Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

Indian Standard

GEOMETRICAL PRODUCT SPECIFICATIONS (GPS)—SURFACE TEXTURE: PROFILE METHOD; MEASUREMENT STANDARDS

PART 1 MATERIAL MEASURES

ICS 17.040.30

© BIS 2003

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

December 2003
NATIONAL FOREWORD

This Indian Standard (Part 1) which is identical with ISO 5436-1:2000 'Geometrical Product Specifications (GPS) — Surface texture: Profile method; Measurement standards — Part 1: Material measures' issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on the recommendations of the Engineering Metrology Sectional Committee and approval of the Basic and Production Engineering Division Council.

The text of the ISO Standard has been approved as suitable for publication as an Indian Standard without deviations. In this adopted standard certain conventions are, however, not identical to those used in Indian Standards. Attention is particularly drawn to the following:

a) Wherever the words 'International Standard' appear referring to this standard, they should be read as 'Indian Standard'.

b) Comma (,) has been used as a decimal marker in the International Standards while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

In the adopted standard, reference appears to certain International Standards for which Indian Standards also exist. The corresponding Indian Standards which are to be substituted in their place are listed below along with their degree of equivalence for the editions indicated:

<table>
<thead>
<tr>
<th>International Standard</th>
<th>Corresponding Indian Standard</th>
<th>Degree of Equivalence</th>
</tr>
</thead>
</table>

(Continued on third cover)
1 Scope

This part of ISO 5436 specifies the characteristics of material measures used as measurement standards (etalons) for the calibration of metrological characteristics of instruments for the measurement of surface texture by the profile method as defined in ISO 3274.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of ISO 5436. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of ISO 5436 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

- BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML. International vocabulary of basic and general terms used in metrology (VIM), 1993.

3 Terms and definitions

For the purposes of this part of ISO 5436, the terms and definitions given in ISO 3274, ISO 4287 and VIM apply.
4 Design requirements

4.1 Material

The material used for measurement standards A to E shall be hard enough to ensure adequate life in relation to cost (manufacturing and calibration). Its surface shall be smooth and flat enough not to affect the evaluation.

4.2 Size of measurement standard

The measurement window shall be large enough to provide for the total length of traverse required for all intended determinations. The measurement window consists of that region of the total surface over which calibration measurements are made. One or more kinds of measurement standards may be provided on a single block. To ensure the best possible economic conditions, overall dimensions of measurement standards are not given.

5 Types, purposes and metrological characteristics of measurement standards

5.1 General

The calibration of the existing wide range of instruments in all modes of operation calls for more than one type of measurement standard. Each measurement standard may have a limited range of application according to its own characteristics and those of the instrument to be calibrated. The validity of the calibration of an instrument will be dependent on the correct association of these characteristics.

To cover the range of requirements, five types of measurement standards are described, each of which may have a number of variants (see Table 1).

Table 1 — Types and names of measurement standards

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Depth measurement standard</td>
</tr>
<tr>
<td>B</td>
<td>Tip condition measurement standard</td>
</tr>
<tr>
<td>C</td>
<td>Spacing measurement standard</td>
</tr>
<tr>
<td>D</td>
<td>Roughness measurement standard</td>
</tr>
<tr>
<td>E</td>
<td>Profile coordinate measurement standard</td>
</tr>
</tbody>
</table>

5.2 Type A — Depth measurement standard

These measurement standards are for calibrating the vertical profile component of stylus instruments.

5.2.1 Type A1 — Wide grooves with flat bottoms

These measurement standards have a wide calibrated groove with a flat bottom, a ridge with a flat top, or a number of such separated features of equal or increasing depth or height. Each feature is wide enough to be insensitive to the shape or condition of the stylus tip (see Figure 1).

5.2.2 Type A2 — Wide grooves with rounded bottoms

These measurement standards are similar to type A1, except that the grooves have rounded bottoms of sufficient radius to be insensitive to the shape or condition of the stylus tip (see Figure 2).
5.3 Type B — Tip condition measurement standard

These measurement standards are primarily for calibrating the condition of the stylus tip.

5.3.1 Type B1

These measurement standards have a narrow groove or a number of separated grooves proportioned to be increasingly sensitive to the dimensions of the stylus tip. The narrow grooves have rounded bottoms of sufficient radius to be sensitive to the shape or condition of the stylus tip.

5.3.2 Type B2

These measurement standards have two groove patterns of nominally equal R_a values, one being sensitive and the other insensitive to the dimensions of the stylus tip (see Figures 3 and 4).

