280 560	36	50	71	100	140	200	16	22	32	45	63	90
iamet	over up to	560 1 000	45	63	80	110	160	220	18	25	36	50	. 71	100
ircle d	over up to	1 000 1 600	45	63	90	125	180	250	20	28	40	56	80	110
nce c	over up to	1 600 2 500	50	71	100	140	200	280	22	32	45	63	90	125
Refere	over up to	2 500 4 000	56	80	110	160	220	320	25	36	50	71	100	140
	over up to	4 000 6 300	63	90	125	180	250	360	28	40	56	80	110	160
	over up to	6 300 10 000	71	100	140	200	280	400	32	45	63	90	125	180

								Devi	ation					
					F	"i					f	, 1		
G	ear To Quali	ooth ty →	7	8	9	10	11	12	7	8	9	10	11	12
	up to	10	25	32	45	80	125	200	14	20	28	45	71	110
	over up to	10 50	32	45	63	100	160	250	14	20	28	45	71	110
, m	over up to	50 125	36	50	71	110	180	280	16	22	28	45	80	125
in n	over up to	125 280	40	56	80	125	200	320	16	22	32	50	80	125
eter a	over up to	280 560	45	63	90	140	220	360	16	22	32	50	80	140
diam	over up to	560 1 000	50	71	100	160	250	400	18	25	32	56	90	140
circle	over up to	1 000 1 600	56	80	110	180	280	450	18	25	36	56	90	140
rence	over up to	1 600 2 500	63	80	125	180	320	500	18	28	36	63	100	160
Refe	over up to	2 500 4 000	63	90	125	200	320	500	20	28	40	63	100	160
	over up to	4 000 6 300	71	100	140	220	360	560	22	32	45	71	110	180
	over up to	6 300 10 000	80	110	160	250	400	630	25	36	50	80	125	200

Normal module over 2 up to 3.55 mm.

								Devi	ation			,		
					F	ייק i					ſ	" i		
G	ear To Oualit	oth y→	1	2	3	4	5	6	1	2	3	4	5	6
	over up to	10 50	3.5	5	7	10	14	18	1.5	2	3	4	5.5	8
	over up to	50 125	4	6	8	11	16	22	1.5	2.5	3.5	5	7	9
Ľ	over up to	125 280	5	7	9	14	18	25	2	3	4	5.5	8	11
d in n	over up to	280 560	5	8	11	14	20	28	2.5	3.5	4.5	6	9	12
neter	over up to	560 1 000	6	9	12	16	22	32	2.5	3.5	5	7	10	14
e dian	over up to	1 000 1 600	7	9	14	18	25	36	3	4	6	8	11	16
e circi	over up to	1 600 2 500	7	10	14	20	28	40	3.5	4.5	6	9	12	18
ferenc	over up to	2 500 4 000	8	11	16	22	32	45	3.5	5	7	10	14	20
a a	over up to	4 000 6 300	9	12	18	25	36	50	4	5.5	8	11	16	22
	over up to	6 300 10 000	9	14	18	28	36	50	4.5	6	9	12	18	25

								Devi	ation					
					F	'' i					ſ	, i		
G	ear To Qualit	oth v →	1	2	3	4	5	6	1	2	3	4	5	6
	over up to	10 50	4.5	7	9	12	18	25	2.5	3	4.5	6	9	12
	over up to	50 125	5.5	8	11	16	22	28	2.5	3.5	4.5	6	9	12
um.	over up to	125 280	6	9	12	18	25	32	2.5	3.5	4.5	7	9	12
rdir	over up to	280 560	7	10	14	20	25	36	2.5	3.5	5	7	10	14
amete	over up to	560 1 000	8	11	16	22	28	40	2.5	3.5	5	7	10	14
rcle di	over up to	1 000 1 600	8	12	16	22	32	45	2.5	4	5.5	7	10	14
nce ci	over up to	1 600 2 500	9	12	18	25	36	50	3	4	5.5	8	11	16
Refere	over up to	2 500 4 000	10	14	18	25	36	50	3	4	6	8	12	16
	over up to	4 000 6 300	10	14	20	28	40	56	3.5	4.5	6	9	12	18
	over up to	6 300 10 000	11	16	22	32	45	63	3.5	5	7	10	14	18

Normal module over 2 up to 3.55 mm.

Tolerances	in	μm.
------------	----	-----

						-	Devi	ation					
				F	" i	<u></u>				f	";		
G	ear Tooth Quality →	7	8	9	10	11	12	7	8	9	10	11	12
	over 10 up to 50	25	36	50	71	100	140	11	14	20	28	40	56
	over 50 up to 125	32	45	63	90	125	160	14	18	25	36	50	71
ш	over 125 up to 280	36	50	71	100	140	200	16	22	32	40	56	80
r d in	over 280 up to 560	40	56	80	110	160	220	18	25	36	50	71	100
ametei	over 560 up to 1 000	45	63	90	125	180	250	20	28	40	56	80	110
ircle d	over 1 000 up to 1 600	50	71	100	140	200	280	22	32	45	63	90	125
ence d	over 1 600 up to 2 500	56	80	110	160	220	280	25	36	50	71	100	140
Refer	over 2 500 up to 4 000	63	90	125	160	250	320	28	40	56	80	100	160
	over 4 000 up to 6 300	71	100	140	200	280	400	32	45	63	90	125	180
	over 6 300 up to 10 000	71	110	140	220	280	400	36	50	71	100	140	200

