

 А इंटरनेट

Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.
"जानने का अधिकार, जीने का अधिकार"
Mazdoor Kisan Shakti Sangathan
"The Right to Information, The Right to Live"
"पुराने को छोड नये के तरफ" Jawaharlal Nehru "Step Out From the Old to the New"

IS 15021-2 (2001): Technical Drawings - Projection Methods, Part 2: Orthographic Representations [PGD 24: Drawings]

"Knowledge is such a treasure which cannot be stolen"

BLANK PAGE

भारतीय मानक

भाग 2 लंबकोणीय प्रस्तुतीकरण
Indian Standard

TECHNICAL DRAWINGS - PROJECTION METHODS PART 2 ORTHOGRAPHIC REPRESENTATIONS

ICS 01.100.10
© BIS 2001
BUREAUOFINDIANSTANDARDS MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002

NATIONAL FOREWORD

This Indian Standard (Part 2) which is identical with ISO 5456-2 : 1996 'Technical drawings Projection methods - Part 2: Orthographic representations' issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on the recommendation of Drawings Sectional Committee and approval of the Basic and Production Engineering Division Council.
This standard (Part 2) specifies basic rules for the applications of orthographic representation to all type of technical drawings in all technical fields. Other parts of this series are given as follows:

IS 15021 (Part 1) : 2001 Technical drawings — Projection methods: Part 1 Synopsis
IS 15021 (Part 3) : 2001 Technical drawings - Projection methods: Part 3 Axonometric representations

IS 15021 (Part 4) : 2001 Technical drawings — Projection methods: Part 4 Central projection The text of ISO Standard has been approved as suitable for publication as Indian Standard without deviations. In the adopted standard certain terminology and conventions are not identical to those used in Indian Standards. Attention is particularly drawn to the following:
a) Wherever the words 'International Standard' appear referring to this standard, they should be read as 'Indian Standard'.
b) Comma (,) has been used as a decimal marker, while in Indian Standards, the current practice is to use a full point (.) as the decimal marker.
In this adopted standard, reference appears to certain International Standards for which Indian Standards also exist. The corresponding Indian Standards which are to be substituted in their place are listed below along with their degree of equivalence for the editions indicated:
International
Standard

ISO 128 : 1982

ISO 129: 1985

ISO 3098-1 : 1974

ISO 3461-2 : 1987
Supersesed by ISO/IEC 11714-1: 1996

ISO 5456-1 : 1996

ISO 10209-1 : 1992

ISO 10209-2 : 1993

Corresponding
 Indian Standard
 Degree of Equivalence

IS 10714:1983 General principles of presentation on technical drawings

IS 11669 : 1986 General principles of do dimensioning on technical drawings
IS 9609 (Part 1) : 1983 Lettering on do technical drawings: Part 1 English characters (first revision)
IS 15022 (Part 1) : 2001 Design of do graphical symbols for use in technical documentation of products: Part 1 Basic rules

IS 15021(Part 1): 2001 Technical drawings do - Projection methods: Part 1 Synopsis

IS 8930 (Part 1) : 1995 Technical product do documentation - Vocabulary: Part 1 Terms relating to technical drawings: General and types of drawings (first revision)

IS 8930 (Part 2) : 2001 Technical product do

Identical

路

documentation - Vocabulary: Part 2 Terms relating to projection methods

Indian Standard

TECHNICAL DRAWINGS - PROJECTION METHODS PART 2 ORTHOGRAPHIC REPRESENTATIONS

1 Scope

This part of ISO 5456 specifies basic rules for the application of orthographic representation to all types of technical drawings in all technical fields, according to the general rules specified in ISO 128, ISO 129, ISO 3098-1, ISO 3461-2 and ISO 5456-1.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 5456. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 5456 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 128:1982, Technical drawings - General principles of presentation.

ISO 129:1985, Technical drawings - Dimensioning General principles, definitions, methods of execution and special indications.

ISO 3098-1:1974, Technical drawings - Lettering Part 1: Currently used characters.

ISO 3461-2:1987, General principles for the creation of graphical symbols - Part 2: Graphical symbols for use in technical product documentation.

ISO 5456-1:1996, Technical drawings - Projection methods - Part 1: Synopsis.

ISO 10209-1:1992, Technical product documentation - Vocabulary - Part 1: Terms relating to technical drawings: general and types of drawings.

ISO 10209-2:1993, Technical product documentation - Vocabulary - Part 2: Terms relating to projection methods.

3 Definitions

For the purposes of this part of ISO 5456, the definitions given in ISO 5456-1, ISO 10209-1 and ISO 10209-2 apply.

4 General principles

4.1 General

Orthographic representation is obtained by means of parallel orthogonal projections and results in flat, twodimensional views systematically positioned relative to each other. To show an object completely, the six views in the directions a, b, c, d, e and f may be necessary, in order of priority (see figure 1 and table 1).

Figure 1

4.2 Designation of views

See table 1 .
Table 1

Direction of observation		Designation of view
View in direction	View from	
a	the front	A
b	above	$B(E){ }^{1}$
c	the left	C
d	the right	D
e	below	E
f	the rear	F
See 5.4.		

The most informative view of the object to be represented is normally chosen as the principal view
(front view). This is view A according to the direction of viewing a (see figure 1 and table 1), generally showing the object in the functioning or manufacturing or mounting position. The position of other views relative to the principal view in the drawing depends on the projection method chosen (first angle, third angle, reference arrows). In practice, not all six views (A to F) are needed. When views (cuts or sections) other than the principal view are necessary, these shall be selected in order to:

- limit the number of views, cuts and sections to the minimum necessary and sufficient to fully represent the object without ambiguity;
- avoid unnecessary repetition of detail.