5.3.3 Type B3

These measurement standards have a fine protruding edge. Uncoated razor blades, for example, have edge widths of approximately 0.1 μm or less. The stylus condition may be assessed by traversing such a specimen and recording the surface profile.

5.4 Type C — Spacing measurement standard

These measurement standards are used primarily for calibrating vertical profile components. They may also be used for calibrating horizontal profile components if the spacing of the grooves is held within limits acceptable for this purpose. The purpose of the series of measurement standards is to enable the transmission characteristics to be checked for a number of spacings and amplitudes.

They have a grid of repetitive grooves of simple shape (either sinusoidal, triangular or arcuate).

An essential requirement of type C measurement standards is that standardized measurement standards of differing waveform are nevertheless compatible, in the sense that they will all lead to the same state of instrument calibration or verification, provided they are used correctly.

5.5 Type D — Roughness measurement standard

5.5.1 General

These measurement standards are for overall calibration of instruments.

NOTE The variation over the area of a type D standard is typically higher than that of a type C standard. Therefore it is normally necessary to average a statistically determined number of appropriately positioned tracings to get the full benefit of the D standard.

5.5.2 Type D1 — Unidirectional irregular profile

These measurement standards have irregular profiles (for example as obtained by grinding) in the direction of traverse, but they have the convenience of an approximately constant cross-section perpendicular to the direction of traverse.

The measurement standards simulate work pieces containing a wide range of crest spacings, but reduce the number of traverses needed to give a good average value. They provide, for reassurance, a final overall check on calibration.
5.5.3 Type D2 — Circular irregular profile

These circular measurement standards have irregular profiles in the radial direction, but they have the convenience of an approximately constant cross-section along their circumference.

5.6 Type E — Profile coordinate measurement standard

These measurement standards are intended for calibrating the profile co-ordinate system of the instrument.

5.6.1 Type E1 — Precision sphere or hemisphere

These measurement standards consist of a sphere or hemisphere.

5.6.2 Type E2 — Precision prism

These measurement standards consist of a prism with a trapezium cross-section. The base of the trapezium is the longer of the parallel surfaces. The top surface and the two surfaces generated by the sides of the trapezium are the measuring surfaces. The angles of the two side measuring surfaces are designed so that the stylus tip is in contact with the surface throughout the measuring instrument's range.

6 Measurement standard requirements

6.1 Type A — Depth measurement standard

6.1.1 Type A1 — Wide grooves with flat bottoms

The wide grooves with flat bottoms on these measurement standards are characterized by their width \(W \) and their depth \(d \) (see Figure 1).

![Figure 1 — Type A1 groove](image1)

NOTE Wide ridges with flat tops are equivalent.

6.1.2 Type A2 — Wide grooves with rounded bottoms

The wide grooves with rounded bottoms on these measurement standards are characterized by their radius \(r \) and their depth \(d \) (see Figure 2).

![Figure 2 — Type A2 groove](image2)
6.1.3 Basis of assessment

The basis of assessment for types A1 and A2 is given in 7.1 and 7.2; requirements regarding statements of mean values are given in clause 8.

6.2 Type B — Tip condition measurement standard

6.2.1 Type B1

The narrow grooves with rounded bottoms on these measurement standards are characterized by their radius \(r \) and their depth \(d \).

6.2.2 Type B2

These measurement standards have two or more groove patterns formed on a common base.

6.2.2.1 Sensitive groove pattern (see Figure 3)

Isosceles triangular grooves with sharp peaks and valleys, with \(RSm \) and apex angle \(\alpha \) proportioned to make \(Ra \) dependent on the size of the stylus tip.

![Figure 3 — Type B2 grooves (sensitive groove pattern)](image)

6.2.2.2 Insensitive groove pattern (see Figure 4)

Approximately sinusoidal or arcuate grooves, proportioned to make \(Ra \) substantially independent of the stylus tip.

![Figure 4 — Type B2 grooves (insensitive groove pattern)](image)

6.2.2.3 Basis of assessment

The basis of assessment for type B2 is given in 7.3.

6.2.3 Type B3

The radius and apex angle of the protruding edge are smaller than the radius and apex angle of the stylus to be assessed.
The basis of assessment for type B3 is given in 7.4.

6.3 Type C — Spacing measurement standard

6.3.1 Type C1 — Grooves having a sine wave profile (see Figure 5)

These measurement standards are characterized by R_{Sm} and R_a. The values shall be chosen such that attenuation by the stylus or filter is negligible.

![Figure 5 — Type C1 grooves](image)

The basis of assessment for type C1 is given in 7.5.

6.3.2 Type C2 — Grooves having an isosceles triangular profile (see Figure 6)

These measurement standards are characterized by R_{Sm} and R_a. The values shall be chosen such that attenuation by the stylus or filter is negligible.