							Devi	ation					
				F	', i					f	i,		
G	ear Tooth Quality →	7	8	9	10	11	12	7	8	9	10	11	12
	over 10 up to 50	36	50	71	110	180	280	18	25	32	50	90	140
	over 50 up to 125	40	56	80	125	200	320	18	25	36	56	90	140
un.	over 125 up to 280	45	63	90	140	250	360	18	25	36	56	90	140
d in	over 280 up to 560	50	71	100	160	250	400	18	25	36	56	90	160
ametei	over 560 up to 1 000	56	80	110	180	280	450	20	28	40	63	100	160
rcle di	over 1 000 up to 1 600	63	90	125	200	320	500	20	28	40	63	100	160
ence ci	over 1 600 up to 2 500	71	90	125	220	320	560	22	32	40	71	110	180
Refer	over 2 500 up to 4 000	71	100	140	220	360	560	22	32	45	71	110	180
	over 4 000 up to 6 300	80	110	160	250	400	630	25	36	50	80	125	200
	over 6 300 up to 10 000	90	125	180	280	450	710	28	36	56	90	140	220

 Table 5 (Continued)

Normal module over 3.55 up to 6 mm.

.

.

							Devi	ation					
				F	и 1					f	"i		<u></u>
G	ear Tooth Quality →	1	2	3	4	5	6	1	2	3	4	5	6
	over 10 up to 50	4	5.5	8	11	14	20	1.5	2.5	3	4.5	6	9
	over 50 up to 125	4.5	6	9	12	18	25	2	3	4	5.5	8	11
mm.	over 125 up to 280	5	7	10	14	20	28	2.5	3	4.5	6	9	12
d in	over 280 up to 560	6	8	12	16	22	32	2.5	3.5	5	7	10	14
ameter	over 560 up to 1 000	7	9	12	18	25	36	3	4	6	8	11	16
rcle di	over 1 000 up to 1 600	7	10	14	20	28	40	3	4.5	6	9	12	18
ence ci	ovér 1 600 up to 2 500	8	11	16	22	32	40	3.5	5	7	10	14	18
Refer	over 2 500 up to 4 000	9	12	18	25	32	45	4	5.5	8	11	16	22
	over 4 000 up to 6 300	9	12	18	25	36	50	4	6	8	12	16	22
	over 6 300 up to 10 000	10	14	20	28	40	56	4.5	6	9	12	18	25

								Devi	ation					
					F	'' i					f	, i		
G	ear To Qualit	oth y →	1	2	3	4	5	6	1	2	3	4	5	6
	over up to	10 50	5.5	7	10	14	20	28	2.5	4	5.5	7	10	14
	over up to	50 125	6	9	12	18	25	32	3	4	5.5	8	11	14
mm.	over up to	125 280	7	10	14	20	28	36	3	4	5.5	8	11	16
rdin	over up to	280 560	8	11	16	22	28	40	3	4	6	8	11	16
iamete	over up to	560 1 060	9	12	16	22	32	45	3	4.5	6	8	12	16
ircle d	over up to	1 000 1 600	9	12	18	25	36	50	3	4.5	6	9	12	18
ence c	over up to	1 600 2 500	10	14	20	28	40	56	3.5	4.5	6	9	14	18
Refer	over up to	2 500 4 000	11	14	20	28	40	56	3.5	5	7	10	14	18
	over up to	4 000 6 300	11	16	22	32	45	63	3.5	5	7	10	14	20
	over up to 1	6 300 10 000	12	16	25	32	45	63	4	5.5	8	11	16	22

Normal module over 3.55 up to 6 mm.

							Davi						
		ļ			······		Devi	auon					-
				F	" i					ſ	" i		
G	ear Tooth Quality →	7	8	9	10	11	12	7	8	9	10	11	12
	over 10 up to 50	32	40	56	80	110	160	12	18	25	36	50	63
	over 50 up to 125	36	50	71	100	140	180	14	20	28	40	56	80
, mm.	over 125 up to 280	40	56	80	110	160	200	18	25	32	45	63	90
r d in	over 280 up to 560	45	63	90	125	180	250	20	28	40	56	71	110
liamete	over 560 up to 1 000	50	71	100	140	200	280	22	32	45	60	80	125
circle c	over 1 000 up to 1 600	56	80	110	140	200	280	25	36	50	63	90	125
rence	over 1 600 up to 2 500	63	80	110	160	220	320	28	36	50	71	100	140
Refe	over 2 500 up to 4 000	63	90	125	180	250	360	32	40	56	80	110	160
	over 4 000 up to 6 300	71	100	140	200	280	400	32	45	63	90	125	180
	over 6 300 up to 10 009	80	110	160	220	320	450	36	50	71	100	140	200

							Devi	ation	47 Web-199				
				F	i i					f	i	<u></u>	
	ear Tooth Quality →	7	8	9	10	11	12	7	8	9	10	n	12
	over 10 up to 50	40	56	80	125	200	320	20	28	40	63	100	160
	over 50 up to 125	45	63	90	140	250	360	20	28	40	63	110	160
mm.	over 125 up to 280	52	71	100	160	250	400	22	32	40	71	110	160
r d in	over 280 up to 560	56	80	110	180	280	450	22	32	45	71	110	180
anete	over 560 ap to 1 000	63	90	125	200	320	500	22	32	45	71	110	180
Ircle d	over 1 000 up to 1 600	71	100	140	220	360	560	25	32	50	71	125	200
ence c	over 1600 up to 2500	71	100	140	220	360	630	25	36	50	80	125	200
Refer	over 2 500 up to 4 000	80	110	160	250	400	630	25	36	50	80	125	200
	over 4 000 up to 6 300	90	125	180	280	450	710	28	40	56	90	140	220
	over 6 300 up to 10 000	90	140	180	280	450	710	32	45	63	100	160	250

Tolerances in μm .