5 Methods of representation

5.1 First angle projection

The first angle projection method is an orthographic representation in which the object to be represented (see figure 1) appears between the observer and the coordinate planes on which the object is orthogonally projected (see figure 2).

The positions of the various views relative to the principal (front) view A are determined by rotating their projection planes around lines coinciding with or parallel to the coordinate axes on the coordinate plane (drawing surface) on which the front view A is projected (see figure 2).

Therefore, in the drawing, with reference to the principal view A, the other views are arranged as follows (see figure 3):

- View B: the view from above is placed underneath;
- View E : the view from below is placed above;
- View C : the view from left is placed on the right;
- View D: the view from the right is placed on the left;
- View F : the view from the rear is placed on the right or on the left, as convenient.

The identifying graphical symbol of this method is shown in figure 4.

Figure 2

E-

B

Figure 3

Figure 4

5.2 Third angle projection

The third angle projection method is an orthographic representation in which the object to be represented (see figure 1), as seen by the observer, appears behind the coordinate planes on which the object is orthogonally projected (see figure 5). On each projection plane, the object is represented as if seen orthogonally from infinite distance with transparent projection planes.

The positions of the various views relative to the principal (front) view A are determined by rotating their projection planes around lines coinciding with or parallel to the coordinate axes on the coordinate plane (drawing surface) on which the front view A is projected (see figure 5).

Figure 5

Therefore, in the drawing, with reference to the principal view A, the other views are arranged as follows (see figure 6):

- View B: the view from above is placed above;
- View E: the view from below is placed underneath;
- View C: the view from the left is placed on the left;
- View D: the view from the right is placed on the right;
- View F: the view from the rear may be placed on the left or on the right, as convenient.

The identifying graphical symbol of this method is shown in figure 7.

Figure 6

Figure 7

5.3 Reference arrows layout

In those cases where it is advantageous to position the views not according to the strict pattern of the first or the third angle projection method, the use of the reference arrows method permits the various views to be freely positioned.

With the exception of the principal view, each view shall be identified by a letter in accordance with figure 1. A lower-case letter indicates in the principal view the direction of observation of the other views, which are identified by the corresponding capital letter placed immediately above the view and on the left.

The identified views may be located irrespective of the principal view (see figure 8). Whatever the direction of observation, the capital letters (see ISO 3098-1) identifying the views shall always be positioned to be read from the normal direction of viewing of the drawing.

No graphical symbol for the indication of this method is needed on the drawing.

Figure 8

5.4 Mirrored orthographic representation

Mirrored orthographic representation 1) is an orthographic representation in which the object to be represented (see figure 1) is a reproduction of the image in a mirror (face up) which is positioned parallel to the horizontal planes of this object (see figure 9).

The view resulting from a mirrored orthographic representation may be indicated by using the capital letter for the designation of views (i.e. "E", see 4.2).

Figure 9

The identifying graphical symbol of this method is shown in figure 10.

[^0]
Annex A

(normative)

Proportions and dimensions of graphical symbols

A. 1 General requirements

In order to harmonize the sizes of the graphical symbols specified in this part of ISO 5456 with those of the other inscriptions on the drawing (dimensions, tolerances, etc.), the rules given in ISO 3461-2 shall be applied.

A. 2 Proportions

The graphical symbols shall be drawn in accordance with figures A.1. A. 2 and A.3.

Figure A. 3

A. 3 Dimensions

The range of sizes to be used for the graphical symbols and additional indications shall be as specified in table A.1.

Table A. 1

Height of nu- merals and capi- tal letters land/or lower-case letters) and diameter of the smaller end of the cone, h	3,5	5	7	10	14	20
Line width for graphical sym- bols, d						
Line width for lettering, d	0,35	0,5	0.7	1	1,4	2
Length and diameter of the larger end of the cone, H	7	10	14	20	28	40

Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standảrds should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Catalogue' and 'Standards: Monthly Additions'.

This Indian Standard has been developed from Doc: No. BP 24 (0141).

Amendments Issued Since Publication

Amend No.
Date of Issue
Text Affected

BUREAU OF INDIAN STANDARDS
Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 32301 31, 32333 75, 3239402
Telegrams: Manaksanstha
(Common to all offices)
Regional Offices:
Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg NEW DELHI 110002
Eastern : 1/14 C.I.T. Scheme VII M, V. I. P. Road, Kankurgachi
KOLKATA 700054
Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160022
Southern : C.I.T. Campus, IV Cross Road, CHENNAI 600113

Western : Manakalaya, E9 MIDC, Marol, Andheri (East) MUMBAI 400093

Telephone
$\left\{\begin{array}{l}3237617 \\ 3233841\end{array}\right.$
$\left\{\begin{array}{l}3378499,3378561 \\ 3378626,3379120\end{array}\right.$
$\left\{\begin{array}{l}603843 \\ 602025\end{array}\right.$
$\left\{\begin{array}{l}2541216,2541442 \\ 2542519,2541315\end{array}\right.$
$\left\{\begin{array}{l}8329295,8327858 \\ 8327891,8327892\end{array}\right.$

Branches : AHMEDABAD. BANGALORE. BHOPAL. BHUBANESHWAR. COIMBATORE. FARIDABAD. GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR. LUCKNOW. NAGPUR. NALAGARH. PATNA. PUNE. RAJKOT. THIRUVANANTHAPURAM.

[^0]: 1) This method is preferably used in construction drawings.