![Figure 6 — Type C2 grooves](image)

The basis of assessment for type C2 is given in 7.5.

6.3.3 Type C3 — Simulated sine wave grooves (see Figure 7)

These measurement standards are characterized by R_{Sm} and R_a. These are simulated sine waves, which include triangular profiles with rounded or truncated peaks and valleys, the total root mean square (r.m.s.) harmonic content of which shall not exceed 10% of the r.m.s. value of the fundamental.

![Figure 7 — Type C3 grooves](image)

The basis of assessment for type C3 is given in 7.5.
6.3.4 Type C4 — Grooves having an arcuate profile (see Figure 8)

These measurement standards are characterized by PSm and Pa. The values shall be chosen such that attenuation by the stylus or filter is negligible.

![Figure 8 — Type C4 grooves](image)

The basis of assessment for type C4 is given in 7.5.

6.4 Type D — Roughness measurement standard

6.4.1 Type D1 — Unidirectional irregular profiles (see Figure 9)

These measurement standards are characterized by Ra and Rz. These have irregular ground profiles which are repeated every $5\lambda c$ in the longitudinal direction of the measurement standard. Normal to the measuring direction of the measurement standard, the profile shape is constant.

![Figure 9 — Type D1 grooves (profile repetition at 5\lambda c intervals)](image)

The basis of assessment for type D1 is given in 7.5.
6.4.2 Type D2 - Circular irregular profile (see Figure 10)

These measurement standards are characterized by Ra and Rz. These have irregular profiles which are repeated every $5 \lambda c$ in the radial direction of the measurement standard. Normal to the measuring direction of the measurement standard (in the circumferential direction), the profile shape is constant.

![Figure 10 — Type D2 grooves](image)

The basis of assessment for type D2 is given in 7.5.

6.5 Type E — Profile coordinate measurement standard

6.5.1 Type E1 — Precision sphere or hemisphere

These measurement standards are characterized by their radius and Pt.

NOTE The radius of the sphere (or hemisphere) should be sufficient to allow the spherical portion of the stylus tip to remain in contact (and not another part of the stylus) during a symmetrical traverse from either side of the highest point of the sphere (or hemisphere) through the full measuring range of the instrument within the traverse length.
6.5.2 Type E2 — Precision prism

These measurement standards are characterized by the angles between the surfaces and \(Pt \) on each surface.

NOTE The size and shape of the trapezium cross-section should be sufficient to allow the spherical portion of the stylus tip to remain in contact (and not another part of the stylus) through a symmetrical traverse over the prism through the full measuring range of the instrument within the traverse length of the instrument. The length of the top plane of the measurement standard should be sufficient to level in a stable manner (see Figure 11).

![Figure 11 — Type E2 — Precision prism](image)

7 Definition of the measurands for the measurement standards

7.1 Type A1

The equation:

\[
Z = \alpha \times X + \beta + h \times \delta
\]

with unknowns \(\alpha, \beta \) and \(h \), is fitted by the method of least squares to a profile equal in length to three times the width of the groove (see Figure 12). The variable \(\delta \) takes the value +1 in regions A and B and the value -1 in region C (see Figure 12). The depth of the groove \(d \) is twice the estimated value of \(h \)

![Figure 12 — Assessment of calibrated values for type A1](image)

NOTE Wide ridges with flat tops are equivalent.

To avoid the influence of any rounding of the corners, the upper surface on each side of the groove shall be ignored for a length equal to one-third of the width of the groove. The surface at the bottom of the groove is assessed only over the central third of its width. The portions to be used for assessment purposes are those shown at A, B and C in Figure 12.
A significant number of traces, not less than five, shall be taken evenly distributed over the measuring window (avoiding defects).

7.2 Type A2

A least squares mean line representing the upper level is drawn over the groove. A least squares circle is fitted through the centre third of the width of the groove. The depth is assessed from the line to the lowest point of the fitted circle (see Figure 13).

![Figure 13 — Assessment of calibrated values for type A2](image)

The portions to be used for assessment purposes are those shown at A, B and C in Figure 13.

A significant number of traces, not less than five, shall be taken evenly distributed over the measuring window (avoiding defects).

7.3 Type B2

The ratio of the mean Ra of the sensitive grid and the mean Ra of the insensitive grid shall be calibrated using a substantially sharp tip ($<2\ \mu m$ nominal radius) and a Gaussian filter having a 2σ cut-off according to the certificate and if not otherwise specified according to the rules given in ISO 4288.

A significant number of traces, not less than 18, shall be taken evenly distributed over the measuring window (avoiding defects), all instrument adjustments remaining constant throughout the determination.