 Table 5 (Continued)

Normal module over 6 up to 10 mm.

	·····							Devi	ation					
					ŀ	? <i>"</i> i					f	" 1		
G	ear To Qualit	ooth ty →	1	2	3	4	5	6	1	2	3	4	5	6
	over up to	10 50	4.5	6	9	12	16	22	2	3	4	5	7	10
	over up to	50 125	5	7	10	14	20	28	2.5	3	4.5	6	9	12
ШШ.	over up to	125 280	6	8	11	16	22	32	2.5	3.5	5	7	10	14
r d in	over up to	280 560	6	9	12	18	25	36	3	4	5.5	8	11	16
iamete	over up to	560 1 000	7	10	14	20	28	40	3	4.5	6	9	12	18
ircle d	over up to	1 000 1 600	8	11	16	22	32	40	3.5	5	7	10	14	18
ence c	over up to	1 600 2 500	8	12	16	22	32	45	4	5.5	7	10	14	20
Refer	over up to	2 500 4 000	9	14	18	25	36	50	4	6	8	11	16	22
	over up to	4 000 6 300	10	14	20	28	40	56	4.5	6	9	12	18	25
	over up to	6 300 10 000	11	16	22	28	40	63	5	7	10	14	20	28

		T	- !											
		ļ						Devi	ation					
					F	7'i					f	'' i		
G	ear Toot Quality	h →	1	2	3	4	5	6	1	2	3	4	5	6
	over up to	10 50	6	9	12	16	22	32	3.5	4.5	7	9	12	18
	over up to	50 125	7	10	14	20	28	40	3.5	5	7	9	14	18
mm	over up to	125 280	8	11	16	22	32	45	3.5	5	7	10	14	18
r d in	over up to	280 560	9	12	18	25	32	45	3.5	5	7	10	14	20
iamete	over up to 1	560 000	10	14	18	25	36	50	3.5	5	7	10	14	20
ircle d	over 1 up to 1	000 600	10	14	20	28	40	56	4	5	7	10	14	20
cence o	over 1 up to 2	600 500	11	16	22	32	40	56	4	5.5	8	11	16	22
Refer	over 2 up to 4	500 000	12	16	22	32	45	63	4	6	8	11	16	22
	over 4 up to 6	000 300	12	18	25	36	50	71	4	6	8	12	16	22
	over 6 up to 10	300 000	14	18	25	36	50	71	4.5	6	9	12	18	25

 Table 5 (Continued)

Normal module over 6 up to 10 mm.

							Devi	ation		 			
				F	7 <i>"</i> 1					f	"" i		
	Gear Tooth Quality →	7	8	9	10	11	12	7	8	9	10	11	12
	over 10 up to 50	32	45	63	90	125	180	14	20	28	40	56	80
	over 50 up to 12	40	56	71	110	140	200	18	25	32	45	63	90
mm	over 125 up to 280	45	63	80	120	160	250	20	28	40	56	71	100
d in	over 280 up to 560	50	71	100	140	180	250	22	32	45	63	80	125
ameter	over 560 up to 1 000	56	71	110	140	200	280	25	32	50	63	90	125
rcle di	over 1 000 up to 1 600	56	80	110	160	250	320	28	36	50	71	100	140
nce ci	over 1 600 up to 2 500	63	90	125	180	250	360	28	40	56	80	110	160
Refere	over 2 500 up to 4 000	71	100	140	180	280	360	32	45	63	90	125	180
	over 4 000 up to 6 300	80	110	160	220	320	450	36	50	71	100	140	200
	over 6 300 up to 10 000	80	125	160	250	320	450	40	56	80	110	160	220

							Devi	ation					
				F	''''''''''''''''''''''''''''''''''''''					f	· /		
	Jear Tooth Quality →	7	8	9	10	11	12	7	8	9	10	11	12
	over 1 up to 5	45	63	90	140	220	360	25	36	50	80	125	200
	over 5 up to 12	56	71	100	160	280	450	25	36	50	80	125	200
mm.	over 12 up to 28	63	80	110	180	280	500	25	36	50	80	125	220
eter d in n	over 28 up to 56	63	90	125	200	320	500	28	36	50	80	140	220
iamete	over 560 up to 100	71	100	140	220	360	560	28	40	56	90	140	220
ircle d	over 100 up to 160	80	110	160	250	400	630	28	40	56	90	140	220
ence o	over 160 up to 250	80	110	160	250	400	630	28	40	56	90	140	250
Refei	over 2 50 up to 4 00	90	125	180	280	450	710	32	45	63	100	160	250
	over 4 000 up to 6 300	100	140	200	320	500	800	32	45	63	100	160	250
	over 6 300 up to 10 000	100	140	200	320	500	800	36	50	71	110	180	280

 Table 5 (Continued)

Normal module over 10 up to 16 mm.

Tolerances in µm.

							Devi	ation					
				F	""i					f "	i		
0	Gear Tooth Quality →	1	2	3	4	5	6	1	2	3	4	5	6
	over 50 up to 125	5.5	8	11	16	22	32	2.5	3.5	5	7	10	14
Ë	over 125 up to 280	6	9	12	18	25	36	3	4	6	8	11	16
ri E	over 280 up to 560	7	10	14	20	28	40	3.5	4.5	6	9	12	18
eter d	over 560 up to 1000	8	11	16	22	28	40	3.5	5	7	10	14	20
diam	over 1 000 up to 1 600	8	12	16	22	32	45	4	5.5	8	11	14	20
circle	over 1600 up to 2500	9	12	18	25	36	50	4	6	8	11	16	22
rence	over 2 500 up to 4 000	10	14	20	28	40	56	4.5	6	9	12	18	25
Refe	over 4 000 up to 6 300	10	14	20	28	40	56	4.5	7	9	14	18	28
	over 6 300 up to 10 000	11	16	22	32	45	63	5	7	10	14	20	28

							Devi	ation					
				F						ſ			
G	ear Tooth Quality →	1	2	3	4	5	6	1	2	3	4	5	6
	over 50 up to 125	8	11	16	22	32	45	4.5	6	9	12	16	22
mm	over 125 up to 280	9	12	18	25	36	50	4.5	6	9	12	16	25
d in	over 280 up to 560	10	14	20	28	40	56	4.5	6	9	12	18	25
neter	over 560 up to 1000	11	16	22	28	40	56	4.5	6	9	12	18	25
e dian	over 1000 up to 1600	12	16	22	32	45	63	4.5	6	9	12	18	25
ctrcl	over 1 600 up to 2 500	12	18	25	36	45	63	5	7	10	14	18	25
erence	over 2,500 up to 4,000	14	18	25	36	50	71	5	7	10	14	20	28
Ref	over 4 000 up to 6 300	14	20	28	40	56	80	5	7	10	14	20	28
	over 6 300 up to 10 000	14	20	28	40	56	80	5.5	8	. 11	14	22	28

Normal module over 10 up to 16 mm.

							Devi	ation					
				F						f"	i		
G	ear Tooth Quality →	7	8	9	10	11	12	7	8	9	10	11	12
	over 50 up to 125	45	63	80	125	160	250	20	28	40	56	80	110
	over 125 up to 280	50	71	90	125	180	250	22	32	45	63	90	125
in mm	over 280 up to 560	56	71	100	140	200	280	25	36	50	71	90	125
eter d	over 560 up to 1000	56	80	110	160	250	320	28	36	50	71	100	140
e diam	over 1000 up to 1600	63	90	125	180	250	360	28	40	56	80	110	160
e drol	over 1 600 up to 2 500	71	100	140	180	250	360	32	45	63	90	125	160
eferenc	over 2 500 up to 4 000	71	100	140	200	280	400	36	50	63	90	125	180
a a	over 4 000 up to 6 300	80	110	160	220	320	450	36	56	71	110	160	220
	over 6 300 up to 10 000	90	125	180	250	360	500	40	56	80	110	160	220

								Devia	ntion					
					F						f'_{i}			
G	ear Tooth Quality →		7	8	9	10	11	12	7	8	9	10	11	12
	over 5 up to 12	i0 :5	63	90	125	200	320	500	32	45	63	100	160	250
ę	over 12 up to 28	25 10	71	100	140	220	360	560	32	45	63	100	160	280
in m	over 28 up to 56	10 50	71	100	140	220	360	630	32	45	63	110	180	280
ieter d	over 56 up to 100	50 20	80	110	160	250	400	630	36	50	71	110	180	280
le dian	over 100 upto 160	00 00	90	125	180	280	450	710	36	50	71	110	180	280
ce circ	over 160 up to 250	00 00	90	125	180	280	450	710	36	50	71	110	180	280
keferen	over 250 up to 400	x0 X0	100	140	200	320	500	800	36	50	71	125	180	320
	over 400 up to 630	00 00	110	160	220	360	560	900	40	56	80	125	200	320
	over 630 up to 100	00 00	110	160	220	360	560	900	40	63	80	125	200	320

 Table 5 (Continued)

Normal module over 16 up to 25 mm.

Tolerances in µm.

								Devis	ation			ι α		
					F	"i					f"			
G	ear Tooth Quality -	• •	1	2	3	4	5	6	1	2	3	4	5	6
	over up to 1	50 25	6	9	12	18	25	36	3	4.5	6	8	12	16
	over 1 up to 2	25 280	7	10	14	20	28	36	3.5	4.5	7	9	12	18
HE	over 2 up to 5	280 560	8	11	16	22	28	40	3.5	5	7	10	14	20
r d in	over 5 up to 10	560 000	9	12	16	22	32	45	4	5.5	8	11	16	22
lamete	over 10 up to 16)00 500	9	12	18	25	36	50	4.5	6	8	12	16	22
circle d	over 16 up to 25	500 500	10	14	20	28	40	56	4.5	6	9	12	18	25
rence	over 25 up to 40	500 000	11	14	20	28	40	56	5	7	10	14	20	28
Refe	over 40 up to 63	000 300	11	16	22	32	45	63	5	7	10	14	20	28
	over 63 up to 100	300 000	12	18	25	36	50	71	5.5	8	11	16	22	32

							Devi	ation					
					?' <u> </u>					ſ	i		
G	ear Tooth Quality →	1	2	3	4	5	6	1	2	3	4	5	6
	over 50 up to 125	9	12	18	25	36	50	5.5	8	11	16	22	32
-	over 125 up to 280	10	14	20	28	40	56	5.5	8	11	16	22	32
in mn	over 280 up to 560	11	16	22	32	45	63	6	8	11	16	22	32
ieter d	over 560 up to 1000	12	18	25	32	45	63	6	8	12	16	22	32
le dian	over 1 000 up to 1 600	14	18	25	36	50	71	6	8	12	16	22	32
ce circ	over 1 600 up to 2 500	14	20	28	40	56	71	6	9	12	16	25	32
keferen	over 2 500 up to 4 000	14	20	28	40	56	80	6	9	12	18	25	32
	over 4 000 up to 6 300	16	22	32	45	63	90	6	9	12	18	25	36
	over 6 300 up to 10 000	16	22	32	45	63	90	7	9	14	18	25	36

Normal module over 16 up to 25 mm.