7.4 Type B3

The stylus condition may be measured by traversing a sharp protruding edge, such as a razor blade, as shown in Figure 14. If r_1 is the stylus tip radius and r_2 is the radius of the razor blade edge, the recorded profile has a radius $r = r_1 + r_2$. If, in addition, r_2 is much less than r_1, then the recorded radius is approximately equal to the stylus tip radius itself. This method can only be used with direct profile recording instruments with very slow traversing speed capability.
The output profile essentially represents the stylus tip shape if the radius and apex angle of the razor blade are much finer.
The angles between the top surface and the sides of the trapezium shall be determined, via least squares mean line fits of the respective surfaces, together with the out of flatness values for the three faces.

8 Measurement standard certificate

After each measurement standard has been individually calibrated, it shall be accompanied by at least the minimum required of information for measurement standards as defined in ISO 10012-1 and where applicable the following information:

a) the effective radius of the stylus tip(s) to which each calibrated value applies;

b) details of calibration, including the number of observations taken;

c) for each relevant metrological characteristic the calibrated mean value with its estimated expanded uncertainty, U (according to GUM or ISO/TS 14253-2 or both);

d) for each relevant metrological characteristic the standard deviation from the mean;

e) any other reference conditions to which each calibration applies, for example the basis of digital evaluation (ordinate discretization, vertical quantization), and whether the values declared refer to direct measurement or are obtained therefrom.

As far as possible the required information specified above shall be marked on each measurement standard; but if there is insufficient space, the values may be stated separately and uniquely identified with the measurement standard, for example by means of a serial number.

NOTE 1 The nominal value is used only as an aid to identification. The difference between the nominal value and the conventional true value does not constitute an error.

NOTE 2 The conventional true value is the value to be used for calibrating an instrument. It is the measured mean value of the appointed number and distribution of traces taken across the measuring window of the measurement standard, corrected for any predetermined errors in the calibrating equipment, as far as these are known. Visible defects in the measuring window should be avoided. Some degree of uncertainty in the calibrated mean value is permitted to allow for the possibility of residual errors in the calibrating equipment which are unknown and for which correction cannot be made, but whose limits would be estimable.
Annex A
(informative)

Relation to the GPS matrix model

For full details about the GPS matrix model see ISO/TR 14638.

A.1 Information about this part of ISO 5436 and its use

This part of ISO 5436 defines measurement standards for the calibration of contact (stylus) instruments for the measurement of surface texture by the profile method as defined in ISO 3274.

A.2 Position in the GPS matrix model

This part of ISO 5436 is a general GPS standard, which influences chain link 6 of the chain of standards on roughness, waviness and primary profile in the general GPS matrix, as illustrated in Figure A.1.

A.3 Related standards

The related International Standards are those of the chains of standards indicated in Figure A.1.
Bibliography

The concerned Technical Committee has reviewed the provisions of ISO/TS 14253-2:1999 'Geometrical Product Specifications (GPS) — Inspection by measurement of workpieces and measuring equipment — Part 2: Guide to the estimation of uncertainty in GPS measurement, in calibration of measuring equipment and in product verification' to which reference is made within text and decided about its acceptability for use in conjunction with this standard for which no Indian Standard exist.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2 : 1960 'Rules for rounding off numerical values (revised)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publication), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Catalogue' and 'Standards: Monthly Additions'.

This Indian Standard has been developed from Doc: No. BP 25 (0360).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 2323 0131, 2323 3375, 2323 9402

Regional Offices:
Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg
 NEW DELHI 110002
 Telephones: 2323 0131, 2323 3375, 2323 9402

Eastern : 1/14 C.I.T. Scheme VII M, V.I.P. Road, Kankurgachi
 KOLKATA 700054
 Telephones: 2337 8499, 2337 8561

Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160022
 Telephones: 2337 8626, 2337 9120

Southern : C.I.T. Campus, IV Cross Road, CHENNAI 600113
 Telephones: 2254 1216, 2254 1442

Western : Manakalaya, E9 MIDC, Marol, Andheri (East)
 MUMBAI 400093
 Telephones: 2832 9295, 2832 7858

Branches : AHMEDABAD, BANGALORE, BHOPAL, BHUBANESHWAR, COIMBATORE, FARIDABAD, GHAZIABAD, GUWAHATI, HYDERABAD, JAIPUR, KANPUR, LUCKNOW, NAGPUR, NALAGARH, PATNA, PUNE, RAJKOT, THIRUVANANTHAPURAM, VISAKHAPATNAM.

Printed at Simco Printing Press, Delhi