								Devis	ition					
		ľ			F						f",			
G	ear Tool Ouality	th →	7	8	9	10	11	12	7	8	9	10	11	12
	over up to	50 125	50	71	90	125	180	250	22	32	45	63	90	125
	over up to	125 280	56	71	100	140	200	280	25	36	50	71	100	140
mm.	over up to	280 560	56	80	110	160	250	320	28	40	56	80	110	140
r d in	over up to 1	560 000	63	90	125	180	250	360	32	40	56	80	110	160
diamete	over 1 up to 1	000 600	71	100	140	200	280	360	32	45	63	90	110	160
circle	over 1 up to 2	1 600 2 500	71	100	140	200	280	400	36	50	71	100	140	180
ercnce	over 2 up to 4	2 500 4 000	80	110	160	220	320	450	36	50	71	100	140	200
Refe	over 4 up to 6	4 000 5 300	90	125	180	250	360	500	40	56	80	110	160	220
	over 6 up to 10	5 300 0 000	100	140	200	280	400	56 0	45	63	90	125	180	250

								Devia	ntien					
		Ĩ			F	i					f'_i			
G	ear To Oualit	oth v →	7	8	9	10	11	12	7	8	9	10	11	12
	over up to	50 125	71	100	140	220	360	560	40	56	80	140	220	320
	over up to	125 280	80	110	160	250	400	630	45	63	80	140	220	360
in mu	over up to	280 560	90	125	160	280	450	710	45	63	90	140	220	360
eter d	over up to	560 1 000	90	125	180	280	450	710	45	63	90	140	220	360
e diam	over up to	1 000 1 600	100	140	200	320	500	800	45	63	90	140	220	360
e drol	over up to	1 600 2 500	110	140	200	320	500	800	45	63	90	140	220	360
eferenc	over up to	2 500 4 000	110	160	220	360	560	900	45	63	90	140	250	400
2	over up to	4 000 6 300	125	180	250	400	630	1 000	50	71	100	160	250	400
	over up to	6 300 10 000	125	180	250	400	630	1 000	50	71	100	160	250	400

 Table 5 (Continued)

Normal module over 25 up to 40 mm.

							Devi	ation					
				F	r",					ſ"			
G	ear Tooth Quality →	1	2	3	4	5	6	1	2	3	4	5	6
	over 125 up to 280	8	11	16	22	32	45	4	5.5	8	11	16	22
É	over 280 up to 560	9	12	16	25	32	45	4	6	8	12	16	22
d in m	over 560 up to 1 000	9	14	18	25	36	50	4.5	6	9	12	18	25
umeter	over 1000 up to 1600	10	14	20	28	40	56	5	7	10	14	18	25
ircle dis	over 1 600 up to 2 500	11	16	22	28	40	56	5	7	10	14	20	28
rence d	over 2500 up to 4000	12	16	25	32	45	63	5.5	8	11	16	22	32
Refe	over 4000 up to 6300	12	18	25	36	50	71	5.5	8	11	16	22	32
	over 6 300 up to 10 000	14	18	25	36	50	71	6	9	12	18	25	36

							Devi	stion					
				F	7' ₁					f	, i		
G	ear Tooth Quality →	1	2	3	4	5	6	1	2	3	4	5	6
	over 125 up to 280	12	18	25	32	45	63	8	11	14	20	28	40
E	over 280 up to 560	14	18	25	36	50	71	8	11	14	20	28	40
d in m	over 560 up to 1 000	14	20	28	40	56	80	8	11	16	22	28	40
meter	over 1 000 up to 1 600	16	22	28	40	56	80	8	11	16	22	32	40
rcle dia	over 1 600 up to 2 500	16	22	32	45	63	90	8	11	16	22	32	45
ence ci	over 2 500 up to 4 000	16	25	32	45	63	90	8	11	16	22	32	45
Refer	over 4 000 up to 6 300	18	25	36	50	71	100	8	11	16	22	32	45
	over 6 300 up to 10 000	18	25	36	50	71	100	8	12	16	25	32	45

 Table 5 (Continued)

Normal module over 25 up to 40 mm.

							-	Devi	ation					
					j	F″i					ſ	 i		
G	ear To Quality	oth Y→	7	8	9	10	11	12	7	8	9	10	11	12
	over up to	125 280	56	80	110	160	220	320	28	40	56	80	110	160
2	over up to	280 560	63	90	125	180	250	360	32	45	63	90	125	180
in m	over up to	560 1 000	71	100	140	200	280	400	36	45	71	90	125	180
neter d	over up to	1 000 1 600	80	110	160	200	280	400	36	50	71	100	140	200
ile dian	over up to	1 600 2 500	80	110	160	250	320	450	40	56	80	110	140	200
nce circ	over up to	2 500 4 000	90	125	180	250	320	450	45	56	80	110	160	220
Referei	over up to	4 000 6 300	100	140	200	280	400	560	45	63	90	125	180	250
	over up to 1	6 300 0 000	100	140	200	280	400	560	50	71	100	140	200	280

								Devi	ation					
		ĺ			F	, 1					ſ	1		
G	ear To Qualit	otah y→	7	8	9	10	11	12	7	8	9	10	11	12
	over up to	125 280	90	125	180	280	45 0	710	"56	· 8 0	110	180	280	450
Ë	over up to	280 560	100	140	200	320	*50 0	-800	*56	· 8 0	110	180	280	450
d in m	over up to	560 1 000	110	160	.220	320	-560	80 0	*5 6	-80	110	180	280	450
ameter	over up to	1 000 1 600	110	160	.220	360	- 56 0	900	-5 6	80	110	180	280	500
ircle di	over up to	1 600 2 500	125	160	.250	360	630	900	63	80	125	180	320	500
crence o	over up to	2 500 4 000	125	180	.250	400	-630	1 000	63	90	125	200	320	500
Refe	over up to	4 000 6 300	140	200	280	:45 0	710	1 100	63	90	125	200	320	500
	over up to	6 3000 10 000	140	200	280	450	710	1 100	63	90	125	200	320	500

 Table 5 (Continued)

Normal module over 40 up to 70 mm.

							Devi	ation					
				F	7* 1					ſ	, 1		
G	ear Tooth Quality →	1	2	3	4	5	6	1	2	3	4	5	6
	over 125 up to 280	9	12	18	25	36	50	4.5	6	9	12	18	25
ġ	over 280 up to 560	10	14	20	28	36	56	5	7	10	14	20	28
d in m	over 560 up to 1 000	10	14	20	28	40	56	5	7	10	14	20	28
iameter	over 1 000 up to 1 600	11	16	22	32	45	63	5.5	8	11	16	22	32
circle d	over 1 600 up to 2 500	12	16	22	32	45	63	5.5	8	11	16	22	32
erence	over 2 500 up to 4 000	12	18	25	36	50	71	6	9	12	18	25	36
Ref	over 4 000 up to 6 300	14	18	28	36	56	71	6	9	12	18	25	36
	over 6 300 up to 10 000	14	20	28	40	56	80	7	10	14	20	28	40

	•						Devi	ation					
				F	7'.					ſ	i		
G	ear Tooth Quality →	1	2	3	4	5	6	1	2	3	4	5	6
	over 125 up to 280	14	20	28	40	56	80	10	14	20	28	40	56
	over 280 up to 560	16	22	32	45	63	90	11	14	22	28	40	56
in mm.	over 560 up to 1 000	16	25	32	45	63	90	11	16	22	32	40	63
eter d	over 1 000 up to 1 600	18	25	36	50	71	100	11	16	22	32	45	63
diam	over 1 600 up to 2 500	18	25	36	50	71	100	11	16	22	32	45	63
nce circ	over 2 500 up to 4 000	20	28	40	56	80	110	11	16	22	32	45	63
Refere	over 4 000 up to 6 300	20	28	40	56	80	110	11	16	22	32	45	63
	over 6 300 up to 10 000	22	32	45	63	90	125	11	16	22	32	45	63

Table 5 (Concluded)

Normal module over 40 up to 70 mm.

							Devi	ation					
				F'	i					f"	i		
G	ear Tooth Quality →	7	8	9	10	11	12	7	8	9	10	11	12
	over 125 up to 280	71	100	140	200	280	400	36	50	71	100	140	200
M	over 280 up to 560	80	110	160	220	320	450	40	56	80	110	160	220
d in n	over 560 up to 1 000	80	110	160	220	320	450	40	56	80	110	160	220
iameter	over 1 000 up to 1 600	90	125	180	250	360	500	45	63	90	125	180	250
circle d	over 1 600 up to 2 500	90	125	180	250	360	500	45	63	90	125	180	250
lerence	over 2 500 up to 4 000	100	140	200	280	400	560	50	71	100	140	200	280
Rei	over 4 000 up to 6 300	110	160	220	280	400	630	50	71	100	140	200	280
	over 6 300 up to 10 000	110	160	220	320	450	630	56	80	110	160	220	320

							Devi	ation					
					F'i					ſ	· / .		
G	ear Tooth Quality →	7	8	9	10	11	12	7	8	9	10	11	12
	over 125 up to 280	110	160	220	360	560	900	80	110	160	250	400	630
mm.	over 280 up to 560	125	180	250	400	630	1 000	80	125	160	250	400	630
er d in	over 560 up to 1 000	125	180	250	400	630	1 000	80	125	160	250	400	630
diamete	over 1 000 up to 1 600	140	200	28 0	450	710	1 100	90	125	180	280	450	710
circle	over 1 600 up to 2 500	140	200	280	450	710	1 100	90	125	180	280	450	710
ference	over 2 500 up to 4 000	160	220	320	500	800	1 250	90	125	180	280	450	710
Re	over 4 000 up to 6 300	160	220	320	500	800	1 250	90	125	180	280	450	710
	over 6 300 up to 10 000	180	250	360	560	900	1 400	90	125	180	280	450	710

• •

							loieran	ces in µm.						
						Dev	iation ^j	F _β нв ßf						
G	ear Too Quality	oth 7	1	2	3	4	5	6	7	8	9	10	11	12
	up to	20	2.5 2 1.5	3.5 2.5 2.5	4.5 3 3	5.5 4 3.5	7 6 4.5	9 8 5.5	13 11 7	18 16 9	28 25 14	45 36 25	71 56 40	110 90 63
un.	over up to	20 40	3 2 2	4 2.5 3	5 3.5 4	6 4.5 5	8 6.5 6	10 9 7	15 13 9	20 18 12	32 28 18	50 40 28	80 63 45	125 100 71
cewidth b in	over up to	40 100	4 2.5 3	5 3 4	6 4 5	8 5 6	10 7 7	12 10 9	18 14 12	25 20 18	40 28 28	63 45 45	100 71 63	160 110 110
Fa	over up to	100 160	5 3 4	6 3.5 5	8 4.5 7	10 6 8	12 8 9	16 11 12	22 16 16	32 22 25	50 32 40	80 50 63	125 80 100	200 125 160
	over	160	5 3 4	6 3.5 5	8 4.5 7	10 6 8	12 8 9	16 11 12	22 16 16	32 22 25	50 32 40	80 50 63	125 80 100	200 125 160

Table 6 Tolerance Data(Clause 6)

Refei Diamete	rence er (mm)					Allo	wance Se	ries				
over	up to	a	ab	b	bc	с	cd	d	e	f	g	h
-	10	- 100	- 85	- 70	- 58	- 48	- 40	- 33	- 22	- 10	- 5	0
10	50	- 135	- 110	- 95	- 75	- 65	- 54	- 44	- 30	- 14	- 7	C
50	125	- 180	- 150	- 125	- 105	- 85	- 70	- 60	- 40	- 19	- 9	0
125	280	- 250	- 200	- 170	- 140	- 115	- 95	- 80	- 56	- 26	- 12	0
280	560	- 330	- 280	- 230	- 190	- 155	- 130	- 110	-75	- 35	- 17	0
560	1 000	- 450	- 370	- 310	- 260	- 210	- 175	- 145	- 100	- 48	- 22	0
1 000	1 600	- 600	- 500	- 420	- 340	- 290	- 240	- 200	- 135	- 64	- 30	0
1 600	2 500	- 820	- 680	- 560	- 460	- 390	- 320	- 270	- 180	- 85	- 41	0
2 500	4 000	- 1 100	- 920	- 760	- 620	- 520	- 430	- 360	- 250	- 115	- 56	0
4 000	6 300	- 1 500	- 1 250	- 1 020	- 840	- 700	- 580	- 480	- 330	- 155	- 75	0
6 300	10 000	- 2 000	- 1 650	- 1 350	- 1 150	- 940	- 780	- 640	- 450	- 210	- 100	0

Table 7 Upper Tooth Thickness Allowances A_{sne} in μm (Clauses 7.2.1 and 7.5.1)

Table 8 Tooth Thickness Tolerances T_{sn} in μm (Clauses 7.2.1 and 7.5.1)

Refer Diamete	rence er (mm)					Tolerand	e Series				
over	up to	21	22	23	24	25	26	27	28	29	30
-	10	3	5	8	12	20	30	50	80	130	200
10	50	5	8	12	20	30	50	80	130	200	300
50	125	6	10	16	25	40	60	100	160	250	400
125	280	8	12	20	30	50	80	130	200	300	500
28 0	560	10	16	25	40	60	100	160	250	400	600
560	1 000	12	20	30	50	80	130	200	300	500	800
1 000	1 600	16	25	40	60	100	160	250	400	600	1 000
1 600	2 500	20	30	50	80	130	200	300	500	800	1 300
2 500	4 000	25	40	60	100	160	250	400	600	1 000	1 600
.4 000	6 300	30	50	80	130	200	300	500	800	1 300	2 000
6 300	10 000	40	60	100	160	250	400	600	1 000	1 600	2 400

		Axes parallelist	n class 1 to 3			i		
		L.,	Axes parallelism	n class 4 to 6				
				Axes parallelism	n class 7 to 9			
					Axes parallelisn	n class 10 to 12		
					ISO - Tolerance Js			
	<u> </u>	5	6	7	8	9	10	11
	over 10	+ 4	+ 5.5	+ 9	+ 13.5	+ 21.5	+ 35	+ 55
	upto 18	- 4	- 5.5	- 9	- 13.5	- 21.5	- 35	- 55
	over 18	+ 4.5	+ 6.5	+ 10.5	+ 16.5	+ 26	+ 42	+ 65
	upto 30	- 4.5	- 6.5	- 10.5	- 16.5	- 26	- 42	- 65
	over 30	+ 5.5	+ 8	+ 12.5	+ 19.5	+ 31	+ 50	+ 80
	upto 50	- 5.5	- 8	- 12.5	- 19.5	- 31	- 50	- 80
	over 50	+ 6.5	+ 9.5	+ 15	+ 23	+ 37	+ 60	+ 95
	upto 80	- 6.5	- 9.5	- 15	- 23	- 37	- 60	- 95
	over 80	+ 7.5	+ 11	+ 17.5	+ 27	+ 43.5	+ 70	+ 110
	upto 120	- 7.5	- 11	- 17.5	- 27	- 43.5	- 70	- 110
m	over 120	+ 9	+ 12.5	+ 20	+ 31.5	+ 50	+ 80	+ 125
	upto 180	- 9	- 12.5	- 20	- 31.5	- 50	- 80	- 125
value), 1	over 180	+ 10	+ 14.5	+ 23	+ 36	+ 57.5	+ 92.5	+ 145
	upto 250	- 10	- 14.5	- 23	- 36	- 57.5	- 92.5	- 145
nominal	over 250	+ 11.5	+ 16	+ 26	+ 40.5	+ 65	+ 105	+ 160
	upto 315	- 11.5	- 16	- 26	- 40.5	- 65	- 105	- 160
stance (I	over 315	+ 12.5	+ 18	+ 28.5	+ 44.5	+ 70	+ 115	+ 180
	upto 400	- 12.5	- 18	- 28.5	- 44.5	- 70	- 115	- 180
entre di	over 400	+ 13.5	+ 20	+ 31.5	+ 48.5	+ 77.5	+ 125	+ 200
	upto 500	- 13.5	- 20	- 31.5	- 48.5	- 77.5	- 125	- 200
C	over 500	+ 14	+ 22	+ 35	+ 55	+ 87	- 140	+ 220
	upto 630	- 14	- 22	- 35	- 55	- 87	- 140	- 220
	over 630	+ 16	+ 25	+ 40	+ 62	+ 100	+ 160	+ 250
	upto 800	- 16	- 25	- 40	-62	- 100	-160	- 250
	over 800	+ 18	+ 28	+ 45	+ 70	+ 115	+ 180	+ 280
	upto 1 000	- 18	- 28	- 45	- 70	- 115	- 180	- 280
	over 1 000	+ 21	+ 33	+ 52	+ 82	+ 130	+ 210	+ 330
	upto 1 250	- 21	- 33	- 52	- 82	- 130	- 210	- 330
	over 1 250	+ 25	+ 39	+ 62	+ 97	+ 155	+ 250	+ 390
	upto 1 600	- 25	- 39	- 62	- 97	- 155	- 250	- 390
	over 1 600	+ 30	+ 46	+ 75	+ 115	+ 185	+ 300	+ 460
	upto 2 000	- 30	- 46	- 75	- 115	- 185	- 300	- 460
	over 2 000	+ 35	+ 55	+ 87	+ 140	+ 220	+ 350	+ 550
	upto 2 500	- 35	- 55	- 87	- 140	- 220	- 350	- 550
	over 2 500	+ 43	+ 67	+ 105	+ 165	+ 270	+ 430	+ 675
	upto 3 150	- 43	- 67	- 105	- 165	- 270	- 430	- 675

Table 9 Centre Distance Allowance A_{ae} and A_{ai} in μm (Clause 7.3.1)

							A	xes Parall	elism Cla	S S				
			1	2	3	4	5	6	7	8	9	10	11	12
E	up to	50	5	6	8	10	12	16	20	25	32	40	50	63
ue) L _G , m	over up to	50 125	6	8	10	12	16	20	25	32	40	50	63	80
ninal valı	over up to	125 280	8	10	12	16	20	25	32	40	50	63	80	100
uou) sâuj	over up to	280 560	10	12	16	20	25	32	40	50	63	80	100	125
een bear	over up to	560 1 000	12	16	20	25	32	40	50	63	80	100	125	160
nce betw	over up to	1 000 1 600	16	20	25	32	40	50	63	80	100	125	160	200
ttre dista	over up to	1 600 2 500	20	25	32	40	50	63	80	100	125	160	200	250
Cel	over up to	2 500 3 150	25	32	40	50	63	80	100	125	160	200	250	320

Table 10 Tolerance for Inclination of Axes $f\Sigma\beta$ and Axes Skewnwss $f\Sigma\delta$ in μ m (*Clause* 7.5.21)

Table 11 Rounded Values of $\Delta j_{\rm F}$ in μ m

Mo (m	dule m)						Gear Too	th Quality	y				
over	up to	1	2	3	4	5	6	7	8	9	10	11	12
1	2	4	6	7	10	13	17	24	34	51	82	130	210
2	3.55	. 5	6	8	10	14	18	24	36	54	86	136	218
3.55	6	5	7	9	12	15	19	27	40	60	94	150	236
6	10	6	8	11	14	19	25	34	51	75	120	187	300
10	16	7	9	13	17	23	31	41	59	86	138	216	362
16	25	8	11	15	20	28	38	52	75	108	171	289	434
25	40	10	14	19	26	34	48	66	94	135	214	339	536

Bureau of Indian Standards

BIS is a statutory institution established under the *Bureau of Indian Standards Act. 1986* to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition.

This Indian Standard has been developed from Doc No. LM 13 (4279).

Amendments Issued Since Publication

Amend No.	Date of Issue	Text Affected

BUREAU OF INDIAN STANDARDS

Headquarters:

Manak Bhavan, 9Bahadur Shah Zafar Marg, New Delhi 110002 Telephones : 331 01 31, 331 13 75			Telegrams: Manaksanstha (Common to all offices)	
Regional Offices :			Telephone	
ntral : Manak Bhavan, 9 Bahadur Shah Zafar Marg NEW DELHI 110002		{ 3310131 3311375		
Eastern : 1/14 C. I. T. Scheme VII M, V. I. P. Road, Maniktola CALCUTTA 700054			37 84 99, 37 85 61 37 86 26, 37 86 62	
Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160022			60 38 43 60 20 25	
Southern : C. I. T. Campus, IV Cross Road, MADRAS 600113			{ 235 02 16, 235 04 42 235 15 19, 235 23 15	
Western : Manakalaya, E9 MIDC, Marol, Andheri (East) BOMBAY 400093			632 92 95 632 78 58 632 78 91, 632 78 92	
Branches : AHMADABAD.	BANGALORE.	BHOPAL.	BHUBANESHWAR.	

COIMBATORE. FARIDABAD. GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR. LUCKNOW. PATNA. THIRUVANANTHAPURAM.